]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/swapfile.c
Merge tag 'mac80211-for-davem-2020-06-08' of git://git.kernel.org/pub/scm/linux/kerne...
[mirror_ubuntu-hirsute-kernel.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/pgtable.h>
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52
53 DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57 * Some modules use swappable objects and may try to swap them out under
58 * memory pressure (via the shrinker). Before doing so, they may wish to
59 * check to see if any swap space is available.
60 */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70
71 /*
72 * all active swap_info_structs
73 * protected with swap_lock, and ordered by priority.
74 */
75 PLIST_HEAD(swap_active_head);
76
77 /*
78 * all available (active, not full) swap_info_structs
79 * protected with swap_avail_lock, ordered by priority.
80 * This is used by get_swap_page() instead of swap_active_head
81 * because swap_active_head includes all swap_info_structs,
82 * but get_swap_page() doesn't need to look at full ones.
83 * This uses its own lock instead of swap_lock because when a
84 * swap_info_struct changes between not-full/full, it needs to
85 * add/remove itself to/from this list, but the swap_info_struct->lock
86 * is held and the locking order requires swap_lock to be taken
87 * before any swap_info_struct->lock.
88 */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93
94 static DEFINE_MUTEX(swapon_mutex);
95
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101
102 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104 if (type >= READ_ONCE(nr_swapfiles))
105 return NULL;
106
107 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
108 return READ_ONCE(swap_info[type]);
109 }
110
111 static inline unsigned char swap_count(unsigned char ent)
112 {
113 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
114 }
115
116 /* Reclaim the swap entry anyway if possible */
117 #define TTRS_ANYWAY 0x1
118 /*
119 * Reclaim the swap entry if there are no more mappings of the
120 * corresponding page
121 */
122 #define TTRS_UNMAPPED 0x2
123 /* Reclaim the swap entry if swap is getting full*/
124 #define TTRS_FULL 0x4
125
126 /* returns 1 if swap entry is freed */
127 static int __try_to_reclaim_swap(struct swap_info_struct *si,
128 unsigned long offset, unsigned long flags)
129 {
130 swp_entry_t entry = swp_entry(si->type, offset);
131 struct page *page;
132 int ret = 0;
133
134 page = find_get_page(swap_address_space(entry), offset);
135 if (!page)
136 return 0;
137 /*
138 * When this function is called from scan_swap_map_slots() and it's
139 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140 * here. We have to use trylock for avoiding deadlock. This is a special
141 * case and you should use try_to_free_swap() with explicit lock_page()
142 * in usual operations.
143 */
144 if (trylock_page(page)) {
145 if ((flags & TTRS_ANYWAY) ||
146 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148 ret = try_to_free_swap(page);
149 unlock_page(page);
150 }
151 put_page(page);
152 return ret;
153 }
154
155 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156 {
157 struct rb_node *rb = rb_first(&sis->swap_extent_root);
158 return rb_entry(rb, struct swap_extent, rb_node);
159 }
160
161 static inline struct swap_extent *next_se(struct swap_extent *se)
162 {
163 struct rb_node *rb = rb_next(&se->rb_node);
164 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165 }
166
167 /*
168 * swapon tell device that all the old swap contents can be discarded,
169 * to allow the swap device to optimize its wear-levelling.
170 */
171 static int discard_swap(struct swap_info_struct *si)
172 {
173 struct swap_extent *se;
174 sector_t start_block;
175 sector_t nr_blocks;
176 int err = 0;
177
178 /* Do not discard the swap header page! */
179 se = first_se(si);
180 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182 if (nr_blocks) {
183 err = blkdev_issue_discard(si->bdev, start_block,
184 nr_blocks, GFP_KERNEL, 0);
185 if (err)
186 return err;
187 cond_resched();
188 }
189
190 for (se = next_se(se); se; se = next_se(se)) {
191 start_block = se->start_block << (PAGE_SHIFT - 9);
192 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
193
194 err = blkdev_issue_discard(si->bdev, start_block,
195 nr_blocks, GFP_KERNEL, 0);
196 if (err)
197 break;
198
199 cond_resched();
200 }
201 return err; /* That will often be -EOPNOTSUPP */
202 }
203
204 static struct swap_extent *
205 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206 {
207 struct swap_extent *se;
208 struct rb_node *rb;
209
210 rb = sis->swap_extent_root.rb_node;
211 while (rb) {
212 se = rb_entry(rb, struct swap_extent, rb_node);
213 if (offset < se->start_page)
214 rb = rb->rb_left;
215 else if (offset >= se->start_page + se->nr_pages)
216 rb = rb->rb_right;
217 else
218 return se;
219 }
220 /* It *must* be present */
221 BUG();
222 }
223
224 /*
225 * swap allocation tell device that a cluster of swap can now be discarded,
226 * to allow the swap device to optimize its wear-levelling.
227 */
228 static void discard_swap_cluster(struct swap_info_struct *si,
229 pgoff_t start_page, pgoff_t nr_pages)
230 {
231 struct swap_extent *se = offset_to_swap_extent(si, start_page);
232
233 while (nr_pages) {
234 pgoff_t offset = start_page - se->start_page;
235 sector_t start_block = se->start_block + offset;
236 sector_t nr_blocks = se->nr_pages - offset;
237
238 if (nr_blocks > nr_pages)
239 nr_blocks = nr_pages;
240 start_page += nr_blocks;
241 nr_pages -= nr_blocks;
242
243 start_block <<= PAGE_SHIFT - 9;
244 nr_blocks <<= PAGE_SHIFT - 9;
245 if (blkdev_issue_discard(si->bdev, start_block,
246 nr_blocks, GFP_NOIO, 0))
247 break;
248
249 se = next_se(se);
250 }
251 }
252
253 #ifdef CONFIG_THP_SWAP
254 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
255
256 #define swap_entry_size(size) (size)
257 #else
258 #define SWAPFILE_CLUSTER 256
259
260 /*
261 * Define swap_entry_size() as constant to let compiler to optimize
262 * out some code if !CONFIG_THP_SWAP
263 */
264 #define swap_entry_size(size) 1
265 #endif
266 #define LATENCY_LIMIT 256
267
268 static inline void cluster_set_flag(struct swap_cluster_info *info,
269 unsigned int flag)
270 {
271 info->flags = flag;
272 }
273
274 static inline unsigned int cluster_count(struct swap_cluster_info *info)
275 {
276 return info->data;
277 }
278
279 static inline void cluster_set_count(struct swap_cluster_info *info,
280 unsigned int c)
281 {
282 info->data = c;
283 }
284
285 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
286 unsigned int c, unsigned int f)
287 {
288 info->flags = f;
289 info->data = c;
290 }
291
292 static inline unsigned int cluster_next(struct swap_cluster_info *info)
293 {
294 return info->data;
295 }
296
297 static inline void cluster_set_next(struct swap_cluster_info *info,
298 unsigned int n)
299 {
300 info->data = n;
301 }
302
303 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
304 unsigned int n, unsigned int f)
305 {
306 info->flags = f;
307 info->data = n;
308 }
309
310 static inline bool cluster_is_free(struct swap_cluster_info *info)
311 {
312 return info->flags & CLUSTER_FLAG_FREE;
313 }
314
315 static inline bool cluster_is_null(struct swap_cluster_info *info)
316 {
317 return info->flags & CLUSTER_FLAG_NEXT_NULL;
318 }
319
320 static inline void cluster_set_null(struct swap_cluster_info *info)
321 {
322 info->flags = CLUSTER_FLAG_NEXT_NULL;
323 info->data = 0;
324 }
325
326 static inline bool cluster_is_huge(struct swap_cluster_info *info)
327 {
328 if (IS_ENABLED(CONFIG_THP_SWAP))
329 return info->flags & CLUSTER_FLAG_HUGE;
330 return false;
331 }
332
333 static inline void cluster_clear_huge(struct swap_cluster_info *info)
334 {
335 info->flags &= ~CLUSTER_FLAG_HUGE;
336 }
337
338 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
339 unsigned long offset)
340 {
341 struct swap_cluster_info *ci;
342
343 ci = si->cluster_info;
344 if (ci) {
345 ci += offset / SWAPFILE_CLUSTER;
346 spin_lock(&ci->lock);
347 }
348 return ci;
349 }
350
351 static inline void unlock_cluster(struct swap_cluster_info *ci)
352 {
353 if (ci)
354 spin_unlock(&ci->lock);
355 }
356
357 /*
358 * Determine the locking method in use for this device. Return
359 * swap_cluster_info if SSD-style cluster-based locking is in place.
360 */
361 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
362 struct swap_info_struct *si, unsigned long offset)
363 {
364 struct swap_cluster_info *ci;
365
366 /* Try to use fine-grained SSD-style locking if available: */
367 ci = lock_cluster(si, offset);
368 /* Otherwise, fall back to traditional, coarse locking: */
369 if (!ci)
370 spin_lock(&si->lock);
371
372 return ci;
373 }
374
375 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
376 struct swap_cluster_info *ci)
377 {
378 if (ci)
379 unlock_cluster(ci);
380 else
381 spin_unlock(&si->lock);
382 }
383
384 static inline bool cluster_list_empty(struct swap_cluster_list *list)
385 {
386 return cluster_is_null(&list->head);
387 }
388
389 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
390 {
391 return cluster_next(&list->head);
392 }
393
394 static void cluster_list_init(struct swap_cluster_list *list)
395 {
396 cluster_set_null(&list->head);
397 cluster_set_null(&list->tail);
398 }
399
400 static void cluster_list_add_tail(struct swap_cluster_list *list,
401 struct swap_cluster_info *ci,
402 unsigned int idx)
403 {
404 if (cluster_list_empty(list)) {
405 cluster_set_next_flag(&list->head, idx, 0);
406 cluster_set_next_flag(&list->tail, idx, 0);
407 } else {
408 struct swap_cluster_info *ci_tail;
409 unsigned int tail = cluster_next(&list->tail);
410
411 /*
412 * Nested cluster lock, but both cluster locks are
413 * only acquired when we held swap_info_struct->lock
414 */
415 ci_tail = ci + tail;
416 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
417 cluster_set_next(ci_tail, idx);
418 spin_unlock(&ci_tail->lock);
419 cluster_set_next_flag(&list->tail, idx, 0);
420 }
421 }
422
423 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
424 struct swap_cluster_info *ci)
425 {
426 unsigned int idx;
427
428 idx = cluster_next(&list->head);
429 if (cluster_next(&list->tail) == idx) {
430 cluster_set_null(&list->head);
431 cluster_set_null(&list->tail);
432 } else
433 cluster_set_next_flag(&list->head,
434 cluster_next(&ci[idx]), 0);
435
436 return idx;
437 }
438
439 /* Add a cluster to discard list and schedule it to do discard */
440 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
441 unsigned int idx)
442 {
443 /*
444 * If scan_swap_map() can't find a free cluster, it will check
445 * si->swap_map directly. To make sure the discarding cluster isn't
446 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
447 * will be cleared after discard
448 */
449 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
450 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
451
452 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
453
454 schedule_work(&si->discard_work);
455 }
456
457 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
458 {
459 struct swap_cluster_info *ci = si->cluster_info;
460
461 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
462 cluster_list_add_tail(&si->free_clusters, ci, idx);
463 }
464
465 /*
466 * Doing discard actually. After a cluster discard is finished, the cluster
467 * will be added to free cluster list. caller should hold si->lock.
468 */
469 static void swap_do_scheduled_discard(struct swap_info_struct *si)
470 {
471 struct swap_cluster_info *info, *ci;
472 unsigned int idx;
473
474 info = si->cluster_info;
475
476 while (!cluster_list_empty(&si->discard_clusters)) {
477 idx = cluster_list_del_first(&si->discard_clusters, info);
478 spin_unlock(&si->lock);
479
480 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
481 SWAPFILE_CLUSTER);
482
483 spin_lock(&si->lock);
484 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
485 __free_cluster(si, idx);
486 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
487 0, SWAPFILE_CLUSTER);
488 unlock_cluster(ci);
489 }
490 }
491
492 static void swap_discard_work(struct work_struct *work)
493 {
494 struct swap_info_struct *si;
495
496 si = container_of(work, struct swap_info_struct, discard_work);
497
498 spin_lock(&si->lock);
499 swap_do_scheduled_discard(si);
500 spin_unlock(&si->lock);
501 }
502
503 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
504 {
505 struct swap_cluster_info *ci = si->cluster_info;
506
507 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
508 cluster_list_del_first(&si->free_clusters, ci);
509 cluster_set_count_flag(ci + idx, 0, 0);
510 }
511
512 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
513 {
514 struct swap_cluster_info *ci = si->cluster_info + idx;
515
516 VM_BUG_ON(cluster_count(ci) != 0);
517 /*
518 * If the swap is discardable, prepare discard the cluster
519 * instead of free it immediately. The cluster will be freed
520 * after discard.
521 */
522 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
523 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
524 swap_cluster_schedule_discard(si, idx);
525 return;
526 }
527
528 __free_cluster(si, idx);
529 }
530
531 /*
532 * The cluster corresponding to page_nr will be used. The cluster will be
533 * removed from free cluster list and its usage counter will be increased.
534 */
535 static void inc_cluster_info_page(struct swap_info_struct *p,
536 struct swap_cluster_info *cluster_info, unsigned long page_nr)
537 {
538 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
539
540 if (!cluster_info)
541 return;
542 if (cluster_is_free(&cluster_info[idx]))
543 alloc_cluster(p, idx);
544
545 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
546 cluster_set_count(&cluster_info[idx],
547 cluster_count(&cluster_info[idx]) + 1);
548 }
549
550 /*
551 * The cluster corresponding to page_nr decreases one usage. If the usage
552 * counter becomes 0, which means no page in the cluster is in using, we can
553 * optionally discard the cluster and add it to free cluster list.
554 */
555 static void dec_cluster_info_page(struct swap_info_struct *p,
556 struct swap_cluster_info *cluster_info, unsigned long page_nr)
557 {
558 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559
560 if (!cluster_info)
561 return;
562
563 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
564 cluster_set_count(&cluster_info[idx],
565 cluster_count(&cluster_info[idx]) - 1);
566
567 if (cluster_count(&cluster_info[idx]) == 0)
568 free_cluster(p, idx);
569 }
570
571 /*
572 * It's possible scan_swap_map() uses a free cluster in the middle of free
573 * cluster list. Avoiding such abuse to avoid list corruption.
