]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/swapfile.c
Merge tag 'rtc-5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux
[mirror_ubuntu-hirsute-kernel.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103 if (type >= READ_ONCE(nr_swapfiles))
104 return NULL;
105
106 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
107 return READ_ONCE(swap_info[type]);
108 }
109
110 static inline unsigned char swap_count(unsigned char ent)
111 {
112 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
113 }
114
115 /* Reclaim the swap entry anyway if possible */
116 #define TTRS_ANYWAY 0x1
117 /*
118 * Reclaim the swap entry if there are no more mappings of the
119 * corresponding page
120 */
121 #define TTRS_UNMAPPED 0x2
122 /* Reclaim the swap entry if swap is getting full*/
123 #define TTRS_FULL 0x4
124
125 /* returns 1 if swap entry is freed */
126 static int __try_to_reclaim_swap(struct swap_info_struct *si,
127 unsigned long offset, unsigned long flags)
128 {
129 swp_entry_t entry = swp_entry(si->type, offset);
130 struct page *page;
131 int ret = 0;
132
133 page = find_get_page(swap_address_space(entry), offset);
134 if (!page)
135 return 0;
136 /*
137 * When this function is called from scan_swap_map_slots() and it's
138 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139 * here. We have to use trylock for avoiding deadlock. This is a special
140 * case and you should use try_to_free_swap() with explicit lock_page()
141 * in usual operations.
142 */
143 if (trylock_page(page)) {
144 if ((flags & TTRS_ANYWAY) ||
145 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147 ret = try_to_free_swap(page);
148 unlock_page(page);
149 }
150 put_page(page);
151 return ret;
152 }
153
154 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155 {
156 struct rb_node *rb = rb_first(&sis->swap_extent_root);
157 return rb_entry(rb, struct swap_extent, rb_node);
158 }
159
160 static inline struct swap_extent *next_se(struct swap_extent *se)
161 {
162 struct rb_node *rb = rb_next(&se->rb_node);
163 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
164 }
165
166 /*
167 * swapon tell device that all the old swap contents can be discarded,
168 * to allow the swap device to optimize its wear-levelling.
169 */
170 static int discard_swap(struct swap_info_struct *si)
171 {
172 struct swap_extent *se;
173 sector_t start_block;
174 sector_t nr_blocks;
175 int err = 0;
176
177 /* Do not discard the swap header page! */
178 se = first_se(si);
179 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
180 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181 if (nr_blocks) {
182 err = blkdev_issue_discard(si->bdev, start_block,
183 nr_blocks, GFP_KERNEL, 0);
184 if (err)
185 return err;
186 cond_resched();
187 }
188
189 for (se = next_se(se); se; se = next_se(se)) {
190 start_block = se->start_block << (PAGE_SHIFT - 9);
191 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
192
193 err = blkdev_issue_discard(si->bdev, start_block,
194 nr_blocks, GFP_KERNEL, 0);
195 if (err)
196 break;
197
198 cond_resched();
199 }
200 return err; /* That will often be -EOPNOTSUPP */
201 }
202
203 static struct swap_extent *
204 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205 {
206 struct swap_extent *se;
207 struct rb_node *rb;
208
209 rb = sis->swap_extent_root.rb_node;
210 while (rb) {
211 se = rb_entry(rb, struct swap_extent, rb_node);
212 if (offset < se->start_page)
213 rb = rb->rb_left;
214 else if (offset >= se->start_page + se->nr_pages)
215 rb = rb->rb_right;
216 else
217 return se;
218 }
219 /* It *must* be present */
220 BUG();
221 }
222
223 /*
224 * swap allocation tell device that a cluster of swap can now be discarded,
225 * to allow the swap device to optimize its wear-levelling.
226 */
227 static void discard_swap_cluster(struct swap_info_struct *si,
228 pgoff_t start_page, pgoff_t nr_pages)
229 {
230 struct swap_extent *se = offset_to_swap_extent(si, start_page);
231
232 while (nr_pages) {
233 pgoff_t offset = start_page - se->start_page;
234 sector_t start_block = se->start_block + offset;
235 sector_t nr_blocks = se->nr_pages - offset;
236
237 if (nr_blocks > nr_pages)
238 nr_blocks = nr_pages;
239 start_page += nr_blocks;
240 nr_pages -= nr_blocks;
241
242 start_block <<= PAGE_SHIFT - 9;
243 nr_blocks <<= PAGE_SHIFT - 9;
244 if (blkdev_issue_discard(si->bdev, start_block,
245 nr_blocks, GFP_NOIO, 0))
246 break;
247
248 se = next_se(se);
249 }
250 }
251
252 #ifdef CONFIG_THP_SWAP
253 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
254
255 #define swap_entry_size(size) (size)
256 #else
257 #define SWAPFILE_CLUSTER 256
258
259 /*
260 * Define swap_entry_size() as constant to let compiler to optimize
261 * out some code if !CONFIG_THP_SWAP
262 */
263 #define swap_entry_size(size) 1
264 #endif
265 #define LATENCY_LIMIT 256
266
267 static inline void cluster_set_flag(struct swap_cluster_info *info,
268 unsigned int flag)
269 {
270 info->flags = flag;
271 }
272
273 static inline unsigned int cluster_count(struct swap_cluster_info *info)
274 {
275 return info->data;
276 }
277
278 static inline void cluster_set_count(struct swap_cluster_info *info,
279 unsigned int c)
280 {
281 info->data = c;
282 }
283
284 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
285 unsigned int c, unsigned int f)
286 {
287 info->flags = f;
288 info->data = c;
289 }
290
291 static inline unsigned int cluster_next(struct swap_cluster_info *info)
292 {
293 return info->data;
294 }
295
296 static inline void cluster_set_next(struct swap_cluster_info *info,
297 unsigned int n)
298 {
299 info->data = n;
300 }
301
302 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
303 unsigned int n, unsigned int f)
304 {
305 info->flags = f;
306 info->data = n;
307 }
308
309 static inline bool cluster_is_free(struct swap_cluster_info *info)
310 {
311 return info->flags & CLUSTER_FLAG_FREE;
312 }
313
314 static inline bool cluster_is_null(struct swap_cluster_info *info)
315 {
316 return info->flags & CLUSTER_FLAG_NEXT_NULL;
317 }
318
319 static inline void cluster_set_null(struct swap_cluster_info *info)
320 {
321 info->flags = CLUSTER_FLAG_NEXT_NULL;
322 info->data = 0;
323 }
324
325 static inline bool cluster_is_huge(struct swap_cluster_info *info)
326 {
327 if (IS_ENABLED(CONFIG_THP_SWAP))
328 return info->flags & CLUSTER_FLAG_HUGE;
329 return false;
330 }
331
332 static inline void cluster_clear_huge(struct swap_cluster_info *info)
333 {
334 info->flags &= ~CLUSTER_FLAG_HUGE;
335 }
336
337 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
338 unsigned long offset)
339 {
340 struct swap_cluster_info *ci;
341
342 ci = si->cluster_info;
343 if (ci) {
344 ci += offset / SWAPFILE_CLUSTER;
345 spin_lock(&ci->lock);
346 }
347 return ci;
348 }
349
350 static inline void unlock_cluster(struct swap_cluster_info *ci)
351 {
352 if (ci)
353 spin_unlock(&ci->lock);
354 }
355
356 /*
357 * Determine the locking method in use for this device. Return
358 * swap_cluster_info if SSD-style cluster-based locking is in place.
359 */
360 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
361 struct swap_info_struct *si, unsigned long offset)
362 {
363 struct swap_cluster_info *ci;
364
365 /* Try to use fine-grained SSD-style locking if available: */
366 ci = lock_cluster(si, offset);
367 /* Otherwise, fall back to traditional, coarse locking: */
368 if (!ci)
369 spin_lock(&si->lock);
370
371 return ci;
372 }
373
374 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
375 struct swap_cluster_info *ci)
376 {
377 if (ci)
378 unlock_cluster(ci);
379 else
380 spin_unlock(&si->lock);
381 }
382
383 static inline bool cluster_list_empty(struct swap_cluster_list *list)
384 {
385 return cluster_is_null(&list->head);
386 }
387
388 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
389 {
390 return cluster_next(&list->head);
391 }
392
393 static void cluster_list_init(struct swap_cluster_list *list)
394 {
395 cluster_set_null(&list->head);
396 cluster_set_null(&list->tail);
397 }
398
399 static void cluster_list_add_tail(struct swap_cluster_list *list,
400 struct swap_cluster_info *ci,
401 unsigned int idx)
402 {
403 if (cluster_list_empty(list)) {
404 cluster_set_next_flag(&list->head, idx, 0);
405 cluster_set_next_flag(&list->tail, idx, 0);
406 } else {
407 struct swap_cluster_info *ci_tail;
408 unsigned int tail = cluster_next(&list->tail);
409
410 /*
411 * Nested cluster lock, but both cluster locks are
412 * only acquired when we held swap_info_struct->lock
413 */
414 ci_tail = ci + tail;
415 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
416 cluster_set_next(ci_tail, idx);
417 spin_unlock(&ci_tail->lock);
418 cluster_set_next_flag(&list->tail, idx, 0);
419 }
420 }
421
422 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
423 struct swap_cluster_info *ci)
424 {
425 unsigned int idx;
426
427 idx = cluster_next(&list->head);
428 if (cluster_next(&list->tail) == idx) {
429 cluster_set_null(&list->head);
430 cluster_set_null(&list->tail);
431 } else
432 cluster_set_next_flag(&list->head,
433 cluster_next(&ci[idx]), 0);
434
435 return idx;
436 }
437
438 /* Add a cluster to discard list and schedule it to do discard */
439 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
440 unsigned int idx)
441 {
442 /*
443 * If scan_swap_map() can't find a free cluster, it will check
444 * si->swap_map directly. To make sure the discarding cluster isn't
445 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
446 * will be cleared after discard
447 */
448 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
449 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
450
451 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
452
453 schedule_work(&si->discard_work);
454 }
455
456 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
457 {
458 struct swap_cluster_info *ci = si->cluster_info;
459
460 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
461 cluster_list_add_tail(&si->free_clusters, ci, idx);
462 }
463
464 /*
465 * Doing discard actually. After a cluster discard is finished, the cluster
466 * will be added to free cluster list. caller should hold si->lock.
467 */
468 static void swap_do_scheduled_discard(struct swap_info_struct *si)
469 {
470 struct swap_cluster_info *info, *ci;
471 unsigned int idx;
472
473 info = si->cluster_info;
474
475 while (!cluster_list_empty(&si->discard_clusters)) {
476 idx = cluster_list_del_first(&si->discard_clusters, info);
477 spin_unlock(&si->lock);
478
479 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
480 SWAPFILE_CLUSTER);
481
482 spin_lock(&si->lock);
483 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
484 __free_cluster(si, idx);
485 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
486 0, SWAPFILE_CLUSTER);
487 unlock_cluster(ci);
488 }
489 }
490
491 static void swap_discard_work(struct work_struct *work)
492 {
493 struct swap_info_struct *si;
494
495 si = container_of(work, struct swap_info_struct, discard_work);
496
497 spin_lock(&si->lock);
498 swap_do_scheduled_discard(si);
499 spin_unlock(&si->lock);
500 }
501
502 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
503 {
504 struct swap_cluster_info *ci = si->cluster_info;
505
506 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
507 cluster_list_del_first(&si->free_clusters, ci);
508 cluster_set_count_flag(ci + idx, 0, 0);
509 }
510
511 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
512 {
513 struct swap_cluster_info *ci = si->cluster_info + idx;
514
515 VM_BUG_ON(cluster_count(ci) != 0);
516 /*
517 * If the swap is discardable, prepare discard the cluster
518 * instead of free it immediately. The cluster will be freed
519 * after discard.
520 */
521 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
522 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
523 swap_cluster_schedule_discard(si, idx);
524 return;
525 }
526
527 __free_cluster(si, idx);
528 }
529
530 /*
531 * The cluster corresponding to page_nr will be used. The cluster will be
532 * removed from free cluster list and its usage counter will be increased.
533 */
534 static void inc_cluster_info_page(struct swap_info_struct *p,
535 struct swap_cluster_info *cluster_info, unsigned long page_nr)
536 {
537 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
538
539 if (!cluster_info)
540 return;
541 if (cluster_is_free(&cluster_info[idx]))
542 alloc_cluster(p, idx);
543
544 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
545 cluster_set_count(&cluster_info[idx],
546 cluster_count(&cluster_info[idx]) + 1);
547 }
548
549 /*
550 * The cluster corresponding to page_nr decreases one usage. If the usage
551 * counter becomes 0, which means no page in the cluster is in using, we can
552 * optionally discard the cluster and add it to free cluster list.
553 */
554 static void dec_cluster_info_page(struct swap_info_struct *p,
555 struct swap_cluster_info *cluster_info, unsigned long page_nr)
556 {
557 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558
559 if (!cluster_info)
560 return;
561
562 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
563 cluster_set_count(&cluster_info[idx],
564 cluster_count(&cluster_info[idx]) - 1);
565
566 if (cluster_count(&cluster_info[idx]) == 0)
567 free_cluster(p, idx);
568 }
569
570 /*
571 * It's possible scan_swap_map() uses a free cluster in the middle of free
572 * cluster list. Avoiding such abuse to avoid list corruption.
573 */
574 static bool
575 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
576 unsigned long offset)
577 {
578 struct percpu_cluster *percpu_cluster;
579 bool conflict;
580
581 offset /= SWAPFILE_CLUSTER;
582 conflict = !cluster_list_empty(&si->free_clusters) &&
583 offset != cluster_list_first(&si->free_clusters) &&
584 cluster_is_free(&si->cluster_info[offset]);
585
586 if (!conflict)
587 return false;
588
589 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
590 cluster_set_null(&percpu_cluster->index);
591 return true;
592 }
593
594 /*
595 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
596 * might involve allocating a new cluster for current CPU too.
