]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/swapfile.c
Merge tag 'media/v5.8-3' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[mirror_ubuntu-hirsute-kernel.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103 if (type >= READ_ONCE(nr_swapfiles))
104 return NULL;
105
106 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
107 return READ_ONCE(swap_info[type]);
108 }
109
110 static inline unsigned char swap_count(unsigned char ent)
111 {
112 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
113 }
114
115 /* Reclaim the swap entry anyway if possible */
116 #define TTRS_ANYWAY 0x1
117 /*
118 * Reclaim the swap entry if there are no more mappings of the
119 * corresponding page
120 */
121 #define TTRS_UNMAPPED 0x2
122 /* Reclaim the swap entry if swap is getting full*/
123 #define TTRS_FULL 0x4
124
125 /* returns 1 if swap entry is freed */
126 static int __try_to_reclaim_swap(struct swap_info_struct *si,
127 unsigned long offset, unsigned long flags)
128 {
129 swp_entry_t entry = swp_entry(si->type, offset);
130 struct page *page;
131 int ret = 0;
132
133 page = find_get_page(swap_address_space(entry), offset);
134 if (!page)
135 return 0;
136 /*
137 * When this function is called from scan_swap_map_slots() and it's
138 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139 * here. We have to use trylock for avoiding deadlock. This is a special
140 * case and you should use try_to_free_swap() with explicit lock_page()
141 * in usual operations.
142 */
143 if (trylock_page(page)) {
144 if ((flags & TTRS_ANYWAY) ||
145 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147 ret = try_to_free_swap(page);
148 unlock_page(page);
149 }
150 put_page(page);
151 return ret;
152 }
153
154 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155 {
156 struct rb_node *rb = rb_first(&sis->swap_extent_root);
157 return rb_entry(rb, struct swap_extent, rb_node);
158 }
159
160 static inline struct swap_extent *next_se(struct swap_extent *se)
161 {
162 struct rb_node *rb = rb_next(&se->rb_node);
163 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
164 }
165
166 /*
167 * swapon tell device that all the old swap contents can be discarded,
168 * to allow the swap device to optimize its wear-levelling.
169 */
170 static int discard_swap(struct swap_info_struct *si)
171 {
172 struct swap_extent *se;
173 sector_t start_block;
174 sector_t nr_blocks;
175 int err = 0;
176
177 /* Do not discard the swap header page! */
178 se = first_se(si);
179 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
180 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181 if (nr_blocks) {
182 err = blkdev_issue_discard(si->bdev, start_block,
183 nr_blocks, GFP_KERNEL, 0);
184 if (err)
185 return err;
186 cond_resched();
187 }
188
189 for (se = next_se(se); se; se = next_se(se)) {
190 start_block = se->start_block << (PAGE_SHIFT - 9);
191 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
192
193 err = blkdev_issue_discard(si->bdev, start_block,
194 nr_blocks, GFP_KERNEL, 0);
195 if (err)
196 break;
197
198 cond_resched();
199 }
200 return err; /* That will often be -EOPNOTSUPP */
201 }
202
203 static struct swap_extent *
204 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205 {
206 struct swap_extent *se;
207 struct rb_node *rb;
208
209 rb = sis->swap_extent_root.rb_node;
210 while (rb) {
211 se = rb_entry(rb, struct swap_extent, rb_node);
212 if (offset < se->start_page)
213 rb = rb->rb_left;
214 else if (offset >= se->start_page + se->nr_pages)
215 rb = rb->rb_right;
216 else
217 return se;
218 }
219 /* It *must* be present */
220 BUG();
221 }
222
223 /*
224 * swap allocation tell device that a cluster of swap can now be discarded,
225 * to allow the swap device to optimize its wear-levelling.
226 */
227 static void discard_swap_cluster(struct swap_info_struct *si,
228 pgoff_t start_page, pgoff_t nr_pages)
229 {
230 struct swap_extent *se = offset_to_swap_extent(si, start_page);
231
232 while (nr_pages) {
233 pgoff_t offset = start_page - se->start_page;
234 sector_t start_block = se->start_block + offset;
235 sector_t nr_blocks = se->nr_pages - offset;
236
237 if (nr_blocks > nr_pages)
238 nr_blocks = nr_pages;
239 start_page += nr_blocks;
240 nr_pages -= nr_blocks;
241
242 start_block <<= PAGE_SHIFT - 9;
243 nr_blocks <<= PAGE_SHIFT - 9;
244 if (blkdev_issue_discard(si->bdev, start_block,
245 nr_blocks, GFP_NOIO, 0))
246 break;
247
248 se = next_se(se);
249 }
250 }
251
252 #ifdef CONFIG_THP_SWAP
253 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
254
255 #define swap_entry_size(size) (size)
256 #else
257 #define SWAPFILE_CLUSTER 256
258
259 /*
260 * Define swap_entry_size() as constant to let compiler to optimize
261 * out some code if !CONFIG_THP_SWAP
262 */
263 #define swap_entry_size(size) 1
264 #endif
265 #define LATENCY_LIMIT 256
266
267 static inline void cluster_set_flag(struct swap_cluster_info *info,
268 unsigned int flag)
269 {
270 info->flags = flag;
271 }
272
273 static inline unsigned int cluster_count(struct swap_cluster_info *info)
274 {
275 return info->data;
276 }
277
278 static inline void cluster_set_count(struct swap_cluster_info *info,
279 unsigned int c)
280 {
281 info->data = c;
282 }
283
284 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
285 unsigned int c, unsigned int f)
286 {
287 info->flags = f;
288 info->data = c;
289 }
290
291 static inline unsigned int cluster_next(struct swap_cluster_info *info)
292 {
293 return info->data;
294 }
295
296 static inline void cluster_set_next(struct swap_cluster_info *info,
297 unsigned int n)
298 {
299 info->data = n;
300 }
301
302 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
303 unsigned int n, unsigned int f)
304 {
305 info->flags = f;
306 info->data = n;
307 }
308
309 static inline bool cluster_is_free(struct swap_cluster_info *info)
310 {
311 return info->flags & CLUSTER_FLAG_FREE;
312 }
313
314 static inline bool cluster_is_null(struct swap_cluster_info *info)
315 {
316 return info->flags & CLUSTER_FLAG_NEXT_NULL;
317 }
318
319 static inline void cluster_set_null(struct swap_cluster_info *info)
320 {
321 info->flags = CLUSTER_FLAG_NEXT_NULL;
322 info->data = 0;
323 }
324
325 static inline bool cluster_is_huge(struct swap_cluster_info *info)
326 {
327 if (IS_ENABLED(CONFIG_THP_SWAP))
328 return info->flags & CLUSTER_FLAG_HUGE;
329 return false;
330 }
331
332 static inline void cluster_clear_huge(struct swap_cluster_info *info)
333 {
334 info->flags &= ~CLUSTER_FLAG_HUGE;
335 }
336
337 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
338 unsigned long offset)
339 {
340 struct swap_cluster_info *ci;
341
342 ci = si->cluster_info;
343 if (ci) {
344 ci += offset / SWAPFILE_CLUSTER;
345 spin_lock(&ci->lock);
346 }
347 return ci;
348 }
349
350 static inline void unlock_cluster(struct swap_cluster_info *ci)
351 {
352 if (ci)
353 spin_unlock(&ci->lock);
354 }
355
356 /*
357 * Determine the locking method in use for this device. Return
358 * swap_cluster_info if SSD-style cluster-based locking is in place.
359 */
360 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
361 struct swap_info_struct *si, unsigned long offset)
362 {
363 struct swap_cluster_info *ci;
364
365 /* Try to use fine-grained SSD-style locking if available: */
366 ci = lock_cluster(si, offset);
367 /* Otherwise, fall back to traditional, coarse locking: */
368 if (!ci)
369 spin_lock(&si->lock);
370
371 return ci;
372 }
373
374 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
375 struct swap_cluster_info *ci)
376 {
377 if (ci)
378 unlock_cluster(ci);
379 else
380 spin_unlock(&si->lock);
381 }
382
383 static inline bool cluster_list_empty(struct swap_cluster_list *list)
384 {
385 return cluster_is_null(&list->head);
386 }
387
388 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
389 {
390 return cluster_next(&list->head);
391 }
392
393 static void cluster_list_init(struct swap_cluster_list *list)
394 {
395 cluster_set_null(&list->head);
396 cluster_set_null(&list->tail);
397 }
398
399 static void cluster_list_add_tail(struct swap_cluster_list *list,
400 struct swap_cluster_info *ci,
401 unsigned int idx)
402 {
403 if (cluster_list_empty(list)) {
404 cluster_set_next_flag(&list->head, idx, 0);
405 cluster_set_next_flag(&list->tail, idx, 0);
406 } else {
407 struct swap_cluster_info *ci_tail;
408 unsigned int tail = cluster_next(&list->tail);
409
410 /*
411 * Nested cluster lock, but both cluster locks are
412 * only acquired when we held swap_info_struct->lock
413 */
414 ci_tail = ci + tail;
415 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
416 cluster_set_next(ci_tail, idx);
417 spin_unlock(&ci_tail->lock);
418 cluster_set_next_flag(&list->tail, idx, 0);
419 }
420 }
421
422 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
423 struct swap_cluster_info *ci)
424 {
425 unsigned int idx;
426
427 idx = cluster_next(&list->head);
428 if (cluster_next(&list->tail) == idx) {
429 cluster_set_null(&list->head);
430 cluster_set_null(&list->tail);
431 } else
432 cluster_set_next_flag(&list->head,
433 cluster_next(&ci[idx]), 0);
434
435 return idx;
436 }
437
438 /* Add a cluster to discard list and schedule it to do discard */
439 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
440 unsigned int idx)
441 {
442 /*
443 * If scan_swap_map() can't find a free cluster, it will check
444 * si->swap_map directly. To make sure the discarding cluster isn't
445 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
446 * will be cleared after discard
447 */
448 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
449 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
450
451 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
452
453 schedule_work(&si->discard_work);
454 }
455
456 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
457 {
458 struct swap_cluster_info *ci = si->cluster_info;
459
460 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
461 cluster_list_add_tail(&si->free_clusters, ci, idx);
462 }
463
464 /*
465 * Doing discard actually. After a cluster discard is finished, the cluster
466 * will be added to free cluster list. caller should hold si->lock.
467 */
468 static void swap_do_scheduled_discard(struct swap_info_struct *si)
469 {
470 struct swap_cluster_info *info, *ci;
471 unsigned int idx;
472
473 info = si->cluster_info;
474
475 while (!cluster_list_empty(&si->discard_clusters)) {
476 idx = cluster_list_del_first(&si->discard_clusters, info);
477 spin_unlock(&si->lock);
478
479 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
480 SWAPFILE_CLUSTER);
481
482 spin_lock(&si->lock);
483 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
484 __free_cluster(si, idx);
485 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
486 0, SWAPFILE_CLUSTER);
487 unlock_cluster(ci);
488 }
489 }
490
491 static void swap_discard_work(struct work_struct *work)
492 {
493 struct swap_info_struct *si;
494
495 si = container_of(work, struct swap_info_struct, discard_work);
496
497 spin_lock(&si->lock);
498 swap_do_scheduled_discard(si);
499 spin_unlock(&si->lock);
500 }
501
502 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
503 {
504 struct swap_cluster_info *ci = si->cluster_info;
505
506 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
507 cluster_list_del_first(&si->free_clusters, ci);
508 cluster_set_count_flag(ci + idx, 0, 0);
509 }
510
511 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
512 {
513 struct swap_cluster_info *ci = si->cluster_info + idx;
514
515 VM_BUG_ON(cluster_count(ci) != 0);
516 /*
517 * If the swap is discardable, prepare discard the cluster
518 * instead of free it immediately. The cluster will be freed
519 * after discard.
520 */
521 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
522 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
523 swap_cluster_schedule_discard(si, idx);
524 return;
525 }
526
527 __free_cluster(si, idx);
528 }
529
530 /*
531 * The cluster corresponding to page_nr will be used. The cluster will be
532 * removed from free cluster list and its usage counter will be increased.
533 */
534 static void inc_cluster_info_page(struct swap_info_struct *p,
535 struct swap_cluster_info *cluster_info, unsigned long page_nr)
536 {
537 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
538
539 if (!cluster_info)
540 return;
541 if (cluster_is_free(&cluster_info[idx]))
542 alloc_cluster(p, idx);
543
544 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
545 cluster_set_count(&cluster_info[idx],
546 cluster_count(&cluster_info[idx]) + 1);
547 }
548
549 /*
550 * The cluster corresponding to page_nr decreases one usage. If the usage
551 * counter becomes 0, which means no page in the cluster is in using, we can
552 * optionally discard the cluster and add it to free cluster list.
553 */
554 static void dec_cluster_info_page(struct swap_info_struct *p,
555 struct swap_cluster_info *cluster_info, unsigned long page_nr)
556 {
557 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558
559 if (!cluster_info)
560 return;
561
562 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
563 cluster_set_count(&cluster_info[idx],
564 cluster_count(&cluster_info[idx]) - 1);
565
566 if (cluster_count(&cluster_info[idx]) == 0)
567 free_cluster(p, idx);
568 }
569
570 /*
571 * It's possible scan_swap_map() uses a free cluster in the middle of free
572 * cluster list. Avoiding such abuse to avoid list corruption.
573 */
574 static bool
575 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
576 unsigned long offset)
577 {
578 struct percpu_cluster *percpu_cluster;
579 bool conflict;
580
581 offset /= SWAPFILE_CLUSTER;
582 conflict = !cluster_list_empty(&si->free_clusters) &&
583 offset != cluster_list_first(&si->free_clusters) &&
584 cluster_is_free(&si->cluster_info[offset]);
585
586 if (!conflict)
587 return false;
588
589 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
590 cluster_set_null(&percpu_cluster->index);
591 return true;
592 }
593
594 /*
595 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
596 * might involve allocating a new cluster for current CPU too.
