]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/swapfile.c
mm/swapfile.c: remove the extra check in scan_swap_map_slots()
[mirror_ubuntu-hirsute-kernel.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/pgtable.h>
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52
53 DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57 * Some modules use swappable objects and may try to swap them out under
58 * memory pressure (via the shrinker). Before doing so, they may wish to
59 * check to see if any swap space is available.
60 */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70
71 /*
72 * all active swap_info_structs
73 * protected with swap_lock, and ordered by priority.
74 */
75 PLIST_HEAD(swap_active_head);
76
77 /*
78 * all available (active, not full) swap_info_structs
79 * protected with swap_avail_lock, ordered by priority.
80 * This is used by get_swap_page() instead of swap_active_head
81 * because swap_active_head includes all swap_info_structs,
82 * but get_swap_page() doesn't need to look at full ones.
83 * This uses its own lock instead of swap_lock because when a
84 * swap_info_struct changes between not-full/full, it needs to
85 * add/remove itself to/from this list, but the swap_info_struct->lock
86 * is held and the locking order requires swap_lock to be taken
87 * before any swap_info_struct->lock.
88 */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93
94 static DEFINE_MUTEX(swapon_mutex);
95
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101
102 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104 if (type >= READ_ONCE(nr_swapfiles))
105 return NULL;
106
107 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
108 return READ_ONCE(swap_info[type]);
109 }
110
111 static inline unsigned char swap_count(unsigned char ent)
112 {
113 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
114 }
115
116 /* Reclaim the swap entry anyway if possible */
117 #define TTRS_ANYWAY 0x1
118 /*
119 * Reclaim the swap entry if there are no more mappings of the
120 * corresponding page
121 */
122 #define TTRS_UNMAPPED 0x2
123 /* Reclaim the swap entry if swap is getting full*/
124 #define TTRS_FULL 0x4
125
126 /* returns 1 if swap entry is freed */
127 static int __try_to_reclaim_swap(struct swap_info_struct *si,
128 unsigned long offset, unsigned long flags)
129 {
130 swp_entry_t entry = swp_entry(si->type, offset);
131 struct page *page;
132 int ret = 0;
133
134 page = find_get_page(swap_address_space(entry), offset);
135 if (!page)
136 return 0;
137 /*
138 * When this function is called from scan_swap_map_slots() and it's
139 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140 * here. We have to use trylock for avoiding deadlock. This is a special
141 * case and you should use try_to_free_swap() with explicit lock_page()
142 * in usual operations.
143 */
144 if (trylock_page(page)) {
145 if ((flags & TTRS_ANYWAY) ||
146 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148 ret = try_to_free_swap(page);
149 unlock_page(page);
150 }
151 put_page(page);
152 return ret;
153 }
154
155 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156 {
157 struct rb_node *rb = rb_first(&sis->swap_extent_root);
158 return rb_entry(rb, struct swap_extent, rb_node);
159 }
160
161 static inline struct swap_extent *next_se(struct swap_extent *se)
162 {
163 struct rb_node *rb = rb_next(&se->rb_node);
164 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165 }
166
167 /*
168 * swapon tell device that all the old swap contents can be discarded,
169 * to allow the swap device to optimize its wear-levelling.
170 */
171 static int discard_swap(struct swap_info_struct *si)
172 {
173 struct swap_extent *se;
174 sector_t start_block;
175 sector_t nr_blocks;
176 int err = 0;
177
178 /* Do not discard the swap header page! */
179 se = first_se(si);
180 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182 if (nr_blocks) {
183 err = blkdev_issue_discard(si->bdev, start_block,
184 nr_blocks, GFP_KERNEL, 0);
185 if (err)
186 return err;
187 cond_resched();
188 }
189
190 for (se = next_se(se); se; se = next_se(se)) {
191 start_block = se->start_block << (PAGE_SHIFT - 9);
192 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
193
194 err = blkdev_issue_discard(si->bdev, start_block,
195 nr_blocks, GFP_KERNEL, 0);
196 if (err)
197 break;
198
199 cond_resched();
200 }
201 return err; /* That will often be -EOPNOTSUPP */
202 }
203
204 static struct swap_extent *
205 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206 {
207 struct swap_extent *se;
208 struct rb_node *rb;
209
210 rb = sis->swap_extent_root.rb_node;
211 while (rb) {
212 se = rb_entry(rb, struct swap_extent, rb_node);
213 if (offset < se->start_page)
214 rb = rb->rb_left;
215 else if (offset >= se->start_page + se->nr_pages)
216 rb = rb->rb_right;
217 else
218 return se;
219 }
220 /* It *must* be present */
221 BUG();
222 }
223
224 /*
225 * swap allocation tell device that a cluster of swap can now be discarded,
226 * to allow the swap device to optimize its wear-levelling.
227 */
228 static void discard_swap_cluster(struct swap_info_struct *si,
229 pgoff_t start_page, pgoff_t nr_pages)
230 {
231 struct swap_extent *se = offset_to_swap_extent(si, start_page);
232
233 while (nr_pages) {
234 pgoff_t offset = start_page - se->start_page;
235 sector_t start_block = se->start_block + offset;
236 sector_t nr_blocks = se->nr_pages - offset;
237
238 if (nr_blocks > nr_pages)
239 nr_blocks = nr_pages;
240 start_page += nr_blocks;
241 nr_pages -= nr_blocks;
242
243 start_block <<= PAGE_SHIFT - 9;
244 nr_blocks <<= PAGE_SHIFT - 9;
245 if (blkdev_issue_discard(si->bdev, start_block,
246 nr_blocks, GFP_NOIO, 0))
247 break;
248
249 se = next_se(se);
250 }
251 }
252
253 #ifdef CONFIG_THP_SWAP
254 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
255
256 #define swap_entry_size(size) (size)
257 #else
258 #define SWAPFILE_CLUSTER 256
259
260 /*
261 * Define swap_entry_size() as constant to let compiler to optimize
262 * out some code if !CONFIG_THP_SWAP
263 */
264 #define swap_entry_size(size) 1
265 #endif
266 #define LATENCY_LIMIT 256
267
268 static inline void cluster_set_flag(struct swap_cluster_info *info,
269 unsigned int flag)
270 {
271 info->flags = flag;
272 }
273
274 static inline unsigned int cluster_count(struct swap_cluster_info *info)
275 {
276 return info->data;
277 }
278
279 static inline void cluster_set_count(struct swap_cluster_info *info,
280 unsigned int c)
281 {
282 info->data = c;
283 }
284
285 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
286 unsigned int c, unsigned int f)
287 {
288 info->flags = f;
289 info->data = c;
290 }
291
292 static inline unsigned int cluster_next(struct swap_cluster_info *info)
293 {
294 return info->data;
295 }
296
297 static inline void cluster_set_next(struct swap_cluster_info *info,
298 unsigned int n)
299 {
300 info->data = n;
301 }
302
303 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
304 unsigned int n, unsigned int f)
305 {
306 info->flags = f;
307 info->data = n;
308 }
309
310 static inline bool cluster_is_free(struct swap_cluster_info *info)
311 {
312 return info->flags & CLUSTER_FLAG_FREE;
313 }
314
315 static inline bool cluster_is_null(struct swap_cluster_info *info)
316 {
317 return info->flags & CLUSTER_FLAG_NEXT_NULL;
318 }
319
320 static inline void cluster_set_null(struct swap_cluster_info *info)
321 {
322 info->flags = CLUSTER_FLAG_NEXT_NULL;
323 info->data = 0;
324 }
325
326 static inline bool cluster_is_huge(struct swap_cluster_info *info)
327 {
328 if (IS_ENABLED(CONFIG_THP_SWAP))
329 return info->flags & CLUSTER_FLAG_HUGE;
330 return false;
331 }
332
333 static inline void cluster_clear_huge(struct swap_cluster_info *info)
334 {
335 info->flags &= ~CLUSTER_FLAG_HUGE;
336 }
337
338 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
339 unsigned long offset)
340 {
341 struct swap_cluster_info *ci;
342
343 ci = si->cluster_info;
344 if (ci) {
345 ci += offset / SWAPFILE_CLUSTER;
346 spin_lock(&ci->lock);
347 }
348 return ci;
349 }
350
351 static inline void unlock_cluster(struct swap_cluster_info *ci)
352 {
353 if (ci)
354 spin_unlock(&ci->lock);
355 }
356
357 /*
358 * Determine the locking method in use for this device. Return
359 * swap_cluster_info if SSD-style cluster-based locking is in place.
360 */
361 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
362 struct swap_info_struct *si, unsigned long offset)
363 {
364 struct swap_cluster_info *ci;
365
366 /* Try to use fine-grained SSD-style locking if available: */
367 ci = lock_cluster(si, offset);
368 /* Otherwise, fall back to traditional, coarse locking: */
369 if (!ci)
370 spin_lock(&si->lock);
371
372 return ci;
373 }
374
375 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
376 struct swap_cluster_info *ci)
377 {
378 if (ci)
379 unlock_cluster(ci);
380 else
381 spin_unlock(&si->lock);
382 }
383
384 static inline bool cluster_list_empty(struct swap_cluster_list *list)
385 {
386 return cluster_is_null(&list->head);
387 }
388
389 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
390 {
391 return cluster_next(&list->head);
392 }
393
394 static void cluster_list_init(struct swap_cluster_list *list)
395 {
396 cluster_set_null(&list->head);
397 cluster_set_null(&list->tail);
398 }
399
400 static void cluster_list_add_tail(struct swap_cluster_list *list,
401 struct swap_cluster_info *ci,
402 unsigned int idx)
403 {
404 if (cluster_list_empty(list)) {
405 cluster_set_next_flag(&list->head, idx, 0);
406 cluster_set_next_flag(&list->tail, idx, 0);
407 } else {
408 struct swap_cluster_info *ci_tail;
409 unsigned int tail = cluster_next(&list->tail);
410
411 /*
412 * Nested cluster lock, but both cluster locks are
413 * only acquired when we held swap_info_struct->lock
414 */
415 ci_tail = ci + tail;
416 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
417 cluster_set_next(ci_tail, idx);
418 spin_unlock(&ci_tail->lock);
419 cluster_set_next_flag(&list->tail, idx, 0);
420 }
421 }
422
423 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
424 struct swap_cluster_info *ci)
425 {
426 unsigned int idx;
427
428 idx = cluster_next(&list->head);
429 if (cluster_next(&list->tail) == idx) {
430 cluster_set_null(&list->head);
431 cluster_set_null(&list->tail);
432 } else
433 cluster_set_next_flag(&list->head,
434 cluster_next(&ci[idx]), 0);
435
436 return idx;
437 }
438
439 /* Add a cluster to discard list and schedule it to do discard */
440 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
441 unsigned int idx)
442 {
443 /*
444 * If scan_swap_map() can't find a free cluster, it will check
445 * si->swap_map directly. To make sure the discarding cluster isn't
446 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
447 * will be cleared after discard
448 */
449 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
450 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
451
452 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
453
454 schedule_work(&si->discard_work);
455 }
456
457 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
458 {
459 struct swap_cluster_info *ci = si->cluster_info;
460
461 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
462 cluster_list_add_tail(&si->free_clusters, ci, idx);
463 }
464
465 /*
466 * Doing discard actually. After a cluster discard is finished, the cluster
467 * will be added to free cluster list. caller should hold si->lock.
468 */
469 static void swap_do_scheduled_discard(struct swap_info_struct *si)
470 {
471 struct swap_cluster_info *info, *ci;
472 unsigned int idx;
473
474 info = si->cluster_info;
475
476 while (!cluster_list_empty(&si->discard_clusters)) {
477 idx = cluster_list_del_first(&si->discard_clusters, info);
478 spin_unlock(&si->lock);
479
480 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
481 SWAPFILE_CLUSTER);
482
483 spin_lock(&si->lock);
484 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
485 __free_cluster(si, idx);
486 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
487 0, SWAPFILE_CLUSTER);
488 unlock_cluster(ci);
489 }
490 }
491
492 static void swap_discard_work(struct work_struct *work)
493 {
494 struct swap_info_struct *si;
495
496 si = container_of(work, struct swap_info_struct, discard_work);
497
498 spin_lock(&si->lock);
499 swap_do_scheduled_discard(si);
500 spin_unlock(&si->lock);
501 }
502
503 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
504 {
505 struct swap_cluster_info *ci = si->cluster_info;
506
507 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
508 cluster_list_del_first(&si->free_clusters, ci);
509 cluster_set_count_flag(ci + idx, 0, 0);
510 }
511
512 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
513 {
514 struct swap_cluster_info *ci = si->cluster_info + idx;
515
516 VM_BUG_ON(cluster_count(ci) != 0);
517 /*
518 * If the swap is discardable, prepare discard the cluster
519 * instead of free it immediately. The cluster will be freed
520 * after discard.
521 */
522 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
523 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
524 swap_cluster_schedule_discard(si, idx);
525 return;
526 }
527
528 __free_cluster(si, idx);
529 }
530
531 /*
532 * The cluster corresponding to page_nr will be used. The cluster will be
533 * removed from free cluster list and its usage counter will be increased.
534 */
535 static void inc_cluster_info_page(struct swap_info_struct *p,
536 struct swap_cluster_info *cluster_info, unsigned long page_nr)
537 {
538 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
539
540 if (!cluster_info)
541 return;
542 if (cluster_is_free(&cluster_info[idx]))
543 alloc_cluster(p, idx);
544
545 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
546 cluster_set_count(&cluster_info[idx],
547 cluster_count(&cluster_info[idx]) + 1);
548 }
549
550 /*
551 * The cluster corresponding to page_nr decreases one usage. If the usage
552 * counter becomes 0, which means no page in the cluster is in using, we can
553 * optionally discard the cluster and add it to free cluster list.