574 */
575 static bool
576 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
577 unsigned long offset)
578 {
579 struct percpu_cluster *percpu_cluster;
580 bool conflict;
581
582 offset /= SWAPFILE_CLUSTER;
583 conflict = !cluster_list_empty(&si->free_clusters) &&
584 offset != cluster_list_first(&si->free_clusters) &&
585 cluster_is_free(&si->cluster_info[offset]);
586
587 if (!conflict)
588 return false;
589
590 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
591 cluster_set_null(&percpu_cluster->index);
592 return true;
593 }
594
595 /*
596 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
597 * might involve allocating a new cluster for current CPU too.
598 */
599 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
600 unsigned long *offset, unsigned long *scan_base)
601 {
602 struct percpu_cluster *cluster;
603 struct swap_cluster_info *ci;
604 unsigned long tmp, max;
605
606 new_cluster:
607 cluster = this_cpu_ptr(si->percpu_cluster);
608 if (cluster_is_null(&cluster->index)) {
609 if (!cluster_list_empty(&si->free_clusters)) {
610 cluster->index = si->free_clusters.head;
611 cluster->next = cluster_next(&cluster->index) *
612 SWAPFILE_CLUSTER;
613 } else if (!cluster_list_empty(&si->discard_clusters)) {
614 /*
615 * we don't have free cluster but have some clusters in
616 * discarding, do discard now and reclaim them, then
617 * reread cluster_next_cpu since we dropped si->lock
618 */
619 swap_do_scheduled_discard(si);
620 *scan_base = this_cpu_read(*si->cluster_next_cpu);
621 *offset = *scan_base;
622 goto new_cluster;
623 } else
624 return false;
625 }
626
627 /*
628 * Other CPUs can use our cluster if they can't find a free cluster,
629 * check if there is still free entry in the cluster
630 */
631 tmp = cluster->next;
632 max = min_t(unsigned long, si->max,
633 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
634 if (tmp < max) {
635 ci = lock_cluster(si, tmp);
636 while (tmp < max) {
637 if (!si->swap_map[tmp])
638 break;
639 tmp++;
640 }
641 unlock_cluster(ci);
642 }
643 if (tmp >= max) {
644 cluster_set_null(&cluster->index);
645 goto new_cluster;
646 }
647 cluster->next = tmp + 1;
648 *offset = tmp;
649 *scan_base = tmp;
650 return true;
651 }
652
653 static void __del_from_avail_list(struct swap_info_struct *p)
654 {
655 int nid;
656
657 for_each_node(nid)
658 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
659 }
660
661 static void del_from_avail_list(struct swap_info_struct *p)
662 {
663 spin_lock(&swap_avail_lock);
664 __del_from_avail_list(p);
665 spin_unlock(&swap_avail_lock);
666 }
667
668 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
669 unsigned int nr_entries)
670 {
671 unsigned int end = offset + nr_entries - 1;
672
673 if (offset == si->lowest_bit)
674 si->lowest_bit += nr_entries;
675 if (end == si->highest_bit)
676 si->highest_bit -= nr_entries;
677 si->inuse_pages += nr_entries;
678 if (si->inuse_pages == si->pages) {
679 si->lowest_bit = si->max;
680 si->highest_bit = 0;
681 del_from_avail_list(si);
682 }
683 }
684
685 static void add_to_avail_list(struct swap_info_struct *p)
686 {
687 int nid;
688
689 spin_lock(&swap_avail_lock);
690 for_each_node(nid) {
691 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
692 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
693 }
694 spin_unlock(&swap_avail_lock);
695 }
696
697 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
698 unsigned int nr_entries)
699 {
700 unsigned long end = offset + nr_entries - 1;
701 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
702
703 if (offset < si->lowest_bit)
704 si->lowest_bit = offset;
705 if (end > si->highest_bit) {
706 bool was_full = !si->highest_bit;
707
708 si->highest_bit = end;
709 if (was_full && (si->flags & SWP_WRITEOK))
710 add_to_avail_list(si);
711 }
712 atomic_long_add(nr_entries, &nr_swap_pages);
713 si->inuse_pages -= nr_entries;
714 if (si->flags & SWP_BLKDEV)
715 swap_slot_free_notify =
716 si->bdev->bd_disk->fops->swap_slot_free_notify;
717 else
718 swap_slot_free_notify = NULL;
719 while (offset <= end) {
720 frontswap_invalidate_page(si->type, offset);
721 if (swap_slot_free_notify)
722 swap_slot_free_notify(si->bdev, offset);
723 offset++;
724 }
725 }
726
727 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
728 {
729 unsigned long prev;
730
731 if (!(si->flags & SWP_SOLIDSTATE)) {
732 si->cluster_next = next;
733 return;
734 }
735
736 prev = this_cpu_read(*si->cluster_next_cpu);
737 /*
738 * Cross the swap address space size aligned trunk, choose
739 * another trunk randomly to avoid lock contention on swap
740 * address space if possible.
741 */
742 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
743 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
744 /* No free swap slots available */
745 if (si->highest_bit <= si->lowest_bit)
746 return;
747 next = si->lowest_bit +
748 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
749 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
750 next = max_t(unsigned int, next, si->lowest_bit);
751 }
752 this_cpu_write(*si->cluster_next_cpu, next);
753 }
754
755 static int scan_swap_map_slots(struct swap_info_struct *si,
756 unsigned char usage, int nr,
757 swp_entry_t slots[])
758 {
759 struct swap_cluster_info *ci;
760 unsigned long offset;
761 unsigned long scan_base;
762 unsigned long last_in_cluster = 0;
763 int latency_ration = LATENCY_LIMIT;
764 int n_ret = 0;
765 bool scanned_many = false;
766
767 /*
768 * We try to cluster swap pages by allocating them sequentially
769 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
770 * way, however, we resort to first-free allocation, starting
771 * a new cluster. This prevents us from scattering swap pages
772 * all over the entire swap partition, so that we reduce
773 * overall disk seek times between swap pages. -- sct
774 * But we do now try to find an empty cluster. -Andrea
775 * And we let swap pages go all over an SSD partition. Hugh
776 */
777
778 si->flags += SWP_SCANNING;
779 /*
780 * Use percpu scan base for SSD to reduce lock contention on
781 * cluster and swap cache. For HDD, sequential access is more
782 * important.
783 */
784 if (si->flags & SWP_SOLIDSTATE)
785 scan_base = this_cpu_read(*si->cluster_next_cpu);
786 else
787 scan_base = si->cluster_next;
788 offset = scan_base;
789
790 /* SSD algorithm */
791 if (si->cluster_info) {
792 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
793 goto scan;
794 } else if (unlikely(!si->cluster_nr--)) {
795 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
796 si->cluster_nr = SWAPFILE_CLUSTER - 1;
797 goto checks;
798 }
799
800 spin_unlock(&si->lock);
801
802 /*
803 * If seek is expensive, start searching for new cluster from
804 * start of partition, to minimize the span of allocated swap.
805 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
806 * case, just handled by scan_swap_map_try_ssd_cluster() above.
807 */
808 scan_base = offset = si->lowest_bit;
809 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
810
811 /* Locate the first empty (unaligned) cluster */
812 for (; last_in_cluster <= si->highest_bit; offset++) {
813 if (si->swap_map[offset])
814 last_in_cluster = offset + SWAPFILE_CLUSTER;
815 else if (offset == last_in_cluster) {
816 spin_lock(&si->lock);
817 offset -= SWAPFILE_CLUSTER - 1;
818 si->cluster_next = offset;
819 si->cluster_nr = SWAPFILE_CLUSTER - 1;
820 goto checks;
821 }
822 if (unlikely(--latency_ration < 0)) {
823 cond_resched();
824 latency_ration = LATENCY_LIMIT;
825 }
826 }
827
828 offset = scan_base;
829 spin_lock(&si->lock);
830 si->cluster_nr = SWAPFILE_CLUSTER - 1;
831 }
832
833 checks:
834 if (si->cluster_info) {
835 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
836 /* take a break if we already got some slots */
837 if (n_ret)
838 goto done;
839 if (!scan_swap_map_try_ssd_cluster(si, &offset,
840 &scan_base))
841 goto scan;
842 }
843 }
844 if (!(si->flags & SWP_WRITEOK))
845 goto no_page;
846 if (!si->highest_bit)
847 goto no_page;
848 if (offset > si->highest_bit)
849 scan_base = offset = si->lowest_bit;
850
851 ci = lock_cluster(si, offset);
852 /* reuse swap entry of cache-only swap if not busy. */
853 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
854 int swap_was_freed;
855 unlock_cluster(ci);
856 spin_unlock(&si->lock);
857 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
858 spin_lock(&si->lock);
859 /* entry was freed successfully, try to use this again */
860 if (swap_was_freed)
861 goto checks;
862 goto scan; /* check next one */
863 }
864
865 if (si->swap_map[offset]) {
866 unlock_cluster(ci);
867 if (!n_ret)
868 goto scan;
869 else
870 goto done;
871 }
872 si->swap_map[offset] = usage;
873 inc_cluster_info_page(si, si->cluster_info, offset);
874 unlock_cluster(ci);
875
876 swap_range_alloc(si, offset, 1);
877 slots[n_ret++] = swp_entry(si->type, offset);
878
879 /* got enough slots or reach max slots? */
880 if ((n_ret == nr) || (offset >= si->highest_bit))
881 goto done;
882
883 /* search for next available slot */
884
885 /* time to take a break? */
886 if (unlikely(--latency_ration < 0)) {
887 if (n_ret)
888 goto done;
889 spin_unlock(&si->lock);
890 cond_resched();
891 spin_lock(&si->lock);
892 latency_ration = LATENCY_LIMIT;
893 }
894
895 /* try to get more slots in cluster */
896 if (si->cluster_info) {
897 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
898 goto checks;
899 } else if (si->cluster_nr && !si->swap_map[++offset]) {
900 /* non-ssd case, still more slots in cluster? */
901 --si->cluster_nr;
902 goto checks;
903 }
904
905 /*
906 * Even if there's no free clusters available (fragmented),
907 * try to scan a little more quickly with lock held unless we
908 * have scanned too many slots already.
909 */
910 if (!scanned_many) {
911 unsigned long scan_limit;
912
913 if (offset < scan_base)
914 scan_limit = scan_base;
915 else
916 scan_limit = si->highest_bit;
917 for (; offset <= scan_limit && --latency_ration > 0;
918 offset++) {
919 if (!si->swap_map[offset])
920 goto checks;
921 }
922 }
923
924 done:
925 set_cluster_next(si, offset + 1);
926 si->flags -= SWP_SCANNING;
927 return n_ret;
928
929 scan:
930 spin_unlock(&si->lock);
931 while (++offset <= si->highest_bit) {
932 if (!si->swap_map[offset]) {
933 spin_lock(&si->lock);
934 goto checks;
935 }
936 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
937 spin_lock(&si->lock);
938 goto checks;
939 }
940 if (unlikely(--latency_ration < 0)) {
941 cond_resched();
942 latency_ration = LATENCY_LIMIT;
943 scanned_many = true;
944 }
945 }
946 offset = si->lowest_bit;
947 while (offset < scan_base) {
948 if (!si->swap_map[offset]) {
949 spin_lock(&si->lock);
950 goto checks;
951 }
952 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
953 spin_lock(&si->lock);
954 goto checks;
955 }
956 if (unlikely(--latency_ration < 0)) {
957 cond_resched();
958 latency_ration = LATENCY_LIMIT;
959 scanned_many = true;
960 }
961 offset++;
962 }
963 spin_lock(&si->lock);
964
965 no_page:
966 si->flags -= SWP_SCANNING;
967 return n_ret;
968 }
969
970 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
971 {
972 unsigned long idx;
973 struct swap_cluster_info *ci;
974 unsigned long offset, i;
975 unsigned char *map;
976
977 /*
978 * Should not even be attempting cluster allocations when huge
979 * page swap is disabled. Warn and fail the allocation.
980 */
981 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
982 VM_WARN_ON_ONCE(1);
983 return 0;
984 }
985
986 if (cluster_list_empty(&si->free_clusters))
987 return 0;
988
989 idx = cluster_list_first(&si->free_clusters);
990 offset = idx * SWAPFILE_CLUSTER;
991 ci = lock_cluster(si, offset);
992 alloc_cluster(si, idx);
993 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
994
995 map = si->swap_map + offset;
996 for (i = 0; i < SWAPFILE_CLUSTER; i++)
997 map[i] = SWAP_HAS_CACHE;
998 unlock_cluster(ci);
999 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1000 *slot = swp_entry(si->type, offset);
1001
1002 return 1;
1003 }
1004
1005 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1006 {
1007 unsigned long offset = idx * SWAPFILE_CLUSTER;
1008 struct swap_cluster_info *ci;
1009
1010 ci = lock_cluster(si, offset);
1011 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1012 cluster_set_count_flag(ci, 0, 0);
1013 free_cluster(si, idx);
1014 unlock_cluster(ci);
1015 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1016 }
1017
1018 static unsigned long scan_swap_map(struct swap_info_struct *si,
1019 unsigned char usage)
1020 {
1021 swp_entry_t entry;
1022 int n_ret;
1023
1024 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1025
1026 if (n_ret)
1027 return swp_offset(entry);
1028 else
1029 return 0;
1030
1031 }
1032
1033 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1034 {
1035 unsigned long size = swap_entry_size(entry_size);
1036 struct swap_info_struct *si, *next;
1037 long avail_pgs;
1038 int n_ret = 0;
1039 int node;
1040
1041 /* Only single cluster request supported */
1042 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1043
1044 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1045 if (avail_pgs <= 0)
1046 goto noswap;
1047
1048 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1049
1050 atomic_long_sub(n_goal * size, &nr_swap_pages);
1051
1052 spin_lock(&swap_avail_lock);
1053
1054 start_over:
1055 node = numa_node_id();
1056 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1057 /* requeue si to after same-priority siblings */
1058 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1059 spin_unlock(&swap_avail_lock);
1060 spin_lock(&si->lock);
1061 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1062 spin_lock(&swap_avail_lock);
1063 if (plist_node_empty(&si->avail_lists[node])) {
1064 spin_unlock(&si->lock);
1065 goto nextsi;
1066 }
1067 WARN(!si->highest_bit,
1068 "swap_info %d in list but !highest_bit\n",
1069 si->type);
1070 WARN(!(si->flags & SWP_WRITEOK),
1071 "swap_info %d in list but !SWP_WRITEOK\n",
1072 si->type);
1073 __del_from_avail_list(si);
1074 spin_unlock(&si->lock);
1075 goto nextsi;
1076 }
1077 if (size == SWAPFILE_CLUSTER) {
1078 if (!(si->flags & SWP_FS))
1079 n_ret = swap_alloc_cluster(si, swp_entries);
1080 } else
1081 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1082 n_goal, swp_entries);
1083 spin_unlock(&si->lock);
1084 if (n_ret || size == SWAPFILE_CLUSTER)
1085 goto check_out;
1086 pr_debug("scan_swap_map of si %d failed to find offset\n",
1087 si->type);
1088
1089 spin_lock(&swap_avail_lock);
1090 nextsi:
1091 /*
1092 * if we got here, it's likely that si was almost full before,
1093 * and since scan_swap_map() can drop the si->lock, multiple
1094 * callers probably all tried to get a page from the same si
1095 * and it filled up before we could get one; or, the si filled
1096 * up between us dropping swap_avail_lock and taking si->lock.