597 */
598 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
599 unsigned long *offset, unsigned long *scan_base)
600 {
601 struct percpu_cluster *cluster;
602 struct swap_cluster_info *ci;
603 unsigned long tmp, max;
604
605 new_cluster:
606 cluster = this_cpu_ptr(si->percpu_cluster);
607 if (cluster_is_null(&cluster->index)) {
608 if (!cluster_list_empty(&si->free_clusters)) {
609 cluster->index = si->free_clusters.head;
610 cluster->next = cluster_next(&cluster->index) *
611 SWAPFILE_CLUSTER;
612 } else if (!cluster_list_empty(&si->discard_clusters)) {
613 /*
614 * we don't have free cluster but have some clusters in
615 * discarding, do discard now and reclaim them, then
616 * reread cluster_next_cpu since we dropped si->lock
617 */
618 swap_do_scheduled_discard(si);
619 *scan_base = this_cpu_read(*si->cluster_next_cpu);
620 *offset = *scan_base;
621 goto new_cluster;
622 } else
623 return false;
624 }
625
626 /*
627 * Other CPUs can use our cluster if they can't find a free cluster,
628 * check if there is still free entry in the cluster
629 */
630 tmp = cluster->next;
631 max = min_t(unsigned long, si->max,
632 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
633 if (tmp < max) {
634 ci = lock_cluster(si, tmp);
635 while (tmp < max) {
636 if (!si->swap_map[tmp])
637 break;
638 tmp++;
639 }
640 unlock_cluster(ci);
641 }
642 if (tmp >= max) {
643 cluster_set_null(&cluster->index);
644 goto new_cluster;
645 }
646 cluster->next = tmp + 1;
647 *offset = tmp;
648 *scan_base = tmp;
649 return true;
650 }
651
652 static void __del_from_avail_list(struct swap_info_struct *p)
653 {
654 int nid;
655
656 for_each_node(nid)
657 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
658 }
659
660 static void del_from_avail_list(struct swap_info_struct *p)
661 {
662 spin_lock(&swap_avail_lock);
663 __del_from_avail_list(p);
664 spin_unlock(&swap_avail_lock);
665 }
666
667 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
668 unsigned int nr_entries)
669 {
670 unsigned int end = offset + nr_entries - 1;
671
672 if (offset == si->lowest_bit)
673 si->lowest_bit += nr_entries;
674 if (end == si->highest_bit)
675 si->highest_bit -= nr_entries;
676 si->inuse_pages += nr_entries;
677 if (si->inuse_pages == si->pages) {
678 si->lowest_bit = si->max;
679 si->highest_bit = 0;
680 del_from_avail_list(si);
681 }
682 }
683
684 static void add_to_avail_list(struct swap_info_struct *p)
685 {
686 int nid;
687
688 spin_lock(&swap_avail_lock);
689 for_each_node(nid) {
690 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
691 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
692 }
693 spin_unlock(&swap_avail_lock);
694 }
695
696 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
697 unsigned int nr_entries)
698 {
699 unsigned long begin = offset;
700 unsigned long end = offset + nr_entries - 1;
701 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
702
703 if (offset < si->lowest_bit)
704 si->lowest_bit = offset;
705 if (end > si->highest_bit) {
706 bool was_full = !si->highest_bit;
707
708 si->highest_bit = end;
709 if (was_full && (si->flags & SWP_WRITEOK))
710 add_to_avail_list(si);
711 }
712 atomic_long_add(nr_entries, &nr_swap_pages);
713 si->inuse_pages -= nr_entries;
714 if (si->flags & SWP_BLKDEV)
715 swap_slot_free_notify =
716 si->bdev->bd_disk->fops->swap_slot_free_notify;
717 else
718 swap_slot_free_notify = NULL;
719 while (offset <= end) {
720 frontswap_invalidate_page(si->type, offset);
721 if (swap_slot_free_notify)
722 swap_slot_free_notify(si->bdev, offset);
723 offset++;
724 }
725 clear_shadow_from_swap_cache(si->type, begin, end);
726 }
727
728 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
729 {
730 unsigned long prev;
731
732 if (!(si->flags & SWP_SOLIDSTATE)) {
733 si->cluster_next = next;
734 return;
735 }
736
737 prev = this_cpu_read(*si->cluster_next_cpu);
738 /*
739 * Cross the swap address space size aligned trunk, choose
740 * another trunk randomly to avoid lock contention on swap
741 * address space if possible.
742 */
743 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
744 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
745 /* No free swap slots available */
746 if (si->highest_bit <= si->lowest_bit)
747 return;
748 next = si->lowest_bit +
749 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
750 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
751 next = max_t(unsigned int, next, si->lowest_bit);
752 }
753 this_cpu_write(*si->cluster_next_cpu, next);
754 }
755
756 static int scan_swap_map_slots(struct swap_info_struct *si,
757 unsigned char usage, int nr,
758 swp_entry_t slots[])
759 {
760 struct swap_cluster_info *ci;
761 unsigned long offset;
762 unsigned long scan_base;
763 unsigned long last_in_cluster = 0;
764 int latency_ration = LATENCY_LIMIT;
765 int n_ret = 0;
766 bool scanned_many = false;
767
768 /*
769 * We try to cluster swap pages by allocating them sequentially
770 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
771 * way, however, we resort to first-free allocation, starting
772 * a new cluster. This prevents us from scattering swap pages
773 * all over the entire swap partition, so that we reduce
774 * overall disk seek times between swap pages. -- sct
775 * But we do now try to find an empty cluster. -Andrea
776 * And we let swap pages go all over an SSD partition. Hugh
777 */
778
779 si->flags += SWP_SCANNING;
780 /*
781 * Use percpu scan base for SSD to reduce lock contention on
782 * cluster and swap cache. For HDD, sequential access is more
783 * important.
784 */
785 if (si->flags & SWP_SOLIDSTATE)
786 scan_base = this_cpu_read(*si->cluster_next_cpu);
787 else
788 scan_base = si->cluster_next;
789 offset = scan_base;
790
791 /* SSD algorithm */
792 if (si->cluster_info) {
793 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
794 goto scan;
795 } else if (unlikely(!si->cluster_nr--)) {
796 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
797 si->cluster_nr = SWAPFILE_CLUSTER - 1;
798 goto checks;
799 }
800
801 spin_unlock(&si->lock);
802
803 /*
804 * If seek is expensive, start searching for new cluster from
805 * start of partition, to minimize the span of allocated swap.
806 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
807 * case, just handled by scan_swap_map_try_ssd_cluster() above.
808 */
809 scan_base = offset = si->lowest_bit;
810 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
811
812 /* Locate the first empty (unaligned) cluster */
813 for (; last_in_cluster <= si->highest_bit; offset++) {
814 if (si->swap_map[offset])
815 last_in_cluster = offset + SWAPFILE_CLUSTER;
816 else if (offset == last_in_cluster) {
817 spin_lock(&si->lock);
818 offset -= SWAPFILE_CLUSTER - 1;
819 si->cluster_next = offset;
820 si->cluster_nr = SWAPFILE_CLUSTER - 1;
821 goto checks;
822 }
823 if (unlikely(--latency_ration < 0)) {
824 cond_resched();
825 latency_ration = LATENCY_LIMIT;
826 }
827 }
828
829 offset = scan_base;
830 spin_lock(&si->lock);
831 si->cluster_nr = SWAPFILE_CLUSTER - 1;
832 }
833
834 checks:
835 if (si->cluster_info) {
836 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
837 /* take a break if we already got some slots */
838 if (n_ret)
839 goto done;
840 if (!scan_swap_map_try_ssd_cluster(si, &offset,
841 &scan_base))
842 goto scan;
843 }
844 }
845 if (!(si->flags & SWP_WRITEOK))
846 goto no_page;
847 if (!si->highest_bit)
848 goto no_page;
849 if (offset > si->highest_bit)
850 scan_base = offset = si->lowest_bit;
851
852 ci = lock_cluster(si, offset);
853 /* reuse swap entry of cache-only swap if not busy. */
854 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
855 int swap_was_freed;
856 unlock_cluster(ci);
857 spin_unlock(&si->lock);
858 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
859 spin_lock(&si->lock);
860 /* entry was freed successfully, try to use this again */
861 if (swap_was_freed)
862 goto checks;
863 goto scan; /* check next one */
864 }
865
866 if (si->swap_map[offset]) {
867 unlock_cluster(ci);
868 if (!n_ret)
869 goto scan;
870 else
871 goto done;
872 }
873 si->swap_map[offset] = usage;
874 inc_cluster_info_page(si, si->cluster_info, offset);
875 unlock_cluster(ci);
876
877 swap_range_alloc(si, offset, 1);
878 slots[n_ret++] = swp_entry(si->type, offset);
879
880 /* got enough slots or reach max slots? */
881 if ((n_ret == nr) || (offset >= si->highest_bit))
882 goto done;
883
884 /* search for next available slot */
885
886 /* time to take a break? */
887 if (unlikely(--latency_ration < 0)) {
888 if (n_ret)
889 goto done;
890 spin_unlock(&si->lock);
891 cond_resched();
892 spin_lock(&si->lock);
893 latency_ration = LATENCY_LIMIT;
894 }
895
896 /* try to get more slots in cluster */
897 if (si->cluster_info) {
898 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
899 goto checks;
900 } else if (si->cluster_nr && !si->swap_map[++offset]) {
901 /* non-ssd case, still more slots in cluster? */
902 --si->cluster_nr;
903 goto checks;
904 }
905
906 /*
907 * Even if there's no free clusters available (fragmented),
908 * try to scan a little more quickly with lock held unless we
909 * have scanned too many slots already.
910 */
911 if (!scanned_many) {
912 unsigned long scan_limit;
913
914 if (offset < scan_base)
915 scan_limit = scan_base;
916 else
917 scan_limit = si->highest_bit;
918 for (; offset <= scan_limit && --latency_ration > 0;
919 offset++) {
920 if (!si->swap_map[offset])
921 goto checks;
922 }
923 }
924
925 done:
926 set_cluster_next(si, offset + 1);
927 si->flags -= SWP_SCANNING;
928 return n_ret;
929
930 scan:
931 spin_unlock(&si->lock);
932 while (++offset <= si->highest_bit) {
933 if (!si->swap_map[offset]) {
934 spin_lock(&si->lock);
935 goto checks;
936 }
937 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
938 spin_lock(&si->lock);
939 goto checks;
940 }
941 if (unlikely(--latency_ration < 0)) {
942 cond_resched();
943 latency_ration = LATENCY_LIMIT;
944 scanned_many = true;
945 }
946 }
947 offset = si->lowest_bit;
948 while (offset < scan_base) {
949 if (!si->swap_map[offset]) {
950 spin_lock(&si->lock);
951 goto checks;
952 }
953 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
954 spin_lock(&si->lock);
955 goto checks;
956 }
957 if (unlikely(--latency_ration < 0)) {
958 cond_resched();
959 latency_ration = LATENCY_LIMIT;
960 scanned_many = true;
961 }
962 offset++;
963 }
964 spin_lock(&si->lock);
965
966 no_page:
967 si->flags -= SWP_SCANNING;
968 return n_ret;
969 }
970
971 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
972 {
973 unsigned long idx;
974 struct swap_cluster_info *ci;
975 unsigned long offset, i;
976 unsigned char *map;
977
978 /*
979 * Should not even be attempting cluster allocations when huge
980 * page swap is disabled. Warn and fail the allocation.
981 */
982 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
983 VM_WARN_ON_ONCE(1);
984 return 0;
985 }
986
987 if (cluster_list_empty(&si->free_clusters))
988 return 0;
989
990 idx = cluster_list_first(&si->free_clusters);
991 offset = idx * SWAPFILE_CLUSTER;
992 ci = lock_cluster(si, offset);
993 alloc_cluster(si, idx);
994 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
995
996 map = si->swap_map + offset;
997 for (i = 0; i < SWAPFILE_CLUSTER; i++)
998 map[i] = SWAP_HAS_CACHE;
999 unlock_cluster(ci);
1000 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1001 *slot = swp_entry(si->type, offset);
1002
1003 return 1;
1004 }
1005
1006 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1007 {
1008 unsigned long offset = idx * SWAPFILE_CLUSTER;
1009 struct swap_cluster_info *ci;
1010
1011 ci = lock_cluster(si, offset);
1012 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1013 cluster_set_count_flag(ci, 0, 0);
1014 free_cluster(si, idx);
1015 unlock_cluster(ci);
1016 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1017 }
1018
1019 static unsigned long scan_swap_map(struct swap_info_struct *si,
1020 unsigned char usage)
1021 {
1022 swp_entry_t entry;
1023 int n_ret;
1024
1025 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1026
1027 if (n_ret)
1028 return swp_offset(entry);
1029 else
1030 return 0;
1031
1032 }
1033
1034 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1035 {
1036 unsigned long size = swap_entry_size(entry_size);
1037 struct swap_info_struct *si, *next;
1038 long avail_pgs;
1039 int n_ret = 0;
1040 int node;
1041
1042 /* Only single cluster request supported */
1043 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1044
1045 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1046 if (avail_pgs <= 0)
1047 goto noswap;
1048
1049 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1050
1051 atomic_long_sub(n_goal * size, &nr_swap_pages);
1052
1053 spin_lock(&swap_avail_lock);
1054
1055 start_over:
1056 node = numa_node_id();
1057 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1058 /* requeue si to after same-priority siblings */
1059 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1060 spin_unlock(&swap_avail_lock);
1061 spin_lock(&si->lock);
1062 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1063 spin_lock(&swap_avail_lock);
1064 if (plist_node_empty(&si->avail_lists[node])) {
1065 spin_unlock(&si->lock);
1066 goto nextsi;
1067 }
1068 WARN(!si->highest_bit,
1069 "swap_info %d in list but !highest_bit\n",
1070 si->type);
1071 WARN(!(si->flags & SWP_WRITEOK),
1072 "swap_info %d in list but !SWP_WRITEOK\n",
1073 si->type);
1074 __del_from_avail_list(si);
1075 spin_unlock(&si->lock);
1076 goto nextsi;
1077 }
1078 if (size == SWAPFILE_CLUSTER) {
1079 if (!(si->flags & SWP_FS))
1080 n_ret = swap_alloc_cluster(si, swp_entries);
1081 } else
1082 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1083 n_goal, swp_entries);
1084 spin_unlock(&si->lock);
1085 if (n_ret || size == SWAPFILE_CLUSTER)
1086 goto check_out;
1087 pr_debug("scan_swap_map of si %d failed to find offset\n",
1088 si->type);
1089
1090 spin_lock(&swap_avail_lock);
1091 nextsi:
1092 /*
1093 * if we got here, it's likely that si was almost full before,
1094 * and since scan_swap_map() can drop the si->lock, multiple
1095 * callers probably all tried to get a page from the same si
1096 * and it filled up before we could get one; or, the si filled
1097 * up between us dropping swap_avail_lock and taking si->lock.