554 */
555 static void dec_cluster_info_page(struct swap_info_struct *p,
556 struct swap_cluster_info *cluster_info, unsigned long page_nr)
557 {
558 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559
560 if (!cluster_info)
561 return;
562
563 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
564 cluster_set_count(&cluster_info[idx],
565 cluster_count(&cluster_info[idx]) - 1);
566
567 if (cluster_count(&cluster_info[idx]) == 0)
568 free_cluster(p, idx);
569 }
570
571 /*
572 * It's possible scan_swap_map() uses a free cluster in the middle of free
573 * cluster list. Avoiding such abuse to avoid list corruption.
574 */
575 static bool
576 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
577 unsigned long offset)
578 {
579 struct percpu_cluster *percpu_cluster;
580 bool conflict;
581
582 offset /= SWAPFILE_CLUSTER;
583 conflict = !cluster_list_empty(&si->free_clusters) &&
584 offset != cluster_list_first(&si->free_clusters) &&
585 cluster_is_free(&si->cluster_info[offset]);
586
587 if (!conflict)
588 return false;
589
590 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
591 cluster_set_null(&percpu_cluster->index);
592 return true;
593 }
594
595 /*
596 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
597 * might involve allocating a new cluster for current CPU too.
598 */
599 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
600 unsigned long *offset, unsigned long *scan_base)
601 {
602 struct percpu_cluster *cluster;
603 struct swap_cluster_info *ci;
604 bool found_free;
605 unsigned long tmp, max;
606
607 new_cluster:
608 cluster = this_cpu_ptr(si->percpu_cluster);
609 if (cluster_is_null(&cluster->index)) {
610 if (!cluster_list_empty(&si->free_clusters)) {
611 cluster->index = si->free_clusters.head;
612 cluster->next = cluster_next(&cluster->index) *
613 SWAPFILE_CLUSTER;
614 } else if (!cluster_list_empty(&si->discard_clusters)) {
615 /*
616 * we don't have free cluster but have some clusters in
617 * discarding, do discard now and reclaim them
618 */
619 swap_do_scheduled_discard(si);
620 *scan_base = *offset = si->cluster_next;
621 goto new_cluster;
622 } else
623 return false;
624 }
625
626 found_free = false;
627
628 /*
629 * Other CPUs can use our cluster if they can't find a free cluster,
630 * check if there is still free entry in the cluster
631 */
632 tmp = cluster->next;
633 max = min_t(unsigned long, si->max,
634 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
635 if (tmp >= max) {
636 cluster_set_null(&cluster->index);
637 goto new_cluster;
638 }
639 ci = lock_cluster(si, tmp);
640 while (tmp < max) {
641 if (!si->swap_map[tmp]) {
642 found_free = true;
643 break;
644 }
645 tmp++;
646 }
647 unlock_cluster(ci);
648 if (!found_free) {
649 cluster_set_null(&cluster->index);
650 goto new_cluster;
651 }
652 cluster->next = tmp + 1;
653 *offset = tmp;
654 *scan_base = tmp;
655 return found_free;
656 }
657
658 static void __del_from_avail_list(struct swap_info_struct *p)
659 {
660 int nid;
661
662 for_each_node(nid)
663 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
664 }
665
666 static void del_from_avail_list(struct swap_info_struct *p)
667 {
668 spin_lock(&swap_avail_lock);
669 __del_from_avail_list(p);
670 spin_unlock(&swap_avail_lock);
671 }
672
673 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
674 unsigned int nr_entries)
675 {
676 unsigned int end = offset + nr_entries - 1;
677
678 if (offset == si->lowest_bit)
679 si->lowest_bit += nr_entries;
680 if (end == si->highest_bit)
681 si->highest_bit -= nr_entries;
682 si->inuse_pages += nr_entries;
683 if (si->inuse_pages == si->pages) {
684 si->lowest_bit = si->max;
685 si->highest_bit = 0;
686 del_from_avail_list(si);
687 }
688 }
689
690 static void add_to_avail_list(struct swap_info_struct *p)
691 {
692 int nid;
693
694 spin_lock(&swap_avail_lock);
695 for_each_node(nid) {
696 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
697 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
698 }
699 spin_unlock(&swap_avail_lock);
700 }
701
702 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
703 unsigned int nr_entries)
704 {
705 unsigned long end = offset + nr_entries - 1;
706 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
707
708 if (offset < si->lowest_bit)
709 si->lowest_bit = offset;
710 if (end > si->highest_bit) {
711 bool was_full = !si->highest_bit;
712
713 si->highest_bit = end;
714 if (was_full && (si->flags & SWP_WRITEOK))
715 add_to_avail_list(si);
716 }
717 atomic_long_add(nr_entries, &nr_swap_pages);
718 si->inuse_pages -= nr_entries;
719 if (si->flags & SWP_BLKDEV)
720 swap_slot_free_notify =
721 si->bdev->bd_disk->fops->swap_slot_free_notify;
722 else
723 swap_slot_free_notify = NULL;
724 while (offset <= end) {
725 frontswap_invalidate_page(si->type, offset);
726 if (swap_slot_free_notify)
727 swap_slot_free_notify(si->bdev, offset);
728 offset++;
729 }
730 }
731
732 static int scan_swap_map_slots(struct swap_info_struct *si,
733 unsigned char usage, int nr,
734 swp_entry_t slots[])
735 {
736 struct swap_cluster_info *ci;
737 unsigned long offset;
738 unsigned long scan_base;
739 unsigned long last_in_cluster = 0;
740 int latency_ration = LATENCY_LIMIT;
741 int n_ret = 0;
742
743 /*
744 * We try to cluster swap pages by allocating them sequentially
745 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
746 * way, however, we resort to first-free allocation, starting
747 * a new cluster. This prevents us from scattering swap pages
748 * all over the entire swap partition, so that we reduce
749 * overall disk seek times between swap pages. -- sct
750 * But we do now try to find an empty cluster. -Andrea
751 * And we let swap pages go all over an SSD partition. Hugh
752 */
753
754 si->flags += SWP_SCANNING;
755 scan_base = offset = si->cluster_next;
756
757 /* SSD algorithm */
758 if (si->cluster_info) {
759 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
760 goto scan;
761 } else if (unlikely(!si->cluster_nr--)) {
762 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
763 si->cluster_nr = SWAPFILE_CLUSTER - 1;
764 goto checks;
765 }
766
767 spin_unlock(&si->lock);
768
769 /*
770 * If seek is expensive, start searching for new cluster from
771 * start of partition, to minimize the span of allocated swap.
772 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
773 * case, just handled by scan_swap_map_try_ssd_cluster() above.
774 */
775 scan_base = offset = si->lowest_bit;
776 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
777
778 /* Locate the first empty (unaligned) cluster */
779 for (; last_in_cluster <= si->highest_bit; offset++) {
780 if (si->swap_map[offset])
781 last_in_cluster = offset + SWAPFILE_CLUSTER;
782 else if (offset == last_in_cluster) {
783 spin_lock(&si->lock);
784 offset -= SWAPFILE_CLUSTER - 1;
785 si->cluster_next = offset;
786 si->cluster_nr = SWAPFILE_CLUSTER - 1;
787 goto checks;
788 }
789 if (unlikely(--latency_ration < 0)) {
790 cond_resched();
791 latency_ration = LATENCY_LIMIT;
792 }
793 }
794
795 offset = scan_base;
796 spin_lock(&si->lock);
797 si->cluster_nr = SWAPFILE_CLUSTER - 1;
798 }
799
800 checks:
801 if (si->cluster_info) {
802 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
803 /* take a break if we already got some slots */
804 if (n_ret)
805 goto done;
806 if (!scan_swap_map_try_ssd_cluster(si, &offset,
807 &scan_base))
808 goto scan;
809 }
810 }
811 if (!(si->flags & SWP_WRITEOK))
812 goto no_page;
813 if (!si->highest_bit)
814 goto no_page;
815 if (offset > si->highest_bit)
816 scan_base = offset = si->lowest_bit;
817
818 ci = lock_cluster(si, offset);
819 /* reuse swap entry of cache-only swap if not busy. */
820 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
821 int swap_was_freed;
822 unlock_cluster(ci);
823 spin_unlock(&si->lock);
824 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
825 spin_lock(&si->lock);
826 /* entry was freed successfully, try to use this again */
827 if (swap_was_freed)
828 goto checks;
829 goto scan; /* check next one */
830 }
831
832 if (si->swap_map[offset]) {
833 unlock_cluster(ci);
834 if (!n_ret)
835 goto scan;
836 else
837 goto done;
838 }
839 si->swap_map[offset] = usage;
840 inc_cluster_info_page(si, si->cluster_info, offset);
841 unlock_cluster(ci);
842
843 swap_range_alloc(si, offset, 1);
844 si->cluster_next = offset + 1;
845 slots[n_ret++] = swp_entry(si->type, offset);
846
847 /* got enough slots or reach max slots? */
848 if ((n_ret == nr) || (offset >= si->highest_bit))
849 goto done;
850
851 /* search for next available slot */
852
853 /* time to take a break? */
854 if (unlikely(--latency_ration < 0)) {
855 if (n_ret)
856 goto done;
857 spin_unlock(&si->lock);
858 cond_resched();
859 spin_lock(&si->lock);
860 latency_ration = LATENCY_LIMIT;
861 }
862
863 /* try to get more slots in cluster */
864 if (si->cluster_info) {
865 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
866 goto checks;
867 } else if (si->cluster_nr && !si->swap_map[++offset]) {
868 /* non-ssd case, still more slots in cluster? */
869 --si->cluster_nr;
870 goto checks;
871 }
872
873 done:
874 si->flags -= SWP_SCANNING;
875 return n_ret;
876
877 scan:
878 spin_unlock(&si->lock);
879 while (++offset <= si->highest_bit) {
880 if (!si->swap_map[offset]) {
881 spin_lock(&si->lock);
882 goto checks;
883 }
884 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
885 spin_lock(&si->lock);
886 goto checks;
887 }
888 if (unlikely(--latency_ration < 0)) {
889 cond_resched();
890 latency_ration = LATENCY_LIMIT;
891 }
892 }
893 offset = si->lowest_bit;
894 while (offset < scan_base) {
895 if (!si->swap_map[offset]) {
896 spin_lock(&si->lock);
897 goto checks;
898 }
899 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
900 spin_lock(&si->lock);
901 goto checks;
902 }
903 if (unlikely(--latency_ration < 0)) {
904 cond_resched();
905 latency_ration = LATENCY_LIMIT;
906 }
907 offset++;
908 }
909 spin_lock(&si->lock);
910
911 no_page:
912 si->flags -= SWP_SCANNING;
913 return n_ret;
914 }
915
916 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
917 {
918 unsigned long idx;
919 struct swap_cluster_info *ci;
920 unsigned long offset, i;
921 unsigned char *map;
922
923 /*
924 * Should not even be attempting cluster allocations when huge
925 * page swap is disabled. Warn and fail the allocation.
926 */
927 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
928 VM_WARN_ON_ONCE(1);
929 return 0;
930 }
931
932 if (cluster_list_empty(&si->free_clusters))
933 return 0;
934
935 idx = cluster_list_first(&si->free_clusters);
936 offset = idx * SWAPFILE_CLUSTER;
937 ci = lock_cluster(si, offset);
938 alloc_cluster(si, idx);
939 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
940
941 map = si->swap_map + offset;
942 for (i = 0; i < SWAPFILE_CLUSTER; i++)
943 map[i] = SWAP_HAS_CACHE;
944 unlock_cluster(ci);
945 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
946 *slot = swp_entry(si->type, offset);
947
948 return 1;
949 }
950
951 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
952 {
953 unsigned long offset = idx * SWAPFILE_CLUSTER;
954 struct swap_cluster_info *ci;
955
956 ci = lock_cluster(si, offset);
957 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
958 cluster_set_count_flag(ci, 0, 0);
959 free_cluster(si, idx);
960 unlock_cluster(ci);
961 swap_range_free(si, offset, SWAPFILE_CLUSTER);
962 }
963
964 static unsigned long scan_swap_map(struct swap_info_struct *si,
965 unsigned char usage)
966 {
967 swp_entry_t entry;
968 int n_ret;
969
970 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
971
972 if (n_ret)
973 return swp_offset(entry);
974 else
975 return 0;
976
977 }
978
979 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
980 {
981 unsigned long size = swap_entry_size(entry_size);
982 struct swap_info_struct *si, *next;
983 long avail_pgs;
984 int n_ret = 0;
985 int node;
986
987 /* Only single cluster request supported */
988 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
989
990 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
991 if (avail_pgs <= 0)
992 goto noswap;
993
994 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
995
996 atomic_long_sub(n_goal * size, &nr_swap_pages);
997
998 spin_lock(&swap_avail_lock);
999
1000 start_over:
1001 node = numa_node_id();
1002 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1003 /* requeue si to after same-priority siblings */
1004 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1005 spin_unlock(&swap_avail_lock);
1006 spin_lock(&si->lock);
1007 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1008 spin_lock(&swap_avail_lock);
1009 if (plist_node_empty(&si->avail_lists[node])) {
1010 spin_unlock(&si->lock);
1011 goto nextsi;
1012 }
1013 WARN(!si->highest_bit,
1014 "swap_info %d in list but !highest_bit\n",
1015 si->type);
1016 WARN(!(si->flags & SWP_WRITEOK),
1017 "swap_info %d in list but !SWP_WRITEOK\n",
1018 si->type);
1019 __del_from_avail_list(si);
1020 spin_unlock(&si->lock);
1021 goto nextsi;
1022 }
1023 if (size == SWAPFILE_CLUSTER) {
1024 if (!(si->flags & SWP_FS))
1025 n_ret = swap_alloc_cluster(si, swp_entries);
1026 } else
1027 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1028 n_goal, swp_entries);
1029 spin_unlock(&si->lock);
1030 if (n_ret || size == SWAPFILE_CLUSTER)
1031 goto check_out;
1032 pr_debug("scan_swap_map of si %d failed to find offset\n",
1033 si->type);
1034
1035 spin_lock(&swap_avail_lock);
1036 nextsi:
1037 /*
1038 * if we got here, it's likely that si was almost full before,
1039 * and since scan_swap_map() can drop the si->lock, multiple
1040 * callers probably all tried to get a page from the same si
1041 * and it filled up before we could get one; or, the si filled
1042 * up between us dropping swap_avail_lock and taking si->lock.
