]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/swapfile.c
Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-jammy-kernel.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50
51 DEFINE_SPINLOCK(swap_lock);
52 static unsigned int nr_swapfiles;
53 atomic_long_t nr_swap_pages;
54 /*
55 * Some modules use swappable objects and may try to swap them out under
56 * memory pressure (via the shrinker). Before doing so, they may wish to
57 * check to see if any swap space is available.
58 */
59 EXPORT_SYMBOL_GPL(nr_swap_pages);
60 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
61 long total_swap_pages;
62 static int least_priority = -1;
63
64 static const char Bad_file[] = "Bad swap file entry ";
65 static const char Unused_file[] = "Unused swap file entry ";
66 static const char Bad_offset[] = "Bad swap offset entry ";
67 static const char Unused_offset[] = "Unused swap offset entry ";
68
69 /*
70 * all active swap_info_structs
71 * protected with swap_lock, and ordered by priority.
72 */
73 PLIST_HEAD(swap_active_head);
74
75 /*
76 * all available (active, not full) swap_info_structs
77 * protected with swap_avail_lock, ordered by priority.
78 * This is used by get_swap_page() instead of swap_active_head
79 * because swap_active_head includes all swap_info_structs,
80 * but get_swap_page() doesn't need to look at full ones.
81 * This uses its own lock instead of swap_lock because when a
82 * swap_info_struct changes between not-full/full, it needs to
83 * add/remove itself to/from this list, but the swap_info_struct->lock
84 * is held and the locking order requires swap_lock to be taken
85 * before any swap_info_struct->lock.
86 */
87 static struct plist_head *swap_avail_heads;
88 static DEFINE_SPINLOCK(swap_avail_lock);
89
90 struct swap_info_struct *swap_info[MAX_SWAPFILES];
91
92 static DEFINE_MUTEX(swapon_mutex);
93
94 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
95 /* Activity counter to indicate that a swapon or swapoff has occurred */
96 static atomic_t proc_poll_event = ATOMIC_INIT(0);
97
98 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
99
100 static struct swap_info_struct *swap_type_to_swap_info(int type)
101 {
102 if (type >= READ_ONCE(nr_swapfiles))
103 return NULL;
104
105 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
106 return READ_ONCE(swap_info[type]);
107 }
108
109 static inline unsigned char swap_count(unsigned char ent)
110 {
111 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
112 }
113
114 /* Reclaim the swap entry anyway if possible */
115 #define TTRS_ANYWAY 0x1
116 /*
117 * Reclaim the swap entry if there are no more mappings of the
118 * corresponding page
119 */
120 #define TTRS_UNMAPPED 0x2
121 /* Reclaim the swap entry if swap is getting full*/
122 #define TTRS_FULL 0x4
123
124 /* returns 1 if swap entry is freed */
125 static int __try_to_reclaim_swap(struct swap_info_struct *si,
126 unsigned long offset, unsigned long flags)
127 {
128 swp_entry_t entry = swp_entry(si->type, offset);
129 struct page *page;
130 int ret = 0;
131
132 page = find_get_page(swap_address_space(entry), offset);
133 if (!page)
134 return 0;
135 /*
136 * When this function is called from scan_swap_map_slots() and it's
137 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
138 * here. We have to use trylock for avoiding deadlock. This is a special
139 * case and you should use try_to_free_swap() with explicit lock_page()
140 * in usual operations.
141 */
142 if (trylock_page(page)) {
143 if ((flags & TTRS_ANYWAY) ||
144 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
145 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
146 ret = try_to_free_swap(page);
147 unlock_page(page);
148 }
149 put_page(page);
150 return ret;
151 }
152
153 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
154 {
155 struct rb_node *rb = rb_first(&sis->swap_extent_root);
156 return rb_entry(rb, struct swap_extent, rb_node);
157 }
158
159 static inline struct swap_extent *next_se(struct swap_extent *se)
160 {
161 struct rb_node *rb = rb_next(&se->rb_node);
162 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
163 }
164
165 /*
166 * swapon tell device that all the old swap contents can be discarded,
167 * to allow the swap device to optimize its wear-levelling.
168 */
169 static int discard_swap(struct swap_info_struct *si)
170 {
171 struct swap_extent *se;
172 sector_t start_block;
173 sector_t nr_blocks;
174 int err = 0;
175
176 /* Do not discard the swap header page! */
177 se = first_se(si);
178 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
179 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
180 if (nr_blocks) {
181 err = blkdev_issue_discard(si->bdev, start_block,
182 nr_blocks, GFP_KERNEL, 0);
183 if (err)
184 return err;
185 cond_resched();
186 }
187
188 for (se = next_se(se); se; se = next_se(se)) {
189 start_block = se->start_block << (PAGE_SHIFT - 9);
190 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
191
192 err = blkdev_issue_discard(si->bdev, start_block,
193 nr_blocks, GFP_KERNEL, 0);
194 if (err)
195 break;
196
197 cond_resched();
198 }
199 return err; /* That will often be -EOPNOTSUPP */
200 }
201
202 static struct swap_extent *
203 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
204 {
205 struct swap_extent *se;
206 struct rb_node *rb;
207
208 rb = sis->swap_extent_root.rb_node;
209 while (rb) {
210 se = rb_entry(rb, struct swap_extent, rb_node);
211 if (offset < se->start_page)
212 rb = rb->rb_left;
213 else if (offset >= se->start_page + se->nr_pages)
214 rb = rb->rb_right;
215 else
216 return se;
217 }
218 /* It *must* be present */
219 BUG();
220 }
221
222 /*
223 * swap allocation tell device that a cluster of swap can now be discarded,
224 * to allow the swap device to optimize its wear-levelling.
225 */
226 static void discard_swap_cluster(struct swap_info_struct *si,
227 pgoff_t start_page, pgoff_t nr_pages)
228 {
229 struct swap_extent *se = offset_to_swap_extent(si, start_page);
230
231 while (nr_pages) {
232 pgoff_t offset = start_page - se->start_page;
233 sector_t start_block = se->start_block + offset;
234 sector_t nr_blocks = se->nr_pages - offset;
235
236 if (nr_blocks > nr_pages)
237 nr_blocks = nr_pages;
238 start_page += nr_blocks;
239 nr_pages -= nr_blocks;
240
241 start_block <<= PAGE_SHIFT - 9;
242 nr_blocks <<= PAGE_SHIFT - 9;
243 if (blkdev_issue_discard(si->bdev, start_block,
244 nr_blocks, GFP_NOIO, 0))
245 break;
246
247 se = next_se(se);
248 }
249 }
250
251 #ifdef CONFIG_THP_SWAP
252 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
253
254 #define swap_entry_size(size) (size)
255 #else
256 #define SWAPFILE_CLUSTER 256
257
258 /*
259 * Define swap_entry_size() as constant to let compiler to optimize
260 * out some code if !CONFIG_THP_SWAP
261 */
262 #define swap_entry_size(size) 1
263 #endif
264 #define LATENCY_LIMIT 256
265
266 static inline void cluster_set_flag(struct swap_cluster_info *info,
267 unsigned int flag)
268 {
269 info->flags = flag;
270 }
271
272 static inline unsigned int cluster_count(struct swap_cluster_info *info)
273 {
274 return info->data;
275 }
276
277 static inline void cluster_set_count(struct swap_cluster_info *info,
278 unsigned int c)
279 {
280 info->data = c;
281 }
282
283 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
284 unsigned int c, unsigned int f)
285 {
286 info->flags = f;
287 info->data = c;
288 }
289
290 static inline unsigned int cluster_next(struct swap_cluster_info *info)
291 {
292 return info->data;
293 }
294
295 static inline void cluster_set_next(struct swap_cluster_info *info,
296 unsigned int n)
297 {
298 info->data = n;
299 }
300
301 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
302 unsigned int n, unsigned int f)
303 {
304 info->flags = f;
305 info->data = n;
306 }
307
308 static inline bool cluster_is_free(struct swap_cluster_info *info)
309 {
310 return info->flags & CLUSTER_FLAG_FREE;
311 }
312
313 static inline bool cluster_is_null(struct swap_cluster_info *info)
314 {
315 return info->flags & CLUSTER_FLAG_NEXT_NULL;
316 }
317
318 static inline void cluster_set_null(struct swap_cluster_info *info)
319 {
320 info->flags = CLUSTER_FLAG_NEXT_NULL;
321 info->data = 0;
322 }
323
324 static inline bool cluster_is_huge(struct swap_cluster_info *info)
325 {
326 if (IS_ENABLED(CONFIG_THP_SWAP))
327 return info->flags & CLUSTER_FLAG_HUGE;
328 return false;
329 }
330
331 static inline void cluster_clear_huge(struct swap_cluster_info *info)
332 {
333 info->flags &= ~CLUSTER_FLAG_HUGE;
334 }
335
336 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
337 unsigned long offset)
338 {
339 struct swap_cluster_info *ci;
340
341 ci = si->cluster_info;
342 if (ci) {
343 ci += offset / SWAPFILE_CLUSTER;
344 spin_lock(&ci->lock);
345 }
346 return ci;
347 }
348
349 static inline void unlock_cluster(struct swap_cluster_info *ci)
350 {
351 if (ci)
352 spin_unlock(&ci->lock);
353 }
354
355 /*
356 * Determine the locking method in use for this device. Return
357 * swap_cluster_info if SSD-style cluster-based locking is in place.
358 */
359 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
360 struct swap_info_struct *si, unsigned long offset)
361 {
362 struct swap_cluster_info *ci;
363
364 /* Try to use fine-grained SSD-style locking if available: */
365 ci = lock_cluster(si, offset);
366 /* Otherwise, fall back to traditional, coarse locking: */
367 if (!ci)
368 spin_lock(&si->lock);
369
370 return ci;
371 }
372
373 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
374 struct swap_cluster_info *ci)
375 {
376 if (ci)
377 unlock_cluster(ci);
378 else
379 spin_unlock(&si->lock);
380 }
381
382 static inline bool cluster_list_empty(struct swap_cluster_list *list)
383 {
384 return cluster_is_null(&list->head);
385 }
386
387 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
388 {
389 return cluster_next(&list->head);
390 }
391
392 static void cluster_list_init(struct swap_cluster_list *list)
393 {
394 cluster_set_null(&list->head);
395 cluster_set_null(&list->tail);
396 }
397
398 static void cluster_list_add_tail(struct swap_cluster_list *list,
399 struct swap_cluster_info *ci,
400 unsigned int idx)
401 {
402 if (cluster_list_empty(list)) {
403 cluster_set_next_flag(&list->head, idx, 0);
404 cluster_set_next_flag(&list->tail, idx, 0);
405 } else {
406 struct swap_cluster_info *ci_tail;
407 unsigned int tail = cluster_next(&list->tail);
408
409 /*
410 * Nested cluster lock, but both cluster locks are
411 * only acquired when we held swap_info_struct->lock
412 */
413 ci_tail = ci + tail;
414 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
415 cluster_set_next(ci_tail, idx);
416 spin_unlock(&ci_tail->lock);
417 cluster_set_next_flag(&list->tail, idx, 0);
418 }
419 }
420
421 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
422 struct swap_cluster_info *ci)
423 {
424 unsigned int idx;
425
426 idx = cluster_next(&list->head);
427 if (cluster_next(&list->tail) == idx) {
428 cluster_set_null(&list->head);
429 cluster_set_null(&list->tail);
430 } else
431 cluster_set_next_flag(&list->head,
432 cluster_next(&ci[idx]), 0);
433
434 return idx;
435 }
436
437 /* Add a cluster to discard list and schedule it to do discard */
438 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
439 unsigned int idx)
440 {
441 /*
442 * If scan_swap_map() can't find a free cluster, it will check
443 * si->swap_map directly. To make sure the discarding cluster isn't
444 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
445 * will be cleared after discard
446 */
447 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
448 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
449
450 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
451
452 schedule_work(&si->discard_work);
453 }
454
455 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
456 {
457 struct swap_cluster_info *ci = si->cluster_info;
458
459 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
460 cluster_list_add_tail(&si->free_clusters, ci, idx);
461 }
462
463 /*
464 * Doing discard actually. After a cluster discard is finished, the cluster
465 * will be added to free cluster list. caller should hold si->lock.
466 */
467 static void swap_do_scheduled_discard(struct swap_info_struct *si)
468 {
469 struct swap_cluster_info *info, *ci;
470 unsigned int idx;
471
472 info = si->cluster_info;
473
474 while (!cluster_list_empty(&si->discard_clusters)) {
475 idx = cluster_list_del_first(&si->discard_clusters, info);
476 spin_unlock(&si->lock);
477
478 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
479 SWAPFILE_CLUSTER);
480
481 spin_lock(&si->lock);
482 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
483 __free_cluster(si, idx);
484 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
485 0, SWAPFILE_CLUSTER);
486 unlock_cluster(ci);
487 }
488 }
489
490 static void swap_discard_work(struct work_struct *work)
491 {
492 struct swap_info_struct *si;
493
494 si = container_of(work, struct swap_info_struct, discard_work);
495
496 spin_lock(&si->lock);
497 swap_do_scheduled_discard(si);
498 spin_unlock(&si->lock);
499 }
500
501 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
502 {
503 struct swap_cluster_info *ci = si->cluster_info;
504
505 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
506 cluster_list_del_first(&si->free_clusters, ci);
507 cluster_set_count_flag(ci + idx, 0, 0);
508 }
509
510 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
511 {
512 struct swap_cluster_info *ci = si->cluster_info + idx;
513
514 VM_BUG_ON(cluster_count(ci) != 0);
515 /*
516 * If the swap is discardable, prepare discard the cluster
517 * instead of free it immediately. The cluster will be freed
518 * after discard.
519 */
520 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
521 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
522 swap_cluster_schedule_discard(si, idx);
523 return;
524 }
525
526 __free_cluster(si, idx);
527 }
528
529 /*
530 * The cluster corresponding to page_nr will be used. The cluster will be
531 * removed from free cluster list and its usage counter will be increased.