1098 * Since we dropped the swap_avail_lock, the swap_avail_head
1099 * list may have been modified; so if next is still in the
1100 * swap_avail_head list then try it, otherwise start over
1101 * if we have not gotten any slots.
1102 */
1103 if (plist_node_empty(&next->avail_lists[node]))
1104 goto start_over;
1105 }
1106
1107 spin_unlock(&swap_avail_lock);
1108
1109 check_out:
1110 if (n_ret < n_goal)
1111 atomic_long_add((long)(n_goal - n_ret) * size,
1112 &nr_swap_pages);
1113 noswap:
1114 return n_ret;
1115 }
1116
1117 /* The only caller of this function is now suspend routine */
1118 swp_entry_t get_swap_page_of_type(int type)
1119 {
1120 struct swap_info_struct *si = swap_type_to_swap_info(type);
1121 pgoff_t offset;
1122
1123 if (!si)
1124 goto fail;
1125
1126 spin_lock(&si->lock);
1127 if (si->flags & SWP_WRITEOK) {
1128 atomic_long_dec(&nr_swap_pages);
1129 /* This is called for allocating swap entry, not cache */
1130 offset = scan_swap_map(si, 1);
1131 if (offset) {
1132 spin_unlock(&si->lock);
1133 return swp_entry(type, offset);
1134 }
1135 atomic_long_inc(&nr_swap_pages);
1136 }
1137 spin_unlock(&si->lock);
1138 fail:
1139 return (swp_entry_t) {0};
1140 }
1141
1142 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1143 {
1144 struct swap_info_struct *p;
1145 unsigned long offset;
1146
1147 if (!entry.val)
1148 goto out;
1149 p = swp_swap_info(entry);
1150 if (!p)
1151 goto bad_nofile;
1152 if (!(p->flags & SWP_USED))
1153 goto bad_device;
1154 offset = swp_offset(entry);
1155 if (offset >= p->max)
1156 goto bad_offset;
1157 return p;
1158
1159 bad_offset:
1160 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1161 goto out;
1162 bad_device:
1163 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1164 goto out;
1165 bad_nofile:
1166 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1167 out:
1168 return NULL;
1169 }
1170
1171 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1172 {
1173 struct swap_info_struct *p;
1174
1175 p = __swap_info_get(entry);
1176 if (!p)
1177 goto out;
1178 if (!p->swap_map[swp_offset(entry)])
1179 goto bad_free;
1180 return p;
1181
1182 bad_free:
1183 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1184 goto out;
1185 out:
1186 return NULL;
1187 }
1188
1189 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1190 {
1191 struct swap_info_struct *p;
1192
1193 p = _swap_info_get(entry);
1194 if (p)
1195 spin_lock(&p->lock);
1196 return p;
1197 }
1198
1199 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1200 struct swap_info_struct *q)
1201 {
1202 struct swap_info_struct *p;
1203
1204 p = _swap_info_get(entry);
1205
1206 if (p != q) {
1207 if (q != NULL)
1208 spin_unlock(&q->lock);
1209 if (p != NULL)
1210 spin_lock(&p->lock);
1211 }
1212 return p;
1213 }
1214
1215 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1216 unsigned long offset,
1217 unsigned char usage)
1218 {
1219 unsigned char count;
1220 unsigned char has_cache;
1221
1222 count = p->swap_map[offset];
1223
1224 has_cache = count & SWAP_HAS_CACHE;
1225 count &= ~SWAP_HAS_CACHE;
1226
1227 if (usage == SWAP_HAS_CACHE) {
1228 VM_BUG_ON(!has_cache);
1229 has_cache = 0;
1230 } else if (count == SWAP_MAP_SHMEM) {
1231 /*
1232 * Or we could insist on shmem.c using a special
1233 * swap_shmem_free() and free_shmem_swap_and_cache()...
1234 */
1235 count = 0;
1236 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1237 if (count == COUNT_CONTINUED) {
1238 if (swap_count_continued(p, offset, count))
1239 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1240 else
1241 count = SWAP_MAP_MAX;
1242 } else
1243 count--;
1244 }
1245
1246 usage = count | has_cache;
1247 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1248
1249 return usage;
1250 }
1251
1252 /*
1253 * Check whether swap entry is valid in the swap device. If so,
1254 * return pointer to swap_info_struct, and keep the swap entry valid
1255 * via preventing the swap device from being swapoff, until
1256 * put_swap_device() is called. Otherwise return NULL.
1257 *
1258 * The entirety of the RCU read critical section must come before the
1259 * return from or after the call to synchronize_rcu() in
1260 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1261 * true, the si->map, si->cluster_info, etc. must be valid in the
1262 * critical section.
1263 *
1264 * Notice that swapoff or swapoff+swapon can still happen before the
1265 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1266 * in put_swap_device() if there isn't any other way to prevent
1267 * swapoff, such as page lock, page table lock, etc. The caller must
1268 * be prepared for that. For example, the following situation is
1269 * possible.
1270 *
1271 * CPU1 CPU2
1272 * do_swap_page()
1273 * ... swapoff+swapon
1274 * __read_swap_cache_async()
1275 * swapcache_prepare()
1276 * __swap_duplicate()
1277 * // check swap_map
1278 * // verify PTE not changed
1279 *
1280 * In __swap_duplicate(), the swap_map need to be checked before
1281 * changing partly because the specified swap entry may be for another
1282 * swap device which has been swapoff. And in do_swap_page(), after
1283 * the page is read from the swap device, the PTE is verified not
1284 * changed with the page table locked to check whether the swap device
1285 * has been swapoff or swapoff+swapon.
1286 */
1287 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1288 {
1289 struct swap_info_struct *si;
1290 unsigned long offset;
1291
1292 if (!entry.val)
1293 goto out;
1294 si = swp_swap_info(entry);
1295 if (!si)
1296 goto bad_nofile;
1297
1298 rcu_read_lock();
1299 if (!(si->flags & SWP_VALID))
1300 goto unlock_out;
1301 offset = swp_offset(entry);
1302 if (offset >= si->max)
1303 goto unlock_out;
1304
1305 return si;
1306 bad_nofile:
1307 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1308 out:
1309 return NULL;
1310 unlock_out:
1311 rcu_read_unlock();
1312 return NULL;
1313 }
1314
1315 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1316 swp_entry_t entry)
1317 {
1318 struct swap_cluster_info *ci;
1319 unsigned long offset = swp_offset(entry);
1320 unsigned char usage;
1321
1322 ci = lock_cluster_or_swap_info(p, offset);
1323 usage = __swap_entry_free_locked(p, offset, 1);
1324 unlock_cluster_or_swap_info(p, ci);
1325 if (!usage)
1326 free_swap_slot(entry);
1327
1328 return usage;
1329 }
1330
1331 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1332 {
1333 struct swap_cluster_info *ci;
1334 unsigned long offset = swp_offset(entry);
1335 unsigned char count;
1336
1337 ci = lock_cluster(p, offset);
1338 count = p->swap_map[offset];
1339 VM_BUG_ON(count != SWAP_HAS_CACHE);
1340 p->swap_map[offset] = 0;
1341 dec_cluster_info_page(p, p->cluster_info, offset);
1342 unlock_cluster(ci);
1343
1344 mem_cgroup_uncharge_swap(entry, 1);
1345 swap_range_free(p, offset, 1);
1346 }
1347
1348 /*
1349 * Caller has made sure that the swap device corresponding to entry
1350 * is still around or has not been recycled.
1351 */
1352 void swap_free(swp_entry_t entry)
1353 {
1354 struct swap_info_struct *p;
1355
1356 p = _swap_info_get(entry);
1357 if (p)
1358 __swap_entry_free(p, entry);
1359 }
1360
1361 /*
1362 * Called after dropping swapcache to decrease refcnt to swap entries.
1363 */
1364 void put_swap_page(struct page *page, swp_entry_t entry)
1365 {
1366 unsigned long offset = swp_offset(entry);
1367 unsigned long idx = offset / SWAPFILE_CLUSTER;
1368 struct swap_cluster_info *ci;
1369 struct swap_info_struct *si;
1370 unsigned char *map;
1371 unsigned int i, free_entries = 0;
1372 unsigned char val;
1373 int size = swap_entry_size(hpage_nr_pages(page));
1374
1375 si = _swap_info_get(entry);
1376 if (!si)
1377 return;
1378
1379 ci = lock_cluster_or_swap_info(si, offset);
1380 if (size == SWAPFILE_CLUSTER) {
1381 VM_BUG_ON(!cluster_is_huge(ci));
1382 map = si->swap_map + offset;
1383 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1384 val = map[i];
1385 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1386 if (val == SWAP_HAS_CACHE)
1387 free_entries++;
1388 }
1389 cluster_clear_huge(ci);
1390 if (free_entries == SWAPFILE_CLUSTER) {
1391 unlock_cluster_or_swap_info(si, ci);
1392 spin_lock(&si->lock);
1393 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1394 swap_free_cluster(si, idx);
1395 spin_unlock(&si->lock);
1396 return;
1397 }
1398 }
1399 for (i = 0; i < size; i++, entry.val++) {
1400 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1401 unlock_cluster_or_swap_info(si, ci);
1402 free_swap_slot(entry);
1403 if (i == size - 1)
1404 return;
1405 lock_cluster_or_swap_info(si, offset);
1406 }
1407 }
1408 unlock_cluster_or_swap_info(si, ci);
1409 }
1410
1411 #ifdef CONFIG_THP_SWAP
1412 int split_swap_cluster(swp_entry_t entry)
1413 {
1414 struct swap_info_struct *si;
1415 struct swap_cluster_info *ci;
1416 unsigned long offset = swp_offset(entry);
1417
1418 si = _swap_info_get(entry);
1419 if (!si)
1420 return -EBUSY;
1421 ci = lock_cluster(si, offset);
1422 cluster_clear_huge(ci);
1423 unlock_cluster(ci);
1424 return 0;
1425 }
1426 #endif
1427
1428 static int swp_entry_cmp(const void *ent1, const void *ent2)
1429 {
1430 const swp_entry_t *e1 = ent1, *e2 = ent2;
1431
1432 return (int)swp_type(*e1) - (int)swp_type(*e2);
1433 }
1434
1435 void swapcache_free_entries(swp_entry_t *entries, int n)
1436 {
1437 struct swap_info_struct *p, *prev;
1438 int i;
1439
1440 if (n <= 0)
1441 return;
1442
1443 prev = NULL;
1444 p = NULL;
1445
1446 /*
1447 * Sort swap entries by swap device, so each lock is only taken once.
1448 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1449 * so low that it isn't necessary to optimize further.
1450 */
1451 if (nr_swapfiles > 1)
1452 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1453 for (i = 0; i < n; ++i) {
1454 p = swap_info_get_cont(entries[i], prev);
1455 if (p)
1456 swap_entry_free(p, entries[i]);
1457 prev = p;
1458 }
1459 if (p)
1460 spin_unlock(&p->lock);
1461 }
1462
1463 /*
1464 * How many references to page are currently swapped out?
1465 * This does not give an exact answer when swap count is continued,
1466 * but does include the high COUNT_CONTINUED flag to allow for that.
1467 */
1468 int page_swapcount(struct page *page)
1469 {
1470 int count = 0;
1471 struct swap_info_struct *p;
1472 struct swap_cluster_info *ci;
1473 swp_entry_t entry;
1474 unsigned long offset;
1475
1476 entry.val = page_private(page);
1477 p = _swap_info_get(entry);
1478 if (p) {
1479 offset = swp_offset(entry);
1480 ci = lock_cluster_or_swap_info(p, offset);
1481 count = swap_count(p->swap_map[offset]);
1482 unlock_cluster_or_swap_info(p, ci);
1483 }
1484 return count;
1485 }
1486
1487 int __swap_count(swp_entry_t entry)
1488 {
1489 struct swap_info_struct *si;
1490 pgoff_t offset = swp_offset(entry);
1491 int count = 0;
1492
1493 si = get_swap_device(entry);
1494 if (si) {
1495 count = swap_count(si->swap_map[offset]);
1496 put_swap_device(si);
1497 }
1498 return count;
1499 }
1500
1501 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1502 {
1503 int count = 0;
1504 pgoff_t offset = swp_offset(entry);
1505 struct swap_cluster_info *ci;
1506
1507 ci = lock_cluster_or_swap_info(si, offset);
1508 count = swap_count(si->swap_map[offset]);
1509 unlock_cluster_or_swap_info(si, ci);
1510 return count;
1511 }
1512
1513 /*
1514 * How many references to @entry are currently swapped out?
1515 * This does not give an exact answer when swap count is continued,
1516 * but does include the high COUNT_CONTINUED flag to allow for that.
1517 */
1518 int __swp_swapcount(swp_entry_t entry)
1519 {
1520 int count = 0;
1521 struct swap_info_struct *si;
1522
1523 si = get_swap_device(entry);
1524 if (si) {
1525 count = swap_swapcount(si, entry);
1526 put_swap_device(si);
1527 }
1528 return count;
1529 }
1530
1531 /*
1532 * How many references to @entry are currently swapped out?
1533 * This considers COUNT_CONTINUED so it returns exact answer.