597 */
598 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
599 unsigned long *offset, unsigned long *scan_base)
600 {
601 struct percpu_cluster *cluster;
602 struct swap_cluster_info *ci;
603 unsigned long tmp, max;
604
605 new_cluster:
606 cluster = this_cpu_ptr(si->percpu_cluster);
607 if (cluster_is_null(&cluster->index)) {
608 if (!cluster_list_empty(&si->free_clusters)) {
609 cluster->index = si->free_clusters.head;
610 cluster->next = cluster_next(&cluster->index) *
611 SWAPFILE_CLUSTER;
612 } else if (!cluster_list_empty(&si->discard_clusters)) {
613 /*
614 * we don't have free cluster but have some clusters in
615 * discarding, do discard now and reclaim them, then
616 * reread cluster_next_cpu since we dropped si->lock
617 */
618 swap_do_scheduled_discard(si);
619 *scan_base = this_cpu_read(*si->cluster_next_cpu);
620 *offset = *scan_base;
621 goto new_cluster;
622 } else
623 return false;
624 }
625
626 /*
627 * Other CPUs can use our cluster if they can't find a free cluster,
628 * check if there is still free entry in the cluster
629 */
630 tmp = cluster->next;
631 max = min_t(unsigned long, si->max,
632 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
633 if (tmp < max) {
634 ci = lock_cluster(si, tmp);
635 while (tmp < max) {
636 if (!si->swap_map[tmp])
637 break;
638 tmp++;
639 }
640 unlock_cluster(ci);
641 }
642 if (tmp >= max) {
643 cluster_set_null(&cluster->index);
644 goto new_cluster;
645 }
646 cluster->next = tmp + 1;
647 *offset = tmp;
648 *scan_base = tmp;
649 return true;
650 }
651
652 static void __del_from_avail_list(struct swap_info_struct *p)
653 {
654 int nid;
655
656 for_each_node(nid)
657 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
658 }
659
660 static void del_from_avail_list(struct swap_info_struct *p)
661 {
662 spin_lock(&swap_avail_lock);
663 __del_from_avail_list(p);
664 spin_unlock(&swap_avail_lock);
665 }
666
667 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
668 unsigned int nr_entries)
669 {
670 unsigned int end = offset + nr_entries - 1;
671
672 if (offset == si->lowest_bit)
673 si->lowest_bit += nr_entries;
674 if (end == si->highest_bit)
675 si->highest_bit -= nr_entries;
676 si->inuse_pages += nr_entries;
677 if (si->inuse_pages == si->pages) {
678 si->lowest_bit = si->max;
679 si->highest_bit = 0;
680 del_from_avail_list(si);
681 }
682 }
683
684 static void add_to_avail_list(struct swap_info_struct *p)
685 {
686 int nid;
687
688 spin_lock(&swap_avail_lock);
689 for_each_node(nid) {
690 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
691 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
692 }
693 spin_unlock(&swap_avail_lock);
694 }
695
696 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
697 unsigned int nr_entries)
698 {
699 unsigned long end = offset + nr_entries - 1;
700 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
701
702 if (offset < si->lowest_bit)
703 si->lowest_bit = offset;
704 if (end > si->highest_bit) {
705 bool was_full = !si->highest_bit;
706
707 si->highest_bit = end;
708 if (was_full && (si->flags & SWP_WRITEOK))
709 add_to_avail_list(si);
710 }
711 atomic_long_add(nr_entries, &nr_swap_pages);
712 si->inuse_pages -= nr_entries;
713 if (si->flags & SWP_BLKDEV)
714 swap_slot_free_notify =
715 si->bdev->bd_disk->fops->swap_slot_free_notify;
716 else
717 swap_slot_free_notify = NULL;
718 while (offset <= end) {
719 frontswap_invalidate_page(si->type, offset);
720 if (swap_slot_free_notify)
721 swap_slot_free_notify(si->bdev, offset);
722 offset++;
723 }
724 }
725
726 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
727 {
728 unsigned long prev;
729
730 if (!(si->flags & SWP_SOLIDSTATE)) {
731 si->cluster_next = next;
732 return;
733 }
734
735 prev = this_cpu_read(*si->cluster_next_cpu);
736 /*
737 * Cross the swap address space size aligned trunk, choose
738 * another trunk randomly to avoid lock contention on swap
739 * address space if possible.
740 */
741 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
742 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
743 /* No free swap slots available */
744 if (si->highest_bit <= si->lowest_bit)
745 return;
746 next = si->lowest_bit +
747 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
748 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
749 next = max_t(unsigned int, next, si->lowest_bit);
750 }
751 this_cpu_write(*si->cluster_next_cpu, next);
752 }
753
754 static int scan_swap_map_slots(struct swap_info_struct *si,
755 unsigned char usage, int nr,
756 swp_entry_t slots[])
757 {
758 struct swap_cluster_info *ci;
759 unsigned long offset;
760 unsigned long scan_base;
761 unsigned long last_in_cluster = 0;
762 int latency_ration = LATENCY_LIMIT;
763 int n_ret = 0;
764 bool scanned_many = false;
765
766 /*
767 * We try to cluster swap pages by allocating them sequentially
768 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
769 * way, however, we resort to first-free allocation, starting
770 * a new cluster. This prevents us from scattering swap pages
771 * all over the entire swap partition, so that we reduce
772 * overall disk seek times between swap pages. -- sct
773 * But we do now try to find an empty cluster. -Andrea
774 * And we let swap pages go all over an SSD partition. Hugh
775 */
776
777 si->flags += SWP_SCANNING;
778 /*
779 * Use percpu scan base for SSD to reduce lock contention on
780 * cluster and swap cache. For HDD, sequential access is more
781 * important.
782 */
783 if (si->flags & SWP_SOLIDSTATE)
784 scan_base = this_cpu_read(*si->cluster_next_cpu);
785 else
786 scan_base = si->cluster_next;
787 offset = scan_base;
788
789 /* SSD algorithm */
790 if (si->cluster_info) {
791 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
792 goto scan;
793 } else if (unlikely(!si->cluster_nr--)) {
794 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
795 si->cluster_nr = SWAPFILE_CLUSTER - 1;
796 goto checks;
797 }
798
799 spin_unlock(&si->lock);
800
801 /*
802 * If seek is expensive, start searching for new cluster from
803 * start of partition, to minimize the span of allocated swap.
804 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
805 * case, just handled by scan_swap_map_try_ssd_cluster() above.
806 */
807 scan_base = offset = si->lowest_bit;
808 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
809
810 /* Locate the first empty (unaligned) cluster */
811 for (; last_in_cluster <= si->highest_bit; offset++) {
812 if (si->swap_map[offset])
813 last_in_cluster = offset + SWAPFILE_CLUSTER;
814 else if (offset == last_in_cluster) {
815 spin_lock(&si->lock);
816 offset -= SWAPFILE_CLUSTER - 1;
817 si->cluster_next = offset;
818 si->cluster_nr = SWAPFILE_CLUSTER - 1;
819 goto checks;
820 }
821 if (unlikely(--latency_ration < 0)) {
822 cond_resched();
823 latency_ration = LATENCY_LIMIT;
824 }
825 }
826
827 offset = scan_base;
828 spin_lock(&si->lock);
829 si->cluster_nr = SWAPFILE_CLUSTER - 1;
830 }
831
832 checks:
833 if (si->cluster_info) {
834 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
835 /* take a break if we already got some slots */
836 if (n_ret)
837 goto done;
838 if (!scan_swap_map_try_ssd_cluster(si, &offset,
839 &scan_base))
840 goto scan;
841 }
842 }
843 if (!(si->flags & SWP_WRITEOK))
844 goto no_page;
845 if (!si->highest_bit)
846 goto no_page;
847 if (offset > si->highest_bit)
848 scan_base = offset = si->lowest_bit;
849
850 ci = lock_cluster(si, offset);
851 /* reuse swap entry of cache-only swap if not busy. */
852 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
853 int swap_was_freed;
854 unlock_cluster(ci);
855 spin_unlock(&si->lock);
856 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
857 spin_lock(&si->lock);
858 /* entry was freed successfully, try to use this again */
859 if (swap_was_freed)
860 goto checks;
861 goto scan; /* check next one */
862 }
863
864 if (si->swap_map[offset]) {
865 unlock_cluster(ci);
866 if (!n_ret)
867 goto scan;
868 else
869 goto done;
870 }
871 si->swap_map[offset] = usage;
872 inc_cluster_info_page(si, si->cluster_info, offset);
873 unlock_cluster(ci);
874
875 swap_range_alloc(si, offset, 1);
876 slots[n_ret++] = swp_entry(si->type, offset);
877
878 /* got enough slots or reach max slots? */
879 if ((n_ret == nr) || (offset >= si->highest_bit))
880 goto done;
881
882 /* search for next available slot */
883
884 /* time to take a break? */
885 if (unlikely(--latency_ration < 0)) {
886 if (n_ret)
887 goto done;
888 spin_unlock(&si->lock);
889 cond_resched();
890 spin_lock(&si->lock);
891 latency_ration = LATENCY_LIMIT;
892 }
893
894 /* try to get more slots in cluster */
895 if (si->cluster_info) {
896 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
897 goto checks;
898 } else if (si->cluster_nr && !si->swap_map[++offset]) {
899 /* non-ssd case, still more slots in cluster? */
900 --si->cluster_nr;
901 goto checks;
902 }
903
904 /*
905 * Even if there's no free clusters available (fragmented),
906 * try to scan a little more quickly with lock held unless we
907 * have scanned too many slots already.
908 */
909 if (!scanned_many) {
910 unsigned long scan_limit;
911
912 if (offset < scan_base)
913 scan_limit = scan_base;
914 else
915 scan_limit = si->highest_bit;
916 for (; offset <= scan_limit && --latency_ration > 0;
917 offset++) {
918 if (!si->swap_map[offset])
919 goto checks;
920 }
921 }
922
923 done:
924 set_cluster_next(si, offset + 1);
925 si->flags -= SWP_SCANNING;
926 return n_ret;
927
928 scan:
929 spin_unlock(&si->lock);
930 while (++offset <= si->highest_bit) {
931 if (!si->swap_map[offset]) {
932 spin_lock(&si->lock);
933 goto checks;
934 }
935 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
936 spin_lock(&si->lock);
937 goto checks;
938 }
939 if (unlikely(--latency_ration < 0)) {
940 cond_resched();
941 latency_ration = LATENCY_LIMIT;
942 scanned_many = true;
943 }
944 }
945 offset = si->lowest_bit;
946 while (offset < scan_base) {
947 if (!si->swap_map[offset]) {
948 spin_lock(&si->lock);
949 goto checks;
950 }
951 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
952 spin_lock(&si->lock);
953 goto checks;
954 }
955 if (unlikely(--latency_ration < 0)) {
956 cond_resched();
957 latency_ration = LATENCY_LIMIT;
958 scanned_many = true;
959 }
960 offset++;
961 }
962 spin_lock(&si->lock);
963
964 no_page:
965 si->flags -= SWP_SCANNING;
966 return n_ret;
967 }
968
969 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
970 {
971 unsigned long idx;
972 struct swap_cluster_info *ci;
973 unsigned long offset, i;
974 unsigned char *map;
975
976 /*
977 * Should not even be attempting cluster allocations when huge
978 * page swap is disabled. Warn and fail the allocation.
979 */
980 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
981 VM_WARN_ON_ONCE(1);
982 return 0;
983 }
984
985 if (cluster_list_empty(&si->free_clusters))
986 return 0;
987
988 idx = cluster_list_first(&si->free_clusters);
989 offset = idx * SWAPFILE_CLUSTER;
990 ci = lock_cluster(si, offset);
991 alloc_cluster(si, idx);
992 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
993
994 map = si->swap_map + offset;
995 for (i = 0; i < SWAPFILE_CLUSTER; i++)
996 map[i] = SWAP_HAS_CACHE;
997 unlock_cluster(ci);
998 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
999 *slot = swp_entry(si->type, offset);
1000
1001 return 1;
1002 }
1003
1004 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1005 {
1006 unsigned long offset = idx * SWAPFILE_CLUSTER;
1007 struct swap_cluster_info *ci;
1008
1009 ci = lock_cluster(si, offset);
1010 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1011 cluster_set_count_flag(ci, 0, 0);
1012 free_cluster(si, idx);
1013 unlock_cluster(ci);
1014 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1015 }
1016
1017 static unsigned long scan_swap_map(struct swap_info_struct *si,
1018 unsigned char usage)
1019 {
1020 swp_entry_t entry;
1021 int n_ret;
1022
1023 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1024
1025 if (n_ret)
1026 return swp_offset(entry);
1027 else
1028 return 0;
1029
1030 }
1031
1032 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1033 {
1034 unsigned long size = swap_entry_size(entry_size);
1035 struct swap_info_struct *si, *next;
1036 long avail_pgs;
1037 int n_ret = 0;
1038 int node;
1039
1040 /* Only single cluster request supported */
1041 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1042
1043 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1044 if (avail_pgs <= 0)
1045 goto noswap;
1046
1047 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1048
1049 atomic_long_sub(n_goal * size, &nr_swap_pages);
1050
1051 spin_lock(&swap_avail_lock);
1052
1053 start_over:
1054 node = numa_node_id();
1055 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1056 /* requeue si to after same-priority siblings */
1057 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1058 spin_unlock(&swap_avail_lock);
1059 spin_lock(&si->lock);
1060 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1061 spin_lock(&swap_avail_lock);
1062 if (plist_node_empty(&si->avail_lists[node])) {
1063 spin_unlock(&si->lock);
1064 goto nextsi;
1065 }
1066 WARN(!si->highest_bit,
1067 "swap_info %d in list but !highest_bit\n",
1068 si->type);
1069 WARN(!(si->flags & SWP_WRITEOK),
1070 "swap_info %d in list but !SWP_WRITEOK\n",
1071 si->type);
1072 __del_from_avail_list(si);
1073 spin_unlock(&si->lock);
1074 goto nextsi;
1075 }
1076 if (size == SWAPFILE_CLUSTER) {
1077 if (!(si->flags & SWP_FS))
1078 n_ret = swap_alloc_cluster(si, swp_entries);
1079 } else
1080 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1081 n_goal, swp_entries);
1082 spin_unlock(&si->lock);
1083 if (n_ret || size == SWAPFILE_CLUSTER)
1084 goto check_out;
1085 pr_debug("scan_swap_map of si %d failed to find offset\n",
1086 si->type);
1087
1088 spin_lock(&swap_avail_lock);
1089 nextsi:
1090 /*
1091 * if we got here, it's likely that si was almost full before,
1092 * and since scan_swap_map() can drop the si->lock, multiple
1093 * callers probably all tried to get a page from the same si
1094 * and it filled up before we could get one; or, the si filled
1095 * up between us dropping swap_avail_lock and taking si->lock.