532 */
533 static void inc_cluster_info_page(struct swap_info_struct *p,
534 struct swap_cluster_info *cluster_info, unsigned long page_nr)
535 {
536 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
537
538 if (!cluster_info)
539 return;
540 if (cluster_is_free(&cluster_info[idx]))
541 alloc_cluster(p, idx);
542
543 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
544 cluster_set_count(&cluster_info[idx],
545 cluster_count(&cluster_info[idx]) + 1);
546 }
547
548 /*
549 * The cluster corresponding to page_nr decreases one usage. If the usage
550 * counter becomes 0, which means no page in the cluster is in using, we can
551 * optionally discard the cluster and add it to free cluster list.
552 */
553 static void dec_cluster_info_page(struct swap_info_struct *p,
554 struct swap_cluster_info *cluster_info, unsigned long page_nr)
555 {
556 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
557
558 if (!cluster_info)
559 return;
560
561 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
562 cluster_set_count(&cluster_info[idx],
563 cluster_count(&cluster_info[idx]) - 1);
564
565 if (cluster_count(&cluster_info[idx]) == 0)
566 free_cluster(p, idx);
567 }
568
569 /*
570 * It's possible scan_swap_map() uses a free cluster in the middle of free
571 * cluster list. Avoiding such abuse to avoid list corruption.
572 */
573 static bool
574 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
575 unsigned long offset)
576 {
577 struct percpu_cluster *percpu_cluster;
578 bool conflict;
579
580 offset /= SWAPFILE_CLUSTER;
581 conflict = !cluster_list_empty(&si->free_clusters) &&
582 offset != cluster_list_first(&si->free_clusters) &&
583 cluster_is_free(&si->cluster_info[offset]);
584
585 if (!conflict)
586 return false;
587
588 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
589 cluster_set_null(&percpu_cluster->index);
590 return true;
591 }
592
593 /*
594 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
595 * might involve allocating a new cluster for current CPU too.
596 */
597 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
598 unsigned long *offset, unsigned long *scan_base)
599 {
600 struct percpu_cluster *cluster;
601 struct swap_cluster_info *ci;
602 unsigned long tmp, max;
603
604 new_cluster:
605 cluster = this_cpu_ptr(si->percpu_cluster);
606 if (cluster_is_null(&cluster->index)) {
607 if (!cluster_list_empty(&si->free_clusters)) {
608 cluster->index = si->free_clusters.head;
609 cluster->next = cluster_next(&cluster->index) *
610 SWAPFILE_CLUSTER;
611 } else if (!cluster_list_empty(&si->discard_clusters)) {
612 /*
613 * we don't have free cluster but have some clusters in
614 * discarding, do discard now and reclaim them, then
615 * reread cluster_next_cpu since we dropped si->lock
616 */
617 swap_do_scheduled_discard(si);
618 *scan_base = this_cpu_read(*si->cluster_next_cpu);
619 *offset = *scan_base;
620 goto new_cluster;
621 } else
622 return false;
623 }
624
625 /*
626 * Other CPUs can use our cluster if they can't find a free cluster,
627 * check if there is still free entry in the cluster
628 */
629 tmp = cluster->next;
630 max = min_t(unsigned long, si->max,
631 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
632 if (tmp < max) {
633 ci = lock_cluster(si, tmp);
634 while (tmp < max) {
635 if (!si->swap_map[tmp])
636 break;
637 tmp++;
638 }
639 unlock_cluster(ci);
640 }
641 if (tmp >= max) {
642 cluster_set_null(&cluster->index);
643 goto new_cluster;
644 }
645 cluster->next = tmp + 1;
646 *offset = tmp;
647 *scan_base = tmp;
648 return true;
649 }
650
651 static void __del_from_avail_list(struct swap_info_struct *p)
652 {
653 int nid;
654
655 for_each_node(nid)
656 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
657 }
658
659 static void del_from_avail_list(struct swap_info_struct *p)
660 {
661 spin_lock(&swap_avail_lock);
662 __del_from_avail_list(p);
663 spin_unlock(&swap_avail_lock);
664 }
665
666 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
667 unsigned int nr_entries)
668 {
669 unsigned int end = offset + nr_entries - 1;
670
671 if (offset == si->lowest_bit)
672 si->lowest_bit += nr_entries;
673 if (end == si->highest_bit)
674 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
675 si->inuse_pages += nr_entries;
676 if (si->inuse_pages == si->pages) {
677 si->lowest_bit = si->max;
678 si->highest_bit = 0;
679 del_from_avail_list(si);
680 }
681 }
682
683 static void add_to_avail_list(struct swap_info_struct *p)
684 {
685 int nid;
686
687 spin_lock(&swap_avail_lock);
688 for_each_node(nid) {
689 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
690 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
691 }
692 spin_unlock(&swap_avail_lock);
693 }
694
695 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
696 unsigned int nr_entries)
697 {
698 unsigned long begin = offset;
699 unsigned long end = offset + nr_entries - 1;
700 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
701
702 if (offset < si->lowest_bit)
703 si->lowest_bit = offset;
704 if (end > si->highest_bit) {
705 bool was_full = !si->highest_bit;
706
707 WRITE_ONCE(si->highest_bit, end);
708 if (was_full && (si->flags & SWP_WRITEOK))
709 add_to_avail_list(si);
710 }
711 atomic_long_add(nr_entries, &nr_swap_pages);
712 si->inuse_pages -= nr_entries;
713 if (si->flags & SWP_BLKDEV)
714 swap_slot_free_notify =
715 si->bdev->bd_disk->fops->swap_slot_free_notify;
716 else
717 swap_slot_free_notify = NULL;
718 while (offset <= end) {
719 arch_swap_invalidate_page(si->type, offset);
720 frontswap_invalidate_page(si->type, offset);
721 if (swap_slot_free_notify)
722 swap_slot_free_notify(si->bdev, offset);
723 offset++;
724 }
725 clear_shadow_from_swap_cache(si->type, begin, end);
726 }
727
728 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
729 {
730 unsigned long prev;
731
732 if (!(si->flags & SWP_SOLIDSTATE)) {
733 si->cluster_next = next;
734 return;
735 }
736
737 prev = this_cpu_read(*si->cluster_next_cpu);
738 /*
739 * Cross the swap address space size aligned trunk, choose
740 * another trunk randomly to avoid lock contention on swap
741 * address space if possible.
742 */
743 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
744 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
745 /* No free swap slots available */
746 if (si->highest_bit <= si->lowest_bit)
747 return;
748 next = si->lowest_bit +
749 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
750 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
751 next = max_t(unsigned int, next, si->lowest_bit);
752 }
753 this_cpu_write(*si->cluster_next_cpu, next);
754 }
755
756 static int scan_swap_map_slots(struct swap_info_struct *si,
757 unsigned char usage, int nr,
758 swp_entry_t slots[])
759 {
760 struct swap_cluster_info *ci;
761 unsigned long offset;
762 unsigned long scan_base;
763 unsigned long last_in_cluster = 0;
764 int latency_ration = LATENCY_LIMIT;
765 int n_ret = 0;
766 bool scanned_many = false;
767
768 /*
769 * We try to cluster swap pages by allocating them sequentially
770 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
771 * way, however, we resort to first-free allocation, starting
772 * a new cluster. This prevents us from scattering swap pages
773 * all over the entire swap partition, so that we reduce
774 * overall disk seek times between swap pages. -- sct
775 * But we do now try to find an empty cluster. -Andrea
776 * And we let swap pages go all over an SSD partition. Hugh
777 */
778
779 si->flags += SWP_SCANNING;
780 /*
781 * Use percpu scan base for SSD to reduce lock contention on
782 * cluster and swap cache. For HDD, sequential access is more
783 * important.
784 */
785 if (si->flags & SWP_SOLIDSTATE)
786 scan_base = this_cpu_read(*si->cluster_next_cpu);
787 else
788 scan_base = si->cluster_next;
789 offset = scan_base;
790
791 /* SSD algorithm */
792 if (si->cluster_info) {
793 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
794 goto scan;
795 } else if (unlikely(!si->cluster_nr--)) {
796 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
797 si->cluster_nr = SWAPFILE_CLUSTER - 1;
798 goto checks;
799 }
800
801 spin_unlock(&si->lock);
802
803 /*
804 * If seek is expensive, start searching for new cluster from
805 * start of partition, to minimize the span of allocated swap.
806 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
807 * case, just handled by scan_swap_map_try_ssd_cluster() above.
808 */
809 scan_base = offset = si->lowest_bit;
810 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
811
812 /* Locate the first empty (unaligned) cluster */
813 for (; last_in_cluster <= si->highest_bit; offset++) {
814 if (si->swap_map[offset])
815 last_in_cluster = offset + SWAPFILE_CLUSTER;
816 else if (offset == last_in_cluster) {
817 spin_lock(&si->lock);
818 offset -= SWAPFILE_CLUSTER - 1;
819 si->cluster_next = offset;
820 si->cluster_nr = SWAPFILE_CLUSTER - 1;
821 goto checks;
822 }
823 if (unlikely(--latency_ration < 0)) {
824 cond_resched();
825 latency_ration = LATENCY_LIMIT;
826 }
827 }
828
829 offset = scan_base;
830 spin_lock(&si->lock);
831 si->cluster_nr = SWAPFILE_CLUSTER - 1;
832 }
833
834 checks:
835 if (si->cluster_info) {
836 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
837 /* take a break if we already got some slots */
838 if (n_ret)
839 goto done;
840 if (!scan_swap_map_try_ssd_cluster(si, &offset,
841 &scan_base))
842 goto scan;
843 }
844 }
845 if (!(si->flags & SWP_WRITEOK))
846 goto no_page;
847 if (!si->highest_bit)
848 goto no_page;
849 if (offset > si->highest_bit)
850 scan_base = offset = si->lowest_bit;
851
852 ci = lock_cluster(si, offset);
853 /* reuse swap entry of cache-only swap if not busy. */
854 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
855 int swap_was_freed;
856 unlock_cluster(ci);
857 spin_unlock(&si->lock);
858 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
859 spin_lock(&si->lock);
860 /* entry was freed successfully, try to use this again */
861 if (swap_was_freed)
862 goto checks;
863 goto scan; /* check next one */
864 }
865
866 if (si->swap_map[offset]) {
867 unlock_cluster(ci);
868 if (!n_ret)
869 goto scan;
870 else
871 goto done;
872 }
873 WRITE_ONCE(si->swap_map[offset], usage);
874 inc_cluster_info_page(si, si->cluster_info, offset);
875 unlock_cluster(ci);
876
877 swap_range_alloc(si, offset, 1);
878 slots[n_ret++] = swp_entry(si->type, offset);
879
880 /* got enough slots or reach max slots? */
881 if ((n_ret == nr) || (offset >= si->highest_bit))
882 goto done;
883
884 /* search for next available slot */
885
886 /* time to take a break? */
887 if (unlikely(--latency_ration < 0)) {
888 if (n_ret)
889 goto done;
890 spin_unlock(&si->lock);
891 cond_resched();
892 spin_lock(&si->lock);
893 latency_ration = LATENCY_LIMIT;
894 }
895
896 /* try to get more slots in cluster */
897 if (si->cluster_info) {
898 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
899 goto checks;
900 } else if (si->cluster_nr && !si->swap_map[++offset]) {
901 /* non-ssd case, still more slots in cluster? */
902 --si->cluster_nr;
903 goto checks;
904 }
905
906 /*
907 * Even if there's no free clusters available (fragmented),
908 * try to scan a little more quickly with lock held unless we
909 * have scanned too many slots already.
910 */
911 if (!scanned_many) {
912 unsigned long scan_limit;
913
914 if (offset < scan_base)
915 scan_limit = scan_base;
916 else
917 scan_limit = si->highest_bit;
918 for (; offset <= scan_limit && --latency_ration > 0;
919 offset++) {
920 if (!si->swap_map[offset])
921 goto checks;
922 }
923 }
924
925 done:
926 set_cluster_next(si, offset + 1);
927 si->flags -= SWP_SCANNING;
928 return n_ret;
929
930 scan:
931 spin_unlock(&si->lock);
932 while (++offset <= READ_ONCE(si->highest_bit)) {
933 if (data_race(!si->swap_map[offset])) {
934 spin_lock(&si->lock);
935 goto checks;
936 }
937 if (vm_swap_full() &&
938 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
939 spin_lock(&si->lock);
940 goto checks;
941 }
942 if (unlikely(--latency_ration < 0)) {
943 cond_resched();
944 latency_ration = LATENCY_LIMIT;
945 scanned_many = true;
946 }
947 }
948 offset = si->lowest_bit;
949 while (offset < scan_base) {
950 if (data_race(!si->swap_map[offset])) {
951 spin_lock(&si->lock);
952 goto checks;
953 }
954 if (vm_swap_full() &&
955 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
956 spin_lock(&si->lock);
957 goto checks;
958 }
959 if (unlikely(--latency_ration < 0)) {
960 cond_resched();
961 latency_ration = LATENCY_LIMIT;
962 scanned_many = true;
963 }
964 offset++;
965 }
966 spin_lock(&si->lock);
967
968 no_page:
969 si->flags -= SWP_SCANNING;
970 return n_ret;
971 }
972
973 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
974 {
975 unsigned long idx;
976 struct swap_cluster_info *ci;
977 unsigned long offset;
978
979 /*
980 * Should not even be attempting cluster allocations when huge
981 * page swap is disabled. Warn and fail the allocation.
