4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
41 #include <asm/pgtable.h>
42 #include <asm/tlbflush.h>
43 #include <linux/swapops.h>
44 #include <linux/swap_cgroup.h>
46 static bool swap_count_continued(struct swap_info_struct
*, pgoff_t
,
48 static void free_swap_count_continuations(struct swap_info_struct
*);
49 static sector_t
map_swap_entry(swp_entry_t
, struct block_device
**);
51 DEFINE_SPINLOCK(swap_lock
);
52 static unsigned int nr_swapfiles
;
53 atomic_long_t nr_swap_pages
;
55 * Some modules use swappable objects and may try to swap them out under
56 * memory pressure (via the shrinker). Before doing so, they may wish to
57 * check to see if any swap space is available.
59 EXPORT_SYMBOL_GPL(nr_swap_pages
);
60 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
61 long total_swap_pages
;
62 static int least_priority
;
64 static const char Bad_file
[] = "Bad swap file entry ";
65 static const char Unused_file
[] = "Unused swap file entry ";
66 static const char Bad_offset
[] = "Bad swap offset entry ";
67 static const char Unused_offset
[] = "Unused swap offset entry ";
70 * all active swap_info_structs
71 * protected with swap_lock, and ordered by priority.
73 PLIST_HEAD(swap_active_head
);
76 * all available (active, not full) swap_info_structs
77 * protected with swap_avail_lock, ordered by priority.
78 * This is used by get_swap_page() instead of swap_active_head
79 * because swap_active_head includes all swap_info_structs,
80 * but get_swap_page() doesn't need to look at full ones.
81 * This uses its own lock instead of swap_lock because when a
82 * swap_info_struct changes between not-full/full, it needs to
83 * add/remove itself to/from this list, but the swap_info_struct->lock
84 * is held and the locking order requires swap_lock to be taken
85 * before any swap_info_struct->lock.
87 static PLIST_HEAD(swap_avail_head
);
88 static DEFINE_SPINLOCK(swap_avail_lock
);
90 struct swap_info_struct
*swap_info
[MAX_SWAPFILES
];
92 static DEFINE_MUTEX(swapon_mutex
);
94 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait
);
95 /* Activity counter to indicate that a swapon or swapoff has occurred */
96 static atomic_t proc_poll_event
= ATOMIC_INIT(0);
98 static inline unsigned char swap_count(unsigned char ent
)
100 return ent
& ~SWAP_HAS_CACHE
; /* may include SWAP_HAS_CONT flag */
103 /* returns 1 if swap entry is freed */
105 __try_to_reclaim_swap(struct swap_info_struct
*si
, unsigned long offset
)
107 swp_entry_t entry
= swp_entry(si
->type
, offset
);
111 page
= find_get_page(swap_address_space(entry
), swp_offset(entry
));
115 * This function is called from scan_swap_map() and it's called
116 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
117 * We have to use trylock for avoiding deadlock. This is a special
118 * case and you should use try_to_free_swap() with explicit lock_page()
119 * in usual operations.
121 if (trylock_page(page
)) {
122 ret
= try_to_free_swap(page
);
130 * swapon tell device that all the old swap contents can be discarded,
131 * to allow the swap device to optimize its wear-levelling.
133 static int discard_swap(struct swap_info_struct
*si
)
135 struct swap_extent
*se
;
136 sector_t start_block
;
140 /* Do not discard the swap header page! */
141 se
= &si
->first_swap_extent
;
142 start_block
= (se
->start_block
+ 1) << (PAGE_SHIFT
- 9);
143 nr_blocks
= ((sector_t
)se
->nr_pages
- 1) << (PAGE_SHIFT
- 9);
145 err
= blkdev_issue_discard(si
->bdev
, start_block
,
146 nr_blocks
, GFP_KERNEL
, 0);
152 list_for_each_entry(se
, &si
->first_swap_extent
.list
, list
) {
153 start_block
= se
->start_block
<< (PAGE_SHIFT
- 9);
154 nr_blocks
= (sector_t
)se
->nr_pages
<< (PAGE_SHIFT
- 9);
156 err
= blkdev_issue_discard(si
->bdev
, start_block
,
157 nr_blocks
, GFP_KERNEL
, 0);
163 return err
; /* That will often be -EOPNOTSUPP */
167 * swap allocation tell device that a cluster of swap can now be discarded,
168 * to allow the swap device to optimize its wear-levelling.
170 static void discard_swap_cluster(struct swap_info_struct
*si
,
171 pgoff_t start_page
, pgoff_t nr_pages
)
173 struct swap_extent
*se
= si
->curr_swap_extent
;
174 int found_extent
= 0;
177 if (se
->start_page
<= start_page
&&
178 start_page
< se
->start_page
+ se
->nr_pages
) {
179 pgoff_t offset
= start_page
- se
->start_page
;
180 sector_t start_block
= se
->start_block
+ offset
;
181 sector_t nr_blocks
= se
->nr_pages
- offset
;
183 if (nr_blocks
> nr_pages
)
184 nr_blocks
= nr_pages
;
185 start_page
+= nr_blocks
;
186 nr_pages
-= nr_blocks
;
189 si
->curr_swap_extent
= se
;
191 start_block
<<= PAGE_SHIFT
- 9;
192 nr_blocks
<<= PAGE_SHIFT
- 9;
193 if (blkdev_issue_discard(si
->bdev
, start_block
,
194 nr_blocks
, GFP_NOIO
, 0))
198 se
= list_next_entry(se
, list
);
202 #define SWAPFILE_CLUSTER 256
203 #define LATENCY_LIMIT 256
205 static inline void cluster_set_flag(struct swap_cluster_info
*info
,
211 static inline unsigned int cluster_count(struct swap_cluster_info
*info
)
216 static inline void cluster_set_count(struct swap_cluster_info
*info
,
222 static inline void cluster_set_count_flag(struct swap_cluster_info
*info
,
223 unsigned int c
, unsigned int f
)
229 static inline unsigned int cluster_next(struct swap_cluster_info
*info
)
234 static inline void cluster_set_next(struct swap_cluster_info
*info
,
240 static inline void cluster_set_next_flag(struct swap_cluster_info
*info
,
241 unsigned int n
, unsigned int f
)
247 static inline bool cluster_is_free(struct swap_cluster_info
*info
)
249 return info
->flags
& CLUSTER_FLAG_FREE
;
252 static inline bool cluster_is_null(struct swap_cluster_info
*info
)
254 return info
->flags
& CLUSTER_FLAG_NEXT_NULL
;
257 static inline void cluster_set_null(struct swap_cluster_info
*info
)
259 info
->flags
= CLUSTER_FLAG_NEXT_NULL
;
263 static inline struct swap_cluster_info
*lock_cluster(struct swap_info_struct
*si
,
264 unsigned long offset
)
266 struct swap_cluster_info
*ci
;
268 ci
= si
->cluster_info
;
270 ci
+= offset
/ SWAPFILE_CLUSTER
;
271 spin_lock(&ci
->lock
);
276 static inline void unlock_cluster(struct swap_cluster_info
*ci
)
279 spin_unlock(&ci
->lock
);
282 static inline struct swap_cluster_info
*lock_cluster_or_swap_info(
283 struct swap_info_struct
*si
,
284 unsigned long offset
)
286 struct swap_cluster_info
*ci
;
288 ci
= lock_cluster(si
, offset
);
290 spin_lock(&si
->lock
);
295 static inline void unlock_cluster_or_swap_info(struct swap_info_struct
*si
,
296 struct swap_cluster_info
*ci
)
301 spin_unlock(&si
->lock
);
304 static inline bool cluster_list_empty(struct swap_cluster_list
*list
)
306 return cluster_is_null(&list
->head
);
309 static inline unsigned int cluster_list_first(struct swap_cluster_list
*list
)
311 return cluster_next(&list
->head
);
314 static void cluster_list_init(struct swap_cluster_list
*list
)
316 cluster_set_null(&list
->head
);
317 cluster_set_null(&list
->tail
);
320 static void cluster_list_add_tail(struct swap_cluster_list
*list
,
321 struct swap_cluster_info
*ci
,
324 if (cluster_list_empty(list
)) {
325 cluster_set_next_flag(&list
->head
, idx
, 0);
326 cluster_set_next_flag(&list
->tail
, idx
, 0);
328 struct swap_cluster_info
*ci_tail
;
329 unsigned int tail
= cluster_next(&list
->tail
);
332 * Nested cluster lock, but both cluster locks are
333 * only acquired when we held swap_info_struct->lock
336 spin_lock_nested(&ci_tail
->lock
, SINGLE_DEPTH_NESTING
);
337 cluster_set_next(ci_tail
, idx
);
338 spin_unlock(&ci_tail
->lock
);
339 cluster_set_next_flag(&list
->tail
, idx
, 0);
343 static unsigned int cluster_list_del_first(struct swap_cluster_list
*list
,
344 struct swap_cluster_info
*ci
)
348 idx
= cluster_next(&list
->head
);
349 if (cluster_next(&list
->tail
) == idx
) {
350 cluster_set_null(&list
->head
);
351 cluster_set_null(&list
->tail
);
353 cluster_set_next_flag(&list
->head
,
354 cluster_next(&ci
[idx
]), 0);
359 /* Add a cluster to discard list and schedule it to do discard */
360 static void swap_cluster_schedule_discard(struct swap_info_struct
*si
,
364 * If scan_swap_map() can't find a free cluster, it will check
365 * si->swap_map directly. To make sure the discarding cluster isn't
366 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
367 * will be cleared after discard
369 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
370 SWAP_MAP_BAD
, SWAPFILE_CLUSTER
);
372 cluster_list_add_tail(&si
->discard_clusters
, si
->cluster_info
, idx
);
374 schedule_work(&si
->discard_work
);
378 * Doing discard actually. After a cluster discard is finished, the cluster
379 * will be added to free cluster list. caller should hold si->lock.
381 static void swap_do_scheduled_discard(struct swap_info_struct
*si
)
383 struct swap_cluster_info
*info
, *ci
;
386 info
= si
->cluster_info
;
388 while (!cluster_list_empty(&si
->discard_clusters
)) {
389 idx
= cluster_list_del_first(&si
->discard_clusters
, info
);
390 spin_unlock(&si
->lock
);
392 discard_swap_cluster(si
, idx
* SWAPFILE_CLUSTER
,
395 spin_lock(&si
->lock
);
396 ci
= lock_cluster(si
, idx
* SWAPFILE_CLUSTER
);
397 cluster_set_flag(ci
, CLUSTER_FLAG_FREE
);
399 cluster_list_add_tail(&si
->free_clusters
, info
, idx
);
400 ci
= lock_cluster(si
, idx
* SWAPFILE_CLUSTER
);
401 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
402 0, SWAPFILE_CLUSTER
);
407 static void swap_discard_work(struct work_struct
*work
)
409 struct swap_info_struct
*si
;
411 si
= container_of(work
, struct swap_info_struct
, discard_work
);
413 spin_lock(&si
->lock
);
414 swap_do_scheduled_discard(si
);
415 spin_unlock(&si
->lock
);
419 * The cluster corresponding to page_nr will be used. The cluster will be
420 * removed from free cluster list and its usage counter will be increased.
