]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/swapfile.c
Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux...
[mirror_ubuntu-bionic-kernel.git] / mm / swapfile.c
1 /*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
33 #include <linux/poll.h>
34
35 #include <asm/pgtable.h>
36 #include <asm/tlbflush.h>
37 #include <linux/swapops.h>
38 #include <linux/page_cgroup.h>
39
40 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
41 unsigned char);
42 static void free_swap_count_continuations(struct swap_info_struct *);
43 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
44
45 static DEFINE_SPINLOCK(swap_lock);
46 static unsigned int nr_swapfiles;
47 long nr_swap_pages;
48 long total_swap_pages;
49 static int least_priority;
50
51 static const char Bad_file[] = "Bad swap file entry ";
52 static const char Unused_file[] = "Unused swap file entry ";
53 static const char Bad_offset[] = "Bad swap offset entry ";
54 static const char Unused_offset[] = "Unused swap offset entry ";
55
56 static struct swap_list_t swap_list = {-1, -1};
57
58 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
59
60 static DEFINE_MUTEX(swapon_mutex);
61
62 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
63 /* Activity counter to indicate that a swapon or swapoff has occurred */
64 static atomic_t proc_poll_event = ATOMIC_INIT(0);
65
66 static inline unsigned char swap_count(unsigned char ent)
67 {
68 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
69 }
70
71 /* returns 1 if swap entry is freed */
72 static int
73 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
74 {
75 swp_entry_t entry = swp_entry(si->type, offset);
76 struct page *page;
77 int ret = 0;
78
79 page = find_get_page(&swapper_space, entry.val);
80 if (!page)
81 return 0;
82 /*
83 * This function is called from scan_swap_map() and it's called
84 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
85 * We have to use trylock for avoiding deadlock. This is a special
86 * case and you should use try_to_free_swap() with explicit lock_page()
87 * in usual operations.
88 */
89 if (trylock_page(page)) {
90 ret = try_to_free_swap(page);
91 unlock_page(page);
92 }
93 page_cache_release(page);
94 return ret;
95 }
96
97 /*
98 * We need this because the bdev->unplug_fn can sleep and we cannot
99 * hold swap_lock while calling the unplug_fn. And swap_lock
100 * cannot be turned into a mutex.
101 */
102 static DECLARE_RWSEM(swap_unplug_sem);
103
104 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
105 {
106 swp_entry_t entry;
107
108 down_read(&swap_unplug_sem);
109 entry.val = page_private(page);
110 if (PageSwapCache(page)) {
111 struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
112 struct backing_dev_info *bdi;
113
114 /*
115 * If the page is removed from swapcache from under us (with a
116 * racy try_to_unuse/swapoff) we need an additional reference
117 * count to avoid reading garbage from page_private(page) above.
118 * If the WARN_ON triggers during a swapoff it maybe the race
119 * condition and it's harmless. However if it triggers without
120 * swapoff it signals a problem.
121 */
122 WARN_ON(page_count(page) <= 1);
123
124 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
125 blk_run_backing_dev(bdi, page);
126 }
127 up_read(&swap_unplug_sem);
128 }
129
130 /*
131 * swapon tell device that all the old swap contents can be discarded,
132 * to allow the swap device to optimize its wear-levelling.
133 */
134 static int discard_swap(struct swap_info_struct *si)
135 {
136 struct swap_extent *se;
137 sector_t start_block;
138 sector_t nr_blocks;
139 int err = 0;
140
141 /* Do not discard the swap header page! */
142 se = &si->first_swap_extent;
143 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
144 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
145 if (nr_blocks) {
146 err = blkdev_issue_discard(si->bdev, start_block,
147 nr_blocks, GFP_KERNEL, 0);
148 if (err)
149 return err;
150 cond_resched();
151 }
152
153 list_for_each_entry(se, &si->first_swap_extent.list, list) {
154 start_block = se->start_block << (PAGE_SHIFT - 9);
155 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
156
157 err = blkdev_issue_discard(si->bdev, start_block,
158 nr_blocks, GFP_KERNEL, 0);
159 if (err)
160 break;
161
162 cond_resched();
163 }
164 return err; /* That will often be -EOPNOTSUPP */
165 }
166
167 /*
168 * swap allocation tell device that a cluster of swap can now be discarded,
169 * to allow the swap device to optimize its wear-levelling.
170 */
171 static void discard_swap_cluster(struct swap_info_struct *si,
172 pgoff_t start_page, pgoff_t nr_pages)
173 {
174 struct swap_extent *se = si->curr_swap_extent;
175 int found_extent = 0;
176
177 while (nr_pages) {
178 struct list_head *lh;
179
180 if (se->start_page <= start_page &&
181 start_page < se->start_page + se->nr_pages) {
182 pgoff_t offset = start_page - se->start_page;
183 sector_t start_block = se->start_block + offset;
184 sector_t nr_blocks = se->nr_pages - offset;
185
186 if (nr_blocks > nr_pages)
187 nr_blocks = nr_pages;
188 start_page += nr_blocks;
189 nr_pages -= nr_blocks;
190
191 if (!found_extent++)
192 si->curr_swap_extent = se;
193
194 start_block <<= PAGE_SHIFT - 9;
195 nr_blocks <<= PAGE_SHIFT - 9;
196 if (blkdev_issue_discard(si->bdev, start_block,
197 nr_blocks, GFP_NOIO, 0))
198 break;
199 }
200
201 lh = se->list.next;
202 se = list_entry(lh, struct swap_extent, list);
203 }
204 }
205
206 static int wait_for_discard(void *word)
207 {
208 schedule();
209 return 0;
210 }
211
212 #define SWAPFILE_CLUSTER 256
213 #define LATENCY_LIMIT 256
214
215 static unsigned long scan_swap_map(struct swap_info_struct *si,
216 unsigned char usage)
217 {
218 unsigned long offset;
219 unsigned long scan_base;
220 unsigned long last_in_cluster = 0;
221 int latency_ration = LATENCY_LIMIT;
222 int found_free_cluster = 0;
223
224 /*
225 * We try to cluster swap pages by allocating them sequentially
226 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
227 * way, however, we resort to first-free allocation, starting
228 * a new cluster. This prevents us from scattering swap pages
229 * all over the entire swap partition, so that we reduce
230 * overall disk seek times between swap pages. -- sct
231 * But we do now try to find an empty cluster. -Andrea
232 * And we let swap pages go all over an SSD partition. Hugh
233 */
234
235 si->flags += SWP_SCANNING;
236 scan_base = offset = si->cluster_next;
237
238 if (unlikely(!si->cluster_nr--)) {
239 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
240 si->cluster_nr = SWAPFILE_CLUSTER - 1;
241 goto checks;
242 }
243 if (si->flags & SWP_DISCARDABLE) {
244 /*
245 * Start range check on racing allocations, in case
246 * they overlap the cluster we eventually decide on
247 * (we scan without swap_lock to allow preemption).
248 * It's hardly conceivable that cluster_nr could be
249 * wrapped during our scan, but don't depend on it.
250 */
251 if (si->lowest_alloc)
252 goto checks;
253 si->lowest_alloc = si->max;
254 si->highest_alloc = 0;
255 }
256 spin_unlock(&swap_lock);
257
258 /*
259 * If seek is expensive, start searching for new cluster from
260 * start of partition, to minimize the span of allocated swap.
261 * But if seek is cheap, search from our current position, so
262 * that swap is allocated from all over the partition: if the
263 * Flash Translation Layer only remaps within limited zones,
264 * we don't want to wear out the first zone too quickly.
265 */
266 if (!(si->flags & SWP_SOLIDSTATE))
267 scan_base = offset = si->lowest_bit;
268 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
269
270 /* Locate the first empty (unaligned) cluster */
271 for (; last_in_cluster <= si->highest_bit; offset++) {
272 if (si->swap_map[offset])
273 last_in_cluster = offset + SWAPFILE_CLUSTER;
274 else if (offset == last_in_cluster) {
275 spin_lock(&swap_lock);
276 offset -= SWAPFILE_CLUSTER - 1;
277 si->cluster_next = offset;
278 si->cluster_nr = SWAPFILE_CLUSTER - 1;
279 found_free_cluster = 1;
280 goto checks;
281 }
282 if (unlikely(--latency_ration < 0)) {
283 cond_resched();
284 latency_ration = LATENCY_LIMIT;
285 }
286 }
287
288 offset = si->lowest_bit;
289 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
290
291 /* Locate the first empty (unaligned) cluster */
292 for (; last_in_cluster < scan_base; offset++) {
293 if (si->swap_map[offset])
294 last_in_cluster = offset + SWAPFILE_CLUSTER;
295 else if (offset == last_in_cluster) {
296 spin_lock(&swap_lock);
297 offset -= SWAPFILE_CLUSTER - 1;
298 si->cluster_next = offset;
299 si->cluster_nr = SWAPFILE_CLUSTER - 1;
300 found_free_cluster = 1;
301 goto checks;
302 }
303 if (unlikely(--latency_ration < 0)) {
304 cond_resched();
305 latency_ration = LATENCY_LIMIT;
306 }
307 }
308
309 offset = scan_base;
310 spin_lock(&swap_lock);
311 si->cluster_nr = SWAPFILE_CLUSTER - 1;
312 si->lowest_alloc = 0;
313 }
314
315 checks:
316 if (!(si->flags & SWP_WRITEOK))
317 goto no_page;
318 if (!si->highest_bit)
319 goto no_page;
320 if (offset > si->highest_bit)
321 scan_base = offset = si->lowest_bit;
322
323 /* reuse swap entry of cache-only swap if not busy. */
324 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
325 int swap_was_freed;
326 spin_unlock(&swap_lock);
327 swap_was_freed = __try_to_reclaim_swap(si, offset);
328 spin_lock(&swap_lock);
329 /* entry was freed successfully, try to use this again */
330 if (swap_was_freed)
331 goto checks;
332 goto scan; /* check next one */
333 }
334
335 if (si->swap_map[offset])
336 goto scan;
337
338 if (offset == si->lowest_bit)
339 si->lowest_bit++;
340 if (offset == si->highest_bit)
341 si->highest_bit--;
342 si->inuse_pages++;
343 if (si->inuse_pages == si->pages) {
344 si->lowest_bit = si->max;
345 si->highest_bit = 0;
346 }
347 si->swap_map[offset] = usage;
348 si->cluster_next = offset + 1;
349 si->flags -= SWP_SCANNING;
350
351 if (si->lowest_alloc) {
352 /*
353 * Only set when SWP_DISCARDABLE, and there's a scan
354 * for a free cluster in progress or just completed.