982 */
983 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
984 VM_WARN_ON_ONCE(1);
985 return 0;
986 }
987
988 if (cluster_list_empty(&si->free_clusters))
989 return 0;
990
991 idx = cluster_list_first(&si->free_clusters);
992 offset = idx * SWAPFILE_CLUSTER;
993 ci = lock_cluster(si, offset);
994 alloc_cluster(si, idx);
995 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
996
997 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
998 unlock_cluster(ci);
999 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1000 *slot = swp_entry(si->type, offset);
1001
1002 return 1;
1003 }
1004
1005 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1006 {
1007 unsigned long offset = idx * SWAPFILE_CLUSTER;
1008 struct swap_cluster_info *ci;
1009
1010 ci = lock_cluster(si, offset);
1011 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1012 cluster_set_count_flag(ci, 0, 0);
1013 free_cluster(si, idx);
1014 unlock_cluster(ci);
1015 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1016 }
1017
1018 static unsigned long scan_swap_map(struct swap_info_struct *si,
1019 unsigned char usage)
1020 {
1021 swp_entry_t entry;
1022 int n_ret;
1023
1024 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1025
1026 if (n_ret)
1027 return swp_offset(entry);
1028 else
1029 return 0;
1030
1031 }
1032
1033 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1034 {
1035 unsigned long size = swap_entry_size(entry_size);
1036 struct swap_info_struct *si, *next;
1037 long avail_pgs;
1038 int n_ret = 0;
1039 int node;
1040
1041 /* Only single cluster request supported */
1042 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1043
1044 spin_lock(&swap_avail_lock);
1045
1046 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1047 if (avail_pgs <= 0) {
1048 spin_unlock(&swap_avail_lock);
1049 goto noswap;
1050 }
1051
1052 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1053
1054 atomic_long_sub(n_goal * size, &nr_swap_pages);
1055
1056 start_over:
1057 node = numa_node_id();
1058 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1059 /* requeue si to after same-priority siblings */
1060 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1061 spin_unlock(&swap_avail_lock);
1062 spin_lock(&si->lock);
1063 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1064 spin_lock(&swap_avail_lock);
1065 if (plist_node_empty(&si->avail_lists[node])) {
1066 spin_unlock(&si->lock);
1067 goto nextsi;
1068 }
1069 WARN(!si->highest_bit,
1070 "swap_info %d in list but !highest_bit\n",
1071 si->type);
1072 WARN(!(si->flags & SWP_WRITEOK),
1073 "swap_info %d in list but !SWP_WRITEOK\n",
1074 si->type);
1075 __del_from_avail_list(si);
1076 spin_unlock(&si->lock);
1077 goto nextsi;
1078 }
1079 if (size == SWAPFILE_CLUSTER) {
1080 if (si->flags & SWP_BLKDEV)
1081 n_ret = swap_alloc_cluster(si, swp_entries);
1082 } else
1083 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1084 n_goal, swp_entries);
1085 spin_unlock(&si->lock);
1086 if (n_ret || size == SWAPFILE_CLUSTER)
1087 goto check_out;
1088 pr_debug("scan_swap_map of si %d failed to find offset\n",
1089 si->type);
1090
1091 spin_lock(&swap_avail_lock);
1092 nextsi:
1093 /*
1094 * if we got here, it's likely that si was almost full before,
1095 * and since scan_swap_map() can drop the si->lock, multiple
1096 * callers probably all tried to get a page from the same si
1097 * and it filled up before we could get one; or, the si filled
1098 * up between us dropping swap_avail_lock and taking si->lock.
1099 * Since we dropped the swap_avail_lock, the swap_avail_head
1100 * list may have been modified; so if next is still in the
1101 * swap_avail_head list then try it, otherwise start over
1102 * if we have not gotten any slots.
1103 */
1104 if (plist_node_empty(&next->avail_lists[node]))
1105 goto start_over;
1106 }
1107
1108 spin_unlock(&swap_avail_lock);
1109
1110 check_out:
1111 if (n_ret < n_goal)
1112 atomic_long_add((long)(n_goal - n_ret) * size,
1113 &nr_swap_pages);
1114 noswap:
1115 return n_ret;
1116 }
1117
1118 /* The only caller of this function is now suspend routine */
1119 swp_entry_t get_swap_page_of_type(int type)
1120 {
1121 struct swap_info_struct *si = swap_type_to_swap_info(type);
1122 pgoff_t offset;
1123
1124 if (!si)
1125 goto fail;
1126
1127 spin_lock(&si->lock);
1128 if (si->flags & SWP_WRITEOK) {
1129 /* This is called for allocating swap entry, not cache */
1130 offset = scan_swap_map(si, 1);
1131 if (offset) {
1132 atomic_long_dec(&nr_swap_pages);
1133 spin_unlock(&si->lock);
1134 return swp_entry(type, offset);
1135 }
1136 }
1137 spin_unlock(&si->lock);
1138 fail:
1139 return (swp_entry_t) {0};
1140 }
1141
1142 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1143 {
1144 struct swap_info_struct *p;
1145 unsigned long offset;
1146
1147 if (!entry.val)
1148 goto out;
1149 p = swp_swap_info(entry);
1150 if (!p)
1151 goto bad_nofile;
1152 if (data_race(!(p->flags & SWP_USED)))
1153 goto bad_device;
1154 offset = swp_offset(entry);
1155 if (offset >= p->max)
1156 goto bad_offset;
1157 return p;
1158
1159 bad_offset:
1160 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1161 goto out;
1162 bad_device:
1163 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1164 goto out;
1165 bad_nofile:
1166 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1167 out:
1168 return NULL;
1169 }
1170
1171 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1172 {
1173 struct swap_info_struct *p;
1174
1175 p = __swap_info_get(entry);
1176 if (!p)
1177 goto out;
1178 if (data_race(!p->swap_map[swp_offset(entry)]))
1179 goto bad_free;
1180 return p;
1181
1182 bad_free:
1183 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1184 out:
1185 return NULL;
1186 }
1187
1188 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1189 {
1190 struct swap_info_struct *p;
1191
1192 p = _swap_info_get(entry);
1193 if (p)
1194 spin_lock(&p->lock);
1195 return p;
1196 }
1197
1198 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1199 struct swap_info_struct *q)
1200 {
1201 struct swap_info_struct *p;
1202
1203 p = _swap_info_get(entry);
1204
1205 if (p != q) {
1206 if (q != NULL)
1207 spin_unlock(&q->lock);
1208 if (p != NULL)
1209 spin_lock(&p->lock);
1210 }
1211 return p;
1212 }
1213
1214 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1215 unsigned long offset,
1216 unsigned char usage)
1217 {
1218 unsigned char count;
1219 unsigned char has_cache;
1220
1221 count = p->swap_map[offset];
1222
1223 has_cache = count & SWAP_HAS_CACHE;
1224 count &= ~SWAP_HAS_CACHE;
1225
1226 if (usage == SWAP_HAS_CACHE) {
1227 VM_BUG_ON(!has_cache);
1228 has_cache = 0;
1229 } else if (count == SWAP_MAP_SHMEM) {
1230 /*
1231 * Or we could insist on shmem.c using a special
1232 * swap_shmem_free() and free_shmem_swap_and_cache()...
1233 */
1234 count = 0;
1235 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1236 if (count == COUNT_CONTINUED) {
1237 if (swap_count_continued(p, offset, count))
1238 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1239 else
1240 count = SWAP_MAP_MAX;
1241 } else
1242 count--;
1243 }
1244
1245 usage = count | has_cache;
1246 if (usage)
1247 WRITE_ONCE(p->swap_map[offset], usage);
1248 else
1249 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1250
1251 return usage;
1252 }
1253
1254 /*
1255 * Check whether swap entry is valid in the swap device. If so,
1256 * return pointer to swap_info_struct, and keep the swap entry valid
1257 * via preventing the swap device from being swapoff, until
1258 * put_swap_device() is called. Otherwise return NULL.
1259 *
1260 * The entirety of the RCU read critical section must come before the
1261 * return from or after the call to synchronize_rcu() in
1262 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1263 * true, the si->map, si->cluster_info, etc. must be valid in the
1264 * critical section.
1265 *
1266 * Notice that swapoff or swapoff+swapon can still happen before the
1267 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1268 * in put_swap_device() if there isn't any other way to prevent
1269 * swapoff, such as page lock, page table lock, etc. The caller must
1270 * be prepared for that. For example, the following situation is
1271 * possible.
1272 *
1273 * CPU1 CPU2
1274 * do_swap_page()
1275 * ... swapoff+swapon
1276 * __read_swap_cache_async()
1277 * swapcache_prepare()
1278 * __swap_duplicate()
1279 * // check swap_map
1280 * // verify PTE not changed
1281 *
1282 * In __swap_duplicate(), the swap_map need to be checked before
1283 * changing partly because the specified swap entry may be for another
1284 * swap device which has been swapoff. And in do_swap_page(), after
1285 * the page is read from the swap device, the PTE is verified not
1286 * changed with the page table locked to check whether the swap device
1287 * has been swapoff or swapoff+swapon.
1288 */
1289 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1290 {
1291 struct swap_info_struct *si;
1292 unsigned long offset;
1293
1294 if (!entry.val)
1295 goto out;
1296 si = swp_swap_info(entry);
1297 if (!si)
1298 goto bad_nofile;
1299
1300 rcu_read_lock();
1301 if (data_race(!(si->flags & SWP_VALID)))
1302 goto unlock_out;
1303 offset = swp_offset(entry);
1304 if (offset >= si->max)
1305 goto unlock_out;
1306
1307 return si;
1308 bad_nofile:
1309 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1310 out:
1311 return NULL;
1312 unlock_out:
1313 rcu_read_unlock();
1314 return NULL;
1315 }
1316
1317 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1318 swp_entry_t entry)
1319 {
1320 struct swap_cluster_info *ci;
1321 unsigned long offset = swp_offset(entry);
1322 unsigned char usage;
1323
1324 ci = lock_cluster_or_swap_info(p, offset);
1325 usage = __swap_entry_free_locked(p, offset, 1);
1326 unlock_cluster_or_swap_info(p, ci);
1327 if (!usage)
1328 free_swap_slot(entry);
1329
1330 return usage;
1331 }
1332
1333 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1334 {
1335 struct swap_cluster_info *ci;
1336 unsigned long offset = swp_offset(entry);
1337 unsigned char count;
1338
1339 ci = lock_cluster(p, offset);
1340 count = p->swap_map[offset];
1341 VM_BUG_ON(count != SWAP_HAS_CACHE);
1342 p->swap_map[offset] = 0;
1343 dec_cluster_info_page(p, p->cluster_info, offset);
1344 unlock_cluster(ci);
1345
1346 mem_cgroup_uncharge_swap(entry, 1);
1347 swap_range_free(p, offset, 1);
1348 }
1349
1350 /*
1351 * Caller has made sure that the swap device corresponding to entry
1352 * is still around or has not been recycled.
1353 */
1354 void swap_free(swp_entry_t entry)
1355 {
1356 struct swap_info_struct *p;
1357
1358 p = _swap_info_get(entry);
1359 if (p)
1360 __swap_entry_free(p, entry);
1361 }
1362
1363 /*
1364 * Called after dropping swapcache to decrease refcnt to swap entries.
1365 */
1366 void put_swap_page(struct page *page, swp_entry_t entry)
1367 {
1368 unsigned long offset = swp_offset(entry);
1369 unsigned long idx = offset / SWAPFILE_CLUSTER;
1370 struct swap_cluster_info *ci;
1371 struct swap_info_struct *si;
1372 unsigned char *map;
1373 unsigned int i, free_entries = 0;
1374 unsigned char val;
1375 int size = swap_entry_size(thp_nr_pages(page));
1376
1377 si = _swap_info_get(entry);
1378 if (!si)
1379 return;
1380
1381 ci = lock_cluster_or_swap_info(si, offset);
1382 if (size == SWAPFILE_CLUSTER) {
1383 VM_BUG_ON(!cluster_is_huge(ci));
1384 map = si->swap_map + offset;
1385 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1386 val = map[i];
1387 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1388 if (val == SWAP_HAS_CACHE)
1389 free_entries++;
1390 }
1391 cluster_clear_huge(ci);
1392 if (free_entries == SWAPFILE_CLUSTER) {
1393 unlock_cluster_or_swap_info(si, ci);
1394 spin_lock(&si->lock);
1395 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1396 swap_free_cluster(si, idx);
1397 spin_unlock(&si->lock);
1398 return;
1399 }
1400 }
1401 for (i = 0; i < size; i++, entry.val++) {
1402 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1403 unlock_cluster_or_swap_info(si, ci);
1404 free_swap_slot(entry);
1405 if (i == size - 1)
1406 return;
1407 lock_cluster_or_swap_info(si, offset);
1408 }
1409 }
1410 unlock_cluster_or_swap_info(si, ci);
1411 }
1412
1413 #ifdef CONFIG_THP_SWAP
1414 int split_swap_cluster(swp_entry_t entry)
1415 {
1416 struct swap_info_struct *si;
1417 struct swap_cluster_info *ci;
1418 unsigned long offset = swp_offset(entry);
1419
1420 si = _swap_info_get(entry);
1421 if (!si)
1422 return -EBUSY;
1423 ci = lock_cluster(si, offset);
1424 cluster_clear_huge(ci);
1425 unlock_cluster(ci);
1426 return 0;
1427 }
1428 #endif
1429
1430 static int swp_entry_cmp(const void *ent1, const void *ent2)
1431 {
1432 const swp_entry_t *e1 = ent1, *e2 = ent2;
1433
1434 return (int)swp_type(*e1) - (int)swp_type(*e2);
1435 }
1436
1437 void swapcache_free_entries(swp_entry_t *entries, int n)
1438 {
1439 struct swap_info_struct *p, *prev;
1440 int i;
1441
1442 if (n <= 0)
1443 return;
1444
1445 prev = NULL;
1446 p = NULL;
1447
1448 /*
1449 * Sort swap entries by swap device, so each lock is only taken once.
1450 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1451 * so low that it isn't necessary to optimize further.
1452 */
1453 if (nr_swapfiles > 1)
1454 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1455 for (i = 0; i < n; ++i) {
1456 p = swap_info_get_cont(entries[i], prev);
1457 if (p)
1458 swap_entry_free(p, entries[i]);
1459 prev = p;
1460 }
1461 if (p)
1462 spin_unlock(&p->lock);
1463 }
1464
1465 /*
1466 * How many references to page are currently swapped out?
1467 * This does not give an exact answer when swap count is continued,
1468 * but does include the high COUNT_CONTINUED flag to allow for that.