1096 * Since we dropped the swap_avail_lock, the swap_avail_head
1097 * list may have been modified; so if next is still in the
1098 * swap_avail_head list then try it, otherwise start over
1099 * if we have not gotten any slots.
1100 */
1101 if (plist_node_empty(&next->avail_lists[node]))
1102 goto start_over;
1103 }
1104
1105 spin_unlock(&swap_avail_lock);
1106
1107 check_out:
1108 if (n_ret < n_goal)
1109 atomic_long_add((long)(n_goal - n_ret) * size,
1110 &nr_swap_pages);
1111 noswap:
1112 return n_ret;
1113 }
1114
1115 /* The only caller of this function is now suspend routine */
1116 swp_entry_t get_swap_page_of_type(int type)
1117 {
1118 struct swap_info_struct *si = swap_type_to_swap_info(type);
1119 pgoff_t offset;
1120
1121 if (!si)
1122 goto fail;
1123
1124 spin_lock(&si->lock);
1125 if (si->flags & SWP_WRITEOK) {
1126 atomic_long_dec(&nr_swap_pages);
1127 /* This is called for allocating swap entry, not cache */
1128 offset = scan_swap_map(si, 1);
1129 if (offset) {
1130 spin_unlock(&si->lock);
1131 return swp_entry(type, offset);
1132 }
1133 atomic_long_inc(&nr_swap_pages);
1134 }
1135 spin_unlock(&si->lock);
1136 fail:
1137 return (swp_entry_t) {0};
1138 }
1139
1140 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1141 {
1142 struct swap_info_struct *p;
1143 unsigned long offset;
1144
1145 if (!entry.val)
1146 goto out;
1147 p = swp_swap_info(entry);
1148 if (!p)
1149 goto bad_nofile;
1150 if (!(p->flags & SWP_USED))
1151 goto bad_device;
1152 offset = swp_offset(entry);
1153 if (offset >= p->max)
1154 goto bad_offset;
1155 return p;
1156
1157 bad_offset:
1158 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1159 goto out;
1160 bad_device:
1161 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1162 goto out;
1163 bad_nofile:
1164 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1165 out:
1166 return NULL;
1167 }
1168
1169 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1170 {
1171 struct swap_info_struct *p;
1172
1173 p = __swap_info_get(entry);
1174 if (!p)
1175 goto out;
1176 if (!p->swap_map[swp_offset(entry)])
1177 goto bad_free;
1178 return p;
1179
1180 bad_free:
1181 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1182 goto out;
1183 out:
1184 return NULL;
1185 }
1186
1187 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1188 {
1189 struct swap_info_struct *p;
1190
1191 p = _swap_info_get(entry);
1192 if (p)
1193 spin_lock(&p->lock);
1194 return p;
1195 }
1196
1197 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1198 struct swap_info_struct *q)
1199 {
1200 struct swap_info_struct *p;
1201
1202 p = _swap_info_get(entry);
1203
1204 if (p != q) {
1205 if (q != NULL)
1206 spin_unlock(&q->lock);
1207 if (p != NULL)
1208 spin_lock(&p->lock);
1209 }
1210 return p;
1211 }
1212
1213 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1214 unsigned long offset,
1215 unsigned char usage)
1216 {
1217 unsigned char count;
1218 unsigned char has_cache;
1219
1220 count = p->swap_map[offset];
1221
1222 has_cache = count & SWAP_HAS_CACHE;
1223 count &= ~SWAP_HAS_CACHE;
1224
1225 if (usage == SWAP_HAS_CACHE) {
1226 VM_BUG_ON(!has_cache);
1227 has_cache = 0;
1228 } else if (count == SWAP_MAP_SHMEM) {
1229 /*
1230 * Or we could insist on shmem.c using a special
1231 * swap_shmem_free() and free_shmem_swap_and_cache()...
1232 */
1233 count = 0;
1234 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1235 if (count == COUNT_CONTINUED) {
1236 if (swap_count_continued(p, offset, count))
1237 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1238 else
1239 count = SWAP_MAP_MAX;
1240 } else
1241 count--;
1242 }
1243
1244 usage = count | has_cache;
1245 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1246
1247 return usage;
1248 }
1249
1250 /*
1251 * Check whether swap entry is valid in the swap device. If so,
1252 * return pointer to swap_info_struct, and keep the swap entry valid
1253 * via preventing the swap device from being swapoff, until
1254 * put_swap_device() is called. Otherwise return NULL.
1255 *
1256 * The entirety of the RCU read critical section must come before the
1257 * return from or after the call to synchronize_rcu() in
1258 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1259 * true, the si->map, si->cluster_info, etc. must be valid in the
1260 * critical section.
1261 *
1262 * Notice that swapoff or swapoff+swapon can still happen before the
1263 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1264 * in put_swap_device() if there isn't any other way to prevent
1265 * swapoff, such as page lock, page table lock, etc. The caller must
1266 * be prepared for that. For example, the following situation is
1267 * possible.
1268 *
1269 * CPU1 CPU2
1270 * do_swap_page()
1271 * ... swapoff+swapon
1272 * __read_swap_cache_async()
1273 * swapcache_prepare()
1274 * __swap_duplicate()
1275 * // check swap_map
1276 * // verify PTE not changed
1277 *
1278 * In __swap_duplicate(), the swap_map need to be checked before
1279 * changing partly because the specified swap entry may be for another
1280 * swap device which has been swapoff. And in do_swap_page(), after
1281 * the page is read from the swap device, the PTE is verified not
1282 * changed with the page table locked to check whether the swap device
1283 * has been swapoff or swapoff+swapon.
1284 */
1285 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1286 {
1287 struct swap_info_struct *si;
1288 unsigned long offset;
1289
1290 if (!entry.val)
1291 goto out;
1292 si = swp_swap_info(entry);
1293 if (!si)
1294 goto bad_nofile;
1295
1296 rcu_read_lock();
1297 if (!(si->flags & SWP_VALID))
1298 goto unlock_out;
1299 offset = swp_offset(entry);
1300 if (offset >= si->max)
1301 goto unlock_out;
1302
1303 return si;
1304 bad_nofile:
1305 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1306 out:
1307 return NULL;
1308 unlock_out:
1309 rcu_read_unlock();
1310 return NULL;
1311 }
1312
1313 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1314 swp_entry_t entry)
1315 {
1316 struct swap_cluster_info *ci;
1317 unsigned long offset = swp_offset(entry);
1318 unsigned char usage;
1319
1320 ci = lock_cluster_or_swap_info(p, offset);
1321 usage = __swap_entry_free_locked(p, offset, 1);
1322 unlock_cluster_or_swap_info(p, ci);
1323 if (!usage)
1324 free_swap_slot(entry);
1325
1326 return usage;
1327 }
1328
1329 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1330 {
1331 struct swap_cluster_info *ci;
1332 unsigned long offset = swp_offset(entry);
1333 unsigned char count;
1334
1335 ci = lock_cluster(p, offset);
1336 count = p->swap_map[offset];
1337 VM_BUG_ON(count != SWAP_HAS_CACHE);
1338 p->swap_map[offset] = 0;
1339 dec_cluster_info_page(p, p->cluster_info, offset);
1340 unlock_cluster(ci);
1341
1342 mem_cgroup_uncharge_swap(entry, 1);
1343 swap_range_free(p, offset, 1);
1344 }
1345
1346 /*
1347 * Caller has made sure that the swap device corresponding to entry
1348 * is still around or has not been recycled.
1349 */
1350 void swap_free(swp_entry_t entry)
1351 {
1352 struct swap_info_struct *p;
1353
1354 p = _swap_info_get(entry);
1355 if (p)
1356 __swap_entry_free(p, entry);
1357 }
1358
1359 /*
1360 * Called after dropping swapcache to decrease refcnt to swap entries.
1361 */
1362 void put_swap_page(struct page *page, swp_entry_t entry)
1363 {
1364 unsigned long offset = swp_offset(entry);
1365 unsigned long idx = offset / SWAPFILE_CLUSTER;
1366 struct swap_cluster_info *ci;
1367 struct swap_info_struct *si;
1368 unsigned char *map;
1369 unsigned int i, free_entries = 0;
1370 unsigned char val;
1371 int size = swap_entry_size(hpage_nr_pages(page));
1372
1373 si = _swap_info_get(entry);
1374 if (!si)
1375 return;
1376
1377 ci = lock_cluster_or_swap_info(si, offset);
1378 if (size == SWAPFILE_CLUSTER) {
1379 VM_BUG_ON(!cluster_is_huge(ci));
1380 map = si->swap_map + offset;
1381 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1382 val = map[i];
1383 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1384 if (val == SWAP_HAS_CACHE)
1385 free_entries++;
1386 }
1387 cluster_clear_huge(ci);
1388 if (free_entries == SWAPFILE_CLUSTER) {
1389 unlock_cluster_or_swap_info(si, ci);
1390 spin_lock(&si->lock);
1391 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1392 swap_free_cluster(si, idx);
1393 spin_unlock(&si->lock);
1394 return;
1395 }
1396 }
1397 for (i = 0; i < size; i++, entry.val++) {
1398 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1399 unlock_cluster_or_swap_info(si, ci);
1400 free_swap_slot(entry);
1401 if (i == size - 1)
1402 return;
1403 lock_cluster_or_swap_info(si, offset);
1404 }
1405 }
1406 unlock_cluster_or_swap_info(si, ci);
1407 }
1408
1409 #ifdef CONFIG_THP_SWAP
1410 int split_swap_cluster(swp_entry_t entry)
1411 {
1412 struct swap_info_struct *si;
1413 struct swap_cluster_info *ci;
1414 unsigned long offset = swp_offset(entry);
1415
1416 si = _swap_info_get(entry);
1417 if (!si)
1418 return -EBUSY;
1419 ci = lock_cluster(si, offset);
1420 cluster_clear_huge(ci);
1421 unlock_cluster(ci);
1422 return 0;
1423 }
1424 #endif
1425
1426 static int swp_entry_cmp(const void *ent1, const void *ent2)
1427 {
1428 const swp_entry_t *e1 = ent1, *e2 = ent2;
1429
1430 return (int)swp_type(*e1) - (int)swp_type(*e2);
1431 }
1432
1433 void swapcache_free_entries(swp_entry_t *entries, int n)
1434 {
1435 struct swap_info_struct *p, *prev;
1436 int i;
1437
1438 if (n <= 0)
1439 return;
1440
1441 prev = NULL;
1442 p = NULL;
1443
1444 /*
1445 * Sort swap entries by swap device, so each lock is only taken once.
1446 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1447 * so low that it isn't necessary to optimize further.
1448 */
1449 if (nr_swapfiles > 1)
1450 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1451 for (i = 0; i < n; ++i) {
1452 p = swap_info_get_cont(entries[i], prev);
1453 if (p)
1454 swap_entry_free(p, entries[i]);
1455 prev = p;
1456 }
1457 if (p)
1458 spin_unlock(&p->lock);
1459 }
1460
1461 /*
1462 * How many references to page are currently swapped out?
1463 * This does not give an exact answer when swap count is continued,
1464 * but does include the high COUNT_CONTINUED flag to allow for that.
1465 */
1466 int page_swapcount(struct page *page)
1467 {
1468 int count = 0;
1469 struct swap_info_struct *p;
1470 struct swap_cluster_info *ci;
1471 swp_entry_t entry;
1472 unsigned long offset;
1473
1474 entry.val = page_private(page);
1475 p = _swap_info_get(entry);
1476 if (p) {
1477 offset = swp_offset(entry);
1478 ci = lock_cluster_or_swap_info(p, offset);
1479 count = swap_count(p->swap_map[offset]);
1480 unlock_cluster_or_swap_info(p, ci);
1481 }
1482 return count;
1483 }
1484
1485 int __swap_count(swp_entry_t entry)
1486 {
1487 struct swap_info_struct *si;
1488 pgoff_t offset = swp_offset(entry);
1489 int count = 0;
1490
1491 si = get_swap_device(entry);
1492 if (si) {
1493 count = swap_count(si->swap_map[offset]);
1494 put_swap_device(si);
1495 }
1496 return count;
1497 }
1498
1499 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1500 {
1501 int count = 0;
1502 pgoff_t offset = swp_offset(entry);
1503 struct swap_cluster_info *ci;
1504
1505 ci = lock_cluster_or_swap_info(si, offset);
1506 count = swap_count(si->swap_map[offset]);
1507 unlock_cluster_or_swap_info(si, ci);
1508 return count;
1509 }
1510
1511 /*
1512 * How many references to @entry are currently swapped out?
1513 * This does not give an exact answer when swap count is continued,
1514 * but does include the high COUNT_CONTINUED flag to allow for that.
1515 */
1516 int __swp_swapcount(swp_entry_t entry)
1517 {
1518 int count = 0;
1519 struct swap_info_struct *si;
1520
1521 si = get_swap_device(entry);
1522 if (si) {
1523 count = swap_swapcount(si, entry);
1524 put_swap_device(si);
1525 }
1526 return count;
1527 }
1528
1529 /*
1530 * How many references to @entry are currently swapped out?
1531 * This considers COUNT_CONTINUED so it returns exact answer.