1097 * Since we dropped the swap_avail_lock, the swap_avail_head
1098 * list may have been modified; so if next is still in the
1099 * swap_avail_head list then try it, otherwise start over
1100 * if we have not gotten any slots.
1101 */
1102 if (plist_node_empty(&next->avail_lists[node]))
1103 goto start_over;
1104 }
1105
1106 spin_unlock(&swap_avail_lock);
1107
1108 check_out:
1109 if (n_ret < n_goal)
1110 atomic_long_add((long)(n_goal - n_ret) * size,
1111 &nr_swap_pages);
1112 noswap:
1113 return n_ret;
1114 }
1115
1116 /* The only caller of this function is now suspend routine */
1117 swp_entry_t get_swap_page_of_type(int type)
1118 {
1119 struct swap_info_struct *si = swap_type_to_swap_info(type);
1120 pgoff_t offset;
1121
1122 if (!si)
1123 goto fail;
1124
1125 spin_lock(&si->lock);
1126 if (si->flags & SWP_WRITEOK) {
1127 atomic_long_dec(&nr_swap_pages);
1128 /* This is called for allocating swap entry, not cache */
1129 offset = scan_swap_map(si, 1);
1130 if (offset) {
1131 spin_unlock(&si->lock);
1132 return swp_entry(type, offset);
1133 }
1134 atomic_long_inc(&nr_swap_pages);
1135 }
1136 spin_unlock(&si->lock);
1137 fail:
1138 return (swp_entry_t) {0};
1139 }
1140
1141 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1142 {
1143 struct swap_info_struct *p;
1144 unsigned long offset;
1145
1146 if (!entry.val)
1147 goto out;
1148 p = swp_swap_info(entry);
1149 if (!p)
1150 goto bad_nofile;
1151 if (!(p->flags & SWP_USED))
1152 goto bad_device;
1153 offset = swp_offset(entry);
1154 if (offset >= p->max)
1155 goto bad_offset;
1156 return p;
1157
1158 bad_offset:
1159 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1160 goto out;
1161 bad_device:
1162 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1163 goto out;
1164 bad_nofile:
1165 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1166 out:
1167 return NULL;
1168 }
1169
1170 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1171 {
1172 struct swap_info_struct *p;
1173
1174 p = __swap_info_get(entry);
1175 if (!p)
1176 goto out;
1177 if (!p->swap_map[swp_offset(entry)])
1178 goto bad_free;
1179 return p;
1180
1181 bad_free:
1182 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1183 goto out;
1184 out:
1185 return NULL;
1186 }
1187
1188 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1189 {
1190 struct swap_info_struct *p;
1191
1192 p = _swap_info_get(entry);
1193 if (p)
1194 spin_lock(&p->lock);
1195 return p;
1196 }
1197
1198 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1199 struct swap_info_struct *q)
1200 {
1201 struct swap_info_struct *p;
1202
1203 p = _swap_info_get(entry);
1204
1205 if (p != q) {
1206 if (q != NULL)
1207 spin_unlock(&q->lock);
1208 if (p != NULL)
1209 spin_lock(&p->lock);
1210 }
1211 return p;
1212 }
1213
1214 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1215 unsigned long offset,
1216 unsigned char usage)
1217 {
1218 unsigned char count;
1219 unsigned char has_cache;
1220
1221 count = p->swap_map[offset];
1222
1223 has_cache = count & SWAP_HAS_CACHE;
1224 count &= ~SWAP_HAS_CACHE;
1225
1226 if (usage == SWAP_HAS_CACHE) {
1227 VM_BUG_ON(!has_cache);
1228 has_cache = 0;
1229 } else if (count == SWAP_MAP_SHMEM) {
1230 /*
1231 * Or we could insist on shmem.c using a special
1232 * swap_shmem_free() and free_shmem_swap_and_cache()...
1233 */
1234 count = 0;
1235 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1236 if (count == COUNT_CONTINUED) {
1237 if (swap_count_continued(p, offset, count))
1238 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1239 else
1240 count = SWAP_MAP_MAX;
1241 } else
1242 count--;
1243 }
1244
1245 usage = count | has_cache;
1246 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1247
1248 return usage;
1249 }
1250
1251 /*
1252 * Check whether swap entry is valid in the swap device. If so,
1253 * return pointer to swap_info_struct, and keep the swap entry valid
1254 * via preventing the swap device from being swapoff, until
1255 * put_swap_device() is called. Otherwise return NULL.
1256 *
1257 * The entirety of the RCU read critical section must come before the
1258 * return from or after the call to synchronize_rcu() in
1259 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1260 * true, the si->map, si->cluster_info, etc. must be valid in the
1261 * critical section.
1262 *
1263 * Notice that swapoff or swapoff+swapon can still happen before the
1264 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1265 * in put_swap_device() if there isn't any other way to prevent
1266 * swapoff, such as page lock, page table lock, etc. The caller must
1267 * be prepared for that. For example, the following situation is
1268 * possible.
1269 *
1270 * CPU1 CPU2
1271 * do_swap_page()
1272 * ... swapoff+swapon
1273 * __read_swap_cache_async()
1274 * swapcache_prepare()
1275 * __swap_duplicate()
1276 * // check swap_map
1277 * // verify PTE not changed
1278 *
1279 * In __swap_duplicate(), the swap_map need to be checked before
1280 * changing partly because the specified swap entry may be for another
1281 * swap device which has been swapoff. And in do_swap_page(), after
1282 * the page is read from the swap device, the PTE is verified not
1283 * changed with the page table locked to check whether the swap device
1284 * has been swapoff or swapoff+swapon.
1285 */
1286 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1287 {
1288 struct swap_info_struct *si;
1289 unsigned long offset;
1290
1291 if (!entry.val)
1292 goto out;
1293 si = swp_swap_info(entry);
1294 if (!si)
1295 goto bad_nofile;
1296
1297 rcu_read_lock();
1298 if (!(si->flags & SWP_VALID))
1299 goto unlock_out;
1300 offset = swp_offset(entry);
1301 if (offset >= si->max)
1302 goto unlock_out;
1303
1304 return si;
1305 bad_nofile:
1306 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1307 out:
1308 return NULL;
1309 unlock_out:
1310 rcu_read_unlock();
1311 return NULL;
1312 }
1313
1314 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1315 swp_entry_t entry)
1316 {
1317 struct swap_cluster_info *ci;
1318 unsigned long offset = swp_offset(entry);
1319 unsigned char usage;
1320
1321 ci = lock_cluster_or_swap_info(p, offset);
1322 usage = __swap_entry_free_locked(p, offset, 1);
1323 unlock_cluster_or_swap_info(p, ci);
1324 if (!usage)
1325 free_swap_slot(entry);
1326
1327 return usage;
1328 }
1329
1330 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1331 {
1332 struct swap_cluster_info *ci;
1333 unsigned long offset = swp_offset(entry);
1334 unsigned char count;
1335
1336 ci = lock_cluster(p, offset);
1337 count = p->swap_map[offset];
1338 VM_BUG_ON(count != SWAP_HAS_CACHE);
1339 p->swap_map[offset] = 0;
1340 dec_cluster_info_page(p, p->cluster_info, offset);
1341 unlock_cluster(ci);
1342
1343 mem_cgroup_uncharge_swap(entry, 1);
1344 swap_range_free(p, offset, 1);
1345 }
1346
1347 /*
1348 * Caller has made sure that the swap device corresponding to entry
1349 * is still around or has not been recycled.
1350 */
1351 void swap_free(swp_entry_t entry)
1352 {
1353 struct swap_info_struct *p;
1354
1355 p = _swap_info_get(entry);
1356 if (p)
1357 __swap_entry_free(p, entry);
1358 }
1359
1360 /*
1361 * Called after dropping swapcache to decrease refcnt to swap entries.
1362 */
1363 void put_swap_page(struct page *page, swp_entry_t entry)
1364 {
1365 unsigned long offset = swp_offset(entry);
1366 unsigned long idx = offset / SWAPFILE_CLUSTER;
1367 struct swap_cluster_info *ci;
1368 struct swap_info_struct *si;
1369 unsigned char *map;
1370 unsigned int i, free_entries = 0;
1371 unsigned char val;
1372 int size = swap_entry_size(hpage_nr_pages(page));
1373
1374 si = _swap_info_get(entry);
1375 if (!si)
1376 return;
1377
1378 ci = lock_cluster_or_swap_info(si, offset);
1379 if (size == SWAPFILE_CLUSTER) {
1380 VM_BUG_ON(!cluster_is_huge(ci));
1381 map = si->swap_map + offset;
1382 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1383 val = map[i];
1384 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1385 if (val == SWAP_HAS_CACHE)
1386 free_entries++;
1387 }
1388 cluster_clear_huge(ci);
1389 if (free_entries == SWAPFILE_CLUSTER) {
1390 unlock_cluster_or_swap_info(si, ci);
1391 spin_lock(&si->lock);
1392 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1393 swap_free_cluster(si, idx);
1394 spin_unlock(&si->lock);
1395 return;
1396 }
1397 }
1398 for (i = 0; i < size; i++, entry.val++) {
1399 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1400 unlock_cluster_or_swap_info(si, ci);
1401 free_swap_slot(entry);
1402 if (i == size - 1)
1403 return;
1404 lock_cluster_or_swap_info(si, offset);
1405 }
1406 }
1407 unlock_cluster_or_swap_info(si, ci);
1408 }
1409
1410 #ifdef CONFIG_THP_SWAP
1411 int split_swap_cluster(swp_entry_t entry)
1412 {
1413 struct swap_info_struct *si;
1414 struct swap_cluster_info *ci;
1415 unsigned long offset = swp_offset(entry);
1416
1417 si = _swap_info_get(entry);
1418 if (!si)
1419 return -EBUSY;
1420 ci = lock_cluster(si, offset);
1421 cluster_clear_huge(ci);
1422 unlock_cluster(ci);
1423 return 0;
1424 }
1425 #endif
1426
1427 static int swp_entry_cmp(const void *ent1, const void *ent2)
1428 {
1429 const swp_entry_t *e1 = ent1, *e2 = ent2;
1430
1431 return (int)swp_type(*e1) - (int)swp_type(*e2);
1432 }
1433
1434 void swapcache_free_entries(swp_entry_t *entries, int n)
1435 {
1436 struct swap_info_struct *p, *prev;
1437 int i;
1438
1439 if (n <= 0)
1440 return;
1441
1442 prev = NULL;
1443 p = NULL;
1444
1445 /*
1446 * Sort swap entries by swap device, so each lock is only taken once.
1447 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1448 * so low that it isn't necessary to optimize further.
1449 */
1450 if (nr_swapfiles > 1)
1451 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1452 for (i = 0; i < n; ++i) {
1453 p = swap_info_get_cont(entries[i], prev);
1454 if (p)
1455 swap_entry_free(p, entries[i]);
1456 prev = p;
1457 }
1458 if (p)
1459 spin_unlock(&p->lock);
1460 }
1461
1462 /*
1463 * How many references to page are currently swapped out?
1464 * This does not give an exact answer when swap count is continued,
1465 * but does include the high COUNT_CONTINUED flag to allow for that.
1466 */
1467 int page_swapcount(struct page *page)
1468 {
1469 int count = 0;
1470 struct swap_info_struct *p;
1471 struct swap_cluster_info *ci;
1472 swp_entry_t entry;
1473 unsigned long offset;
1474
1475 entry.val = page_private(page);
1476 p = _swap_info_get(entry);
1477 if (p) {
1478 offset = swp_offset(entry);
1479 ci = lock_cluster_or_swap_info(p, offset);
1480 count = swap_count(p->swap_map[offset]);
1481 unlock_cluster_or_swap_info(p, ci);
1482 }
1483 return count;
1484 }
1485
1486 int __swap_count(swp_entry_t entry)
1487 {
1488 struct swap_info_struct *si;
1489 pgoff_t offset = swp_offset(entry);
1490 int count = 0;
1491
1492 si = get_swap_device(entry);
1493 if (si) {
1494 count = swap_count(si->swap_map[offset]);
1495 put_swap_device(si);
1496 }
1497 return count;
1498 }
1499
1500 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1501 {
1502 int count = 0;
1503 pgoff_t offset = swp_offset(entry);
1504 struct swap_cluster_info *ci;
1505
1506 ci = lock_cluster_or_swap_info(si, offset);
1507 count = swap_count(si->swap_map[offset]);
1508 unlock_cluster_or_swap_info(si, ci);
1509 return count;
1510 }
1511
1512 /*
1513 * How many references to @entry are currently swapped out?
1514 * This does not give an exact answer when swap count is continued,
1515 * but does include the high COUNT_CONTINUED flag to allow for that.
