]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/truncate.c
mm/page_alloc: speed up the iteration of max_order
[mirror_ubuntu-focal-kernel.git] / mm / truncate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/truncate.c - code for taking down pages from address_spaces
4 *
5 * Copyright (C) 2002, Linus Torvalds
6 *
7 * 10Sep2002 Andrew Morton
8 * Initial version.
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/backing-dev.h>
13 #include <linux/dax.h>
14 #include <linux/gfp.h>
15 #include <linux/mm.h>
16 #include <linux/swap.h>
17 #include <linux/export.h>
18 #include <linux/pagemap.h>
19 #include <linux/highmem.h>
20 #include <linux/pagevec.h>
21 #include <linux/task_io_accounting_ops.h>
22 #include <linux/buffer_head.h> /* grr. try_to_release_page,
23 do_invalidatepage */
24 #include <linux/shmem_fs.h>
25 #include <linux/cleancache.h>
26 #include <linux/rmap.h>
27 #include "internal.h"
28
29 /*
30 * Regular page slots are stabilized by the page lock even without the tree
31 * itself locked. These unlocked entries need verification under the tree
32 * lock.
33 */
34 static inline void __clear_shadow_entry(struct address_space *mapping,
35 pgoff_t index, void *entry)
36 {
37 XA_STATE(xas, &mapping->i_pages, index);
38
39 xas_set_update(&xas, workingset_update_node);
40 if (xas_load(&xas) != entry)
41 return;
42 xas_store(&xas, NULL);
43 mapping->nrexceptional--;
44 }
45
46 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
47 void *entry)
48 {
49 xa_lock_irq(&mapping->i_pages);
50 __clear_shadow_entry(mapping, index, entry);
51 xa_unlock_irq(&mapping->i_pages);
52 }
53
54 /*
55 * Unconditionally remove exceptional entries. Usually called from truncate
56 * path. Note that the pagevec may be altered by this function by removing
57 * exceptional entries similar to what pagevec_remove_exceptionals does.
58 */
59 static void truncate_exceptional_pvec_entries(struct address_space *mapping,
60 struct pagevec *pvec, pgoff_t *indices,
61 pgoff_t end)
62 {
63 int i, j;
64 bool dax, lock;
65
66 /* Handled by shmem itself */
67 if (shmem_mapping(mapping))
68 return;
69
70 for (j = 0; j < pagevec_count(pvec); j++)
71 if (xa_is_value(pvec->pages[j]))
72 break;
73
74 if (j == pagevec_count(pvec))
75 return;
76
77 dax = dax_mapping(mapping);
78 lock = !dax && indices[j] < end;
79 if (lock)
80 xa_lock_irq(&mapping->i_pages);
81
82 for (i = j; i < pagevec_count(pvec); i++) {
83 struct page *page = pvec->pages[i];
84 pgoff_t index = indices[i];
85
86 if (!xa_is_value(page)) {
87 pvec->pages[j++] = page;
88 continue;
89 }
90
91 if (index >= end)
92 continue;
93
94 if (unlikely(dax)) {
95 dax_delete_mapping_entry(mapping, index);
96 continue;
97 }
98
99 __clear_shadow_entry(mapping, index, page);
100 }
101
102 if (lock)
103 xa_unlock_irq(&mapping->i_pages);
104 pvec->nr = j;
105 }
106
107 /*
108 * Invalidate exceptional entry if easily possible. This handles exceptional
109 * entries for invalidate_inode_pages().
110 */
111 static int invalidate_exceptional_entry(struct address_space *mapping,
112 pgoff_t index, void *entry)
113 {
114 /* Handled by shmem itself, or for DAX we do nothing. */
115 if (shmem_mapping(mapping) || dax_mapping(mapping))
116 return 1;
117 clear_shadow_entry(mapping, index, entry);
118 return 1;
119 }
120
121 /*
122 * Invalidate exceptional entry if clean. This handles exceptional entries for
123 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
124 */
125 static int invalidate_exceptional_entry2(struct address_space *mapping,
126 pgoff_t index, void *entry)
127 {
128 /* Handled by shmem itself */
129 if (shmem_mapping(mapping))
130 return 1;
131 if (dax_mapping(mapping))
132 return dax_invalidate_mapping_entry_sync(mapping, index);
133 clear_shadow_entry(mapping, index, entry);
134 return 1;
135 }
136
137 /**
138 * do_invalidatepage - invalidate part or all of a page
139 * @page: the page which is affected
140 * @offset: start of the range to invalidate
141 * @length: length of the range to invalidate
142 *
143 * do_invalidatepage() is called when all or part of the page has become
144 * invalidated by a truncate operation.