1534 */
1535 int swp_swapcount(swp_entry_t entry)
1536 {
1537 int count, tmp_count, n;
1538 struct swap_info_struct *p;
1539 struct swap_cluster_info *ci;
1540 struct page *page;
1541 pgoff_t offset;
1542 unsigned char *map;
1543
1544 p = _swap_info_get(entry);
1545 if (!p)
1546 return 0;
1547
1548 offset = swp_offset(entry);
1549
1550 ci = lock_cluster_or_swap_info(p, offset);
1551
1552 count = swap_count(p->swap_map[offset]);
1553 if (!(count & COUNT_CONTINUED))
1554 goto out;
1555
1556 count &= ~COUNT_CONTINUED;
1557 n = SWAP_MAP_MAX + 1;
1558
1559 page = vmalloc_to_page(p->swap_map + offset);
1560 offset &= ~PAGE_MASK;
1561 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1562
1563 do {
1564 page = list_next_entry(page, lru);
1565 map = kmap_atomic(page);
1566 tmp_count = map[offset];
1567 kunmap_atomic(map);
1568
1569 count += (tmp_count & ~COUNT_CONTINUED) * n;
1570 n *= (SWAP_CONT_MAX + 1);
1571 } while (tmp_count & COUNT_CONTINUED);
1572 out:
1573 unlock_cluster_or_swap_info(p, ci);
1574 return count;
1575 }
1576
1577 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1578 swp_entry_t entry)
1579 {
1580 struct swap_cluster_info *ci;
1581 unsigned char *map = si->swap_map;
1582 unsigned long roffset = swp_offset(entry);
1583 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1584 int i;
1585 bool ret = false;
1586
1587 ci = lock_cluster_or_swap_info(si, offset);
1588 if (!ci || !cluster_is_huge(ci)) {
1589 if (swap_count(map[roffset]))
1590 ret = true;
1591 goto unlock_out;
1592 }
1593 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1594 if (swap_count(map[offset + i])) {
1595 ret = true;
1596 break;
1597 }
1598 }
1599 unlock_out:
1600 unlock_cluster_or_swap_info(si, ci);
1601 return ret;
1602 }
1603
1604 static bool page_swapped(struct page *page)
1605 {
1606 swp_entry_t entry;
1607 struct swap_info_struct *si;
1608
1609 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1610 return page_swapcount(page) != 0;
1611
1612 page = compound_head(page);
1613 entry.val = page_private(page);
1614 si = _swap_info_get(entry);
1615 if (si)
1616 return swap_page_trans_huge_swapped(si, entry);
1617 return false;
1618 }
1619
1620 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1621 int *total_swapcount)
1622 {
1623 int i, map_swapcount, _total_mapcount, _total_swapcount;
1624 unsigned long offset = 0;
1625 struct swap_info_struct *si;
1626 struct swap_cluster_info *ci = NULL;
1627 unsigned char *map = NULL;
1628 int mapcount, swapcount = 0;
1629
1630 /* hugetlbfs shouldn't call it */
1631 VM_BUG_ON_PAGE(PageHuge(page), page);
1632
1633 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1634 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1635 if (PageSwapCache(page))
1636 swapcount = page_swapcount(page);
1637 if (total_swapcount)
1638 *total_swapcount = swapcount;
1639 return mapcount + swapcount;
1640 }
1641
1642 page = compound_head(page);
1643
1644 _total_mapcount = _total_swapcount = map_swapcount = 0;
1645 if (PageSwapCache(page)) {
1646 swp_entry_t entry;
1647
1648 entry.val = page_private(page);
1649 si = _swap_info_get(entry);
1650 if (si) {
1651 map = si->swap_map;
1652 offset = swp_offset(entry);
1653 }
1654 }
1655 if (map)
1656 ci = lock_cluster(si, offset);
1657 for (i = 0; i < HPAGE_PMD_NR; i++) {
1658 mapcount = atomic_read(&page[i]._mapcount) + 1;
1659 _total_mapcount += mapcount;
1660 if (map) {
1661 swapcount = swap_count(map[offset + i]);
1662 _total_swapcount += swapcount;
1663 }
1664 map_swapcount = max(map_swapcount, mapcount + swapcount);
1665 }
1666 unlock_cluster(ci);
1667 if (PageDoubleMap(page)) {
1668 map_swapcount -= 1;
1669 _total_mapcount -= HPAGE_PMD_NR;
1670 }
1671 mapcount = compound_mapcount(page);
1672 map_swapcount += mapcount;
1673 _total_mapcount += mapcount;
1674 if (total_mapcount)
1675 *total_mapcount = _total_mapcount;
1676 if (total_swapcount)
1677 *total_swapcount = _total_swapcount;
1678
1679 return map_swapcount;
1680 }
1681
1682 /*
1683 * We can write to an anon page without COW if there are no other references
1684 * to it. And as a side-effect, free up its swap: because the old content
1685 * on disk will never be read, and seeking back there to write new content
1686 * later would only waste time away from clustering.
1687 *
1688 * NOTE: total_map_swapcount should not be relied upon by the caller if
1689 * reuse_swap_page() returns false, but it may be always overwritten
1690 * (see the other implementation for CONFIG_SWAP=n).
1691 */
1692 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1693 {
1694 int count, total_mapcount, total_swapcount;
1695
1696 VM_BUG_ON_PAGE(!PageLocked(page), page);
1697 if (unlikely(PageKsm(page)))
1698 return false;
1699 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1700 &total_swapcount);
1701 if (total_map_swapcount)
1702 *total_map_swapcount = total_mapcount + total_swapcount;
1703 if (count == 1 && PageSwapCache(page) &&
1704 (likely(!PageTransCompound(page)) ||
1705 /* The remaining swap count will be freed soon */
1706 total_swapcount == page_swapcount(page))) {
1707 if (!PageWriteback(page)) {
1708 page = compound_head(page);
1709 delete_from_swap_cache(page);
1710 SetPageDirty(page);
1711 } else {
1712 swp_entry_t entry;
1713 struct swap_info_struct *p;
1714
1715 entry.val = page_private(page);
1716 p = swap_info_get(entry);
1717 if (p->flags & SWP_STABLE_WRITES) {
1718 spin_unlock(&p->lock);
1719 return false;
1720 }
1721 spin_unlock(&p->lock);
1722 }
1723 }
1724
1725 return count <= 1;
1726 }
1727
1728 /*
1729 * If swap is getting full, or if there are no more mappings of this page,
1730 * then try_to_free_swap is called to free its swap space.
1731 */
1732 int try_to_free_swap(struct page *page)
1733 {
1734 VM_BUG_ON_PAGE(!PageLocked(page), page);
1735
1736 if (!PageSwapCache(page))
1737 return 0;
1738 if (PageWriteback(page))
1739 return 0;
1740 if (page_swapped(page))
1741 return 0;
1742
1743 /*
1744 * Once hibernation has begun to create its image of memory,
1745 * there's a danger that one of the calls to try_to_free_swap()
1746 * - most probably a call from __try_to_reclaim_swap() while
1747 * hibernation is allocating its own swap pages for the image,
1748 * but conceivably even a call from memory reclaim - will free
1749 * the swap from a page which has already been recorded in the
1750 * image as a clean swapcache page, and then reuse its swap for
1751 * another page of the image. On waking from hibernation, the
1752 * original page might be freed under memory pressure, then
1753 * later read back in from swap, now with the wrong data.
1754 *
1755 * Hibernation suspends storage while it is writing the image
1756 * to disk so check that here.
1757 */
1758 if (pm_suspended_storage())
1759 return 0;
1760
1761 page = compound_head(page);
1762 delete_from_swap_cache(page);
1763 SetPageDirty(page);
1764 return 1;
1765 }
1766
1767 /*
1768 * Free the swap entry like above, but also try to
1769 * free the page cache entry if it is the last user.
1770 */
1771 int free_swap_and_cache(swp_entry_t entry)
1772 {
1773 struct swap_info_struct *p;
1774 unsigned char count;
1775
1776 if (non_swap_entry(entry))
1777 return 1;
1778
1779 p = _swap_info_get(entry);
1780 if (p) {
1781 count = __swap_entry_free(p, entry);
1782 if (count == SWAP_HAS_CACHE &&
1783 !swap_page_trans_huge_swapped(p, entry))
1784 __try_to_reclaim_swap(p, swp_offset(entry),
1785 TTRS_UNMAPPED | TTRS_FULL);
1786 }
1787 return p != NULL;
1788 }
1789
1790 #ifdef CONFIG_HIBERNATION
1791 /*
1792 * Find the swap type that corresponds to given device (if any).
1793 *
1794 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1795 * from 0, in which the swap header is expected to be located.
1796 *
1797 * This is needed for the suspend to disk (aka swsusp).
1798 */
1799 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1800 {
1801 struct block_device *bdev = NULL;
1802 int type;
1803
1804 if (device)
1805 bdev = bdget(device);
1806
1807 spin_lock(&swap_lock);
1808 for (type = 0; type < nr_swapfiles; type++) {
1809 struct swap_info_struct *sis = swap_info[type];
1810
1811 if (!(sis->flags & SWP_WRITEOK))
1812 continue;
1813
1814 if (!bdev) {
1815 if (bdev_p)
1816 *bdev_p = bdgrab(sis->bdev);
1817
1818 spin_unlock(&swap_lock);
1819 return type;
1820 }
1821 if (bdev == sis->bdev) {
1822 struct swap_extent *se = first_se(sis);
1823
1824 if (se->start_block == offset) {
1825 if (bdev_p)
1826 *bdev_p = bdgrab(sis->bdev);
1827
1828 spin_unlock(&swap_lock);
1829 bdput(bdev);
1830 return type;
1831 }
1832 }
1833 }
1834 spin_unlock(&swap_lock);
1835 if (bdev)
1836 bdput(bdev);
1837
1838 return -ENODEV;
1839 }
1840
1841 /*
1842 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1843 * corresponding to given index in swap_info (swap type).
1844 */
1845 sector_t swapdev_block(int type, pgoff_t offset)
1846 {
1847 struct block_device *bdev;
1848 struct swap_info_struct *si = swap_type_to_swap_info(type);
1849
1850 if (!si || !(si->flags & SWP_WRITEOK))
1851 return 0;
1852 return map_swap_entry(swp_entry(type, offset), &bdev);
1853 }
1854
1855 /*
1856 * Return either the total number of swap pages of given type, or the number
1857 * of free pages of that type (depending on @free)
1858 *
1859 * This is needed for software suspend
1860 */
1861 unsigned int count_swap_pages(int type, int free)
1862 {
1863 unsigned int n = 0;
1864
1865 spin_lock(&swap_lock);
1866 if ((unsigned int)type < nr_swapfiles) {
1867 struct swap_info_struct *sis = swap_info[type];
1868
1869 spin_lock(&sis->lock);
1870 if (sis->flags & SWP_WRITEOK) {
1871 n = sis->pages;
1872 if (free)
1873 n -= sis->inuse_pages;
1874 }
1875 spin_unlock(&sis->lock);
1876 }
1877 spin_unlock(&swap_lock);
1878 return n;
1879 }
1880 #endif /* CONFIG_HIBERNATION */
1881
1882 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1883 {
1884 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1885 }
1886
1887 /*
1888 * No need to decide whether this PTE shares the swap entry with others,
1889 * just let do_wp_page work it out if a write is requested later - to
1890 * force COW, vm_page_prot omits write permission from any private vma.
1891 */
1892 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1893 unsigned long addr, swp_entry_t entry, struct page *page)
1894 {
1895 struct page *swapcache;
1896 spinlock_t *ptl;
1897 pte_t *pte;
1898 int ret = 1;
1899
1900 swapcache = page;
1901 page = ksm_might_need_to_copy(page, vma, addr);
1902 if (unlikely(!page))
1903 return -ENOMEM;
1904
1905 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1906 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1907 ret = 0;
1908 goto out;
1909 }
1910
1911 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1912 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1913 get_page(page);
1914 set_pte_at(vma->vm_mm, addr, pte,
1915 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1916 if (page == swapcache) {
1917 page_add_anon_rmap(page, vma, addr, false);
1918 } else { /* ksm created a completely new copy */
1919 page_add_new_anon_rmap(page, vma, addr, false);
1920 lru_cache_add_inactive_or_unevictable(page, vma);
1921 }
1922 swap_free(entry);
1923 /*
1924 * Move the page to the active list so it is not
1925 * immediately swapped out again after swapon.