1516 */
1517 int __swp_swapcount(swp_entry_t entry)
1518 {
1519 int count = 0;
1520 struct swap_info_struct *si;
1521
1522 si = get_swap_device(entry);
1523 if (si) {
1524 count = swap_swapcount(si, entry);
1525 put_swap_device(si);
1526 }
1527 return count;
1528 }
1529
1530 /*
1531 * How many references to @entry are currently swapped out?
1532 * This considers COUNT_CONTINUED so it returns exact answer.
1533 */
1534 int swp_swapcount(swp_entry_t entry)
1535 {
1536 int count, tmp_count, n;
1537 struct swap_info_struct *p;
1538 struct swap_cluster_info *ci;
1539 struct page *page;
1540 pgoff_t offset;
1541 unsigned char *map;
1542
1543 p = _swap_info_get(entry);
1544 if (!p)
1545 return 0;
1546
1547 offset = swp_offset(entry);
1548
1549 ci = lock_cluster_or_swap_info(p, offset);
1550
1551 count = swap_count(p->swap_map[offset]);
1552 if (!(count & COUNT_CONTINUED))
1553 goto out;
1554
1555 count &= ~COUNT_CONTINUED;
1556 n = SWAP_MAP_MAX + 1;
1557
1558 page = vmalloc_to_page(p->swap_map + offset);
1559 offset &= ~PAGE_MASK;
1560 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1561
1562 do {
1563 page = list_next_entry(page, lru);
1564 map = kmap_atomic(page);
1565 tmp_count = map[offset];
1566 kunmap_atomic(map);
1567
1568 count += (tmp_count & ~COUNT_CONTINUED) * n;
1569 n *= (SWAP_CONT_MAX + 1);
1570 } while (tmp_count & COUNT_CONTINUED);
1571 out:
1572 unlock_cluster_or_swap_info(p, ci);
1573 return count;
1574 }
1575
1576 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1577 swp_entry_t entry)
1578 {
1579 struct swap_cluster_info *ci;
1580 unsigned char *map = si->swap_map;
1581 unsigned long roffset = swp_offset(entry);
1582 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1583 int i;
1584 bool ret = false;
1585
1586 ci = lock_cluster_or_swap_info(si, offset);
1587 if (!ci || !cluster_is_huge(ci)) {
1588 if (swap_count(map[roffset]))
1589 ret = true;
1590 goto unlock_out;
1591 }
1592 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1593 if (swap_count(map[offset + i])) {
1594 ret = true;
1595 break;
1596 }
1597 }
1598 unlock_out:
1599 unlock_cluster_or_swap_info(si, ci);
1600 return ret;
1601 }
1602
1603 static bool page_swapped(struct page *page)
1604 {
1605 swp_entry_t entry;
1606 struct swap_info_struct *si;
1607
1608 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1609 return page_swapcount(page) != 0;
1610
1611 page = compound_head(page);
1612 entry.val = page_private(page);
1613 si = _swap_info_get(entry);
1614 if (si)
1615 return swap_page_trans_huge_swapped(si, entry);
1616 return false;
1617 }
1618
1619 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1620 int *total_swapcount)
1621 {
1622 int i, map_swapcount, _total_mapcount, _total_swapcount;
1623 unsigned long offset = 0;
1624 struct swap_info_struct *si;
1625 struct swap_cluster_info *ci = NULL;
1626 unsigned char *map = NULL;
1627 int mapcount, swapcount = 0;
1628
1629 /* hugetlbfs shouldn't call it */
1630 VM_BUG_ON_PAGE(PageHuge(page), page);
1631
1632 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1633 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1634 if (PageSwapCache(page))
1635 swapcount = page_swapcount(page);
1636 if (total_swapcount)
1637 *total_swapcount = swapcount;
1638 return mapcount + swapcount;
1639 }
1640
1641 page = compound_head(page);
1642
1643 _total_mapcount = _total_swapcount = map_swapcount = 0;
1644 if (PageSwapCache(page)) {
1645 swp_entry_t entry;
1646
1647 entry.val = page_private(page);
1648 si = _swap_info_get(entry);
1649 if (si) {
1650 map = si->swap_map;
1651 offset = swp_offset(entry);
1652 }
1653 }
1654 if (map)
1655 ci = lock_cluster(si, offset);
1656 for (i = 0; i < HPAGE_PMD_NR; i++) {
1657 mapcount = atomic_read(&page[i]._mapcount) + 1;
1658 _total_mapcount += mapcount;
1659 if (map) {
1660 swapcount = swap_count(map[offset + i]);
1661 _total_swapcount += swapcount;
1662 }
1663 map_swapcount = max(map_swapcount, mapcount + swapcount);
1664 }
1665 unlock_cluster(ci);
1666 if (PageDoubleMap(page)) {
1667 map_swapcount -= 1;
1668 _total_mapcount -= HPAGE_PMD_NR;
1669 }
1670 mapcount = compound_mapcount(page);
1671 map_swapcount += mapcount;
1672 _total_mapcount += mapcount;
1673 if (total_mapcount)
1674 *total_mapcount = _total_mapcount;
1675 if (total_swapcount)
1676 *total_swapcount = _total_swapcount;
1677
1678 return map_swapcount;
1679 }
1680
1681 /*
1682 * We can write to an anon page without COW if there are no other references
1683 * to it. And as a side-effect, free up its swap: because the old content
1684 * on disk will never be read, and seeking back there to write new content
1685 * later would only waste time away from clustering.
1686 *
1687 * NOTE: total_map_swapcount should not be relied upon by the caller if
1688 * reuse_swap_page() returns false, but it may be always overwritten
1689 * (see the other implementation for CONFIG_SWAP=n).
1690 */
1691 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1692 {
1693 int count, total_mapcount, total_swapcount;
1694
1695 VM_BUG_ON_PAGE(!PageLocked(page), page);
1696 if (unlikely(PageKsm(page)))
1697 return false;
1698 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1699 &total_swapcount);
1700 if (total_map_swapcount)
1701 *total_map_swapcount = total_mapcount + total_swapcount;
1702 if (count == 1 && PageSwapCache(page) &&
1703 (likely(!PageTransCompound(page)) ||
1704 /* The remaining swap count will be freed soon */
1705 total_swapcount == page_swapcount(page))) {
1706 if (!PageWriteback(page)) {
1707 page = compound_head(page);
1708 delete_from_swap_cache(page);
1709 SetPageDirty(page);
1710 } else {
1711 swp_entry_t entry;
1712 struct swap_info_struct *p;
1713
1714 entry.val = page_private(page);
1715 p = swap_info_get(entry);
1716 if (p->flags & SWP_STABLE_WRITES) {
1717 spin_unlock(&p->lock);
1718 return false;
1719 }
1720 spin_unlock(&p->lock);
1721 }
1722 }
1723
1724 return count <= 1;
1725 }
1726
1727 /*
1728 * If swap is getting full, or if there are no more mappings of this page,
1729 * then try_to_free_swap is called to free its swap space.
1730 */
1731 int try_to_free_swap(struct page *page)
1732 {
1733 VM_BUG_ON_PAGE(!PageLocked(page), page);
1734
1735 if (!PageSwapCache(page))
1736 return 0;
1737 if (PageWriteback(page))
1738 return 0;
1739 if (page_swapped(page))
1740 return 0;
1741
1742 /*
1743 * Once hibernation has begun to create its image of memory,
1744 * there's a danger that one of the calls to try_to_free_swap()
1745 * - most probably a call from __try_to_reclaim_swap() while
1746 * hibernation is allocating its own swap pages for the image,
1747 * but conceivably even a call from memory reclaim - will free
1748 * the swap from a page which has already been recorded in the
1749 * image as a clean swapcache page, and then reuse its swap for
1750 * another page of the image. On waking from hibernation, the
1751 * original page might be freed under memory pressure, then
1752 * later read back in from swap, now with the wrong data.
1753 *
1754 * Hibernation suspends storage while it is writing the image
1755 * to disk so check that here.
1756 */
1757 if (pm_suspended_storage())
1758 return 0;
1759
1760 page = compound_head(page);
1761 delete_from_swap_cache(page);
1762 SetPageDirty(page);
1763 return 1;
1764 }
1765
1766 /*
1767 * Free the swap entry like above, but also try to
1768 * free the page cache entry if it is the last user.
1769 */
1770 int free_swap_and_cache(swp_entry_t entry)
1771 {
1772 struct swap_info_struct *p;
1773 unsigned char count;
1774
1775 if (non_swap_entry(entry))
1776 return 1;
1777
1778 p = _swap_info_get(entry);
1779 if (p) {
1780 count = __swap_entry_free(p, entry);
1781 if (count == SWAP_HAS_CACHE &&
1782 !swap_page_trans_huge_swapped(p, entry))
1783 __try_to_reclaim_swap(p, swp_offset(entry),
1784 TTRS_UNMAPPED | TTRS_FULL);
1785 }
1786 return p != NULL;
1787 }
1788
1789 #ifdef CONFIG_HIBERNATION
1790 /*
1791 * Find the swap type that corresponds to given device (if any).
1792 *
1793 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1794 * from 0, in which the swap header is expected to be located.
1795 *
1796 * This is needed for the suspend to disk (aka swsusp).
1797 */
1798 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1799 {
1800 struct block_device *bdev = NULL;
1801 int type;
1802
1803 if (device)
1804 bdev = bdget(device);
1805
1806 spin_lock(&swap_lock);
1807 for (type = 0; type < nr_swapfiles; type++) {
1808 struct swap_info_struct *sis = swap_info[type];
1809
1810 if (!(sis->flags & SWP_WRITEOK))
1811 continue;
1812
1813 if (!bdev) {
1814 if (bdev_p)
1815 *bdev_p = bdgrab(sis->bdev);
1816
1817 spin_unlock(&swap_lock);
1818 return type;
1819 }
1820 if (bdev == sis->bdev) {
1821 struct swap_extent *se = first_se(sis);
1822
1823 if (se->start_block == offset) {
1824 if (bdev_p)
1825 *bdev_p = bdgrab(sis->bdev);
1826
1827 spin_unlock(&swap_lock);
1828 bdput(bdev);
1829 return type;
1830 }
1831 }
1832 }
1833 spin_unlock(&swap_lock);
1834 if (bdev)
1835 bdput(bdev);
1836
1837 return -ENODEV;
1838 }
1839
1840 /*
1841 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1842 * corresponding to given index in swap_info (swap type).
1843 */
1844 sector_t swapdev_block(int type, pgoff_t offset)
1845 {
1846 struct block_device *bdev;
1847 struct swap_info_struct *si = swap_type_to_swap_info(type);
1848
1849 if (!si || !(si->flags & SWP_WRITEOK))
1850 return 0;
1851 return map_swap_entry(swp_entry(type, offset), &bdev);
1852 }
1853
1854 /*
1855 * Return either the total number of swap pages of given type, or the number
1856 * of free pages of that type (depending on @free)
1857 *
1858 * This is needed for software suspend
1859 */
1860 unsigned int count_swap_pages(int type, int free)
1861 {
1862 unsigned int n = 0;
1863
1864 spin_lock(&swap_lock);
1865 if ((unsigned int)type < nr_swapfiles) {
1866 struct swap_info_struct *sis = swap_info[type];
1867
1868 spin_lock(&sis->lock);
1869 if (sis->flags & SWP_WRITEOK) {
1870 n = sis->pages;
1871 if (free)
1872 n -= sis->inuse_pages;
1873 }
1874 spin_unlock(&sis->lock);
1875 }
1876 spin_unlock(&swap_lock);
1877 return n;
1878 }
1879 #endif /* CONFIG_HIBERNATION */
1880
1881 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1882 {
1883 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1884 }
1885
1886 /*
1887 * No need to decide whether this PTE shares the swap entry with others,
1888 * just let do_wp_page work it out if a write is requested later - to
1889 * force COW, vm_page_prot omits write permission from any private vma.
1890 */
1891 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1892 unsigned long addr, swp_entry_t entry, struct page *page)
1893 {
1894 struct page *swapcache;
1895 spinlock_t *ptl;
1896 pte_t *pte;
1897 int ret = 1;
1898
1899 swapcache = page;
1900 page = ksm_might_need_to_copy(page, vma, addr);
1901 if (unlikely(!page))
1902 return -ENOMEM;
1903
1904 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1905 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1906 ret = 0;
1907 goto out;
1908 }
1909
1910 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1911 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1912 get_page(page);
1913 set_pte_at(vma->vm_mm, addr, pte,
1914 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1915 if (page == swapcache) {
1916 page_add_anon_rmap(page, vma, addr, false);
1917 } else { /* ksm created a completely new copy */
1918 page_add_new_anon_rmap(page, vma, addr, false);
1919 lru_cache_add_active_or_unevictable(page, vma);
1920 }
1921 swap_free(entry);
1922 /*
1923 * Move the page to the active list so it is not
1924 * immediately swapped out again after swapon.