145 *
146 * do_invalidatepage() does not have to release all buffers, but it must
147 * ensure that no dirty buffer is left outside @offset and that no I/O
148 * is underway against any of the blocks which are outside the truncation
149 * point. Because the caller is about to free (and possibly reuse) those
150 * blocks on-disk.
151 */
152 void do_invalidatepage(struct page *page, unsigned int offset,
153 unsigned int length)
154 {
155 void (*invalidatepage)(struct page *, unsigned int, unsigned int);
156
157 invalidatepage = page->mapping->a_ops->invalidatepage;
158 #ifdef CONFIG_BLOCK
159 if (!invalidatepage)
160 invalidatepage = block_invalidatepage;
161 #endif
162 if (invalidatepage)
163 (*invalidatepage)(page, offset, length);
164 }
165
166 /*
167 * If truncate cannot remove the fs-private metadata from the page, the page
168 * becomes orphaned. It will be left on the LRU and may even be mapped into
169 * user pagetables if we're racing with filemap_fault().
170 *
171 * We need to bale out if page->mapping is no longer equal to the original
172 * mapping. This happens a) when the VM reclaimed the page while we waited on
173 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
174 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
175 */
176 static void truncate_cleanup_page(struct page *page)
177 {
178 if (page_mapped(page))
179 unmap_mapping_page(page);
180
181 if (page_has_private(page))
182 do_invalidatepage(page, 0, PAGE_SIZE);
183
184 /*
185 * Some filesystems seem to re-dirty the page even after
186 * the VM has canceled the dirty bit (eg ext3 journaling).
187 * Hence dirty accounting check is placed after invalidation.
188 */
189 cancel_dirty_page(page);
190 ClearPageMappedToDisk(page);
191 }
192
193 /*
194 * This is for invalidate_mapping_pages(). That function can be called at
195 * any time, and is not supposed to throw away dirty pages. But pages can
196 * be marked dirty at any time too, so use remove_mapping which safely
197 * discards clean, unused pages.
198 *
199 * Returns non-zero if the page was successfully invalidated.
200 */
201 static int
202 invalidate_complete_page(struct address_space *mapping, struct page *page)
203 {
204 int ret;
205
206 if (page->mapping != mapping)
207 return 0;
208
209 if (page_has_private(page) && !try_to_release_page(page, 0))
210 return 0;
211
212 ret = remove_mapping(mapping, page);
213
214 return ret;
215 }
216
217 int truncate_inode_page(struct address_space *mapping, struct page *page)
218 {
219 VM_BUG_ON_PAGE(PageTail(page), page);
220
221 if (page->mapping != mapping)
222 return -EIO;
223
224 truncate_cleanup_page(page);
225 delete_from_page_cache(page);
226 return 0;
227 }
228
229 /*
230 * Used to get rid of pages on hardware memory corruption.
231 */
232 int generic_error_remove_page(struct address_space *mapping, struct page *page)
233 {
234 if (!mapping)
235 return -EINVAL;
236 /*
237 * Only punch for normal data pages for now.
238 * Handling other types like directories would need more auditing.
239 */
240 if (!S_ISREG(mapping->host->i_mode))
241 return -EIO;
242 return truncate_inode_page(mapping, page);
243 }
244 EXPORT_SYMBOL(generic_error_remove_page);
245
246 /*
247 * Safely invalidate one page from its pagecache mapping.
248 * It only drops clean, unused pages. The page must be locked.
249 *
250 * Returns 1 if the page is successfully invalidated, otherwise 0.
251 */
252 int invalidate_inode_page(struct page *page)
253 {
254 struct address_space *mapping = page_mapping(page);
255 if (!mapping)
256 return 0;
257 if (PageDirty(page) || PageWriteback(page))
258 return 0;
259 if (page_mapped(page))
260 return 0;
261 return invalidate_complete_page(mapping, page);
262 }
263
264 /**
265 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
266 * @mapping: mapping to truncate
267 * @lstart: offset from which to truncate
268 * @lend: offset to which to truncate (inclusive)
269 *
270 * Truncate the page cache, removing the pages that are between
271 * specified offsets (and zeroing out partial pages
272 * if lstart or lend + 1 is not page aligned).