422 static void inc_cluster_info_page(struct swap_info_struct
*p
,
423 struct swap_cluster_info
*cluster_info
, unsigned long page_nr
)
425 unsigned long idx
= page_nr
/ SWAPFILE_CLUSTER
;
429 if (cluster_is_free(&cluster_info
[idx
])) {
430 VM_BUG_ON(cluster_list_first(&p
->free_clusters
) != idx
);
431 cluster_list_del_first(&p
->free_clusters
, cluster_info
);
432 cluster_set_count_flag(&cluster_info
[idx
], 0, 0);
435 VM_BUG_ON(cluster_count(&cluster_info
[idx
]) >= SWAPFILE_CLUSTER
);
436 cluster_set_count(&cluster_info
[idx
],
437 cluster_count(&cluster_info
[idx
]) + 1);
441 * The cluster corresponding to page_nr decreases one usage. If the usage
442 * counter becomes 0, which means no page in the cluster is in using, we can
443 * optionally discard the cluster and add it to free cluster list.
445 static void dec_cluster_info_page(struct swap_info_struct
*p
,
446 struct swap_cluster_info
*cluster_info
, unsigned long page_nr
)
448 unsigned long idx
= page_nr
/ SWAPFILE_CLUSTER
;
453 VM_BUG_ON(cluster_count(&cluster_info
[idx
]) == 0);
454 cluster_set_count(&cluster_info
[idx
],
455 cluster_count(&cluster_info
[idx
]) - 1);
457 if (cluster_count(&cluster_info
[idx
]) == 0) {
459 * If the swap is discardable, prepare discard the cluster
460 * instead of free it immediately. The cluster will be freed
463 if ((p
->flags
& (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) ==
464 (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) {
465 swap_cluster_schedule_discard(p
, idx
);
469 cluster_set_flag(&cluster_info
[idx
], CLUSTER_FLAG_FREE
);
470 cluster_list_add_tail(&p
->free_clusters
, cluster_info
, idx
);
475 * It's possible scan_swap_map() uses a free cluster in the middle of free
476 * cluster list. Avoiding such abuse to avoid list corruption.
479 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct
*si
,
480 unsigned long offset
)
482 struct percpu_cluster
*percpu_cluster
;
485 offset
/= SWAPFILE_CLUSTER
;
486 conflict
= !cluster_list_empty(&si
->free_clusters
) &&
487 offset
!= cluster_list_first(&si
->free_clusters
) &&
488 cluster_is_free(&si
->cluster_info
[offset
]);
493 percpu_cluster
= this_cpu_ptr(si
->percpu_cluster
);
494 cluster_set_null(&percpu_cluster
->index
);
499 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
500 * might involve allocating a new cluster for current CPU too.
502 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct
*si
,
503 unsigned long *offset
, unsigned long *scan_base
)
505 struct percpu_cluster
*cluster
;
506 struct swap_cluster_info
*ci
;
508 unsigned long tmp
, max
;
511 cluster
= this_cpu_ptr(si
->percpu_cluster
);
512 if (cluster_is_null(&cluster
->index
)) {
513 if (!cluster_list_empty(&si
->free_clusters
)) {
514 cluster
->index
= si
->free_clusters
.head
;
515 cluster
->next
= cluster_next(&cluster
->index
) *
517 } else if (!cluster_list_empty(&si
->discard_clusters
)) {
519 * we don't have free cluster but have some clusters in
520 * discarding, do discard now and reclaim them
522 swap_do_scheduled_discard(si
);
523 *scan_base
= *offset
= si
->cluster_next
;
532 * Other CPUs can use our cluster if they can't find a free cluster,
533 * check if there is still free entry in the cluster
536 max
= min_t(unsigned long, si
->max
,
537 (cluster_next(&cluster
->index
) + 1) * SWAPFILE_CLUSTER
);
539 cluster_set_null(&cluster
->index
);
542 ci
= lock_cluster(si
, tmp
);
544 if (!si
->swap_map
[tmp
]) {
552 cluster_set_null(&cluster
->index
);
555 cluster
->next
= tmp
+ 1;
561 static int scan_swap_map_slots(struct swap_info_struct
*si
,
562 unsigned char usage
, int nr
,
565 struct swap_cluster_info
*ci
;
566 unsigned long offset
;
567 unsigned long scan_base
;
568 unsigned long last_in_cluster
= 0;
569 int latency_ration
= LATENCY_LIMIT
;
576 * We try to cluster swap pages by allocating them sequentially
577 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
578 * way, however, we resort to first-free allocation, starting
579 * a new cluster. This prevents us from scattering swap pages
580 * all over the entire swap partition, so that we reduce
581 * overall disk seek times between swap pages. -- sct
582 * But we do now try to find an empty cluster. -Andrea
583 * And we let swap pages go all over an SSD partition. Hugh
586 si
->flags
+= SWP_SCANNING
;
587 scan_base
= offset
= si
->cluster_next
;
590 if (si
->cluster_info
) {
591 if (scan_swap_map_try_ssd_cluster(si
, &offset
, &scan_base
))
597 if (unlikely(!si
->cluster_nr
--)) {
598 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
) {
599 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
603 spin_unlock(&si
->lock
);
606 * If seek is expensive, start searching for new cluster from
607 * start of partition, to minimize the span of allocated swap.
608 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
609 * case, just handled by scan_swap_map_try_ssd_cluster() above.
611 scan_base
= offset
= si
->lowest_bit
;
612 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
614 /* Locate the first empty (unaligned) cluster */
615 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
616 if (si
->swap_map
[offset
])
617 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
618 else if (offset
== last_in_cluster
) {
619 spin_lock(&si
->lock
);
620 offset
-= SWAPFILE_CLUSTER
- 1;
621 si
->cluster_next
= offset
;
622 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
625 if (unlikely(--latency_ration
< 0)) {
627 latency_ration
= LATENCY_LIMIT
;
632 spin_lock(&si
->lock
);
633 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
637 if (si
->cluster_info
) {
638 while (scan_swap_map_ssd_cluster_conflict(si
, offset
)) {
639 /* take a break if we already got some slots */
642 if (!scan_swap_map_try_ssd_cluster(si
, &offset
,
647 if (!(si
->flags
& SWP_WRITEOK
))
649 if (!si
->highest_bit
)
651 if (offset
> si
->highest_bit
)
652 scan_base
= offset
= si
->lowest_bit
;
654 ci
= lock_cluster(si
, offset
);
655 /* reuse swap entry of cache-only swap if not busy. */
656 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
659 spin_unlock(&si
->lock
);
660 swap_was_freed
= __try_to_reclaim_swap(si
, offset
);
661 spin_lock(&si
->lock
);
662 /* entry was freed successfully, try to use this again */
665 goto scan
; /* check next one */
668 if (si
->swap_map
[offset
]) {
675 si
->swap_map
[offset
] = usage
;
676 inc_cluster_info_page(si
, si
->cluster_info
, offset
);
679 if (offset
== si
->lowest_bit
)
681 if (offset
== si
->highest_bit
)
684 if (si
->inuse_pages
== si
->pages
) {
685 si
->lowest_bit
= si
->max
;
687 spin_lock(&swap_avail_lock
);
688 plist_del(&si
->avail_list
, &swap_avail_head
);
689 spin_unlock(&swap_avail_lock
);
691 si
->cluster_next
= offset
+ 1;
692 slots
[n_ret
++] = swp_entry(si
->type
, offset
);
694 /* got enough slots or reach max slots? */
695 if ((n_ret
== nr
) || (offset
>= si
->highest_bit
))
698 /* search for next available slot */
700 /* time to take a break? */
701 if (unlikely(--latency_ration
< 0)) {
704 spin_unlock(&si
->lock
);
706 spin_lock(&si
->lock
);
707 latency_ration
= LATENCY_LIMIT
;
710 /* try to get more slots in cluster */
711 if (si
->cluster_info
) {
712 if (scan_swap_map_try_ssd_cluster(si
, &offset
, &scan_base
))
720 /* non-ssd case, still more slots in cluster? */
721 if (si
->cluster_nr
&& !si
->swap_map
[offset
]) {
727 si
->flags
-= SWP_SCANNING
;
731 spin_unlock(&si
->lock
);
732 while (++offset
<= si
->highest_bit
) {
733 if (!si
->swap_map
[offset
]) {
734 spin_lock(&si
->lock
);
737 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
738 spin_lock(&si
->lock
);
741 if (unlikely(--latency_ration
< 0)) {
743 latency_ration
= LATENCY_LIMIT
;
746 offset
= si
->lowest_bit
;
747 while (offset
< scan_base
) {
748 if (!si
->swap_map
[offset
]) {
749 spin_lock(&si
->lock
);
752 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
753 spin_lock(&si
->lock
);
756 if (unlikely(--latency_ration
< 0)) {
758 latency_ration
= LATENCY_LIMIT
;
762 spin_lock(&si
->lock
);
765 si
->flags
-= SWP_SCANNING
;
769 static unsigned long scan_swap_map(struct swap_info_struct
*si
,
775 n_ret
= scan_swap_map_slots(si
, usage
, 1, &entry
);
778 return swp_offset(entry
);
784 int get_swap_pages(int n_goal
, swp_entry_t swp_entries
[])
786 struct swap_info_struct
*si
, *next
;
790 avail_pgs
= atomic_long_read(&nr_swap_pages
);
794 if (n_goal
> SWAP_BATCH
)
797 if (n_goal
> avail_pgs
)
800 atomic_long_sub(n_goal
, &nr_swap_pages
);
802 spin_lock(&swap_avail_lock
);
805 plist_for_each_entry_safe(si
, next
, &swap_avail_head
, avail_list
) {
806 /* requeue si to after same-priority siblings */
807 plist_requeue(&si
->avail_list
, &swap_avail_head
);
808 spin_unlock(&swap_avail_lock
);
809 spin_lock(&si
->lock
);
810 if (!si
->highest_bit
|| !(si
->flags
& SWP_WRITEOK
)) {
811 spin_lock(&swap_avail_lock
);
812 if (plist_node_empty(&si
->avail_list
)) {
813 spin_unlock(&si
->lock
);
816 WARN(!si
->highest_bit
,
817 "swap_info %d in list but !highest_bit\n",
819 WARN(!(si
->flags
& SWP_WRITEOK
),
820 "swap_info %d in list but !SWP_WRITEOK\n",
822 plist_del(&si
->avail_list
, &swap_avail_head
);
823 spin_unlock(&si
->lock
);
826 n_ret
= scan_swap_map_slots(si
, SWAP_HAS_CACHE
,
827 n_goal
, swp_entries
);
828 spin_unlock(&si
->lock
);
831 pr_debug("scan_swap_map of si %d failed to find offset\n",
834 spin_lock(&swap_avail_lock
);
837 * if we got here, it's likely that si was almost full before,
838 * and since scan_swap_map() can drop the si->lock, multiple
839 * callers probably all tried to get a page from the same si
840 * and it filled up before we could get one; or, the si filled
841 * up between us dropping swap_avail_lock and taking si->lock.
842 * Since we dropped the swap_avail_lock, the swap_avail_head
843 * list may have been modified; so if next is still in the
844 * swap_avail_head list then try it, otherwise start over
845 * if we have not gotten any slots.