1925 */
1926 activate_page(page);
1927 out:
1928 pte_unmap_unlock(pte, ptl);
1929 if (page != swapcache) {
1930 unlock_page(page);
1931 put_page(page);
1932 }
1933 return ret;
1934 }
1935
1936 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1937 unsigned long addr, unsigned long end,
1938 unsigned int type, bool frontswap,
1939 unsigned long *fs_pages_to_unuse)
1940 {
1941 struct page *page;
1942 swp_entry_t entry;
1943 pte_t *pte;
1944 struct swap_info_struct *si;
1945 unsigned long offset;
1946 int ret = 0;
1947 volatile unsigned char *swap_map;
1948
1949 si = swap_info[type];
1950 pte = pte_offset_map(pmd, addr);
1951 do {
1952 struct vm_fault vmf;
1953
1954 if (!is_swap_pte(*pte))
1955 continue;
1956
1957 entry = pte_to_swp_entry(*pte);
1958 if (swp_type(entry) != type)
1959 continue;
1960
1961 offset = swp_offset(entry);
1962 if (frontswap && !frontswap_test(si, offset))
1963 continue;
1964
1965 pte_unmap(pte);
1966 swap_map = &si->swap_map[offset];
1967 page = lookup_swap_cache(entry, vma, addr);
1968 if (!page) {
1969 vmf.vma = vma;
1970 vmf.address = addr;
1971 vmf.pmd = pmd;
1972 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1973 &vmf);
1974 }
1975 if (!page) {
1976 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1977 goto try_next;
1978 return -ENOMEM;
1979 }
1980
1981 lock_page(page);
1982 wait_on_page_writeback(page);
1983 ret = unuse_pte(vma, pmd, addr, entry, page);
1984 if (ret < 0) {
1985 unlock_page(page);
1986 put_page(page);
1987 goto out;
1988 }
1989
1990 try_to_free_swap(page);
1991 unlock_page(page);
1992 put_page(page);
1993
1994 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1995 ret = FRONTSWAP_PAGES_UNUSED;
1996 goto out;
1997 }
1998 try_next:
1999 pte = pte_offset_map(pmd, addr);
2000 } while (pte++, addr += PAGE_SIZE, addr != end);
2001 pte_unmap(pte - 1);
2002
2003 ret = 0;
2004 out:
2005 return ret;
2006 }
2007
2008 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2009 unsigned long addr, unsigned long end,
2010 unsigned int type, bool frontswap,
2011 unsigned long *fs_pages_to_unuse)
2012 {
2013 pmd_t *pmd;
2014 unsigned long next;
2015 int ret;
2016
2017 pmd = pmd_offset(pud, addr);
2018 do {
2019 cond_resched();
2020 next = pmd_addr_end(addr, end);
2021 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2022 continue;
2023 ret = unuse_pte_range(vma, pmd, addr, next, type,
2024 frontswap, fs_pages_to_unuse);
2025 if (ret)
2026 return ret;
2027 } while (pmd++, addr = next, addr != end);
2028 return 0;
2029 }
2030
2031 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2032 unsigned long addr, unsigned long end,
2033 unsigned int type, bool frontswap,
2034 unsigned long *fs_pages_to_unuse)
2035 {
2036 pud_t *pud;
2037 unsigned long next;
2038 int ret;
2039
2040 pud = pud_offset(p4d, addr);
2041 do {
2042 next = pud_addr_end(addr, end);
2043 if (pud_none_or_clear_bad(pud))
2044 continue;
2045 ret = unuse_pmd_range(vma, pud, addr, next, type,
2046 frontswap, fs_pages_to_unuse);
2047 if (ret)
2048 return ret;
2049 } while (pud++, addr = next, addr != end);
2050 return 0;
2051 }
2052
2053 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2054 unsigned long addr, unsigned long end,
2055 unsigned int type, bool frontswap,
2056 unsigned long *fs_pages_to_unuse)
2057 {
2058 p4d_t *p4d;
2059 unsigned long next;
2060 int ret;
2061
2062 p4d = p4d_offset(pgd, addr);
2063 do {
2064 next = p4d_addr_end(addr, end);
2065 if (p4d_none_or_clear_bad(p4d))
2066 continue;
2067 ret = unuse_pud_range(vma, p4d, addr, next, type,
2068 frontswap, fs_pages_to_unuse);
2069 if (ret)
2070 return ret;
2071 } while (p4d++, addr = next, addr != end);
2072 return 0;
2073 }
2074
2075 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2076 bool frontswap, unsigned long *fs_pages_to_unuse)
2077 {
2078 pgd_t *pgd;
2079 unsigned long addr, end, next;
2080 int ret;
2081
2082 addr = vma->vm_start;
2083 end = vma->vm_end;
2084
2085 pgd = pgd_offset(vma->vm_mm, addr);
2086 do {
2087 next = pgd_addr_end(addr, end);
2088 if (pgd_none_or_clear_bad(pgd))
2089 continue;
2090 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2091 frontswap, fs_pages_to_unuse);
2092 if (ret)
2093 return ret;
2094 } while (pgd++, addr = next, addr != end);
2095 return 0;
2096 }
2097
2098 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2099 bool frontswap, unsigned long *fs_pages_to_unuse)
2100 {
2101 struct vm_area_struct *vma;
2102 int ret = 0;
2103
2104 down_read(&mm->mmap_sem);
2105 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2106 if (vma->anon_vma) {
2107 ret = unuse_vma(vma, type, frontswap,
2108 fs_pages_to_unuse);
2109 if (ret)
2110 break;
2111 }
2112 cond_resched();
2113 }
2114 up_read(&mm->mmap_sem);
2115 return ret;
2116 }
2117
2118 /*
2119 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2120 * from current position to next entry still in use. Return 0
2121 * if there are no inuse entries after prev till end of the map.
2122 */
2123 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2124 unsigned int prev, bool frontswap)
2125 {
2126 unsigned int i;
2127 unsigned char count;
2128
2129 /*
2130 * No need for swap_lock here: we're just looking
2131 * for whether an entry is in use, not modifying it; false
2132 * hits are okay, and sys_swapoff() has already prevented new
2133 * allocations from this area (while holding swap_lock).
2134 */
2135 for (i = prev + 1; i < si->max; i++) {
2136 count = READ_ONCE(si->swap_map[i]);
2137 if (count && swap_count(count) != SWAP_MAP_BAD)
2138 if (!frontswap || frontswap_test(si, i))
2139 break;
2140 if ((i % LATENCY_LIMIT) == 0)
2141 cond_resched();
2142 }
2143
2144 if (i == si->max)
2145 i = 0;
2146
2147 return i;
2148 }
2149
2150 /*
2151 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2152 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2153 */
2154 int try_to_unuse(unsigned int type, bool frontswap,
2155 unsigned long pages_to_unuse)
2156 {
2157 struct mm_struct *prev_mm;
2158 struct mm_struct *mm;
2159 struct list_head *p;
2160 int retval = 0;
2161 struct swap_info_struct *si = swap_info[type];
2162 struct page *page;
2163 swp_entry_t entry;
2164 unsigned int i;
2165
2166 if (!READ_ONCE(si->inuse_pages))
2167 return 0;
2168
2169 if (!frontswap)
2170 pages_to_unuse = 0;
2171
2172 retry:
2173 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2174 if (retval)
2175 goto out;
2176
2177 prev_mm = &init_mm;
2178 mmget(prev_mm);
2179
2180 spin_lock(&mmlist_lock);
2181 p = &init_mm.mmlist;
2182 while (READ_ONCE(si->inuse_pages) &&
2183 !signal_pending(current) &&
2184 (p = p->next) != &init_mm.mmlist) {
2185
2186 mm = list_entry(p, struct mm_struct, mmlist);
2187 if (!mmget_not_zero(mm))
2188 continue;
2189 spin_unlock(&mmlist_lock);
2190 mmput(prev_mm);
2191 prev_mm = mm;
2192 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2193
2194 if (retval) {
2195 mmput(prev_mm);
2196 goto out;
2197 }
2198
2199 /*
2200 * Make sure that we aren't completely killing
2201 * interactive performance.
2202 */
2203 cond_resched();
2204 spin_lock(&mmlist_lock);
2205 }
2206 spin_unlock(&mmlist_lock);
2207
2208 mmput(prev_mm);
2209
2210 i = 0;
2211 while (READ_ONCE(si->inuse_pages) &&
2212 !signal_pending(current) &&
2213 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2214
2215 entry = swp_entry(type, i);
2216 page = find_get_page(swap_address_space(entry), i);
2217 if (!page)
2218 continue;
2219
2220 /*
2221 * It is conceivable that a racing task removed this page from
2222 * swap cache just before we acquired the page lock. The page
2223 * might even be back in swap cache on another swap area. But
2224 * that is okay, try_to_free_swap() only removes stale pages.
2225 */
2226 lock_page(page);
2227 wait_on_page_writeback(page);
2228 try_to_free_swap(page);
2229 unlock_page(page);
2230 put_page(page);
2231
2232 /*
2233 * For frontswap, we just need to unuse pages_to_unuse, if
2234 * it was specified. Need not check frontswap again here as
2235 * we already zeroed out pages_to_unuse if not frontswap.
2236 */
2237 if (pages_to_unuse && --pages_to_unuse == 0)
2238 goto out;
2239 }
2240
2241 /*
2242 * Lets check again to see if there are still swap entries in the map.
2243 * If yes, we would need to do retry the unuse logic again.
2244 * Under global memory pressure, swap entries can be reinserted back
2245 * into process space after the mmlist loop above passes over them.
2246 *
2247 * Limit the number of retries? No: when mmget_not_zero() above fails,
2248 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2249 * at its own independent pace; and even shmem_writepage() could have
2250 * been preempted after get_swap_page(), temporarily hiding that swap.
2251 * It's easy and robust (though cpu-intensive) just to keep retrying.
2252 */
2253 if (READ_ONCE(si->inuse_pages)) {
2254 if (!signal_pending(current))
2255 goto retry;
2256 retval = -EINTR;
2257 }
2258 out:
2259 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2260 }
2261
2262 /*
2263 * After a successful try_to_unuse, if no swap is now in use, we know
2264 * we can empty the mmlist. swap_lock must be held on entry and exit.
2265 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2266 * added to the mmlist just after page_duplicate - before would be racy.
2267 */
2268 static void drain_mmlist(void)
2269 {
2270 struct list_head *p, *next;
2271 unsigned int type;
2272
2273 for (type = 0; type < nr_swapfiles; type++)
2274 if (swap_info[type]->inuse_pages)
2275 return;
2276 spin_lock(&mmlist_lock);
2277 list_for_each_safe(p, next, &init_mm.mmlist)
2278 list_del_init(p);
2279 spin_unlock(&mmlist_lock);
2280 }
2281
2282 /*
2283 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2284 * corresponds to page offset for the specified swap entry.
2285 * Note that the type of this function is sector_t, but it returns page offset
2286 * into the bdev, not sector offset.
2287 */
2288 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2289 {
2290 struct swap_info_struct *sis;
2291 struct swap_extent *se;
2292 pgoff_t offset;
2293
2294 sis = swp_swap_info(entry);
2295 *bdev = sis->bdev;
2296
2297 offset = swp_offset(entry);
2298 se = offset_to_swap_extent(sis, offset);
2299 return se->start_block + (offset - se->start_page);
2300 }
2301
2302 /*
2303 * Returns the page offset into bdev for the specified page's swap entry.
2304 */
2305 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2306 {
2307 swp_entry_t entry;
2308 entry.val = page_private(page);
2309 return map_swap_entry(entry, bdev);
2310 }
2311
2312 /*
2313 * Free all of a swapdev's extent information
2314 */
2315 static void destroy_swap_extents(struct swap_info_struct *sis)
2316 {
2317 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2318 struct rb_node *rb = sis->swap_extent_root.rb_node;
2319 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2320
2321 rb_erase(rb, &sis->swap_extent_root);
2322 kfree(se);
2323 }
2324
2325 if (sis->flags & SWP_ACTIVATED) {
2326 struct file *swap_file = sis->swap_file;
2327 struct address_space *mapping = swap_file->f_mapping;
2328
2329 sis->flags &= ~SWP_ACTIVATED;
2330 if (mapping->a_ops->swap_deactivate)
2331 mapping->a_ops->swap_deactivate(swap_file);
2332 }
2333 }
2334
2335 /*
2336 * Add a block range (and the corresponding page range) into this swapdev's
2337 * extent tree.
2338 *
2339 * This function rather assumes that it is called in ascending page order.
2340 */
2341 int
2342 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2343 unsigned long nr_pages, sector_t start_block)
2344 {
2345 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2346 struct swap_extent *se;
2347 struct swap_extent *new_se;
2348
2349 /*
2350 * place the new node at the right most since the
2351 * function is called in ascending page order.
2352 */
2353 while (*link) {
2354 parent = *link;
2355 link = &parent->rb_right;
2356 }
2357
2358 if (parent) {
2359 se = rb_entry(parent, struct swap_extent, rb_node);
2360 BUG_ON(se->start_page + se->nr_pages != start_page);
2361 if (se->start_block + se->nr_pages == start_block) {
2362 /* Merge it */
2363 se->nr_pages += nr_pages;
2364 return 0;
2365 }
2366 }
2367
2368 /* No merge, insert a new extent. */
2369 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2370 if (new_se == NULL)
2371 return -ENOMEM;
2372 new_se->start_page = start_page;
2373 new_se->nr_pages = nr_pages;
2374 new_se->start_block = start_block;
2375
2376 rb_link_node(&new_se->rb_node, parent, link);
2377 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2378 return 1;
2379 }
2380 EXPORT_SYMBOL_GPL(add_swap_extent);
2381
2382 /*
2383 * A `swap extent' is a simple thing which maps a contiguous range of pages
2384 * onto a contiguous range of disk blocks. An ordered list of swap extents
2385 * is built at swapon time and is then used at swap_writepage/swap_readpage
2386 * time for locating where on disk a page belongs.
2387 *
2388 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2389 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2390 * swap files identically.
2391 *
2392 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2393 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2394 * swapfiles are handled *identically* after swapon time.
2395 *
2396 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2397 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2398 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2399 * requirements, they are simply tossed out - we will never use those blocks
2400 * for swapping.
2401 *
2402 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2403 * prevents users from writing to the swap device, which will corrupt memory.
2404 *
2405 * The amount of disk space which a single swap extent represents varies.
2406 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2407 * extents in the list. To avoid much list walking, we cache the previous
2408 * search location in `curr_swap_extent', and start new searches from there.