273 *
274 * Truncate takes two passes - the first pass is nonblocking. It will not
275 * block on page locks and it will not block on writeback. The second pass
276 * will wait. This is to prevent as much IO as possible in the affected region.
277 * The first pass will remove most pages, so the search cost of the second pass
278 * is low.
279 *
280 * We pass down the cache-hot hint to the page freeing code. Even if the
281 * mapping is large, it is probably the case that the final pages are the most
282 * recently touched, and freeing happens in ascending file offset order.
283 *
284 * Note that since ->invalidatepage() accepts range to invalidate
285 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
286 * page aligned properly.
287 */
288 void truncate_inode_pages_range(struct address_space *mapping,
289 loff_t lstart, loff_t lend)
290 {
291 pgoff_t start; /* inclusive */
292 pgoff_t end; /* exclusive */
293 unsigned int partial_start; /* inclusive */
294 unsigned int partial_end; /* exclusive */
295 struct pagevec pvec;
296 pgoff_t indices[PAGEVEC_SIZE];
297 pgoff_t index;
298 int i;
299
300 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
301 goto out;
302
303 /* Offsets within partial pages */
304 partial_start = lstart & (PAGE_SIZE - 1);
305 partial_end = (lend + 1) & (PAGE_SIZE - 1);
306
307 /*
308 * 'start' and 'end' always covers the range of pages to be fully
309 * truncated. Partial pages are covered with 'partial_start' at the
310 * start of the range and 'partial_end' at the end of the range.
311 * Note that 'end' is exclusive while 'lend' is inclusive.
312 */
313 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
314 if (lend == -1)
315 /*
316 * lend == -1 indicates end-of-file so we have to set 'end'
317 * to the highest possible pgoff_t and since the type is
318 * unsigned we're using -1.
319 */
320 end = -1;
321 else
322 end = (lend + 1) >> PAGE_SHIFT;
323
324 pagevec_init(&pvec);
325 index = start;
326 while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
327 min(end - index, (pgoff_t)PAGEVEC_SIZE),
328 indices)) {
329 /*
330 * Pagevec array has exceptional entries and we may also fail
331 * to lock some pages. So we store pages that can be deleted
332 * in a new pagevec.
333 */
334 struct pagevec locked_pvec;
335
336 pagevec_init(&locked_pvec);
337 for (i = 0; i < pagevec_count(&pvec); i++) {
338 struct page *page = pvec.pages[i];
339
340 /* We rely upon deletion not changing page->index */
341 index = indices[i];
342 if (index >= end)
343 break;
344
345 if (xa_is_value(page))
346 continue;
347
348 if (!trylock_page(page))
349 continue;
350 WARN_ON(page_to_index(page) != index);
351 if (PageWriteback(page)) {
352 unlock_page(page);
353 continue;
354 }
355 if (page->mapping != mapping) {
356 unlock_page(page);
357 continue;
358 }
359 pagevec_add(&locked_pvec, page);
360 }
361 for (i = 0; i < pagevec_count(&locked_pvec); i++)
362 truncate_cleanup_page(locked_pvec.pages[i]);
363 delete_from_page_cache_batch(mapping, &locked_pvec);
364 for (i = 0; i < pagevec_count(&locked_pvec); i++)
365 unlock_page(locked_pvec.pages[i]);
366 truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
367 pagevec_release(&pvec);
368 cond_resched();
369 index++;
370 }
371 if (partial_start) {
372 struct page *page = find_lock_page(mapping, start - 1);
373 if (page) {
374 unsigned int top = PAGE_SIZE;
375 if (start > end) {
376 /* Truncation within a single page */
377 top = partial_end;
378 partial_end = 0;
379 }
380 wait_on_page_writeback(page);
381 zero_user_segment(page, partial_start, top);
382 cleancache_invalidate_page(mapping, page);
383 if (page_has_private(page))
384 do_invalidatepage(page, partial_start,
385 top - partial_start);
386 unlock_page(page);
387 put_page(page);
388 }
389 }
390 if (partial_end) {
391 struct page *page = find_lock_page(mapping, end);
392 if (page) {
393 wait_on_page_writeback(page);
394 zero_user_segment(page, 0, partial_end);
395 cleancache_invalidate_page(mapping, page);
396 if (page_has_private(page))
397 do_invalidatepage(page, 0,
398 partial_end);
399 unlock_page(page);
400 put_page(page);
401 }
402 }
403 /*
404 * If the truncation happened within a single page no pages
405 * will be released, just zeroed, so we can bail out now.