847 if (plist_node_empty(&next
->avail_list
))
851 spin_unlock(&swap_avail_lock
);
855 atomic_long_add((long) (n_goal
-n_ret
), &nr_swap_pages
);
860 /* The only caller of this function is now suspend routine */
861 swp_entry_t
get_swap_page_of_type(int type
)
863 struct swap_info_struct
*si
;
866 si
= swap_info
[type
];
867 spin_lock(&si
->lock
);
868 if (si
&& (si
->flags
& SWP_WRITEOK
)) {
869 atomic_long_dec(&nr_swap_pages
);
870 /* This is called for allocating swap entry, not cache */
871 offset
= scan_swap_map(si
, 1);
873 spin_unlock(&si
->lock
);
874 return swp_entry(type
, offset
);
876 atomic_long_inc(&nr_swap_pages
);
878 spin_unlock(&si
->lock
);
879 return (swp_entry_t
) {0};
882 static struct swap_info_struct
*__swap_info_get(swp_entry_t entry
)
884 struct swap_info_struct
*p
;
885 unsigned long offset
, type
;
889 type
= swp_type(entry
);
890 if (type
>= nr_swapfiles
)
893 if (!(p
->flags
& SWP_USED
))
895 offset
= swp_offset(entry
);
896 if (offset
>= p
->max
)
901 pr_err("swap_info_get: %s%08lx\n", Bad_offset
, entry
.val
);
904 pr_err("swap_info_get: %s%08lx\n", Unused_file
, entry
.val
);
907 pr_err("swap_info_get: %s%08lx\n", Bad_file
, entry
.val
);
912 static struct swap_info_struct
*_swap_info_get(swp_entry_t entry
)
914 struct swap_info_struct
*p
;
916 p
= __swap_info_get(entry
);
919 if (!p
->swap_map
[swp_offset(entry
)])
924 pr_err("swap_info_get: %s%08lx\n", Unused_offset
, entry
.val
);
930 static struct swap_info_struct
*swap_info_get(swp_entry_t entry
)
932 struct swap_info_struct
*p
;
934 p
= _swap_info_get(entry
);
940 static struct swap_info_struct
*swap_info_get_cont(swp_entry_t entry
,
941 struct swap_info_struct
*q
)
943 struct swap_info_struct
*p
;
945 p
= _swap_info_get(entry
);
949 spin_unlock(&q
->lock
);
956 static unsigned char __swap_entry_free(struct swap_info_struct
*p
,
957 swp_entry_t entry
, unsigned char usage
)
959 struct swap_cluster_info
*ci
;
960 unsigned long offset
= swp_offset(entry
);
962 unsigned char has_cache
;
964 ci
= lock_cluster_or_swap_info(p
, offset
);
966 count
= p
->swap_map
[offset
];
968 has_cache
= count
& SWAP_HAS_CACHE
;
969 count
&= ~SWAP_HAS_CACHE
;
971 if (usage
== SWAP_HAS_CACHE
) {
972 VM_BUG_ON(!has_cache
);
974 } else if (count
== SWAP_MAP_SHMEM
) {
976 * Or we could insist on shmem.c using a special
977 * swap_shmem_free() and free_shmem_swap_and_cache()...
980 } else if ((count
& ~COUNT_CONTINUED
) <= SWAP_MAP_MAX
) {
981 if (count
== COUNT_CONTINUED
) {
982 if (swap_count_continued(p
, offset
, count
))
983 count
= SWAP_MAP_MAX
| COUNT_CONTINUED
;
985 count
= SWAP_MAP_MAX
;
990 usage
= count
| has_cache
;
991 p
->swap_map
[offset
] = usage
? : SWAP_HAS_CACHE
;
993 unlock_cluster_or_swap_info(p
, ci
);
998 static void swap_entry_free(struct swap_info_struct
*p
, swp_entry_t entry
)
1000 struct swap_cluster_info
*ci
;
1001 unsigned long offset
= swp_offset(entry
);
1002 unsigned char count
;
1004 ci
= lock_cluster(p
, offset
);
1005 count
= p
->swap_map
[offset
];
1006 VM_BUG_ON(count
!= SWAP_HAS_CACHE
);
1007 p
->swap_map
[offset
] = 0;
1008 dec_cluster_info_page(p
, p
->cluster_info
, offset
);
1011 mem_cgroup_uncharge_swap(entry
);
1012 if (offset
< p
->lowest_bit
)
1013 p
->lowest_bit
= offset
;
1014 if (offset
> p
->highest_bit
) {
1015 bool was_full
= !p
->highest_bit
;
1017 p
->highest_bit
= offset
;
1018 if (was_full
&& (p
->flags
& SWP_WRITEOK
)) {
1019 spin_lock(&swap_avail_lock
);
1020 WARN_ON(!plist_node_empty(&p
->avail_list
));
1021 if (plist_node_empty(&p
->avail_list
))
1022 plist_add(&p
->avail_list
,
1024 spin_unlock(&swap_avail_lock
);
1027 atomic_long_inc(&nr_swap_pages
);
1029 frontswap_invalidate_page(p
->type
, offset
);
1030 if (p
->flags
& SWP_BLKDEV
) {
1031 struct gendisk
*disk
= p
->bdev
->bd_disk
;
1033 if (disk
->fops
->swap_slot_free_notify
)
1034 disk
->fops
->swap_slot_free_notify(p
->bdev
,
1040 * Caller has made sure that the swap device corresponding to entry
1041 * is still around or has not been recycled.
1043 void swap_free(swp_entry_t entry
)
1045 struct swap_info_struct
*p
;
1047 p
= _swap_info_get(entry
);
1049 if (!__swap_entry_free(p
, entry
, 1))
1050 free_swap_slot(entry
);
1055 * Called after dropping swapcache to decrease refcnt to swap entries.
1057 void swapcache_free(swp_entry_t entry
)
1059 struct swap_info_struct
*p
;
1061 p
= _swap_info_get(entry
);
1063 if (!__swap_entry_free(p
, entry
, SWAP_HAS_CACHE
))
1064 free_swap_slot(entry
);
1068 void swapcache_free_entries(swp_entry_t
*entries
, int n
)
1070 struct swap_info_struct
*p
, *prev
;
1078 for (i
= 0; i
< n
; ++i
) {
1079 p
= swap_info_get_cont(entries
[i
], prev
);
1081 swap_entry_free(p
, entries
[i
]);
1085 spin_unlock(&p
->lock
);
1089 * How many references to page are currently swapped out?
1090 * This does not give an exact answer when swap count is continued,
1091 * but does include the high COUNT_CONTINUED flag to allow for that.
1093 int page_swapcount(struct page
*page
)
1096 struct swap_info_struct
*p
;
1097 struct swap_cluster_info
*ci
;
1099 unsigned long offset
;
1101 entry
.val
= page_private(page
);
1102 p
= _swap_info_get(entry
);
1104 offset
= swp_offset(entry
);
1105 ci
= lock_cluster_or_swap_info(p
, offset
);
1106 count
= swap_count(p
->swap_map
[offset
]);
1107 unlock_cluster_or_swap_info(p
, ci
);
1112 static int swap_swapcount(struct swap_info_struct
*si
, swp_entry_t entry
)
1115 pgoff_t offset
= swp_offset(entry
);
1116 struct swap_cluster_info
*ci
;
1118 ci
= lock_cluster_or_swap_info(si
, offset
);
1119 count
= swap_count(si
->swap_map
[offset
]);
1120 unlock_cluster_or_swap_info(si
, ci
);
1125 * How many references to @entry are currently swapped out?
1126 * This does not give an exact answer when swap count is continued,
1127 * but does include the high COUNT_CONTINUED flag to allow for that.
1129 int __swp_swapcount(swp_entry_t entry
)
1132 struct swap_info_struct
*si
;
1134 si
= __swap_info_get(entry
);
1136 count
= swap_swapcount(si
, entry
);
1141 * How many references to @entry are currently swapped out?
1142 * This considers COUNT_CONTINUED so it returns exact answer.
1144 int swp_swapcount(swp_entry_t entry
)
1146 int count
, tmp_count
, n
;
1147 struct swap_info_struct
*p
;
1148 struct swap_cluster_info
*ci
;
1153 p
= _swap_info_get(entry
);
1157 offset
= swp_offset(entry
);
1159 ci
= lock_cluster_or_swap_info(p
, offset
);
1161 count
= swap_count(p
->swap_map
[offset
]);
1162 if (!(count
& COUNT_CONTINUED
))
1165 count
&= ~COUNT_CONTINUED
;
1166 n
= SWAP_MAP_MAX
+ 1;
1168 page
= vmalloc_to_page(p
->swap_map
+ offset
);
1169 offset
&= ~PAGE_MASK
;
1170 VM_BUG_ON(page_private(page
) != SWP_CONTINUED
);
1173 page
= list_next_entry(page
, lru
);
1174 map
= kmap_atomic(page
);
1175 tmp_count
= map
[offset
];
1178 count
+= (tmp_count
& ~COUNT_CONTINUED
) * n
;
1179 n
*= (SWAP_CONT_MAX
+ 1);
1180 } while (tmp_count
& COUNT_CONTINUED
);
1182 unlock_cluster_or_swap_info(p
, ci
);
1187 * We can write to an anon page without COW if there are no other references
1188 * to it. And as a side-effect, free up its swap: because the old content
1189 * on disk will never be read, and seeking back there to write new content
1190 * later would only waste time away from clustering.
1192 * NOTE: total_mapcount should not be relied upon by the caller if
1193 * reuse_swap_page() returns false, but it may be always overwritten
1194 * (see the other implementation for CONFIG_SWAP=n).
1196 bool reuse_swap_page(struct page
*page
, int *total_mapcount
)
1200 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1201 if (unlikely(PageKsm(page
)))
1203 count
= page_trans_huge_mapcount(page
, total_mapcount
);
1204 if (count
<= 1 && PageSwapCache(page
)) {
1205 count
+= page_swapcount(page
);
1208 if (!PageWriteback(page
)) {
1209 delete_from_swap_cache(page
);
1213 struct swap_info_struct
*p
;
1215 entry
.val
= page_private(page
);
1216 p
= swap_info_get(entry
);
1217 if (p
->flags
& SWP_STABLE_WRITES
) {
1218 spin_unlock(&p
->lock
);
1221 spin_unlock(&p
->lock
);
1229 * If swap is getting full, or if there are no more mappings of this page,
1230 * then try_to_free_swap is called to free its swap space.
1232 int try_to_free_swap(struct page
*page
)
1234 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1236 if (!PageSwapCache(page
))
1238 if (PageWriteback(page
))
1240 if (page_swapcount(page
))
1244 * Once hibernation has begun to create its image of memory,
1245 * there's a danger that one of the calls to try_to_free_swap()
1246 * - most probably a call from __try_to_reclaim_swap() while
1247 * hibernation is allocating its own swap pages for the image,
1248 * but conceivably even a call from memory reclaim - will free
1249 * the swap from a page which has already been recorded in the
1250 * image as a clean swapcache page, and then reuse its swap for
1251 * another page of the image. On waking from hibernation, the
1252 * original page might be freed under memory pressure, then
1253 * later read back in from swap, now with the wrong data.
1255 * Hibernation suspends storage while it is writing the image
1256 * to disk so check that here.
1258 if (pm_suspended_storage())
1261 delete_from_swap_cache(page
);
1267 * Free the swap entry like above, but also try to
1268 * free the page cache entry if it is the last user.