2409 * This is extremely effective. The average number of iterations in
2410 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2411 */
2412 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2413 {
2414 struct file *swap_file = sis->swap_file;
2415 struct address_space *mapping = swap_file->f_mapping;
2416 struct inode *inode = mapping->host;
2417 int ret;
2418
2419 if (S_ISBLK(inode->i_mode)) {
2420 ret = add_swap_extent(sis, 0, sis->max, 0);
2421 *span = sis->pages;
2422 return ret;
2423 }
2424
2425 if (mapping->a_ops->swap_activate) {
2426 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2427 if (ret >= 0)
2428 sis->flags |= SWP_ACTIVATED;
2429 if (!ret) {
2430 sis->flags |= SWP_FS;
2431 ret = add_swap_extent(sis, 0, sis->max, 0);
2432 *span = sis->pages;
2433 }
2434 return ret;
2435 }
2436
2437 return generic_swapfile_activate(sis, swap_file, span);
2438 }
2439
2440 static int swap_node(struct swap_info_struct *p)
2441 {
2442 struct block_device *bdev;
2443
2444 if (p->bdev)
2445 bdev = p->bdev;
2446 else
2447 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2448
2449 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2450 }
2451
2452 static void setup_swap_info(struct swap_info_struct *p, int prio,
2453 unsigned char *swap_map,
2454 struct swap_cluster_info *cluster_info)
2455 {
2456 int i;
2457
2458 if (prio >= 0)
2459 p->prio = prio;
2460 else
2461 p->prio = --least_priority;
2462 /*
2463 * the plist prio is negated because plist ordering is
2464 * low-to-high, while swap ordering is high-to-low
2465 */
2466 p->list.prio = -p->prio;
2467 for_each_node(i) {
2468 if (p->prio >= 0)
2469 p->avail_lists[i].prio = -p->prio;
2470 else {
2471 if (swap_node(p) == i)
2472 p->avail_lists[i].prio = 1;
2473 else
2474 p->avail_lists[i].prio = -p->prio;
2475 }
2476 }
2477 p->swap_map = swap_map;
2478 p->cluster_info = cluster_info;
2479 }
2480
2481 static void _enable_swap_info(struct swap_info_struct *p)
2482 {
2483 p->flags |= SWP_WRITEOK | SWP_VALID;
2484 atomic_long_add(p->pages, &nr_swap_pages);
2485 total_swap_pages += p->pages;
2486
2487 assert_spin_locked(&swap_lock);
2488 /*
2489 * both lists are plists, and thus priority ordered.
2490 * swap_active_head needs to be priority ordered for swapoff(),
2491 * which on removal of any swap_info_struct with an auto-assigned
2492 * (i.e. negative) priority increments the auto-assigned priority
2493 * of any lower-priority swap_info_structs.
2494 * swap_avail_head needs to be priority ordered for get_swap_page(),
2495 * which allocates swap pages from the highest available priority
2496 * swap_info_struct.
2497 */
2498 plist_add(&p->list, &swap_active_head);
2499 add_to_avail_list(p);
2500 }
2501
2502 static void enable_swap_info(struct swap_info_struct *p, int prio,
2503 unsigned char *swap_map,
2504 struct swap_cluster_info *cluster_info,
2505 unsigned long *frontswap_map)
2506 {
2507 frontswap_init(p->type, frontswap_map);
2508 spin_lock(&swap_lock);
2509 spin_lock(&p->lock);
2510 setup_swap_info(p, prio, swap_map, cluster_info);
2511 spin_unlock(&p->lock);
2512 spin_unlock(&swap_lock);
2513 /*
2514 * Guarantee swap_map, cluster_info, etc. fields are valid
2515 * between get/put_swap_device() if SWP_VALID bit is set
2516 */
2517 synchronize_rcu();
2518 spin_lock(&swap_lock);
2519 spin_lock(&p->lock);
2520 _enable_swap_info(p);
2521 spin_unlock(&p->lock);
2522 spin_unlock(&swap_lock);
2523 }
2524
2525 static void reinsert_swap_info(struct swap_info_struct *p)
2526 {
2527 spin_lock(&swap_lock);
2528 spin_lock(&p->lock);
2529 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2530 _enable_swap_info(p);
2531 spin_unlock(&p->lock);
2532 spin_unlock(&swap_lock);
2533 }
2534
2535 bool has_usable_swap(void)
2536 {
2537 bool ret = true;
2538
2539 spin_lock(&swap_lock);
2540 if (plist_head_empty(&swap_active_head))
2541 ret = false;
2542 spin_unlock(&swap_lock);
2543 return ret;
2544 }
2545
2546 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2547 {
2548 struct swap_info_struct *p = NULL;
2549 unsigned char *swap_map;
2550 struct swap_cluster_info *cluster_info;
2551 unsigned long *frontswap_map;
2552 struct file *swap_file, *victim;
2553 struct address_space *mapping;
2554 struct inode *inode;
2555 struct filename *pathname;
2556 int err, found = 0;
2557 unsigned int old_block_size;
2558
2559 if (!capable(CAP_SYS_ADMIN))
2560 return -EPERM;
2561
2562 BUG_ON(!current->mm);
2563
2564 pathname = getname(specialfile);
2565 if (IS_ERR(pathname))
2566 return PTR_ERR(pathname);
2567
2568 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2569 err = PTR_ERR(victim);
2570 if (IS_ERR(victim))
2571 goto out;
2572
2573 mapping = victim->f_mapping;
2574 spin_lock(&swap_lock);
2575 plist_for_each_entry(p, &swap_active_head, list) {
2576 if (p->flags & SWP_WRITEOK) {
2577 if (p->swap_file->f_mapping == mapping) {
2578 found = 1;
2579 break;
2580 }
2581 }
2582 }
2583 if (!found) {
2584 err = -EINVAL;
2585 spin_unlock(&swap_lock);
2586 goto out_dput;
2587 }
2588 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2589 vm_unacct_memory(p->pages);
2590 else {
2591 err = -ENOMEM;
2592 spin_unlock(&swap_lock);
2593 goto out_dput;
2594 }
2595 del_from_avail_list(p);
2596 spin_lock(&p->lock);
2597 if (p->prio < 0) {
2598 struct swap_info_struct *si = p;
2599 int nid;
2600
2601 plist_for_each_entry_continue(si, &swap_active_head, list) {
2602 si->prio++;
2603 si->list.prio--;
2604 for_each_node(nid) {
2605 if (si->avail_lists[nid].prio != 1)
2606 si->avail_lists[nid].prio--;
2607 }
2608 }
2609 least_priority++;
2610 }
2611 plist_del(&p->list, &swap_active_head);
2612 atomic_long_sub(p->pages, &nr_swap_pages);
2613 total_swap_pages -= p->pages;
2614 p->flags &= ~SWP_WRITEOK;
2615 spin_unlock(&p->lock);
2616 spin_unlock(&swap_lock);
2617
2618 disable_swap_slots_cache_lock();
2619
2620 set_current_oom_origin();
2621 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2622 clear_current_oom_origin();
2623
2624 if (err) {
2625 /* re-insert swap space back into swap_list */
2626 reinsert_swap_info(p);
2627 reenable_swap_slots_cache_unlock();
2628 goto out_dput;
2629 }
2630
2631 reenable_swap_slots_cache_unlock();
2632
2633 spin_lock(&swap_lock);
2634 spin_lock(&p->lock);
2635 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2636 spin_unlock(&p->lock);
2637 spin_unlock(&swap_lock);
2638 /*
2639 * wait for swap operations protected by get/put_swap_device()
2640 * to complete
2641 */
2642 synchronize_rcu();
2643
2644 flush_work(&p->discard_work);
2645
2646 destroy_swap_extents(p);
2647 if (p->flags & SWP_CONTINUED)
2648 free_swap_count_continuations(p);
2649
2650 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2651 atomic_dec(&nr_rotate_swap);
2652
2653 mutex_lock(&swapon_mutex);
2654 spin_lock(&swap_lock);
2655 spin_lock(&p->lock);
2656 drain_mmlist();
2657
2658 /* wait for anyone still in scan_swap_map */
2659 p->highest_bit = 0; /* cuts scans short */
2660 while (p->flags >= SWP_SCANNING) {
2661 spin_unlock(&p->lock);
2662 spin_unlock(&swap_lock);
2663 schedule_timeout_uninterruptible(1);
2664 spin_lock(&swap_lock);
2665 spin_lock(&p->lock);
2666 }
2667
2668 swap_file = p->swap_file;
2669 old_block_size = p->old_block_size;
2670 p->swap_file = NULL;
2671 p->max = 0;
2672 swap_map = p->swap_map;
2673 p->swap_map = NULL;
2674 cluster_info = p->cluster_info;
2675 p->cluster_info = NULL;
2676 frontswap_map = frontswap_map_get(p);
2677 spin_unlock(&p->lock);
2678 spin_unlock(&swap_lock);
2679 frontswap_invalidate_area(p->type);
2680 frontswap_map_set(p, NULL);
2681 mutex_unlock(&swapon_mutex);
2682 free_percpu(p->percpu_cluster);
2683 p->percpu_cluster = NULL;
2684 free_percpu(p->cluster_next_cpu);
2685 p->cluster_next_cpu = NULL;
2686 vfree(swap_map);
2687 kvfree(cluster_info);
2688 kvfree(frontswap_map);
2689 /* Destroy swap account information */
2690 swap_cgroup_swapoff(p->type);
2691 exit_swap_address_space(p->type);
2692
2693 inode = mapping->host;
2694 if (S_ISBLK(inode->i_mode)) {
2695 struct block_device *bdev = I_BDEV(inode);
2696
2697 set_blocksize(bdev, old_block_size);
2698 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2699 }
2700
2701 inode_lock(inode);
2702 inode->i_flags &= ~S_SWAPFILE;
2703 inode_unlock(inode);
2704 filp_close(swap_file, NULL);
2705
2706 /*
2707 * Clear the SWP_USED flag after all resources are freed so that swapon
2708 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2709 * not hold p->lock after we cleared its SWP_WRITEOK.
2710 */
2711 spin_lock(&swap_lock);
2712 p->flags = 0;
2713 spin_unlock(&swap_lock);
2714
2715 err = 0;
2716 atomic_inc(&proc_poll_event);
2717 wake_up_interruptible(&proc_poll_wait);
2718
2719 out_dput:
2720 filp_close(victim, NULL);
2721 out:
2722 putname(pathname);
2723 return err;
2724 }
2725
2726 #ifdef CONFIG_PROC_FS
2727 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2728 {
2729 struct seq_file *seq = file->private_data;
2730
2731 poll_wait(file, &proc_poll_wait, wait);
2732
2733 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2734 seq->poll_event = atomic_read(&proc_poll_event);
2735 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2736 }
2737
2738 return EPOLLIN | EPOLLRDNORM;
2739 }
2740
2741 /* iterator */
2742 static void *swap_start(struct seq_file *swap, loff_t *pos)
2743 {
2744 struct swap_info_struct *si;
2745 int type;
2746 loff_t l = *pos;
2747
2748 mutex_lock(&swapon_mutex);
2749
2750 if (!l)
2751 return SEQ_START_TOKEN;
2752
2753 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2754 if (!(si->flags & SWP_USED) || !si->swap_map)
2755 continue;
2756 if (!--l)
2757 return si;
2758 }
2759
2760 return NULL;
2761 }
2762
2763 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2764 {
2765 struct swap_info_struct *si = v;
2766 int type;
2767
2768 if (v == SEQ_START_TOKEN)
2769 type = 0;
2770 else
2771 type = si->type + 1;
2772
2773 ++(*pos);
2774 for (; (si = swap_type_to_swap_info(type)); type++) {
2775 if (!(si->flags & SWP_USED) || !si->swap_map)
2776 continue;
2777 return si;
2778 }
2779
2780 return NULL;
2781 }
2782
2783 static void swap_stop(struct seq_file *swap, void *v)
2784 {
2785 mutex_unlock(&swapon_mutex);
2786 }
2787
2788 static int swap_show(struct seq_file *swap, void *v)
2789 {
2790 struct swap_info_struct *si = v;
2791 struct file *file;
2792 int len;
2793 unsigned int bytes, inuse;
2794
2795 if (si == SEQ_START_TOKEN) {
2796 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2797 return 0;
2798 }
2799
2800 bytes = si->pages << (PAGE_SHIFT - 10);
2801 inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2802
2803 file = si->swap_file;
2804 len = seq_file_path(swap, file, " \t\n\\");
2805 seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2806 len < 40 ? 40 - len : 1, " ",
2807 S_ISBLK(file_inode(file)->i_mode) ?
2808 "partition" : "file\t",
2809 bytes, bytes < 10000000 ? "\t" : "",
2810 inuse, inuse < 10000000 ? "\t" : "",
2811 si->prio);
2812 return 0;
2813 }
2814
2815 static const struct seq_operations swaps_op = {
2816 .start = swap_start,
2817 .next = swap_next,
2818 .stop = swap_stop,
2819 .show = swap_show
2820 };
2821
2822 static int swaps_open(struct inode *inode, struct file *file)
2823 {
2824 struct seq_file *seq;
2825 int ret;
2826
2827 ret = seq_open(file, &swaps_op);
2828 if (ret)
2829 return ret;
2830
2831 seq = file->private_data;
2832 seq->poll_event = atomic_read(&proc_poll_event);
2833 return 0;
2834 }
2835
2836 static const struct proc_ops swaps_proc_ops = {
2837 .proc_flags = PROC_ENTRY_PERMANENT,
2838 .proc_open = swaps_open,
2839 .proc_read = seq_read,
2840 .proc_lseek = seq_lseek,
2841 .proc_release = seq_release,
2842 .proc_poll = swaps_poll,
2843 };
2844
2845 static int __init procswaps_init(void)
2846 {
2847 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2848 return 0;
2849 }
2850 __initcall(procswaps_init);
2851 #endif /* CONFIG_PROC_FS */
2852
2853 #ifdef MAX_SWAPFILES_CHECK
2854 static int __init max_swapfiles_check(void)
2855 {
2856 MAX_SWAPFILES_CHECK();
2857 return 0;
2858 }
2859 late_initcall(max_swapfiles_check);
2860 #endif
2861
2862 static struct swap_info_struct *alloc_swap_info(void)
2863 {
2864 struct swap_info_struct *p;
2865 unsigned int type;
2866 int i;
2867
2868 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2869 if (!p)
2870 return ERR_PTR(-ENOMEM);
2871
2872 spin_lock(&swap_lock);
2873 for (type = 0; type < nr_swapfiles; type++) {
2874 if (!(swap_info[type]->flags & SWP_USED))
2875 break;
2876 }
2877 if (type >= MAX_SWAPFILES) {
2878 spin_unlock(&swap_lock);
2879 kvfree(p);
2880 return ERR_PTR(-EPERM);
2881 }
2882 if (type >= nr_swapfiles) {
2883 p->type = type;
2884 WRITE_ONCE(swap_info[type], p);
2885 /*
2886 * Write swap_info[type] before nr_swapfiles, in case a
2887 * racing procfs swap_start() or swap_next() is reading them.
2888 * (We never shrink nr_swapfiles, we never free this entry.)