1532 */
1533 int swp_swapcount(swp_entry_t entry)
1534 {
1535 int count, tmp_count, n;
1536 struct swap_info_struct *p;
1537 struct swap_cluster_info *ci;
1538 struct page *page;
1539 pgoff_t offset;
1540 unsigned char *map;
1541
1542 p = _swap_info_get(entry);
1543 if (!p)
1544 return 0;
1545
1546 offset = swp_offset(entry);
1547
1548 ci = lock_cluster_or_swap_info(p, offset);
1549
1550 count = swap_count(p->swap_map[offset]);
1551 if (!(count & COUNT_CONTINUED))
1552 goto out;
1553
1554 count &= ~COUNT_CONTINUED;
1555 n = SWAP_MAP_MAX + 1;
1556
1557 page = vmalloc_to_page(p->swap_map + offset);
1558 offset &= ~PAGE_MASK;
1559 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1560
1561 do {
1562 page = list_next_entry(page, lru);
1563 map = kmap_atomic(page);
1564 tmp_count = map[offset];
1565 kunmap_atomic(map);
1566
1567 count += (tmp_count & ~COUNT_CONTINUED) * n;
1568 n *= (SWAP_CONT_MAX + 1);
1569 } while (tmp_count & COUNT_CONTINUED);
1570 out:
1571 unlock_cluster_or_swap_info(p, ci);
1572 return count;
1573 }
1574
1575 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1576 swp_entry_t entry)
1577 {
1578 struct swap_cluster_info *ci;
1579 unsigned char *map = si->swap_map;
1580 unsigned long roffset = swp_offset(entry);
1581 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1582 int i;
1583 bool ret = false;
1584
1585 ci = lock_cluster_or_swap_info(si, offset);
1586 if (!ci || !cluster_is_huge(ci)) {
1587 if (swap_count(map[roffset]))
1588 ret = true;
1589 goto unlock_out;
1590 }
1591 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1592 if (swap_count(map[offset + i])) {
1593 ret = true;
1594 break;
1595 }
1596 }
1597 unlock_out:
1598 unlock_cluster_or_swap_info(si, ci);
1599 return ret;
1600 }
1601
1602 static bool page_swapped(struct page *page)
1603 {
1604 swp_entry_t entry;
1605 struct swap_info_struct *si;
1606
1607 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1608 return page_swapcount(page) != 0;
1609
1610 page = compound_head(page);
1611 entry.val = page_private(page);
1612 si = _swap_info_get(entry);
1613 if (si)
1614 return swap_page_trans_huge_swapped(si, entry);
1615 return false;
1616 }
1617
1618 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1619 int *total_swapcount)
1620 {
1621 int i, map_swapcount, _total_mapcount, _total_swapcount;
1622 unsigned long offset = 0;
1623 struct swap_info_struct *si;
1624 struct swap_cluster_info *ci = NULL;
1625 unsigned char *map = NULL;
1626 int mapcount, swapcount = 0;
1627
1628 /* hugetlbfs shouldn't call it */
1629 VM_BUG_ON_PAGE(PageHuge(page), page);
1630
1631 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1632 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1633 if (PageSwapCache(page))
1634 swapcount = page_swapcount(page);
1635 if (total_swapcount)
1636 *total_swapcount = swapcount;
1637 return mapcount + swapcount;
1638 }
1639
1640 page = compound_head(page);
1641
1642 _total_mapcount = _total_swapcount = map_swapcount = 0;
1643 if (PageSwapCache(page)) {
1644 swp_entry_t entry;
1645
1646 entry.val = page_private(page);
1647 si = _swap_info_get(entry);
1648 if (si) {
1649 map = si->swap_map;
1650 offset = swp_offset(entry);
1651 }
1652 }
1653 if (map)
1654 ci = lock_cluster(si, offset);
1655 for (i = 0; i < HPAGE_PMD_NR; i++) {
1656 mapcount = atomic_read(&page[i]._mapcount) + 1;
1657 _total_mapcount += mapcount;
1658 if (map) {
1659 swapcount = swap_count(map[offset + i]);
1660 _total_swapcount += swapcount;
1661 }
1662 map_swapcount = max(map_swapcount, mapcount + swapcount);
1663 }
1664 unlock_cluster(ci);
1665 if (PageDoubleMap(page)) {
1666 map_swapcount -= 1;
1667 _total_mapcount -= HPAGE_PMD_NR;
1668 }
1669 mapcount = compound_mapcount(page);
1670 map_swapcount += mapcount;
1671 _total_mapcount += mapcount;
1672 if (total_mapcount)
1673 *total_mapcount = _total_mapcount;
1674 if (total_swapcount)
1675 *total_swapcount = _total_swapcount;
1676
1677 return map_swapcount;
1678 }
1679
1680 /*
1681 * We can write to an anon page without COW if there are no other references
1682 * to it. And as a side-effect, free up its swap: because the old content
1683 * on disk will never be read, and seeking back there to write new content
1684 * later would only waste time away from clustering.
1685 *
1686 * NOTE: total_map_swapcount should not be relied upon by the caller if
1687 * reuse_swap_page() returns false, but it may be always overwritten
1688 * (see the other implementation for CONFIG_SWAP=n).
1689 */
1690 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1691 {
1692 int count, total_mapcount, total_swapcount;
1693
1694 VM_BUG_ON_PAGE(!PageLocked(page), page);
1695 if (unlikely(PageKsm(page)))
1696 return false;
1697 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1698 &total_swapcount);
1699 if (total_map_swapcount)
1700 *total_map_swapcount = total_mapcount + total_swapcount;
1701 if (count == 1 && PageSwapCache(page) &&
1702 (likely(!PageTransCompound(page)) ||
1703 /* The remaining swap count will be freed soon */
1704 total_swapcount == page_swapcount(page))) {
1705 if (!PageWriteback(page)) {
1706 page = compound_head(page);
1707 delete_from_swap_cache(page);
1708 SetPageDirty(page);
1709 } else {
1710 swp_entry_t entry;
1711 struct swap_info_struct *p;
1712
1713 entry.val = page_private(page);
1714 p = swap_info_get(entry);
1715 if (p->flags & SWP_STABLE_WRITES) {
1716 spin_unlock(&p->lock);
1717 return false;
1718 }
1719 spin_unlock(&p->lock);
1720 }
1721 }
1722
1723 return count <= 1;
1724 }
1725
1726 /*
1727 * If swap is getting full, or if there are no more mappings of this page,
1728 * then try_to_free_swap is called to free its swap space.
1729 */
1730 int try_to_free_swap(struct page *page)
1731 {
1732 VM_BUG_ON_PAGE(!PageLocked(page), page);
1733
1734 if (!PageSwapCache(page))
1735 return 0;
1736 if (PageWriteback(page))
1737 return 0;
1738 if (page_swapped(page))
1739 return 0;
1740
1741 /*
1742 * Once hibernation has begun to create its image of memory,
1743 * there's a danger that one of the calls to try_to_free_swap()
1744 * - most probably a call from __try_to_reclaim_swap() while
1745 * hibernation is allocating its own swap pages for the image,
1746 * but conceivably even a call from memory reclaim - will free
1747 * the swap from a page which has already been recorded in the
1748 * image as a clean swapcache page, and then reuse its swap for
1749 * another page of the image. On waking from hibernation, the
1750 * original page might be freed under memory pressure, then
1751 * later read back in from swap, now with the wrong data.
1752 *
1753 * Hibernation suspends storage while it is writing the image
1754 * to disk so check that here.
1755 */
1756 if (pm_suspended_storage())
1757 return 0;
1758
1759 page = compound_head(page);
1760 delete_from_swap_cache(page);
1761 SetPageDirty(page);
1762 return 1;
1763 }
1764
1765 /*
1766 * Free the swap entry like above, but also try to
1767 * free the page cache entry if it is the last user.
1768 */
1769 int free_swap_and_cache(swp_entry_t entry)
1770 {
1771 struct swap_info_struct *p;
1772 unsigned char count;
1773
1774 if (non_swap_entry(entry))
1775 return 1;
1776
1777 p = _swap_info_get(entry);
1778 if (p) {
1779 count = __swap_entry_free(p, entry);
1780 if (count == SWAP_HAS_CACHE &&
1781 !swap_page_trans_huge_swapped(p, entry))
1782 __try_to_reclaim_swap(p, swp_offset(entry),
1783 TTRS_UNMAPPED | TTRS_FULL);
1784 }
1785 return p != NULL;
1786 }
1787
1788 #ifdef CONFIG_HIBERNATION
1789 /*
1790 * Find the swap type that corresponds to given device (if any).
1791 *
1792 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1793 * from 0, in which the swap header is expected to be located.
1794 *
1795 * This is needed for the suspend to disk (aka swsusp).
1796 */
1797 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1798 {
1799 struct block_device *bdev = NULL;
1800 int type;
1801
1802 if (device)
1803 bdev = bdget(device);
1804
1805 spin_lock(&swap_lock);
1806 for (type = 0; type < nr_swapfiles; type++) {
1807 struct swap_info_struct *sis = swap_info[type];
1808
1809 if (!(sis->flags & SWP_WRITEOK))
1810 continue;
1811
1812 if (!bdev) {
1813 if (bdev_p)
1814 *bdev_p = bdgrab(sis->bdev);
1815
1816 spin_unlock(&swap_lock);
1817 return type;
1818 }
1819 if (bdev == sis->bdev) {
1820 struct swap_extent *se = first_se(sis);
1821
1822 if (se->start_block == offset) {
1823 if (bdev_p)
1824 *bdev_p = bdgrab(sis->bdev);
1825
1826 spin_unlock(&swap_lock);
1827 bdput(bdev);
1828 return type;
1829 }
1830 }
1831 }
1832 spin_unlock(&swap_lock);
1833 if (bdev)
1834 bdput(bdev);
1835
1836 return -ENODEV;
1837 }
1838
1839 /*
1840 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1841 * corresponding to given index in swap_info (swap type).
1842 */
1843 sector_t swapdev_block(int type, pgoff_t offset)
1844 {
1845 struct block_device *bdev;
1846 struct swap_info_struct *si = swap_type_to_swap_info(type);
1847
1848 if (!si || !(si->flags & SWP_WRITEOK))
1849 return 0;
1850 return map_swap_entry(swp_entry(type, offset), &bdev);
1851 }
1852
1853 /*
1854 * Return either the total number of swap pages of given type, or the number
1855 * of free pages of that type (depending on @free)
1856 *
1857 * This is needed for software suspend
1858 */
1859 unsigned int count_swap_pages(int type, int free)
1860 {
1861 unsigned int n = 0;
1862
1863 spin_lock(&swap_lock);
1864 if ((unsigned int)type < nr_swapfiles) {
1865 struct swap_info_struct *sis = swap_info[type];
1866
1867 spin_lock(&sis->lock);
1868 if (sis->flags & SWP_WRITEOK) {
1869 n = sis->pages;
1870 if (free)
1871 n -= sis->inuse_pages;
1872 }
1873 spin_unlock(&sis->lock);
1874 }
1875 spin_unlock(&swap_lock);
1876 return n;
1877 }
1878 #endif /* CONFIG_HIBERNATION */
1879
1880 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1881 {
1882 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1883 }
1884
1885 /*
1886 * No need to decide whether this PTE shares the swap entry with others,
1887 * just let do_wp_page work it out if a write is requested later - to
1888 * force COW, vm_page_prot omits write permission from any private vma.
1889 */
1890 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1891 unsigned long addr, swp_entry_t entry, struct page *page)
1892 {
1893 struct page *swapcache;
1894 spinlock_t *ptl;
1895 pte_t *pte;
1896 int ret = 1;
1897
1898 swapcache = page;
1899 page = ksm_might_need_to_copy(page, vma, addr);
1900 if (unlikely(!page))
1901 return -ENOMEM;
1902
1903 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1904 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1905 ret = 0;
1906 goto out;
1907 }
1908
1909 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1910 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1911 get_page(page);
1912 set_pte_at(vma->vm_mm, addr, pte,
1913 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1914 if (page == swapcache) {
1915 page_add_anon_rmap(page, vma, addr, false);
1916 } else { /* ksm created a completely new copy */
1917 page_add_new_anon_rmap(page, vma, addr, false);
1918 lru_cache_add_active_or_unevictable(page, vma);
1919 }
1920 swap_free(entry);
1921 /*
1922 * Move the page to the active list so it is not
1923 * immediately swapped out again after swapon.