406 */
407 if (start >= end)
408 goto out;
409
410 index = start;
411 for ( ; ; ) {
412 cond_resched();
413 if (!pagevec_lookup_entries(&pvec, mapping, index,
414 min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
415 /* If all gone from start onwards, we're done */
416 if (index == start)
417 break;
418 /* Otherwise restart to make sure all gone */
419 index = start;
420 continue;
421 }
422 if (index == start && indices[0] >= end) {
423 /* All gone out of hole to be punched, we're done */
424 pagevec_remove_exceptionals(&pvec);
425 pagevec_release(&pvec);
426 break;
427 }
428
429 for (i = 0; i < pagevec_count(&pvec); i++) {
430 struct page *page = pvec.pages[i];
431
432 /* We rely upon deletion not changing page->index */
433 index = indices[i];
434 if (index >= end) {
435 /* Restart punch to make sure all gone */
436 index = start - 1;
437 break;
438 }
439
440 if (xa_is_value(page))
441 continue;
442
443 lock_page(page);
444 WARN_ON(page_to_index(page) != index);
445 wait_on_page_writeback(page);
446 truncate_inode_page(mapping, page);
447 unlock_page(page);
448 }
449 truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
450 pagevec_release(&pvec);
451 index++;
452 }
453
454 out:
455 cleancache_invalidate_inode(mapping);
456 }
457 EXPORT_SYMBOL(truncate_inode_pages_range);
458
459 /**
460 * truncate_inode_pages - truncate *all* the pages from an offset
461 * @mapping: mapping to truncate
462 * @lstart: offset from which to truncate
463 *
464 * Called under (and serialised by) inode->i_mutex.
465 *
466 * Note: When this function returns, there can be a page in the process of
467 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
468 * mapping->nrpages can be non-zero when this function returns even after
469 * truncation of the whole mapping.
470 */
471 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
472 {
473 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
474 }
475 EXPORT_SYMBOL(truncate_inode_pages);
476
477 /**
478 * truncate_inode_pages_final - truncate *all* pages before inode dies
479 * @mapping: mapping to truncate
480 *
481 * Called under (and serialized by) inode->i_mutex.
482 *
483 * Filesystems have to use this in the .evict_inode path to inform the
484 * VM that this is the final truncate and the inode is going away.
485 */
486 void truncate_inode_pages_final(struct address_space *mapping)
487 {
488 unsigned long nrexceptional;
489 unsigned long nrpages;
490
491 /*
492 * Page reclaim can not participate in regular inode lifetime
493 * management (can't call iput()) and thus can race with the
494 * inode teardown. Tell it when the address space is exiting,
495 * so that it does not install eviction information after the
496 * final truncate has begun.
497 */
498 mapping_set_exiting(mapping);
499
500 /*
501 * When reclaim installs eviction entries, it increases
502 * nrexceptional first, then decreases nrpages. Make sure we see
503 * this in the right order or we might miss an entry.
504 */
505 nrpages = mapping->nrpages;
506 smp_rmb();
507 nrexceptional = mapping->nrexceptional;
508
509 if (nrpages || nrexceptional) {
510 /*
511 * As truncation uses a lockless tree lookup, cycle
512 * the tree lock to make sure any ongoing tree
513 * modification that does not see AS_EXITING is
514 * completed before starting the final truncate.
515 */
516 xa_lock_irq(&mapping->i_pages);
517 xa_unlock_irq(&mapping->i_pages);
518 }
519
520 /*
521 * Cleancache needs notification even if there are no pages or shadow
522 * entries.
523 */
524 truncate_inode_pages(mapping, 0);
525 }
526 EXPORT_SYMBOL(truncate_inode_pages_final);
527
528 /**
529 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
530 * @mapping: the address_space which holds the pages to invalidate
531 * @start: the offset 'from' which to invalidate
532 * @end: the offset 'to' which to invalidate (inclusive)
533 *
534 * This function only removes the unlocked pages, if you want to
535 * remove all the pages of one inode, you must call truncate_inode_pages.