2889 */
2890 smp_wmb();
2891 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2892 } else {
2893 kvfree(p);
2894 p = swap_info[type];
2895 /*
2896 * Do not memset this entry: a racing procfs swap_next()
2897 * would be relying on p->type to remain valid.
2898 */
2899 }
2900 p->swap_extent_root = RB_ROOT;
2901 plist_node_init(&p->list, 0);
2902 for_each_node(i)
2903 plist_node_init(&p->avail_lists[i], 0);
2904 p->flags = SWP_USED;
2905 spin_unlock(&swap_lock);
2906 spin_lock_init(&p->lock);
2907 spin_lock_init(&p->cont_lock);
2908
2909 return p;
2910 }
2911
2912 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2913 {
2914 int error;
2915
2916 if (S_ISBLK(inode->i_mode)) {
2917 p->bdev = bdgrab(I_BDEV(inode));
2918 error = blkdev_get(p->bdev,
2919 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2920 if (error < 0) {
2921 p->bdev = NULL;
2922 return error;
2923 }
2924 p->old_block_size = block_size(p->bdev);
2925 error = set_blocksize(p->bdev, PAGE_SIZE);
2926 if (error < 0)
2927 return error;
2928 /*
2929 * Zoned block devices contain zones that have a sequential
2930 * write only restriction. Hence zoned block devices are not
2931 * suitable for swapping. Disallow them here.
2932 */
2933 if (blk_queue_is_zoned(p->bdev->bd_queue))
2934 return -EINVAL;
2935 p->flags |= SWP_BLKDEV;
2936 } else if (S_ISREG(inode->i_mode)) {
2937 p->bdev = inode->i_sb->s_bdev;
2938 }
2939
2940 return 0;
2941 }
2942
2943
2944 /*
2945 * Find out how many pages are allowed for a single swap device. There
2946 * are two limiting factors:
2947 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2948 * 2) the number of bits in the swap pte, as defined by the different
2949 * architectures.
2950 *
2951 * In order to find the largest possible bit mask, a swap entry with
2952 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2953 * decoded to a swp_entry_t again, and finally the swap offset is
2954 * extracted.
2955 *
2956 * This will mask all the bits from the initial ~0UL mask that can't
2957 * be encoded in either the swp_entry_t or the architecture definition
2958 * of a swap pte.
2959 */
2960 unsigned long generic_max_swapfile_size(void)
2961 {
2962 return swp_offset(pte_to_swp_entry(
2963 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2964 }
2965
2966 /* Can be overridden by an architecture for additional checks. */
2967 __weak unsigned long max_swapfile_size(void)
2968 {
2969 return generic_max_swapfile_size();
2970 }
2971
2972 static unsigned long read_swap_header(struct swap_info_struct *p,
2973 union swap_header *swap_header,
2974 struct inode *inode)
2975 {
2976 int i;
2977 unsigned long maxpages;
2978 unsigned long swapfilepages;
2979 unsigned long last_page;
2980
2981 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2982 pr_err("Unable to find swap-space signature\n");
2983 return 0;
2984 }
2985
2986 /* swap partition endianess hack... */
2987 if (swab32(swap_header->info.version) == 1) {
2988 swab32s(&swap_header->info.version);
2989 swab32s(&swap_header->info.last_page);
2990 swab32s(&swap_header->info.nr_badpages);
2991 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2992 return 0;
2993 for (i = 0; i < swap_header->info.nr_badpages; i++)
2994 swab32s(&swap_header->info.badpages[i]);
2995 }
2996 /* Check the swap header's sub-version */
2997 if (swap_header->info.version != 1) {
2998 pr_warn("Unable to handle swap header version %d\n",
2999 swap_header->info.version);
3000 return 0;
3001 }
3002
3003 p->lowest_bit = 1;
3004 p->cluster_next = 1;
3005 p->cluster_nr = 0;
3006
3007 maxpages = max_swapfile_size();
3008 last_page = swap_header->info.last_page;
3009 if (!last_page) {
3010 pr_warn("Empty swap-file\n");
3011 return 0;
3012 }
3013 if (last_page > maxpages) {
3014 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3015 maxpages << (PAGE_SHIFT - 10),
3016 last_page << (PAGE_SHIFT - 10));
3017 }
3018 if (maxpages > last_page) {
3019 maxpages = last_page + 1;
3020 /* p->max is an unsigned int: don't overflow it */
3021 if ((unsigned int)maxpages == 0)
3022 maxpages = UINT_MAX;
3023 }
3024 p->highest_bit = maxpages - 1;
3025
3026 if (!maxpages)
3027 return 0;
3028 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3029 if (swapfilepages && maxpages > swapfilepages) {
3030 pr_warn("Swap area shorter than signature indicates\n");
3031 return 0;
3032 }
3033 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3034 return 0;
3035 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3036 return 0;
3037
3038 return maxpages;
3039 }
3040
3041 #define SWAP_CLUSTER_INFO_COLS \
3042 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3043 #define SWAP_CLUSTER_SPACE_COLS \
3044 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3045 #define SWAP_CLUSTER_COLS \
3046 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3047
3048 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3049 union swap_header *swap_header,
3050 unsigned char *swap_map,
3051 struct swap_cluster_info *cluster_info,
3052 unsigned long maxpages,
3053 sector_t *span)
3054 {
3055 unsigned int j, k;
3056 unsigned int nr_good_pages;
3057 int nr_extents;
3058 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3059 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3060 unsigned long i, idx;
3061
3062 nr_good_pages = maxpages - 1; /* omit header page */
3063
3064 cluster_list_init(&p->free_clusters);
3065 cluster_list_init(&p->discard_clusters);
3066
3067 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3068 unsigned int page_nr = swap_header->info.badpages[i];
3069 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3070 return -EINVAL;
3071 if (page_nr < maxpages) {
3072 swap_map[page_nr] = SWAP_MAP_BAD;
3073 nr_good_pages--;
3074 /*
3075 * Haven't marked the cluster free yet, no list
3076 * operation involved
3077 */
3078 inc_cluster_info_page(p, cluster_info, page_nr);
3079 }
3080 }
3081
3082 /* Haven't marked the cluster free yet, no list operation involved */
3083 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3084 inc_cluster_info_page(p, cluster_info, i);
3085
3086 if (nr_good_pages) {
3087 swap_map[0] = SWAP_MAP_BAD;
3088 /*
3089 * Not mark the cluster free yet, no list
3090 * operation involved
3091 */
3092 inc_cluster_info_page(p, cluster_info, 0);
3093 p->max = maxpages;
3094 p->pages = nr_good_pages;
3095 nr_extents = setup_swap_extents(p, span);
3096 if (nr_extents < 0)
3097 return nr_extents;
3098 nr_good_pages = p->pages;
3099 }
3100 if (!nr_good_pages) {
3101 pr_warn("Empty swap-file\n");
3102 return -EINVAL;
3103 }
3104
3105 if (!cluster_info)
3106 return nr_extents;
3107
3108
3109 /*
3110 * Reduce false cache line sharing between cluster_info and
3111 * sharing same address space.
3112 */
3113 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3114 j = (k + col) % SWAP_CLUSTER_COLS;
3115 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3116 idx = i * SWAP_CLUSTER_COLS + j;
3117 if (idx >= nr_clusters)
3118 continue;
3119 if (cluster_count(&cluster_info[idx]))
3120 continue;
3121 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3122 cluster_list_add_tail(&p->free_clusters, cluster_info,
3123 idx);
3124 }
3125 }
3126 return nr_extents;
3127 }
3128
3129 /*
3130 * Helper to sys_swapon determining if a given swap
3131 * backing device queue supports DISCARD operations.
3132 */
3133 static bool swap_discardable(struct swap_info_struct *si)
3134 {
3135 struct request_queue *q = bdev_get_queue(si->bdev);
3136
3137 if (!q || !blk_queue_discard(q))
3138 return false;
3139
3140 return true;
3141 }
3142
3143 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3144 {
3145 struct swap_info_struct *p;
3146 struct filename *name;
3147 struct file *swap_file = NULL;
3148 struct address_space *mapping;
3149 int prio;
3150 int error;
3151 union swap_header *swap_header;
3152 int nr_extents;
3153 sector_t span;
3154 unsigned long maxpages;
3155 unsigned char *swap_map = NULL;
3156 struct swap_cluster_info *cluster_info = NULL;
3157 unsigned long *frontswap_map = NULL;
3158 struct page *page = NULL;
3159 struct inode *inode = NULL;
3160 bool inced_nr_rotate_swap = false;
3161
3162 if (swap_flags & ~SWAP_FLAGS_VALID)
3163 return -EINVAL;
3164
3165 if (!capable(CAP_SYS_ADMIN))
3166 return -EPERM;
3167
3168 if (!swap_avail_heads)
3169 return -ENOMEM;
3170
3171 p = alloc_swap_info();
3172 if (IS_ERR(p))
3173 return PTR_ERR(p);
3174
3175 INIT_WORK(&p->discard_work, swap_discard_work);
3176
3177 name = getname(specialfile);
3178 if (IS_ERR(name)) {
3179 error = PTR_ERR(name);
3180 name = NULL;
3181 goto bad_swap;
3182 }
3183 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3184 if (IS_ERR(swap_file)) {
3185 error = PTR_ERR(swap_file);
3186 swap_file = NULL;
3187 goto bad_swap;
3188 }
3189
3190 p->swap_file = swap_file;
3191 mapping = swap_file->f_mapping;
3192 inode = mapping->host;
3193
3194 error = claim_swapfile(p, inode);
3195 if (unlikely(error))
3196 goto bad_swap;
3197
3198 inode_lock(inode);
3199 if (IS_SWAPFILE(inode)) {
3200 error = -EBUSY;
3201 goto bad_swap_unlock_inode;
3202 }
3203
3204 /*
3205 * Read the swap header.
3206 */
3207 if (!mapping->a_ops->readpage) {
3208 error = -EINVAL;
3209 goto bad_swap_unlock_inode;
3210 }
3211 page = read_mapping_page(mapping, 0, swap_file);
3212 if (IS_ERR(page)) {
3213 error = PTR_ERR(page);
3214 goto bad_swap_unlock_inode;
3215 }
3216 swap_header = kmap(page);
3217
3218 maxpages = read_swap_header(p, swap_header, inode);
3219 if (unlikely(!maxpages)) {
3220 error = -EINVAL;
3221 goto bad_swap_unlock_inode;
3222 }
3223
3224 /* OK, set up the swap map and apply the bad block list */
3225 swap_map = vzalloc(maxpages);
3226 if (!swap_map) {
3227 error = -ENOMEM;
3228 goto bad_swap_unlock_inode;
3229 }
3230
3231 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3232 p->flags |= SWP_STABLE_WRITES;
3233
3234 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3235 p->flags |= SWP_SYNCHRONOUS_IO;
3236
3237 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3238 int cpu;
3239 unsigned long ci, nr_cluster;
3240
3241 p->flags |= SWP_SOLIDSTATE;
3242 p->cluster_next_cpu = alloc_percpu(unsigned int);
3243 if (!p->cluster_next_cpu) {
3244 error = -ENOMEM;
3245 goto bad_swap_unlock_inode;
3246 }
3247 /*
3248 * select a random position to start with to help wear leveling
3249 * SSD
3250 */
3251 for_each_possible_cpu(cpu) {
3252 per_cpu(*p->cluster_next_cpu, cpu) =
3253 1 + prandom_u32_max(p->highest_bit);
3254 }
3255 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3256
3257 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3258 GFP_KERNEL);
3259 if (!cluster_info) {
3260 error = -ENOMEM;
3261 goto bad_swap_unlock_inode;
3262 }
3263
3264 for (ci = 0; ci < nr_cluster; ci++)
3265 spin_lock_init(&((cluster_info + ci)->lock));
3266
3267 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3268 if (!p->percpu_cluster) {
3269 error = -ENOMEM;
3270 goto bad_swap_unlock_inode;
3271 }
3272 for_each_possible_cpu(cpu) {
3273 struct percpu_cluster *cluster;
3274 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3275 cluster_set_null(&cluster->index);
3276 }
3277 } else {
3278 atomic_inc(&nr_rotate_swap);
3279 inced_nr_rotate_swap = true;
3280 }
3281
3282 error = swap_cgroup_swapon(p->type, maxpages);
3283 if (error)
3284 goto bad_swap_unlock_inode;
3285
3286 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3287 cluster_info, maxpages, &span);
3288 if (unlikely(nr_extents < 0)) {
3289 error = nr_extents;
3290 goto bad_swap_unlock_inode;
3291 }
3292 /* frontswap enabled? set up bit-per-page map for frontswap */
3293 if (IS_ENABLED(CONFIG_FRONTSWAP))
3294 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3295 sizeof(long),
3296 GFP_KERNEL);
3297
3298 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3299 /*
3300 * When discard is enabled for swap with no particular
3301 * policy flagged, we set all swap discard flags here in
3302 * order to sustain backward compatibility with older
3303 * swapon(8) releases.
3304 */
3305 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3306 SWP_PAGE_DISCARD);
3307
3308 /*
3309 * By flagging sys_swapon, a sysadmin can tell us to
3310 * either do single-time area discards only, or to just
3311 * perform discards for released swap page-clusters.
3312 * Now it's time to adjust the p->flags accordingly.
3313 */
3314 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3315 p->flags &= ~SWP_PAGE_DISCARD;
3316 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3317 p->flags &= ~SWP_AREA_DISCARD;
3318
3319 /* issue a swapon-time discard if it's still required */
3320 if (p->flags & SWP_AREA_DISCARD) {
3321 int err = discard_swap(p);
3322 if (unlikely(err))
3323 pr_err("swapon: discard_swap(%p): %d\n",
3324 p, err);
3325 }
3326 }
3327
3328 error = init_swap_address_space(p->type, maxpages);
3329 if (error)
3330 goto bad_swap_unlock_inode;
3331
3332 /*
3333 * Flush any pending IO and dirty mappings before we start using this
3334 * swap device.