1924 */
1925 activate_page(page);
1926 out:
1927 pte_unmap_unlock(pte, ptl);
1928 if (page != swapcache) {
1929 unlock_page(page);
1930 put_page(page);
1931 }
1932 return ret;
1933 }
1934
1935 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1936 unsigned long addr, unsigned long end,
1937 unsigned int type, bool frontswap,
1938 unsigned long *fs_pages_to_unuse)
1939 {
1940 struct page *page;
1941 swp_entry_t entry;
1942 pte_t *pte;
1943 struct swap_info_struct *si;
1944 unsigned long offset;
1945 int ret = 0;
1946 volatile unsigned char *swap_map;
1947
1948 si = swap_info[type];
1949 pte = pte_offset_map(pmd, addr);
1950 do {
1951 struct vm_fault vmf;
1952
1953 if (!is_swap_pte(*pte))
1954 continue;
1955
1956 entry = pte_to_swp_entry(*pte);
1957 if (swp_type(entry) != type)
1958 continue;
1959
1960 offset = swp_offset(entry);
1961 if (frontswap && !frontswap_test(si, offset))
1962 continue;
1963
1964 pte_unmap(pte);
1965 swap_map = &si->swap_map[offset];
1966 page = lookup_swap_cache(entry, vma, addr);
1967 if (!page) {
1968 vmf.vma = vma;
1969 vmf.address = addr;
1970 vmf.pmd = pmd;
1971 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1972 &vmf);
1973 }
1974 if (!page) {
1975 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1976 goto try_next;
1977 return -ENOMEM;
1978 }
1979
1980 lock_page(page);
1981 wait_on_page_writeback(page);
1982 ret = unuse_pte(vma, pmd, addr, entry, page);
1983 if (ret < 0) {
1984 unlock_page(page);
1985 put_page(page);
1986 goto out;
1987 }
1988
1989 try_to_free_swap(page);
1990 unlock_page(page);
1991 put_page(page);
1992
1993 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1994 ret = FRONTSWAP_PAGES_UNUSED;
1995 goto out;
1996 }
1997 try_next:
1998 pte = pte_offset_map(pmd, addr);
1999 } while (pte++, addr += PAGE_SIZE, addr != end);
2000 pte_unmap(pte - 1);
2001
2002 ret = 0;
2003 out:
2004 return ret;
2005 }
2006
2007 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2008 unsigned long addr, unsigned long end,
2009 unsigned int type, bool frontswap,
2010 unsigned long *fs_pages_to_unuse)
2011 {
2012 pmd_t *pmd;
2013 unsigned long next;
2014 int ret;
2015
2016 pmd = pmd_offset(pud, addr);
2017 do {
2018 cond_resched();
2019 next = pmd_addr_end(addr, end);
2020 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2021 continue;
2022 ret = unuse_pte_range(vma, pmd, addr, next, type,
2023 frontswap, fs_pages_to_unuse);
2024 if (ret)
2025 return ret;
2026 } while (pmd++, addr = next, addr != end);
2027 return 0;
2028 }
2029
2030 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2031 unsigned long addr, unsigned long end,
2032 unsigned int type, bool frontswap,
2033 unsigned long *fs_pages_to_unuse)
2034 {
2035 pud_t *pud;
2036 unsigned long next;
2037 int ret;
2038
2039 pud = pud_offset(p4d, addr);
2040 do {
2041 next = pud_addr_end(addr, end);
2042 if (pud_none_or_clear_bad(pud))
2043 continue;
2044 ret = unuse_pmd_range(vma, pud, addr, next, type,
2045 frontswap, fs_pages_to_unuse);
2046 if (ret)
2047 return ret;
2048 } while (pud++, addr = next, addr != end);
2049 return 0;
2050 }
2051
2052 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2053 unsigned long addr, unsigned long end,
2054 unsigned int type, bool frontswap,
2055 unsigned long *fs_pages_to_unuse)
2056 {
2057 p4d_t *p4d;
2058 unsigned long next;
2059 int ret;
2060
2061 p4d = p4d_offset(pgd, addr);
2062 do {
2063 next = p4d_addr_end(addr, end);
2064 if (p4d_none_or_clear_bad(p4d))
2065 continue;
2066 ret = unuse_pud_range(vma, p4d, addr, next, type,
2067 frontswap, fs_pages_to_unuse);
2068 if (ret)
2069 return ret;
2070 } while (p4d++, addr = next, addr != end);
2071 return 0;
2072 }
2073
2074 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2075 bool frontswap, unsigned long *fs_pages_to_unuse)
2076 {
2077 pgd_t *pgd;
2078 unsigned long addr, end, next;
2079 int ret;
2080
2081 addr = vma->vm_start;
2082 end = vma->vm_end;
2083
2084 pgd = pgd_offset(vma->vm_mm, addr);
2085 do {
2086 next = pgd_addr_end(addr, end);
2087 if (pgd_none_or_clear_bad(pgd))
2088 continue;
2089 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2090 frontswap, fs_pages_to_unuse);
2091 if (ret)
2092 return ret;
2093 } while (pgd++, addr = next, addr != end);
2094 return 0;
2095 }
2096
2097 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2098 bool frontswap, unsigned long *fs_pages_to_unuse)
2099 {
2100 struct vm_area_struct *vma;
2101 int ret = 0;
2102
2103 mmap_read_lock(mm);
2104 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2105 if (vma->anon_vma) {
2106 ret = unuse_vma(vma, type, frontswap,
2107 fs_pages_to_unuse);
2108 if (ret)
2109 break;
2110 }
2111 cond_resched();
2112 }
2113 mmap_read_unlock(mm);
2114 return ret;
2115 }
2116
2117 /*
2118 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2119 * from current position to next entry still in use. Return 0
2120 * if there are no inuse entries after prev till end of the map.
2121 */
2122 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2123 unsigned int prev, bool frontswap)
2124 {
2125 unsigned int i;
2126 unsigned char count;
2127
2128 /*
2129 * No need for swap_lock here: we're just looking
2130 * for whether an entry is in use, not modifying it; false
2131 * hits are okay, and sys_swapoff() has already prevented new
2132 * allocations from this area (while holding swap_lock).
2133 */
2134 for (i = prev + 1; i < si->max; i++) {
2135 count = READ_ONCE(si->swap_map[i]);
2136 if (count && swap_count(count) != SWAP_MAP_BAD)
2137 if (!frontswap || frontswap_test(si, i))
2138 break;
2139 if ((i % LATENCY_LIMIT) == 0)
2140 cond_resched();
2141 }
2142
2143 if (i == si->max)
2144 i = 0;
2145
2146 return i;
2147 }
2148
2149 /*
2150 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2151 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2152 */
2153 int try_to_unuse(unsigned int type, bool frontswap,
2154 unsigned long pages_to_unuse)
2155 {
2156 struct mm_struct *prev_mm;
2157 struct mm_struct *mm;
2158 struct list_head *p;
2159 int retval = 0;
2160 struct swap_info_struct *si = swap_info[type];
2161 struct page *page;
2162 swp_entry_t entry;
2163 unsigned int i;
2164
2165 if (!READ_ONCE(si->inuse_pages))
2166 return 0;
2167
2168 if (!frontswap)
2169 pages_to_unuse = 0;
2170
2171 retry:
2172 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2173 if (retval)
2174 goto out;
2175
2176 prev_mm = &init_mm;
2177 mmget(prev_mm);
2178
2179 spin_lock(&mmlist_lock);
2180 p = &init_mm.mmlist;
2181 while (READ_ONCE(si->inuse_pages) &&
2182 !signal_pending(current) &&
2183 (p = p->next) != &init_mm.mmlist) {
2184
2185 mm = list_entry(p, struct mm_struct, mmlist);
2186 if (!mmget_not_zero(mm))
2187 continue;
2188 spin_unlock(&mmlist_lock);
2189 mmput(prev_mm);
2190 prev_mm = mm;
2191 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2192
2193 if (retval) {
2194 mmput(prev_mm);
2195 goto out;
2196 }
2197
2198 /*
2199 * Make sure that we aren't completely killing
2200 * interactive performance.
2201 */
2202 cond_resched();
2203 spin_lock(&mmlist_lock);
2204 }
2205 spin_unlock(&mmlist_lock);
2206
2207 mmput(prev_mm);
2208
2209 i = 0;
2210 while (READ_ONCE(si->inuse_pages) &&
2211 !signal_pending(current) &&
2212 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2213
2214 entry = swp_entry(type, i);
2215 page = find_get_page(swap_address_space(entry), i);
2216 if (!page)
2217 continue;
2218
2219 /*
2220 * It is conceivable that a racing task removed this page from
2221 * swap cache just before we acquired the page lock. The page
2222 * might even be back in swap cache on another swap area. But
2223 * that is okay, try_to_free_swap() only removes stale pages.
2224 */
2225 lock_page(page);
2226 wait_on_page_writeback(page);
2227 try_to_free_swap(page);
2228 unlock_page(page);
2229 put_page(page);
2230
2231 /*
2232 * For frontswap, we just need to unuse pages_to_unuse, if
2233 * it was specified. Need not check frontswap again here as
2234 * we already zeroed out pages_to_unuse if not frontswap.
2235 */
2236 if (pages_to_unuse && --pages_to_unuse == 0)
2237 goto out;
2238 }
2239
2240 /*
2241 * Lets check again to see if there are still swap entries in the map.
2242 * If yes, we would need to do retry the unuse logic again.
2243 * Under global memory pressure, swap entries can be reinserted back
2244 * into process space after the mmlist loop above passes over them.
2245 *
2246 * Limit the number of retries? No: when mmget_not_zero() above fails,
2247 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2248 * at its own independent pace; and even shmem_writepage() could have
2249 * been preempted after get_swap_page(), temporarily hiding that swap.
2250 * It's easy and robust (though cpu-intensive) just to keep retrying.
2251 */
2252 if (READ_ONCE(si->inuse_pages)) {
2253 if (!signal_pending(current))
2254 goto retry;
2255 retval = -EINTR;
2256 }
2257 out:
2258 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2259 }
2260
2261 /*
2262 * After a successful try_to_unuse, if no swap is now in use, we know
2263 * we can empty the mmlist. swap_lock must be held on entry and exit.
2264 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2265 * added to the mmlist just after page_duplicate - before would be racy.
2266 */
2267 static void drain_mmlist(void)
2268 {
2269 struct list_head *p, *next;
2270 unsigned int type;
2271
2272 for (type = 0; type < nr_swapfiles; type++)
2273 if (swap_info[type]->inuse_pages)
2274 return;
2275 spin_lock(&mmlist_lock);
2276 list_for_each_safe(p, next, &init_mm.mmlist)
2277 list_del_init(p);
2278 spin_unlock(&mmlist_lock);
2279 }
2280
2281 /*
2282 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2283 * corresponds to page offset for the specified swap entry.
2284 * Note that the type of this function is sector_t, but it returns page offset
2285 * into the bdev, not sector offset.
2286 */
2287 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2288 {
2289 struct swap_info_struct *sis;
2290 struct swap_extent *se;
2291 pgoff_t offset;
2292
2293 sis = swp_swap_info(entry);
2294 *bdev = sis->bdev;
2295
2296 offset = swp_offset(entry);
2297 se = offset_to_swap_extent(sis, offset);
2298 return se->start_block + (offset - se->start_page);
2299 }
2300
2301 /*
2302 * Returns the page offset into bdev for the specified page's swap entry.
2303 */
2304 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2305 {
2306 swp_entry_t entry;
2307 entry.val = page_private(page);
2308 return map_swap_entry(entry, bdev);
2309 }
2310
2311 /*
2312 * Free all of a swapdev's extent information
2313 */
2314 static void destroy_swap_extents(struct swap_info_struct *sis)
2315 {
2316 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2317 struct rb_node *rb = sis->swap_extent_root.rb_node;
2318 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2319
2320 rb_erase(rb, &sis->swap_extent_root);
2321 kfree(se);
2322 }
2323
2324 if (sis->flags & SWP_ACTIVATED) {
2325 struct file *swap_file = sis->swap_file;
2326 struct address_space *mapping = swap_file->f_mapping;
2327
2328 sis->flags &= ~SWP_ACTIVATED;
2329 if (mapping->a_ops->swap_deactivate)
2330 mapping->a_ops->swap_deactivate(swap_file);
2331 }
2332 }
2333
2334 /*
2335 * Add a block range (and the corresponding page range) into this swapdev's
2336 * extent tree.
2337 *
2338 * This function rather assumes that it is called in ascending page order.
2339 */
2340 int
2341 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2342 unsigned long nr_pages, sector_t start_block)
2343 {
2344 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2345 struct swap_extent *se;
2346 struct swap_extent *new_se;
2347
2348 /*
2349 * place the new node at the right most since the
2350 * function is called in ascending page order.
2351 */
2352 while (*link) {
2353 parent = *link;
2354 link = &parent->rb_right;
2355 }
2356
2357 if (parent) {
2358 se = rb_entry(parent, struct swap_extent, rb_node);
2359 BUG_ON(se->start_page + se->nr_pages != start_page);
2360 if (se->start_block + se->nr_pages == start_block) {
2361 /* Merge it */
2362 se->nr_pages += nr_pages;
2363 return 0;
2364 }
2365 }
2366
2367 /* No merge, insert a new extent. */
2368 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2369 if (new_se == NULL)
2370 return -ENOMEM;
2371 new_se->start_page = start_page;
2372 new_se->nr_pages = nr_pages;
2373 new_se->start_block = start_block;
2374
2375 rb_link_node(&new_se->rb_node, parent, link);
2376 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2377 return 1;
2378 }
2379 EXPORT_SYMBOL_GPL(add_swap_extent);
2380
2381 /*
2382 * A `swap extent' is a simple thing which maps a contiguous range of pages
2383 * onto a contiguous range of disk blocks. An ordered list of swap extents
2384 * is built at swapon time and is then used at swap_writepage/swap_readpage
2385 * time for locating where on disk a page belongs.
2386 *
2387 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2388 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2389 * swap files identically.
2390 *
2391 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2392 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2393 * swapfiles are handled *identically* after swapon time.
2394 *
2395 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2396 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2397 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2398 * requirements, they are simply tossed out - we will never use those blocks
2399 * for swapping.
2400 *
2401 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2402 * prevents users from writing to the swap device, which will corrupt memory.
2403 *
2404 * The amount of disk space which a single swap extent represents varies.
2405 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2406 * extents in the list. To avoid much list walking, we cache the previous
2407 * search location in `curr_swap_extent', and start new searches from there.
2408 * This is extremely effective. The average number of iterations in
2409 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2410 */
2411 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2412 {
2413 struct file *swap_file = sis->swap_file;
2414 struct address_space *mapping = swap_file->f_mapping;
2415 struct inode *inode = mapping->host;
2416 int ret;
2417
2418 if (S_ISBLK(inode->i_mode)) {
2419 ret = add_swap_extent(sis, 0, sis->max, 0);
2420 *span = sis->pages;
2421 return ret;
2422 }
2423
2424 if (mapping->a_ops->swap_activate) {
2425 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2426 if (ret >= 0)
2427 sis->flags |= SWP_ACTIVATED;
2428 if (!ret) {
2429 sis->flags |= SWP_FS;
2430 ret = add_swap_extent(sis, 0, sis->max, 0);
2431 *span = sis->pages;
2432 }
2433 return ret;
2434 }
2435
2436 return generic_swapfile_activate(sis, swap_file, span);
2437 }
2438
2439 static int swap_node(struct swap_info_struct *p)
2440 {
2441 struct block_device *bdev;
2442
2443 if (p->bdev)
2444 bdev = p->bdev;
2445 else
2446 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2447
2448 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2449 }
2450
2451 static void setup_swap_info(struct swap_info_struct *p, int prio,
2452 unsigned char *swap_map,
2453 struct swap_cluster_info *cluster_info)
2454 {
2455 int i;
2456
2457 if (prio >= 0)
2458 p->prio = prio;
2459 else
2460 p->prio = --least_priority;
2461 /*
2462 * the plist prio is negated because plist ordering is
2463 * low-to-high, while swap ordering is high-to-low
2464 */
2465 p->list.prio = -p->prio;
2466 for_each_node(i) {
2467 if (p->prio >= 0)
2468 p->avail_lists[i].prio = -p->prio;
2469 else {
2470 if (swap_node(p) == i)
2471 p->avail_lists[i].prio = 1;
2472 else
2473 p->avail_lists[i].prio = -p->prio;
2474 }
2475 }
2476 p->swap_map = swap_map;
2477 p->cluster_info = cluster_info;
2478 }
2479
2480 static void _enable_swap_info(struct swap_info_struct *p)
2481 {
2482 p->flags |= SWP_WRITEOK | SWP_VALID;
2483 atomic_long_add(p->pages, &nr_swap_pages);
2484 total_swap_pages += p->pages;
2485
2486 assert_spin_locked(&swap_lock);
2487 /*
2488 * both lists are plists, and thus priority ordered.