355 */
356 if (found_free_cluster) {
357 /*
358 * To optimize wear-levelling, discard the
359 * old data of the cluster, taking care not to
360 * discard any of its pages that have already
361 * been allocated by racing tasks (offset has
362 * already stepped over any at the beginning).
363 */
364 if (offset < si->highest_alloc &&
365 si->lowest_alloc <= last_in_cluster)
366 last_in_cluster = si->lowest_alloc - 1;
367 si->flags |= SWP_DISCARDING;
368 spin_unlock(&swap_lock);
369
370 if (offset < last_in_cluster)
371 discard_swap_cluster(si, offset,
372 last_in_cluster - offset + 1);
373
374 spin_lock(&swap_lock);
375 si->lowest_alloc = 0;
376 si->flags &= ~SWP_DISCARDING;
377
378 smp_mb(); /* wake_up_bit advises this */
379 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
380
381 } else if (si->flags & SWP_DISCARDING) {
382 /*
383 * Delay using pages allocated by racing tasks
384 * until the whole discard has been issued. We
385 * could defer that delay until swap_writepage,
386 * but it's easier to keep this self-contained.
387 */
388 spin_unlock(&swap_lock);
389 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
390 wait_for_discard, TASK_UNINTERRUPTIBLE);
391 spin_lock(&swap_lock);
392 } else {
393 /*
394 * Note pages allocated by racing tasks while
395 * scan for a free cluster is in progress, so
396 * that its final discard can exclude them.
397 */
398 if (offset < si->lowest_alloc)
399 si->lowest_alloc = offset;
400 if (offset > si->highest_alloc)
401 si->highest_alloc = offset;
402 }
403 }
404 return offset;
405
406 scan:
407 spin_unlock(&swap_lock);
408 while (++offset <= si->highest_bit) {
409 if (!si->swap_map[offset]) {
410 spin_lock(&swap_lock);
411 goto checks;
412 }
413 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
414 spin_lock(&swap_lock);
415 goto checks;
416 }
417 if (unlikely(--latency_ration < 0)) {
418 cond_resched();
419 latency_ration = LATENCY_LIMIT;
420 }
421 }
422 offset = si->lowest_bit;
423 while (++offset < scan_base) {
424 if (!si->swap_map[offset]) {
425 spin_lock(&swap_lock);
426 goto checks;
427 }
428 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
429 spin_lock(&swap_lock);
430 goto checks;
431 }
432 if (unlikely(--latency_ration < 0)) {
433 cond_resched();
434 latency_ration = LATENCY_LIMIT;
435 }
436 }
437 spin_lock(&swap_lock);
438
439 no_page:
440 si->flags -= SWP_SCANNING;
441 return 0;
442 }
443
444 swp_entry_t get_swap_page(void)
445 {
446 struct swap_info_struct *si;
447 pgoff_t offset;
448 int type, next;
449 int wrapped = 0;
450
451 spin_lock(&swap_lock);
452 if (nr_swap_pages <= 0)
453 goto noswap;
454 nr_swap_pages--;
455
456 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
457 si = swap_info[type];
458 next = si->next;
459 if (next < 0 ||
460 (!wrapped && si->prio != swap_info[next]->prio)) {
461 next = swap_list.head;
462 wrapped++;
463 }
464
465 if (!si->highest_bit)
466 continue;
467 if (!(si->flags & SWP_WRITEOK))
468 continue;
469
470 swap_list.next = next;
471 /* This is called for allocating swap entry for cache */
472 offset = scan_swap_map(si, SWAP_HAS_CACHE);
473 if (offset) {
474 spin_unlock(&swap_lock);
475 return swp_entry(type, offset);
476 }
477 next = swap_list.next;
478 }
479
480 nr_swap_pages++;
481 noswap:
482 spin_unlock(&swap_lock);
483 return (swp_entry_t) {0};
484 }
485
486 /* The only caller of this function is now susupend routine */
487 swp_entry_t get_swap_page_of_type(int type)
488 {
489 struct swap_info_struct *si;
490 pgoff_t offset;
491
492 spin_lock(&swap_lock);
493 si = swap_info[type];
494 if (si && (si->flags & SWP_WRITEOK)) {
495 nr_swap_pages--;
496 /* This is called for allocating swap entry, not cache */
497 offset = scan_swap_map(si, 1);
498 if (offset) {
499 spin_unlock(&swap_lock);
500 return swp_entry(type, offset);
501 }
502 nr_swap_pages++;
503 }
504 spin_unlock(&swap_lock);
505 return (swp_entry_t) {0};
506 }
507
508 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
509 {
510 struct swap_info_struct *p;
511 unsigned long offset, type;
512
513 if (!entry.val)
514 goto out;
515 type = swp_type(entry);
516 if (type >= nr_swapfiles)
517 goto bad_nofile;
518 p = swap_info[type];
519 if (!(p->flags & SWP_USED))
520 goto bad_device;
521 offset = swp_offset(entry);
522 if (offset >= p->max)
523 goto bad_offset;
524 if (!p->swap_map[offset])
525 goto bad_free;
526 spin_lock(&swap_lock);
527 return p;
528
529 bad_free:
530 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
531 goto out;
532 bad_offset:
533 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
534 goto out;
535 bad_device:
536 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
537 goto out;
538 bad_nofile:
539 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
540 out:
541 return NULL;
542 }
543
544 static unsigned char swap_entry_free(struct swap_info_struct *p,
545 swp_entry_t entry, unsigned char usage)
546 {
547 unsigned long offset = swp_offset(entry);
548 unsigned char count;
549 unsigned char has_cache;
550
551 count = p->swap_map[offset];
552 has_cache = count & SWAP_HAS_CACHE;
553 count &= ~SWAP_HAS_CACHE;
554
555 if (usage == SWAP_HAS_CACHE) {
556 VM_BUG_ON(!has_cache);
557 has_cache = 0;
558 } else if (count == SWAP_MAP_SHMEM) {
559 /*
560 * Or we could insist on shmem.c using a special
561 * swap_shmem_free() and free_shmem_swap_and_cache()...
562 */
563 count = 0;
564 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
565 if (count == COUNT_CONTINUED) {
566 if (swap_count_continued(p, offset, count))
567 count = SWAP_MAP_MAX | COUNT_CONTINUED;
568 else
569 count = SWAP_MAP_MAX;
570 } else
571 count--;
572 }
573
574 if (!count)
575 mem_cgroup_uncharge_swap(entry);
576
577 usage = count | has_cache;
578 p->swap_map[offset] = usage;
579
580 /* free if no reference */
581 if (!usage) {
582 struct gendisk *disk = p->bdev->bd_disk;
583 if (offset < p->lowest_bit)
584 p->lowest_bit = offset;
585 if (offset > p->highest_bit)
586 p->highest_bit = offset;
587 if (swap_list.next >= 0 &&
588 p->prio > swap_info[swap_list.next]->prio)
589 swap_list.next = p->type;
590 nr_swap_pages++;
591 p->inuse_pages--;
592 if ((p->flags & SWP_BLKDEV) &&
593 disk->fops->swap_slot_free_notify)
594 disk->fops->swap_slot_free_notify(p->bdev, offset);
595 }
596
597 return usage;
598 }
599
600 /*
601 * Caller has made sure that the swapdevice corresponding to entry
602 * is still around or has not been recycled.
603 */
604 void swap_free(swp_entry_t entry)
605 {
606 struct swap_info_struct *p;
607
608 p = swap_info_get(entry);
609 if (p) {
610 swap_entry_free(p, entry, 1);
611 spin_unlock(&swap_lock);
612 }
613 }
614
615 /*
616 * Called after dropping swapcache to decrease refcnt to swap entries.
617 */
618 void swapcache_free(swp_entry_t entry, struct page *page)
619 {
620 struct swap_info_struct *p;
621 unsigned char count;
622
623 p = swap_info_get(entry);
624 if (p) {
625 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
626 if (page)
627 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
628 spin_unlock(&swap_lock);
629 }
630 }
631
632 /*
633 * How many references to page are currently swapped out?
634 * This does not give an exact answer when swap count is continued,
635 * but does include the high COUNT_CONTINUED flag to allow for that.
636 */
637 static inline int page_swapcount(struct page *page)
638 {
639 int count = 0;
640 struct swap_info_struct *p;
641 swp_entry_t entry;
642
643 entry.val = page_private(page);
644 p = swap_info_get(entry);
645 if (p) {
646 count = swap_count(p->swap_map[swp_offset(entry)]);
647 spin_unlock(&swap_lock);
648 }
649 return count;
650 }
651
652 /*
653 * We can write to an anon page without COW if there are no other references
654 * to it. And as a side-effect, free up its swap: because the old content
655 * on disk will never be read, and seeking back there to write new content
656 * later would only waste time away from clustering.
657 */
658 int reuse_swap_page(struct page *page)
659 {
660 int count;
661
662 VM_BUG_ON(!PageLocked(page));
663 if (unlikely(PageKsm(page)))
664 return 0;
665 count = page_mapcount(page);
666 if (count <= 1 && PageSwapCache(page)) {
667 count += page_swapcount(page);
668 if (count == 1 && !PageWriteback(page)) {
669 delete_from_swap_cache(page);
670 SetPageDirty(page);
671 }
672 }
673 return count <= 1;
674 }
675
676 /*
677 * If swap is getting full, or if there are no more mappings of this page,
678 * then try_to_free_swap is called to free its swap space.