1926 */
1927 activate_page(page);
1928 out:
1929 pte_unmap_unlock(pte, ptl);
1930 if (page != swapcache) {
1931 unlock_page(page);
1932 put_page(page);
1933 }
1934 return ret;
1935 }
1936
1937 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1938 unsigned long addr, unsigned long end,
1939 unsigned int type, bool frontswap,
1940 unsigned long *fs_pages_to_unuse)
1941 {
1942 struct page *page;
1943 swp_entry_t entry;
1944 pte_t *pte;
1945 struct swap_info_struct *si;
1946 unsigned long offset;
1947 int ret = 0;
1948 volatile unsigned char *swap_map;
1949
1950 si = swap_info[type];
1951 pte = pte_offset_map(pmd, addr);
1952 do {
1953 struct vm_fault vmf;
1954
1955 if (!is_swap_pte(*pte))
1956 continue;
1957
1958 entry = pte_to_swp_entry(*pte);
1959 if (swp_type(entry) != type)
1960 continue;
1961
1962 offset = swp_offset(entry);
1963 if (frontswap && !frontswap_test(si, offset))
1964 continue;
1965
1966 pte_unmap(pte);
1967 swap_map = &si->swap_map[offset];
1968 page = lookup_swap_cache(entry, vma, addr);
1969 if (!page) {
1970 vmf.vma = vma;
1971 vmf.address = addr;
1972 vmf.pmd = pmd;
1973 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1974 &vmf);
1975 }
1976 if (!page) {
1977 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1978 goto try_next;
1979 return -ENOMEM;
1980 }
1981
1982 lock_page(page);
1983 wait_on_page_writeback(page);
1984 ret = unuse_pte(vma, pmd, addr, entry, page);
1985 if (ret < 0) {
1986 unlock_page(page);
1987 put_page(page);
1988 goto out;
1989 }
1990
1991 try_to_free_swap(page);
1992 unlock_page(page);
1993 put_page(page);
1994
1995 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1996 ret = FRONTSWAP_PAGES_UNUSED;
1997 goto out;
1998 }
1999 try_next:
2000 pte = pte_offset_map(pmd, addr);
2001 } while (pte++, addr += PAGE_SIZE, addr != end);
2002 pte_unmap(pte - 1);
2003
2004 ret = 0;
2005 out:
2006 return ret;
2007 }
2008
2009 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2010 unsigned long addr, unsigned long end,
2011 unsigned int type, bool frontswap,
2012 unsigned long *fs_pages_to_unuse)
2013 {
2014 pmd_t *pmd;
2015 unsigned long next;
2016 int ret;
2017
2018 pmd = pmd_offset(pud, addr);
2019 do {
2020 cond_resched();
2021 next = pmd_addr_end(addr, end);
2022 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2023 continue;
2024 ret = unuse_pte_range(vma, pmd, addr, next, type,
2025 frontswap, fs_pages_to_unuse);
2026 if (ret)
2027 return ret;
2028 } while (pmd++, addr = next, addr != end);
2029 return 0;
2030 }
2031
2032 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2033 unsigned long addr, unsigned long end,
2034 unsigned int type, bool frontswap,
2035 unsigned long *fs_pages_to_unuse)
2036 {
2037 pud_t *pud;
2038 unsigned long next;
2039 int ret;
2040
2041 pud = pud_offset(p4d, addr);
2042 do {
2043 next = pud_addr_end(addr, end);
2044 if (pud_none_or_clear_bad(pud))
2045 continue;
2046 ret = unuse_pmd_range(vma, pud, addr, next, type,
2047 frontswap, fs_pages_to_unuse);
2048 if (ret)
2049 return ret;
2050 } while (pud++, addr = next, addr != end);
2051 return 0;
2052 }
2053
2054 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2055 unsigned long addr, unsigned long end,
2056 unsigned int type, bool frontswap,
2057 unsigned long *fs_pages_to_unuse)
2058 {
2059 p4d_t *p4d;
2060 unsigned long next;
2061 int ret;
2062
2063 p4d = p4d_offset(pgd, addr);
2064 do {
2065 next = p4d_addr_end(addr, end);
2066 if (p4d_none_or_clear_bad(p4d))
2067 continue;
2068 ret = unuse_pud_range(vma, p4d, addr, next, type,
2069 frontswap, fs_pages_to_unuse);
2070 if (ret)
2071 return ret;
2072 } while (p4d++, addr = next, addr != end);
2073 return 0;
2074 }
2075
2076 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2077 bool frontswap, unsigned long *fs_pages_to_unuse)
2078 {
2079 pgd_t *pgd;
2080 unsigned long addr, end, next;
2081 int ret;
2082
2083 addr = vma->vm_start;
2084 end = vma->vm_end;
2085
2086 pgd = pgd_offset(vma->vm_mm, addr);
2087 do {
2088 next = pgd_addr_end(addr, end);
2089 if (pgd_none_or_clear_bad(pgd))
2090 continue;
2091 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2092 frontswap, fs_pages_to_unuse);
2093 if (ret)
2094 return ret;
2095 } while (pgd++, addr = next, addr != end);
2096 return 0;
2097 }
2098
2099 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2100 bool frontswap, unsigned long *fs_pages_to_unuse)
2101 {
2102 struct vm_area_struct *vma;
2103 int ret = 0;
2104
2105 mmap_read_lock(mm);
2106 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2107 if (vma->anon_vma) {
2108 ret = unuse_vma(vma, type, frontswap,
2109 fs_pages_to_unuse);
2110 if (ret)
2111 break;
2112 }
2113 cond_resched();
2114 }
2115 mmap_read_unlock(mm);
2116 return ret;
2117 }
2118
2119 /*
2120 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2121 * from current position to next entry still in use. Return 0
2122 * if there are no inuse entries after prev till end of the map.
2123 */
2124 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2125 unsigned int prev, bool frontswap)
2126 {
2127 unsigned int i;
2128 unsigned char count;
2129
2130 /*
2131 * No need for swap_lock here: we're just looking
2132 * for whether an entry is in use, not modifying it; false
2133 * hits are okay, and sys_swapoff() has already prevented new
2134 * allocations from this area (while holding swap_lock).
2135 */
2136 for (i = prev + 1; i < si->max; i++) {
2137 count = READ_ONCE(si->swap_map[i]);
2138 if (count && swap_count(count) != SWAP_MAP_BAD)
2139 if (!frontswap || frontswap_test(si, i))
2140 break;
2141 if ((i % LATENCY_LIMIT) == 0)
2142 cond_resched();
2143 }
2144
2145 if (i == si->max)
2146 i = 0;
2147
2148 return i;
2149 }
2150
2151 /*
2152 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2153 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2154 */
2155 int try_to_unuse(unsigned int type, bool frontswap,
2156 unsigned long pages_to_unuse)
2157 {
2158 struct mm_struct *prev_mm;
2159 struct mm_struct *mm;
2160 struct list_head *p;
2161 int retval = 0;
2162 struct swap_info_struct *si = swap_info[type];
2163 struct page *page;
2164 swp_entry_t entry;
2165 unsigned int i;
2166
2167 if (!READ_ONCE(si->inuse_pages))
2168 return 0;
2169
2170 if (!frontswap)
2171 pages_to_unuse = 0;
2172
2173 retry:
2174 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2175 if (retval)
2176 goto out;
2177
2178 prev_mm = &init_mm;
2179 mmget(prev_mm);
2180
2181 spin_lock(&mmlist_lock);
2182 p = &init_mm.mmlist;
2183 while (READ_ONCE(si->inuse_pages) &&
2184 !signal_pending(current) &&
2185 (p = p->next) != &init_mm.mmlist) {
2186
2187 mm = list_entry(p, struct mm_struct, mmlist);
2188 if (!mmget_not_zero(mm))
2189 continue;
2190 spin_unlock(&mmlist_lock);
2191 mmput(prev_mm);
2192 prev_mm = mm;
2193 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2194
2195 if (retval) {
2196 mmput(prev_mm);
2197 goto out;
2198 }
2199
2200 /*
2201 * Make sure that we aren't completely killing
2202 * interactive performance.
2203 */
2204 cond_resched();
2205 spin_lock(&mmlist_lock);
2206 }
2207 spin_unlock(&mmlist_lock);
2208
2209 mmput(prev_mm);
2210
2211 i = 0;
2212 while (READ_ONCE(si->inuse_pages) &&
2213 !signal_pending(current) &&
2214 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2215
2216 entry = swp_entry(type, i);
2217 page = find_get_page(swap_address_space(entry), i);
2218 if (!page)
2219 continue;
2220
2221 /*
2222 * It is conceivable that a racing task removed this page from
2223 * swap cache just before we acquired the page lock. The page
2224 * might even be back in swap cache on another swap area. But
2225 * that is okay, try_to_free_swap() only removes stale pages.
2226 */
2227 lock_page(page);
2228 wait_on_page_writeback(page);
2229 try_to_free_swap(page);
2230 unlock_page(page);
2231 put_page(page);
2232
2233 /*
2234 * For frontswap, we just need to unuse pages_to_unuse, if
2235 * it was specified. Need not check frontswap again here as
2236 * we already zeroed out pages_to_unuse if not frontswap.
2237 */
2238 if (pages_to_unuse && --pages_to_unuse == 0)
2239 goto out;
2240 }
2241
2242 /*
2243 * Lets check again to see if there are still swap entries in the map.
2244 * If yes, we would need to do retry the unuse logic again.
2245 * Under global memory pressure, swap entries can be reinserted back
2246 * into process space after the mmlist loop above passes over them.
2247 *
2248 * Limit the number of retries? No: when mmget_not_zero() above fails,
2249 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2250 * at its own independent pace; and even shmem_writepage() could have
2251 * been preempted after get_swap_page(), temporarily hiding that swap.
2252 * It's easy and robust (though cpu-intensive) just to keep retrying.
2253 */
2254 if (READ_ONCE(si->inuse_pages)) {
2255 if (!signal_pending(current))
2256 goto retry;
2257 retval = -EINTR;
2258 }
2259 out:
2260 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2261 }
2262
2263 /*
2264 * After a successful try_to_unuse, if no swap is now in use, we know
2265 * we can empty the mmlist. swap_lock must be held on entry and exit.
2266 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2267 * added to the mmlist just after page_duplicate - before would be racy.
2268 */
2269 static void drain_mmlist(void)
2270 {
2271 struct list_head *p, *next;
2272 unsigned int type;
2273
2274 for (type = 0; type < nr_swapfiles; type++)
2275 if (swap_info[type]->inuse_pages)
2276 return;
2277 spin_lock(&mmlist_lock);
2278 list_for_each_safe(p, next, &init_mm.mmlist)
2279 list_del_init(p);
2280 spin_unlock(&mmlist_lock);
2281 }
2282
2283 /*
2284 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2285 * corresponds to page offset for the specified swap entry.
2286 * Note that the type of this function is sector_t, but it returns page offset
2287 * into the bdev, not sector offset.
2288 */
2289 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2290 {
2291 struct swap_info_struct *sis;
2292 struct swap_extent *se;
2293 pgoff_t offset;
2294
2295 sis = swp_swap_info(entry);
2296 *bdev = sis->bdev;
2297
2298 offset = swp_offset(entry);
2299 se = offset_to_swap_extent(sis, offset);
2300 return se->start_block + (offset - se->start_page);
2301 }
2302
2303 /*
2304 * Returns the page offset into bdev for the specified page's swap entry.
2305 */
2306 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2307 {
2308 swp_entry_t entry;
2309 entry.val = page_private(page);
2310 return map_swap_entry(entry, bdev);
2311 }
2312
2313 /*
2314 * Free all of a swapdev's extent information
2315 */
2316 static void destroy_swap_extents(struct swap_info_struct *sis)
2317 {
2318 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2319 struct rb_node *rb = sis->swap_extent_root.rb_node;
2320 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2321
2322 rb_erase(rb, &sis->swap_extent_root);
2323 kfree(se);
2324 }
2325
2326 if (sis->flags & SWP_ACTIVATED) {
2327 struct file *swap_file = sis->swap_file;
2328 struct address_space *mapping = swap_file->f_mapping;
2329
2330 sis->flags &= ~SWP_ACTIVATED;
2331 if (mapping->a_ops->swap_deactivate)
2332 mapping->a_ops->swap_deactivate(swap_file);
2333 }
2334 }
2335
2336 /*
2337 * Add a block range (and the corresponding page range) into this swapdev's
2338 * extent tree.
2339 *
2340 * This function rather assumes that it is called in ascending page order.
2341 */
2342 int
2343 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2344 unsigned long nr_pages, sector_t start_block)
2345 {
2346 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2347 struct swap_extent *se;
2348 struct swap_extent *new_se;
2349
2350 /*
2351 * place the new node at the right most since the
2352 * function is called in ascending page order.
2353 */
2354 while (*link) {
2355 parent = *link;
2356 link = &parent->rb_right;
2357 }
2358
2359 if (parent) {
2360 se = rb_entry(parent, struct swap_extent, rb_node);
2361 BUG_ON(se->start_page + se->nr_pages != start_page);
2362 if (se->start_block + se->nr_pages == start_block) {
2363 /* Merge it */
2364 se->nr_pages += nr_pages;
2365 return 0;
2366 }
2367 }
2368
2369 /* No merge, insert a new extent. */
2370 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2371 if (new_se == NULL)
2372 return -ENOMEM;
2373 new_se->start_page = start_page;
2374 new_se->nr_pages = nr_pages;
2375 new_se->start_block = start_block;
2376
2377 rb_link_node(&new_se->rb_node, parent, link);
2378 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2379 return 1;
2380 }
2381 EXPORT_SYMBOL_GPL(add_swap_extent);
2382
2383 /*
2384 * A `swap extent' is a simple thing which maps a contiguous range of pages
2385 * onto a contiguous range of disk blocks. An ordered list of swap extents
2386 * is built at swapon time and is then used at swap_writepage/swap_readpage
2387 * time for locating where on disk a page belongs.
2388 *
2389 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2390 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2391 * swap files identically.
2392 *
2393 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2394 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2395 * swapfiles are handled *identically* after swapon time.
2396 *
2397 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2398 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2399 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2400 * requirements, they are simply tossed out - we will never use those blocks
2401 * for swapping.
2402 *
2403 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2404 * prevents users from writing to the swap device, which will corrupt memory.
2405 *
2406 * The amount of disk space which a single swap extent represents varies.
2407 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2408 * extents in the list. To avoid much list walking, we cache the previous
2409 * search location in `curr_swap_extent', and start new searches from there.
2410 * This is extremely effective. The average number of iterations in
2411 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2412 */
2413 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2414 {
2415 struct file *swap_file = sis->swap_file;
2416 struct address_space *mapping = swap_file->f_mapping;
2417 struct inode *inode = mapping->host;
2418 int ret;
2419
2420 if (S_ISBLK(inode->i_mode)) {
2421 ret = add_swap_extent(sis, 0, sis->max, 0);
2422 *span = sis->pages;
2423 return ret;
2424 }
2425
2426 if (mapping->a_ops->swap_activate) {
2427 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2428 if (ret >= 0)
2429 sis->flags |= SWP_ACTIVATED;
2430 if (!ret) {
2431 sis->flags |= SWP_FS;
2432 ret = add_swap_extent(sis, 0, sis->max, 0);
2433 *span = sis->pages;
2434 }
2435 return ret;
2436 }
2437
2438 return generic_swapfile_activate(sis, swap_file, span);
2439 }
2440
2441 static int swap_node(struct swap_info_struct *p)
2442 {
2443 struct block_device *bdev;
2444
2445 if (p->bdev)
2446 bdev = p->bdev;
2447 else
2448 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2449
2450 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2451 }
2452
2453 static void setup_swap_info(struct swap_info_struct *p, int prio,
2454 unsigned char *swap_map,
2455 struct swap_cluster_info *cluster_info)
2456 {
2457 int i;
2458
2459 if (prio >= 0)
2460 p->prio = prio;
2461 else
2462 p->prio = --least_priority;
2463 /*
2464 * the plist prio is negated because plist ordering is
2465 * low-to-high, while swap ordering is high-to-low
2466 */
2467 p->list.prio = -p->prio;
2468 for_each_node(i) {
2469 if (p->prio >= 0)
2470 p->avail_lists[i].prio = -p->prio;
2471 else {
2472 if (swap_node(p) == i)
2473 p->avail_lists[i].prio = 1;
2474 else
2475 p->avail_lists[i].prio = -p->prio;
2476 }
2477 }
2478 p->swap_map = swap_map;
2479 p->cluster_info = cluster_info;
2480 }
2481
2482 static void _enable_swap_info(struct swap_info_struct *p)
2483 {
2484 p->flags |= SWP_WRITEOK | SWP_VALID;
2485 atomic_long_add(p->pages, &nr_swap_pages);
2486 total_swap_pages += p->pages;
2487
2488 assert_spin_locked(&swap_lock);
2489 /*
2490 * both lists are plists, and thus priority ordered.