2489 * swap_active_head needs to be priority ordered for swapoff(),
2490 * which on removal of any swap_info_struct with an auto-assigned
2491 * (i.e. negative) priority increments the auto-assigned priority
2492 * of any lower-priority swap_info_structs.
2493 * swap_avail_head needs to be priority ordered for get_swap_page(),
2494 * which allocates swap pages from the highest available priority
2495 * swap_info_struct.
2496 */
2497 plist_add(&p->list, &swap_active_head);
2498 add_to_avail_list(p);
2499 }
2500
2501 static void enable_swap_info(struct swap_info_struct *p, int prio,
2502 unsigned char *swap_map,
2503 struct swap_cluster_info *cluster_info,
2504 unsigned long *frontswap_map)
2505 {
2506 frontswap_init(p->type, frontswap_map);
2507 spin_lock(&swap_lock);
2508 spin_lock(&p->lock);
2509 setup_swap_info(p, prio, swap_map, cluster_info);
2510 spin_unlock(&p->lock);
2511 spin_unlock(&swap_lock);
2512 /*
2513 * Guarantee swap_map, cluster_info, etc. fields are valid
2514 * between get/put_swap_device() if SWP_VALID bit is set
2515 */
2516 synchronize_rcu();
2517 spin_lock(&swap_lock);
2518 spin_lock(&p->lock);
2519 _enable_swap_info(p);
2520 spin_unlock(&p->lock);
2521 spin_unlock(&swap_lock);
2522 }
2523
2524 static void reinsert_swap_info(struct swap_info_struct *p)
2525 {
2526 spin_lock(&swap_lock);
2527 spin_lock(&p->lock);
2528 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2529 _enable_swap_info(p);
2530 spin_unlock(&p->lock);
2531 spin_unlock(&swap_lock);
2532 }
2533
2534 bool has_usable_swap(void)
2535 {
2536 bool ret = true;
2537
2538 spin_lock(&swap_lock);
2539 if (plist_head_empty(&swap_active_head))
2540 ret = false;
2541 spin_unlock(&swap_lock);
2542 return ret;
2543 }
2544
2545 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2546 {
2547 struct swap_info_struct *p = NULL;
2548 unsigned char *swap_map;
2549 struct swap_cluster_info *cluster_info;
2550 unsigned long *frontswap_map;
2551 struct file *swap_file, *victim;
2552 struct address_space *mapping;
2553 struct inode *inode;
2554 struct filename *pathname;
2555 int err, found = 0;
2556 unsigned int old_block_size;
2557
2558 if (!capable(CAP_SYS_ADMIN))
2559 return -EPERM;
2560
2561 BUG_ON(!current->mm);
2562
2563 pathname = getname(specialfile);
2564 if (IS_ERR(pathname))
2565 return PTR_ERR(pathname);
2566
2567 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2568 err = PTR_ERR(victim);
2569 if (IS_ERR(victim))
2570 goto out;
2571
2572 mapping = victim->f_mapping;
2573 spin_lock(&swap_lock);
2574 plist_for_each_entry(p, &swap_active_head, list) {
2575 if (p->flags & SWP_WRITEOK) {
2576 if (p->swap_file->f_mapping == mapping) {
2577 found = 1;
2578 break;
2579 }
2580 }
2581 }
2582 if (!found) {
2583 err = -EINVAL;
2584 spin_unlock(&swap_lock);
2585 goto out_dput;
2586 }
2587 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2588 vm_unacct_memory(p->pages);
2589 else {
2590 err = -ENOMEM;
2591 spin_unlock(&swap_lock);
2592 goto out_dput;
2593 }
2594 del_from_avail_list(p);
2595 spin_lock(&p->lock);
2596 if (p->prio < 0) {
2597 struct swap_info_struct *si = p;
2598 int nid;
2599
2600 plist_for_each_entry_continue(si, &swap_active_head, list) {
2601 si->prio++;
2602 si->list.prio--;
2603 for_each_node(nid) {
2604 if (si->avail_lists[nid].prio != 1)
2605 si->avail_lists[nid].prio--;
2606 }
2607 }
2608 least_priority++;
2609 }
2610 plist_del(&p->list, &swap_active_head);
2611 atomic_long_sub(p->pages, &nr_swap_pages);
2612 total_swap_pages -= p->pages;
2613 p->flags &= ~SWP_WRITEOK;
2614 spin_unlock(&p->lock);
2615 spin_unlock(&swap_lock);
2616
2617 disable_swap_slots_cache_lock();
2618
2619 set_current_oom_origin();
2620 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2621 clear_current_oom_origin();
2622
2623 if (err) {
2624 /* re-insert swap space back into swap_list */
2625 reinsert_swap_info(p);
2626 reenable_swap_slots_cache_unlock();
2627 goto out_dput;
2628 }
2629
2630 reenable_swap_slots_cache_unlock();
2631
2632 spin_lock(&swap_lock);
2633 spin_lock(&p->lock);
2634 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2635 spin_unlock(&p->lock);
2636 spin_unlock(&swap_lock);
2637 /*
2638 * wait for swap operations protected by get/put_swap_device()
2639 * to complete
2640 */
2641 synchronize_rcu();
2642
2643 flush_work(&p->discard_work);
2644
2645 destroy_swap_extents(p);
2646 if (p->flags & SWP_CONTINUED)
2647 free_swap_count_continuations(p);
2648
2649 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2650 atomic_dec(&nr_rotate_swap);
2651
2652 mutex_lock(&swapon_mutex);
2653 spin_lock(&swap_lock);
2654 spin_lock(&p->lock);
2655 drain_mmlist();
2656
2657 /* wait for anyone still in scan_swap_map */
2658 p->highest_bit = 0; /* cuts scans short */
2659 while (p->flags >= SWP_SCANNING) {
2660 spin_unlock(&p->lock);
2661 spin_unlock(&swap_lock);
2662 schedule_timeout_uninterruptible(1);
2663 spin_lock(&swap_lock);
2664 spin_lock(&p->lock);
2665 }
2666
2667 swap_file = p->swap_file;
2668 old_block_size = p->old_block_size;
2669 p->swap_file = NULL;
2670 p->max = 0;
2671 swap_map = p->swap_map;
2672 p->swap_map = NULL;
2673 cluster_info = p->cluster_info;
2674 p->cluster_info = NULL;
2675 frontswap_map = frontswap_map_get(p);
2676 spin_unlock(&p->lock);
2677 spin_unlock(&swap_lock);
2678 frontswap_invalidate_area(p->type);
2679 frontswap_map_set(p, NULL);
2680 mutex_unlock(&swapon_mutex);
2681 free_percpu(p->percpu_cluster);
2682 p->percpu_cluster = NULL;
2683 free_percpu(p->cluster_next_cpu);
2684 p->cluster_next_cpu = NULL;
2685 vfree(swap_map);
2686 kvfree(cluster_info);
2687 kvfree(frontswap_map);
2688 /* Destroy swap account information */
2689 swap_cgroup_swapoff(p->type);
2690 exit_swap_address_space(p->type);
2691
2692 inode = mapping->host;
2693 if (S_ISBLK(inode->i_mode)) {
2694 struct block_device *bdev = I_BDEV(inode);
2695
2696 set_blocksize(bdev, old_block_size);
2697 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2698 }
2699
2700 inode_lock(inode);
2701 inode->i_flags &= ~S_SWAPFILE;
2702 inode_unlock(inode);
2703 filp_close(swap_file, NULL);
2704
2705 /*
2706 * Clear the SWP_USED flag after all resources are freed so that swapon
2707 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2708 * not hold p->lock after we cleared its SWP_WRITEOK.
2709 */
2710 spin_lock(&swap_lock);
2711 p->flags = 0;
2712 spin_unlock(&swap_lock);
2713
2714 err = 0;
2715 atomic_inc(&proc_poll_event);
2716 wake_up_interruptible(&proc_poll_wait);
2717
2718 out_dput:
2719 filp_close(victim, NULL);
2720 out:
2721 putname(pathname);
2722 return err;
2723 }
2724
2725 #ifdef CONFIG_PROC_FS
2726 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2727 {
2728 struct seq_file *seq = file->private_data;
2729
2730 poll_wait(file, &proc_poll_wait, wait);
2731
2732 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2733 seq->poll_event = atomic_read(&proc_poll_event);
2734 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2735 }
2736
2737 return EPOLLIN | EPOLLRDNORM;
2738 }
2739
2740 /* iterator */
2741 static void *swap_start(struct seq_file *swap, loff_t *pos)
2742 {
2743 struct swap_info_struct *si;
2744 int type;
2745 loff_t l = *pos;
2746
2747 mutex_lock(&swapon_mutex);
2748
2749 if (!l)
2750 return SEQ_START_TOKEN;
2751
2752 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2753 if (!(si->flags & SWP_USED) || !si->swap_map)
2754 continue;
2755 if (!--l)
2756 return si;
2757 }
2758
2759 return NULL;
2760 }
2761
2762 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2763 {
2764 struct swap_info_struct *si = v;
2765 int type;
2766
2767 if (v == SEQ_START_TOKEN)
2768 type = 0;
2769 else
2770 type = si->type + 1;
2771
2772 ++(*pos);
2773 for (; (si = swap_type_to_swap_info(type)); type++) {
2774 if (!(si->flags & SWP_USED) || !si->swap_map)
2775 continue;
2776 return si;
2777 }
2778
2779 return NULL;
2780 }
2781
2782 static void swap_stop(struct seq_file *swap, void *v)
2783 {
2784 mutex_unlock(&swapon_mutex);
2785 }
2786
2787 static int swap_show(struct seq_file *swap, void *v)
2788 {
2789 struct swap_info_struct *si = v;
2790 struct file *file;
2791 int len;
2792 unsigned int bytes, inuse;
2793
2794 if (si == SEQ_START_TOKEN) {
2795 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2796 return 0;
2797 }
2798
2799 bytes = si->pages << (PAGE_SHIFT - 10);
2800 inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2801
2802 file = si->swap_file;
2803 len = seq_file_path(swap, file, " \t\n\\");
2804 seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2805 len < 40 ? 40 - len : 1, " ",
2806 S_ISBLK(file_inode(file)->i_mode) ?
2807 "partition" : "file\t",
2808 bytes, bytes < 10000000 ? "\t" : "",
2809 inuse, inuse < 10000000 ? "\t" : "",
2810 si->prio);
2811 return 0;
2812 }
2813
2814 static const struct seq_operations swaps_op = {
2815 .start = swap_start,
2816 .next = swap_next,
2817 .stop = swap_stop,
2818 .show = swap_show
2819 };
2820
2821 static int swaps_open(struct inode *inode, struct file *file)
2822 {
2823 struct seq_file *seq;
2824 int ret;
2825
2826 ret = seq_open(file, &swaps_op);
2827 if (ret)
2828 return ret;
2829
2830 seq = file->private_data;
2831 seq->poll_event = atomic_read(&proc_poll_event);
2832 return 0;
2833 }
2834
2835 static const struct proc_ops swaps_proc_ops = {
2836 .proc_flags = PROC_ENTRY_PERMANENT,
2837 .proc_open = swaps_open,
2838 .proc_read = seq_read,
2839 .proc_lseek = seq_lseek,
2840 .proc_release = seq_release,
2841 .proc_poll = swaps_poll,
2842 };
2843
2844 static int __init procswaps_init(void)
2845 {
2846 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2847 return 0;
2848 }
2849 __initcall(procswaps_init);
2850 #endif /* CONFIG_PROC_FS */
2851
2852 #ifdef MAX_SWAPFILES_CHECK
2853 static int __init max_swapfiles_check(void)
2854 {
2855 MAX_SWAPFILES_CHECK();
2856 return 0;
2857 }
2858 late_initcall(max_swapfiles_check);
2859 #endif
2860
2861 static struct swap_info_struct *alloc_swap_info(void)
2862 {
2863 struct swap_info_struct *p;
2864 unsigned int type;
2865 int i;
2866
2867 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2868 if (!p)
2869 return ERR_PTR(-ENOMEM);
2870
2871 spin_lock(&swap_lock);
2872 for (type = 0; type < nr_swapfiles; type++) {
2873 if (!(swap_info[type]->flags & SWP_USED))
2874 break;
2875 }
2876 if (type >= MAX_SWAPFILES) {
2877 spin_unlock(&swap_lock);
2878 kvfree(p);
2879 return ERR_PTR(-EPERM);
2880 }
2881 if (type >= nr_swapfiles) {
2882 p->type = type;
2883 WRITE_ONCE(swap_info[type], p);
2884 /*
2885 * Write swap_info[type] before nr_swapfiles, in case a
2886 * racing procfs swap_start() or swap_next() is reading them.
2887 * (We never shrink nr_swapfiles, we never free this entry.)
2888 */
2889 smp_wmb();
2890 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2891 } else {
2892 kvfree(p);
2893 p = swap_info[type];
2894 /*
2895 * Do not memset this entry: a racing procfs swap_next()
2896 * would be relying on p->type to remain valid.