679 */
680 int try_to_free_swap(struct page *page)
681 {
682 VM_BUG_ON(!PageLocked(page));
683
684 if (!PageSwapCache(page))
685 return 0;
686 if (PageWriteback(page))
687 return 0;
688 if (page_swapcount(page))
689 return 0;
690
691 /*
692 * Once hibernation has begun to create its image of memory,
693 * there's a danger that one of the calls to try_to_free_swap()
694 * - most probably a call from __try_to_reclaim_swap() while
695 * hibernation is allocating its own swap pages for the image,
696 * but conceivably even a call from memory reclaim - will free
697 * the swap from a page which has already been recorded in the
698 * image as a clean swapcache page, and then reuse its swap for
699 * another page of the image. On waking from hibernation, the
700 * original page might be freed under memory pressure, then
701 * later read back in from swap, now with the wrong data.
702 *
703 * Hibernation clears bits from gfp_allowed_mask to prevent
704 * memory reclaim from writing to disk, so check that here.
705 */
706 if (!(gfp_allowed_mask & __GFP_IO))
707 return 0;
708
709 delete_from_swap_cache(page);
710 SetPageDirty(page);
711 return 1;
712 }
713
714 /*
715 * Free the swap entry like above, but also try to
716 * free the page cache entry if it is the last user.
717 */
718 int free_swap_and_cache(swp_entry_t entry)
719 {
720 struct swap_info_struct *p;
721 struct page *page = NULL;
722
723 if (non_swap_entry(entry))
724 return 1;
725
726 p = swap_info_get(entry);
727 if (p) {
728 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
729 page = find_get_page(&swapper_space, entry.val);
730 if (page && !trylock_page(page)) {
731 page_cache_release(page);
732 page = NULL;
733 }
734 }
735 spin_unlock(&swap_lock);
736 }
737 if (page) {
738 /*
739 * Not mapped elsewhere, or swap space full? Free it!
740 * Also recheck PageSwapCache now page is locked (above).
741 */
742 if (PageSwapCache(page) && !PageWriteback(page) &&
743 (!page_mapped(page) || vm_swap_full())) {
744 delete_from_swap_cache(page);
745 SetPageDirty(page);
746 }
747 unlock_page(page);
748 page_cache_release(page);
749 }
750 return p != NULL;
751 }
752
753 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
754 /**
755 * mem_cgroup_count_swap_user - count the user of a swap entry
756 * @ent: the swap entry to be checked
757 * @pagep: the pointer for the swap cache page of the entry to be stored
758 *
759 * Returns the number of the user of the swap entry. The number is valid only
760 * for swaps of anonymous pages.
761 * If the entry is found on swap cache, the page is stored to pagep with
762 * refcount of it being incremented.
763 */
764 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
765 {
766 struct page *page;
767 struct swap_info_struct *p;
768 int count = 0;
769
770 page = find_get_page(&swapper_space, ent.val);
771 if (page)
772 count += page_mapcount(page);
773 p = swap_info_get(ent);
774 if (p) {
775 count += swap_count(p->swap_map[swp_offset(ent)]);
776 spin_unlock(&swap_lock);
777 }
778
779 *pagep = page;
780 return count;
781 }
782 #endif
783
784 #ifdef CONFIG_HIBERNATION
785 /*
786 * Find the swap type that corresponds to given device (if any).
787 *
788 * @offset - number of the PAGE_SIZE-sized block of the device, starting
789 * from 0, in which the swap header is expected to be located.
790 *
791 * This is needed for the suspend to disk (aka swsusp).
792 */
793 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
794 {
795 struct block_device *bdev = NULL;
796 int type;
797
798 if (device)
799 bdev = bdget(device);
800
801 spin_lock(&swap_lock);
802 for (type = 0; type < nr_swapfiles; type++) {
803 struct swap_info_struct *sis = swap_info[type];
804
805 if (!(sis->flags & SWP_WRITEOK))
806 continue;
807
808 if (!bdev) {
809 if (bdev_p)
810 *bdev_p = bdgrab(sis->bdev);
811
812 spin_unlock(&swap_lock);
813 return type;
814 }
815 if (bdev == sis->bdev) {
816 struct swap_extent *se = &sis->first_swap_extent;
817
818 if (se->start_block == offset) {
819 if (bdev_p)
820 *bdev_p = bdgrab(sis->bdev);
821
822 spin_unlock(&swap_lock);
823 bdput(bdev);
824 return type;
825 }
826 }
827 }
828 spin_unlock(&swap_lock);
829 if (bdev)
830 bdput(bdev);
831
832 return -ENODEV;
833 }
834
835 /*
836 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
837 * corresponding to given index in swap_info (swap type).
838 */
839 sector_t swapdev_block(int type, pgoff_t offset)
840 {
841 struct block_device *bdev;
842
843 if ((unsigned int)type >= nr_swapfiles)
844 return 0;
845 if (!(swap_info[type]->flags & SWP_WRITEOK))
846 return 0;
847 return map_swap_entry(swp_entry(type, offset), &bdev);
848 }
849
850 /*
851 * Return either the total number of swap pages of given type, or the number
852 * of free pages of that type (depending on @free)
853 *
854 * This is needed for software suspend
855 */
856 unsigned int count_swap_pages(int type, int free)
857 {
858 unsigned int n = 0;
859
860 spin_lock(&swap_lock);
861 if ((unsigned int)type < nr_swapfiles) {
862 struct swap_info_struct *sis = swap_info[type];
863
864 if (sis->flags & SWP_WRITEOK) {
865 n = sis->pages;
866 if (free)
867 n -= sis->inuse_pages;
868 }
869 }
870 spin_unlock(&swap_lock);
871 return n;
872 }
873 #endif /* CONFIG_HIBERNATION */
874
875 /*
876 * No need to decide whether this PTE shares the swap entry with others,
877 * just let do_wp_page work it out if a write is requested later - to
878 * force COW, vm_page_prot omits write permission from any private vma.
879 */
880 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
881 unsigned long addr, swp_entry_t entry, struct page *page)
882 {
883 struct mem_cgroup *ptr;
884 spinlock_t *ptl;
885 pte_t *pte;
886 int ret = 1;
887
888 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
889 ret = -ENOMEM;
890 goto out_nolock;
891 }
892
893 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
894 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
895 if (ret > 0)
896 mem_cgroup_cancel_charge_swapin(ptr);
897 ret = 0;
898 goto out;
899 }
900
901 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
902 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
903 get_page(page);
904 set_pte_at(vma->vm_mm, addr, pte,
905 pte_mkold(mk_pte(page, vma->vm_page_prot)));
906 page_add_anon_rmap(page, vma, addr);
907 mem_cgroup_commit_charge_swapin(page, ptr);
908 swap_free(entry);
909 /*
910 * Move the page to the active list so it is not
911 * immediately swapped out again after swapon.
912 */
913 activate_page(page);
914 out:
915 pte_unmap_unlock(pte, ptl);
916 out_nolock:
917 return ret;
918 }
919
920 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
921 unsigned long addr, unsigned long end,
922 swp_entry_t entry, struct page *page)
923 {
924 pte_t swp_pte = swp_entry_to_pte(entry);
925 pte_t *pte;
926 int ret = 0;
927
928 /*
929 * We don't actually need pte lock while scanning for swp_pte: since
930 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
931 * page table while we're scanning; though it could get zapped, and on
932 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
933 * of unmatched parts which look like swp_pte, so unuse_pte must
934 * recheck under pte lock. Scanning without pte lock lets it be
935 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
936 */
937 pte = pte_offset_map(pmd, addr);
938 do {
939 /*
940 * swapoff spends a _lot_ of time in this loop!
941 * Test inline before going to call unuse_pte.
942 */
943 if (unlikely(pte_same(*pte, swp_pte))) {
944 pte_unmap(pte);
945 ret = unuse_pte(vma, pmd, addr, entry, page);
946 if (ret)
947 goto out;
948 pte = pte_offset_map(pmd, addr);
949 }
950 } while (pte++, addr += PAGE_SIZE, addr != end);
951 pte_unmap(pte - 1);
952 out:
953 return ret;
954 }
955
956 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
957 unsigned long addr, unsigned long end,
958 swp_entry_t entry, struct page *page)
959 {
960 pmd_t *pmd;
961 unsigned long next;
962 int ret;
963
964 pmd = pmd_offset(pud, addr);
965 do {
966 next = pmd_addr_end(addr, end);
967 if (unlikely(pmd_trans_huge(*pmd)))
968 continue;
969 if (pmd_none_or_clear_bad(pmd))
970 continue;
971 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
972 if (ret)
973 return ret;
974 } while (pmd++, addr = next, addr != end);
975 return 0;
976 }
977
978 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
979 unsigned long addr, unsigned long end,
980 swp_entry_t entry, struct page *page)
981 {
982 pud_t *pud;
983 unsigned long next;
984 int ret;
985
986 pud = pud_offset(pgd, addr);
987 do {
988 next = pud_addr_end(addr, end);
989 if (pud_none_or_clear_bad(pud))
990 continue;
991 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
992 if (ret)
993 return ret;
994 } while (pud++, addr = next, addr != end);
995 return 0;
996 }
997
998 static int unuse_vma(struct vm_area_struct *vma,
999 swp_entry_t entry, struct page *page)
1000 {
1001 pgd_t *pgd;
1002 unsigned long addr, end, next;
1003 int ret;
1004
1005 if (page_anon_vma(page)) {
1006 addr = page_address_in_vma(page, vma);
1007 if (addr == -EFAULT)
1008 return 0;
1009 else
1010 end = addr + PAGE_SIZE;
1011 } else {
1012 addr = vma->vm_start;
1013 end = vma->vm_end;
1014 }
1015
1016 pgd = pgd_offset(vma->vm_mm, addr);
1017 do {
1018 next = pgd_addr_end(addr, end);
1019 if (pgd_none_or_clear_bad(pgd))
1020 continue;
1021 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1022 if (ret)
1023 return ret;
1024 } while (pgd++, addr = next, addr != end);
1025 return 0;
1026 }
1027
1028 static int unuse_mm(struct mm_struct *mm,
1029 swp_entry_t entry, struct page *page)
1030 {
1031 struct vm_area_struct *vma;
1032 int ret = 0;
1033
1034 if (!down_read_trylock(&mm->mmap_sem)) {
1035 /*
1036 * Activate page so shrink_inactive_list is unlikely to unmap
1037 * its ptes while lock is dropped, so swapoff can make progress.