536 *
537 * invalidate_mapping_pages() will not block on IO activity. It will not
538 * invalidate pages which are dirty, locked, under writeback or mapped into
539 * pagetables.
540 *
541 * Return: the number of the pages that were invalidated
542 */
543 unsigned long invalidate_mapping_pages(struct address_space *mapping,
544 pgoff_t start, pgoff_t end)
545 {
546 pgoff_t indices[PAGEVEC_SIZE];
547 struct pagevec pvec;
548 pgoff_t index = start;
549 unsigned long ret;
550 unsigned long count = 0;
551 int i;
552
553 pagevec_init(&pvec);
554 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
555 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
556 indices)) {
557 for (i = 0; i < pagevec_count(&pvec); i++) {
558 struct page *page = pvec.pages[i];
559
560 /* We rely upon deletion not changing page->index */
561 index = indices[i];
562 if (index > end)
563 break;
564
565 if (xa_is_value(page)) {
566 invalidate_exceptional_entry(mapping, index,
567 page);
568 continue;
569 }
570
571 if (!trylock_page(page))
572 continue;
573
574 WARN_ON(page_to_index(page) != index);
575
576 /* Middle of THP: skip */
577 if (PageTransTail(page)) {
578 unlock_page(page);
579 continue;
580 } else if (PageTransHuge(page)) {
581 index += HPAGE_PMD_NR - 1;
582 i += HPAGE_PMD_NR - 1;
583 /*
584 * 'end' is in the middle of THP. Don't
585 * invalidate the page as the part outside of
586 * 'end' could be still useful.
587 */
588 if (index > end) {
589 unlock_page(page);
590 continue;
591 }
592
593 /* Take a pin outside pagevec */
594 get_page(page);
595
596 /*
597 * Drop extra pins before trying to invalidate
598 * the huge page.
599 */
600 pagevec_remove_exceptionals(&pvec);
601 pagevec_release(&pvec);
602 }
603
604 ret = invalidate_inode_page(page);
605 unlock_page(page);
606 /*
607 * Invalidation is a hint that the page is no longer
608 * of interest and try to speed up its reclaim.
609 */
610 if (!ret)
611 deactivate_file_page(page);
612 if (PageTransHuge(page))
613 put_page(page);
614 count += ret;
615 }
616 pagevec_remove_exceptionals(&pvec);
617 pagevec_release(&pvec);
618 cond_resched();
619 index++;
620 }
621 return count;
622 }
623 EXPORT_SYMBOL(invalidate_mapping_pages);
624
625 /*
626 * This is like invalidate_complete_page(), except it ignores the page's
627 * refcount. We do this because invalidate_inode_pages2() needs stronger
628 * invalidation guarantees, and cannot afford to leave pages behind because
629 * shrink_page_list() has a temp ref on them, or because they're transiently
630 * sitting in the lru_cache_add() pagevecs.
631 */
632 static int
633 invalidate_complete_page2(struct address_space *mapping, struct page *page)
634 {
635 unsigned long flags;
636
637 if (page->mapping != mapping)
638 return 0;
639
640 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
641 return 0;
642
643 xa_lock_irqsave(&mapping->i_pages, flags);
644 if (PageDirty(page))
645 goto failed;
646
647 BUG_ON(page_has_private(page));
648 __delete_from_page_cache(page, NULL);
649 xa_unlock_irqrestore(&mapping->i_pages, flags);
650
651 if (mapping->a_ops->freepage)
652 mapping->a_ops->freepage(page);
653
654 put_page(page); /* pagecache ref */
655 return 1;
656 failed:
657 xa_unlock_irqrestore(&mapping->i_pages, flags);
658 return 0;
659 }
660
661 static int do_launder_page(struct address_space *mapping, struct page *page)
662 {
663 if (!PageDirty(page))
664 return 0;
665 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
666 return 0;
667 return mapping->a_ops->launder_page(page);
668 }
669
670 /**
671 * invalidate_inode_pages2_range - remove range of pages from an address_space
672 * @mapping: the address_space
673 * @start: the page offset 'from' which to invalidate
674 * @end: the page offset 'to' which to invalidate (inclusive)
675 *
676 * Any pages which are found to be mapped into pagetables are unmapped prior to
677 * invalidation.