1043 * Since we dropped the swap_avail_lock, the swap_avail_head
1044 * list may have been modified; so if next is still in the
1045 * swap_avail_head list then try it, otherwise start over
1046 * if we have not gotten any slots.
1047 */
1048 if (plist_node_empty(&next->avail_lists[node]))
1049 goto start_over;
1050 }
1051
1052 spin_unlock(&swap_avail_lock);
1053
1054 check_out:
1055 if (n_ret < n_goal)
1056 atomic_long_add((long)(n_goal - n_ret) * size,
1057 &nr_swap_pages);
1058 noswap:
1059 return n_ret;
1060 }
1061
1062 /* The only caller of this function is now suspend routine */
1063 swp_entry_t get_swap_page_of_type(int type)
1064 {
1065 struct swap_info_struct *si = swap_type_to_swap_info(type);
1066 pgoff_t offset;
1067
1068 if (!si)
1069 goto fail;
1070
1071 spin_lock(&si->lock);
1072 if (si->flags & SWP_WRITEOK) {
1073 atomic_long_dec(&nr_swap_pages);
1074 /* This is called for allocating swap entry, not cache */
1075 offset = scan_swap_map(si, 1);
1076 if (offset) {
1077 spin_unlock(&si->lock);
1078 return swp_entry(type, offset);
1079 }
1080 atomic_long_inc(&nr_swap_pages);
1081 }
1082 spin_unlock(&si->lock);
1083 fail:
1084 return (swp_entry_t) {0};
1085 }
1086
1087 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1088 {
1089 struct swap_info_struct *p;
1090 unsigned long offset;
1091
1092 if (!entry.val)
1093 goto out;
1094 p = swp_swap_info(entry);
1095 if (!p)
1096 goto bad_nofile;
1097 if (!(p->flags & SWP_USED))
1098 goto bad_device;
1099 offset = swp_offset(entry);
1100 if (offset >= p->max)
1101 goto bad_offset;
1102 return p;
1103
1104 bad_offset:
1105 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1106 goto out;
1107 bad_device:
1108 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1109 goto out;
1110 bad_nofile:
1111 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1112 out:
1113 return NULL;
1114 }
1115
1116 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1117 {
1118 struct swap_info_struct *p;
1119
1120 p = __swap_info_get(entry);
1121 if (!p)
1122 goto out;
1123 if (!p->swap_map[swp_offset(entry)])
1124 goto bad_free;
1125 return p;
1126
1127 bad_free:
1128 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1129 goto out;
1130 out:
1131 return NULL;
1132 }
1133
1134 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1135 {
1136 struct swap_info_struct *p;
1137
1138 p = _swap_info_get(entry);
1139 if (p)
1140 spin_lock(&p->lock);
1141 return p;
1142 }
1143
1144 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1145 struct swap_info_struct *q)
1146 {
1147 struct swap_info_struct *p;
1148
1149 p = _swap_info_get(entry);
1150
1151 if (p != q) {
1152 if (q != NULL)
1153 spin_unlock(&q->lock);
1154 if (p != NULL)
1155 spin_lock(&p->lock);
1156 }
1157 return p;
1158 }
1159
1160 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1161 unsigned long offset,
1162 unsigned char usage)
1163 {
1164 unsigned char count;
1165 unsigned char has_cache;
1166
1167 count = p->swap_map[offset];
1168
1169 has_cache = count & SWAP_HAS_CACHE;
1170 count &= ~SWAP_HAS_CACHE;
1171
1172 if (usage == SWAP_HAS_CACHE) {
1173 VM_BUG_ON(!has_cache);
1174 has_cache = 0;
1175 } else if (count == SWAP_MAP_SHMEM) {
1176 /*
1177 * Or we could insist on shmem.c using a special
1178 * swap_shmem_free() and free_shmem_swap_and_cache()...
1179 */
1180 count = 0;
1181 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1182 if (count == COUNT_CONTINUED) {
1183 if (swap_count_continued(p, offset, count))
1184 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1185 else
1186 count = SWAP_MAP_MAX;
1187 } else
1188 count--;
1189 }
1190
1191 usage = count | has_cache;
1192 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1193
1194 return usage;
1195 }
1196
1197 /*
1198 * Check whether swap entry is valid in the swap device. If so,
1199 * return pointer to swap_info_struct, and keep the swap entry valid
1200 * via preventing the swap device from being swapoff, until
1201 * put_swap_device() is called. Otherwise return NULL.
1202 *
1203 * The entirety of the RCU read critical section must come before the
1204 * return from or after the call to synchronize_rcu() in
1205 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1206 * true, the si->map, si->cluster_info, etc. must be valid in the
1207 * critical section.
1208 *
1209 * Notice that swapoff or swapoff+swapon can still happen before the
1210 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1211 * in put_swap_device() if there isn't any other way to prevent
1212 * swapoff, such as page lock, page table lock, etc. The caller must
1213 * be prepared for that. For example, the following situation is
1214 * possible.
1215 *
1216 * CPU1 CPU2
1217 * do_swap_page()
1218 * ... swapoff+swapon
1219 * __read_swap_cache_async()
1220 * swapcache_prepare()
1221 * __swap_duplicate()
1222 * // check swap_map
1223 * // verify PTE not changed
1224 *
1225 * In __swap_duplicate(), the swap_map need to be checked before
1226 * changing partly because the specified swap entry may be for another
1227 * swap device which has been swapoff. And in do_swap_page(), after
1228 * the page is read from the swap device, the PTE is verified not
1229 * changed with the page table locked to check whether the swap device
1230 * has been swapoff or swapoff+swapon.
1231 */
1232 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1233 {
1234 struct swap_info_struct *si;
1235 unsigned long offset;
1236
1237 if (!entry.val)
1238 goto out;
1239 si = swp_swap_info(entry);
1240 if (!si)
1241 goto bad_nofile;
1242
1243 rcu_read_lock();
1244 if (!(si->flags & SWP_VALID))
1245 goto unlock_out;
1246 offset = swp_offset(entry);
1247 if (offset >= si->max)
1248 goto unlock_out;
1249
1250 return si;
1251 bad_nofile:
1252 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1253 out:
1254 return NULL;
1255 unlock_out:
1256 rcu_read_unlock();
1257 return NULL;
1258 }
1259
1260 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1261 swp_entry_t entry, unsigned char usage)
1262 {
1263 struct swap_cluster_info *ci;
1264 unsigned long offset = swp_offset(entry);
1265
1266 ci = lock_cluster_or_swap_info(p, offset);
1267 usage = __swap_entry_free_locked(p, offset, usage);
1268 unlock_cluster_or_swap_info(p, ci);
1269 if (!usage)
1270 free_swap_slot(entry);
1271
1272 return usage;
1273 }
1274
1275 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1276 {
1277 struct swap_cluster_info *ci;
1278 unsigned long offset = swp_offset(entry);
1279 unsigned char count;
1280
1281 ci = lock_cluster(p, offset);
1282 count = p->swap_map[offset];
1283 VM_BUG_ON(count != SWAP_HAS_CACHE);
1284 p->swap_map[offset] = 0;
1285 dec_cluster_info_page(p, p->cluster_info, offset);
1286 unlock_cluster(ci);
1287
1288 mem_cgroup_uncharge_swap(entry, 1);
1289 swap_range_free(p, offset, 1);
1290 }
1291
1292 /*
1293 * Caller has made sure that the swap device corresponding to entry
1294 * is still around or has not been recycled.
1295 */
1296 void swap_free(swp_entry_t entry)
1297 {
1298 struct swap_info_struct *p;
1299
1300 p = _swap_info_get(entry);
1301 if (p)
1302 __swap_entry_free(p, entry, 1);
1303 }
1304
1305 /*
1306 * Called after dropping swapcache to decrease refcnt to swap entries.
1307 */
1308 void put_swap_page(struct page *page, swp_entry_t entry)
1309 {
1310 unsigned long offset = swp_offset(entry);
1311 unsigned long idx = offset / SWAPFILE_CLUSTER;
1312 struct swap_cluster_info *ci;
1313 struct swap_info_struct *si;
1314 unsigned char *map;
1315 unsigned int i, free_entries = 0;
1316 unsigned char val;
1317 int size = swap_entry_size(hpage_nr_pages(page));
1318
1319 si = _swap_info_get(entry);
1320 if (!si)
1321 return;
1322
1323 ci = lock_cluster_or_swap_info(si, offset);
1324 if (size == SWAPFILE_CLUSTER) {
1325 VM_BUG_ON(!cluster_is_huge(ci));
1326 map = si->swap_map + offset;
1327 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1328 val = map[i];
1329 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1330 if (val == SWAP_HAS_CACHE)
1331 free_entries++;
1332 }
1333 cluster_clear_huge(ci);
1334 if (free_entries == SWAPFILE_CLUSTER) {
1335 unlock_cluster_or_swap_info(si, ci);
1336 spin_lock(&si->lock);
1337 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1338 swap_free_cluster(si, idx);
1339 spin_unlock(&si->lock);
1340 return;
1341 }
1342 }
1343 for (i = 0; i < size; i++, entry.val++) {
1344 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1345 unlock_cluster_or_swap_info(si, ci);
1346 free_swap_slot(entry);
1347 if (i == size - 1)
1348 return;
1349 lock_cluster_or_swap_info(si, offset);
1350 }
1351 }
1352 unlock_cluster_or_swap_info(si, ci);
1353 }
1354
1355 #ifdef CONFIG_THP_SWAP
1356 int split_swap_cluster(swp_entry_t entry)
1357 {
1358 struct swap_info_struct *si;
1359 struct swap_cluster_info *ci;
1360 unsigned long offset = swp_offset(entry);
1361
1362 si = _swap_info_get(entry);
1363 if (!si)
1364 return -EBUSY;
1365 ci = lock_cluster(si, offset);
1366 cluster_clear_huge(ci);
1367 unlock_cluster(ci);
1368 return 0;
1369 }
1370 #endif
1371
1372 static int swp_entry_cmp(const void *ent1, const void *ent2)
1373 {
1374 const swp_entry_t *e1 = ent1, *e2 = ent2;
1375
1376 return (int)swp_type(*e1) - (int)swp_type(*e2);
1377 }
1378
1379 void swapcache_free_entries(swp_entry_t *entries, int n)
1380 {
1381 struct swap_info_struct *p, *prev;
1382 int i;
1383
1384 if (n <= 0)
1385 return;
1386
1387 prev = NULL;
1388 p = NULL;
1389
1390 /*
1391 * Sort swap entries by swap device, so each lock is only taken once.
1392 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1393 * so low that it isn't necessary to optimize further.
1394 */
1395 if (nr_swapfiles > 1)
1396 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1397 for (i = 0; i < n; ++i) {
1398 p = swap_info_get_cont(entries[i], prev);
1399 if (p)
1400 swap_entry_free(p, entries[i]);
1401 prev = p;
1402 }
1403 if (p)
1404 spin_unlock(&p->lock);
1405 }
1406
1407 /*
1408 * How many references to page are currently swapped out?
1409 * This does not give an exact answer when swap count is continued,
1410 * but does include the high COUNT_CONTINUED flag to allow for that.
1411 */
1412 int page_swapcount(struct page *page)
1413 {
1414 int count = 0;
1415 struct swap_info_struct *p;
1416 struct swap_cluster_info *ci;
1417 swp_entry_t entry;
1418 unsigned long offset;
1419
1420 entry.val = page_private(page);
1421 p = _swap_info_get(entry);
1422 if (p) {
1423 offset = swp_offset(entry);
1424 ci = lock_cluster_or_swap_info(p, offset);
1425 count = swap_count(p->swap_map[offset]);
1426 unlock_cluster_or_swap_info(p, ci);
1427 }
1428 return count;
1429 }
1430
1431 int __swap_count(swp_entry_t entry)
1432 {
1433 struct swap_info_struct *si;
1434 pgoff_t offset = swp_offset(entry);
1435 int count = 0;
1436
1437 si = get_swap_device(entry);
1438 if (si) {
1439 count = swap_count(si->swap_map[offset]);
1440 put_swap_device(si);
1441 }
1442 return count;
1443 }
1444
1445 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1446 {
1447 int count = 0;
1448 pgoff_t offset = swp_offset(entry);
1449 struct swap_cluster_info *ci;
1450
1451 ci = lock_cluster_or_swap_info(si, offset);
1452 count = swap_count(si->swap_map[offset]);
1453 unlock_cluster_or_swap_info(si, ci);
1454 return count;
1455 }
1456
1457 /*
1458 * How many references to @entry are currently swapped out?
1459 * This does not give an exact answer when swap count is continued,
1460 * but does include the high COUNT_CONTINUED flag to allow for that.
1461 */
1462 int __swp_swapcount(swp_entry_t entry)
1463 {
1464 int count = 0;
1465 struct swap_info_struct *si;
1466
1467 si = get_swap_device(entry);
1468 if (si) {
1469 count = swap_swapcount(si, entry);
1470 put_swap_device(si);
1471 }
1472 return count;
1473 }
1474
1475 /*
1476 * How many references to @entry are currently swapped out?
1477 * This considers COUNT_CONTINUED so it returns exact answer.