1038 */
1039 activate_page(page);
1040 unlock_page(page);
1041 down_read(&mm->mmap_sem);
1042 lock_page(page);
1043 }
1044 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1045 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1046 break;
1047 }
1048 up_read(&mm->mmap_sem);
1049 return (ret < 0)? ret: 0;
1050 }
1051
1052 /*
1053 * Scan swap_map from current position to next entry still in use.
1054 * Recycle to start on reaching the end, returning 0 when empty.
1055 */
1056 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1057 unsigned int prev)
1058 {
1059 unsigned int max = si->max;
1060 unsigned int i = prev;
1061 unsigned char count;
1062
1063 /*
1064 * No need for swap_lock here: we're just looking
1065 * for whether an entry is in use, not modifying it; false
1066 * hits are okay, and sys_swapoff() has already prevented new
1067 * allocations from this area (while holding swap_lock).
1068 */
1069 for (;;) {
1070 if (++i >= max) {
1071 if (!prev) {
1072 i = 0;
1073 break;
1074 }
1075 /*
1076 * No entries in use at top of swap_map,
1077 * loop back to start and recheck there.
1078 */
1079 max = prev + 1;
1080 prev = 0;
1081 i = 1;
1082 }
1083 count = si->swap_map[i];
1084 if (count && swap_count(count) != SWAP_MAP_BAD)
1085 break;
1086 }
1087 return i;
1088 }
1089
1090 /*
1091 * We completely avoid races by reading each swap page in advance,
1092 * and then search for the process using it. All the necessary
1093 * page table adjustments can then be made atomically.
1094 */
1095 static int try_to_unuse(unsigned int type)
1096 {
1097 struct swap_info_struct *si = swap_info[type];
1098 struct mm_struct *start_mm;
1099 unsigned char *swap_map;
1100 unsigned char swcount;
1101 struct page *page;
1102 swp_entry_t entry;
1103 unsigned int i = 0;
1104 int retval = 0;
1105
1106 /*
1107 * When searching mms for an entry, a good strategy is to
1108 * start at the first mm we freed the previous entry from
1109 * (though actually we don't notice whether we or coincidence
1110 * freed the entry). Initialize this start_mm with a hold.
1111 *
1112 * A simpler strategy would be to start at the last mm we
1113 * freed the previous entry from; but that would take less
1114 * advantage of mmlist ordering, which clusters forked mms
1115 * together, child after parent. If we race with dup_mmap(), we
1116 * prefer to resolve parent before child, lest we miss entries
1117 * duplicated after we scanned child: using last mm would invert
1118 * that.
1119 */
1120 start_mm = &init_mm;
1121 atomic_inc(&init_mm.mm_users);
1122
1123 /*
1124 * Keep on scanning until all entries have gone. Usually,
1125 * one pass through swap_map is enough, but not necessarily:
1126 * there are races when an instance of an entry might be missed.
1127 */
1128 while ((i = find_next_to_unuse(si, i)) != 0) {
1129 if (signal_pending(current)) {
1130 retval = -EINTR;
1131 break;
1132 }
1133
1134 /*
1135 * Get a page for the entry, using the existing swap
1136 * cache page if there is one. Otherwise, get a clean
1137 * page and read the swap into it.
1138 */
1139 swap_map = &si->swap_map[i];
1140 entry = swp_entry(type, i);
1141 page = read_swap_cache_async(entry,
1142 GFP_HIGHUSER_MOVABLE, NULL, 0);
1143 if (!page) {
1144 /*
1145 * Either swap_duplicate() failed because entry
1146 * has been freed independently, and will not be
1147 * reused since sys_swapoff() already disabled
1148 * allocation from here, or alloc_page() failed.
1149 */
1150 if (!*swap_map)
1151 continue;
1152 retval = -ENOMEM;
1153 break;
1154 }
1155
1156 /*
1157 * Don't hold on to start_mm if it looks like exiting.
1158 */
1159 if (atomic_read(&start_mm->mm_users) == 1) {
1160 mmput(start_mm);
1161 start_mm = &init_mm;
1162 atomic_inc(&init_mm.mm_users);
1163 }
1164
1165 /*
1166 * Wait for and lock page. When do_swap_page races with
1167 * try_to_unuse, do_swap_page can handle the fault much
1168 * faster than try_to_unuse can locate the entry. This
1169 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1170 * defer to do_swap_page in such a case - in some tests,
1171 * do_swap_page and try_to_unuse repeatedly compete.
1172 */
1173 wait_on_page_locked(page);
1174 wait_on_page_writeback(page);
1175 lock_page(page);
1176 wait_on_page_writeback(page);
1177
1178 /*
1179 * Remove all references to entry.
1180 */
1181 swcount = *swap_map;
1182 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1183 retval = shmem_unuse(entry, page);
1184 /* page has already been unlocked and released */
1185 if (retval < 0)
1186 break;
1187 continue;
1188 }
1189 if (swap_count(swcount) && start_mm != &init_mm)
1190 retval = unuse_mm(start_mm, entry, page);
1191
1192 if (swap_count(*swap_map)) {
1193 int set_start_mm = (*swap_map >= swcount);
1194 struct list_head *p = &start_mm->mmlist;
1195 struct mm_struct *new_start_mm = start_mm;
1196 struct mm_struct *prev_mm = start_mm;
1197 struct mm_struct *mm;
1198
1199 atomic_inc(&new_start_mm->mm_users);
1200 atomic_inc(&prev_mm->mm_users);
1201 spin_lock(&mmlist_lock);
1202 while (swap_count(*swap_map) && !retval &&
1203 (p = p->next) != &start_mm->mmlist) {
1204 mm = list_entry(p, struct mm_struct, mmlist);
1205 if (!atomic_inc_not_zero(&mm->mm_users))
1206 continue;
1207 spin_unlock(&mmlist_lock);
1208 mmput(prev_mm);
1209 prev_mm = mm;
1210
1211 cond_resched();
1212
1213 swcount = *swap_map;
1214 if (!swap_count(swcount)) /* any usage ? */
1215 ;
1216 else if (mm == &init_mm)
1217 set_start_mm = 1;
1218 else
1219 retval = unuse_mm(mm, entry, page);
1220
1221 if (set_start_mm && *swap_map < swcount) {
1222 mmput(new_start_mm);
1223 atomic_inc(&mm->mm_users);
1224 new_start_mm = mm;
1225 set_start_mm = 0;
1226 }
1227 spin_lock(&mmlist_lock);
1228 }
1229 spin_unlock(&mmlist_lock);
1230 mmput(prev_mm);
1231 mmput(start_mm);
1232 start_mm = new_start_mm;
1233 }
1234 if (retval) {
1235 unlock_page(page);
1236 page_cache_release(page);
1237 break;
1238 }
1239
1240 /*
1241 * If a reference remains (rare), we would like to leave
1242 * the page in the swap cache; but try_to_unmap could
1243 * then re-duplicate the entry once we drop page lock,
1244 * so we might loop indefinitely; also, that page could
1245 * not be swapped out to other storage meanwhile. So:
1246 * delete from cache even if there's another reference,
1247 * after ensuring that the data has been saved to disk -
1248 * since if the reference remains (rarer), it will be
1249 * read from disk into another page. Splitting into two
1250 * pages would be incorrect if swap supported "shared
1251 * private" pages, but they are handled by tmpfs files.
1252 *
1253 * Given how unuse_vma() targets one particular offset
1254 * in an anon_vma, once the anon_vma has been determined,
1255 * this splitting happens to be just what is needed to
1256 * handle where KSM pages have been swapped out: re-reading
1257 * is unnecessarily slow, but we can fix that later on.
1258 */
1259 if (swap_count(*swap_map) &&
1260 PageDirty(page) && PageSwapCache(page)) {
1261 struct writeback_control wbc = {
1262 .sync_mode = WB_SYNC_NONE,
1263 };
1264
1265 swap_writepage(page, &wbc);
1266 lock_page(page);
1267 wait_on_page_writeback(page);
1268 }
1269
1270 /*
1271 * It is conceivable that a racing task removed this page from
1272 * swap cache just before we acquired the page lock at the top,
1273 * or while we dropped it in unuse_mm(). The page might even
1274 * be back in swap cache on another swap area: that we must not
1275 * delete, since it may not have been written out to swap yet.
1276 */
1277 if (PageSwapCache(page) &&
1278 likely(page_private(page) == entry.val))
1279 delete_from_swap_cache(page);
1280
1281 /*
1282 * So we could skip searching mms once swap count went
1283 * to 1, we did not mark any present ptes as dirty: must
1284 * mark page dirty so shrink_page_list will preserve it.
1285 */
1286 SetPageDirty(page);
1287 unlock_page(page);
1288 page_cache_release(page);
1289
1290 /*
1291 * Make sure that we aren't completely killing
1292 * interactive performance.
1293 */
1294 cond_resched();
1295 }
1296
1297 mmput(start_mm);
1298 return retval;
1299 }
1300
1301 /*
1302 * After a successful try_to_unuse, if no swap is now in use, we know
1303 * we can empty the mmlist. swap_lock must be held on entry and exit.
1304 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1305 * added to the mmlist just after page_duplicate - before would be racy.
1306 */
1307 static void drain_mmlist(void)
1308 {
1309 struct list_head *p, *next;
1310 unsigned int type;
1311
1312 for (type = 0; type < nr_swapfiles; type++)
1313 if (swap_info[type]->inuse_pages)
1314 return;
1315 spin_lock(&mmlist_lock);
1316 list_for_each_safe(p, next, &init_mm.mmlist)
1317 list_del_init(p);
1318 spin_unlock(&mmlist_lock);
1319 }
1320
1321 /*
1322 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1323 * corresponds to page offset for the specified swap entry.