678 *
679 * Return: -EBUSY if any pages could not be invalidated.
680 */
681 int invalidate_inode_pages2_range(struct address_space *mapping,
682 pgoff_t start, pgoff_t end)
683 {
684 pgoff_t indices[PAGEVEC_SIZE];
685 struct pagevec pvec;
686 pgoff_t index;
687 int i;
688 int ret = 0;
689 int ret2 = 0;
690 int did_range_unmap = 0;
691
692 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
693 goto out;
694
695 pagevec_init(&pvec);
696 index = start;
697 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
698 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
699 indices)) {
700 for (i = 0; i < pagevec_count(&pvec); i++) {
701 struct page *page = pvec.pages[i];
702
703 /* We rely upon deletion not changing page->index */
704 index = indices[i];
705 if (index > end)
706 break;
707
708 if (xa_is_value(page)) {
709 if (!invalidate_exceptional_entry2(mapping,
710 index, page))
711 ret = -EBUSY;
712 continue;
713 }
714
715 if (!did_range_unmap && page_mapped(page)) {
716 /*
717 * If page is mapped, before taking its lock,
718 * zap the rest of the file in one hit.
719 */
720 unmap_mapping_pages(mapping, index,
721 (1 + end - index), false);
722 did_range_unmap = 1;
723 }
724
725 lock_page(page);
726 WARN_ON(page_to_index(page) != index);
727 if (page->mapping != mapping) {
728 unlock_page(page);
729 continue;
730 }
731 wait_on_page_writeback(page);
732
733 if (page_mapped(page))
734 unmap_mapping_page(page);
735 BUG_ON(page_mapped(page));
736
737 ret2 = do_launder_page(mapping, page);
738 if (ret2 == 0) {
739 if (!invalidate_complete_page2(mapping, page))
740 ret2 = -EBUSY;
741 }
742 if (ret2 < 0)
743 ret = ret2;
744 unlock_page(page);
745 }
746 pagevec_remove_exceptionals(&pvec);
747 pagevec_release(&pvec);
748 cond_resched();
749 index++;
750 }
751 /*
752 * For DAX we invalidate page tables after invalidating page cache. We
753 * could invalidate page tables while invalidating each entry however
754 * that would be expensive. And doing range unmapping before doesn't
755 * work as we have no cheap way to find whether page cache entry didn't
756 * get remapped later.
757 */
758 if (dax_mapping(mapping)) {
759 unmap_mapping_pages(mapping, start, end - start + 1, false);
760 }
761 out:
762 cleancache_invalidate_inode(mapping);
763 return ret;
764 }
765 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
766
767 /**
768 * invalidate_inode_pages2 - remove all pages from an address_space
769 * @mapping: the address_space
770 *
771 * Any pages which are found to be mapped into pagetables are unmapped prior to
772 * invalidation.
773 *
774 * Return: -EBUSY if any pages could not be invalidated.
775 */
776 int invalidate_inode_pages2(struct address_space *mapping)
777 {
778 return invalidate_inode_pages2_range(mapping, 0, -1);
779 }
780 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
781
782 /**
783 * truncate_pagecache - unmap and remove pagecache that has been truncated
784 * @inode: inode
785 * @newsize: new file size
786 *
787 * inode's new i_size must already be written before truncate_pagecache
788 * is called.
789 *
790 * This function should typically be called before the filesystem
791 * releases resources associated with the freed range (eg. deallocates
792 * blocks). This way, pagecache will always stay logically coherent
793 * with on-disk format, and the filesystem would not have to deal with
794 * situations such as writepage being called for a page that has already
795 * had its underlying blocks deallocated.
796 */
797 void truncate_pagecache(struct inode *inode, loff_t newsize)
798 {
799 struct address_space *mapping = inode->i_mapping;
800 loff_t holebegin = round_up(newsize, PAGE_SIZE);
801
802 /*
803 * unmap_mapping_range is called twice, first simply for
804 * efficiency so that truncate_inode_pages does fewer
805 * single-page unmaps. However after this first call, and
806 * before truncate_inode_pages finishes, it is possible for
807 * private pages to be COWed, which remain after
808 * truncate_inode_pages finishes, hence the second
809 * unmap_mapping_range call must be made for correctness.