1469 */
1470 int page_swapcount(struct page *page)
1471 {
1472 int count = 0;
1473 struct swap_info_struct *p;
1474 struct swap_cluster_info *ci;
1475 swp_entry_t entry;
1476 unsigned long offset;
1477
1478 entry.val = page_private(page);
1479 p = _swap_info_get(entry);
1480 if (p) {
1481 offset = swp_offset(entry);
1482 ci = lock_cluster_or_swap_info(p, offset);
1483 count = swap_count(p->swap_map[offset]);
1484 unlock_cluster_or_swap_info(p, ci);
1485 }
1486 return count;
1487 }
1488
1489 int __swap_count(swp_entry_t entry)
1490 {
1491 struct swap_info_struct *si;
1492 pgoff_t offset = swp_offset(entry);
1493 int count = 0;
1494
1495 si = get_swap_device(entry);
1496 if (si) {
1497 count = swap_count(si->swap_map[offset]);
1498 put_swap_device(si);
1499 }
1500 return count;
1501 }
1502
1503 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1504 {
1505 int count = 0;
1506 pgoff_t offset = swp_offset(entry);
1507 struct swap_cluster_info *ci;
1508
1509 ci = lock_cluster_or_swap_info(si, offset);
1510 count = swap_count(si->swap_map[offset]);
1511 unlock_cluster_or_swap_info(si, ci);
1512 return count;
1513 }
1514
1515 /*
1516 * How many references to @entry are currently swapped out?
1517 * This does not give an exact answer when swap count is continued,
1518 * but does include the high COUNT_CONTINUED flag to allow for that.
1519 */
1520 int __swp_swapcount(swp_entry_t entry)
1521 {
1522 int count = 0;
1523 struct swap_info_struct *si;
1524
1525 si = get_swap_device(entry);
1526 if (si) {
1527 count = swap_swapcount(si, entry);
1528 put_swap_device(si);
1529 }
1530 return count;
1531 }
1532
1533 /*
1534 * How many references to @entry are currently swapped out?
1535 * This considers COUNT_CONTINUED so it returns exact answer.
1536 */
1537 int swp_swapcount(swp_entry_t entry)
1538 {
1539 int count, tmp_count, n;
1540 struct swap_info_struct *p;
1541 struct swap_cluster_info *ci;
1542 struct page *page;
1543 pgoff_t offset;
1544 unsigned char *map;
1545
1546 p = _swap_info_get(entry);
1547 if (!p)
1548 return 0;
1549
1550 offset = swp_offset(entry);
1551
1552 ci = lock_cluster_or_swap_info(p, offset);
1553
1554 count = swap_count(p->swap_map[offset]);
1555 if (!(count & COUNT_CONTINUED))
1556 goto out;
1557
1558 count &= ~COUNT_CONTINUED;
1559 n = SWAP_MAP_MAX + 1;
1560
1561 page = vmalloc_to_page(p->swap_map + offset);
1562 offset &= ~PAGE_MASK;
1563 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1564
1565 do {
1566 page = list_next_entry(page, lru);
1567 map = kmap_atomic(page);
1568 tmp_count = map[offset];
1569 kunmap_atomic(map);
1570
1571 count += (tmp_count & ~COUNT_CONTINUED) * n;
1572 n *= (SWAP_CONT_MAX + 1);
1573 } while (tmp_count & COUNT_CONTINUED);
1574 out:
1575 unlock_cluster_or_swap_info(p, ci);
1576 return count;
1577 }
1578
1579 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1580 swp_entry_t entry)
1581 {
1582 struct swap_cluster_info *ci;
1583 unsigned char *map = si->swap_map;
1584 unsigned long roffset = swp_offset(entry);
1585 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1586 int i;
1587 bool ret = false;
1588
1589 ci = lock_cluster_or_swap_info(si, offset);
1590 if (!ci || !cluster_is_huge(ci)) {
1591 if (swap_count(map[roffset]))
1592 ret = true;
1593 goto unlock_out;
1594 }
1595 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1596 if (swap_count(map[offset + i])) {
1597 ret = true;
1598 break;
1599 }
1600 }
1601 unlock_out:
1602 unlock_cluster_or_swap_info(si, ci);
1603 return ret;
1604 }
1605
1606 static bool page_swapped(struct page *page)
1607 {
1608 swp_entry_t entry;
1609 struct swap_info_struct *si;
1610
1611 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1612 return page_swapcount(page) != 0;
1613
1614 page = compound_head(page);
1615 entry.val = page_private(page);
1616 si = _swap_info_get(entry);
1617 if (si)
1618 return swap_page_trans_huge_swapped(si, entry);
1619 return false;
1620 }
1621
1622 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1623 int *total_swapcount)
1624 {
1625 int i, map_swapcount, _total_mapcount, _total_swapcount;
1626 unsigned long offset = 0;
1627 struct swap_info_struct *si;
1628 struct swap_cluster_info *ci = NULL;
1629 unsigned char *map = NULL;
1630 int mapcount, swapcount = 0;
1631
1632 /* hugetlbfs shouldn't call it */
1633 VM_BUG_ON_PAGE(PageHuge(page), page);
1634
1635 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1636 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1637 if (PageSwapCache(page))
1638 swapcount = page_swapcount(page);
1639 if (total_swapcount)
1640 *total_swapcount = swapcount;
1641 return mapcount + swapcount;
1642 }
1643
1644 page = compound_head(page);
1645
1646 _total_mapcount = _total_swapcount = map_swapcount = 0;
1647 if (PageSwapCache(page)) {
1648 swp_entry_t entry;
1649
1650 entry.val = page_private(page);
1651 si = _swap_info_get(entry);
1652 if (si) {
1653 map = si->swap_map;
1654 offset = swp_offset(entry);
1655 }
1656 }
1657 if (map)
1658 ci = lock_cluster(si, offset);
1659 for (i = 0; i < HPAGE_PMD_NR; i++) {
1660 mapcount = atomic_read(&page[i]._mapcount) + 1;
1661 _total_mapcount += mapcount;
1662 if (map) {
1663 swapcount = swap_count(map[offset + i]);
1664 _total_swapcount += swapcount;
1665 }
1666 map_swapcount = max(map_swapcount, mapcount + swapcount);
1667 }
1668 unlock_cluster(ci);
1669 if (PageDoubleMap(page)) {
1670 map_swapcount -= 1;
1671 _total_mapcount -= HPAGE_PMD_NR;
1672 }
1673 mapcount = compound_mapcount(page);
1674 map_swapcount += mapcount;
1675 _total_mapcount += mapcount;
1676 if (total_mapcount)
1677 *total_mapcount = _total_mapcount;
1678 if (total_swapcount)
1679 *total_swapcount = _total_swapcount;
1680
1681 return map_swapcount;
1682 }
1683
1684 /*
1685 * We can write to an anon page without COW if there are no other references
1686 * to it. And as a side-effect, free up its swap: because the old content
1687 * on disk will never be read, and seeking back there to write new content
1688 * later would only waste time away from clustering.
1689 *
1690 * NOTE: total_map_swapcount should not be relied upon by the caller if
1691 * reuse_swap_page() returns false, but it may be always overwritten
1692 * (see the other implementation for CONFIG_SWAP=n).
1693 */
1694 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1695 {
1696 int count, total_mapcount, total_swapcount;
1697
1698 VM_BUG_ON_PAGE(!PageLocked(page), page);
1699 if (unlikely(PageKsm(page)))
1700 return false;
1701 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1702 &total_swapcount);
1703 if (total_map_swapcount)
1704 *total_map_swapcount = total_mapcount + total_swapcount;
1705 if (count == 1 && PageSwapCache(page) &&
1706 (likely(!PageTransCompound(page)) ||
1707 /* The remaining swap count will be freed soon */
1708 total_swapcount == page_swapcount(page))) {
1709 if (!PageWriteback(page)) {
1710 page = compound_head(page);
1711 delete_from_swap_cache(page);
1712 SetPageDirty(page);
1713 } else {
1714 swp_entry_t entry;
1715 struct swap_info_struct *p;
1716
1717 entry.val = page_private(page);
1718 p = swap_info_get(entry);
1719 if (p->flags & SWP_STABLE_WRITES) {
1720 spin_unlock(&p->lock);
1721 return false;
1722 }
1723 spin_unlock(&p->lock);
1724 }
1725 }
1726
1727 return count <= 1;
1728 }
1729
1730 /*
1731 * If swap is getting full, or if there are no more mappings of this page,
1732 * then try_to_free_swap is called to free its swap space.
1733 */
1734 int try_to_free_swap(struct page *page)
1735 {
1736 VM_BUG_ON_PAGE(!PageLocked(page), page);
1737
1738 if (!PageSwapCache(page))
1739 return 0;
1740 if (PageWriteback(page))
1741 return 0;
1742 if (page_swapped(page))
1743 return 0;
1744
1745 /*
1746 * Once hibernation has begun to create its image of memory,
1747 * there's a danger that one of the calls to try_to_free_swap()
1748 * - most probably a call from __try_to_reclaim_swap() while
1749 * hibernation is allocating its own swap pages for the image,
1750 * but conceivably even a call from memory reclaim - will free
1751 * the swap from a page which has already been recorded in the
1752 * image as a clean swapcache page, and then reuse its swap for
1753 * another page of the image. On waking from hibernation, the
1754 * original page might be freed under memory pressure, then
1755 * later read back in from swap, now with the wrong data.
1756 *
1757 * Hibernation suspends storage while it is writing the image
1758 * to disk so check that here.
1759 */
1760 if (pm_suspended_storage())
1761 return 0;
1762
1763 page = compound_head(page);
1764 delete_from_swap_cache(page);
1765 SetPageDirty(page);
1766 return 1;
1767 }
1768
1769 /*
1770 * Free the swap entry like above, but also try to
1771 * free the page cache entry if it is the last user.
1772 */
1773 int free_swap_and_cache(swp_entry_t entry)
1774 {
1775 struct swap_info_struct *p;
1776 unsigned char count;
1777
1778 if (non_swap_entry(entry))
1779 return 1;
1780
1781 p = _swap_info_get(entry);
1782 if (p) {
1783 count = __swap_entry_free(p, entry);
1784 if (count == SWAP_HAS_CACHE &&
1785 !swap_page_trans_huge_swapped(p, entry))
1786 __try_to_reclaim_swap(p, swp_offset(entry),
1787 TTRS_UNMAPPED | TTRS_FULL);
1788 }
1789 return p != NULL;
1790 }
1791
1792 #ifdef CONFIG_HIBERNATION
1793 /*
1794 * Find the swap type that corresponds to given device (if any).
1795 *
1796 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1797 * from 0, in which the swap header is expected to be located.
1798 *
1799 * This is needed for the suspend to disk (aka swsusp).
1800 */
1801 int swap_type_of(dev_t device, sector_t offset)
1802 {
1803 int type;
1804
1805 if (!device)
1806 return -1;
1807
1808 spin_lock(&swap_lock);
1809 for (type = 0; type < nr_swapfiles; type++) {
1810 struct swap_info_struct *sis = swap_info[type];
1811
1812 if (!(sis->flags & SWP_WRITEOK))
1813 continue;
1814
1815 if (device == sis->bdev->bd_dev) {
1816 struct swap_extent *se = first_se(sis);
1817
1818 if (se->start_block == offset) {
1819 spin_unlock(&swap_lock);
1820 return type;
1821 }
1822 }
1823 }
1824 spin_unlock(&swap_lock);
1825 return -ENODEV;
1826 }
1827
1828 int find_first_swap(dev_t *device)
1829 {
1830 int type;
1831
1832 spin_lock(&swap_lock);
1833 for (type = 0; type < nr_swapfiles; type++) {
1834 struct swap_info_struct *sis = swap_info[type];
1835
1836 if (!(sis->flags & SWP_WRITEOK))
1837 continue;
1838 *device = sis->bdev->bd_dev;
1839 spin_unlock(&swap_lock);
1840 return type;
1841 }
1842 spin_unlock(&swap_lock);
1843 return -ENODEV;
1844 }
1845
1846 /*
1847 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1848 * corresponding to given index in swap_info (swap type).
1849 */
1850 sector_t swapdev_block(int type, pgoff_t offset)
1851 {
1852 struct swap_info_struct *si = swap_type_to_swap_info(type);
1853 struct swap_extent *se;
1854
1855 if (!si || !(si->flags & SWP_WRITEOK))
1856 return 0;
1857 se = offset_to_swap_extent(si, offset);
1858 return se->start_block + (offset - se->start_page);
1859 }
1860
1861 /*
1862 * Return either the total number of swap pages of given type, or the number
1863 * of free pages of that type (depending on @free)
1864 *
1865 * This is needed for software suspend
1866 */
1867 unsigned int count_swap_pages(int type, int free)
1868 {
1869 unsigned int n = 0;
1870
1871 spin_lock(&swap_lock);
1872 if ((unsigned int)type < nr_swapfiles) {
1873 struct swap_info_struct *sis = swap_info[type];
1874
1875 spin_lock(&sis->lock);
1876 if (sis->flags & SWP_WRITEOK) {
1877 n = sis->pages;
1878 if (free)
1879 n -= sis->inuse_pages;
1880 }
1881 spin_unlock(&sis->lock);
1882 }
1883 spin_unlock(&swap_lock);
1884 return n;
1885 }
1886 #endif /* CONFIG_HIBERNATION */
1887
1888 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1889 {
1890 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1891 }
1892
1893 /*
1894 * No need to decide whether this PTE shares the swap entry with others,
1895 * just let do_wp_page work it out if a write is requested later - to
1896 * force COW, vm_page_prot omits write permission from any private vma.