1270 int free_swap_and_cache(swp_entry_t entry
)
1272 struct swap_info_struct
*p
;
1273 struct page
*page
= NULL
;
1274 unsigned char count
;
1276 if (non_swap_entry(entry
))
1279 p
= _swap_info_get(entry
);
1281 count
= __swap_entry_free(p
, entry
, 1);
1282 if (count
== SWAP_HAS_CACHE
) {
1283 page
= find_get_page(swap_address_space(entry
),
1285 if (page
&& !trylock_page(page
)) {
1290 free_swap_slot(entry
);
1294 * Not mapped elsewhere, or swap space full? Free it!
1295 * Also recheck PageSwapCache now page is locked (above).
1297 if (PageSwapCache(page
) && !PageWriteback(page
) &&
1298 (!page_mapped(page
) || mem_cgroup_swap_full(page
)) &&
1299 !swap_swapcount(p
, entry
)) {
1300 delete_from_swap_cache(page
);
1309 #ifdef CONFIG_HIBERNATION
1311 * Find the swap type that corresponds to given device (if any).
1313 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1314 * from 0, in which the swap header is expected to be located.
1316 * This is needed for the suspend to disk (aka swsusp).
1318 int swap_type_of(dev_t device
, sector_t offset
, struct block_device
**bdev_p
)
1320 struct block_device
*bdev
= NULL
;
1324 bdev
= bdget(device
);
1326 spin_lock(&swap_lock
);
1327 for (type
= 0; type
< nr_swapfiles
; type
++) {
1328 struct swap_info_struct
*sis
= swap_info
[type
];
1330 if (!(sis
->flags
& SWP_WRITEOK
))
1335 *bdev_p
= bdgrab(sis
->bdev
);
1337 spin_unlock(&swap_lock
);
1340 if (bdev
== sis
->bdev
) {
1341 struct swap_extent
*se
= &sis
->first_swap_extent
;
1343 if (se
->start_block
== offset
) {
1345 *bdev_p
= bdgrab(sis
->bdev
);
1347 spin_unlock(&swap_lock
);
1353 spin_unlock(&swap_lock
);
1361 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1362 * corresponding to given index in swap_info (swap type).
1364 sector_t
swapdev_block(int type
, pgoff_t offset
)
1366 struct block_device
*bdev
;
1368 if ((unsigned int)type
>= nr_swapfiles
)
1370 if (!(swap_info
[type
]->flags
& SWP_WRITEOK
))
1372 return map_swap_entry(swp_entry(type
, offset
), &bdev
);
1376 * Return either the total number of swap pages of given type, or the number
1377 * of free pages of that type (depending on @free)
1379 * This is needed for software suspend
1381 unsigned int count_swap_pages(int type
, int free
)
1385 spin_lock(&swap_lock
);
1386 if ((unsigned int)type
< nr_swapfiles
) {
1387 struct swap_info_struct
*sis
= swap_info
[type
];
1389 spin_lock(&sis
->lock
);
1390 if (sis
->flags
& SWP_WRITEOK
) {
1393 n
-= sis
->inuse_pages
;
1395 spin_unlock(&sis
->lock
);
1397 spin_unlock(&swap_lock
);
1400 #endif /* CONFIG_HIBERNATION */
1402 static inline int pte_same_as_swp(pte_t pte
, pte_t swp_pte
)
1404 return pte_same(pte_swp_clear_soft_dirty(pte
), swp_pte
);
1408 * No need to decide whether this PTE shares the swap entry with others,
1409 * just let do_wp_page work it out if a write is requested later - to
1410 * force COW, vm_page_prot omits write permission from any private vma.
1412 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1413 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
1415 struct page
*swapcache
;
1416 struct mem_cgroup
*memcg
;
1422 page
= ksm_might_need_to_copy(page
, vma
, addr
);
1423 if (unlikely(!page
))
1426 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
,
1432 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
1433 if (unlikely(!pte_same_as_swp(*pte
, swp_entry_to_pte(entry
)))) {
1434 mem_cgroup_cancel_charge(page
, memcg
, false);
1439 dec_mm_counter(vma
->vm_mm
, MM_SWAPENTS
);
1440 inc_mm_counter(vma
->vm_mm
, MM_ANONPAGES
);
1442 set_pte_at(vma
->vm_mm
, addr
, pte
,
1443 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
1444 if (page
== swapcache
) {
1445 page_add_anon_rmap(page
, vma
, addr
, false);
1446 mem_cgroup_commit_charge(page
, memcg
, true, false);
1447 } else { /* ksm created a completely new copy */
1448 page_add_new_anon_rmap(page
, vma
, addr
, false);
1449 mem_cgroup_commit_charge(page
, memcg
, false, false);
1450 lru_cache_add_active_or_unevictable(page
, vma
);
1454 * Move the page to the active list so it is not
1455 * immediately swapped out again after swapon.
1457 activate_page(page
);
1459 pte_unmap_unlock(pte
, ptl
);
1461 if (page
!= swapcache
) {
1468 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1469 unsigned long addr
, unsigned long end
,
1470 swp_entry_t entry
, struct page
*page
)
1472 pte_t swp_pte
= swp_entry_to_pte(entry
);
1477 * We don't actually need pte lock while scanning for swp_pte: since
1478 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1479 * page table while we're scanning; though it could get zapped, and on
1480 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1481 * of unmatched parts which look like swp_pte, so unuse_pte must
1482 * recheck under pte lock. Scanning without pte lock lets it be
1483 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1485 pte
= pte_offset_map(pmd
, addr
);
1488 * swapoff spends a _lot_ of time in this loop!
1489 * Test inline before going to call unuse_pte.
1491 if (unlikely(pte_same_as_swp(*pte
, swp_pte
))) {
1493 ret
= unuse_pte(vma
, pmd
, addr
, entry
, page
);
1496 pte
= pte_offset_map(pmd
, addr
);
1498 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1504 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
1505 unsigned long addr
, unsigned long end
,
1506 swp_entry_t entry
, struct page
*page
)
1512 pmd
= pmd_offset(pud
, addr
);
1515 next
= pmd_addr_end(addr
, end
);
1516 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1518 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, entry
, page
);
1521 } while (pmd
++, addr
= next
, addr
!= end
);
1525 static inline int unuse_pud_range(struct vm_area_struct
*vma
, p4d_t
*p4d
,
1526 unsigned long addr
, unsigned long end
,
1527 swp_entry_t entry
, struct page
*page
)
1533 pud
= pud_offset(p4d
, addr
);
1535 next
= pud_addr_end(addr
, end
);
1536 if (pud_none_or_clear_bad(pud
))
1538 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, entry
, page
);
1541 } while (pud
++, addr
= next
, addr
!= end
);
1545 static inline int unuse_p4d_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
1546 unsigned long addr
, unsigned long end
,
1547 swp_entry_t entry
, struct page
*page
)
1553 p4d
= p4d_offset(pgd
, addr
);
1555 next
= p4d_addr_end(addr
, end
);
1556 if (p4d_none_or_clear_bad(p4d
))
1558 ret
= unuse_pud_range(vma
, p4d
, addr
, next
, entry
, page
);
1561 } while (p4d
++, addr
= next
, addr
!= end
);
1565 static int unuse_vma(struct vm_area_struct
*vma
,
1566 swp_entry_t entry
, struct page
*page
)
1569 unsigned long addr
, end
, next
;
1572 if (page_anon_vma(page
)) {
1573 addr
= page_address_in_vma(page
, vma
);
1574 if (addr
== -EFAULT
)
1577 end
= addr
+ PAGE_SIZE
;
1579 addr
= vma
->vm_start
;
1583 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1585 next
= pgd_addr_end(addr
, end
);
1586 if (pgd_none_or_clear_bad(pgd
))
1588 ret
= unuse_p4d_range(vma
, pgd
, addr
, next
, entry
, page
);
1591 } while (pgd
++, addr
= next
, addr
!= end
);
1595 static int unuse_mm(struct mm_struct
*mm
,
1596 swp_entry_t entry
, struct page
*page
)
1598 struct vm_area_struct
*vma
;
1601 if (!down_read_trylock(&mm
->mmap_sem
)) {
1603 * Activate page so shrink_inactive_list is unlikely to unmap
1604 * its ptes while lock is dropped, so swapoff can make progress.
1606 activate_page(page
);
1608 down_read(&mm
->mmap_sem
);
1611 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1612 if (vma
->anon_vma
&& (ret
= unuse_vma(vma
, entry
, page
)))
1616 up_read(&mm
->mmap_sem
);
1617 return (ret
< 0)? ret
: 0;
1621 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1622 * from current position to next entry still in use.
1623 * Recycle to start on reaching the end, returning 0 when empty.
1625 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
1626 unsigned int prev
, bool frontswap
)
1628 unsigned int max
= si
->max
;
1629 unsigned int i
= prev
;
1630 unsigned char count
;
1633 * No need for swap_lock here: we're just looking
1634 * for whether an entry is in use, not modifying it; false
1635 * hits are okay, and sys_swapoff() has already prevented new
1636 * allocations from this area (while holding swap_lock).
1645 * No entries in use at top of swap_map,
1646 * loop back to start and recheck there.
1652 count
= READ_ONCE(si
->swap_map
[i
]);
1653 if (count
&& swap_count(count
) != SWAP_MAP_BAD
)
1654 if (!frontswap
|| frontswap_test(si
, i
))
1656 if ((i
% LATENCY_LIMIT
) == 0)
1663 * We completely avoid races by reading each swap page in advance,
1664 * and then search for the process using it. All the necessary
1665 * page table adjustments can then be made atomically.
1667 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1668 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1670 int try_to_unuse(unsigned int type
, bool frontswap
,
1671 unsigned long pages_to_unuse
)
1673 struct swap_info_struct
*si
= swap_info
[type
];
1674 struct mm_struct
*start_mm
;
1675 volatile unsigned char *swap_map
; /* swap_map is accessed without
1676 * locking. Mark it as volatile
1677 * to prevent compiler doing
1680 unsigned char swcount
;
1687 * When searching mms for an entry, a good strategy is to
1688 * start at the first mm we freed the previous entry from
1689 * (though actually we don't notice whether we or coincidence
1690 * freed the entry). Initialize this start_mm with a hold.
1692 * A simpler strategy would be to start at the last mm we
1693 * freed the previous entry from; but that would take less
1694 * advantage of mmlist ordering, which clusters forked mms
1695 * together, child after parent. If we race with dup_mmap(), we
1696 * prefer to resolve parent before child, lest we miss entries
1697 * duplicated after we scanned child: using last mm would invert
1700 start_mm
= &init_mm
;
1704 * Keep on scanning until all entries have gone. Usually,
1705 * one pass through swap_map is enough, but not necessarily:
1706 * there are races when an instance of an entry might be missed.
1708 while ((i
= find_next_to_unuse(si
, i
, frontswap
)) != 0) {
1709 if (signal_pending(current
)) {
1715 * Get a page for the entry, using the existing swap
1716 * cache page if there is one. Otherwise, get a clean
1717 * page and read the swap into it.
1719 swap_map
= &si
->swap_map
[i
];
1720 entry
= swp_entry(type
, i
);
1721 page
= read_swap_cache_async(entry
,
1722 GFP_HIGHUSER_MOVABLE
, NULL
, 0);
1725 * Either swap_duplicate() failed because entry
1726 * has been freed independently, and will not be
1727 * reused since sys_swapoff() already disabled
1728 * allocation from here, or alloc_page() failed.