2897 */
2898 }
2899 p->swap_extent_root = RB_ROOT;
2900 plist_node_init(&p->list, 0);
2901 for_each_node(i)
2902 plist_node_init(&p->avail_lists[i], 0);
2903 p->flags = SWP_USED;
2904 spin_unlock(&swap_lock);
2905 spin_lock_init(&p->lock);
2906 spin_lock_init(&p->cont_lock);
2907
2908 return p;
2909 }
2910
2911 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2912 {
2913 int error;
2914
2915 if (S_ISBLK(inode->i_mode)) {
2916 p->bdev = bdgrab(I_BDEV(inode));
2917 error = blkdev_get(p->bdev,
2918 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2919 if (error < 0) {
2920 p->bdev = NULL;
2921 return error;
2922 }
2923 p->old_block_size = block_size(p->bdev);
2924 error = set_blocksize(p->bdev, PAGE_SIZE);
2925 if (error < 0)
2926 return error;
2927 /*
2928 * Zoned block devices contain zones that have a sequential
2929 * write only restriction. Hence zoned block devices are not
2930 * suitable for swapping. Disallow them here.
2931 */
2932 if (blk_queue_is_zoned(p->bdev->bd_queue))
2933 return -EINVAL;
2934 p->flags |= SWP_BLKDEV;
2935 } else if (S_ISREG(inode->i_mode)) {
2936 p->bdev = inode->i_sb->s_bdev;
2937 }
2938
2939 return 0;
2940 }
2941
2942
2943 /*
2944 * Find out how many pages are allowed for a single swap device. There
2945 * are two limiting factors:
2946 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2947 * 2) the number of bits in the swap pte, as defined by the different
2948 * architectures.
2949 *
2950 * In order to find the largest possible bit mask, a swap entry with
2951 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2952 * decoded to a swp_entry_t again, and finally the swap offset is
2953 * extracted.
2954 *
2955 * This will mask all the bits from the initial ~0UL mask that can't
2956 * be encoded in either the swp_entry_t or the architecture definition
2957 * of a swap pte.
2958 */
2959 unsigned long generic_max_swapfile_size(void)
2960 {
2961 return swp_offset(pte_to_swp_entry(
2962 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2963 }
2964
2965 /* Can be overridden by an architecture for additional checks. */
2966 __weak unsigned long max_swapfile_size(void)
2967 {
2968 return generic_max_swapfile_size();
2969 }
2970
2971 static unsigned long read_swap_header(struct swap_info_struct *p,
2972 union swap_header *swap_header,
2973 struct inode *inode)
2974 {
2975 int i;
2976 unsigned long maxpages;
2977 unsigned long swapfilepages;
2978 unsigned long last_page;
2979
2980 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2981 pr_err("Unable to find swap-space signature\n");
2982 return 0;
2983 }
2984
2985 /* swap partition endianess hack... */
2986 if (swab32(swap_header->info.version) == 1) {
2987 swab32s(&swap_header->info.version);
2988 swab32s(&swap_header->info.last_page);
2989 swab32s(&swap_header->info.nr_badpages);
2990 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2991 return 0;
2992 for (i = 0; i < swap_header->info.nr_badpages; i++)
2993 swab32s(&swap_header->info.badpages[i]);
2994 }
2995 /* Check the swap header's sub-version */
2996 if (swap_header->info.version != 1) {
2997 pr_warn("Unable to handle swap header version %d\n",
2998 swap_header->info.version);
2999 return 0;
3000 }
3001
3002 p->lowest_bit = 1;
3003 p->cluster_next = 1;
3004 p->cluster_nr = 0;
3005
3006 maxpages = max_swapfile_size();
3007 last_page = swap_header->info.last_page;
3008 if (!last_page) {
3009 pr_warn("Empty swap-file\n");
3010 return 0;
3011 }
3012 if (last_page > maxpages) {
3013 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3014 maxpages << (PAGE_SHIFT - 10),
3015 last_page << (PAGE_SHIFT - 10));
3016 }
3017 if (maxpages > last_page) {
3018 maxpages = last_page + 1;
3019 /* p->max is an unsigned int: don't overflow it */
3020 if ((unsigned int)maxpages == 0)
3021 maxpages = UINT_MAX;
3022 }
3023 p->highest_bit = maxpages - 1;
3024
3025 if (!maxpages)
3026 return 0;
3027 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3028 if (swapfilepages && maxpages > swapfilepages) {
3029 pr_warn("Swap area shorter than signature indicates\n");
3030 return 0;
3031 }
3032 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3033 return 0;
3034 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3035 return 0;
3036
3037 return maxpages;
3038 }
3039
3040 #define SWAP_CLUSTER_INFO_COLS \
3041 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3042 #define SWAP_CLUSTER_SPACE_COLS \
3043 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3044 #define SWAP_CLUSTER_COLS \
3045 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3046
3047 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3048 union swap_header *swap_header,
3049 unsigned char *swap_map,
3050 struct swap_cluster_info *cluster_info,
3051 unsigned long maxpages,
3052 sector_t *span)
3053 {
3054 unsigned int j, k;
3055 unsigned int nr_good_pages;
3056 int nr_extents;
3057 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3058 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3059 unsigned long i, idx;
3060
3061 nr_good_pages = maxpages - 1; /* omit header page */
3062
3063 cluster_list_init(&p->free_clusters);
3064 cluster_list_init(&p->discard_clusters);
3065
3066 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3067 unsigned int page_nr = swap_header->info.badpages[i];
3068 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3069 return -EINVAL;
3070 if (page_nr < maxpages) {
3071 swap_map[page_nr] = SWAP_MAP_BAD;
3072 nr_good_pages--;
3073 /*
3074 * Haven't marked the cluster free yet, no list
3075 * operation involved
3076 */
3077 inc_cluster_info_page(p, cluster_info, page_nr);
3078 }
3079 }
3080
3081 /* Haven't marked the cluster free yet, no list operation involved */
3082 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3083 inc_cluster_info_page(p, cluster_info, i);
3084
3085 if (nr_good_pages) {
3086 swap_map[0] = SWAP_MAP_BAD;
3087 /*
3088 * Not mark the cluster free yet, no list
3089 * operation involved
3090 */
3091 inc_cluster_info_page(p, cluster_info, 0);
3092 p->max = maxpages;
3093 p->pages = nr_good_pages;
3094 nr_extents = setup_swap_extents(p, span);
3095 if (nr_extents < 0)
3096 return nr_extents;
3097 nr_good_pages = p->pages;
3098 }
3099 if (!nr_good_pages) {
3100 pr_warn("Empty swap-file\n");
3101 return -EINVAL;
3102 }
3103
3104 if (!cluster_info)
3105 return nr_extents;
3106
3107
3108 /*
3109 * Reduce false cache line sharing between cluster_info and
3110 * sharing same address space.
3111 */
3112 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3113 j = (k + col) % SWAP_CLUSTER_COLS;
3114 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3115 idx = i * SWAP_CLUSTER_COLS + j;
3116 if (idx >= nr_clusters)
3117 continue;
3118 if (cluster_count(&cluster_info[idx]))
3119 continue;
3120 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3121 cluster_list_add_tail(&p->free_clusters, cluster_info,
3122 idx);
3123 }
3124 }
3125 return nr_extents;
3126 }
3127
3128 /*
3129 * Helper to sys_swapon determining if a given swap
3130 * backing device queue supports DISCARD operations.
3131 */
3132 static bool swap_discardable(struct swap_info_struct *si)
3133 {
3134 struct request_queue *q = bdev_get_queue(si->bdev);
3135
3136 if (!q || !blk_queue_discard(q))
3137 return false;
3138
3139 return true;
3140 }
3141
3142 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3143 {
3144 struct swap_info_struct *p;
3145 struct filename *name;
3146 struct file *swap_file = NULL;
3147 struct address_space *mapping;
3148 int prio;
3149 int error;
3150 union swap_header *swap_header;
3151 int nr_extents;
3152 sector_t span;
3153 unsigned long maxpages;
3154 unsigned char *swap_map = NULL;
3155 struct swap_cluster_info *cluster_info = NULL;
3156 unsigned long *frontswap_map = NULL;
3157 struct page *page = NULL;
3158 struct inode *inode = NULL;
3159 bool inced_nr_rotate_swap = false;
3160
3161 if (swap_flags & ~SWAP_FLAGS_VALID)
3162 return -EINVAL;
3163
3164 if (!capable(CAP_SYS_ADMIN))
3165 return -EPERM;
3166
3167 if (!swap_avail_heads)
3168 return -ENOMEM;
3169
3170 p = alloc_swap_info();
3171 if (IS_ERR(p))
3172 return PTR_ERR(p);
3173
3174 INIT_WORK(&p->discard_work, swap_discard_work);
3175
3176 name = getname(specialfile);
3177 if (IS_ERR(name)) {
3178 error = PTR_ERR(name);
3179 name = NULL;
3180 goto bad_swap;
3181 }
3182 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3183 if (IS_ERR(swap_file)) {
3184 error = PTR_ERR(swap_file);
3185 swap_file = NULL;
3186 goto bad_swap;
3187 }
3188
3189 p->swap_file = swap_file;
3190 mapping = swap_file->f_mapping;
3191 inode = mapping->host;
3192
3193 error = claim_swapfile(p, inode);
3194 if (unlikely(error))
3195 goto bad_swap;
3196
3197 inode_lock(inode);
3198 if (IS_SWAPFILE(inode)) {
3199 error = -EBUSY;
3200 goto bad_swap_unlock_inode;
3201 }
3202
3203 /*
3204 * Read the swap header.
3205 */
3206 if (!mapping->a_ops->readpage) {
3207 error = -EINVAL;
3208 goto bad_swap_unlock_inode;
3209 }
3210 page = read_mapping_page(mapping, 0, swap_file);
3211 if (IS_ERR(page)) {
3212 error = PTR_ERR(page);
3213 goto bad_swap_unlock_inode;
3214 }
3215 swap_header = kmap(page);
3216
3217 maxpages = read_swap_header(p, swap_header, inode);
3218 if (unlikely(!maxpages)) {
3219 error = -EINVAL;
3220 goto bad_swap_unlock_inode;
3221 }
3222
3223 /* OK, set up the swap map and apply the bad block list */
3224 swap_map = vzalloc(maxpages);
3225 if (!swap_map) {
3226 error = -ENOMEM;
3227 goto bad_swap_unlock_inode;
3228 }
3229
3230 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3231 p->flags |= SWP_STABLE_WRITES;
3232
3233 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3234 p->flags |= SWP_SYNCHRONOUS_IO;
3235
3236 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3237 int cpu;
3238 unsigned long ci, nr_cluster;
3239
3240 p->flags |= SWP_SOLIDSTATE;
3241 p->cluster_next_cpu = alloc_percpu(unsigned int);
3242 if (!p->cluster_next_cpu) {
3243 error = -ENOMEM;
3244 goto bad_swap_unlock_inode;
3245 }
3246 /*
3247 * select a random position to start with to help wear leveling
3248 * SSD
3249 */
3250 for_each_possible_cpu(cpu) {
3251 per_cpu(*p->cluster_next_cpu, cpu) =
3252 1 + prandom_u32_max(p->highest_bit);
3253 }
3254 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3255
3256 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3257 GFP_KERNEL);
3258 if (!cluster_info) {
3259 error = -ENOMEM;
3260 goto bad_swap_unlock_inode;
3261 }
3262
3263 for (ci = 0; ci < nr_cluster; ci++)
3264 spin_lock_init(&((cluster_info + ci)->lock));
3265
3266 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3267 if (!p->percpu_cluster) {
3268 error = -ENOMEM;
3269 goto bad_swap_unlock_inode;
3270 }
3271 for_each_possible_cpu(cpu) {
3272 struct percpu_cluster *cluster;
3273 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3274 cluster_set_null(&cluster->index);
3275 }
3276 } else {
3277 atomic_inc(&nr_rotate_swap);
3278 inced_nr_rotate_swap = true;
3279 }
3280
3281 error = swap_cgroup_swapon(p->type, maxpages);
3282 if (error)
3283 goto bad_swap_unlock_inode;
3284
3285 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3286 cluster_info, maxpages, &span);
3287 if (unlikely(nr_extents < 0)) {
3288 error = nr_extents;
3289 goto bad_swap_unlock_inode;
3290 }
3291 /* frontswap enabled? set up bit-per-page map for frontswap */
3292 if (IS_ENABLED(CONFIG_FRONTSWAP))
3293 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3294 sizeof(long),
3295 GFP_KERNEL);
3296
3297 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3298 /*
3299 * When discard is enabled for swap with no particular
3300 * policy flagged, we set all swap discard flags here in
3301 * order to sustain backward compatibility with older
3302 * swapon(8) releases.
3303 */
3304 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3305 SWP_PAGE_DISCARD);
3306
3307 /*
3308 * By flagging sys_swapon, a sysadmin can tell us to
3309 * either do single-time area discards only, or to just
3310 * perform discards for released swap page-clusters.
3311 * Now it's time to adjust the p->flags accordingly.
3312 */
3313 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3314 p->flags &= ~SWP_PAGE_DISCARD;
3315 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3316 p->flags &= ~SWP_AREA_DISCARD;
3317
3318 /* issue a swapon-time discard if it's still required */
3319 if (p->flags & SWP_AREA_DISCARD) {
3320 int err = discard_swap(p);
3321 if (unlikely(err))
3322 pr_err("swapon: discard_swap(%p): %d\n",
3323 p, err);
3324 }
3325 }
3326
3327 error = init_swap_address_space(p->type, maxpages);
3328 if (error)
3329 goto bad_swap_unlock_inode;
3330
3331 /*
3332 * Flush any pending IO and dirty mappings before we start using this
3333 * swap device.