1897 */
1898 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1899 unsigned long addr, swp_entry_t entry, struct page *page)
1900 {
1901 struct page *swapcache;
1902 spinlock_t *ptl;
1903 pte_t *pte;
1904 int ret = 1;
1905
1906 swapcache = page;
1907 page = ksm_might_need_to_copy(page, vma, addr);
1908 if (unlikely(!page))
1909 return -ENOMEM;
1910
1911 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1912 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1913 ret = 0;
1914 goto out;
1915 }
1916
1917 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1918 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1919 get_page(page);
1920 set_pte_at(vma->vm_mm, addr, pte,
1921 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1922 if (page == swapcache) {
1923 page_add_anon_rmap(page, vma, addr, false);
1924 } else { /* ksm created a completely new copy */
1925 page_add_new_anon_rmap(page, vma, addr, false);
1926 lru_cache_add_inactive_or_unevictable(page, vma);
1927 }
1928 swap_free(entry);
1929 out:
1930 pte_unmap_unlock(pte, ptl);
1931 if (page != swapcache) {
1932 unlock_page(page);
1933 put_page(page);
1934 }
1935 return ret;
1936 }
1937
1938 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1939 unsigned long addr, unsigned long end,
1940 unsigned int type, bool frontswap,
1941 unsigned long *fs_pages_to_unuse)
1942 {
1943 struct page *page;
1944 swp_entry_t entry;
1945 pte_t *pte;
1946 struct swap_info_struct *si;
1947 unsigned long offset;
1948 int ret = 0;
1949 volatile unsigned char *swap_map;
1950
1951 si = swap_info[type];
1952 pte = pte_offset_map(pmd, addr);
1953 do {
1954 if (!is_swap_pte(*pte))
1955 continue;
1956
1957 entry = pte_to_swp_entry(*pte);
1958 if (swp_type(entry) != type)
1959 continue;
1960
1961 offset = swp_offset(entry);
1962 if (frontswap && !frontswap_test(si, offset))
1963 continue;
1964
1965 pte_unmap(pte);
1966 swap_map = &si->swap_map[offset];
1967 page = lookup_swap_cache(entry, vma, addr);
1968 if (!page) {
1969 struct vm_fault vmf = {
1970 .vma = vma,
1971 .address = addr,
1972 .pmd = pmd,
1973 };
1974
1975 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1976 &vmf);
1977 }
1978 if (!page) {
1979 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1980 goto try_next;
1981 return -ENOMEM;
1982 }
1983
1984 lock_page(page);
1985 wait_on_page_writeback(page);
1986 ret = unuse_pte(vma, pmd, addr, entry, page);
1987 if (ret < 0) {
1988 unlock_page(page);
1989 put_page(page);
1990 goto out;
1991 }
1992
1993 try_to_free_swap(page);
1994 unlock_page(page);
1995 put_page(page);
1996
1997 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1998 ret = FRONTSWAP_PAGES_UNUSED;
1999 goto out;
2000 }
2001 try_next:
2002 pte = pte_offset_map(pmd, addr);
2003 } while (pte++, addr += PAGE_SIZE, addr != end);
2004 pte_unmap(pte - 1);
2005
2006 ret = 0;
2007 out:
2008 return ret;
2009 }
2010
2011 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2012 unsigned long addr, unsigned long end,
2013 unsigned int type, bool frontswap,
2014 unsigned long *fs_pages_to_unuse)
2015 {
2016 pmd_t *pmd;
2017 unsigned long next;
2018 int ret;
2019
2020 pmd = pmd_offset(pud, addr);
2021 do {
2022 cond_resched();
2023 next = pmd_addr_end(addr, end);
2024 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2025 continue;
2026 ret = unuse_pte_range(vma, pmd, addr, next, type,
2027 frontswap, fs_pages_to_unuse);
2028 if (ret)
2029 return ret;
2030 } while (pmd++, addr = next, addr != end);
2031 return 0;
2032 }
2033
2034 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2035 unsigned long addr, unsigned long end,
2036 unsigned int type, bool frontswap,
2037 unsigned long *fs_pages_to_unuse)
2038 {
2039 pud_t *pud;
2040 unsigned long next;
2041 int ret;
2042
2043 pud = pud_offset(p4d, addr);
2044 do {
2045 next = pud_addr_end(addr, end);
2046 if (pud_none_or_clear_bad(pud))
2047 continue;
2048 ret = unuse_pmd_range(vma, pud, addr, next, type,
2049 frontswap, fs_pages_to_unuse);
2050 if (ret)
2051 return ret;
2052 } while (pud++, addr = next, addr != end);
2053 return 0;
2054 }
2055
2056 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2057 unsigned long addr, unsigned long end,
2058 unsigned int type, bool frontswap,
2059 unsigned long *fs_pages_to_unuse)
2060 {
2061 p4d_t *p4d;
2062 unsigned long next;
2063 int ret;
2064
2065 p4d = p4d_offset(pgd, addr);
2066 do {
2067 next = p4d_addr_end(addr, end);
2068 if (p4d_none_or_clear_bad(p4d))
2069 continue;
2070 ret = unuse_pud_range(vma, p4d, addr, next, type,
2071 frontswap, fs_pages_to_unuse);
2072 if (ret)
2073 return ret;
2074 } while (p4d++, addr = next, addr != end);
2075 return 0;
2076 }
2077
2078 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2079 bool frontswap, unsigned long *fs_pages_to_unuse)
2080 {
2081 pgd_t *pgd;
2082 unsigned long addr, end, next;
2083 int ret;
2084
2085 addr = vma->vm_start;
2086 end = vma->vm_end;
2087
2088 pgd = pgd_offset(vma->vm_mm, addr);
2089 do {
2090 next = pgd_addr_end(addr, end);
2091 if (pgd_none_or_clear_bad(pgd))
2092 continue;
2093 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2094 frontswap, fs_pages_to_unuse);
2095 if (ret)
2096 return ret;
2097 } while (pgd++, addr = next, addr != end);
2098 return 0;
2099 }
2100
2101 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2102 bool frontswap, unsigned long *fs_pages_to_unuse)
2103 {
2104 struct vm_area_struct *vma;
2105 int ret = 0;
2106
2107 mmap_read_lock(mm);
2108 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2109 if (vma->anon_vma) {
2110 ret = unuse_vma(vma, type, frontswap,
2111 fs_pages_to_unuse);
2112 if (ret)
2113 break;
2114 }
2115 cond_resched();
2116 }
2117 mmap_read_unlock(mm);
2118 return ret;
2119 }
2120
2121 /*
2122 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2123 * from current position to next entry still in use. Return 0
2124 * if there are no inuse entries after prev till end of the map.
2125 */
2126 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2127 unsigned int prev, bool frontswap)
2128 {
2129 unsigned int i;
2130 unsigned char count;
2131
2132 /*
2133 * No need for swap_lock here: we're just looking
2134 * for whether an entry is in use, not modifying it; false
2135 * hits are okay, and sys_swapoff() has already prevented new
2136 * allocations from this area (while holding swap_lock).
2137 */
2138 for (i = prev + 1; i < si->max; i++) {
2139 count = READ_ONCE(si->swap_map[i]);
2140 if (count && swap_count(count) != SWAP_MAP_BAD)
2141 if (!frontswap || frontswap_test(si, i))
2142 break;
2143 if ((i % LATENCY_LIMIT) == 0)
2144 cond_resched();
2145 }
2146
2147 if (i == si->max)
2148 i = 0;
2149
2150 return i;
2151 }
2152
2153 /*
2154 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2155 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2156 */
2157 int try_to_unuse(unsigned int type, bool frontswap,
2158 unsigned long pages_to_unuse)
2159 {
2160 struct mm_struct *prev_mm;
2161 struct mm_struct *mm;
2162 struct list_head *p;
2163 int retval = 0;
2164 struct swap_info_struct *si = swap_info[type];
2165 struct page *page;
2166 swp_entry_t entry;
2167 unsigned int i;
2168
2169 if (!READ_ONCE(si->inuse_pages))
2170 return 0;
2171
2172 if (!frontswap)
2173 pages_to_unuse = 0;
2174
2175 retry:
2176 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2177 if (retval)
2178 goto out;
2179
2180 prev_mm = &init_mm;
2181 mmget(prev_mm);
2182
2183 spin_lock(&mmlist_lock);
2184 p = &init_mm.mmlist;
2185 while (READ_ONCE(si->inuse_pages) &&
2186 !signal_pending(current) &&
2187 (p = p->next) != &init_mm.mmlist) {
2188
2189 mm = list_entry(p, struct mm_struct, mmlist);
2190 if (!mmget_not_zero(mm))
2191 continue;
2192 spin_unlock(&mmlist_lock);
2193 mmput(prev_mm);
2194 prev_mm = mm;
2195 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2196
2197 if (retval) {
2198 mmput(prev_mm);
2199 goto out;
2200 }
2201
2202 /*
2203 * Make sure that we aren't completely killing
2204 * interactive performance.
2205 */
2206 cond_resched();
2207 spin_lock(&mmlist_lock);
2208 }
2209 spin_unlock(&mmlist_lock);
2210
2211 mmput(prev_mm);
2212
2213 i = 0;
2214 while (READ_ONCE(si->inuse_pages) &&
2215 !signal_pending(current) &&
2216 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2217
2218 entry = swp_entry(type, i);
2219 page = find_get_page(swap_address_space(entry), i);
2220 if (!page)
2221 continue;
2222
2223 /*
2224 * It is conceivable that a racing task removed this page from
2225 * swap cache just before we acquired the page lock. The page
2226 * might even be back in swap cache on another swap area. But
2227 * that is okay, try_to_free_swap() only removes stale pages.
2228 */
2229 lock_page(page);
2230 wait_on_page_writeback(page);
2231 try_to_free_swap(page);
2232 unlock_page(page);
2233 put_page(page);
2234
2235 /*
2236 * For frontswap, we just need to unuse pages_to_unuse, if
2237 * it was specified. Need not check frontswap again here as
2238 * we already zeroed out pages_to_unuse if not frontswap.
2239 */
2240 if (pages_to_unuse && --pages_to_unuse == 0)
2241 goto out;
2242 }
2243
2244 /*
2245 * Lets check again to see if there are still swap entries in the map.
2246 * If yes, we would need to do retry the unuse logic again.
2247 * Under global memory pressure, swap entries can be reinserted back
2248 * into process space after the mmlist loop above passes over them.
2249 *
2250 * Limit the number of retries? No: when mmget_not_zero() above fails,
2251 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2252 * at its own independent pace; and even shmem_writepage() could have
2253 * been preempted after get_swap_page(), temporarily hiding that swap.
2254 * It's easy and robust (though cpu-intensive) just to keep retrying.
2255 */
2256 if (READ_ONCE(si->inuse_pages)) {
2257 if (!signal_pending(current))
2258 goto retry;
2259 retval = -EINTR;
2260 }
2261 out:
2262 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2263 }
2264
2265 /*
2266 * After a successful try_to_unuse, if no swap is now in use, we know
2267 * we can empty the mmlist. swap_lock must be held on entry and exit.
2268 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2269 * added to the mmlist just after page_duplicate - before would be racy.
2270 */
2271 static void drain_mmlist(void)
2272 {
2273 struct list_head *p, *next;
2274 unsigned int type;
2275
2276 for (type = 0; type < nr_swapfiles; type++)
2277 if (swap_info[type]->inuse_pages)
2278 return;
2279 spin_lock(&mmlist_lock);
2280 list_for_each_safe(p, next, &init_mm.mmlist)
2281 list_del_init(p);
2282 spin_unlock(&mmlist_lock);
2283 }
2284
2285 /*
2286 * Free all of a swapdev's extent information
2287 */
2288 static void destroy_swap_extents(struct swap_info_struct *sis)
2289 {
2290 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2291 struct rb_node *rb = sis->swap_extent_root.rb_node;
2292 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2293
2294 rb_erase(rb, &sis->swap_extent_root);
2295 kfree(se);
2296 }
2297
2298 if (sis->flags & SWP_ACTIVATED) {
2299 struct file *swap_file = sis->swap_file;
2300 struct address_space *mapping = swap_file->f_mapping;
2301
2302 sis->flags &= ~SWP_ACTIVATED;
2303 if (mapping->a_ops->swap_deactivate)
2304 mapping->a_ops->swap_deactivate(swap_file);
2305 }
2306 }
2307
2308 /*
2309 * Add a block range (and the corresponding page range) into this swapdev's
2310 * extent tree.
2311 *
2312 * This function rather assumes that it is called in ascending page order.
2313 */
2314 int
2315 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2316 unsigned long nr_pages, sector_t start_block)
2317 {
2318 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2319 struct swap_extent *se;
2320 struct swap_extent *new_se;
2321
2322 /*
2323 * place the new node at the right most since the
2324 * function is called in ascending page order.
2325 */
2326 while (*link) {
2327 parent = *link;
2328 link = &parent->rb_right;
2329 }
2330
2331 if (parent) {
2332 se = rb_entry(parent, struct swap_extent, rb_node);
2333 BUG_ON(se->start_page + se->nr_pages != start_page);
2334 if (se->start_block + se->nr_pages == start_block) {
2335 /* Merge it */
2336 se->nr_pages += nr_pages;
2337 return 0;
2338 }
2339 }
2340
2341 /* No merge, insert a new extent. */
2342 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2343 if (new_se == NULL)
2344 return -ENOMEM;
2345 new_se->start_page = start_page;
2346 new_se->nr_pages = nr_pages;
2347 new_se->start_block = start_block;
2348
2349 rb_link_node(&new_se->rb_node, parent, link);
2350 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2351 return 1;
2352 }
2353 EXPORT_SYMBOL_GPL(add_swap_extent);
2354
2355 /*
2356 * A `swap extent' is a simple thing which maps a contiguous range of pages
2357 * onto a contiguous range of disk blocks. An ordered list of swap extents
2358 * is built at swapon time and is then used at swap_writepage/swap_readpage
2359 * time for locating where on disk a page belongs.
2360 *
2361 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2362 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2363 * swap files identically.
2364 *
2365 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2366 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2367 * swapfiles are handled *identically* after swapon time.
2368 *
2369 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2370 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2371 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2372 * requirements, they are simply tossed out - we will never use those blocks
2373 * for swapping.
2374 *
2375 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2376 * prevents users from writing to the swap device, which will corrupt memory.
2377 *
2378 * The amount of disk space which a single swap extent represents varies.
2379 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2380 * extents in the list. To avoid much list walking, we cache the previous
2381 * search location in `curr_swap_extent', and start new searches from there.