1730 swcount
= *swap_map
;
1732 * We don't hold lock here, so the swap entry could be
1733 * SWAP_MAP_BAD (when the cluster is discarding).
1734 * Instead of fail out, We can just skip the swap
1735 * entry because swapoff will wait for discarding
1738 if (!swcount
|| swcount
== SWAP_MAP_BAD
)
1745 * Don't hold on to start_mm if it looks like exiting.
1747 if (atomic_read(&start_mm
->mm_users
) == 1) {
1749 start_mm
= &init_mm
;
1754 * Wait for and lock page. When do_swap_page races with
1755 * try_to_unuse, do_swap_page can handle the fault much
1756 * faster than try_to_unuse can locate the entry. This
1757 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1758 * defer to do_swap_page in such a case - in some tests,
1759 * do_swap_page and try_to_unuse repeatedly compete.
1761 wait_on_page_locked(page
);
1762 wait_on_page_writeback(page
);
1764 wait_on_page_writeback(page
);
1767 * Remove all references to entry.
1769 swcount
= *swap_map
;
1770 if (swap_count(swcount
) == SWAP_MAP_SHMEM
) {
1771 retval
= shmem_unuse(entry
, page
);
1772 /* page has already been unlocked and released */
1777 if (swap_count(swcount
) && start_mm
!= &init_mm
)
1778 retval
= unuse_mm(start_mm
, entry
, page
);
1780 if (swap_count(*swap_map
)) {
1781 int set_start_mm
= (*swap_map
>= swcount
);
1782 struct list_head
*p
= &start_mm
->mmlist
;
1783 struct mm_struct
*new_start_mm
= start_mm
;
1784 struct mm_struct
*prev_mm
= start_mm
;
1785 struct mm_struct
*mm
;
1787 mmget(new_start_mm
);
1789 spin_lock(&mmlist_lock
);
1790 while (swap_count(*swap_map
) && !retval
&&
1791 (p
= p
->next
) != &start_mm
->mmlist
) {
1792 mm
= list_entry(p
, struct mm_struct
, mmlist
);
1793 if (!mmget_not_zero(mm
))
1795 spin_unlock(&mmlist_lock
);
1801 swcount
= *swap_map
;
1802 if (!swap_count(swcount
)) /* any usage ? */
1804 else if (mm
== &init_mm
)
1807 retval
= unuse_mm(mm
, entry
, page
);
1809 if (set_start_mm
&& *swap_map
< swcount
) {
1810 mmput(new_start_mm
);
1815 spin_lock(&mmlist_lock
);
1817 spin_unlock(&mmlist_lock
);
1820 start_mm
= new_start_mm
;
1829 * If a reference remains (rare), we would like to leave
1830 * the page in the swap cache; but try_to_unmap could
1831 * then re-duplicate the entry once we drop page lock,
1832 * so we might loop indefinitely; also, that page could
1833 * not be swapped out to other storage meanwhile. So:
1834 * delete from cache even if there's another reference,
1835 * after ensuring that the data has been saved to disk -
1836 * since if the reference remains (rarer), it will be
1837 * read from disk into another page. Splitting into two
1838 * pages would be incorrect if swap supported "shared
1839 * private" pages, but they are handled by tmpfs files.
1841 * Given how unuse_vma() targets one particular offset
1842 * in an anon_vma, once the anon_vma has been determined,
1843 * this splitting happens to be just what is needed to
1844 * handle where KSM pages have been swapped out: re-reading
1845 * is unnecessarily slow, but we can fix that later on.
1847 if (swap_count(*swap_map
) &&
1848 PageDirty(page
) && PageSwapCache(page
)) {
1849 struct writeback_control wbc
= {
1850 .sync_mode
= WB_SYNC_NONE
,
1853 swap_writepage(page
, &wbc
);
1855 wait_on_page_writeback(page
);
1859 * It is conceivable that a racing task removed this page from
1860 * swap cache just before we acquired the page lock at the top,
1861 * or while we dropped it in unuse_mm(). The page might even
1862 * be back in swap cache on another swap area: that we must not
1863 * delete, since it may not have been written out to swap yet.
1865 if (PageSwapCache(page
) &&
1866 likely(page_private(page
) == entry
.val
))
1867 delete_from_swap_cache(page
);
1870 * So we could skip searching mms once swap count went
1871 * to 1, we did not mark any present ptes as dirty: must
1872 * mark page dirty so shrink_page_list will preserve it.
1879 * Make sure that we aren't completely killing
1880 * interactive performance.
1883 if (frontswap
&& pages_to_unuse
> 0) {
1884 if (!--pages_to_unuse
)
1894 * After a successful try_to_unuse, if no swap is now in use, we know
1895 * we can empty the mmlist. swap_lock must be held on entry and exit.
1896 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1897 * added to the mmlist just after page_duplicate - before would be racy.
1899 static void drain_mmlist(void)
1901 struct list_head
*p
, *next
;
1904 for (type
= 0; type
< nr_swapfiles
; type
++)
1905 if (swap_info
[type
]->inuse_pages
)
1907 spin_lock(&mmlist_lock
);
1908 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
1910 spin_unlock(&mmlist_lock
);
1914 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1915 * corresponds to page offset for the specified swap entry.
1916 * Note that the type of this function is sector_t, but it returns page offset
1917 * into the bdev, not sector offset.
1919 static sector_t
map_swap_entry(swp_entry_t entry
, struct block_device
**bdev
)
1921 struct swap_info_struct
*sis
;
1922 struct swap_extent
*start_se
;
1923 struct swap_extent
*se
;
1926 sis
= swap_info
[swp_type(entry
)];
1929 offset
= swp_offset(entry
);
1930 start_se
= sis
->curr_swap_extent
;
1934 if (se
->start_page
<= offset
&&
1935 offset
< (se
->start_page
+ se
->nr_pages
)) {
1936 return se
->start_block
+ (offset
- se
->start_page
);
1938 se
= list_next_entry(se
, list
);
1939 sis
->curr_swap_extent
= se
;
1940 BUG_ON(se
== start_se
); /* It *must* be present */
1945 * Returns the page offset into bdev for the specified page's swap entry.
1947 sector_t
map_swap_page(struct page
*page
, struct block_device
**bdev
)
1950 entry
.val
= page_private(page
);
1951 return map_swap_entry(entry
, bdev
);
1955 * Free all of a swapdev's extent information
1957 static void destroy_swap_extents(struct swap_info_struct
*sis
)
1959 while (!list_empty(&sis
->first_swap_extent
.list
)) {
1960 struct swap_extent
*se
;
1962 se
= list_first_entry(&sis
->first_swap_extent
.list
,
1963 struct swap_extent
, list
);
1964 list_del(&se
->list
);
1968 if (sis
->flags
& SWP_FILE
) {
1969 struct file
*swap_file
= sis
->swap_file
;
1970 struct address_space
*mapping
= swap_file
->f_mapping
;
1972 sis
->flags
&= ~SWP_FILE
;
1973 mapping
->a_ops
->swap_deactivate(swap_file
);
1978 * Add a block range (and the corresponding page range) into this swapdev's
1979 * extent list. The extent list is kept sorted in page order.
1981 * This function rather assumes that it is called in ascending page order.
1984 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
1985 unsigned long nr_pages
, sector_t start_block
)
1987 struct swap_extent
*se
;
1988 struct swap_extent
*new_se
;
1989 struct list_head
*lh
;
1991 if (start_page
== 0) {
1992 se
= &sis
->first_swap_extent
;
1993 sis
->curr_swap_extent
= se
;
1995 se
->nr_pages
= nr_pages
;
1996 se
->start_block
= start_block
;
1999 lh
= sis
->first_swap_extent
.list
.prev
; /* Highest extent */
2000 se
= list_entry(lh
, struct swap_extent
, list
);
2001 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
2002 if (se
->start_block
+ se
->nr_pages
== start_block
) {
2004 se
->nr_pages
+= nr_pages
;
2010 * No merge. Insert a new extent, preserving ordering.
2012 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
2015 new_se
->start_page
= start_page
;
2016 new_se
->nr_pages
= nr_pages
;
2017 new_se
->start_block
= start_block
;
2019 list_add_tail(&new_se
->list
, &sis
->first_swap_extent
.list
);
2024 * A `swap extent' is a simple thing which maps a contiguous range of pages
2025 * onto a contiguous range of disk blocks. An ordered list of swap extents
2026 * is built at swapon time and is then used at swap_writepage/swap_readpage
2027 * time for locating where on disk a page belongs.
2029 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2030 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2031 * swap files identically.
2033 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2034 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2035 * swapfiles are handled *identically* after swapon time.
2037 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2038 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2039 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2040 * requirements, they are simply tossed out - we will never use those blocks
2043 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
2044 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2045 * which will scribble on the fs.
2047 * The amount of disk space which a single swap extent represents varies.
2048 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2049 * extents in the list. To avoid much list walking, we cache the previous
2050 * search location in `curr_swap_extent', and start new searches from there.
2051 * This is extremely effective. The average number of iterations in
2052 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2054 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
2056 struct file
*swap_file
= sis
->swap_file
;
2057 struct address_space
*mapping
= swap_file
->f_mapping
;
2058 struct inode
*inode
= mapping
->host
;
2061 if (S_ISBLK(inode
->i_mode
)) {
2062 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
2067 if (mapping
->a_ops
->swap_activate
) {
2068 ret
= mapping
->a_ops
->swap_activate(sis
, swap_file
, span
);
2070 sis
->flags
|= SWP_FILE
;
2071 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
2077 return generic_swapfile_activate(sis
, swap_file
, span
);
2080 static void _enable_swap_info(struct swap_info_struct
*p
, int prio
,
2081 unsigned char *swap_map
,
2082 struct swap_cluster_info
*cluster_info
)
2087 p
->prio
= --least_priority
;
2089 * the plist prio is negated because plist ordering is
2090 * low-to-high, while swap ordering is high-to-low
2092 p
->list
.prio
= -p
->prio
;
2093 p
->avail_list
.prio
= -p
->prio
;
2094 p
->swap_map
= swap_map
;
2095 p
->cluster_info
= cluster_info
;
2096 p
->flags
|= SWP_WRITEOK
;
2097 atomic_long_add(p
->pages
, &nr_swap_pages
);
2098 total_swap_pages
+= p
->pages
;
2100 assert_spin_locked(&swap_lock
);
2102 * both lists are plists, and thus priority ordered.
2103 * swap_active_head needs to be priority ordered for swapoff(),
2104 * which on removal of any swap_info_struct with an auto-assigned
2105 * (i.e. negative) priority increments the auto-assigned priority
2106 * of any lower-priority swap_info_structs.