1324 * Note that the type of this function is sector_t, but it returns page offset
1325 * into the bdev, not sector offset.
1326 */
1327 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1328 {
1329 struct swap_info_struct *sis;
1330 struct swap_extent *start_se;
1331 struct swap_extent *se;
1332 pgoff_t offset;
1333
1334 sis = swap_info[swp_type(entry)];
1335 *bdev = sis->bdev;
1336
1337 offset = swp_offset(entry);
1338 start_se = sis->curr_swap_extent;
1339 se = start_se;
1340
1341 for ( ; ; ) {
1342 struct list_head *lh;
1343
1344 if (se->start_page <= offset &&
1345 offset < (se->start_page + se->nr_pages)) {
1346 return se->start_block + (offset - se->start_page);
1347 }
1348 lh = se->list.next;
1349 se = list_entry(lh, struct swap_extent, list);
1350 sis->curr_swap_extent = se;
1351 BUG_ON(se == start_se); /* It *must* be present */
1352 }
1353 }
1354
1355 /*
1356 * Returns the page offset into bdev for the specified page's swap entry.
1357 */
1358 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1359 {
1360 swp_entry_t entry;
1361 entry.val = page_private(page);
1362 return map_swap_entry(entry, bdev);
1363 }
1364
1365 /*
1366 * Free all of a swapdev's extent information
1367 */
1368 static void destroy_swap_extents(struct swap_info_struct *sis)
1369 {
1370 while (!list_empty(&sis->first_swap_extent.list)) {
1371 struct swap_extent *se;
1372
1373 se = list_entry(sis->first_swap_extent.list.next,
1374 struct swap_extent, list);
1375 list_del(&se->list);
1376 kfree(se);
1377 }
1378 }
1379
1380 /*
1381 * Add a block range (and the corresponding page range) into this swapdev's
1382 * extent list. The extent list is kept sorted in page order.
1383 *
1384 * This function rather assumes that it is called in ascending page order.
1385 */
1386 static int
1387 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1388 unsigned long nr_pages, sector_t start_block)
1389 {
1390 struct swap_extent *se;
1391 struct swap_extent *new_se;
1392 struct list_head *lh;
1393
1394 if (start_page == 0) {
1395 se = &sis->first_swap_extent;
1396 sis->curr_swap_extent = se;
1397 se->start_page = 0;
1398 se->nr_pages = nr_pages;
1399 se->start_block = start_block;
1400 return 1;
1401 } else {
1402 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1403 se = list_entry(lh, struct swap_extent, list);
1404 BUG_ON(se->start_page + se->nr_pages != start_page);
1405 if (se->start_block + se->nr_pages == start_block) {
1406 /* Merge it */
1407 se->nr_pages += nr_pages;
1408 return 0;
1409 }
1410 }
1411
1412 /*
1413 * No merge. Insert a new extent, preserving ordering.
1414 */
1415 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1416 if (new_se == NULL)
1417 return -ENOMEM;
1418 new_se->start_page = start_page;
1419 new_se->nr_pages = nr_pages;
1420 new_se->start_block = start_block;
1421
1422 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1423 return 1;
1424 }
1425
1426 /*
1427 * A `swap extent' is a simple thing which maps a contiguous range of pages
1428 * onto a contiguous range of disk blocks. An ordered list of swap extents
1429 * is built at swapon time and is then used at swap_writepage/swap_readpage
1430 * time for locating where on disk a page belongs.
1431 *
1432 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1433 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1434 * swap files identically.
1435 *
1436 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1437 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1438 * swapfiles are handled *identically* after swapon time.
1439 *
1440 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1441 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1442 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1443 * requirements, they are simply tossed out - we will never use those blocks
1444 * for swapping.
1445 *
1446 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1447 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1448 * which will scribble on the fs.
1449 *
1450 * The amount of disk space which a single swap extent represents varies.
1451 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1452 * extents in the list. To avoid much list walking, we cache the previous
1453 * search location in `curr_swap_extent', and start new searches from there.
1454 * This is extremely effective. The average number of iterations in
1455 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1456 */
1457 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1458 {
1459 struct inode *inode;
1460 unsigned blocks_per_page;
1461 unsigned long page_no;
1462 unsigned blkbits;
1463 sector_t probe_block;
1464 sector_t last_block;
1465 sector_t lowest_block = -1;
1466 sector_t highest_block = 0;
1467 int nr_extents = 0;
1468 int ret;
1469
1470 inode = sis->swap_file->f_mapping->host;
1471 if (S_ISBLK(inode->i_mode)) {
1472 ret = add_swap_extent(sis, 0, sis->max, 0);
1473 *span = sis->pages;
1474 goto out;
1475 }
1476
1477 blkbits = inode->i_blkbits;
1478 blocks_per_page = PAGE_SIZE >> blkbits;
1479
1480 /*
1481 * Map all the blocks into the extent list. This code doesn't try
1482 * to be very smart.
1483 */
1484 probe_block = 0;
1485 page_no = 0;
1486 last_block = i_size_read(inode) >> blkbits;
1487 while ((probe_block + blocks_per_page) <= last_block &&
1488 page_no < sis->max) {
1489 unsigned block_in_page;
1490 sector_t first_block;
1491
1492 first_block = bmap(inode, probe_block);
1493 if (first_block == 0)
1494 goto bad_bmap;
1495
1496 /*
1497 * It must be PAGE_SIZE aligned on-disk
1498 */
1499 if (first_block & (blocks_per_page - 1)) {
1500 probe_block++;
1501 goto reprobe;
1502 }
1503
1504 for (block_in_page = 1; block_in_page < blocks_per_page;
1505 block_in_page++) {
1506 sector_t block;
1507
1508 block = bmap(inode, probe_block + block_in_page);
1509 if (block == 0)
1510 goto bad_bmap;
1511 if (block != first_block + block_in_page) {
1512 /* Discontiguity */
1513 probe_block++;
1514 goto reprobe;
1515 }
1516 }
1517
1518 first_block >>= (PAGE_SHIFT - blkbits);
1519 if (page_no) { /* exclude the header page */
1520 if (first_block < lowest_block)
1521 lowest_block = first_block;
1522 if (first_block > highest_block)
1523 highest_block = first_block;
1524 }
1525
1526 /*
1527 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1528 */
1529 ret = add_swap_extent(sis, page_no, 1, first_block);
1530 if (ret < 0)
1531 goto out;
1532 nr_extents += ret;
1533 page_no++;
1534 probe_block += blocks_per_page;
1535 reprobe:
1536 continue;
1537 }
1538 ret = nr_extents;
1539 *span = 1 + highest_block - lowest_block;
1540 if (page_no == 0)
1541 page_no = 1; /* force Empty message */
1542 sis->max = page_no;
1543 sis->pages = page_no - 1;
1544 sis->highest_bit = page_no - 1;
1545 out:
1546 return ret;
1547 bad_bmap:
1548 printk(KERN_ERR "swapon: swapfile has holes\n");
1549 ret = -EINVAL;
1550 goto out;
1551 }
1552
1553 static void enable_swap_info(struct swap_info_struct *p, int prio,
1554 unsigned char *swap_map)
1555 {
1556 int i, prev;
1557
1558 spin_lock(&swap_lock);
1559 if (prio >= 0)
1560 p->prio = prio;
1561 else
1562 p->prio = --least_priority;
1563 p->swap_map = swap_map;
1564 p->flags |= SWP_WRITEOK;
1565 nr_swap_pages += p->pages;
1566 total_swap_pages += p->pages;
1567
1568 /* insert swap space into swap_list: */
1569 prev = -1;
1570 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1571 if (p->prio >= swap_info[i]->prio)
1572 break;
1573 prev = i;
1574 }
1575 p->next = i;
1576 if (prev < 0)
1577 swap_list.head = swap_list.next = p->type;
1578 else
1579 swap_info[prev]->next = p->type;
1580 spin_unlock(&swap_lock);
1581 }
1582
1583 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1584 {
1585 struct swap_info_struct *p = NULL;
1586 unsigned char *swap_map;
1587 struct file *swap_file, *victim;
1588 struct address_space *mapping;
1589 struct inode *inode;
1590 char *pathname;
1591 int i, type, prev;
1592 int err;
1593
1594 if (!capable(CAP_SYS_ADMIN))
1595 return -EPERM;
1596
1597 pathname = getname(specialfile);
1598 err = PTR_ERR(pathname);
1599 if (IS_ERR(pathname))
1600 goto out;
1601
1602 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1603 putname(pathname);
1604 err = PTR_ERR(victim);
1605 if (IS_ERR(victim))
1606 goto out;
1607
1608 mapping = victim->f_mapping;
1609 prev = -1;
1610 spin_lock(&swap_lock);
1611 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1612 p = swap_info[type];
1613 if (p->flags & SWP_WRITEOK) {
1614 if (p->swap_file->f_mapping == mapping)
1615 break;
1616 }
1617 prev = type;
1618 }
1619 if (type < 0) {
1620 err = -EINVAL;
1621 spin_unlock(&swap_lock);
1622 goto out_dput;
1623 }
1624 if (!security_vm_enough_memory(p->pages))
1625 vm_unacct_memory(p->pages);
1626 else {
1627 err = -ENOMEM;
1628 spin_unlock(&swap_lock);
1629 goto out_dput;
1630 }
1631 if (prev < 0)
1632 swap_list.head = p->next;
1633 else
1634 swap_info[prev]->next = p->next;
1635 if (type == swap_list.next) {
1636 /* just pick something that's safe... */
1637 swap_list.next = swap_list.head;
1638 }
1639 if (p->prio < 0) {
1640 for (i = p->next; i >= 0; i = swap_info[i]->next)
1641 swap_info[i]->prio = p->prio--;
1642 least_priority++;
1643 }
1644 nr_swap_pages -= p->pages;
1645 total_swap_pages -= p->pages;
1646 p->flags &= ~SWP_WRITEOK;
1647 spin_unlock(&swap_lock);
1648
1649 current->flags |= PF_OOM_ORIGIN;
1650 err = try_to_unuse(type);
1651 current->flags &= ~PF_OOM_ORIGIN;
1652
1653 if (err) {
1654 /*
1655 * reading p->prio and p->swap_map outside the lock is
1656 * safe here because only sys_swapon and sys_swapoff
1657 * change them, and there can be no other sys_swapon or
1658 * sys_swapoff for this swap_info_struct at this point.