2382 * This is extremely effective. The average number of iterations in
2383 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2384 */
2385 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2386 {
2387 struct file *swap_file = sis->swap_file;
2388 struct address_space *mapping = swap_file->f_mapping;
2389 struct inode *inode = mapping->host;
2390 int ret;
2391
2392 if (S_ISBLK(inode->i_mode)) {
2393 ret = add_swap_extent(sis, 0, sis->max, 0);
2394 *span = sis->pages;
2395 return ret;
2396 }
2397
2398 if (mapping->a_ops->swap_activate) {
2399 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2400 if (ret >= 0)
2401 sis->flags |= SWP_ACTIVATED;
2402 if (!ret) {
2403 sis->flags |= SWP_FS_OPS;
2404 ret = add_swap_extent(sis, 0, sis->max, 0);
2405 *span = sis->pages;
2406 }
2407 return ret;
2408 }
2409
2410 return generic_swapfile_activate(sis, swap_file, span);
2411 }
2412
2413 static int swap_node(struct swap_info_struct *p)
2414 {
2415 struct block_device *bdev;
2416
2417 if (p->bdev)
2418 bdev = p->bdev;
2419 else
2420 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2421
2422 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2423 }
2424
2425 static void setup_swap_info(struct swap_info_struct *p, int prio,
2426 unsigned char *swap_map,
2427 struct swap_cluster_info *cluster_info)
2428 {
2429 int i;
2430
2431 if (prio >= 0)
2432 p->prio = prio;
2433 else
2434 p->prio = --least_priority;
2435 /*
2436 * the plist prio is negated because plist ordering is
2437 * low-to-high, while swap ordering is high-to-low
2438 */
2439 p->list.prio = -p->prio;
2440 for_each_node(i) {
2441 if (p->prio >= 0)
2442 p->avail_lists[i].prio = -p->prio;
2443 else {
2444 if (swap_node(p) == i)
2445 p->avail_lists[i].prio = 1;
2446 else
2447 p->avail_lists[i].prio = -p->prio;
2448 }
2449 }
2450 p->swap_map = swap_map;
2451 p->cluster_info = cluster_info;
2452 }
2453
2454 static void _enable_swap_info(struct swap_info_struct *p)
2455 {
2456 p->flags |= SWP_WRITEOK | SWP_VALID;
2457 atomic_long_add(p->pages, &nr_swap_pages);
2458 total_swap_pages += p->pages;
2459
2460 assert_spin_locked(&swap_lock);
2461 /*
2462 * both lists are plists, and thus priority ordered.
2463 * swap_active_head needs to be priority ordered for swapoff(),
2464 * which on removal of any swap_info_struct with an auto-assigned
2465 * (i.e. negative) priority increments the auto-assigned priority
2466 * of any lower-priority swap_info_structs.
2467 * swap_avail_head needs to be priority ordered for get_swap_page(),
2468 * which allocates swap pages from the highest available priority
2469 * swap_info_struct.
2470 */
2471 plist_add(&p->list, &swap_active_head);
2472 add_to_avail_list(p);
2473 }
2474
2475 static void enable_swap_info(struct swap_info_struct *p, int prio,
2476 unsigned char *swap_map,
2477 struct swap_cluster_info *cluster_info,
2478 unsigned long *frontswap_map)
2479 {
2480 frontswap_init(p->type, frontswap_map);
2481 spin_lock(&swap_lock);
2482 spin_lock(&p->lock);
2483 setup_swap_info(p, prio, swap_map, cluster_info);
2484 spin_unlock(&p->lock);
2485 spin_unlock(&swap_lock);
2486 /*
2487 * Guarantee swap_map, cluster_info, etc. fields are valid
2488 * between get/put_swap_device() if SWP_VALID bit is set
2489 */
2490 synchronize_rcu();
2491 spin_lock(&swap_lock);
2492 spin_lock(&p->lock);
2493 _enable_swap_info(p);
2494 spin_unlock(&p->lock);
2495 spin_unlock(&swap_lock);
2496 }
2497
2498 static void reinsert_swap_info(struct swap_info_struct *p)
2499 {
2500 spin_lock(&swap_lock);
2501 spin_lock(&p->lock);
2502 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2503 _enable_swap_info(p);
2504 spin_unlock(&p->lock);
2505 spin_unlock(&swap_lock);
2506 }
2507
2508 bool has_usable_swap(void)
2509 {
2510 bool ret = true;
2511
2512 spin_lock(&swap_lock);
2513 if (plist_head_empty(&swap_active_head))
2514 ret = false;
2515 spin_unlock(&swap_lock);
2516 return ret;
2517 }
2518
2519 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2520 {
2521 struct swap_info_struct *p = NULL;
2522 unsigned char *swap_map;
2523 struct swap_cluster_info *cluster_info;
2524 unsigned long *frontswap_map;
2525 struct file *swap_file, *victim;
2526 struct address_space *mapping;
2527 struct inode *inode;
2528 struct filename *pathname;
2529 int err, found = 0;
2530 unsigned int old_block_size;
2531
2532 if (!capable(CAP_SYS_ADMIN))
2533 return -EPERM;
2534
2535 BUG_ON(!current->mm);
2536
2537 pathname = getname(specialfile);
2538 if (IS_ERR(pathname))
2539 return PTR_ERR(pathname);
2540
2541 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2542 err = PTR_ERR(victim);
2543 if (IS_ERR(victim))
2544 goto out;
2545
2546 mapping = victim->f_mapping;
2547 spin_lock(&swap_lock);
2548 plist_for_each_entry(p, &swap_active_head, list) {
2549 if (p->flags & SWP_WRITEOK) {
2550 if (p->swap_file->f_mapping == mapping) {
2551 found = 1;
2552 break;
2553 }
2554 }
2555 }
2556 if (!found) {
2557 err = -EINVAL;
2558 spin_unlock(&swap_lock);
2559 goto out_dput;
2560 }
2561 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2562 vm_unacct_memory(p->pages);
2563 else {
2564 err = -ENOMEM;
2565 spin_unlock(&swap_lock);
2566 goto out_dput;
2567 }
2568 del_from_avail_list(p);
2569 spin_lock(&p->lock);
2570 if (p->prio < 0) {
2571 struct swap_info_struct *si = p;
2572 int nid;
2573
2574 plist_for_each_entry_continue(si, &swap_active_head, list) {
2575 si->prio++;
2576 si->list.prio--;
2577 for_each_node(nid) {
2578 if (si->avail_lists[nid].prio != 1)
2579 si->avail_lists[nid].prio--;
2580 }
2581 }
2582 least_priority++;
2583 }
2584 plist_del(&p->list, &swap_active_head);
2585 atomic_long_sub(p->pages, &nr_swap_pages);
2586 total_swap_pages -= p->pages;
2587 p->flags &= ~SWP_WRITEOK;
2588 spin_unlock(&p->lock);
2589 spin_unlock(&swap_lock);
2590
2591 disable_swap_slots_cache_lock();
2592
2593 set_current_oom_origin();
2594 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2595 clear_current_oom_origin();
2596
2597 if (err) {
2598 /* re-insert swap space back into swap_list */
2599 reinsert_swap_info(p);
2600 reenable_swap_slots_cache_unlock();
2601 goto out_dput;
2602 }
2603
2604 reenable_swap_slots_cache_unlock();
2605
2606 spin_lock(&swap_lock);
2607 spin_lock(&p->lock);
2608 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2609 spin_unlock(&p->lock);
2610 spin_unlock(&swap_lock);
2611 /*
2612 * wait for swap operations protected by get/put_swap_device()
2613 * to complete
2614 */
2615 synchronize_rcu();
2616
2617 flush_work(&p->discard_work);
2618
2619 destroy_swap_extents(p);
2620 if (p->flags & SWP_CONTINUED)
2621 free_swap_count_continuations(p);
2622
2623 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2624 atomic_dec(&nr_rotate_swap);
2625
2626 mutex_lock(&swapon_mutex);
2627 spin_lock(&swap_lock);
2628 spin_lock(&p->lock);
2629 drain_mmlist();
2630
2631 /* wait for anyone still in scan_swap_map */
2632 p->highest_bit = 0; /* cuts scans short */
2633 while (p->flags >= SWP_SCANNING) {
2634 spin_unlock(&p->lock);
2635 spin_unlock(&swap_lock);
2636 schedule_timeout_uninterruptible(1);
2637 spin_lock(&swap_lock);
2638 spin_lock(&p->lock);
2639 }
2640
2641 swap_file = p->swap_file;
2642 old_block_size = p->old_block_size;
2643 p->swap_file = NULL;
2644 p->max = 0;
2645 swap_map = p->swap_map;
2646 p->swap_map = NULL;
2647 cluster_info = p->cluster_info;
2648 p->cluster_info = NULL;
2649 frontswap_map = frontswap_map_get(p);
2650 spin_unlock(&p->lock);
2651 spin_unlock(&swap_lock);
2652 arch_swap_invalidate_area(p->type);
2653 frontswap_invalidate_area(p->type);
2654 frontswap_map_set(p, NULL);
2655 mutex_unlock(&swapon_mutex);
2656 free_percpu(p->percpu_cluster);
2657 p->percpu_cluster = NULL;
2658 free_percpu(p->cluster_next_cpu);
2659 p->cluster_next_cpu = NULL;
2660 vfree(swap_map);
2661 kvfree(cluster_info);
2662 kvfree(frontswap_map);
2663 /* Destroy swap account information */
2664 swap_cgroup_swapoff(p->type);
2665 exit_swap_address_space(p->type);
2666
2667 inode = mapping->host;
2668 if (S_ISBLK(inode->i_mode)) {
2669 struct block_device *bdev = I_BDEV(inode);
2670
2671 set_blocksize(bdev, old_block_size);
2672 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2673 }
2674
2675 inode_lock(inode);
2676 inode->i_flags &= ~S_SWAPFILE;
2677 inode_unlock(inode);
2678 filp_close(swap_file, NULL);
2679
2680 /*
2681 * Clear the SWP_USED flag after all resources are freed so that swapon
2682 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2683 * not hold p->lock after we cleared its SWP_WRITEOK.
2684 */
2685 spin_lock(&swap_lock);
2686 p->flags = 0;
2687 spin_unlock(&swap_lock);
2688
2689 err = 0;
2690 atomic_inc(&proc_poll_event);
2691 wake_up_interruptible(&proc_poll_wait);
2692
2693 out_dput:
2694 filp_close(victim, NULL);
2695 out:
2696 putname(pathname);
2697 return err;
2698 }
2699
2700 #ifdef CONFIG_PROC_FS
2701 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2702 {
2703 struct seq_file *seq = file->private_data;
2704
2705 poll_wait(file, &proc_poll_wait, wait);
2706
2707 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2708 seq->poll_event = atomic_read(&proc_poll_event);
2709 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2710 }
2711
2712 return EPOLLIN | EPOLLRDNORM;
2713 }
2714
2715 /* iterator */
2716 static void *swap_start(struct seq_file *swap, loff_t *pos)
2717 {
2718 struct swap_info_struct *si;
2719 int type;
2720 loff_t l = *pos;
2721
2722 mutex_lock(&swapon_mutex);
2723
2724 if (!l)
2725 return SEQ_START_TOKEN;
2726
2727 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2728 if (!(si->flags & SWP_USED) || !si->swap_map)
2729 continue;
2730 if (!--l)
2731 return si;
2732 }
2733
2734 return NULL;
2735 }
2736
2737 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2738 {
2739 struct swap_info_struct *si = v;
2740 int type;
2741
2742 if (v == SEQ_START_TOKEN)
2743 type = 0;
2744 else
2745 type = si->type + 1;
2746
2747 ++(*pos);
2748 for (; (si = swap_type_to_swap_info(type)); type++) {
2749 if (!(si->flags & SWP_USED) || !si->swap_map)
2750 continue;
2751 return si;
2752 }
2753
2754 return NULL;
2755 }
2756
2757 static void swap_stop(struct seq_file *swap, void *v)
2758 {
2759 mutex_unlock(&swapon_mutex);
2760 }
2761
2762 static int swap_show(struct seq_file *swap, void *v)
2763 {
2764 struct swap_info_struct *si = v;
2765 struct file *file;
2766 int len;
2767 unsigned int bytes, inuse;
2768
2769 if (si == SEQ_START_TOKEN) {
2770 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2771 return 0;
2772 }
2773
2774 bytes = si->pages << (PAGE_SHIFT - 10);
2775 inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2776
2777 file = si->swap_file;
2778 len = seq_file_path(swap, file, " \t\n\\");
2779 seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2780 len < 40 ? 40 - len : 1, " ",
2781 S_ISBLK(file_inode(file)->i_mode) ?
2782 "partition" : "file\t",
2783 bytes, bytes < 10000000 ? "\t" : "",
2784 inuse, inuse < 10000000 ? "\t" : "",
2785 si->prio);
2786 return 0;
2787 }
2788
2789 static const struct seq_operations swaps_op = {
2790 .start = swap_start,
2791 .next = swap_next,
2792 .stop = swap_stop,
2793 .show = swap_show
2794 };
2795
2796 static int swaps_open(struct inode *inode, struct file *file)
2797 {
2798 struct seq_file *seq;
2799 int ret;
2800
2801 ret = seq_open(file, &swaps_op);
2802 if (ret)
2803 return ret;
2804
2805 seq = file->private_data;
2806 seq->poll_event = atomic_read(&proc_poll_event);
2807 return 0;
2808 }
2809
2810 static const struct proc_ops swaps_proc_ops = {
2811 .proc_flags = PROC_ENTRY_PERMANENT,
2812 .proc_open = swaps_open,
2813 .proc_read = seq_read,
2814 .proc_lseek = seq_lseek,
2815 .proc_release = seq_release,
2816 .proc_poll = swaps_poll,
2817 };
2818
2819 static int __init procswaps_init(void)
2820 {
2821 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2822 return 0;
2823 }
2824 __initcall(procswaps_init);
2825 #endif /* CONFIG_PROC_FS */
2826
2827 #ifdef MAX_SWAPFILES_CHECK
2828 static int __init max_swapfiles_check(void)
2829 {
2830 MAX_SWAPFILES_CHECK();
2831 return 0;
2832 }
2833 late_initcall(max_swapfiles_check);
2834 #endif
2835
2836 static struct swap_info_struct *alloc_swap_info(void)
2837 {
2838 struct swap_info_struct *p;
2839 struct swap_info_struct *defer = NULL;
2840 unsigned int type;
2841 int i;
2842
2843 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2844 if (!p)
2845 return ERR_PTR(-ENOMEM);
2846
2847 spin_lock(&swap_lock);
2848 for (type = 0; type < nr_swapfiles; type++) {
2849 if (!(swap_info[type]->flags & SWP_USED))
2850 break;
2851 }
2852 if (type >= MAX_SWAPFILES) {
2853 spin_unlock(&swap_lock);
2854 kvfree(p);
2855 return ERR_PTR(-EPERM);
2856 }
2857 if (type >= nr_swapfiles) {
2858 p->type = type;
2859 WRITE_ONCE(swap_info[type], p);
2860 /*
2861 * Write swap_info[type] before nr_swapfiles, in case a
2862 * racing procfs swap_start() or swap_next() is reading them.