2107 * swap_avail_head needs to be priority ordered for get_swap_page(),
2108 * which allocates swap pages from the highest available priority
2111 plist_add(&p
->list
, &swap_active_head
);
2112 spin_lock(&swap_avail_lock
);
2113 plist_add(&p
->avail_list
, &swap_avail_head
);
2114 spin_unlock(&swap_avail_lock
);
2117 static void enable_swap_info(struct swap_info_struct
*p
, int prio
,
2118 unsigned char *swap_map
,
2119 struct swap_cluster_info
*cluster_info
,
2120 unsigned long *frontswap_map
)
2122 frontswap_init(p
->type
, frontswap_map
);
2123 spin_lock(&swap_lock
);
2124 spin_lock(&p
->lock
);
2125 _enable_swap_info(p
, prio
, swap_map
, cluster_info
);
2126 spin_unlock(&p
->lock
);
2127 spin_unlock(&swap_lock
);
2130 static void reinsert_swap_info(struct swap_info_struct
*p
)
2132 spin_lock(&swap_lock
);
2133 spin_lock(&p
->lock
);
2134 _enable_swap_info(p
, p
->prio
, p
->swap_map
, p
->cluster_info
);
2135 spin_unlock(&p
->lock
);
2136 spin_unlock(&swap_lock
);
2139 bool has_usable_swap(void)
2143 spin_lock(&swap_lock
);
2144 if (plist_head_empty(&swap_active_head
))
2146 spin_unlock(&swap_lock
);
2150 SYSCALL_DEFINE1(swapoff
, const char __user
*, specialfile
)
2152 struct swap_info_struct
*p
= NULL
;
2153 unsigned char *swap_map
;
2154 struct swap_cluster_info
*cluster_info
;
2155 unsigned long *frontswap_map
;
2156 struct file
*swap_file
, *victim
;
2157 struct address_space
*mapping
;
2158 struct inode
*inode
;
2159 struct filename
*pathname
;
2161 unsigned int old_block_size
;
2163 if (!capable(CAP_SYS_ADMIN
))
2166 BUG_ON(!current
->mm
);
2168 pathname
= getname(specialfile
);
2169 if (IS_ERR(pathname
))
2170 return PTR_ERR(pathname
);
2172 victim
= file_open_name(pathname
, O_RDWR
|O_LARGEFILE
, 0);
2173 err
= PTR_ERR(victim
);
2177 mapping
= victim
->f_mapping
;
2178 spin_lock(&swap_lock
);
2179 plist_for_each_entry(p
, &swap_active_head
, list
) {
2180 if (p
->flags
& SWP_WRITEOK
) {
2181 if (p
->swap_file
->f_mapping
== mapping
) {
2189 spin_unlock(&swap_lock
);
2192 if (!security_vm_enough_memory_mm(current
->mm
, p
->pages
))
2193 vm_unacct_memory(p
->pages
);
2196 spin_unlock(&swap_lock
);
2199 spin_lock(&swap_avail_lock
);
2200 plist_del(&p
->avail_list
, &swap_avail_head
);
2201 spin_unlock(&swap_avail_lock
);
2202 spin_lock(&p
->lock
);
2204 struct swap_info_struct
*si
= p
;
2206 plist_for_each_entry_continue(si
, &swap_active_head
, list
) {
2209 si
->avail_list
.prio
--;
2213 plist_del(&p
->list
, &swap_active_head
);
2214 atomic_long_sub(p
->pages
, &nr_swap_pages
);
2215 total_swap_pages
-= p
->pages
;
2216 p
->flags
&= ~SWP_WRITEOK
;
2217 spin_unlock(&p
->lock
);
2218 spin_unlock(&swap_lock
);
2220 disable_swap_slots_cache_lock();
2222 set_current_oom_origin();
2223 err
= try_to_unuse(p
->type
, false, 0); /* force unuse all pages */
2224 clear_current_oom_origin();
2227 /* re-insert swap space back into swap_list */
2228 reinsert_swap_info(p
);
2229 reenable_swap_slots_cache_unlock();
2233 reenable_swap_slots_cache_unlock();
2235 flush_work(&p
->discard_work
);
2237 destroy_swap_extents(p
);
2238 if (p
->flags
& SWP_CONTINUED
)
2239 free_swap_count_continuations(p
);
2241 mutex_lock(&swapon_mutex
);
2242 spin_lock(&swap_lock
);
2243 spin_lock(&p
->lock
);
2246 /* wait for anyone still in scan_swap_map */
2247 p
->highest_bit
= 0; /* cuts scans short */
2248 while (p
->flags
>= SWP_SCANNING
) {
2249 spin_unlock(&p
->lock
);
2250 spin_unlock(&swap_lock
);
2251 schedule_timeout_uninterruptible(1);
2252 spin_lock(&swap_lock
);
2253 spin_lock(&p
->lock
);
2256 swap_file
= p
->swap_file
;
2257 old_block_size
= p
->old_block_size
;
2258 p
->swap_file
= NULL
;
2260 swap_map
= p
->swap_map
;
2262 cluster_info
= p
->cluster_info
;
2263 p
->cluster_info
= NULL
;
2264 frontswap_map
= frontswap_map_get(p
);
2265 spin_unlock(&p
->lock
);
2266 spin_unlock(&swap_lock
);
2267 frontswap_invalidate_area(p
->type
);
2268 frontswap_map_set(p
, NULL
);
2269 mutex_unlock(&swapon_mutex
);
2270 free_percpu(p
->percpu_cluster
);
2271 p
->percpu_cluster
= NULL
;
2273 kvfree(cluster_info
);
2274 kvfree(frontswap_map
);
2275 /* Destroy swap account information */
2276 swap_cgroup_swapoff(p
->type
);
2277 exit_swap_address_space(p
->type
);
2279 inode
= mapping
->host
;
2280 if (S_ISBLK(inode
->i_mode
)) {
2281 struct block_device
*bdev
= I_BDEV(inode
);
2282 set_blocksize(bdev
, old_block_size
);
2283 blkdev_put(bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
2286 inode
->i_flags
&= ~S_SWAPFILE
;
2287 inode_unlock(inode
);
2289 filp_close(swap_file
, NULL
);
2292 * Clear the SWP_USED flag after all resources are freed so that swapon
2293 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2294 * not hold p->lock after we cleared its SWP_WRITEOK.
2296 spin_lock(&swap_lock
);
2298 spin_unlock(&swap_lock
);
2301 atomic_inc(&proc_poll_event
);
2302 wake_up_interruptible(&proc_poll_wait
);
2305 filp_close(victim
, NULL
);
2311 #ifdef CONFIG_PROC_FS
2312 static unsigned swaps_poll(struct file
*file
, poll_table
*wait
)
2314 struct seq_file
*seq
= file
->private_data
;
2316 poll_wait(file
, &proc_poll_wait
, wait
);
2318 if (seq
->poll_event
!= atomic_read(&proc_poll_event
)) {
2319 seq
->poll_event
= atomic_read(&proc_poll_event
);
2320 return POLLIN
| POLLRDNORM
| POLLERR
| POLLPRI
;
2323 return POLLIN
| POLLRDNORM
;
2327 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
2329 struct swap_info_struct
*si
;
2333 mutex_lock(&swapon_mutex
);
2336 return SEQ_START_TOKEN
;
2338 for (type
= 0; type
< nr_swapfiles
; type
++) {
2339 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2340 si
= swap_info
[type
];
2341 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
2350 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
2352 struct swap_info_struct
*si
= v
;
2355 if (v
== SEQ_START_TOKEN
)
2358 type
= si
->type
+ 1;
2360 for (; type
< nr_swapfiles
; type
++) {
2361 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2362 si
= swap_info
[type
];
2363 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
2372 static void swap_stop(struct seq_file
*swap
, void *v
)
2374 mutex_unlock(&swapon_mutex
);
2377 static int swap_show(struct seq_file
*swap
, void *v
)
2379 struct swap_info_struct
*si
= v
;
2383 if (si
== SEQ_START_TOKEN
) {
2384 seq_puts(swap
,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2388 file
= si
->swap_file
;
2389 len
= seq_file_path(swap
, file
, " \t\n\\");
2390 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
2391 len
< 40 ? 40 - len
: 1, " ",
2392 S_ISBLK(file_inode(file
)->i_mode
) ?
2393 "partition" : "file\t",
2394 si
->pages
<< (PAGE_SHIFT
- 10),
2395 si
->inuse_pages
<< (PAGE_SHIFT
- 10),
2400 static const struct seq_operations swaps_op
= {
2401 .start
= swap_start
,
2407 static int swaps_open(struct inode
*inode
, struct file
*file
)
2409 struct seq_file
*seq
;
2412 ret
= seq_open(file
, &swaps_op
);
2416 seq
= file
->private_data
;
2417 seq
->poll_event
= atomic_read(&proc_poll_event
);
2421 static const struct file_operations proc_swaps_operations
= {
2424 .llseek
= seq_lseek
,
2425 .release
= seq_release
,
2429 static int __init
procswaps_init(void)
2431 proc_create("swaps", 0, NULL
, &proc_swaps_operations
);
2434 __initcall(procswaps_init
);
2435 #endif /* CONFIG_PROC_FS */
2437 #ifdef MAX_SWAPFILES_CHECK
2438 static int __init
max_swapfiles_check(void)
2440 MAX_SWAPFILES_CHECK();
2443 late_initcall(max_swapfiles_check
);
2446 static struct swap_info_struct
*alloc_swap_info(void)
2448 struct swap_info_struct
*p
;
2451 p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
2453 return ERR_PTR(-ENOMEM
);
2455 spin_lock(&swap_lock
);
2456 for (type
= 0; type
< nr_swapfiles
; type
++) {
2457 if (!(swap_info
[type
]->flags
& SWP_USED
))
2460 if (type
>= MAX_SWAPFILES
) {
2461 spin_unlock(&swap_lock
);
2463 return ERR_PTR(-EPERM
);
2465 if (type
>= nr_swapfiles
) {
2467 swap_info
[type
] = p
;
2469 * Write swap_info[type] before nr_swapfiles, in case a
2470 * racing procfs swap_start() or swap_next() is reading them.
2471 * (We never shrink nr_swapfiles, we never free this entry.)
2477 p
= swap_info
[type
];
2479 * Do not memset this entry: a racing procfs swap_next()
2480 * would be relying on p->type to remain valid.