1659 */
1660 /* re-insert swap space back into swap_list */
1661 enable_swap_info(p, p->prio, p->swap_map);
1662 goto out_dput;
1663 }
1664
1665 /* wait for any unplug function to finish */
1666 down_write(&swap_unplug_sem);
1667 up_write(&swap_unplug_sem);
1668
1669 destroy_swap_extents(p);
1670 if (p->flags & SWP_CONTINUED)
1671 free_swap_count_continuations(p);
1672
1673 mutex_lock(&swapon_mutex);
1674 spin_lock(&swap_lock);
1675 drain_mmlist();
1676
1677 /* wait for anyone still in scan_swap_map */
1678 p->highest_bit = 0; /* cuts scans short */
1679 while (p->flags >= SWP_SCANNING) {
1680 spin_unlock(&swap_lock);
1681 schedule_timeout_uninterruptible(1);
1682 spin_lock(&swap_lock);
1683 }
1684
1685 swap_file = p->swap_file;
1686 p->swap_file = NULL;
1687 p->max = 0;
1688 swap_map = p->swap_map;
1689 p->swap_map = NULL;
1690 p->flags = 0;
1691 spin_unlock(&swap_lock);
1692 mutex_unlock(&swapon_mutex);
1693 vfree(swap_map);
1694 /* Destroy swap account informatin */
1695 swap_cgroup_swapoff(type);
1696
1697 inode = mapping->host;
1698 if (S_ISBLK(inode->i_mode)) {
1699 struct block_device *bdev = I_BDEV(inode);
1700 set_blocksize(bdev, p->old_block_size);
1701 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1702 } else {
1703 mutex_lock(&inode->i_mutex);
1704 inode->i_flags &= ~S_SWAPFILE;
1705 mutex_unlock(&inode->i_mutex);
1706 }
1707 filp_close(swap_file, NULL);
1708 err = 0;
1709 atomic_inc(&proc_poll_event);
1710 wake_up_interruptible(&proc_poll_wait);
1711
1712 out_dput:
1713 filp_close(victim, NULL);
1714 out:
1715 return err;
1716 }
1717
1718 #ifdef CONFIG_PROC_FS
1719 struct proc_swaps {
1720 struct seq_file seq;
1721 int event;
1722 };
1723
1724 static unsigned swaps_poll(struct file *file, poll_table *wait)
1725 {
1726 struct proc_swaps *s = file->private_data;
1727
1728 poll_wait(file, &proc_poll_wait, wait);
1729
1730 if (s->event != atomic_read(&proc_poll_event)) {
1731 s->event = atomic_read(&proc_poll_event);
1732 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1733 }
1734
1735 return POLLIN | POLLRDNORM;
1736 }
1737
1738 /* iterator */
1739 static void *swap_start(struct seq_file *swap, loff_t *pos)
1740 {
1741 struct swap_info_struct *si;
1742 int type;
1743 loff_t l = *pos;
1744
1745 mutex_lock(&swapon_mutex);
1746
1747 if (!l)
1748 return SEQ_START_TOKEN;
1749
1750 for (type = 0; type < nr_swapfiles; type++) {
1751 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1752 si = swap_info[type];
1753 if (!(si->flags & SWP_USED) || !si->swap_map)
1754 continue;
1755 if (!--l)
1756 return si;
1757 }
1758
1759 return NULL;
1760 }
1761
1762 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1763 {
1764 struct swap_info_struct *si = v;
1765 int type;
1766
1767 if (v == SEQ_START_TOKEN)
1768 type = 0;
1769 else
1770 type = si->type + 1;
1771
1772 for (; type < nr_swapfiles; type++) {
1773 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1774 si = swap_info[type];
1775 if (!(si->flags & SWP_USED) || !si->swap_map)
1776 continue;
1777 ++*pos;
1778 return si;
1779 }
1780
1781 return NULL;
1782 }
1783
1784 static void swap_stop(struct seq_file *swap, void *v)
1785 {
1786 mutex_unlock(&swapon_mutex);
1787 }
1788
1789 static int swap_show(struct seq_file *swap, void *v)
1790 {
1791 struct swap_info_struct *si = v;
1792 struct file *file;
1793 int len;
1794
1795 if (si == SEQ_START_TOKEN) {
1796 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1797 return 0;
1798 }
1799
1800 file = si->swap_file;
1801 len = seq_path(swap, &file->f_path, " \t\n\\");
1802 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1803 len < 40 ? 40 - len : 1, " ",
1804 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1805 "partition" : "file\t",
1806 si->pages << (PAGE_SHIFT - 10),
1807 si->inuse_pages << (PAGE_SHIFT - 10),
1808 si->prio);
1809 return 0;
1810 }
1811
1812 static const struct seq_operations swaps_op = {
1813 .start = swap_start,
1814 .next = swap_next,
1815 .stop = swap_stop,
1816 .show = swap_show
1817 };
1818
1819 static int swaps_open(struct inode *inode, struct file *file)
1820 {
1821 struct proc_swaps *s;
1822 int ret;
1823
1824 s = kmalloc(sizeof(struct proc_swaps), GFP_KERNEL);
1825 if (!s)
1826 return -ENOMEM;
1827
1828 file->private_data = s;
1829
1830 ret = seq_open(file, &swaps_op);
1831 if (ret) {
1832 kfree(s);
1833 return ret;
1834 }
1835
1836 s->seq.private = s;
1837 s->event = atomic_read(&proc_poll_event);
1838 return ret;
1839 }
1840
1841 static const struct file_operations proc_swaps_operations = {
1842 .open = swaps_open,
1843 .read = seq_read,
1844 .llseek = seq_lseek,
1845 .release = seq_release,
1846 .poll = swaps_poll,
1847 };
1848
1849 static int __init procswaps_init(void)
1850 {
1851 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1852 return 0;
1853 }
1854 __initcall(procswaps_init);
1855 #endif /* CONFIG_PROC_FS */
1856
1857 #ifdef MAX_SWAPFILES_CHECK
1858 static int __init max_swapfiles_check(void)
1859 {
1860 MAX_SWAPFILES_CHECK();
1861 return 0;
1862 }
1863 late_initcall(max_swapfiles_check);
1864 #endif
1865
1866 static struct swap_info_struct *alloc_swap_info(void)
1867 {
1868 struct swap_info_struct *p;
1869 unsigned int type;
1870
1871 p = kzalloc(sizeof(*p), GFP_KERNEL);
1872 if (!p)
1873 return ERR_PTR(-ENOMEM);
1874
1875 spin_lock(&swap_lock);
1876 for (type = 0; type < nr_swapfiles; type++) {
1877 if (!(swap_info[type]->flags & SWP_USED))
1878 break;
1879 }
1880 if (type >= MAX_SWAPFILES) {
1881 spin_unlock(&swap_lock);
1882 kfree(p);
1883 return ERR_PTR(-EPERM);
1884 }
1885 if (type >= nr_swapfiles) {
1886 p->type = type;
1887 swap_info[type] = p;
1888 /*
1889 * Write swap_info[type] before nr_swapfiles, in case a
1890 * racing procfs swap_start() or swap_next() is reading them.
1891 * (We never shrink nr_swapfiles, we never free this entry.)
1892 */
1893 smp_wmb();
1894 nr_swapfiles++;
1895 } else {
1896 kfree(p);
1897 p = swap_info[type];
1898 /*
1899 * Do not memset this entry: a racing procfs swap_next()
1900 * would be relying on p->type to remain valid.
1901 */
1902 }
1903 INIT_LIST_HEAD(&p->first_swap_extent.list);
1904 p->flags = SWP_USED;
1905 p->next = -1;
1906 spin_unlock(&swap_lock);
1907
1908 return p;
1909 }
1910
1911 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1912 {
1913 int error;
1914
1915 if (S_ISBLK(inode->i_mode)) {
1916 p->bdev = bdgrab(I_BDEV(inode));
1917 error = blkdev_get(p->bdev,
1918 FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1919 sys_swapon);
1920 if (error < 0) {
1921 p->bdev = NULL;
1922 return -EINVAL;
1923 }
1924 p->old_block_size = block_size(p->bdev);
1925 error = set_blocksize(p->bdev, PAGE_SIZE);
1926 if (error < 0)
1927 return error;
1928 p->flags |= SWP_BLKDEV;
1929 } else if (S_ISREG(inode->i_mode)) {
1930 p->bdev = inode->i_sb->s_bdev;
1931 mutex_lock(&inode->i_mutex);
1932 if (IS_SWAPFILE(inode))
1933 return -EBUSY;
1934 } else
1935 return -EINVAL;
1936
1937 return 0;
1938 }
1939
1940 static unsigned long read_swap_header(struct swap_info_struct *p,
1941 union swap_header *swap_header,
1942 struct inode *inode)
1943 {
1944 int i;
1945 unsigned long maxpages;
1946 unsigned long swapfilepages;
1947
1948 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1949 printk(KERN_ERR "Unable to find swap-space signature\n");
1950 return 0;
1951 }
1952
1953 /* swap partition endianess hack... */
1954 if (swab32(swap_header->info.version) == 1) {
1955 swab32s(&swap_header->info.version);
1956 swab32s(&swap_header->info.last_page);
1957 swab32s(&swap_header->info.nr_badpages);
1958 for (i = 0; i < swap_header->info.nr_badpages; i++)
1959 swab32s(&swap_header->info.badpages[i]);
1960 }
1961 /* Check the swap header's sub-version */
1962 if (swap_header->info.version != 1) {
1963 printk(KERN_WARNING
1964 "Unable to handle swap header version %d\n",
1965 swap_header->info.version);
1966 return 0;
1967 }
1968
1969 p->lowest_bit = 1;
1970 p->cluster_next = 1;
1971 p->cluster_nr = 0;
1972
1973 /*
1974 * Find out how many pages are allowed for a single swap
1975 * device. There are two limiting factors: 1) the number of
1976 * bits for the swap offset in the swp_entry_t type and
1977 * 2) the number of bits in the a swap pte as defined by
1978 * the different architectures. In order to find the
1979 * largest possible bit mask a swap entry with swap type 0
1980 * and swap offset ~0UL is created, encoded to a swap pte,
1981 * decoded to a swp_entry_t again and finally the swap
1982 * offset is extracted. This will mask all the bits from
1983 * the initial ~0UL mask that can't be encoded in either
1984 * the swp_entry_t or the architecture definition of a
1985 * swap pte.