2491 * swap_active_head needs to be priority ordered for swapoff(),
2492 * which on removal of any swap_info_struct with an auto-assigned
2493 * (i.e. negative) priority increments the auto-assigned priority
2494 * of any lower-priority swap_info_structs.
2495 * swap_avail_head needs to be priority ordered for get_swap_page(),
2496 * which allocates swap pages from the highest available priority
2497 * swap_info_struct.
2498 */
2499 plist_add(&p->list, &swap_active_head);
2500 add_to_avail_list(p);
2501 }
2502
2503 static void enable_swap_info(struct swap_info_struct *p, int prio,
2504 unsigned char *swap_map,
2505 struct swap_cluster_info *cluster_info,
2506 unsigned long *frontswap_map)
2507 {
2508 frontswap_init(p->type, frontswap_map);
2509 spin_lock(&swap_lock);
2510 spin_lock(&p->lock);
2511 setup_swap_info(p, prio, swap_map, cluster_info);
2512 spin_unlock(&p->lock);
2513 spin_unlock(&swap_lock);
2514 /*
2515 * Guarantee swap_map, cluster_info, etc. fields are valid
2516 * between get/put_swap_device() if SWP_VALID bit is set
2517 */
2518 synchronize_rcu();
2519 spin_lock(&swap_lock);
2520 spin_lock(&p->lock);
2521 _enable_swap_info(p);
2522 spin_unlock(&p->lock);
2523 spin_unlock(&swap_lock);
2524 }
2525
2526 static void reinsert_swap_info(struct swap_info_struct *p)
2527 {
2528 spin_lock(&swap_lock);
2529 spin_lock(&p->lock);
2530 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2531 _enable_swap_info(p);
2532 spin_unlock(&p->lock);
2533 spin_unlock(&swap_lock);
2534 }
2535
2536 bool has_usable_swap(void)
2537 {
2538 bool ret = true;
2539
2540 spin_lock(&swap_lock);
2541 if (plist_head_empty(&swap_active_head))
2542 ret = false;
2543 spin_unlock(&swap_lock);
2544 return ret;
2545 }
2546
2547 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2548 {
2549 struct swap_info_struct *p = NULL;
2550 unsigned char *swap_map;
2551 struct swap_cluster_info *cluster_info;
2552 unsigned long *frontswap_map;
2553 struct file *swap_file, *victim;
2554 struct address_space *mapping;
2555 struct inode *inode;
2556 struct filename *pathname;
2557 int err, found = 0;
2558 unsigned int old_block_size;
2559
2560 if (!capable(CAP_SYS_ADMIN))
2561 return -EPERM;
2562
2563 BUG_ON(!current->mm);
2564
2565 pathname = getname(specialfile);
2566 if (IS_ERR(pathname))
2567 return PTR_ERR(pathname);
2568
2569 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2570 err = PTR_ERR(victim);
2571 if (IS_ERR(victim))
2572 goto out;
2573
2574 mapping = victim->f_mapping;
2575 spin_lock(&swap_lock);
2576 plist_for_each_entry(p, &swap_active_head, list) {
2577 if (p->flags & SWP_WRITEOK) {
2578 if (p->swap_file->f_mapping == mapping) {
2579 found = 1;
2580 break;
2581 }
2582 }
2583 }
2584 if (!found) {
2585 err = -EINVAL;
2586 spin_unlock(&swap_lock);
2587 goto out_dput;
2588 }
2589 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2590 vm_unacct_memory(p->pages);
2591 else {
2592 err = -ENOMEM;
2593 spin_unlock(&swap_lock);
2594 goto out_dput;
2595 }
2596 del_from_avail_list(p);
2597 spin_lock(&p->lock);
2598 if (p->prio < 0) {
2599 struct swap_info_struct *si = p;
2600 int nid;
2601
2602 plist_for_each_entry_continue(si, &swap_active_head, list) {
2603 si->prio++;
2604 si->list.prio--;
2605 for_each_node(nid) {
2606 if (si->avail_lists[nid].prio != 1)
2607 si->avail_lists[nid].prio--;
2608 }
2609 }
2610 least_priority++;
2611 }
2612 plist_del(&p->list, &swap_active_head);
2613 atomic_long_sub(p->pages, &nr_swap_pages);
2614 total_swap_pages -= p->pages;
2615 p->flags &= ~SWP_WRITEOK;
2616 spin_unlock(&p->lock);
2617 spin_unlock(&swap_lock);
2618
2619 disable_swap_slots_cache_lock();
2620
2621 set_current_oom_origin();
2622 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2623 clear_current_oom_origin();
2624
2625 if (err) {
2626 /* re-insert swap space back into swap_list */
2627 reinsert_swap_info(p);
2628 reenable_swap_slots_cache_unlock();
2629 goto out_dput;
2630 }
2631
2632 reenable_swap_slots_cache_unlock();
2633
2634 spin_lock(&swap_lock);
2635 spin_lock(&p->lock);
2636 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2637 spin_unlock(&p->lock);
2638 spin_unlock(&swap_lock);
2639 /*
2640 * wait for swap operations protected by get/put_swap_device()
2641 * to complete
2642 */
2643 synchronize_rcu();
2644
2645 flush_work(&p->discard_work);
2646
2647 destroy_swap_extents(p);
2648 if (p->flags & SWP_CONTINUED)
2649 free_swap_count_continuations(p);
2650
2651 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2652 atomic_dec(&nr_rotate_swap);
2653
2654 mutex_lock(&swapon_mutex);
2655 spin_lock(&swap_lock);
2656 spin_lock(&p->lock);
2657 drain_mmlist();
2658
2659 /* wait for anyone still in scan_swap_map */
2660 p->highest_bit = 0; /* cuts scans short */
2661 while (p->flags >= SWP_SCANNING) {
2662 spin_unlock(&p->lock);
2663 spin_unlock(&swap_lock);
2664 schedule_timeout_uninterruptible(1);
2665 spin_lock(&swap_lock);
2666 spin_lock(&p->lock);
2667 }
2668
2669 swap_file = p->swap_file;
2670 old_block_size = p->old_block_size;
2671 p->swap_file = NULL;
2672 p->max = 0;
2673 swap_map = p->swap_map;
2674 p->swap_map = NULL;
2675 cluster_info = p->cluster_info;
2676 p->cluster_info = NULL;
2677 frontswap_map = frontswap_map_get(p);
2678 spin_unlock(&p->lock);
2679 spin_unlock(&swap_lock);
2680 frontswap_invalidate_area(p->type);
2681 frontswap_map_set(p, NULL);
2682 mutex_unlock(&swapon_mutex);
2683 free_percpu(p->percpu_cluster);
2684 p->percpu_cluster = NULL;
2685 free_percpu(p->cluster_next_cpu);
2686 p->cluster_next_cpu = NULL;
2687 vfree(swap_map);
2688 kvfree(cluster_info);
2689 kvfree(frontswap_map);
2690 /* Destroy swap account information */
2691 swap_cgroup_swapoff(p->type);
2692 exit_swap_address_space(p->type);
2693
2694 inode = mapping->host;
2695 if (S_ISBLK(inode->i_mode)) {
2696 struct block_device *bdev = I_BDEV(inode);
2697
2698 set_blocksize(bdev, old_block_size);
2699 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2700 }
2701
2702 inode_lock(inode);
2703 inode->i_flags &= ~S_SWAPFILE;
2704 inode_unlock(inode);
2705 filp_close(swap_file, NULL);
2706
2707 /*
2708 * Clear the SWP_USED flag after all resources are freed so that swapon
2709 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2710 * not hold p->lock after we cleared its SWP_WRITEOK.
2711 */
2712 spin_lock(&swap_lock);
2713 p->flags = 0;
2714 spin_unlock(&swap_lock);
2715
2716 err = 0;
2717 atomic_inc(&proc_poll_event);
2718 wake_up_interruptible(&proc_poll_wait);
2719
2720 out_dput:
2721 filp_close(victim, NULL);
2722 out:
2723 putname(pathname);
2724 return err;
2725 }
2726
2727 #ifdef CONFIG_PROC_FS
2728 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2729 {
2730 struct seq_file *seq = file->private_data;
2731
2732 poll_wait(file, &proc_poll_wait, wait);
2733
2734 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2735 seq->poll_event = atomic_read(&proc_poll_event);
2736 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2737 }
2738
2739 return EPOLLIN | EPOLLRDNORM;
2740 }
2741
2742 /* iterator */
2743 static void *swap_start(struct seq_file *swap, loff_t *pos)
2744 {
2745 struct swap_info_struct *si;
2746 int type;
2747 loff_t l = *pos;
2748
2749 mutex_lock(&swapon_mutex);
2750
2751 if (!l)
2752 return SEQ_START_TOKEN;
2753
2754 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2755 if (!(si->flags & SWP_USED) || !si->swap_map)
2756 continue;
2757 if (!--l)
2758 return si;
2759 }
2760
2761 return NULL;
2762 }
2763
2764 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2765 {
2766 struct swap_info_struct *si = v;
2767 int type;
2768
2769 if (v == SEQ_START_TOKEN)
2770 type = 0;
2771 else
2772 type = si->type + 1;
2773
2774 ++(*pos);
2775 for (; (si = swap_type_to_swap_info(type)); type++) {
2776 if (!(si->flags & SWP_USED) || !si->swap_map)
2777 continue;
2778 return si;
2779 }
2780
2781 return NULL;
2782 }
2783
2784 static void swap_stop(struct seq_file *swap, void *v)
2785 {
2786 mutex_unlock(&swapon_mutex);
2787 }
2788
2789 static int swap_show(struct seq_file *swap, void *v)
2790 {
2791 struct swap_info_struct *si = v;
2792 struct file *file;
2793 int len;
2794 unsigned int bytes, inuse;
2795
2796 if (si == SEQ_START_TOKEN) {
2797 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2798 return 0;
2799 }
2800
2801 bytes = si->pages << (PAGE_SHIFT - 10);
2802 inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2803
2804 file = si->swap_file;
2805 len = seq_file_path(swap, file, " \t\n\\");
2806 seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2807 len < 40 ? 40 - len : 1, " ",
2808 S_ISBLK(file_inode(file)->i_mode) ?
2809 "partition" : "file\t",
2810 bytes, bytes < 10000000 ? "\t" : "",
2811 inuse, inuse < 10000000 ? "\t" : "",
2812 si->prio);
2813 return 0;
2814 }
2815
2816 static const struct seq_operations swaps_op = {
2817 .start = swap_start,
2818 .next = swap_next,
2819 .stop = swap_stop,
2820 .show = swap_show
2821 };
2822
2823 static int swaps_open(struct inode *inode, struct file *file)
2824 {
2825 struct seq_file *seq;
2826 int ret;
2827
2828 ret = seq_open(file, &swaps_op);
2829 if (ret)
2830 return ret;
2831
2832 seq = file->private_data;
2833 seq->poll_event = atomic_read(&proc_poll_event);
2834 return 0;
2835 }
2836
2837 static const struct proc_ops swaps_proc_ops = {
2838 .proc_flags = PROC_ENTRY_PERMANENT,
2839 .proc_open = swaps_open,
2840 .proc_read = seq_read,
2841 .proc_lseek = seq_lseek,
2842 .proc_release = seq_release,
2843 .proc_poll = swaps_poll,
2844 };
2845
2846 static int __init procswaps_init(void)
2847 {
2848 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2849 return 0;
2850 }
2851 __initcall(procswaps_init);
2852 #endif /* CONFIG_PROC_FS */
2853
2854 #ifdef MAX_SWAPFILES_CHECK
2855 static int __init max_swapfiles_check(void)
2856 {
2857 MAX_SWAPFILES_CHECK();
2858 return 0;
2859 }
2860 late_initcall(max_swapfiles_check);
2861 #endif
2862
2863 static struct swap_info_struct *alloc_swap_info(void)
2864 {
2865 struct swap_info_struct *p;
2866 unsigned int type;
2867 int i;
2868
2869 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2870 if (!p)
2871 return ERR_PTR(-ENOMEM);
2872
2873 spin_lock(&swap_lock);
2874 for (type = 0; type < nr_swapfiles; type++) {
2875 if (!(swap_info[type]->flags & SWP_USED))
2876 break;
2877 }
2878 if (type >= MAX_SWAPFILES) {
2879 spin_unlock(&swap_lock);
2880 kvfree(p);
2881 return ERR_PTR(-EPERM);
2882 }
2883 if (type >= nr_swapfiles) {
2884 p->type = type;
2885 WRITE_ONCE(swap_info[type], p);
2886 /*
2887 * Write swap_info[type] before nr_swapfiles, in case a
2888 * racing procfs swap_start() or swap_next() is reading them.
2889 * (We never shrink nr_swapfiles, we never free this entry.)
2890 */
2891 smp_wmb();
2892 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2893 } else {
2894 kvfree(p);
2895 p = swap_info[type];
2896 /*
2897 * Do not memset this entry: a racing procfs swap_next()
2898 * would be relying on p->type to remain valid.