3334 */
3335 inode->i_flags |= S_SWAPFILE;
3336 error = inode_drain_writes(inode);
3337 if (error) {
3338 inode->i_flags &= ~S_SWAPFILE;
3339 goto bad_swap_unlock_inode;
3340 }
3341
3342 mutex_lock(&swapon_mutex);
3343 prio = -1;
3344 if (swap_flags & SWAP_FLAG_PREFER)
3345 prio =
3346 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3347 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3348
3349 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3350 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3351 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3352 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3353 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3354 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3355 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3356 (frontswap_map) ? "FS" : "");
3357
3358 mutex_unlock(&swapon_mutex);
3359 atomic_inc(&proc_poll_event);
3360 wake_up_interruptible(&proc_poll_wait);
3361
3362 error = 0;
3363 goto out;
3364 bad_swap_unlock_inode:
3365 inode_unlock(inode);
3366 bad_swap:
3367 free_percpu(p->percpu_cluster);
3368 p->percpu_cluster = NULL;
3369 free_percpu(p->cluster_next_cpu);
3370 p->cluster_next_cpu = NULL;
3371 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3372 set_blocksize(p->bdev, p->old_block_size);
3373 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3374 }
3375 inode = NULL;
3376 destroy_swap_extents(p);
3377 swap_cgroup_swapoff(p->type);
3378 spin_lock(&swap_lock);
3379 p->swap_file = NULL;
3380 p->flags = 0;
3381 spin_unlock(&swap_lock);
3382 vfree(swap_map);
3383 kvfree(cluster_info);
3384 kvfree(frontswap_map);
3385 if (inced_nr_rotate_swap)
3386 atomic_dec(&nr_rotate_swap);
3387 if (swap_file)
3388 filp_close(swap_file, NULL);
3389 out:
3390 if (page && !IS_ERR(page)) {
3391 kunmap(page);
3392 put_page(page);
3393 }
3394 if (name)
3395 putname(name);
3396 if (inode)
3397 inode_unlock(inode);
3398 if (!error)
3399 enable_swap_slots_cache();
3400 return error;
3401 }
3402
3403 void si_swapinfo(struct sysinfo *val)
3404 {
3405 unsigned int type;
3406 unsigned long nr_to_be_unused = 0;
3407
3408 spin_lock(&swap_lock);
3409 for (type = 0; type < nr_swapfiles; type++) {
3410 struct swap_info_struct *si = swap_info[type];
3411
3412 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3413 nr_to_be_unused += si->inuse_pages;
3414 }
3415 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3416 val->totalswap = total_swap_pages + nr_to_be_unused;
3417 spin_unlock(&swap_lock);
3418 }
3419
3420 /*
3421 * Verify that a swap entry is valid and increment its swap map count.
3422 *
3423 * Returns error code in following case.
3424 * - success -> 0
3425 * - swp_entry is invalid -> EINVAL
3426 * - swp_entry is migration entry -> EINVAL
3427 * - swap-cache reference is requested but there is already one. -> EEXIST
3428 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3429 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3430 */
3431 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3432 {
3433 struct swap_info_struct *p;
3434 struct swap_cluster_info *ci;
3435 unsigned long offset;
3436 unsigned char count;
3437 unsigned char has_cache;
3438 int err = -EINVAL;
3439
3440 p = get_swap_device(entry);
3441 if (!p)
3442 goto out;
3443
3444 offset = swp_offset(entry);
3445 ci = lock_cluster_or_swap_info(p, offset);
3446
3447 count = p->swap_map[offset];
3448
3449 /*
3450 * swapin_readahead() doesn't check if a swap entry is valid, so the
3451 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3452 */
3453 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3454 err = -ENOENT;
3455 goto unlock_out;
3456 }
3457
3458 has_cache = count & SWAP_HAS_CACHE;
3459 count &= ~SWAP_HAS_CACHE;
3460 err = 0;
3461
3462 if (usage == SWAP_HAS_CACHE) {
3463
3464 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3465 if (!has_cache && count)
3466 has_cache = SWAP_HAS_CACHE;
3467 else if (has_cache) /* someone else added cache */
3468 err = -EEXIST;
3469 else /* no users remaining */
3470 err = -ENOENT;
3471
3472 } else if (count || has_cache) {
3473
3474 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3475 count += usage;
3476 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3477 err = -EINVAL;
3478 else if (swap_count_continued(p, offset, count))
3479 count = COUNT_CONTINUED;
3480 else
3481 err = -ENOMEM;
3482 } else
3483 err = -ENOENT; /* unused swap entry */
3484
3485 p->swap_map[offset] = count | has_cache;
3486
3487 unlock_out:
3488 unlock_cluster_or_swap_info(p, ci);
3489 out:
3490 if (p)
3491 put_swap_device(p);
3492 return err;
3493 }
3494
3495 /*
3496 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3497 * (in which case its reference count is never incremented).
3498 */
3499 void swap_shmem_alloc(swp_entry_t entry)
3500 {
3501 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3502 }
3503
3504 /*
3505 * Increase reference count of swap entry by 1.
3506 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3507 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3508 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3509 * might occur if a page table entry has got corrupted.
3510 */
3511 int swap_duplicate(swp_entry_t entry)
3512 {
3513 int err = 0;
3514
3515 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3516 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3517 return err;
3518 }
3519
3520 /*
3521 * @entry: swap entry for which we allocate swap cache.
3522 *
3523 * Called when allocating swap cache for existing swap entry,
3524 * This can return error codes. Returns 0 at success.
3525 * -EEXIST means there is a swap cache.
3526 * Note: return code is different from swap_duplicate().
3527 */
3528 int swapcache_prepare(swp_entry_t entry)
3529 {
3530 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3531 }
3532
3533 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3534 {
3535 return swap_type_to_swap_info(swp_type(entry));
3536 }
3537
3538 struct swap_info_struct *page_swap_info(struct page *page)
3539 {
3540 swp_entry_t entry = { .val = page_private(page) };
3541 return swp_swap_info(entry);
3542 }
3543
3544 /*
3545 * out-of-line __page_file_ methods to avoid include hell.
3546 */
3547 struct address_space *__page_file_mapping(struct page *page)
3548 {
3549 return page_swap_info(page)->swap_file->f_mapping;
3550 }
3551 EXPORT_SYMBOL_GPL(__page_file_mapping);
3552
3553 pgoff_t __page_file_index(struct page *page)
3554 {
3555 swp_entry_t swap = { .val = page_private(page) };
3556 return swp_offset(swap);
3557 }
3558 EXPORT_SYMBOL_GPL(__page_file_index);
3559
3560 /*
3561 * add_swap_count_continuation - called when a swap count is duplicated
3562 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3563 * page of the original vmalloc'ed swap_map, to hold the continuation count
3564 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3565 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3566 *
3567 * These continuation pages are seldom referenced: the common paths all work
3568 * on the original swap_map, only referring to a continuation page when the
3569 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3570 *
3571 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3572 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3573 * can be called after dropping locks.
3574 */
3575 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3576 {
3577 struct swap_info_struct *si;
3578 struct swap_cluster_info *ci;
3579 struct page *head;
3580 struct page *page;
3581 struct page *list_page;
3582 pgoff_t offset;
3583 unsigned char count;
3584 int ret = 0;
3585
3586 /*
3587 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3588 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3589 */
3590 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3591
3592 si = get_swap_device(entry);
3593 if (!si) {
3594 /*
3595 * An acceptable race has occurred since the failing
3596 * __swap_duplicate(): the swap device may be swapoff
3597 */
3598 goto outer;
3599 }
3600 spin_lock(&si->lock);
3601
3602 offset = swp_offset(entry);
3603
3604 ci = lock_cluster(si, offset);
3605
3606 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3607
3608 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3609 /*
3610 * The higher the swap count, the more likely it is that tasks
3611 * will race to add swap count continuation: we need to avoid
3612 * over-provisioning.
3613 */
3614 goto out;
3615 }
3616
3617 if (!page) {
3618 ret = -ENOMEM;
3619 goto out;
3620 }
3621
3622 /*
3623 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3624 * no architecture is using highmem pages for kernel page tables: so it
3625 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3626 */
3627 head = vmalloc_to_page(si->swap_map + offset);
3628 offset &= ~PAGE_MASK;
3629
3630 spin_lock(&si->cont_lock);
3631 /*
3632 * Page allocation does not initialize the page's lru field,
3633 * but it does always reset its private field.
3634 */
3635 if (!page_private(head)) {
3636 BUG_ON(count & COUNT_CONTINUED);
3637 INIT_LIST_HEAD(&head->lru);
3638 set_page_private(head, SWP_CONTINUED);
3639 si->flags |= SWP_CONTINUED;
3640 }
3641
3642 list_for_each_entry(list_page, &head->lru, lru) {
3643 unsigned char *map;
3644
3645 /*
3646 * If the previous map said no continuation, but we've found
3647 * a continuation page, free our allocation and use this one.
3648 */
3649 if (!(count & COUNT_CONTINUED))
3650 goto out_unlock_cont;
3651
3652 map = kmap_atomic(list_page) + offset;
3653 count = *map;
3654 kunmap_atomic(map);
3655
3656 /*
3657 * If this continuation count now has some space in it,
3658 * free our allocation and use this one.
3659 */
3660 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3661 goto out_unlock_cont;
3662 }
3663
3664 list_add_tail(&page->lru, &head->lru);
3665 page = NULL; /* now it's attached, don't free it */
3666 out_unlock_cont:
3667 spin_unlock(&si->cont_lock);
3668 out:
3669 unlock_cluster(ci);
3670 spin_unlock(&si->lock);
3671 put_swap_device(si);
3672 outer:
3673 if (page)
3674 __free_page(page);
3675 return ret;
3676 }
3677
3678 /*
3679 * swap_count_continued - when the original swap_map count is incremented
3680 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3681 * into, carry if so, or else fail until a new continuation page is allocated;
3682 * when the original swap_map count is decremented from 0 with continuation,
3683 * borrow from the continuation and report whether it still holds more.
3684 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3685 * lock.
3686 */
3687 static bool swap_count_continued(struct swap_info_struct *si,
3688 pgoff_t offset, unsigned char count)
3689 {
3690 struct page *head;
3691 struct page *page;
3692 unsigned char *map;
3693 bool ret;
3694
3695 head = vmalloc_to_page(si->swap_map + offset);
3696 if (page_private(head) != SWP_CONTINUED) {
3697 BUG_ON(count & COUNT_CONTINUED);
3698 return false; /* need to add count continuation */
3699 }
3700
3701 spin_lock(&si->cont_lock);
3702 offset &= ~PAGE_MASK;
3703 page = list_next_entry(head, lru);
3704 map = kmap_atomic(page) + offset;
3705
3706 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3707 goto init_map; /* jump over SWAP_CONT_MAX checks */
3708
3709 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3710 /*
3711 * Think of how you add 1 to 999
3712 */
3713 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3714 kunmap_atomic(map);
3715 page = list_next_entry(page, lru);
3716 BUG_ON(page == head);
3717 map = kmap_atomic(page) + offset;
3718 }
3719 if (*map == SWAP_CONT_MAX) {
3720 kunmap_atomic(map);
3721 page = list_next_entry(page, lru);
3722 if (page == head) {
3723 ret = false; /* add count continuation */
3724 goto out;
3725 }
3726 map = kmap_atomic(page) + offset;
3727 init_map: *map = 0; /* we didn't zero the page */
3728 }
3729 *map += 1;
3730 kunmap_atomic(map);
3731 while ((page = list_prev_entry(page, lru)) != head) {
3732 map = kmap_atomic(page) + offset;
3733 *map = COUNT_CONTINUED;
3734 kunmap_atomic(map);
3735 }
3736 ret = true; /* incremented */
3737
3738 } else { /* decrementing */
3739 /*
3740 * Think of how you subtract 1 from 1000
3741 */
3742 BUG_ON(count != COUNT_CONTINUED);
3743 while (*map == COUNT_CONTINUED) {
3744 kunmap_atomic(map);
3745 page = list_next_entry(page, lru);
3746 BUG_ON(page == head);
3747 map = kmap_atomic(page) + offset;
3748 }
3749 BUG_ON(*map == 0);
3750 *map -= 1;
3751 if (*map == 0)
3752 count = 0;
3753 kunmap_atomic(map);
3754 while ((page = list_prev_entry(page, lru)) != head) {
3755 map = kmap_atomic(page) + offset;
3756 *map = SWAP_CONT_MAX | count;
3757 count = COUNT_CONTINUED;
3758 kunmap_atomic(map);
3759 }
3760 ret = count == COUNT_CONTINUED;
3761 }
3762 out:
3763 spin_unlock(&si->cont_lock);
3764 return ret;
3765 }
3766
3767 /*
3768 * free_swap_count_continuations - swapoff free all the continuation pages
3769 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3770 */
3771 static void free_swap_count_continuations(struct swap_info_struct *si)
3772 {
3773 pgoff_t offset;
3774
3775 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3776 struct page *head;
3777 head = vmalloc_to_page(si->swap_map + offset);
3778 if (page_private(head)) {
3779 struct page *page, *next;
3780
3781 list_for_each_entry_safe(page, next, &head->lru, lru) {
3782 list_del(&page->lru);
3783 __free_page(page);
3784 }
3785 }
3786 }
3787 }
3788
3789 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3790 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3791 {
3792 struct swap_info_struct *si, *next;
3793 int nid = page_to_nid(page);
3794
3795 if (!(gfp_mask & __GFP_IO))
3796 return;
3797
3798 if (!blk_cgroup_congested())
3799 return;
3800
3801 /*
3802 * We've already scheduled a throttle, avoid taking the global swap
3803 * lock.
3804 */
3805 if (current->throttle_queue)
3806 return;
3807
3808 spin_lock(&swap_avail_lock);
3809 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3810 avail_lists[nid]) {
3811 if (si->bdev) {
3812 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3813 break;
3814 }
3815 }
3816 spin_unlock(&swap_avail_lock);
3817 }
3818 #endif
3819
3820 static int __init swapfile_init(void)
3821 {
3822 int nid;
3823
3824 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3825 GFP_KERNEL);
3826 if (!swap_avail_heads) {
3827 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3828 return -ENOMEM;
3829 }
3830
3831 for_each_node(nid)
3832 plist_head_init(&swap_avail_heads[nid]);
3833
3834 return 0;
3835 }
3836 subsys_initcall(swapfile_init);