1986 */
1987 maxpages = swp_offset(pte_to_swp_entry(
1988 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1989 if (maxpages > swap_header->info.last_page) {
1990 maxpages = swap_header->info.last_page + 1;
1991 /* p->max is an unsigned int: don't overflow it */
1992 if ((unsigned int)maxpages == 0)
1993 maxpages = UINT_MAX;
1994 }
1995 p->highest_bit = maxpages - 1;
1996
1997 if (!maxpages)
1998 return 0;
1999 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2000 if (swapfilepages && maxpages > swapfilepages) {
2001 printk(KERN_WARNING
2002 "Swap area shorter than signature indicates\n");
2003 return 0;
2004 }
2005 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2006 return 0;
2007 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2008 return 0;
2009
2010 return maxpages;
2011 }
2012
2013 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2014 union swap_header *swap_header,
2015 unsigned char *swap_map,
2016 unsigned long maxpages,
2017 sector_t *span)
2018 {
2019 int i;
2020 unsigned int nr_good_pages;
2021 int nr_extents;
2022
2023 nr_good_pages = maxpages - 1; /* omit header page */
2024
2025 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2026 unsigned int page_nr = swap_header->info.badpages[i];
2027 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2028 return -EINVAL;
2029 if (page_nr < maxpages) {
2030 swap_map[page_nr] = SWAP_MAP_BAD;
2031 nr_good_pages--;
2032 }
2033 }
2034
2035 if (nr_good_pages) {
2036 swap_map[0] = SWAP_MAP_BAD;
2037 p->max = maxpages;
2038 p->pages = nr_good_pages;
2039 nr_extents = setup_swap_extents(p, span);
2040 if (nr_extents < 0)
2041 return nr_extents;
2042 nr_good_pages = p->pages;
2043 }
2044 if (!nr_good_pages) {
2045 printk(KERN_WARNING "Empty swap-file\n");
2046 return -EINVAL;
2047 }
2048
2049 return nr_extents;
2050 }
2051
2052 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2053 {
2054 struct swap_info_struct *p;
2055 char *name;
2056 struct file *swap_file = NULL;
2057 struct address_space *mapping;
2058 int i;
2059 int prio;
2060 int error;
2061 union swap_header *swap_header;
2062 int nr_extents;
2063 sector_t span;
2064 unsigned long maxpages;
2065 unsigned char *swap_map = NULL;
2066 struct page *page = NULL;
2067 struct inode *inode = NULL;
2068
2069 if (!capable(CAP_SYS_ADMIN))
2070 return -EPERM;
2071
2072 p = alloc_swap_info();
2073 if (IS_ERR(p))
2074 return PTR_ERR(p);
2075
2076 name = getname(specialfile);
2077 if (IS_ERR(name)) {
2078 error = PTR_ERR(name);
2079 name = NULL;
2080 goto bad_swap;
2081 }
2082 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
2083 if (IS_ERR(swap_file)) {
2084 error = PTR_ERR(swap_file);
2085 swap_file = NULL;
2086 goto bad_swap;
2087 }
2088
2089 p->swap_file = swap_file;
2090 mapping = swap_file->f_mapping;
2091
2092 for (i = 0; i < nr_swapfiles; i++) {
2093 struct swap_info_struct *q = swap_info[i];
2094
2095 if (q == p || !q->swap_file)
2096 continue;
2097 if (mapping == q->swap_file->f_mapping) {
2098 error = -EBUSY;
2099 goto bad_swap;
2100 }
2101 }
2102
2103 inode = mapping->host;
2104 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2105 error = claim_swapfile(p, inode);
2106 if (unlikely(error))
2107 goto bad_swap;
2108
2109 /*
2110 * Read the swap header.
2111 */
2112 if (!mapping->a_ops->readpage) {
2113 error = -EINVAL;
2114 goto bad_swap;
2115 }
2116 page = read_mapping_page(mapping, 0, swap_file);
2117 if (IS_ERR(page)) {
2118 error = PTR_ERR(page);
2119 goto bad_swap;
2120 }
2121 swap_header = kmap(page);
2122
2123 maxpages = read_swap_header(p, swap_header, inode);
2124 if (unlikely(!maxpages)) {
2125 error = -EINVAL;
2126 goto bad_swap;
2127 }
2128
2129 /* OK, set up the swap map and apply the bad block list */
2130 swap_map = vzalloc(maxpages);
2131 if (!swap_map) {
2132 error = -ENOMEM;
2133 goto bad_swap;
2134 }
2135
2136 error = swap_cgroup_swapon(p->type, maxpages);
2137 if (error)
2138 goto bad_swap;
2139
2140 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2141 maxpages, &span);
2142 if (unlikely(nr_extents < 0)) {
2143 error = nr_extents;
2144 goto bad_swap;
2145 }
2146
2147 if (p->bdev) {
2148 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2149 p->flags |= SWP_SOLIDSTATE;
2150 p->cluster_next = 1 + (random32() % p->highest_bit);
2151 }
2152 if (discard_swap(p) == 0 && (swap_flags & SWAP_FLAG_DISCARD))
2153 p->flags |= SWP_DISCARDABLE;
2154 }
2155
2156 mutex_lock(&swapon_mutex);
2157 prio = -1;
2158 if (swap_flags & SWAP_FLAG_PREFER)
2159 prio =
2160 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2161 enable_swap_info(p, prio, swap_map);
2162
2163 printk(KERN_INFO "Adding %uk swap on %s. "
2164 "Priority:%d extents:%d across:%lluk %s%s\n",
2165 p->pages<<(PAGE_SHIFT-10), name, p->prio,
2166 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2167 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2168 (p->flags & SWP_DISCARDABLE) ? "D" : "");
2169
2170 mutex_unlock(&swapon_mutex);
2171 atomic_inc(&proc_poll_event);
2172 wake_up_interruptible(&proc_poll_wait);
2173
2174 if (S_ISREG(inode->i_mode))
2175 inode->i_flags |= S_SWAPFILE;
2176 error = 0;
2177 goto out;
2178 bad_swap:
2179 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2180 set_blocksize(p->bdev, p->old_block_size);
2181 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2182 }
2183 destroy_swap_extents(p);
2184 swap_cgroup_swapoff(p->type);
2185 spin_lock(&swap_lock);
2186 p->swap_file = NULL;
2187 p->flags = 0;
2188 spin_unlock(&swap_lock);
2189 vfree(swap_map);
2190 if (swap_file) {
2191 if (inode && S_ISREG(inode->i_mode)) {
2192 mutex_unlock(&inode->i_mutex);
2193 inode = NULL;
2194 }
2195 filp_close(swap_file, NULL);
2196 }
2197 out:
2198 if (page && !IS_ERR(page)) {
2199 kunmap(page);
2200 page_cache_release(page);
2201 }
2202 if (name)
2203 putname(name);
2204 if (inode && S_ISREG(inode->i_mode))
2205 mutex_unlock(&inode->i_mutex);
2206 return error;
2207 }
2208
2209 void si_swapinfo(struct sysinfo *val)
2210 {
2211 unsigned int type;
2212 unsigned long nr_to_be_unused = 0;
2213
2214 spin_lock(&swap_lock);
2215 for (type = 0; type < nr_swapfiles; type++) {
2216 struct swap_info_struct *si = swap_info[type];
2217
2218 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2219 nr_to_be_unused += si->inuse_pages;
2220 }
2221 val->freeswap = nr_swap_pages + nr_to_be_unused;
2222 val->totalswap = total_swap_pages + nr_to_be_unused;
2223 spin_unlock(&swap_lock);
2224 }
2225
2226 /*
2227 * Verify that a swap entry is valid and increment its swap map count.
2228 *
2229 * Returns error code in following case.
2230 * - success -> 0
2231 * - swp_entry is invalid -> EINVAL
2232 * - swp_entry is migration entry -> EINVAL
2233 * - swap-cache reference is requested but there is already one. -> EEXIST
2234 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2235 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2236 */
2237 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2238 {
2239 struct swap_info_struct *p;
2240 unsigned long offset, type;
2241 unsigned char count;
2242 unsigned char has_cache;
2243 int err = -EINVAL;
2244
2245 if (non_swap_entry(entry))
2246 goto out;
2247
2248 type = swp_type(entry);
2249 if (type >= nr_swapfiles)
2250 goto bad_file;
2251 p = swap_info[type];
2252 offset = swp_offset(entry);
2253
2254 spin_lock(&swap_lock);
2255 if (unlikely(offset >= p->max))
2256 goto unlock_out;
2257
2258 count = p->swap_map[offset];
2259 has_cache = count & SWAP_HAS_CACHE;
2260 count &= ~SWAP_HAS_CACHE;
2261 err = 0;
2262
2263 if (usage == SWAP_HAS_CACHE) {
2264
2265 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2266 if (!has_cache && count)
2267 has_cache = SWAP_HAS_CACHE;
2268 else if (has_cache) /* someone else added cache */
2269 err = -EEXIST;
2270 else /* no users remaining */
2271 err = -ENOENT;
2272
2273 } else if (count || has_cache) {
2274
2275 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2276 count += usage;
2277 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2278 err = -EINVAL;
2279 else if (swap_count_continued(p, offset, count))
2280 count = COUNT_CONTINUED;
2281 else
2282 err = -ENOMEM;
2283 } else
2284 err = -ENOENT; /* unused swap entry */
2285
2286 p->swap_map[offset] = count | has_cache;
2287
2288 unlock_out:
2289 spin_unlock(&swap_lock);
2290 out:
2291 return err;
2292
2293 bad_file:
2294 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2295 goto out;
2296 }
2297
2298 /*
2299 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2300 * (in which case its reference count is never incremented).