1478 */
1479 int swp_swapcount(swp_entry_t entry)
1480 {
1481 int count, tmp_count, n;
1482 struct swap_info_struct *p;
1483 struct swap_cluster_info *ci;
1484 struct page *page;
1485 pgoff_t offset;
1486 unsigned char *map;
1487
1488 p = _swap_info_get(entry);
1489 if (!p)
1490 return 0;
1491
1492 offset = swp_offset(entry);
1493
1494 ci = lock_cluster_or_swap_info(p, offset);
1495
1496 count = swap_count(p->swap_map[offset]);
1497 if (!(count & COUNT_CONTINUED))
1498 goto out;
1499
1500 count &= ~COUNT_CONTINUED;
1501 n = SWAP_MAP_MAX + 1;
1502
1503 page = vmalloc_to_page(p->swap_map + offset);
1504 offset &= ~PAGE_MASK;
1505 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1506
1507 do {
1508 page = list_next_entry(page, lru);
1509 map = kmap_atomic(page);
1510 tmp_count = map[offset];
1511 kunmap_atomic(map);
1512
1513 count += (tmp_count & ~COUNT_CONTINUED) * n;
1514 n *= (SWAP_CONT_MAX + 1);
1515 } while (tmp_count & COUNT_CONTINUED);
1516 out:
1517 unlock_cluster_or_swap_info(p, ci);
1518 return count;
1519 }
1520
1521 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1522 swp_entry_t entry)
1523 {
1524 struct swap_cluster_info *ci;
1525 unsigned char *map = si->swap_map;
1526 unsigned long roffset = swp_offset(entry);
1527 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1528 int i;
1529 bool ret = false;
1530
1531 ci = lock_cluster_or_swap_info(si, offset);
1532 if (!ci || !cluster_is_huge(ci)) {
1533 if (swap_count(map[roffset]))
1534 ret = true;
1535 goto unlock_out;
1536 }
1537 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1538 if (swap_count(map[offset + i])) {
1539 ret = true;
1540 break;
1541 }
1542 }
1543 unlock_out:
1544 unlock_cluster_or_swap_info(si, ci);
1545 return ret;
1546 }
1547
1548 static bool page_swapped(struct page *page)
1549 {
1550 swp_entry_t entry;
1551 struct swap_info_struct *si;
1552
1553 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1554 return page_swapcount(page) != 0;
1555
1556 page = compound_head(page);
1557 entry.val = page_private(page);
1558 si = _swap_info_get(entry);
1559 if (si)
1560 return swap_page_trans_huge_swapped(si, entry);
1561 return false;
1562 }
1563
1564 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1565 int *total_swapcount)
1566 {
1567 int i, map_swapcount, _total_mapcount, _total_swapcount;
1568 unsigned long offset = 0;
1569 struct swap_info_struct *si;
1570 struct swap_cluster_info *ci = NULL;
1571 unsigned char *map = NULL;
1572 int mapcount, swapcount = 0;
1573
1574 /* hugetlbfs shouldn't call it */
1575 VM_BUG_ON_PAGE(PageHuge(page), page);
1576
1577 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1578 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1579 if (PageSwapCache(page))
1580 swapcount = page_swapcount(page);
1581 if (total_swapcount)
1582 *total_swapcount = swapcount;
1583 return mapcount + swapcount;
1584 }
1585
1586 page = compound_head(page);
1587
1588 _total_mapcount = _total_swapcount = map_swapcount = 0;
1589 if (PageSwapCache(page)) {
1590 swp_entry_t entry;
1591
1592 entry.val = page_private(page);
1593 si = _swap_info_get(entry);
1594 if (si) {
1595 map = si->swap_map;
1596 offset = swp_offset(entry);
1597 }
1598 }
1599 if (map)
1600 ci = lock_cluster(si, offset);
1601 for (i = 0; i < HPAGE_PMD_NR; i++) {
1602 mapcount = atomic_read(&page[i]._mapcount) + 1;
1603 _total_mapcount += mapcount;
1604 if (map) {
1605 swapcount = swap_count(map[offset + i]);
1606 _total_swapcount += swapcount;
1607 }
1608 map_swapcount = max(map_swapcount, mapcount + swapcount);
1609 }
1610 unlock_cluster(ci);
1611 if (PageDoubleMap(page)) {
1612 map_swapcount -= 1;
1613 _total_mapcount -= HPAGE_PMD_NR;
1614 }
1615 mapcount = compound_mapcount(page);
1616 map_swapcount += mapcount;
1617 _total_mapcount += mapcount;
1618 if (total_mapcount)
1619 *total_mapcount = _total_mapcount;
1620 if (total_swapcount)
1621 *total_swapcount = _total_swapcount;
1622
1623 return map_swapcount;
1624 }
1625
1626 /*
1627 * We can write to an anon page without COW if there are no other references
1628 * to it. And as a side-effect, free up its swap: because the old content
1629 * on disk will never be read, and seeking back there to write new content
1630 * later would only waste time away from clustering.
1631 *
1632 * NOTE: total_map_swapcount should not be relied upon by the caller if
1633 * reuse_swap_page() returns false, but it may be always overwritten
1634 * (see the other implementation for CONFIG_SWAP=n).
1635 */
1636 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1637 {
1638 int count, total_mapcount, total_swapcount;
1639
1640 VM_BUG_ON_PAGE(!PageLocked(page), page);
1641 if (unlikely(PageKsm(page)))
1642 return false;
1643 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1644 &total_swapcount);
1645 if (total_map_swapcount)
1646 *total_map_swapcount = total_mapcount + total_swapcount;
1647 if (count == 1 && PageSwapCache(page) &&
1648 (likely(!PageTransCompound(page)) ||
1649 /* The remaining swap count will be freed soon */
1650 total_swapcount == page_swapcount(page))) {
1651 if (!PageWriteback(page)) {
1652 page = compound_head(page);
1653 delete_from_swap_cache(page);
1654 SetPageDirty(page);
1655 } else {
1656 swp_entry_t entry;
1657 struct swap_info_struct *p;
1658
1659 entry.val = page_private(page);
1660 p = swap_info_get(entry);
1661 if (p->flags & SWP_STABLE_WRITES) {
1662 spin_unlock(&p->lock);
1663 return false;
1664 }
1665 spin_unlock(&p->lock);
1666 }
1667 }
1668
1669 return count <= 1;
1670 }
1671
1672 /*
1673 * If swap is getting full, or if there are no more mappings of this page,
1674 * then try_to_free_swap is called to free its swap space.
1675 */
1676 int try_to_free_swap(struct page *page)
1677 {
1678 VM_BUG_ON_PAGE(!PageLocked(page), page);
1679
1680 if (!PageSwapCache(page))
1681 return 0;
1682 if (PageWriteback(page))
1683 return 0;
1684 if (page_swapped(page))
1685 return 0;
1686
1687 /*
1688 * Once hibernation has begun to create its image of memory,
1689 * there's a danger that one of the calls to try_to_free_swap()
1690 * - most probably a call from __try_to_reclaim_swap() while
1691 * hibernation is allocating its own swap pages for the image,
1692 * but conceivably even a call from memory reclaim - will free
1693 * the swap from a page which has already been recorded in the
1694 * image as a clean swapcache page, and then reuse its swap for
1695 * another page of the image. On waking from hibernation, the
1696 * original page might be freed under memory pressure, then
1697 * later read back in from swap, now with the wrong data.
1698 *
1699 * Hibernation suspends storage while it is writing the image
1700 * to disk so check that here.
1701 */
1702 if (pm_suspended_storage())
1703 return 0;
1704
1705 page = compound_head(page);
1706 delete_from_swap_cache(page);
1707 SetPageDirty(page);
1708 return 1;
1709 }
1710
1711 /*
1712 * Free the swap entry like above, but also try to
1713 * free the page cache entry if it is the last user.
1714 */
1715 int free_swap_and_cache(swp_entry_t entry)
1716 {
1717 struct swap_info_struct *p;
1718 unsigned char count;
1719
1720 if (non_swap_entry(entry))
1721 return 1;
1722
1723 p = _swap_info_get(entry);
1724 if (p) {
1725 count = __swap_entry_free(p, entry, 1);
1726 if (count == SWAP_HAS_CACHE &&
1727 !swap_page_trans_huge_swapped(p, entry))
1728 __try_to_reclaim_swap(p, swp_offset(entry),
1729 TTRS_UNMAPPED | TTRS_FULL);
1730 }
1731 return p != NULL;
1732 }
1733
1734 #ifdef CONFIG_HIBERNATION
1735 /*
1736 * Find the swap type that corresponds to given device (if any).
1737 *
1738 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1739 * from 0, in which the swap header is expected to be located.
1740 *
1741 * This is needed for the suspend to disk (aka swsusp).
1742 */
1743 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1744 {
1745 struct block_device *bdev = NULL;
1746 int type;
1747
1748 if (device)
1749 bdev = bdget(device);
1750
1751 spin_lock(&swap_lock);
1752 for (type = 0; type < nr_swapfiles; type++) {
1753 struct swap_info_struct *sis = swap_info[type];
1754
1755 if (!(sis->flags & SWP_WRITEOK))
1756 continue;
1757
1758 if (!bdev) {
1759 if (bdev_p)
1760 *bdev_p = bdgrab(sis->bdev);
1761
1762 spin_unlock(&swap_lock);
1763 return type;
1764 }
1765 if (bdev == sis->bdev) {
1766 struct swap_extent *se = first_se(sis);
1767
1768 if (se->start_block == offset) {
1769 if (bdev_p)
1770 *bdev_p = bdgrab(sis->bdev);
1771
1772 spin_unlock(&swap_lock);
1773 bdput(bdev);
1774 return type;
1775 }
1776 }
1777 }
1778 spin_unlock(&swap_lock);
1779 if (bdev)
1780 bdput(bdev);
1781
1782 return -ENODEV;
1783 }
1784
1785 /*
1786 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1787 * corresponding to given index in swap_info (swap type).
1788 */
1789 sector_t swapdev_block(int type, pgoff_t offset)
1790 {
1791 struct block_device *bdev;
1792 struct swap_info_struct *si = swap_type_to_swap_info(type);
1793
1794 if (!si || !(si->flags & SWP_WRITEOK))
1795 return 0;
1796 return map_swap_entry(swp_entry(type, offset), &bdev);
1797 }
1798
1799 /*
1800 * Return either the total number of swap pages of given type, or the number
1801 * of free pages of that type (depending on @free)
1802 *
1803 * This is needed for software suspend
1804 */
1805 unsigned int count_swap_pages(int type, int free)
1806 {
1807 unsigned int n = 0;
1808
1809 spin_lock(&swap_lock);
1810 if ((unsigned int)type < nr_swapfiles) {
1811 struct swap_info_struct *sis = swap_info[type];
1812
1813 spin_lock(&sis->lock);
1814 if (sis->flags & SWP_WRITEOK) {
1815 n = sis->pages;
1816 if (free)
1817 n -= sis->inuse_pages;
1818 }
1819 spin_unlock(&sis->lock);
1820 }
1821 spin_unlock(&swap_lock);
1822 return n;
1823 }
1824 #endif /* CONFIG_HIBERNATION */
1825
1826 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1827 {
1828 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1829 }
1830
1831 /*
1832 * No need to decide whether this PTE shares the swap entry with others,
1833 * just let do_wp_page work it out if a write is requested later - to
1834 * force COW, vm_page_prot omits write permission from any private vma.
1835 */
1836 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1837 unsigned long addr, swp_entry_t entry, struct page *page)
1838 {
1839 struct page *swapcache;
1840 struct mem_cgroup *memcg;
1841 spinlock_t *ptl;
1842 pte_t *pte;
1843 int ret = 1;
1844
1845 swapcache = page;
1846 page = ksm_might_need_to_copy(page, vma, addr);
1847 if (unlikely(!page))
1848 return -ENOMEM;
1849
1850 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1851 &memcg, false)) {
1852 ret = -ENOMEM;
1853 goto out_nolock;
1854 }
1855
1856 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1857 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1858 mem_cgroup_cancel_charge(page, memcg, false);
1859 ret = 0;
1860 goto out;
1861 }
1862
1863 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1864 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1865 get_page(page);
1866 set_pte_at(vma->vm_mm, addr, pte,
1867 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1868 if (page == swapcache) {
1869 page_add_anon_rmap(page, vma, addr, false);
1870 mem_cgroup_commit_charge(page, memcg, true, false);
1871 } else { /* ksm created a completely new copy */
1872 page_add_new_anon_rmap(page, vma, addr, false);
1873 mem_cgroup_commit_charge(page, memcg, false, false);
1874 lru_cache_add_active_or_unevictable(page, vma);
1875 }
1876 swap_free(entry);
1877 /*
1878 * Move the page to the active list so it is not
1879 * immediately swapped out again after swapon.