2863 * (We never shrink nr_swapfiles, we never free this entry.)
2864 */
2865 smp_wmb();
2866 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2867 } else {
2868 defer = p;
2869 p = swap_info[type];
2870 /*
2871 * Do not memset this entry: a racing procfs swap_next()
2872 * would be relying on p->type to remain valid.
2873 */
2874 }
2875 p->swap_extent_root = RB_ROOT;
2876 plist_node_init(&p->list, 0);
2877 for_each_node(i)
2878 plist_node_init(&p->avail_lists[i], 0);
2879 p->flags = SWP_USED;
2880 spin_unlock(&swap_lock);
2881 kvfree(defer);
2882 spin_lock_init(&p->lock);
2883 spin_lock_init(&p->cont_lock);
2884
2885 return p;
2886 }
2887
2888 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2889 {
2890 int error;
2891
2892 if (S_ISBLK(inode->i_mode)) {
2893 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2894 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2895 if (IS_ERR(p->bdev)) {
2896 error = PTR_ERR(p->bdev);
2897 p->bdev = NULL;
2898 return error;
2899 }
2900 p->old_block_size = block_size(p->bdev);
2901 error = set_blocksize(p->bdev, PAGE_SIZE);
2902 if (error < 0)
2903 return error;
2904 /*
2905 * Zoned block devices contain zones that have a sequential
2906 * write only restriction. Hence zoned block devices are not
2907 * suitable for swapping. Disallow them here.
2908 */
2909 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2910 return -EINVAL;
2911 p->flags |= SWP_BLKDEV;
2912 } else if (S_ISREG(inode->i_mode)) {
2913 p->bdev = inode->i_sb->s_bdev;
2914 }
2915
2916 return 0;
2917 }
2918
2919
2920 /*
2921 * Find out how many pages are allowed for a single swap device. There
2922 * are two limiting factors:
2923 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2924 * 2) the number of bits in the swap pte, as defined by the different
2925 * architectures.
2926 *
2927 * In order to find the largest possible bit mask, a swap entry with
2928 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2929 * decoded to a swp_entry_t again, and finally the swap offset is
2930 * extracted.
2931 *
2932 * This will mask all the bits from the initial ~0UL mask that can't
2933 * be encoded in either the swp_entry_t or the architecture definition
2934 * of a swap pte.
2935 */
2936 unsigned long generic_max_swapfile_size(void)
2937 {
2938 return swp_offset(pte_to_swp_entry(
2939 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2940 }
2941
2942 /* Can be overridden by an architecture for additional checks. */
2943 __weak unsigned long max_swapfile_size(void)
2944 {
2945 return generic_max_swapfile_size();
2946 }
2947
2948 static unsigned long read_swap_header(struct swap_info_struct *p,
2949 union swap_header *swap_header,
2950 struct inode *inode)
2951 {
2952 int i;
2953 unsigned long maxpages;
2954 unsigned long swapfilepages;
2955 unsigned long last_page;
2956
2957 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2958 pr_err("Unable to find swap-space signature\n");
2959 return 0;
2960 }
2961
2962 /* swap partition endianess hack... */
2963 if (swab32(swap_header->info.version) == 1) {
2964 swab32s(&swap_header->info.version);
2965 swab32s(&swap_header->info.last_page);
2966 swab32s(&swap_header->info.nr_badpages);
2967 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2968 return 0;
2969 for (i = 0; i < swap_header->info.nr_badpages; i++)
2970 swab32s(&swap_header->info.badpages[i]);
2971 }
2972 /* Check the swap header's sub-version */
2973 if (swap_header->info.version != 1) {
2974 pr_warn("Unable to handle swap header version %d\n",
2975 swap_header->info.version);
2976 return 0;
2977 }
2978
2979 p->lowest_bit = 1;
2980 p->cluster_next = 1;
2981 p->cluster_nr = 0;
2982
2983 maxpages = max_swapfile_size();
2984 last_page = swap_header->info.last_page;
2985 if (!last_page) {
2986 pr_warn("Empty swap-file\n");
2987 return 0;
2988 }
2989 if (last_page > maxpages) {
2990 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2991 maxpages << (PAGE_SHIFT - 10),
2992 last_page << (PAGE_SHIFT - 10));
2993 }
2994 if (maxpages > last_page) {
2995 maxpages = last_page + 1;
2996 /* p->max is an unsigned int: don't overflow it */
2997 if ((unsigned int)maxpages == 0)
2998 maxpages = UINT_MAX;
2999 }
3000 p->highest_bit = maxpages - 1;
3001
3002 if (!maxpages)
3003 return 0;
3004 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3005 if (swapfilepages && maxpages > swapfilepages) {
3006 pr_warn("Swap area shorter than signature indicates\n");
3007 return 0;
3008 }
3009 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3010 return 0;
3011 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3012 return 0;
3013
3014 return maxpages;
3015 }
3016
3017 #define SWAP_CLUSTER_INFO_COLS \
3018 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3019 #define SWAP_CLUSTER_SPACE_COLS \
3020 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3021 #define SWAP_CLUSTER_COLS \
3022 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3023
3024 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3025 union swap_header *swap_header,
3026 unsigned char *swap_map,
3027 struct swap_cluster_info *cluster_info,
3028 unsigned long maxpages,
3029 sector_t *span)
3030 {
3031 unsigned int j, k;
3032 unsigned int nr_good_pages;
3033 int nr_extents;
3034 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3035 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3036 unsigned long i, idx;
3037
3038 nr_good_pages = maxpages - 1; /* omit header page */
3039
3040 cluster_list_init(&p->free_clusters);
3041 cluster_list_init(&p->discard_clusters);
3042
3043 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3044 unsigned int page_nr = swap_header->info.badpages[i];
3045 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3046 return -EINVAL;
3047 if (page_nr < maxpages) {
3048 swap_map[page_nr] = SWAP_MAP_BAD;
3049 nr_good_pages--;
3050 /*
3051 * Haven't marked the cluster free yet, no list
3052 * operation involved
3053 */
3054 inc_cluster_info_page(p, cluster_info, page_nr);
3055 }
3056 }
3057
3058 /* Haven't marked the cluster free yet, no list operation involved */
3059 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3060 inc_cluster_info_page(p, cluster_info, i);
3061
3062 if (nr_good_pages) {
3063 swap_map[0] = SWAP_MAP_BAD;
3064 /*
3065 * Not mark the cluster free yet, no list
3066 * operation involved
3067 */
3068 inc_cluster_info_page(p, cluster_info, 0);
3069 p->max = maxpages;
3070 p->pages = nr_good_pages;
3071 nr_extents = setup_swap_extents(p, span);
3072 if (nr_extents < 0)
3073 return nr_extents;
3074 nr_good_pages = p->pages;
3075 }
3076 if (!nr_good_pages) {
3077 pr_warn("Empty swap-file\n");
3078 return -EINVAL;
3079 }
3080
3081 if (!cluster_info)
3082 return nr_extents;
3083
3084
3085 /*
3086 * Reduce false cache line sharing between cluster_info and
3087 * sharing same address space.
3088 */
3089 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3090 j = (k + col) % SWAP_CLUSTER_COLS;
3091 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3092 idx = i * SWAP_CLUSTER_COLS + j;
3093 if (idx >= nr_clusters)
3094 continue;
3095 if (cluster_count(&cluster_info[idx]))
3096 continue;
3097 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3098 cluster_list_add_tail(&p->free_clusters, cluster_info,
3099 idx);
3100 }
3101 }
3102 return nr_extents;
3103 }
3104
3105 /*
3106 * Helper to sys_swapon determining if a given swap
3107 * backing device queue supports DISCARD operations.
3108 */
3109 static bool swap_discardable(struct swap_info_struct *si)
3110 {
3111 struct request_queue *q = bdev_get_queue(si->bdev);
3112
3113 if (!q || !blk_queue_discard(q))
3114 return false;
3115
3116 return true;
3117 }
3118
3119 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3120 {
3121 struct swap_info_struct *p;
3122 struct filename *name;
3123 struct file *swap_file = NULL;
3124 struct address_space *mapping;
3125 int prio;
3126 int error;
3127 union swap_header *swap_header;
3128 int nr_extents;
3129 sector_t span;
3130 unsigned long maxpages;
3131 unsigned char *swap_map = NULL;
3132 struct swap_cluster_info *cluster_info = NULL;
3133 unsigned long *frontswap_map = NULL;
3134 struct page *page = NULL;
3135 struct inode *inode = NULL;
3136 bool inced_nr_rotate_swap = false;
3137
3138 if (swap_flags & ~SWAP_FLAGS_VALID)
3139 return -EINVAL;
3140
3141 if (!capable(CAP_SYS_ADMIN))
3142 return -EPERM;
3143
3144 if (!swap_avail_heads)
3145 return -ENOMEM;
3146
3147 p = alloc_swap_info();
3148 if (IS_ERR(p))
3149 return PTR_ERR(p);
3150
3151 INIT_WORK(&p->discard_work, swap_discard_work);
3152
3153 name = getname(specialfile);
3154 if (IS_ERR(name)) {
3155 error = PTR_ERR(name);
3156 name = NULL;
3157 goto bad_swap;
3158 }
3159 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3160 if (IS_ERR(swap_file)) {
3161 error = PTR_ERR(swap_file);
3162 swap_file = NULL;
3163 goto bad_swap;
3164 }
3165
3166 p->swap_file = swap_file;
3167 mapping = swap_file->f_mapping;
3168 inode = mapping->host;
3169
3170 error = claim_swapfile(p, inode);
3171 if (unlikely(error))
3172 goto bad_swap;
3173
3174 inode_lock(inode);
3175 if (IS_SWAPFILE(inode)) {
3176 error = -EBUSY;
3177 goto bad_swap_unlock_inode;
3178 }
3179
3180 /*
3181 * Read the swap header.
3182 */
3183 if (!mapping->a_ops->readpage) {
3184 error = -EINVAL;
3185 goto bad_swap_unlock_inode;
3186 }
3187 page = read_mapping_page(mapping, 0, swap_file);
3188 if (IS_ERR(page)) {
3189 error = PTR_ERR(page);
3190 goto bad_swap_unlock_inode;
3191 }
3192 swap_header = kmap(page);
3193
3194 maxpages = read_swap_header(p, swap_header, inode);
3195 if (unlikely(!maxpages)) {
3196 error = -EINVAL;
3197 goto bad_swap_unlock_inode;
3198 }
3199
3200 /* OK, set up the swap map and apply the bad block list */
3201 swap_map = vzalloc(maxpages);
3202 if (!swap_map) {
3203 error = -ENOMEM;
3204 goto bad_swap_unlock_inode;
3205 }
3206
3207 if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3208 p->flags |= SWP_STABLE_WRITES;
3209
3210 if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3211 p->flags |= SWP_SYNCHRONOUS_IO;
3212
3213 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3214 int cpu;
3215 unsigned long ci, nr_cluster;
3216
3217 p->flags |= SWP_SOLIDSTATE;
3218 p->cluster_next_cpu = alloc_percpu(unsigned int);
3219 if (!p->cluster_next_cpu) {
3220 error = -ENOMEM;
3221 goto bad_swap_unlock_inode;
3222 }
3223 /*
3224 * select a random position to start with to help wear leveling
3225 * SSD
3226 */
3227 for_each_possible_cpu(cpu) {
3228 per_cpu(*p->cluster_next_cpu, cpu) =
3229 1 + prandom_u32_max(p->highest_bit);
3230 }
3231 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3232
3233 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3234 GFP_KERNEL);
3235 if (!cluster_info) {
3236 error = -ENOMEM;
3237 goto bad_swap_unlock_inode;
3238 }
3239
3240 for (ci = 0; ci < nr_cluster; ci++)
3241 spin_lock_init(&((cluster_info + ci)->lock));
3242
3243 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3244 if (!p->percpu_cluster) {
3245 error = -ENOMEM;
3246 goto bad_swap_unlock_inode;
3247 }
3248 for_each_possible_cpu(cpu) {
3249 struct percpu_cluster *cluster;
3250 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3251 cluster_set_null(&cluster->index);
3252 }
3253 } else {
3254 atomic_inc(&nr_rotate_swap);
3255 inced_nr_rotate_swap = true;
3256 }
3257
3258 error = swap_cgroup_swapon(p->type, maxpages);
3259 if (error)
3260 goto bad_swap_unlock_inode;
3261
3262 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3263 cluster_info, maxpages, &span);
3264 if (unlikely(nr_extents < 0)) {
3265 error = nr_extents;
3266 goto bad_swap_unlock_inode;
3267 }
3268 /* frontswap enabled? set up bit-per-page map for frontswap */
3269 if (IS_ENABLED(CONFIG_FRONTSWAP))
3270 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3271 sizeof(long),
3272 GFP_KERNEL);
3273
3274 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3275 /*
3276 * When discard is enabled for swap with no particular
3277 * policy flagged, we set all swap discard flags here in
3278 * order to sustain backward compatibility with older
3279 * swapon(8) releases.
3280 */
3281 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3282 SWP_PAGE_DISCARD);
3283
3284 /*
3285 * By flagging sys_swapon, a sysadmin can tell us to
3286 * either do single-time area discards only, or to just
3287 * perform discards for released swap page-clusters.
3288 * Now it's time to adjust the p->flags accordingly.
3289 */
3290 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3291 p->flags &= ~SWP_PAGE_DISCARD;
3292 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3293 p->flags &= ~SWP_AREA_DISCARD;
3294
3295 /* issue a swapon-time discard if it's still required */
3296 if (p->flags & SWP_AREA_DISCARD) {
3297 int err = discard_swap(p);
3298 if (unlikely(err))
3299 pr_err("swapon: discard_swap(%p): %d\n",
3300 p, err);
3301 }
3302 }
3303
3304 error = init_swap_address_space(p->type, maxpages);
3305 if (error)
3306 goto bad_swap_unlock_inode;
3307
3308 /*
3309 * Flush any pending IO and dirty mappings before we start using this
3310 * swap device.