2483 INIT_LIST_HEAD(&p
->first_swap_extent
.list
);
2484 plist_node_init(&p
->list
, 0);
2485 plist_node_init(&p
->avail_list
, 0);
2486 p
->flags
= SWP_USED
;
2487 spin_unlock(&swap_lock
);
2488 spin_lock_init(&p
->lock
);
2493 static int claim_swapfile(struct swap_info_struct
*p
, struct inode
*inode
)
2497 if (S_ISBLK(inode
->i_mode
)) {
2498 p
->bdev
= bdgrab(I_BDEV(inode
));
2499 error
= blkdev_get(p
->bdev
,
2500 FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
, p
);
2505 p
->old_block_size
= block_size(p
->bdev
);
2506 error
= set_blocksize(p
->bdev
, PAGE_SIZE
);
2509 p
->flags
|= SWP_BLKDEV
;
2510 } else if (S_ISREG(inode
->i_mode
)) {
2511 p
->bdev
= inode
->i_sb
->s_bdev
;
2513 if (IS_SWAPFILE(inode
))
2521 static unsigned long read_swap_header(struct swap_info_struct
*p
,
2522 union swap_header
*swap_header
,
2523 struct inode
*inode
)
2526 unsigned long maxpages
;
2527 unsigned long swapfilepages
;
2528 unsigned long last_page
;
2530 if (memcmp("SWAPSPACE2", swap_header
->magic
.magic
, 10)) {
2531 pr_err("Unable to find swap-space signature\n");
2535 /* swap partition endianess hack... */
2536 if (swab32(swap_header
->info
.version
) == 1) {
2537 swab32s(&swap_header
->info
.version
);
2538 swab32s(&swap_header
->info
.last_page
);
2539 swab32s(&swap_header
->info
.nr_badpages
);
2540 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
2542 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
2543 swab32s(&swap_header
->info
.badpages
[i
]);
2545 /* Check the swap header's sub-version */
2546 if (swap_header
->info
.version
!= 1) {
2547 pr_warn("Unable to handle swap header version %d\n",
2548 swap_header
->info
.version
);
2553 p
->cluster_next
= 1;
2557 * Find out how many pages are allowed for a single swap
2558 * device. There are two limiting factors: 1) the number
2559 * of bits for the swap offset in the swp_entry_t type, and
2560 * 2) the number of bits in the swap pte as defined by the
2561 * different architectures. In order to find the
2562 * largest possible bit mask, a swap entry with swap type 0
2563 * and swap offset ~0UL is created, encoded to a swap pte,
2564 * decoded to a swp_entry_t again, and finally the swap
2565 * offset is extracted. This will mask all the bits from
2566 * the initial ~0UL mask that can't be encoded in either
2567 * the swp_entry_t or the architecture definition of a
2570 maxpages
= swp_offset(pte_to_swp_entry(
2571 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2572 last_page
= swap_header
->info
.last_page
;
2573 if (last_page
> maxpages
) {
2574 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2575 maxpages
<< (PAGE_SHIFT
- 10),
2576 last_page
<< (PAGE_SHIFT
- 10));
2578 if (maxpages
> last_page
) {
2579 maxpages
= last_page
+ 1;
2580 /* p->max is an unsigned int: don't overflow it */
2581 if ((unsigned int)maxpages
== 0)
2582 maxpages
= UINT_MAX
;
2584 p
->highest_bit
= maxpages
- 1;
2588 swapfilepages
= i_size_read(inode
) >> PAGE_SHIFT
;
2589 if (swapfilepages
&& maxpages
> swapfilepages
) {
2590 pr_warn("Swap area shorter than signature indicates\n");
2593 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
2595 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
2601 #define SWAP_CLUSTER_INFO_COLS \
2602 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2603 #define SWAP_CLUSTER_SPACE_COLS \
2604 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2605 #define SWAP_CLUSTER_COLS \
2606 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2608 static int setup_swap_map_and_extents(struct swap_info_struct
*p
,
2609 union swap_header
*swap_header
,
2610 unsigned char *swap_map
,
2611 struct swap_cluster_info
*cluster_info
,
2612 unsigned long maxpages
,
2616 unsigned int nr_good_pages
;
2618 unsigned long nr_clusters
= DIV_ROUND_UP(maxpages
, SWAPFILE_CLUSTER
);
2619 unsigned long col
= p
->cluster_next
/ SWAPFILE_CLUSTER
% SWAP_CLUSTER_COLS
;
2620 unsigned long i
, idx
;
2622 nr_good_pages
= maxpages
- 1; /* omit header page */
2624 cluster_list_init(&p
->free_clusters
);
2625 cluster_list_init(&p
->discard_clusters
);
2627 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
2628 unsigned int page_nr
= swap_header
->info
.badpages
[i
];
2629 if (page_nr
== 0 || page_nr
> swap_header
->info
.last_page
)
2631 if (page_nr
< maxpages
) {
2632 swap_map
[page_nr
] = SWAP_MAP_BAD
;
2635 * Haven't marked the cluster free yet, no list
2636 * operation involved
2638 inc_cluster_info_page(p
, cluster_info
, page_nr
);
2642 /* Haven't marked the cluster free yet, no list operation involved */
2643 for (i
= maxpages
; i
< round_up(maxpages
, SWAPFILE_CLUSTER
); i
++)
2644 inc_cluster_info_page(p
, cluster_info
, i
);
2646 if (nr_good_pages
) {
2647 swap_map
[0] = SWAP_MAP_BAD
;
2649 * Not mark the cluster free yet, no list
2650 * operation involved
2652 inc_cluster_info_page(p
, cluster_info
, 0);
2654 p
->pages
= nr_good_pages
;
2655 nr_extents
= setup_swap_extents(p
, span
);
2658 nr_good_pages
= p
->pages
;
2660 if (!nr_good_pages
) {
2661 pr_warn("Empty swap-file\n");
2670 * Reduce false cache line sharing between cluster_info and
2671 * sharing same address space.
2673 for (k
= 0; k
< SWAP_CLUSTER_COLS
; k
++) {
2674 j
= (k
+ col
) % SWAP_CLUSTER_COLS
;
2675 for (i
= 0; i
< DIV_ROUND_UP(nr_clusters
, SWAP_CLUSTER_COLS
); i
++) {
2676 idx
= i
* SWAP_CLUSTER_COLS
+ j
;
2677 if (idx
>= nr_clusters
)
2679 if (cluster_count(&cluster_info
[idx
]))
2681 cluster_set_flag(&cluster_info
[idx
], CLUSTER_FLAG_FREE
);
2682 cluster_list_add_tail(&p
->free_clusters
, cluster_info
,
2690 * Helper to sys_swapon determining if a given swap
2691 * backing device queue supports DISCARD operations.
2693 static bool swap_discardable(struct swap_info_struct
*si
)
2695 struct request_queue
*q
= bdev_get_queue(si
->bdev
);
2697 if (!q
|| !blk_queue_discard(q
))
2703 SYSCALL_DEFINE2(swapon
, const char __user
*, specialfile
, int, swap_flags
)
2705 struct swap_info_struct
*p
;
2706 struct filename
*name
;
2707 struct file
*swap_file
= NULL
;
2708 struct address_space
*mapping
;
2711 union swap_header
*swap_header
;
2714 unsigned long maxpages
;
2715 unsigned char *swap_map
= NULL
;
2716 struct swap_cluster_info
*cluster_info
= NULL
;
2717 unsigned long *frontswap_map
= NULL
;
2718 struct page
*page
= NULL
;
2719 struct inode
*inode
= NULL
;
2721 if (swap_flags
& ~SWAP_FLAGS_VALID
)
2724 if (!capable(CAP_SYS_ADMIN
))
2727 p
= alloc_swap_info();
2731 INIT_WORK(&p
->discard_work
, swap_discard_work
);
2733 name
= getname(specialfile
);
2735 error
= PTR_ERR(name
);
2739 swap_file
= file_open_name(name
, O_RDWR
|O_LARGEFILE
, 0);
2740 if (IS_ERR(swap_file
)) {
2741 error
= PTR_ERR(swap_file
);
2746 p
->swap_file
= swap_file
;
2747 mapping
= swap_file
->f_mapping
;
2748 inode
= mapping
->host
;
2750 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2751 error
= claim_swapfile(p
, inode
);
2752 if (unlikely(error
))
2756 * Read the swap header.
2758 if (!mapping
->a_ops
->readpage
) {
2762 page
= read_mapping_page(mapping
, 0, swap_file
);
2764 error
= PTR_ERR(page
);
2767 swap_header
= kmap(page
);
2769 maxpages
= read_swap_header(p
, swap_header
, inode
);
2770 if (unlikely(!maxpages
)) {
2775 /* OK, set up the swap map and apply the bad block list */
2776 swap_map
= vzalloc(maxpages
);
2782 if (bdi_cap_stable_pages_required(inode_to_bdi(inode
)))
2783 p
->flags
|= SWP_STABLE_WRITES
;
2785 if (p
->bdev
&& blk_queue_nonrot(bdev_get_queue(p
->bdev
))) {
2787 unsigned long ci
, nr_cluster
;
2789 p
->flags
|= SWP_SOLIDSTATE
;
2791 * select a random position to start with to help wear leveling
2794 p
->cluster_next
= 1 + (prandom_u32() % p
->highest_bit
);
2795 nr_cluster
= DIV_ROUND_UP(maxpages
, SWAPFILE_CLUSTER
);
2797 cluster_info
= kvzalloc(nr_cluster
* sizeof(*cluster_info
),
2799 if (!cluster_info
) {
2804 for (ci
= 0; ci
< nr_cluster
; ci
++)
2805 spin_lock_init(&((cluster_info
+ ci
)->lock
));
2807 p
->percpu_cluster
= alloc_percpu(struct percpu_cluster
);
2808 if (!p
->percpu_cluster
) {
2812 for_each_possible_cpu(cpu
) {
2813 struct percpu_cluster
*cluster
;
2814 cluster
= per_cpu_ptr(p
->percpu_cluster
, cpu
);
2815 cluster_set_null(&cluster
->index
);
2819 error
= swap_cgroup_swapon(p
->type
, maxpages
);
2823 nr_extents
= setup_swap_map_and_extents(p
, swap_header
, swap_map
,
2824 cluster_info
, maxpages
, &span
);
2825 if (unlikely(nr_extents
< 0)) {
2829 /* frontswap enabled? set up bit-per-page map for frontswap */
2830 if (IS_ENABLED(CONFIG_FRONTSWAP
))
2831 frontswap_map
= kvzalloc(BITS_TO_LONGS(maxpages
) * sizeof(long),
2834 if (p
->bdev
&&(swap_flags
& SWAP_FLAG_DISCARD
) && swap_discardable(p
)) {
2836 * When discard is enabled for swap with no particular
2837 * policy flagged, we set all swap discard flags here in
2838 * order to sustain backward compatibility with older
2839 * swapon(8) releases.
2841 p
->flags
|= (SWP_DISCARDABLE
| SWP_AREA_DISCARD
|
2845 * By flagging sys_swapon, a sysadmin can tell us to
2846 * either do single-time area discards only, or to just
2847 * perform discards for released swap page-clusters.
2848 * Now it's time to adjust the p->flags accordingly.