1880 */
1881 activate_page(page);
1882 out:
1883 pte_unmap_unlock(pte, ptl);
1884 out_nolock:
1885 if (page != swapcache) {
1886 unlock_page(page);
1887 put_page(page);
1888 }
1889 return ret;
1890 }
1891
1892 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1893 unsigned long addr, unsigned long end,
1894 unsigned int type, bool frontswap,
1895 unsigned long *fs_pages_to_unuse)
1896 {
1897 struct page *page;
1898 swp_entry_t entry;
1899 pte_t *pte;
1900 struct swap_info_struct *si;
1901 unsigned long offset;
1902 int ret = 0;
1903 volatile unsigned char *swap_map;
1904
1905 si = swap_info[type];
1906 pte = pte_offset_map(pmd, addr);
1907 do {
1908 struct vm_fault vmf;
1909
1910 if (!is_swap_pte(*pte))
1911 continue;
1912
1913 entry = pte_to_swp_entry(*pte);
1914 if (swp_type(entry) != type)
1915 continue;
1916
1917 offset = swp_offset(entry);
1918 if (frontswap && !frontswap_test(si, offset))
1919 continue;
1920
1921 pte_unmap(pte);
1922 swap_map = &si->swap_map[offset];
1923 page = lookup_swap_cache(entry, vma, addr);
1924 if (!page) {
1925 vmf.vma = vma;
1926 vmf.address = addr;
1927 vmf.pmd = pmd;
1928 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1929 &vmf);
1930 }
1931 if (!page) {
1932 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1933 goto try_next;
1934 return -ENOMEM;
1935 }
1936
1937 lock_page(page);
1938 wait_on_page_writeback(page);
1939 ret = unuse_pte(vma, pmd, addr, entry, page);
1940 if (ret < 0) {
1941 unlock_page(page);
1942 put_page(page);
1943 goto out;
1944 }
1945
1946 try_to_free_swap(page);
1947 unlock_page(page);
1948 put_page(page);
1949
1950 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1951 ret = FRONTSWAP_PAGES_UNUSED;
1952 goto out;
1953 }
1954 try_next:
1955 pte = pte_offset_map(pmd, addr);
1956 } while (pte++, addr += PAGE_SIZE, addr != end);
1957 pte_unmap(pte - 1);
1958
1959 ret = 0;
1960 out:
1961 return ret;
1962 }
1963
1964 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1965 unsigned long addr, unsigned long end,
1966 unsigned int type, bool frontswap,
1967 unsigned long *fs_pages_to_unuse)
1968 {
1969 pmd_t *pmd;
1970 unsigned long next;
1971 int ret;
1972
1973 pmd = pmd_offset(pud, addr);
1974 do {
1975 cond_resched();
1976 next = pmd_addr_end(addr, end);
1977 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1978 continue;
1979 ret = unuse_pte_range(vma, pmd, addr, next, type,
1980 frontswap, fs_pages_to_unuse);
1981 if (ret)
1982 return ret;
1983 } while (pmd++, addr = next, addr != end);
1984 return 0;
1985 }
1986
1987 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1988 unsigned long addr, unsigned long end,
1989 unsigned int type, bool frontswap,
1990 unsigned long *fs_pages_to_unuse)
1991 {
1992 pud_t *pud;
1993 unsigned long next;
1994 int ret;
1995
1996 pud = pud_offset(p4d, addr);
1997 do {
1998 next = pud_addr_end(addr, end);
1999 if (pud_none_or_clear_bad(pud))
2000 continue;
2001 ret = unuse_pmd_range(vma, pud, addr, next, type,
2002 frontswap, fs_pages_to_unuse);
2003 if (ret)
2004 return ret;
2005 } while (pud++, addr = next, addr != end);
2006 return 0;
2007 }
2008
2009 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2010 unsigned long addr, unsigned long end,
2011 unsigned int type, bool frontswap,
2012 unsigned long *fs_pages_to_unuse)
2013 {
2014 p4d_t *p4d;
2015 unsigned long next;
2016 int ret;
2017
2018 p4d = p4d_offset(pgd, addr);
2019 do {
2020 next = p4d_addr_end(addr, end);
2021 if (p4d_none_or_clear_bad(p4d))
2022 continue;
2023 ret = unuse_pud_range(vma, p4d, addr, next, type,
2024 frontswap, fs_pages_to_unuse);
2025 if (ret)
2026 return ret;
2027 } while (p4d++, addr = next, addr != end);
2028 return 0;
2029 }
2030
2031 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2032 bool frontswap, unsigned long *fs_pages_to_unuse)
2033 {
2034 pgd_t *pgd;
2035 unsigned long addr, end, next;
2036 int ret;
2037
2038 addr = vma->vm_start;
2039 end = vma->vm_end;
2040
2041 pgd = pgd_offset(vma->vm_mm, addr);
2042 do {
2043 next = pgd_addr_end(addr, end);
2044 if (pgd_none_or_clear_bad(pgd))
2045 continue;
2046 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2047 frontswap, fs_pages_to_unuse);
2048 if (ret)
2049 return ret;
2050 } while (pgd++, addr = next, addr != end);
2051 return 0;
2052 }
2053
2054 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2055 bool frontswap, unsigned long *fs_pages_to_unuse)
2056 {
2057 struct vm_area_struct *vma;
2058 int ret = 0;
2059
2060 down_read(&mm->mmap_sem);
2061 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2062 if (vma->anon_vma) {
2063 ret = unuse_vma(vma, type, frontswap,
2064 fs_pages_to_unuse);
2065 if (ret)
2066 break;
2067 }
2068 cond_resched();
2069 }
2070 up_read(&mm->mmap_sem);
2071 return ret;
2072 }
2073
2074 /*
2075 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2076 * from current position to next entry still in use. Return 0
2077 * if there are no inuse entries after prev till end of the map.
2078 */
2079 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2080 unsigned int prev, bool frontswap)
2081 {
2082 unsigned int i;
2083 unsigned char count;
2084
2085 /*
2086 * No need for swap_lock here: we're just looking
2087 * for whether an entry is in use, not modifying it; false
2088 * hits are okay, and sys_swapoff() has already prevented new
2089 * allocations from this area (while holding swap_lock).
2090 */
2091 for (i = prev + 1; i < si->max; i++) {
2092 count = READ_ONCE(si->swap_map[i]);
2093 if (count && swap_count(count) != SWAP_MAP_BAD)
2094 if (!frontswap || frontswap_test(si, i))
2095 break;
2096 if ((i % LATENCY_LIMIT) == 0)
2097 cond_resched();
2098 }
2099
2100 if (i == si->max)
2101 i = 0;
2102
2103 return i;
2104 }
2105
2106 /*
2107 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2108 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2109 */
2110 int try_to_unuse(unsigned int type, bool frontswap,
2111 unsigned long pages_to_unuse)
2112 {
2113 struct mm_struct *prev_mm;
2114 struct mm_struct *mm;
2115 struct list_head *p;
2116 int retval = 0;
2117 struct swap_info_struct *si = swap_info[type];
2118 struct page *page;
2119 swp_entry_t entry;
2120 unsigned int i;
2121
2122 if (!READ_ONCE(si->inuse_pages))
2123 return 0;
2124
2125 if (!frontswap)
2126 pages_to_unuse = 0;
2127
2128 retry:
2129 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2130 if (retval)
2131 goto out;
2132
2133 prev_mm = &init_mm;
2134 mmget(prev_mm);
2135
2136 spin_lock(&mmlist_lock);
2137 p = &init_mm.mmlist;
2138 while (READ_ONCE(si->inuse_pages) &&
2139 !signal_pending(current) &&
2140 (p = p->next) != &init_mm.mmlist) {
2141
2142 mm = list_entry(p, struct mm_struct, mmlist);
2143 if (!mmget_not_zero(mm))
2144 continue;
2145 spin_unlock(&mmlist_lock);
2146 mmput(prev_mm);
2147 prev_mm = mm;
2148 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2149
2150 if (retval) {
2151 mmput(prev_mm);
2152 goto out;
2153 }
2154
2155 /*
2156 * Make sure that we aren't completely killing
2157 * interactive performance.
2158 */
2159 cond_resched();
2160 spin_lock(&mmlist_lock);
2161 }
2162 spin_unlock(&mmlist_lock);
2163
2164 mmput(prev_mm);
2165
2166 i = 0;
2167 while (READ_ONCE(si->inuse_pages) &&
2168 !signal_pending(current) &&
2169 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2170
2171 entry = swp_entry(type, i);
2172 page = find_get_page(swap_address_space(entry), i);
2173 if (!page)
2174 continue;
2175
2176 /*
2177 * It is conceivable that a racing task removed this page from
2178 * swap cache just before we acquired the page lock. The page
2179 * might even be back in swap cache on another swap area. But
2180 * that is okay, try_to_free_swap() only removes stale pages.
2181 */
2182 lock_page(page);
2183 wait_on_page_writeback(page);
2184 try_to_free_swap(page);
2185 unlock_page(page);
2186 put_page(page);
2187
2188 /*
2189 * For frontswap, we just need to unuse pages_to_unuse, if
2190 * it was specified. Need not check frontswap again here as
2191 * we already zeroed out pages_to_unuse if not frontswap.
2192 */
2193 if (pages_to_unuse && --pages_to_unuse == 0)
2194 goto out;
2195 }
2196
2197 /*
2198 * Lets check again to see if there are still swap entries in the map.
2199 * If yes, we would need to do retry the unuse logic again.
2200 * Under global memory pressure, swap entries can be reinserted back
2201 * into process space after the mmlist loop above passes over them.
2202 *
2203 * Limit the number of retries? No: when mmget_not_zero() above fails,
2204 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2205 * at its own independent pace; and even shmem_writepage() could have
2206 * been preempted after get_swap_page(), temporarily hiding that swap.
2207 * It's easy and robust (though cpu-intensive) just to keep retrying.
2208 */
2209 if (READ_ONCE(si->inuse_pages)) {
2210 if (!signal_pending(current))
2211 goto retry;
2212 retval = -EINTR;
2213 }
2214 out:
2215 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2216 }
2217
2218 /*
2219 * After a successful try_to_unuse, if no swap is now in use, we know
2220 * we can empty the mmlist. swap_lock must be held on entry and exit.
2221 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2222 * added to the mmlist just after page_duplicate - before would be racy.
2223 */
2224 static void drain_mmlist(void)
2225 {
2226 struct list_head *p, *next;
2227 unsigned int type;
2228
2229 for (type = 0; type < nr_swapfiles; type++)
2230 if (swap_info[type]->inuse_pages)
2231 return;
2232 spin_lock(&mmlist_lock);
2233 list_for_each_safe(p, next, &init_mm.mmlist)
2234 list_del_init(p);
2235 spin_unlock(&mmlist_lock);
2236 }
2237
2238 /*
2239 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2240 * corresponds to page offset for the specified swap entry.
2241 * Note that the type of this function is sector_t, but it returns page offset
2242 * into the bdev, not sector offset.
2243 */
2244 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2245 {
2246 struct swap_info_struct *sis;
2247 struct swap_extent *se;
2248 pgoff_t offset;
2249
2250 sis = swp_swap_info(entry);
2251 *bdev = sis->bdev;
2252
2253 offset = swp_offset(entry);
2254 se = offset_to_swap_extent(sis, offset);
2255 return se->start_block + (offset - se->start_page);
2256 }
2257
2258 /*
2259 * Returns the page offset into bdev for the specified page's swap entry.
2260 */
2261 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2262 {
2263 swp_entry_t entry;
2264 entry.val = page_private(page);
2265 return map_swap_entry(entry, bdev);
2266 }
2267
2268 /*
2269 * Free all of a swapdev's extent information
2270 */
2271 static void destroy_swap_extents(struct swap_info_struct *sis)
2272 {
2273 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2274 struct rb_node *rb = sis->swap_extent_root.rb_node;
2275 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2276
2277 rb_erase(rb, &sis->swap_extent_root);
2278 kfree(se);
2279 }
2280
2281 if (sis->flags & SWP_ACTIVATED) {
2282 struct file *swap_file = sis->swap_file;
2283 struct address_space *mapping = swap_file->f_mapping;
2284
2285 sis->flags &= ~SWP_ACTIVATED;
2286 if (mapping->a_ops->swap_deactivate)
2287 mapping->a_ops->swap_deactivate(swap_file);
2288 }
2289 }
2290
2291 /*
2292 * Add a block range (and the corresponding page range) into this swapdev's
2293 * extent tree.
2294 *
2295 * This function rather assumes that it is called in ascending page order.
2296 */
2297 int
2298 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2299 unsigned long nr_pages, sector_t start_block)
2300 {
2301 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2302 struct swap_extent *se;
2303 struct swap_extent *new_se;
2304
2305 /*
2306 * place the new node at the right most since the
2307 * function is called in ascending page order.
2308 */
2309 while (*link) {
2310 parent = *link;
2311 link = &parent->rb_right;
2312 }
2313
2314 if (parent) {
2315 se = rb_entry(parent, struct swap_extent, rb_node);
2316 BUG_ON(se->start_page + se->nr_pages != start_page);
2317 if (se->start_block + se->nr_pages == start_block) {
2318 /* Merge it */
2319 se->nr_pages += nr_pages;
2320 return 0;
2321 }
2322 }
2323
2324 /* No merge, insert a new extent. */
2325 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2326 if (new_se == NULL)
2327 return -ENOMEM;
2328 new_se->start_page = start_page;
2329 new_se->nr_pages = nr_pages;
2330 new_se->start_block = start_block;
2331
2332 rb_link_node(&new_se->rb_node, parent, link);
2333 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2334 return 1;
2335 }
2336 EXPORT_SYMBOL_GPL(add_swap_extent);
2337
2338 /*
2339 * A `swap extent' is a simple thing which maps a contiguous range of pages
2340 * onto a contiguous range of disk blocks. An ordered list of swap extents
2341 * is built at swapon time and is then used at swap_writepage/swap_readpage
2342 * time for locating where on disk a page belongs.
2343 *
2344 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2345 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2346 * swap files identically.
2347 *
2348 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2349 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2350 * swapfiles are handled *identically* after swapon time.
2351 *
2352 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2353 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2354 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2355 * requirements, they are simply tossed out - we will never use those blocks
2356 * for swapping.
2357 *
2358 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2359 * prevents users from writing to the swap device, which will corrupt memory.
2360 *
2361 * The amount of disk space which a single swap extent represents varies.
2362 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2363 * extents in the list. To avoid much list walking, we cache the previous
2364 * search location in `curr_swap_extent', and start new searches from there.