810 */
811 unmap_mapping_range(mapping, holebegin, 0, 1);
812 truncate_inode_pages(mapping, newsize);
813 unmap_mapping_range(mapping, holebegin, 0, 1);
814 }
815 EXPORT_SYMBOL(truncate_pagecache);
816
817 /**
818 * truncate_setsize - update inode and pagecache for a new file size
819 * @inode: inode
820 * @newsize: new file size
821 *
822 * truncate_setsize updates i_size and performs pagecache truncation (if
823 * necessary) to @newsize. It will be typically be called from the filesystem's
824 * setattr function when ATTR_SIZE is passed in.
825 *
826 * Must be called with a lock serializing truncates and writes (generally
827 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
828 * specific block truncation has been performed.
829 */
830 void truncate_setsize(struct inode *inode, loff_t newsize)
831 {
832 loff_t oldsize = inode->i_size;
833
834 i_size_write(inode, newsize);
835 if (newsize > oldsize)
836 pagecache_isize_extended(inode, oldsize, newsize);
837 truncate_pagecache(inode, newsize);
838 }
839 EXPORT_SYMBOL(truncate_setsize);
840
841 /**
842 * pagecache_isize_extended - update pagecache after extension of i_size
843 * @inode: inode for which i_size was extended
844 * @from: original inode size
845 * @to: new inode size
846 *
847 * Handle extension of inode size either caused by extending truncate or by
848 * write starting after current i_size. We mark the page straddling current
849 * i_size RO so that page_mkwrite() is called on the nearest write access to
850 * the page. This way filesystem can be sure that page_mkwrite() is called on
851 * the page before user writes to the page via mmap after the i_size has been
852 * changed.
853 *
854 * The function must be called after i_size is updated so that page fault
855 * coming after we unlock the page will already see the new i_size.
856 * The function must be called while we still hold i_mutex - this not only
857 * makes sure i_size is stable but also that userspace cannot observe new
858 * i_size value before we are prepared to store mmap writes at new inode size.
859 */
860 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
861 {
862 int bsize = i_blocksize(inode);
863 loff_t rounded_from;
864 struct page *page;
865 pgoff_t index;
866
867 WARN_ON(to > inode->i_size);
868
869 if (from >= to || bsize == PAGE_SIZE)
870 return;
871 /* Page straddling @from will not have any hole block created? */
872 rounded_from = round_up(from, bsize);
873 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
874 return;
875
876 index = from >> PAGE_SHIFT;
877 page = find_lock_page(inode->i_mapping, index);
878 /* Page not cached? Nothing to do */
879 if (!page)
880 return;
881 /*
882 * See clear_page_dirty_for_io() for details why set_page_dirty()
883 * is needed.
884 */
885 if (page_mkclean(page))
886 set_page_dirty(page);
887 unlock_page(page);
888 put_page(page);
889 }
890 EXPORT_SYMBOL(pagecache_isize_extended);
891
892 /**
893 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
894 * @inode: inode
895 * @lstart: offset of beginning of hole
896 * @lend: offset of last byte of hole
897 *
898 * This function should typically be called before the filesystem
899 * releases resources associated with the freed range (eg. deallocates
900 * blocks). This way, pagecache will always stay logically coherent
901 * with on-disk format, and the filesystem would not have to deal with
902 * situations such as writepage being called for a page that has already
903 * had its underlying blocks deallocated.
904 */
905 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
906 {
907 struct address_space *mapping = inode->i_mapping;
908 loff_t unmap_start = round_up(lstart, PAGE_SIZE);
909 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
910 /*
911 * This rounding is currently just for example: unmap_mapping_range
912 * expands its hole outwards, whereas we want it to contract the hole
913 * inwards. However, existing callers of truncate_pagecache_range are
914 * doing their own page rounding first. Note that unmap_mapping_range
915 * allows holelen 0 for all, and we allow lend -1 for end of file.
916 */
917
918 /*
919 * Unlike in truncate_pagecache, unmap_mapping_range is called only
920 * once (before truncating pagecache), and without "even_cows" flag:
921 * hole-punching should not remove private COWed pages from the hole.
922 */
923 if ((u64)unmap_end > (u64)unmap_start)
924 unmap_mapping_range(mapping, unmap_start,
925 1 + unmap_end - unmap_start, 0);
926 truncate_inode_pages_range(mapping, lstart, lend);
927 }
928 EXPORT_SYMBOL(truncate_pagecache_range);