2850 if (swap_flags
& SWAP_FLAG_DISCARD_ONCE
)
2851 p
->flags
&= ~SWP_PAGE_DISCARD
;
2852 else if (swap_flags
& SWAP_FLAG_DISCARD_PAGES
)
2853 p
->flags
&= ~SWP_AREA_DISCARD
;
2855 /* issue a swapon-time discard if it's still required */
2856 if (p
->flags
& SWP_AREA_DISCARD
) {
2857 int err
= discard_swap(p
);
2859 pr_err("swapon: discard_swap(%p): %d\n",
2864 error
= init_swap_address_space(p
->type
, maxpages
);
2868 mutex_lock(&swapon_mutex
);
2870 if (swap_flags
& SWAP_FLAG_PREFER
)
2872 (swap_flags
& SWAP_FLAG_PRIO_MASK
) >> SWAP_FLAG_PRIO_SHIFT
;
2873 enable_swap_info(p
, prio
, swap_map
, cluster_info
, frontswap_map
);
2875 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2876 p
->pages
<<(PAGE_SHIFT
-10), name
->name
, p
->prio
,
2877 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10),
2878 (p
->flags
& SWP_SOLIDSTATE
) ? "SS" : "",
2879 (p
->flags
& SWP_DISCARDABLE
) ? "D" : "",
2880 (p
->flags
& SWP_AREA_DISCARD
) ? "s" : "",
2881 (p
->flags
& SWP_PAGE_DISCARD
) ? "c" : "",
2882 (frontswap_map
) ? "FS" : "");
2884 mutex_unlock(&swapon_mutex
);
2885 atomic_inc(&proc_poll_event
);
2886 wake_up_interruptible(&proc_poll_wait
);
2888 if (S_ISREG(inode
->i_mode
))
2889 inode
->i_flags
|= S_SWAPFILE
;
2893 free_percpu(p
->percpu_cluster
);
2894 p
->percpu_cluster
= NULL
;
2895 if (inode
&& S_ISBLK(inode
->i_mode
) && p
->bdev
) {
2896 set_blocksize(p
->bdev
, p
->old_block_size
);
2897 blkdev_put(p
->bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
2899 destroy_swap_extents(p
);
2900 swap_cgroup_swapoff(p
->type
);
2901 spin_lock(&swap_lock
);
2902 p
->swap_file
= NULL
;
2904 spin_unlock(&swap_lock
);
2906 vfree(cluster_info
);
2908 if (inode
&& S_ISREG(inode
->i_mode
)) {
2909 inode_unlock(inode
);
2912 filp_close(swap_file
, NULL
);
2915 if (page
&& !IS_ERR(page
)) {
2921 if (inode
&& S_ISREG(inode
->i_mode
))
2922 inode_unlock(inode
);
2924 enable_swap_slots_cache();
2928 void si_swapinfo(struct sysinfo
*val
)
2931 unsigned long nr_to_be_unused
= 0;
2933 spin_lock(&swap_lock
);
2934 for (type
= 0; type
< nr_swapfiles
; type
++) {
2935 struct swap_info_struct
*si
= swap_info
[type
];
2937 if ((si
->flags
& SWP_USED
) && !(si
->flags
& SWP_WRITEOK
))
2938 nr_to_be_unused
+= si
->inuse_pages
;
2940 val
->freeswap
= atomic_long_read(&nr_swap_pages
) + nr_to_be_unused
;
2941 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
2942 spin_unlock(&swap_lock
);
2946 * Verify that a swap entry is valid and increment its swap map count.
2948 * Returns error code in following case.
2950 * - swp_entry is invalid -> EINVAL
2951 * - swp_entry is migration entry -> EINVAL
2952 * - swap-cache reference is requested but there is already one. -> EEXIST
2953 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2954 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2956 static int __swap_duplicate(swp_entry_t entry
, unsigned char usage
)
2958 struct swap_info_struct
*p
;
2959 struct swap_cluster_info
*ci
;
2960 unsigned long offset
, type
;
2961 unsigned char count
;
2962 unsigned char has_cache
;
2965 if (non_swap_entry(entry
))
2968 type
= swp_type(entry
);
2969 if (type
>= nr_swapfiles
)
2971 p
= swap_info
[type
];
2972 offset
= swp_offset(entry
);
2973 if (unlikely(offset
>= p
->max
))
2976 ci
= lock_cluster_or_swap_info(p
, offset
);
2978 count
= p
->swap_map
[offset
];
2981 * swapin_readahead() doesn't check if a swap entry is valid, so the
2982 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2984 if (unlikely(swap_count(count
) == SWAP_MAP_BAD
)) {
2989 has_cache
= count
& SWAP_HAS_CACHE
;
2990 count
&= ~SWAP_HAS_CACHE
;
2993 if (usage
== SWAP_HAS_CACHE
) {
2995 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2996 if (!has_cache
&& count
)
2997 has_cache
= SWAP_HAS_CACHE
;
2998 else if (has_cache
) /* someone else added cache */
3000 else /* no users remaining */
3003 } else if (count
|| has_cache
) {
3005 if ((count
& ~COUNT_CONTINUED
) < SWAP_MAP_MAX
)
3007 else if ((count
& ~COUNT_CONTINUED
) > SWAP_MAP_MAX
)
3009 else if (swap_count_continued(p
, offset
, count
))
3010 count
= COUNT_CONTINUED
;
3014 err
= -ENOENT
; /* unused swap entry */
3016 p
->swap_map
[offset
] = count
| has_cache
;
3019 unlock_cluster_or_swap_info(p
, ci
);
3024 pr_err("swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
3029 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3030 * (in which case its reference count is never incremented).
3032 void swap_shmem_alloc(swp_entry_t entry
)
3034 __swap_duplicate(entry
, SWAP_MAP_SHMEM
);
3038 * Increase reference count of swap entry by 1.
3039 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3040 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3041 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3042 * might occur if a page table entry has got corrupted.
3044 int swap_duplicate(swp_entry_t entry
)
3048 while (!err
&& __swap_duplicate(entry
, 1) == -ENOMEM
)
3049 err
= add_swap_count_continuation(entry
, GFP_ATOMIC
);
3054 * @entry: swap entry for which we allocate swap cache.
3056 * Called when allocating swap cache for existing swap entry,
3057 * This can return error codes. Returns 0 at success.
3058 * -EBUSY means there is a swap cache.
3059 * Note: return code is different from swap_duplicate().
3061 int swapcache_prepare(swp_entry_t entry
)
3063 return __swap_duplicate(entry
, SWAP_HAS_CACHE
);
3066 struct swap_info_struct
*page_swap_info(struct page
*page
)
3068 swp_entry_t swap
= { .val
= page_private(page
) };
3069 return swap_info
[swp_type(swap
)];
3073 * out-of-line __page_file_ methods to avoid include hell.
3075 struct address_space
*__page_file_mapping(struct page
*page
)
3077 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
3078 return page_swap_info(page
)->swap_file
->f_mapping
;
3080 EXPORT_SYMBOL_GPL(__page_file_mapping
);
3082 pgoff_t
__page_file_index(struct page
*page
)
3084 swp_entry_t swap
= { .val
= page_private(page
) };
3085 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
3086 return swp_offset(swap
);
3088 EXPORT_SYMBOL_GPL(__page_file_index
);
3091 * add_swap_count_continuation - called when a swap count is duplicated
3092 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3093 * page of the original vmalloc'ed swap_map, to hold the continuation count
3094 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3095 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3097 * These continuation pages are seldom referenced: the common paths all work
3098 * on the original swap_map, only referring to a continuation page when the
3099 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3101 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3102 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3103 * can be called after dropping locks.
3105 int add_swap_count_continuation(swp_entry_t entry
, gfp_t gfp_mask
)
3107 struct swap_info_struct
*si
;
3108 struct swap_cluster_info
*ci
;
3111 struct page
*list_page
;
3113 unsigned char count
;
3116 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3117 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3119 page
= alloc_page(gfp_mask
| __GFP_HIGHMEM
);
3121 si
= swap_info_get(entry
);
3124 * An acceptable race has occurred since the failing
3125 * __swap_duplicate(): the swap entry has been freed,
3126 * perhaps even the whole swap_map cleared for swapoff.
3131 offset
= swp_offset(entry
);
3133 ci
= lock_cluster(si
, offset
);
3135 count
= si
->swap_map
[offset
] & ~SWAP_HAS_CACHE
;
3137 if ((count
& ~COUNT_CONTINUED
) != SWAP_MAP_MAX
) {
3139 * The higher the swap count, the more likely it is that tasks
3140 * will race to add swap count continuation: we need to avoid
3141 * over-provisioning.
3148 spin_unlock(&si
->lock
);
3153 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3154 * no architecture is using highmem pages for kernel page tables: so it
3155 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3157 head
= vmalloc_to_page(si
->swap_map
+ offset
);
3158 offset
&= ~PAGE_MASK
;
3161 * Page allocation does not initialize the page's lru field,
3162 * but it does always reset its private field.
3164 if (!page_private(head
)) {
3165 BUG_ON(count
& COUNT_CONTINUED
);
3166 INIT_LIST_HEAD(&head
->lru
);
3167 set_page_private(head
, SWP_CONTINUED
);
3168 si
->flags
|= SWP_CONTINUED
;
3171 list_for_each_entry(list_page
, &head
->lru
, lru
) {
3175 * If the previous map said no continuation, but we've found
3176 * a continuation page, free our allocation and use this one.
3178 if (!(count
& COUNT_CONTINUED
))
3181 map
= kmap_atomic(list_page
) + offset
;
3186 * If this continuation count now has some space in it,
3187 * free our allocation and use this one.
3189 if ((count
& ~COUNT_CONTINUED
) != SWAP_CONT_MAX
)
3193 list_add_tail(&page
->lru
, &head
->lru
);
3194 page
= NULL
; /* now it's attached, don't free it */
3197 spin_unlock(&si
->lock
);
3205 * swap_count_continued - when the original swap_map count is incremented
3206 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3207 * into, carry if so, or else fail until a new continuation page is allocated;
3208 * when the original swap_map count is decremented from 0 with continuation,
3209 * borrow from the continuation and report whether it still holds more.
3210 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3213 static bool swap_count_continued(struct swap_info_struct
*si
,
3214 pgoff_t offset
, unsigned char count
)
3220 head
= vmalloc_to_page(si
->swap_map
+ offset
);
3221 if (page_private(head
) != SWP_CONTINUED
) {
3222 BUG_ON(count
& COUNT_CONTINUED
);
3223 return false; /* need to add count continuation */
3226 offset
&= ~PAGE_MASK
;
3227 page
= list_entry(head
->lru
.next
, struct page
, lru
);
3228 map
= kmap_atomic(page
) + offset
;
3230 if (count
== SWAP_MAP_MAX
) /* initial increment from swap_map */
3231 goto init_map
; /* jump over SWAP_CONT_MAX checks */
3233 if (count
== (SWAP_MAP_MAX
| COUNT_CONTINUED
)) { /* incrementing */
3235 * Think of how you add 1 to 999
3237 while (*map
== (SWAP_CONT_MAX
| COUNT_CONTINUED
)) {
3239 page
= list_entry(page
->lru
.next
, struct page
, lru
);
3240 BUG_ON(page
== head
);
3241 map
= kmap_atomic(page
) + offset
;
3243 if (*map
== SWAP_CONT_MAX
) {
3245 page
= list_entry(page
->lru
.next
, struct page
, lru
);
3247 return false; /* add count continuation */
3248 map
= kmap_atomic(page
) + offset
;
3249 init_map
: *map
= 0; /* we didn't zero the page */
3253 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
3254 while (page
!= head
) {
3255 map
= kmap_atomic(page
) + offset
;
3256 *map
= COUNT_CONTINUED
;
3258 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
3260 return true; /* incremented */
3262 } else { /* decrementing */
3264 * Think of how you subtract 1 from 1000
3266 BUG_ON(count
!= COUNT_CONTINUED
);
3267 while (*map
== COUNT_CONTINUED
) {
3269 page
= list_entry(page
->lru
.next
, struct page
, lru
);
3270 BUG_ON(page
== head
);
3271 map
= kmap_atomic(page
) + offset
;
3278 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
3279 while (page
!= head
) {
3280 map
= kmap_atomic(page
) + offset
;
3281 *map
= SWAP_CONT_MAX
| count
;
3282 count
= COUNT_CONTINUED
;
3284 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
3286 return count
== COUNT_CONTINUED
;
3291 * free_swap_count_continuations - swapoff free all the continuation pages
3292 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3294 static void free_swap_count_continuations(struct swap_info_struct
*si
)
3298 for (offset
= 0; offset
< si
->max
; offset
+= PAGE_SIZE
) {
3300 head
= vmalloc_to_page(si
->swap_map
+ offset
);
3301 if (page_private(head
)) {
3302 struct page
*page
, *next
;
3304 list_for_each_entry_safe(page
, next
, &head
->lru
, lru
) {
3305 list_del(&page
->lru
);