2365 * This is extremely effective. The average number of iterations in
2366 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2367 */
2368 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2369 {
2370 struct file *swap_file = sis->swap_file;
2371 struct address_space *mapping = swap_file->f_mapping;
2372 struct inode *inode = mapping->host;
2373 int ret;
2374
2375 if (S_ISBLK(inode->i_mode)) {
2376 ret = add_swap_extent(sis, 0, sis->max, 0);
2377 *span = sis->pages;
2378 return ret;
2379 }
2380
2381 if (mapping->a_ops->swap_activate) {
2382 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2383 if (ret >= 0)
2384 sis->flags |= SWP_ACTIVATED;
2385 if (!ret) {
2386 sis->flags |= SWP_FS;
2387 ret = add_swap_extent(sis, 0, sis->max, 0);
2388 *span = sis->pages;
2389 }
2390 return ret;
2391 }
2392
2393 return generic_swapfile_activate(sis, swap_file, span);
2394 }
2395
2396 static int swap_node(struct swap_info_struct *p)
2397 {
2398 struct block_device *bdev;
2399
2400 if (p->bdev)
2401 bdev = p->bdev;
2402 else
2403 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2404
2405 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2406 }
2407
2408 static void setup_swap_info(struct swap_info_struct *p, int prio,
2409 unsigned char *swap_map,
2410 struct swap_cluster_info *cluster_info)
2411 {
2412 int i;
2413
2414 if (prio >= 0)
2415 p->prio = prio;
2416 else
2417 p->prio = --least_priority;
2418 /*
2419 * the plist prio is negated because plist ordering is
2420 * low-to-high, while swap ordering is high-to-low
2421 */
2422 p->list.prio = -p->prio;
2423 for_each_node(i) {
2424 if (p->prio >= 0)
2425 p->avail_lists[i].prio = -p->prio;
2426 else {
2427 if (swap_node(p) == i)
2428 p->avail_lists[i].prio = 1;
2429 else
2430 p->avail_lists[i].prio = -p->prio;
2431 }
2432 }
2433 p->swap_map = swap_map;
2434 p->cluster_info = cluster_info;
2435 }
2436
2437 static void _enable_swap_info(struct swap_info_struct *p)
2438 {
2439 p->flags |= SWP_WRITEOK | SWP_VALID;
2440 atomic_long_add(p->pages, &nr_swap_pages);
2441 total_swap_pages += p->pages;
2442
2443 assert_spin_locked(&swap_lock);
2444 /*
2445 * both lists are plists, and thus priority ordered.
2446 * swap_active_head needs to be priority ordered for swapoff(),
2447 * which on removal of any swap_info_struct with an auto-assigned
2448 * (i.e. negative) priority increments the auto-assigned priority
2449 * of any lower-priority swap_info_structs.
2450 * swap_avail_head needs to be priority ordered for get_swap_page(),
2451 * which allocates swap pages from the highest available priority
2452 * swap_info_struct.
2453 */
2454 plist_add(&p->list, &swap_active_head);
2455 add_to_avail_list(p);
2456 }
2457
2458 static void enable_swap_info(struct swap_info_struct *p, int prio,
2459 unsigned char *swap_map,
2460 struct swap_cluster_info *cluster_info,
2461 unsigned long *frontswap_map)
2462 {
2463 frontswap_init(p->type, frontswap_map);
2464 spin_lock(&swap_lock);
2465 spin_lock(&p->lock);
2466 setup_swap_info(p, prio, swap_map, cluster_info);
2467 spin_unlock(&p->lock);
2468 spin_unlock(&swap_lock);
2469 /*
2470 * Guarantee swap_map, cluster_info, etc. fields are valid
2471 * between get/put_swap_device() if SWP_VALID bit is set
2472 */
2473 synchronize_rcu();
2474 spin_lock(&swap_lock);
2475 spin_lock(&p->lock);
2476 _enable_swap_info(p);
2477 spin_unlock(&p->lock);
2478 spin_unlock(&swap_lock);
2479 }
2480
2481 static void reinsert_swap_info(struct swap_info_struct *p)
2482 {
2483 spin_lock(&swap_lock);
2484 spin_lock(&p->lock);
2485 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2486 _enable_swap_info(p);
2487 spin_unlock(&p->lock);
2488 spin_unlock(&swap_lock);
2489 }
2490
2491 bool has_usable_swap(void)
2492 {
2493 bool ret = true;
2494
2495 spin_lock(&swap_lock);
2496 if (plist_head_empty(&swap_active_head))
2497 ret = false;
2498 spin_unlock(&swap_lock);
2499 return ret;
2500 }
2501
2502 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2503 {
2504 struct swap_info_struct *p = NULL;
2505 unsigned char *swap_map;
2506 struct swap_cluster_info *cluster_info;
2507 unsigned long *frontswap_map;
2508 struct file *swap_file, *victim;
2509 struct address_space *mapping;
2510 struct inode *inode;
2511 struct filename *pathname;
2512 int err, found = 0;
2513 unsigned int old_block_size;
2514
2515 if (!capable(CAP_SYS_ADMIN))
2516 return -EPERM;
2517
2518 BUG_ON(!current->mm);
2519
2520 pathname = getname(specialfile);
2521 if (IS_ERR(pathname))
2522 return PTR_ERR(pathname);
2523
2524 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2525 err = PTR_ERR(victim);
2526 if (IS_ERR(victim))
2527 goto out;
2528
2529 mapping = victim->f_mapping;
2530 spin_lock(&swap_lock);
2531 plist_for_each_entry(p, &swap_active_head, list) {
2532 if (p->flags & SWP_WRITEOK) {
2533 if (p->swap_file->f_mapping == mapping) {
2534 found = 1;
2535 break;
2536 }
2537 }
2538 }
2539 if (!found) {
2540 err = -EINVAL;
2541 spin_unlock(&swap_lock);
2542 goto out_dput;
2543 }
2544 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2545 vm_unacct_memory(p->pages);
2546 else {
2547 err = -ENOMEM;
2548 spin_unlock(&swap_lock);
2549 goto out_dput;
2550 }
2551 del_from_avail_list(p);
2552 spin_lock(&p->lock);
2553 if (p->prio < 0) {
2554 struct swap_info_struct *si = p;
2555 int nid;
2556
2557 plist_for_each_entry_continue(si, &swap_active_head, list) {
2558 si->prio++;
2559 si->list.prio--;
2560 for_each_node(nid) {
2561 if (si->avail_lists[nid].prio != 1)
2562 si->avail_lists[nid].prio--;
2563 }
2564 }
2565 least_priority++;
2566 }
2567 plist_del(&p->list, &swap_active_head);
2568 atomic_long_sub(p->pages, &nr_swap_pages);
2569 total_swap_pages -= p->pages;
2570 p->flags &= ~SWP_WRITEOK;
2571 spin_unlock(&p->lock);
2572 spin_unlock(&swap_lock);
2573
2574 disable_swap_slots_cache_lock();
2575
2576 set_current_oom_origin();
2577 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2578 clear_current_oom_origin();
2579
2580 if (err) {
2581 /* re-insert swap space back into swap_list */
2582 reinsert_swap_info(p);
2583 reenable_swap_slots_cache_unlock();
2584 goto out_dput;
2585 }
2586
2587 reenable_swap_slots_cache_unlock();
2588
2589 spin_lock(&swap_lock);
2590 spin_lock(&p->lock);
2591 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2592 spin_unlock(&p->lock);
2593 spin_unlock(&swap_lock);
2594 /*
2595 * wait for swap operations protected by get/put_swap_device()
2596 * to complete
2597 */
2598 synchronize_rcu();
2599
2600 flush_work(&p->discard_work);
2601
2602 destroy_swap_extents(p);
2603 if (p->flags & SWP_CONTINUED)
2604 free_swap_count_continuations(p);
2605
2606 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2607 atomic_dec(&nr_rotate_swap);
2608
2609 mutex_lock(&swapon_mutex);
2610 spin_lock(&swap_lock);
2611 spin_lock(&p->lock);
2612 drain_mmlist();
2613
2614 /* wait for anyone still in scan_swap_map */
2615 p->highest_bit = 0; /* cuts scans short */
2616 while (p->flags >= SWP_SCANNING) {
2617 spin_unlock(&p->lock);
2618 spin_unlock(&swap_lock);
2619 schedule_timeout_uninterruptible(1);
2620 spin_lock(&swap_lock);
2621 spin_lock(&p->lock);
2622 }
2623
2624 swap_file = p->swap_file;
2625 old_block_size = p->old_block_size;
2626 p->swap_file = NULL;
2627 p->max = 0;
2628 swap_map = p->swap_map;
2629 p->swap_map = NULL;
2630 cluster_info = p->cluster_info;
2631 p->cluster_info = NULL;
2632 frontswap_map = frontswap_map_get(p);
2633 spin_unlock(&p->lock);
2634 spin_unlock(&swap_lock);
2635 frontswap_invalidate_area(p->type);
2636 frontswap_map_set(p, NULL);
2637 mutex_unlock(&swapon_mutex);
2638 free_percpu(p->percpu_cluster);
2639 p->percpu_cluster = NULL;
2640 vfree(swap_map);
2641 kvfree(cluster_info);
2642 kvfree(frontswap_map);
2643 /* Destroy swap account information */
2644 swap_cgroup_swapoff(p->type);
2645 exit_swap_address_space(p->type);
2646
2647 inode = mapping->host;
2648 if (S_ISBLK(inode->i_mode)) {
2649 struct block_device *bdev = I_BDEV(inode);
2650
2651 set_blocksize(bdev, old_block_size);
2652 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2653 }
2654
2655 inode_lock(inode);
2656 inode->i_flags &= ~S_SWAPFILE;
2657 inode_unlock(inode);
2658 filp_close(swap_file, NULL);
2659
2660 /*
2661 * Clear the SWP_USED flag after all resources are freed so that swapon
2662 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2663 * not hold p->lock after we cleared its SWP_WRITEOK.
2664 */
2665 spin_lock(&swap_lock);
2666 p->flags = 0;
2667 spin_unlock(&swap_lock);
2668
2669 err = 0;
2670 atomic_inc(&proc_poll_event);
2671 wake_up_interruptible(&proc_poll_wait);
2672
2673 out_dput:
2674 filp_close(victim, NULL);
2675 out:
2676 putname(pathname);
2677 return err;
2678 }
2679
2680 #ifdef CONFIG_PROC_FS
2681 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2682 {
2683 struct seq_file *seq = file->private_data;
2684
2685 poll_wait(file, &proc_poll_wait, wait);
2686
2687 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2688 seq->poll_event = atomic_read(&proc_poll_event);
2689 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2690 }
2691
2692 return EPOLLIN | EPOLLRDNORM;
2693 }
2694
2695 /* iterator */
2696 static void *swap_start(struct seq_file *swap, loff_t *pos)
2697 {
2698 struct swap_info_struct *si;
2699 int type;
2700 loff_t l = *pos;
2701
2702 mutex_lock(&swapon_mutex);
2703
2704 if (!l)
2705 return SEQ_START_TOKEN;
2706
2707 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2708 if (!(si->flags & SWP_USED) || !si->swap_map)
2709 continue;
2710 if (!--l)
2711 return si;
2712 }
2713
2714 return NULL;
2715 }
2716
2717 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2718 {
2719 struct swap_info_struct *si = v;
2720 int type;
2721
2722 if (v == SEQ_START_TOKEN)
2723 type = 0;
2724 else
2725 type = si->type + 1;
2726
2727 ++(*pos);
2728 for (; (si = swap_type_to_swap_info(type)); type++) {
2729 if (!(si->flags & SWP_USED) || !si->swap_map)
2730 continue;
2731 return si;
2732 }
2733
2734 return NULL;
2735 }
2736
2737 static void swap_stop(struct seq_file *swap, void *v)
2738 {
2739 mutex_unlock(&swapon_mutex);
2740 }
2741
2742 static int swap_show(struct seq_file *swap, void *v)
2743 {
2744 struct swap_info_struct *si = v;
2745 struct file *file;
2746 int len;
2747
2748 if (si == SEQ_START_TOKEN) {
2749 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2750 return 0;
2751 }
2752
2753 file = si->swap_file;
2754 len = seq_file_path(swap, file, " \t\n\\");
2755 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2756 len < 40 ? 40 - len : 1, " ",
2757 S_ISBLK(file_inode(file)->i_mode) ?
2758 "partition" : "file\t",
2759 si->pages << (PAGE_SHIFT - 10),
2760 si->inuse_pages << (PAGE_SHIFT - 10),
2761 si->prio);
2762 return 0;
2763 }
2764
2765 static const struct seq_operations swaps_op = {
2766 .start = swap_start,
2767 .next = swap_next,
2768 .stop = swap_stop,
2769 .show = swap_show
2770 };
2771
2772 static int swaps_open(struct inode *inode, struct file *file)
2773 {
2774 struct seq_file *seq;
2775 int ret;
2776
2777 ret = seq_open(file, &swaps_op);
2778 if (ret)
2779 return ret;
2780
2781 seq = file->private_data;
2782 seq->poll_event = atomic_read(&proc_poll_event);
2783 return 0;
2784 }
2785
2786 static const struct proc_ops swaps_proc_ops = {
2787 .proc_flags = PROC_ENTRY_PERMANENT,
2788 .proc_open = swaps_open,
2789 .proc_read = seq_read,
2790 .proc_lseek = seq_lseek,
2791 .proc_release = seq_release,
2792 .proc_poll = swaps_poll,
2793 };
2794
2795 static int __init procswaps_init(void)
2796 {
2797 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2798 return 0;
2799 }
2800 __initcall(procswaps_init);
2801 #endif /* CONFIG_PROC_FS */
2802
2803 #ifdef MAX_SWAPFILES_CHECK
2804 static int __init max_swapfiles_check(void)
2805 {
2806 MAX_SWAPFILES_CHECK();
2807 return 0;
2808 }
2809 late_initcall(max_swapfiles_check);
2810 #endif
2811
2812 static struct swap_info_struct *alloc_swap_info(void)
2813 {
2814 struct swap_info_struct *p;
2815 unsigned int type;
2816 int i;
2817
2818 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2819 if (!p)
2820 return ERR_PTR(-ENOMEM);
2821
2822 spin_lock(&swap_lock);
2823 for (type = 0; type < nr_swapfiles; type++) {
2824 if (!(swap_info[type]->flags & SWP_USED))
2825 break;
2826 }
2827 if (type >= MAX_SWAPFILES) {
2828 spin_unlock(&swap_lock);
2829 kvfree(p);
2830 return ERR_PTR(-EPERM);
2831 }
2832 if (type >= nr_swapfiles) {
2833 p->type = type;
2834 WRITE_ONCE(swap_info[type], p);
2835 /*
2836 * Write swap_info[type] before nr_swapfiles, in case a
2837 * racing procfs swap_start() or swap_next() is reading them.
2838 * (We never shrink nr_swapfiles, we never free this entry.)