3335 */
3336 inode->i_flags |= S_SWAPFILE;
3337 error = inode_drain_writes(inode);
3338 if (error) {
3339 inode->i_flags &= ~S_SWAPFILE;
3340 goto bad_swap_unlock_inode;
3341 }
3342
3343 mutex_lock(&swapon_mutex);
3344 prio = -1;
3345 if (swap_flags & SWAP_FLAG_PREFER)
3346 prio =
3347 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3348 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3349
3350 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3351 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3352 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3353 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3354 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3355 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3356 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3357 (frontswap_map) ? "FS" : "");
3358
3359 mutex_unlock(&swapon_mutex);
3360 atomic_inc(&proc_poll_event);
3361 wake_up_interruptible(&proc_poll_wait);
3362
3363 error = 0;
3364 goto out;
3365 bad_swap_unlock_inode:
3366 inode_unlock(inode);
3367 bad_swap:
3368 free_percpu(p->percpu_cluster);
3369 p->percpu_cluster = NULL;
3370 free_percpu(p->cluster_next_cpu);
3371 p->cluster_next_cpu = NULL;
3372 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3373 set_blocksize(p->bdev, p->old_block_size);
3374 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3375 }
3376 inode = NULL;
3377 destroy_swap_extents(p);
3378 swap_cgroup_swapoff(p->type);
3379 spin_lock(&swap_lock);
3380 p->swap_file = NULL;
3381 p->flags = 0;
3382 spin_unlock(&swap_lock);
3383 vfree(swap_map);
3384 kvfree(cluster_info);
3385 kvfree(frontswap_map);
3386 if (inced_nr_rotate_swap)
3387 atomic_dec(&nr_rotate_swap);
3388 if (swap_file)
3389 filp_close(swap_file, NULL);
3390 out:
3391 if (page && !IS_ERR(page)) {
3392 kunmap(page);
3393 put_page(page);
3394 }
3395 if (name)
3396 putname(name);
3397 if (inode)
3398 inode_unlock(inode);
3399 if (!error)
3400 enable_swap_slots_cache();
3401 return error;
3402 }
3403
3404 void si_swapinfo(struct sysinfo *val)
3405 {
3406 unsigned int type;
3407 unsigned long nr_to_be_unused = 0;
3408
3409 spin_lock(&swap_lock);
3410 for (type = 0; type < nr_swapfiles; type++) {
3411 struct swap_info_struct *si = swap_info[type];
3412
3413 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3414 nr_to_be_unused += si->inuse_pages;
3415 }
3416 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3417 val->totalswap = total_swap_pages + nr_to_be_unused;
3418 spin_unlock(&swap_lock);
3419 }
3420
3421 /*
3422 * Verify that a swap entry is valid and increment its swap map count.
3423 *
3424 * Returns error code in following case.
3425 * - success -> 0
3426 * - swp_entry is invalid -> EINVAL
3427 * - swp_entry is migration entry -> EINVAL
3428 * - swap-cache reference is requested but there is already one. -> EEXIST
3429 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3430 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3431 */
3432 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3433 {
3434 struct swap_info_struct *p;
3435 struct swap_cluster_info *ci;
3436 unsigned long offset;
3437 unsigned char count;
3438 unsigned char has_cache;
3439 int err = -EINVAL;
3440
3441 p = get_swap_device(entry);
3442 if (!p)
3443 goto out;
3444
3445 offset = swp_offset(entry);
3446 ci = lock_cluster_or_swap_info(p, offset);
3447
3448 count = p->swap_map[offset];
3449
3450 /*
3451 * swapin_readahead() doesn't check if a swap entry is valid, so the
3452 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3453 */
3454 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3455 err = -ENOENT;
3456 goto unlock_out;
3457 }
3458
3459 has_cache = count & SWAP_HAS_CACHE;
3460 count &= ~SWAP_HAS_CACHE;
3461 err = 0;
3462
3463 if (usage == SWAP_HAS_CACHE) {
3464
3465 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3466 if (!has_cache && count)
3467 has_cache = SWAP_HAS_CACHE;
3468 else if (has_cache) /* someone else added cache */
3469 err = -EEXIST;
3470 else /* no users remaining */
3471 err = -ENOENT;
3472
3473 } else if (count || has_cache) {
3474
3475 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3476 count += usage;
3477 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3478 err = -EINVAL;
3479 else if (swap_count_continued(p, offset, count))
3480 count = COUNT_CONTINUED;
3481 else
3482 err = -ENOMEM;
3483 } else
3484 err = -ENOENT; /* unused swap entry */
3485
3486 p->swap_map[offset] = count | has_cache;
3487
3488 unlock_out:
3489 unlock_cluster_or_swap_info(p, ci);
3490 out:
3491 if (p)
3492 put_swap_device(p);
3493 return err;
3494 }
3495
3496 /*
3497 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3498 * (in which case its reference count is never incremented).
3499 */
3500 void swap_shmem_alloc(swp_entry_t entry)
3501 {
3502 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3503 }
3504
3505 /*
3506 * Increase reference count of swap entry by 1.
3507 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3508 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3509 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3510 * might occur if a page table entry has got corrupted.
3511 */
3512 int swap_duplicate(swp_entry_t entry)
3513 {
3514 int err = 0;
3515
3516 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3517 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3518 return err;
3519 }
3520
3521 /*
3522 * @entry: swap entry for which we allocate swap cache.
3523 *
3524 * Called when allocating swap cache for existing swap entry,
3525 * This can return error codes. Returns 0 at success.
3526 * -EEXIST means there is a swap cache.
3527 * Note: return code is different from swap_duplicate().
3528 */
3529 int swapcache_prepare(swp_entry_t entry)
3530 {
3531 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3532 }
3533
3534 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3535 {
3536 return swap_type_to_swap_info(swp_type(entry));
3537 }
3538
3539 struct swap_info_struct *page_swap_info(struct page *page)
3540 {
3541 swp_entry_t entry = { .val = page_private(page) };
3542 return swp_swap_info(entry);
3543 }
3544
3545 /*
3546 * out-of-line __page_file_ methods to avoid include hell.
3547 */
3548 struct address_space *__page_file_mapping(struct page *page)
3549 {
3550 return page_swap_info(page)->swap_file->f_mapping;
3551 }
3552 EXPORT_SYMBOL_GPL(__page_file_mapping);
3553
3554 pgoff_t __page_file_index(struct page *page)
3555 {
3556 swp_entry_t swap = { .val = page_private(page) };
3557 return swp_offset(swap);
3558 }
3559 EXPORT_SYMBOL_GPL(__page_file_index);
3560
3561 /*
3562 * add_swap_count_continuation - called when a swap count is duplicated
3563 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3564 * page of the original vmalloc'ed swap_map, to hold the continuation count
3565 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3566 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3567 *
3568 * These continuation pages are seldom referenced: the common paths all work
3569 * on the original swap_map, only referring to a continuation page when the
3570 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3571 *
3572 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3573 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3574 * can be called after dropping locks.
3575 */
3576 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3577 {
3578 struct swap_info_struct *si;
3579 struct swap_cluster_info *ci;
3580 struct page *head;
3581 struct page *page;
3582 struct page *list_page;
3583 pgoff_t offset;
3584 unsigned char count;
3585 int ret = 0;
3586
3587 /*
3588 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3589 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3590 */
3591 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3592
3593 si = get_swap_device(entry);
3594 if (!si) {
3595 /*
3596 * An acceptable race has occurred since the failing
3597 * __swap_duplicate(): the swap device may be swapoff
3598 */
3599 goto outer;
3600 }
3601 spin_lock(&si->lock);
3602
3603 offset = swp_offset(entry);
3604
3605 ci = lock_cluster(si, offset);
3606
3607 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3608
3609 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3610 /*
3611 * The higher the swap count, the more likely it is that tasks
3612 * will race to add swap count continuation: we need to avoid
3613 * over-provisioning.
3614 */
3615 goto out;
3616 }
3617
3618 if (!page) {
3619 ret = -ENOMEM;
3620 goto out;
3621 }
3622
3623 /*
3624 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3625 * no architecture is using highmem pages for kernel page tables: so it
3626 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3627 */
3628 head = vmalloc_to_page(si->swap_map + offset);
3629 offset &= ~PAGE_MASK;
3630
3631 spin_lock(&si->cont_lock);
3632 /*
3633 * Page allocation does not initialize the page's lru field,
3634 * but it does always reset its private field.
3635 */
3636 if (!page_private(head)) {
3637 BUG_ON(count & COUNT_CONTINUED);
3638 INIT_LIST_HEAD(&head->lru);
3639 set_page_private(head, SWP_CONTINUED);
3640 si->flags |= SWP_CONTINUED;
3641 }
3642
3643 list_for_each_entry(list_page, &head->lru, lru) {
3644 unsigned char *map;
3645
3646 /*
3647 * If the previous map said no continuation, but we've found
3648 * a continuation page, free our allocation and use this one.
3649 */
3650 if (!(count & COUNT_CONTINUED))
3651 goto out_unlock_cont;
3652
3653 map = kmap_atomic(list_page) + offset;
3654 count = *map;
3655 kunmap_atomic(map);
3656
3657 /*
3658 * If this continuation count now has some space in it,
3659 * free our allocation and use this one.
3660 */
3661 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3662 goto out_unlock_cont;
3663 }
3664
3665 list_add_tail(&page->lru, &head->lru);
3666 page = NULL; /* now it's attached, don't free it */
3667 out_unlock_cont:
3668 spin_unlock(&si->cont_lock);
3669 out:
3670 unlock_cluster(ci);
3671 spin_unlock(&si->lock);
3672 put_swap_device(si);
3673 outer:
3674 if (page)
3675 __free_page(page);
3676 return ret;
3677 }
3678
3679 /*
3680 * swap_count_continued - when the original swap_map count is incremented
3681 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3682 * into, carry if so, or else fail until a new continuation page is allocated;
3683 * when the original swap_map count is decremented from 0 with continuation,
3684 * borrow from the continuation and report whether it still holds more.
3685 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3686 * lock.
3687 */
3688 static bool swap_count_continued(struct swap_info_struct *si,
3689 pgoff_t offset, unsigned char count)
3690 {
3691 struct page *head;
3692 struct page *page;
3693 unsigned char *map;
3694 bool ret;
3695
3696 head = vmalloc_to_page(si->swap_map + offset);
3697 if (page_private(head) != SWP_CONTINUED) {
3698 BUG_ON(count & COUNT_CONTINUED);
3699 return false; /* need to add count continuation */
3700 }
3701
3702 spin_lock(&si->cont_lock);
3703 offset &= ~PAGE_MASK;
3704 page = list_next_entry(head, lru);
3705 map = kmap_atomic(page) + offset;
3706
3707 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3708 goto init_map; /* jump over SWAP_CONT_MAX checks */
3709
3710 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3711 /*
3712 * Think of how you add 1 to 999
3713 */
3714 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3715 kunmap_atomic(map);
3716 page = list_next_entry(page, lru);
3717 BUG_ON(page == head);
3718 map = kmap_atomic(page) + offset;
3719 }
3720 if (*map == SWAP_CONT_MAX) {
3721 kunmap_atomic(map);
3722 page = list_next_entry(page, lru);
3723 if (page == head) {
3724 ret = false; /* add count continuation */
3725 goto out;
3726 }
3727 map = kmap_atomic(page) + offset;
3728 init_map: *map = 0; /* we didn't zero the page */
3729 }
3730 *map += 1;
3731 kunmap_atomic(map);
3732 while ((page = list_prev_entry(page, lru)) != head) {
3733 map = kmap_atomic(page) + offset;
3734 *map = COUNT_CONTINUED;
3735 kunmap_atomic(map);
3736 }
3737 ret = true; /* incremented */
3738
3739 } else { /* decrementing */
3740 /*
3741 * Think of how you subtract 1 from 1000
3742 */
3743 BUG_ON(count != COUNT_CONTINUED);
3744 while (*map == COUNT_CONTINUED) {
3745 kunmap_atomic(map);
3746 page = list_next_entry(page, lru);
3747 BUG_ON(page == head);
3748 map = kmap_atomic(page) + offset;
3749 }
3750 BUG_ON(*map == 0);
3751 *map -= 1;
3752 if (*map == 0)
3753 count = 0;
3754 kunmap_atomic(map);
3755 while ((page = list_prev_entry(page, lru)) != head) {
3756 map = kmap_atomic(page) + offset;
3757 *map = SWAP_CONT_MAX | count;
3758 count = COUNT_CONTINUED;
3759 kunmap_atomic(map);
3760 }
3761 ret = count == COUNT_CONTINUED;
3762 }
3763 out:
3764 spin_unlock(&si->cont_lock);
3765 return ret;
3766 }
3767
3768 /*
3769 * free_swap_count_continuations - swapoff free all the continuation pages
3770 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3771 */
3772 static void free_swap_count_continuations(struct swap_info_struct *si)
3773 {
3774 pgoff_t offset;
3775
3776 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3777 struct page *head;
3778 head = vmalloc_to_page(si->swap_map + offset);
3779 if (page_private(head)) {
3780 struct page *page, *next;
3781
3782 list_for_each_entry_safe(page, next, &head->lru, lru) {
3783 list_del(&page->lru);
3784 __free_page(page);
3785 }
3786 }
3787 }
3788 }
3789
3790 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3791 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3792 {
3793 struct swap_info_struct *si, *next;
3794 int nid = page_to_nid(page);
3795
3796 if (!(gfp_mask & __GFP_IO))
3797 return;
3798
3799 if (!blk_cgroup_congested())
3800 return;
3801
3802 /*
3803 * We've already scheduled a throttle, avoid taking the global swap
3804 * lock.
3805 */
3806 if (current->throttle_queue)
3807 return;
3808
3809 spin_lock(&swap_avail_lock);
3810 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3811 avail_lists[nid]) {
3812 if (si->bdev) {
3813 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3814 break;
3815 }
3816 }
3817 spin_unlock(&swap_avail_lock);
3818 }
3819 #endif
3820
3821 static int __init swapfile_init(void)
3822 {
3823 int nid;
3824
3825 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3826 GFP_KERNEL);
3827 if (!swap_avail_heads) {
3828 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3829 return -ENOMEM;
3830 }
3831
3832 for_each_node(nid)
3833 plist_head_init(&swap_avail_heads[nid]);
3834
3835 return 0;
3836 }
3837 subsys_initcall(swapfile_init);