2301 */
2302 void swap_shmem_alloc(swp_entry_t entry)
2303 {
2304 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2305 }
2306
2307 /*
2308 * Increase reference count of swap entry by 1.
2309 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2310 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2311 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2312 * might occur if a page table entry has got corrupted.
2313 */
2314 int swap_duplicate(swp_entry_t entry)
2315 {
2316 int err = 0;
2317
2318 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2319 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2320 return err;
2321 }
2322
2323 /*
2324 * @entry: swap entry for which we allocate swap cache.
2325 *
2326 * Called when allocating swap cache for existing swap entry,
2327 * This can return error codes. Returns 0 at success.
2328 * -EBUSY means there is a swap cache.
2329 * Note: return code is different from swap_duplicate().
2330 */
2331 int swapcache_prepare(swp_entry_t entry)
2332 {
2333 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2334 }
2335
2336 /*
2337 * swap_lock prevents swap_map being freed. Don't grab an extra
2338 * reference on the swaphandle, it doesn't matter if it becomes unused.
2339 */
2340 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2341 {
2342 struct swap_info_struct *si;
2343 int our_page_cluster = page_cluster;
2344 pgoff_t target, toff;
2345 pgoff_t base, end;
2346 int nr_pages = 0;
2347
2348 if (!our_page_cluster) /* no readahead */
2349 return 0;
2350
2351 si = swap_info[swp_type(entry)];
2352 target = swp_offset(entry);
2353 base = (target >> our_page_cluster) << our_page_cluster;
2354 end = base + (1 << our_page_cluster);
2355 if (!base) /* first page is swap header */
2356 base++;
2357
2358 spin_lock(&swap_lock);
2359 if (end > si->max) /* don't go beyond end of map */
2360 end = si->max;
2361
2362 /* Count contiguous allocated slots above our target */
2363 for (toff = target; ++toff < end; nr_pages++) {
2364 /* Don't read in free or bad pages */
2365 if (!si->swap_map[toff])
2366 break;
2367 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2368 break;
2369 }
2370 /* Count contiguous allocated slots below our target */
2371 for (toff = target; --toff >= base; nr_pages++) {
2372 /* Don't read in free or bad pages */
2373 if (!si->swap_map[toff])
2374 break;
2375 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2376 break;
2377 }
2378 spin_unlock(&swap_lock);
2379
2380 /*
2381 * Indicate starting offset, and return number of pages to get:
2382 * if only 1, say 0, since there's then no readahead to be done.
2383 */
2384 *offset = ++toff;
2385 return nr_pages? ++nr_pages: 0;
2386 }
2387
2388 /*
2389 * add_swap_count_continuation - called when a swap count is duplicated
2390 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2391 * page of the original vmalloc'ed swap_map, to hold the continuation count
2392 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2393 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2394 *
2395 * These continuation pages are seldom referenced: the common paths all work
2396 * on the original swap_map, only referring to a continuation page when the
2397 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2398 *
2399 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2400 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2401 * can be called after dropping locks.
2402 */
2403 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2404 {
2405 struct swap_info_struct *si;
2406 struct page *head;
2407 struct page *page;
2408 struct page *list_page;
2409 pgoff_t offset;
2410 unsigned char count;
2411
2412 /*
2413 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2414 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2415 */
2416 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2417
2418 si = swap_info_get(entry);
2419 if (!si) {
2420 /*
2421 * An acceptable race has occurred since the failing
2422 * __swap_duplicate(): the swap entry has been freed,
2423 * perhaps even the whole swap_map cleared for swapoff.
2424 */
2425 goto outer;
2426 }
2427
2428 offset = swp_offset(entry);
2429 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2430
2431 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2432 /*
2433 * The higher the swap count, the more likely it is that tasks
2434 * will race to add swap count continuation: we need to avoid
2435 * over-provisioning.
2436 */
2437 goto out;
2438 }
2439
2440 if (!page) {
2441 spin_unlock(&swap_lock);
2442 return -ENOMEM;
2443 }
2444
2445 /*
2446 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2447 * no architecture is using highmem pages for kernel pagetables: so it
2448 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2449 */
2450 head = vmalloc_to_page(si->swap_map + offset);
2451 offset &= ~PAGE_MASK;
2452
2453 /*
2454 * Page allocation does not initialize the page's lru field,
2455 * but it does always reset its private field.
2456 */
2457 if (!page_private(head)) {
2458 BUG_ON(count & COUNT_CONTINUED);
2459 INIT_LIST_HEAD(&head->lru);
2460 set_page_private(head, SWP_CONTINUED);
2461 si->flags |= SWP_CONTINUED;
2462 }
2463
2464 list_for_each_entry(list_page, &head->lru, lru) {
2465 unsigned char *map;
2466
2467 /*
2468 * If the previous map said no continuation, but we've found
2469 * a continuation page, free our allocation and use this one.
2470 */
2471 if (!(count & COUNT_CONTINUED))
2472 goto out;
2473
2474 map = kmap_atomic(list_page, KM_USER0) + offset;
2475 count = *map;
2476 kunmap_atomic(map, KM_USER0);
2477
2478 /*
2479 * If this continuation count now has some space in it,
2480 * free our allocation and use this one.
2481 */
2482 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2483 goto out;
2484 }
2485
2486 list_add_tail(&page->lru, &head->lru);
2487 page = NULL; /* now it's attached, don't free it */
2488 out:
2489 spin_unlock(&swap_lock);
2490 outer:
2491 if (page)
2492 __free_page(page);
2493 return 0;
2494 }
2495
2496 /*
2497 * swap_count_continued - when the original swap_map count is incremented
2498 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2499 * into, carry if so, or else fail until a new continuation page is allocated;
2500 * when the original swap_map count is decremented from 0 with continuation,
2501 * borrow from the continuation and report whether it still holds more.
2502 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2503 */
2504 static bool swap_count_continued(struct swap_info_struct *si,
2505 pgoff_t offset, unsigned char count)
2506 {
2507 struct page *head;
2508 struct page *page;
2509 unsigned char *map;
2510
2511 head = vmalloc_to_page(si->swap_map + offset);
2512 if (page_private(head) != SWP_CONTINUED) {
2513 BUG_ON(count & COUNT_CONTINUED);
2514 return false; /* need to add count continuation */
2515 }
2516
2517 offset &= ~PAGE_MASK;
2518 page = list_entry(head->lru.next, struct page, lru);
2519 map = kmap_atomic(page, KM_USER0) + offset;
2520
2521 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2522 goto init_map; /* jump over SWAP_CONT_MAX checks */
2523
2524 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2525 /*
2526 * Think of how you add 1 to 999
2527 */
2528 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2529 kunmap_atomic(map, KM_USER0);
2530 page = list_entry(page->lru.next, struct page, lru);
2531 BUG_ON(page == head);
2532 map = kmap_atomic(page, KM_USER0) + offset;
2533 }
2534 if (*map == SWAP_CONT_MAX) {
2535 kunmap_atomic(map, KM_USER0);
2536 page = list_entry(page->lru.next, struct page, lru);
2537 if (page == head)
2538 return false; /* add count continuation */
2539 map = kmap_atomic(page, KM_USER0) + offset;
2540 init_map: *map = 0; /* we didn't zero the page */
2541 }
2542 *map += 1;
2543 kunmap_atomic(map, KM_USER0);
2544 page = list_entry(page->lru.prev, struct page, lru);
2545 while (page != head) {
2546 map = kmap_atomic(page, KM_USER0) + offset;
2547 *map = COUNT_CONTINUED;
2548 kunmap_atomic(map, KM_USER0);
2549 page = list_entry(page->lru.prev, struct page, lru);
2550 }
2551 return true; /* incremented */
2552
2553 } else { /* decrementing */
2554 /*
2555 * Think of how you subtract 1 from 1000
2556 */
2557 BUG_ON(count != COUNT_CONTINUED);
2558 while (*map == COUNT_CONTINUED) {
2559 kunmap_atomic(map, KM_USER0);
2560 page = list_entry(page->lru.next, struct page, lru);
2561 BUG_ON(page == head);
2562 map = kmap_atomic(page, KM_USER0) + offset;
2563 }
2564 BUG_ON(*map == 0);
2565 *map -= 1;
2566 if (*map == 0)
2567 count = 0;
2568 kunmap_atomic(map, KM_USER0);
2569 page = list_entry(page->lru.prev, struct page, lru);
2570 while (page != head) {
2571 map = kmap_atomic(page, KM_USER0) + offset;
2572 *map = SWAP_CONT_MAX | count;
2573 count = COUNT_CONTINUED;
2574 kunmap_atomic(map, KM_USER0);
2575 page = list_entry(page->lru.prev, struct page, lru);
2576 }
2577 return count == COUNT_CONTINUED;
2578 }
2579 }
2580
2581 /*
2582 * free_swap_count_continuations - swapoff free all the continuation pages
2583 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2584 */
2585 static void free_swap_count_continuations(struct swap_info_struct *si)
2586 {
2587 pgoff_t offset;
2588
2589 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2590 struct page *head;
2591 head = vmalloc_to_page(si->swap_map + offset);
2592 if (page_private(head)) {
2593 struct list_head *this, *next;
2594 list_for_each_safe(this, next, &head->lru) {
2595 struct page *page;
2596 page = list_entry(this, struct page, lru);
2597 list_del(this);
2598 __free_page(page);
2599 }
2600 }
2601 }
2602 }