2839 */
2840 smp_wmb();
2841 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2842 } else {
2843 kvfree(p);
2844 p = swap_info[type];
2845 /*
2846 * Do not memset this entry: a racing procfs swap_next()
2847 * would be relying on p->type to remain valid.
2848 */
2849 }
2850 p->swap_extent_root = RB_ROOT;
2851 plist_node_init(&p->list, 0);
2852 for_each_node(i)
2853 plist_node_init(&p->avail_lists[i], 0);
2854 p->flags = SWP_USED;
2855 spin_unlock(&swap_lock);
2856 spin_lock_init(&p->lock);
2857 spin_lock_init(&p->cont_lock);
2858
2859 return p;
2860 }
2861
2862 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2863 {
2864 int error;
2865
2866 if (S_ISBLK(inode->i_mode)) {
2867 p->bdev = bdgrab(I_BDEV(inode));
2868 error = blkdev_get(p->bdev,
2869 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2870 if (error < 0) {
2871 p->bdev = NULL;
2872 return error;
2873 }
2874 p->old_block_size = block_size(p->bdev);
2875 error = set_blocksize(p->bdev, PAGE_SIZE);
2876 if (error < 0)
2877 return error;
2878 /*
2879 * Zoned block devices contain zones that have a sequential
2880 * write only restriction. Hence zoned block devices are not
2881 * suitable for swapping. Disallow them here.
2882 */
2883 if (blk_queue_is_zoned(p->bdev->bd_queue))
2884 return -EINVAL;
2885 p->flags |= SWP_BLKDEV;
2886 } else if (S_ISREG(inode->i_mode)) {
2887 p->bdev = inode->i_sb->s_bdev;
2888 }
2889
2890 return 0;
2891 }
2892
2893
2894 /*
2895 * Find out how many pages are allowed for a single swap device. There
2896 * are two limiting factors:
2897 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2898 * 2) the number of bits in the swap pte, as defined by the different
2899 * architectures.
2900 *
2901 * In order to find the largest possible bit mask, a swap entry with
2902 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2903 * decoded to a swp_entry_t again, and finally the swap offset is
2904 * extracted.
2905 *
2906 * This will mask all the bits from the initial ~0UL mask that can't
2907 * be encoded in either the swp_entry_t or the architecture definition
2908 * of a swap pte.
2909 */
2910 unsigned long generic_max_swapfile_size(void)
2911 {
2912 return swp_offset(pte_to_swp_entry(
2913 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2914 }
2915
2916 /* Can be overridden by an architecture for additional checks. */
2917 __weak unsigned long max_swapfile_size(void)
2918 {
2919 return generic_max_swapfile_size();
2920 }
2921
2922 static unsigned long read_swap_header(struct swap_info_struct *p,
2923 union swap_header *swap_header,
2924 struct inode *inode)
2925 {
2926 int i;
2927 unsigned long maxpages;
2928 unsigned long swapfilepages;
2929 unsigned long last_page;
2930
2931 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2932 pr_err("Unable to find swap-space signature\n");
2933 return 0;
2934 }
2935
2936 /* swap partition endianess hack... */
2937 if (swab32(swap_header->info.version) == 1) {
2938 swab32s(&swap_header->info.version);
2939 swab32s(&swap_header->info.last_page);
2940 swab32s(&swap_header->info.nr_badpages);
2941 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2942 return 0;
2943 for (i = 0; i < swap_header->info.nr_badpages; i++)
2944 swab32s(&swap_header->info.badpages[i]);
2945 }
2946 /* Check the swap header's sub-version */
2947 if (swap_header->info.version != 1) {
2948 pr_warn("Unable to handle swap header version %d\n",
2949 swap_header->info.version);
2950 return 0;
2951 }
2952
2953 p->lowest_bit = 1;
2954 p->cluster_next = 1;
2955 p->cluster_nr = 0;
2956
2957 maxpages = max_swapfile_size();
2958 last_page = swap_header->info.last_page;
2959 if (!last_page) {
2960 pr_warn("Empty swap-file\n");
2961 return 0;
2962 }
2963 if (last_page > maxpages) {
2964 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2965 maxpages << (PAGE_SHIFT - 10),
2966 last_page << (PAGE_SHIFT - 10));
2967 }
2968 if (maxpages > last_page) {
2969 maxpages = last_page + 1;
2970 /* p->max is an unsigned int: don't overflow it */
2971 if ((unsigned int)maxpages == 0)
2972 maxpages = UINT_MAX;
2973 }
2974 p->highest_bit = maxpages - 1;
2975
2976 if (!maxpages)
2977 return 0;
2978 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2979 if (swapfilepages && maxpages > swapfilepages) {
2980 pr_warn("Swap area shorter than signature indicates\n");
2981 return 0;
2982 }
2983 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2984 return 0;
2985 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2986 return 0;
2987
2988 return maxpages;
2989 }
2990
2991 #define SWAP_CLUSTER_INFO_COLS \
2992 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2993 #define SWAP_CLUSTER_SPACE_COLS \
2994 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2995 #define SWAP_CLUSTER_COLS \
2996 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2997
2998 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2999 union swap_header *swap_header,
3000 unsigned char *swap_map,
3001 struct swap_cluster_info *cluster_info,
3002 unsigned long maxpages,
3003 sector_t *span)
3004 {
3005 unsigned int j, k;
3006 unsigned int nr_good_pages;
3007 int nr_extents;
3008 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3009 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3010 unsigned long i, idx;
3011
3012 nr_good_pages = maxpages - 1; /* omit header page */
3013
3014 cluster_list_init(&p->free_clusters);
3015 cluster_list_init(&p->discard_clusters);
3016
3017 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3018 unsigned int page_nr = swap_header->info.badpages[i];
3019 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3020 return -EINVAL;
3021 if (page_nr < maxpages) {
3022 swap_map[page_nr] = SWAP_MAP_BAD;
3023 nr_good_pages--;
3024 /*
3025 * Haven't marked the cluster free yet, no list
3026 * operation involved
3027 */
3028 inc_cluster_info_page(p, cluster_info, page_nr);
3029 }
3030 }
3031
3032 /* Haven't marked the cluster free yet, no list operation involved */
3033 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3034 inc_cluster_info_page(p, cluster_info, i);
3035
3036 if (nr_good_pages) {
3037 swap_map[0] = SWAP_MAP_BAD;
3038 /*
3039 * Not mark the cluster free yet, no list
3040 * operation involved
3041 */
3042 inc_cluster_info_page(p, cluster_info, 0);
3043 p->max = maxpages;
3044 p->pages = nr_good_pages;
3045 nr_extents = setup_swap_extents(p, span);
3046 if (nr_extents < 0)
3047 return nr_extents;
3048 nr_good_pages = p->pages;
3049 }
3050 if (!nr_good_pages) {
3051 pr_warn("Empty swap-file\n");
3052 return -EINVAL;
3053 }
3054
3055 if (!cluster_info)
3056 return nr_extents;
3057
3058
3059 /*
3060 * Reduce false cache line sharing between cluster_info and
3061 * sharing same address space.
3062 */
3063 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3064 j = (k + col) % SWAP_CLUSTER_COLS;
3065 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3066 idx = i * SWAP_CLUSTER_COLS + j;
3067 if (idx >= nr_clusters)
3068 continue;
3069 if (cluster_count(&cluster_info[idx]))
3070 continue;
3071 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3072 cluster_list_add_tail(&p->free_clusters, cluster_info,
3073 idx);
3074 }
3075 }
3076 return nr_extents;
3077 }
3078
3079 /*
3080 * Helper to sys_swapon determining if a given swap
3081 * backing device queue supports DISCARD operations.
3082 */
3083 static bool swap_discardable(struct swap_info_struct *si)
3084 {
3085 struct request_queue *q = bdev_get_queue(si->bdev);
3086
3087 if (!q || !blk_queue_discard(q))
3088 return false;
3089
3090 return true;
3091 }
3092
3093 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3094 {
3095 struct swap_info_struct *p;
3096 struct filename *name;
3097 struct file *swap_file = NULL;
3098 struct address_space *mapping;
3099 int prio;
3100 int error;
3101 union swap_header *swap_header;
3102 int nr_extents;
3103 sector_t span;
3104 unsigned long maxpages;
3105 unsigned char *swap_map = NULL;
3106 struct swap_cluster_info *cluster_info = NULL;
3107 unsigned long *frontswap_map = NULL;
3108 struct page *page = NULL;
3109 struct inode *inode = NULL;
3110 bool inced_nr_rotate_swap = false;
3111
3112 if (swap_flags & ~SWAP_FLAGS_VALID)
3113 return -EINVAL;
3114
3115 if (!capable(CAP_SYS_ADMIN))
3116 return -EPERM;
3117
3118 if (!swap_avail_heads)
3119 return -ENOMEM;
3120
3121 p = alloc_swap_info();
3122 if (IS_ERR(p))
3123 return PTR_ERR(p);
3124
3125 INIT_WORK(&p->discard_work, swap_discard_work);
3126
3127 name = getname(specialfile);
3128 if (IS_ERR(name)) {
3129 error = PTR_ERR(name);
3130 name = NULL;
3131 goto bad_swap;
3132 }
3133 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3134 if (IS_ERR(swap_file)) {
3135 error = PTR_ERR(swap_file);
3136 swap_file = NULL;
3137 goto bad_swap;
3138 }
3139
3140 p->swap_file = swap_file;
3141 mapping = swap_file->f_mapping;
3142 inode = mapping->host;
3143
3144 error = claim_swapfile(p, inode);
3145 if (unlikely(error))
3146 goto bad_swap;
3147
3148 inode_lock(inode);
3149 if (IS_SWAPFILE(inode)) {
3150 error = -EBUSY;
3151 goto bad_swap_unlock_inode;
3152 }
3153
3154 /*
3155 * Read the swap header.
3156 */
3157 if (!mapping->a_ops->readpage) {
3158 error = -EINVAL;
3159 goto bad_swap_unlock_inode;
3160 }
3161 page = read_mapping_page(mapping, 0, swap_file);
3162 if (IS_ERR(page)) {
3163 error = PTR_ERR(page);
3164 goto bad_swap_unlock_inode;
3165 }
3166 swap_header = kmap(page);
3167
3168 maxpages = read_swap_header(p, swap_header, inode);
3169 if (unlikely(!maxpages)) {
3170 error = -EINVAL;
3171 goto bad_swap_unlock_inode;
3172 }
3173
3174 /* OK, set up the swap map and apply the bad block list */
3175 swap_map = vzalloc(maxpages);
3176 if (!swap_map) {
3177 error = -ENOMEM;
3178 goto bad_swap_unlock_inode;
3179 }
3180
3181 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3182 p->flags |= SWP_STABLE_WRITES;
3183
3184 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3185 p->flags |= SWP_SYNCHRONOUS_IO;
3186
3187 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3188 int cpu;
3189 unsigned long ci, nr_cluster;
3190
3191 p->flags |= SWP_SOLIDSTATE;
3192 /*
3193 * select a random position to start with to help wear leveling
3194 * SSD
3195 */
3196 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3197 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3198
3199 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3200 GFP_KERNEL);
3201 if (!cluster_info) {
3202 error = -ENOMEM;
3203 goto bad_swap_unlock_inode;
3204 }
3205
3206 for (ci = 0; ci < nr_cluster; ci++)
3207 spin_lock_init(&((cluster_info + ci)->lock));
3208
3209 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3210 if (!p->percpu_cluster) {
3211 error = -ENOMEM;
3212 goto bad_swap_unlock_inode;
3213 }
3214 for_each_possible_cpu(cpu) {
3215 struct percpu_cluster *cluster;
3216 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3217 cluster_set_null(&cluster->index);
3218 }
3219 } else {
3220 atomic_inc(&nr_rotate_swap);
3221 inced_nr_rotate_swap = true;
3222 }
3223
3224 error = swap_cgroup_swapon(p->type, maxpages);
3225 if (error)
3226 goto bad_swap_unlock_inode;
3227
3228 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3229 cluster_info, maxpages, &span);
3230 if (unlikely(nr_extents < 0)) {
3231 error = nr_extents;
3232 goto bad_swap_unlock_inode;
3233 }
3234 /* frontswap enabled? set up bit-per-page map for frontswap */
3235 if (IS_ENABLED(CONFIG_FRONTSWAP))
3236 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3237 sizeof(long),
3238 GFP_KERNEL);
3239
3240 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3241 /*
3242 * When discard is enabled for swap with no particular
3243 * policy flagged, we set all swap discard flags here in
3244 * order to sustain backward compatibility with older
3245 * swapon(8) releases.
3246 */
3247 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3248 SWP_PAGE_DISCARD);
3249
3250 /*
3251 * By flagging sys_swapon, a sysadmin can tell us to
3252 * either do single-time area discards only, or to just
3253 * perform discards for released swap page-clusters.
3254 * Now it's time to adjust the p->flags accordingly.
3255 */
3256 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3257 p->flags &= ~SWP_PAGE_DISCARD;
3258 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3259 p->flags &= ~SWP_AREA_DISCARD;
3260
3261 /* issue a swapon-time discard if it's still required */
3262 if (p->flags & SWP_AREA_DISCARD) {
3263 int err = discard_swap(p);
3264 if (unlikely(err))
3265 pr_err("swapon: discard_swap(%p): %d\n",
3266 p, err);
3267 }
3268 }
3269
3270 error = init_swap_address_space(p->type, maxpages);
3271 if (error)
3272 goto bad_swap_unlock_inode;
3273
3274 /*
3275 * Flush any pending IO and dirty mappings before we start using this
3276 * swap device.