2899 */
2900 }
2901 p->swap_extent_root = RB_ROOT;
2902 plist_node_init(&p->list, 0);
2903 for_each_node(i)
2904 plist_node_init(&p->avail_lists[i], 0);
2905 p->flags = SWP_USED;
2906 spin_unlock(&swap_lock);
2907 spin_lock_init(&p->lock);
2908 spin_lock_init(&p->cont_lock);
2909
2910 return p;
2911 }
2912
2913 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2914 {
2915 int error;
2916
2917 if (S_ISBLK(inode->i_mode)) {
2918 p->bdev = bdgrab(I_BDEV(inode));
2919 error = blkdev_get(p->bdev,
2920 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2921 if (error < 0) {
2922 p->bdev = NULL;
2923 return error;
2924 }
2925 p->old_block_size = block_size(p->bdev);
2926 error = set_blocksize(p->bdev, PAGE_SIZE);
2927 if (error < 0)
2928 return error;
2929 /*
2930 * Zoned block devices contain zones that have a sequential
2931 * write only restriction. Hence zoned block devices are not
2932 * suitable for swapping. Disallow them here.
2933 */
2934 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2935 return -EINVAL;
2936 p->flags |= SWP_BLKDEV;
2937 } else if (S_ISREG(inode->i_mode)) {
2938 p->bdev = inode->i_sb->s_bdev;
2939 }
2940
2941 return 0;
2942 }
2943
2944
2945 /*
2946 * Find out how many pages are allowed for a single swap device. There
2947 * are two limiting factors:
2948 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2949 * 2) the number of bits in the swap pte, as defined by the different
2950 * architectures.
2951 *
2952 * In order to find the largest possible bit mask, a swap entry with
2953 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2954 * decoded to a swp_entry_t again, and finally the swap offset is
2955 * extracted.
2956 *
2957 * This will mask all the bits from the initial ~0UL mask that can't
2958 * be encoded in either the swp_entry_t or the architecture definition
2959 * of a swap pte.
2960 */
2961 unsigned long generic_max_swapfile_size(void)
2962 {
2963 return swp_offset(pte_to_swp_entry(
2964 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2965 }
2966
2967 /* Can be overridden by an architecture for additional checks. */
2968 __weak unsigned long max_swapfile_size(void)
2969 {
2970 return generic_max_swapfile_size();
2971 }
2972
2973 static unsigned long read_swap_header(struct swap_info_struct *p,
2974 union swap_header *swap_header,
2975 struct inode *inode)
2976 {
2977 int i;
2978 unsigned long maxpages;
2979 unsigned long swapfilepages;
2980 unsigned long last_page;
2981
2982 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2983 pr_err("Unable to find swap-space signature\n");
2984 return 0;
2985 }
2986
2987 /* swap partition endianess hack... */
2988 if (swab32(swap_header->info.version) == 1) {
2989 swab32s(&swap_header->info.version);
2990 swab32s(&swap_header->info.last_page);
2991 swab32s(&swap_header->info.nr_badpages);
2992 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2993 return 0;
2994 for (i = 0; i < swap_header->info.nr_badpages; i++)
2995 swab32s(&swap_header->info.badpages[i]);
2996 }
2997 /* Check the swap header's sub-version */
2998 if (swap_header->info.version != 1) {
2999 pr_warn("Unable to handle swap header version %d\n",
3000 swap_header->info.version);
3001 return 0;
3002 }
3003
3004 p->lowest_bit = 1;
3005 p->cluster_next = 1;
3006 p->cluster_nr = 0;
3007
3008 maxpages = max_swapfile_size();
3009 last_page = swap_header->info.last_page;
3010 if (!last_page) {
3011 pr_warn("Empty swap-file\n");
3012 return 0;
3013 }
3014 if (last_page > maxpages) {
3015 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3016 maxpages << (PAGE_SHIFT - 10),
3017 last_page << (PAGE_SHIFT - 10));
3018 }
3019 if (maxpages > last_page) {
3020 maxpages = last_page + 1;
3021 /* p->max is an unsigned int: don't overflow it */
3022 if ((unsigned int)maxpages == 0)
3023 maxpages = UINT_MAX;
3024 }
3025 p->highest_bit = maxpages - 1;
3026
3027 if (!maxpages)
3028 return 0;
3029 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3030 if (swapfilepages && maxpages > swapfilepages) {
3031 pr_warn("Swap area shorter than signature indicates\n");
3032 return 0;
3033 }
3034 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3035 return 0;
3036 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3037 return 0;
3038
3039 return maxpages;
3040 }
3041
3042 #define SWAP_CLUSTER_INFO_COLS \
3043 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3044 #define SWAP_CLUSTER_SPACE_COLS \
3045 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3046 #define SWAP_CLUSTER_COLS \
3047 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3048
3049 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3050 union swap_header *swap_header,
3051 unsigned char *swap_map,
3052 struct swap_cluster_info *cluster_info,
3053 unsigned long maxpages,
3054 sector_t *span)
3055 {
3056 unsigned int j, k;
3057 unsigned int nr_good_pages;
3058 int nr_extents;
3059 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3060 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3061 unsigned long i, idx;
3062
3063 nr_good_pages = maxpages - 1; /* omit header page */
3064
3065 cluster_list_init(&p->free_clusters);
3066 cluster_list_init(&p->discard_clusters);
3067
3068 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3069 unsigned int page_nr = swap_header->info.badpages[i];
3070 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3071 return -EINVAL;
3072 if (page_nr < maxpages) {
3073 swap_map[page_nr] = SWAP_MAP_BAD;
3074 nr_good_pages--;
3075 /*
3076 * Haven't marked the cluster free yet, no list
3077 * operation involved
3078 */
3079 inc_cluster_info_page(p, cluster_info, page_nr);
3080 }
3081 }
3082
3083 /* Haven't marked the cluster free yet, no list operation involved */
3084 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3085 inc_cluster_info_page(p, cluster_info, i);
3086
3087 if (nr_good_pages) {
3088 swap_map[0] = SWAP_MAP_BAD;
3089 /*
3090 * Not mark the cluster free yet, no list
3091 * operation involved
3092 */
3093 inc_cluster_info_page(p, cluster_info, 0);
3094 p->max = maxpages;
3095 p->pages = nr_good_pages;
3096 nr_extents = setup_swap_extents(p, span);
3097 if (nr_extents < 0)
3098 return nr_extents;
3099 nr_good_pages = p->pages;
3100 }
3101 if (!nr_good_pages) {
3102 pr_warn("Empty swap-file\n");
3103 return -EINVAL;
3104 }
3105
3106 if (!cluster_info)
3107 return nr_extents;
3108
3109
3110 /*
3111 * Reduce false cache line sharing between cluster_info and
3112 * sharing same address space.
3113 */
3114 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3115 j = (k + col) % SWAP_CLUSTER_COLS;
3116 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3117 idx = i * SWAP_CLUSTER_COLS + j;
3118 if (idx >= nr_clusters)
3119 continue;
3120 if (cluster_count(&cluster_info[idx]))
3121 continue;
3122 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3123 cluster_list_add_tail(&p->free_clusters, cluster_info,
3124 idx);
3125 }
3126 }
3127 return nr_extents;
3128 }
3129
3130 /*
3131 * Helper to sys_swapon determining if a given swap
3132 * backing device queue supports DISCARD operations.
3133 */
3134 static bool swap_discardable(struct swap_info_struct *si)
3135 {
3136 struct request_queue *q = bdev_get_queue(si->bdev);
3137
3138 if (!q || !blk_queue_discard(q))
3139 return false;
3140
3141 return true;
3142 }
3143
3144 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3145 {
3146 struct swap_info_struct *p;
3147 struct filename *name;
3148 struct file *swap_file = NULL;
3149 struct address_space *mapping;
3150 int prio;
3151 int error;
3152 union swap_header *swap_header;
3153 int nr_extents;
3154 sector_t span;
3155 unsigned long maxpages;
3156 unsigned char *swap_map = NULL;
3157 struct swap_cluster_info *cluster_info = NULL;
3158 unsigned long *frontswap_map = NULL;
3159 struct page *page = NULL;
3160 struct inode *inode = NULL;
3161 bool inced_nr_rotate_swap = false;
3162
3163 if (swap_flags & ~SWAP_FLAGS_VALID)
3164 return -EINVAL;
3165
3166 if (!capable(CAP_SYS_ADMIN))
3167 return -EPERM;
3168
3169 if (!swap_avail_heads)
3170 return -ENOMEM;
3171
3172 p = alloc_swap_info();
3173 if (IS_ERR(p))
3174 return PTR_ERR(p);
3175
3176 INIT_WORK(&p->discard_work, swap_discard_work);
3177
3178 name = getname(specialfile);
3179 if (IS_ERR(name)) {
3180 error = PTR_ERR(name);
3181 name = NULL;
3182 goto bad_swap;
3183 }
3184 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3185 if (IS_ERR(swap_file)) {
3186 error = PTR_ERR(swap_file);
3187 swap_file = NULL;
3188 goto bad_swap;
3189 }
3190
3191 p->swap_file = swap_file;
3192 mapping = swap_file->f_mapping;
3193 inode = mapping->host;
3194
3195 error = claim_swapfile(p, inode);
3196 if (unlikely(error))
3197 goto bad_swap;
3198
3199 inode_lock(inode);
3200 if (IS_SWAPFILE(inode)) {
3201 error = -EBUSY;
3202 goto bad_swap_unlock_inode;
3203 }
3204
3205 /*
3206 * Read the swap header.
3207 */
3208 if (!mapping->a_ops->readpage) {
3209 error = -EINVAL;
3210 goto bad_swap_unlock_inode;
3211 }
3212 page = read_mapping_page(mapping, 0, swap_file);
3213 if (IS_ERR(page)) {
3214 error = PTR_ERR(page);
3215 goto bad_swap_unlock_inode;
3216 }
3217 swap_header = kmap(page);
3218
3219 maxpages = read_swap_header(p, swap_header, inode);
3220 if (unlikely(!maxpages)) {
3221 error = -EINVAL;
3222 goto bad_swap_unlock_inode;
3223 }
3224
3225 /* OK, set up the swap map and apply the bad block list */
3226 swap_map = vzalloc(maxpages);
3227 if (!swap_map) {
3228 error = -ENOMEM;
3229 goto bad_swap_unlock_inode;
3230 }
3231
3232 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3233 p->flags |= SWP_STABLE_WRITES;
3234
3235 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3236 p->flags |= SWP_SYNCHRONOUS_IO;
3237
3238 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3239 int cpu;
3240 unsigned long ci, nr_cluster;
3241
3242 p->flags |= SWP_SOLIDSTATE;
3243 p->cluster_next_cpu = alloc_percpu(unsigned int);
3244 if (!p->cluster_next_cpu) {
3245 error = -ENOMEM;
3246 goto bad_swap_unlock_inode;
3247 }
3248 /*
3249 * select a random position to start with to help wear leveling
3250 * SSD
3251 */
3252 for_each_possible_cpu(cpu) {
3253 per_cpu(*p->cluster_next_cpu, cpu) =
3254 1 + prandom_u32_max(p->highest_bit);
3255 }
3256 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3257
3258 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3259 GFP_KERNEL);
3260 if (!cluster_info) {
3261 error = -ENOMEM;
3262 goto bad_swap_unlock_inode;
3263 }
3264
3265 for (ci = 0; ci < nr_cluster; ci++)
3266 spin_lock_init(&((cluster_info + ci)->lock));
3267
3268 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3269 if (!p->percpu_cluster) {
3270 error = -ENOMEM;
3271 goto bad_swap_unlock_inode;
3272 }
3273 for_each_possible_cpu(cpu) {
3274 struct percpu_cluster *cluster;
3275 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3276 cluster_set_null(&cluster->index);
3277 }
3278 } else {
3279 atomic_inc(&nr_rotate_swap);
3280 inced_nr_rotate_swap = true;
3281 }
3282
3283 error = swap_cgroup_swapon(p->type, maxpages);
3284 if (error)
3285 goto bad_swap_unlock_inode;
3286
3287 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3288 cluster_info, maxpages, &span);
3289 if (unlikely(nr_extents < 0)) {
3290 error = nr_extents;
3291 goto bad_swap_unlock_inode;
3292 }
3293 /* frontswap enabled? set up bit-per-page map for frontswap */
3294 if (IS_ENABLED(CONFIG_FRONTSWAP))
3295 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3296 sizeof(long),
3297 GFP_KERNEL);
3298
3299 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3300 /*
3301 * When discard is enabled for swap with no particular
3302 * policy flagged, we set all swap discard flags here in
3303 * order to sustain backward compatibility with older
3304 * swapon(8) releases.
3305 */
3306 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3307 SWP_PAGE_DISCARD);
3308
3309 /*
3310 * By flagging sys_swapon, a sysadmin can tell us to
3311 * either do single-time area discards only, or to just
3312 * perform discards for released swap page-clusters.
3313 * Now it's time to adjust the p->flags accordingly.
3314 */
3315 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3316 p->flags &= ~SWP_PAGE_DISCARD;
3317 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3318 p->flags &= ~SWP_AREA_DISCARD;
3319
3320 /* issue a swapon-time discard if it's still required */
3321 if (p->flags & SWP_AREA_DISCARD) {
3322 int err = discard_swap(p);
3323 if (unlikely(err))
3324 pr_err("swapon: discard_swap(%p): %d\n",
3325 p, err);
3326 }
3327 }
3328
3329 error = init_swap_address_space(p->type, maxpages);
3330 if (error)
3331 goto bad_swap_unlock_inode;
3332
3333 /*
3334 * Flush any pending IO and dirty mappings before we start using this
3335 * swap device.