3311 */
3312 inode->i_flags |= S_SWAPFILE;
3313 error = inode_drain_writes(inode);
3314 if (error) {
3315 inode->i_flags &= ~S_SWAPFILE;
3316 goto free_swap_address_space;
3317 }
3318
3319 mutex_lock(&swapon_mutex);
3320 prio = -1;
3321 if (swap_flags & SWAP_FLAG_PREFER)
3322 prio =
3323 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3324 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3325
3326 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3327 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3328 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3329 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3330 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3331 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3332 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3333 (frontswap_map) ? "FS" : "");
3334
3335 mutex_unlock(&swapon_mutex);
3336 atomic_inc(&proc_poll_event);
3337 wake_up_interruptible(&proc_poll_wait);
3338
3339 error = 0;
3340 goto out;
3341 free_swap_address_space:
3342 exit_swap_address_space(p->type);
3343 bad_swap_unlock_inode:
3344 inode_unlock(inode);
3345 bad_swap:
3346 free_percpu(p->percpu_cluster);
3347 p->percpu_cluster = NULL;
3348 free_percpu(p->cluster_next_cpu);
3349 p->cluster_next_cpu = NULL;
3350 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3351 set_blocksize(p->bdev, p->old_block_size);
3352 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3353 }
3354 inode = NULL;
3355 destroy_swap_extents(p);
3356 swap_cgroup_swapoff(p->type);
3357 spin_lock(&swap_lock);
3358 p->swap_file = NULL;
3359 p->flags = 0;
3360 spin_unlock(&swap_lock);
3361 vfree(swap_map);
3362 kvfree(cluster_info);
3363 kvfree(frontswap_map);
3364 if (inced_nr_rotate_swap)
3365 atomic_dec(&nr_rotate_swap);
3366 if (swap_file)
3367 filp_close(swap_file, NULL);
3368 out:
3369 if (page && !IS_ERR(page)) {
3370 kunmap(page);
3371 put_page(page);
3372 }
3373 if (name)
3374 putname(name);
3375 if (inode)
3376 inode_unlock(inode);
3377 if (!error)
3378 enable_swap_slots_cache();
3379 return error;
3380 }
3381
3382 void si_swapinfo(struct sysinfo *val)
3383 {
3384 unsigned int type;
3385 unsigned long nr_to_be_unused = 0;
3386
3387 spin_lock(&swap_lock);
3388 for (type = 0; type < nr_swapfiles; type++) {
3389 struct swap_info_struct *si = swap_info[type];
3390
3391 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3392 nr_to_be_unused += si->inuse_pages;
3393 }
3394 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3395 val->totalswap = total_swap_pages + nr_to_be_unused;
3396 spin_unlock(&swap_lock);
3397 }
3398
3399 /*
3400 * Verify that a swap entry is valid and increment its swap map count.
3401 *
3402 * Returns error code in following case.
3403 * - success -> 0
3404 * - swp_entry is invalid -> EINVAL
3405 * - swp_entry is migration entry -> EINVAL
3406 * - swap-cache reference is requested but there is already one. -> EEXIST
3407 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3408 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3409 */
3410 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3411 {
3412 struct swap_info_struct *p;
3413 struct swap_cluster_info *ci;
3414 unsigned long offset;
3415 unsigned char count;
3416 unsigned char has_cache;
3417 int err;
3418
3419 p = get_swap_device(entry);
3420 if (!p)
3421 return -EINVAL;
3422
3423 offset = swp_offset(entry);
3424 ci = lock_cluster_or_swap_info(p, offset);
3425
3426 count = p->swap_map[offset];
3427
3428 /*
3429 * swapin_readahead() doesn't check if a swap entry is valid, so the
3430 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3431 */
3432 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3433 err = -ENOENT;
3434 goto unlock_out;
3435 }
3436
3437 has_cache = count & SWAP_HAS_CACHE;
3438 count &= ~SWAP_HAS_CACHE;
3439 err = 0;
3440
3441 if (usage == SWAP_HAS_CACHE) {
3442
3443 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3444 if (!has_cache && count)
3445 has_cache = SWAP_HAS_CACHE;
3446 else if (has_cache) /* someone else added cache */
3447 err = -EEXIST;
3448 else /* no users remaining */
3449 err = -ENOENT;
3450
3451 } else if (count || has_cache) {
3452
3453 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3454 count += usage;
3455 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3456 err = -EINVAL;
3457 else if (swap_count_continued(p, offset, count))
3458 count = COUNT_CONTINUED;
3459 else
3460 err = -ENOMEM;
3461 } else
3462 err = -ENOENT; /* unused swap entry */
3463
3464 WRITE_ONCE(p->swap_map[offset], count | has_cache);
3465
3466 unlock_out:
3467 unlock_cluster_or_swap_info(p, ci);
3468 if (p)
3469 put_swap_device(p);
3470 return err;
3471 }
3472
3473 /*
3474 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3475 * (in which case its reference count is never incremented).
3476 */
3477 void swap_shmem_alloc(swp_entry_t entry)
3478 {
3479 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3480 }
3481
3482 /*
3483 * Increase reference count of swap entry by 1.
3484 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3485 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3486 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3487 * might occur if a page table entry has got corrupted.
3488 */
3489 int swap_duplicate(swp_entry_t entry)
3490 {
3491 int err = 0;
3492
3493 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3494 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3495 return err;
3496 }
3497
3498 /*
3499 * @entry: swap entry for which we allocate swap cache.
3500 *
3501 * Called when allocating swap cache for existing swap entry,
3502 * This can return error codes. Returns 0 at success.
3503 * -EEXIST means there is a swap cache.
3504 * Note: return code is different from swap_duplicate().
3505 */
3506 int swapcache_prepare(swp_entry_t entry)
3507 {
3508 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3509 }
3510
3511 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3512 {
3513 return swap_type_to_swap_info(swp_type(entry));
3514 }
3515
3516 struct swap_info_struct *page_swap_info(struct page *page)
3517 {
3518 swp_entry_t entry = { .val = page_private(page) };
3519 return swp_swap_info(entry);
3520 }
3521
3522 /*
3523 * out-of-line __page_file_ methods to avoid include hell.
3524 */
3525 struct address_space *__page_file_mapping(struct page *page)
3526 {
3527 return page_swap_info(page)->swap_file->f_mapping;
3528 }
3529 EXPORT_SYMBOL_GPL(__page_file_mapping);
3530
3531 pgoff_t __page_file_index(struct page *page)
3532 {
3533 swp_entry_t swap = { .val = page_private(page) };
3534 return swp_offset(swap);
3535 }
3536 EXPORT_SYMBOL_GPL(__page_file_index);
3537
3538 /*
3539 * add_swap_count_continuation - called when a swap count is duplicated
3540 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3541 * page of the original vmalloc'ed swap_map, to hold the continuation count
3542 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3543 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3544 *
3545 * These continuation pages are seldom referenced: the common paths all work
3546 * on the original swap_map, only referring to a continuation page when the
3547 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3548 *
3549 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3550 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3551 * can be called after dropping locks.
3552 */
3553 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3554 {
3555 struct swap_info_struct *si;
3556 struct swap_cluster_info *ci;
3557 struct page *head;
3558 struct page *page;
3559 struct page *list_page;
3560 pgoff_t offset;
3561 unsigned char count;
3562 int ret = 0;
3563
3564 /*
3565 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3566 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3567 */
3568 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3569
3570 si = get_swap_device(entry);
3571 if (!si) {
3572 /*
3573 * An acceptable race has occurred since the failing
3574 * __swap_duplicate(): the swap device may be swapoff
3575 */
3576 goto outer;
3577 }
3578 spin_lock(&si->lock);
3579
3580 offset = swp_offset(entry);
3581
3582 ci = lock_cluster(si, offset);
3583
3584 count = swap_count(si->swap_map[offset]);
3585
3586 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3587 /*
3588 * The higher the swap count, the more likely it is that tasks
3589 * will race to add swap count continuation: we need to avoid
3590 * over-provisioning.
3591 */
3592 goto out;
3593 }
3594
3595 if (!page) {
3596 ret = -ENOMEM;
3597 goto out;
3598 }
3599
3600 /*
3601 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3602 * no architecture is using highmem pages for kernel page tables: so it
3603 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3604 */
3605 head = vmalloc_to_page(si->swap_map + offset);
3606 offset &= ~PAGE_MASK;
3607
3608 spin_lock(&si->cont_lock);
3609 /*
3610 * Page allocation does not initialize the page's lru field,
3611 * but it does always reset its private field.
3612 */
3613 if (!page_private(head)) {
3614 BUG_ON(count & COUNT_CONTINUED);
3615 INIT_LIST_HEAD(&head->lru);
3616 set_page_private(head, SWP_CONTINUED);
3617 si->flags |= SWP_CONTINUED;
3618 }
3619
3620 list_for_each_entry(list_page, &head->lru, lru) {
3621 unsigned char *map;
3622
3623 /*
3624 * If the previous map said no continuation, but we've found
3625 * a continuation page, free our allocation and use this one.
3626 */
3627 if (!(count & COUNT_CONTINUED))
3628 goto out_unlock_cont;
3629
3630 map = kmap_atomic(list_page) + offset;
3631 count = *map;
3632 kunmap_atomic(map);
3633
3634 /*
3635 * If this continuation count now has some space in it,
3636 * free our allocation and use this one.
3637 */
3638 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3639 goto out_unlock_cont;
3640 }
3641
3642 list_add_tail(&page->lru, &head->lru);
3643 page = NULL; /* now it's attached, don't free it */
3644 out_unlock_cont:
3645 spin_unlock(&si->cont_lock);
3646 out:
3647 unlock_cluster(ci);
3648 spin_unlock(&si->lock);
3649 put_swap_device(si);
3650 outer:
3651 if (page)
3652 __free_page(page);
3653 return ret;
3654 }
3655
3656 /*
3657 * swap_count_continued - when the original swap_map count is incremented
3658 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3659 * into, carry if so, or else fail until a new continuation page is allocated;
3660 * when the original swap_map count is decremented from 0 with continuation,
3661 * borrow from the continuation and report whether it still holds more.
3662 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3663 * lock.
3664 */
3665 static bool swap_count_continued(struct swap_info_struct *si,
3666 pgoff_t offset, unsigned char count)
3667 {
3668 struct page *head;
3669 struct page *page;
3670 unsigned char *map;
3671 bool ret;
3672
3673 head = vmalloc_to_page(si->swap_map + offset);
3674 if (page_private(head) != SWP_CONTINUED) {
3675 BUG_ON(count & COUNT_CONTINUED);
3676 return false; /* need to add count continuation */
3677 }
3678
3679 spin_lock(&si->cont_lock);
3680 offset &= ~PAGE_MASK;
3681 page = list_next_entry(head, lru);
3682 map = kmap_atomic(page) + offset;
3683
3684 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3685 goto init_map; /* jump over SWAP_CONT_MAX checks */
3686
3687 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3688 /*
3689 * Think of how you add 1 to 999
3690 */
3691 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3692 kunmap_atomic(map);
3693 page = list_next_entry(page, lru);
3694 BUG_ON(page == head);
3695 map = kmap_atomic(page) + offset;
3696 }
3697 if (*map == SWAP_CONT_MAX) {
3698 kunmap_atomic(map);
3699 page = list_next_entry(page, lru);
3700 if (page == head) {
3701 ret = false; /* add count continuation */
3702 goto out;
3703 }
3704 map = kmap_atomic(page) + offset;
3705 init_map: *map = 0; /* we didn't zero the page */
3706 }
3707 *map += 1;
3708 kunmap_atomic(map);
3709 while ((page = list_prev_entry(page, lru)) != head) {
3710 map = kmap_atomic(page) + offset;
3711 *map = COUNT_CONTINUED;
3712 kunmap_atomic(map);
3713 }
3714 ret = true; /* incremented */
3715
3716 } else { /* decrementing */
3717 /*
3718 * Think of how you subtract 1 from 1000
3719 */
3720 BUG_ON(count != COUNT_CONTINUED);
3721 while (*map == COUNT_CONTINUED) {
3722 kunmap_atomic(map);
3723 page = list_next_entry(page, lru);
3724 BUG_ON(page == head);
3725 map = kmap_atomic(page) + offset;
3726 }
3727 BUG_ON(*map == 0);
3728 *map -= 1;
3729 if (*map == 0)
3730 count = 0;
3731 kunmap_atomic(map);
3732 while ((page = list_prev_entry(page, lru)) != head) {
3733 map = kmap_atomic(page) + offset;
3734 *map = SWAP_CONT_MAX | count;
3735 count = COUNT_CONTINUED;
3736 kunmap_atomic(map);
3737 }
3738 ret = count == COUNT_CONTINUED;
3739 }
3740 out:
3741 spin_unlock(&si->cont_lock);
3742 return ret;
3743 }
3744
3745 /*
3746 * free_swap_count_continuations - swapoff free all the continuation pages
3747 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3748 */
3749 static void free_swap_count_continuations(struct swap_info_struct *si)
3750 {
3751 pgoff_t offset;
3752
3753 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3754 struct page *head;
3755 head = vmalloc_to_page(si->swap_map + offset);
3756 if (page_private(head)) {
3757 struct page *page, *next;
3758
3759 list_for_each_entry_safe(page, next, &head->lru, lru) {
3760 list_del(&page->lru);
3761 __free_page(page);
3762 }
3763 }
3764 }
3765 }
3766
3767 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3768 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3769 {
3770 struct swap_info_struct *si, *next;
3771 int nid = page_to_nid(page);
3772
3773 if (!(gfp_mask & __GFP_IO))
3774 return;
3775
3776 if (!blk_cgroup_congested())
3777 return;
3778
3779 /*
3780 * We've already scheduled a throttle, avoid taking the global swap
3781 * lock.
3782 */
3783 if (current->throttle_queue)
3784 return;
3785
3786 spin_lock(&swap_avail_lock);
3787 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3788 avail_lists[nid]) {
3789 if (si->bdev) {
3790 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3791 break;
3792 }
3793 }
3794 spin_unlock(&swap_avail_lock);
3795 }
3796 #endif
3797
3798 static int __init swapfile_init(void)
3799 {
3800 int nid;
3801
3802 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3803 GFP_KERNEL);
3804 if (!swap_avail_heads) {
3805 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3806 return -ENOMEM;
3807 }
3808
3809 for_each_node(nid)
3810 plist_head_init(&swap_avail_heads[nid]);
3811
3812 return 0;
3813 }
3814 subsys_initcall(swapfile_init);