3277 */
3278 inode->i_flags |= S_SWAPFILE;
3279 error = inode_drain_writes(inode);
3280 if (error) {
3281 inode->i_flags &= ~S_SWAPFILE;
3282 goto bad_swap_unlock_inode;
3283 }
3284
3285 mutex_lock(&swapon_mutex);
3286 prio = -1;
3287 if (swap_flags & SWAP_FLAG_PREFER)
3288 prio =
3289 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3290 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3291
3292 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3293 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3294 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3295 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3296 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3297 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3298 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3299 (frontswap_map) ? "FS" : "");
3300
3301 mutex_unlock(&swapon_mutex);
3302 atomic_inc(&proc_poll_event);
3303 wake_up_interruptible(&proc_poll_wait);
3304
3305 error = 0;
3306 goto out;
3307 bad_swap_unlock_inode:
3308 inode_unlock(inode);
3309 bad_swap:
3310 free_percpu(p->percpu_cluster);
3311 p->percpu_cluster = NULL;
3312 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3313 set_blocksize(p->bdev, p->old_block_size);
3314 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3315 }
3316 inode = NULL;
3317 destroy_swap_extents(p);
3318 swap_cgroup_swapoff(p->type);
3319 spin_lock(&swap_lock);
3320 p->swap_file = NULL;
3321 p->flags = 0;
3322 spin_unlock(&swap_lock);
3323 vfree(swap_map);
3324 kvfree(cluster_info);
3325 kvfree(frontswap_map);
3326 if (inced_nr_rotate_swap)
3327 atomic_dec(&nr_rotate_swap);
3328 if (swap_file)
3329 filp_close(swap_file, NULL);
3330 out:
3331 if (page && !IS_ERR(page)) {
3332 kunmap(page);
3333 put_page(page);
3334 }
3335 if (name)
3336 putname(name);
3337 if (inode)
3338 inode_unlock(inode);
3339 if (!error)
3340 enable_swap_slots_cache();
3341 return error;
3342 }
3343
3344 void si_swapinfo(struct sysinfo *val)
3345 {
3346 unsigned int type;
3347 unsigned long nr_to_be_unused = 0;
3348
3349 spin_lock(&swap_lock);
3350 for (type = 0; type < nr_swapfiles; type++) {
3351 struct swap_info_struct *si = swap_info[type];
3352
3353 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3354 nr_to_be_unused += si->inuse_pages;
3355 }
3356 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3357 val->totalswap = total_swap_pages + nr_to_be_unused;
3358 spin_unlock(&swap_lock);
3359 }
3360
3361 /*
3362 * Verify that a swap entry is valid and increment its swap map count.
3363 *
3364 * Returns error code in following case.
3365 * - success -> 0
3366 * - swp_entry is invalid -> EINVAL
3367 * - swp_entry is migration entry -> EINVAL
3368 * - swap-cache reference is requested but there is already one. -> EEXIST
3369 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3370 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3371 */
3372 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3373 {
3374 struct swap_info_struct *p;
3375 struct swap_cluster_info *ci;
3376 unsigned long offset;
3377 unsigned char count;
3378 unsigned char has_cache;
3379 int err = -EINVAL;
3380
3381 p = get_swap_device(entry);
3382 if (!p)
3383 goto out;
3384
3385 offset = swp_offset(entry);
3386 ci = lock_cluster_or_swap_info(p, offset);
3387
3388 count = p->swap_map[offset];
3389
3390 /*
3391 * swapin_readahead() doesn't check if a swap entry is valid, so the
3392 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3393 */
3394 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3395 err = -ENOENT;
3396 goto unlock_out;
3397 }
3398
3399 has_cache = count & SWAP_HAS_CACHE;
3400 count &= ~SWAP_HAS_CACHE;
3401 err = 0;
3402
3403 if (usage == SWAP_HAS_CACHE) {
3404
3405 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3406 if (!has_cache && count)
3407 has_cache = SWAP_HAS_CACHE;
3408 else if (has_cache) /* someone else added cache */
3409 err = -EEXIST;
3410 else /* no users remaining */
3411 err = -ENOENT;
3412
3413 } else if (count || has_cache) {
3414
3415 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3416 count += usage;
3417 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3418 err = -EINVAL;
3419 else if (swap_count_continued(p, offset, count))
3420 count = COUNT_CONTINUED;
3421 else
3422 err = -ENOMEM;
3423 } else
3424 err = -ENOENT; /* unused swap entry */
3425
3426 p->swap_map[offset] = count | has_cache;
3427
3428 unlock_out:
3429 unlock_cluster_or_swap_info(p, ci);
3430 out:
3431 if (p)
3432 put_swap_device(p);
3433 return err;
3434 }
3435
3436 /*
3437 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3438 * (in which case its reference count is never incremented).
3439 */
3440 void swap_shmem_alloc(swp_entry_t entry)
3441 {
3442 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3443 }
3444
3445 /*
3446 * Increase reference count of swap entry by 1.
3447 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3448 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3449 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3450 * might occur if a page table entry has got corrupted.
3451 */
3452 int swap_duplicate(swp_entry_t entry)
3453 {
3454 int err = 0;
3455
3456 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3457 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3458 return err;
3459 }
3460
3461 /*
3462 * @entry: swap entry for which we allocate swap cache.
3463 *
3464 * Called when allocating swap cache for existing swap entry,
3465 * This can return error codes. Returns 0 at success.
3466 * -EEXIST means there is a swap cache.
3467 * Note: return code is different from swap_duplicate().
3468 */
3469 int swapcache_prepare(swp_entry_t entry)
3470 {
3471 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3472 }
3473
3474 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3475 {
3476 return swap_type_to_swap_info(swp_type(entry));
3477 }
3478
3479 struct swap_info_struct *page_swap_info(struct page *page)
3480 {
3481 swp_entry_t entry = { .val = page_private(page) };
3482 return swp_swap_info(entry);
3483 }
3484
3485 /*
3486 * out-of-line __page_file_ methods to avoid include hell.
3487 */
3488 struct address_space *__page_file_mapping(struct page *page)
3489 {
3490 return page_swap_info(page)->swap_file->f_mapping;
3491 }
3492 EXPORT_SYMBOL_GPL(__page_file_mapping);
3493
3494 pgoff_t __page_file_index(struct page *page)
3495 {
3496 swp_entry_t swap = { .val = page_private(page) };
3497 return swp_offset(swap);
3498 }
3499 EXPORT_SYMBOL_GPL(__page_file_index);
3500
3501 /*
3502 * add_swap_count_continuation - called when a swap count is duplicated
3503 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3504 * page of the original vmalloc'ed swap_map, to hold the continuation count
3505 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3506 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3507 *
3508 * These continuation pages are seldom referenced: the common paths all work
3509 * on the original swap_map, only referring to a continuation page when the
3510 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3511 *
3512 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3513 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3514 * can be called after dropping locks.
3515 */
3516 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3517 {
3518 struct swap_info_struct *si;
3519 struct swap_cluster_info *ci;
3520 struct page *head;
3521 struct page *page;
3522 struct page *list_page;
3523 pgoff_t offset;
3524 unsigned char count;
3525 int ret = 0;
3526
3527 /*
3528 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3529 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3530 */
3531 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3532
3533 si = get_swap_device(entry);
3534 if (!si) {
3535 /*
3536 * An acceptable race has occurred since the failing
3537 * __swap_duplicate(): the swap device may be swapoff
3538 */
3539 goto outer;
3540 }
3541 spin_lock(&si->lock);
3542
3543 offset = swp_offset(entry);
3544
3545 ci = lock_cluster(si, offset);
3546
3547 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3548
3549 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3550 /*
3551 * The higher the swap count, the more likely it is that tasks
3552 * will race to add swap count continuation: we need to avoid
3553 * over-provisioning.
3554 */
3555 goto out;
3556 }
3557
3558 if (!page) {
3559 ret = -ENOMEM;
3560 goto out;
3561 }
3562
3563 /*
3564 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3565 * no architecture is using highmem pages for kernel page tables: so it
3566 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3567 */
3568 head = vmalloc_to_page(si->swap_map + offset);
3569 offset &= ~PAGE_MASK;
3570
3571 spin_lock(&si->cont_lock);
3572 /*
3573 * Page allocation does not initialize the page's lru field,
3574 * but it does always reset its private field.
3575 */
3576 if (!page_private(head)) {
3577 BUG_ON(count & COUNT_CONTINUED);
3578 INIT_LIST_HEAD(&head->lru);
3579 set_page_private(head, SWP_CONTINUED);
3580 si->flags |= SWP_CONTINUED;
3581 }
3582
3583 list_for_each_entry(list_page, &head->lru, lru) {
3584 unsigned char *map;
3585
3586 /*
3587 * If the previous map said no continuation, but we've found
3588 * a continuation page, free our allocation and use this one.
3589 */
3590 if (!(count & COUNT_CONTINUED))
3591 goto out_unlock_cont;
3592
3593 map = kmap_atomic(list_page) + offset;
3594 count = *map;
3595 kunmap_atomic(map);
3596
3597 /*
3598 * If this continuation count now has some space in it,
3599 * free our allocation and use this one.
3600 */
3601 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3602 goto out_unlock_cont;
3603 }
3604
3605 list_add_tail(&page->lru, &head->lru);
3606 page = NULL; /* now it's attached, don't free it */
3607 out_unlock_cont:
3608 spin_unlock(&si->cont_lock);
3609 out:
3610 unlock_cluster(ci);
3611 spin_unlock(&si->lock);
3612 put_swap_device(si);
3613 outer:
3614 if (page)
3615 __free_page(page);
3616 return ret;
3617 }
3618
3619 /*
3620 * swap_count_continued - when the original swap_map count is incremented
3621 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3622 * into, carry if so, or else fail until a new continuation page is allocated;
3623 * when the original swap_map count is decremented from 0 with continuation,
3624 * borrow from the continuation and report whether it still holds more.
3625 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3626 * lock.
3627 */
3628 static bool swap_count_continued(struct swap_info_struct *si,
3629 pgoff_t offset, unsigned char count)
3630 {
3631 struct page *head;
3632 struct page *page;
3633 unsigned char *map;
3634 bool ret;
3635
3636 head = vmalloc_to_page(si->swap_map + offset);
3637 if (page_private(head) != SWP_CONTINUED) {
3638 BUG_ON(count & COUNT_CONTINUED);
3639 return false; /* need to add count continuation */
3640 }
3641
3642 spin_lock(&si->cont_lock);
3643 offset &= ~PAGE_MASK;
3644 page = list_next_entry(head, lru);
3645 map = kmap_atomic(page) + offset;
3646
3647 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3648 goto init_map; /* jump over SWAP_CONT_MAX checks */
3649
3650 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3651 /*
3652 * Think of how you add 1 to 999
3653 */
3654 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3655 kunmap_atomic(map);
3656 page = list_next_entry(page, lru);
3657 BUG_ON(page == head);
3658 map = kmap_atomic(page) + offset;
3659 }
3660 if (*map == SWAP_CONT_MAX) {
3661 kunmap_atomic(map);
3662 page = list_next_entry(page, lru);
3663 if (page == head) {
3664 ret = false; /* add count continuation */
3665 goto out;
3666 }
3667 map = kmap_atomic(page) + offset;
3668 init_map: *map = 0; /* we didn't zero the page */
3669 }
3670 *map += 1;
3671 kunmap_atomic(map);
3672 while ((page = list_prev_entry(page, lru)) != head) {
3673 map = kmap_atomic(page) + offset;
3674 *map = COUNT_CONTINUED;
3675 kunmap_atomic(map);
3676 }
3677 ret = true; /* incremented */
3678
3679 } else { /* decrementing */
3680 /*
3681 * Think of how you subtract 1 from 1000
3682 */
3683 BUG_ON(count != COUNT_CONTINUED);
3684 while (*map == COUNT_CONTINUED) {
3685 kunmap_atomic(map);
3686 page = list_next_entry(page, lru);
3687 BUG_ON(page == head);
3688 map = kmap_atomic(page) + offset;
3689 }
3690 BUG_ON(*map == 0);
3691 *map -= 1;
3692 if (*map == 0)
3693 count = 0;
3694 kunmap_atomic(map);
3695 while ((page = list_prev_entry(page, lru)) != head) {
3696 map = kmap_atomic(page) + offset;
3697 *map = SWAP_CONT_MAX | count;
3698 count = COUNT_CONTINUED;
3699 kunmap_atomic(map);
3700 }
3701 ret = count == COUNT_CONTINUED;
3702 }
3703 out:
3704 spin_unlock(&si->cont_lock);
3705 return ret;
3706 }
3707
3708 /*
3709 * free_swap_count_continuations - swapoff free all the continuation pages
3710 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3711 */
3712 static void free_swap_count_continuations(struct swap_info_struct *si)
3713 {
3714 pgoff_t offset;
3715
3716 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3717 struct page *head;
3718 head = vmalloc_to_page(si->swap_map + offset);
3719 if (page_private(head)) {
3720 struct page *page, *next;
3721
3722 list_for_each_entry_safe(page, next, &head->lru, lru) {
3723 list_del(&page->lru);
3724 __free_page(page);
3725 }
3726 }
3727 }
3728 }
3729
3730 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3731 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3732 gfp_t gfp_mask)
3733 {
3734 struct swap_info_struct *si, *next;
3735 if (!(gfp_mask & __GFP_IO) || !memcg)
3736 return;
3737
3738 if (!blk_cgroup_congested())
3739 return;
3740
3741 /*
3742 * We've already scheduled a throttle, avoid taking the global swap
3743 * lock.
3744 */
3745 if (current->throttle_queue)
3746 return;
3747
3748 spin_lock(&swap_avail_lock);
3749 plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3750 avail_lists[node]) {
3751 if (si->bdev) {
3752 blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3753 true);
3754 break;
3755 }
3756 }
3757 spin_unlock(&swap_avail_lock);
3758 }
3759 #endif
3760
3761 static int __init swapfile_init(void)
3762 {
3763 int nid;
3764
3765 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3766 GFP_KERNEL);
3767 if (!swap_avail_heads) {
3768 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3769 return -ENOMEM;
3770 }
3771
3772 for_each_node(nid)
3773 plist_head_init(&swap_avail_heads[nid]);
3774
3775 return 0;
3776 }
3777 subsys_initcall(swapfile_init);