3336 */
3337 inode->i_flags |= S_SWAPFILE;
3338 error = inode_drain_writes(inode);
3339 if (error) {
3340 inode->i_flags &= ~S_SWAPFILE;
3341 goto bad_swap_unlock_inode;
3342 }
3343
3344 mutex_lock(&swapon_mutex);
3345 prio = -1;
3346 if (swap_flags & SWAP_FLAG_PREFER)
3347 prio =
3348 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3349 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3350
3351 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3352 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3353 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3354 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3355 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3356 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3357 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3358 (frontswap_map) ? "FS" : "");
3359
3360 mutex_unlock(&swapon_mutex);
3361 atomic_inc(&proc_poll_event);
3362 wake_up_interruptible(&proc_poll_wait);
3363
3364 error = 0;
3365 goto out;
3366 bad_swap_unlock_inode:
3367 inode_unlock(inode);
3368 bad_swap:
3369 free_percpu(p->percpu_cluster);
3370 p->percpu_cluster = NULL;
3371 free_percpu(p->cluster_next_cpu);
3372 p->cluster_next_cpu = NULL;
3373 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3374 set_blocksize(p->bdev, p->old_block_size);
3375 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3376 }
3377 inode = NULL;
3378 destroy_swap_extents(p);
3379 swap_cgroup_swapoff(p->type);
3380 spin_lock(&swap_lock);
3381 p->swap_file = NULL;
3382 p->flags = 0;
3383 spin_unlock(&swap_lock);
3384 vfree(swap_map);
3385 kvfree(cluster_info);
3386 kvfree(frontswap_map);
3387 if (inced_nr_rotate_swap)
3388 atomic_dec(&nr_rotate_swap);
3389 if (swap_file)
3390 filp_close(swap_file, NULL);
3391 out:
3392 if (page && !IS_ERR(page)) {
3393 kunmap(page);
3394 put_page(page);
3395 }
3396 if (name)
3397 putname(name);
3398 if (inode)
3399 inode_unlock(inode);
3400 if (!error)
3401 enable_swap_slots_cache();
3402 return error;
3403 }
3404
3405 void si_swapinfo(struct sysinfo *val)
3406 {
3407 unsigned int type;
3408 unsigned long nr_to_be_unused = 0;
3409
3410 spin_lock(&swap_lock);
3411 for (type = 0; type < nr_swapfiles; type++) {
3412 struct swap_info_struct *si = swap_info[type];
3413
3414 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3415 nr_to_be_unused += si->inuse_pages;
3416 }
3417 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3418 val->totalswap = total_swap_pages + nr_to_be_unused;
3419 spin_unlock(&swap_lock);
3420 }
3421
3422 /*
3423 * Verify that a swap entry is valid and increment its swap map count.
3424 *
3425 * Returns error code in following case.
3426 * - success -> 0
3427 * - swp_entry is invalid -> EINVAL
3428 * - swp_entry is migration entry -> EINVAL
3429 * - swap-cache reference is requested but there is already one. -> EEXIST
3430 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3431 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3432 */
3433 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3434 {
3435 struct swap_info_struct *p;
3436 struct swap_cluster_info *ci;
3437 unsigned long offset;
3438 unsigned char count;
3439 unsigned char has_cache;
3440 int err = -EINVAL;
3441
3442 p = get_swap_device(entry);
3443 if (!p)
3444 goto out;
3445
3446 offset = swp_offset(entry);
3447 ci = lock_cluster_or_swap_info(p, offset);
3448
3449 count = p->swap_map[offset];
3450
3451 /*
3452 * swapin_readahead() doesn't check if a swap entry is valid, so the
3453 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3454 */
3455 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3456 err = -ENOENT;
3457 goto unlock_out;
3458 }
3459
3460 has_cache = count & SWAP_HAS_CACHE;
3461 count &= ~SWAP_HAS_CACHE;
3462 err = 0;
3463
3464 if (usage == SWAP_HAS_CACHE) {
3465
3466 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3467 if (!has_cache && count)
3468 has_cache = SWAP_HAS_CACHE;
3469 else if (has_cache) /* someone else added cache */
3470 err = -EEXIST;
3471 else /* no users remaining */
3472 err = -ENOENT;
3473
3474 } else if (count || has_cache) {
3475
3476 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3477 count += usage;
3478 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3479 err = -EINVAL;
3480 else if (swap_count_continued(p, offset, count))
3481 count = COUNT_CONTINUED;
3482 else
3483 err = -ENOMEM;
3484 } else
3485 err = -ENOENT; /* unused swap entry */
3486
3487 p->swap_map[offset] = count | has_cache;
3488
3489 unlock_out:
3490 unlock_cluster_or_swap_info(p, ci);
3491 out:
3492 if (p)
3493 put_swap_device(p);
3494 return err;
3495 }
3496
3497 /*
3498 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3499 * (in which case its reference count is never incremented).
3500 */
3501 void swap_shmem_alloc(swp_entry_t entry)
3502 {
3503 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3504 }
3505
3506 /*
3507 * Increase reference count of swap entry by 1.
3508 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3509 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3510 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3511 * might occur if a page table entry has got corrupted.
3512 */
3513 int swap_duplicate(swp_entry_t entry)
3514 {
3515 int err = 0;
3516
3517 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3518 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3519 return err;
3520 }
3521
3522 /*
3523 * @entry: swap entry for which we allocate swap cache.
3524 *
3525 * Called when allocating swap cache for existing swap entry,
3526 * This can return error codes. Returns 0 at success.
3527 * -EEXIST means there is a swap cache.
3528 * Note: return code is different from swap_duplicate().
3529 */
3530 int swapcache_prepare(swp_entry_t entry)
3531 {
3532 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3533 }
3534
3535 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3536 {
3537 return swap_type_to_swap_info(swp_type(entry));
3538 }
3539
3540 struct swap_info_struct *page_swap_info(struct page *page)
3541 {
3542 swp_entry_t entry = { .val = page_private(page) };
3543 return swp_swap_info(entry);
3544 }
3545
3546 /*
3547 * out-of-line __page_file_ methods to avoid include hell.
3548 */
3549 struct address_space *__page_file_mapping(struct page *page)
3550 {
3551 return page_swap_info(page)->swap_file->f_mapping;
3552 }
3553 EXPORT_SYMBOL_GPL(__page_file_mapping);
3554
3555 pgoff_t __page_file_index(struct page *page)
3556 {
3557 swp_entry_t swap = { .val = page_private(page) };
3558 return swp_offset(swap);
3559 }
3560 EXPORT_SYMBOL_GPL(__page_file_index);
3561
3562 /*
3563 * add_swap_count_continuation - called when a swap count is duplicated
3564 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3565 * page of the original vmalloc'ed swap_map, to hold the continuation count
3566 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3567 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3568 *
3569 * These continuation pages are seldom referenced: the common paths all work
3570 * on the original swap_map, only referring to a continuation page when the
3571 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3572 *
3573 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3574 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3575 * can be called after dropping locks.
3576 */
3577 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3578 {
3579 struct swap_info_struct *si;
3580 struct swap_cluster_info *ci;
3581 struct page *head;
3582 struct page *page;
3583 struct page *list_page;
3584 pgoff_t offset;
3585 unsigned char count;
3586 int ret = 0;
3587
3588 /*
3589 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3590 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3591 */
3592 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3593
3594 si = get_swap_device(entry);
3595 if (!si) {
3596 /*
3597 * An acceptable race has occurred since the failing
3598 * __swap_duplicate(): the swap device may be swapoff
3599 */
3600 goto outer;
3601 }
3602 spin_lock(&si->lock);
3603
3604 offset = swp_offset(entry);
3605
3606 ci = lock_cluster(si, offset);
3607
3608 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3609
3610 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3611 /*
3612 * The higher the swap count, the more likely it is that tasks
3613 * will race to add swap count continuation: we need to avoid
3614 * over-provisioning.
3615 */
3616 goto out;
3617 }
3618
3619 if (!page) {
3620 ret = -ENOMEM;
3621 goto out;
3622 }
3623
3624 /*
3625 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3626 * no architecture is using highmem pages for kernel page tables: so it
3627 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3628 */
3629 head = vmalloc_to_page(si->swap_map + offset);
3630 offset &= ~PAGE_MASK;
3631
3632 spin_lock(&si->cont_lock);
3633 /*
3634 * Page allocation does not initialize the page's lru field,
3635 * but it does always reset its private field.
3636 */
3637 if (!page_private(head)) {
3638 BUG_ON(count & COUNT_CONTINUED);
3639 INIT_LIST_HEAD(&head->lru);
3640 set_page_private(head, SWP_CONTINUED);
3641 si->flags |= SWP_CONTINUED;
3642 }
3643
3644 list_for_each_entry(list_page, &head->lru, lru) {
3645 unsigned char *map;
3646
3647 /*
3648 * If the previous map said no continuation, but we've found
3649 * a continuation page, free our allocation and use this one.
3650 */
3651 if (!(count & COUNT_CONTINUED))
3652 goto out_unlock_cont;
3653
3654 map = kmap_atomic(list_page) + offset;
3655 count = *map;
3656 kunmap_atomic(map);
3657
3658 /*
3659 * If this continuation count now has some space in it,
3660 * free our allocation and use this one.
3661 */
3662 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3663 goto out_unlock_cont;
3664 }
3665
3666 list_add_tail(&page->lru, &head->lru);
3667 page = NULL; /* now it's attached, don't free it */
3668 out_unlock_cont:
3669 spin_unlock(&si->cont_lock);
3670 out:
3671 unlock_cluster(ci);
3672 spin_unlock(&si->lock);
3673 put_swap_device(si);
3674 outer:
3675 if (page)
3676 __free_page(page);
3677 return ret;
3678 }
3679
3680 /*
3681 * swap_count_continued - when the original swap_map count is incremented
3682 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3683 * into, carry if so, or else fail until a new continuation page is allocated;
3684 * when the original swap_map count is decremented from 0 with continuation,
3685 * borrow from the continuation and report whether it still holds more.
3686 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3687 * lock.
3688 */
3689 static bool swap_count_continued(struct swap_info_struct *si,
3690 pgoff_t offset, unsigned char count)
3691 {
3692 struct page *head;
3693 struct page *page;
3694 unsigned char *map;
3695 bool ret;
3696
3697 head = vmalloc_to_page(si->swap_map + offset);
3698 if (page_private(head) != SWP_CONTINUED) {
3699 BUG_ON(count & COUNT_CONTINUED);
3700 return false; /* need to add count continuation */
3701 }
3702
3703 spin_lock(&si->cont_lock);
3704 offset &= ~PAGE_MASK;
3705 page = list_next_entry(head, lru);
3706 map = kmap_atomic(page) + offset;
3707
3708 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3709 goto init_map; /* jump over SWAP_CONT_MAX checks */
3710
3711 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3712 /*
3713 * Think of how you add 1 to 999
3714 */
3715 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3716 kunmap_atomic(map);
3717 page = list_next_entry(page, lru);
3718 BUG_ON(page == head);
3719 map = kmap_atomic(page) + offset;
3720 }
3721 if (*map == SWAP_CONT_MAX) {
3722 kunmap_atomic(map);
3723 page = list_next_entry(page, lru);
3724 if (page == head) {
3725 ret = false; /* add count continuation */
3726 goto out;
3727 }
3728 map = kmap_atomic(page) + offset;
3729 init_map: *map = 0; /* we didn't zero the page */
3730 }
3731 *map += 1;
3732 kunmap_atomic(map);
3733 while ((page = list_prev_entry(page, lru)) != head) {
3734 map = kmap_atomic(page) + offset;
3735 *map = COUNT_CONTINUED;
3736 kunmap_atomic(map);
3737 }
3738 ret = true; /* incremented */
3739
3740 } else { /* decrementing */
3741 /*
3742 * Think of how you subtract 1 from 1000
3743 */
3744 BUG_ON(count != COUNT_CONTINUED);
3745 while (*map == COUNT_CONTINUED) {
3746 kunmap_atomic(map);
3747 page = list_next_entry(page, lru);
3748 BUG_ON(page == head);
3749 map = kmap_atomic(page) + offset;
3750 }
3751 BUG_ON(*map == 0);
3752 *map -= 1;
3753 if (*map == 0)
3754 count = 0;
3755 kunmap_atomic(map);
3756 while ((page = list_prev_entry(page, lru)) != head) {
3757 map = kmap_atomic(page) + offset;
3758 *map = SWAP_CONT_MAX | count;
3759 count = COUNT_CONTINUED;
3760 kunmap_atomic(map);
3761 }
3762 ret = count == COUNT_CONTINUED;
3763 }
3764 out:
3765 spin_unlock(&si->cont_lock);
3766 return ret;
3767 }
3768
3769 /*
3770 * free_swap_count_continuations - swapoff free all the continuation pages
3771 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3772 */
3773 static void free_swap_count_continuations(struct swap_info_struct *si)
3774 {
3775 pgoff_t offset;
3776
3777 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3778 struct page *head;
3779 head = vmalloc_to_page(si->swap_map + offset);
3780 if (page_private(head)) {
3781 struct page *page, *next;
3782
3783 list_for_each_entry_safe(page, next, &head->lru, lru) {
3784 list_del(&page->lru);
3785 __free_page(page);
3786 }
3787 }
3788 }
3789 }
3790
3791 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3792 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3793 {
3794 struct swap_info_struct *si, *next;
3795 int nid = page_to_nid(page);
3796
3797 if (!(gfp_mask & __GFP_IO))
3798 return;
3799
3800 if (!blk_cgroup_congested())
3801 return;
3802
3803 /*
3804 * We've already scheduled a throttle, avoid taking the global swap
3805 * lock.
3806 */
3807 if (current->throttle_queue)
3808 return;
3809
3810 spin_lock(&swap_avail_lock);
3811 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3812 avail_lists[nid]) {
3813 if (si->bdev) {
3814 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3815 break;
3816 }
3817 }
3818 spin_unlock(&swap_avail_lock);
3819 }
3820 #endif
3821
3822 static int __init swapfile_init(void)
3823 {
3824 int nid;
3825
3826 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3827 GFP_KERNEL);
3828 if (!swap_avail_heads) {
3829 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3830 return -ENOMEM;
3831 }
3832
3833 for_each_node(nid)
3834 plist_head_init(&swap_avail_heads[nid]);
3835
3836 return 0;
3837 }
3838 subsys_initcall(swapfile_init);