1 // SPDX-License-Identifier: GPL-2.0-only
3 * mm/truncate.c - code for taking down pages from address_spaces
5 * Copyright (C) 2002, Linus Torvalds
7 * 10Sep2002 Andrew Morton
11 #include <linux/kernel.h>
12 #include <linux/backing-dev.h>
13 #include <linux/dax.h>
14 #include <linux/gfp.h>
16 #include <linux/swap.h>
17 #include <linux/export.h>
18 #include <linux/pagemap.h>
19 #include <linux/highmem.h>
20 #include <linux/pagevec.h>
21 #include <linux/task_io_accounting_ops.h>
22 #include <linux/buffer_head.h> /* grr. try_to_release_page,
24 #include <linux/shmem_fs.h>
25 #include <linux/cleancache.h>
26 #include <linux/rmap.h>
30 * Regular page slots are stabilized by the page lock even without the tree
31 * itself locked. These unlocked entries need verification under the tree
34 static inline void __clear_shadow_entry(struct address_space
*mapping
,
35 pgoff_t index
, void *entry
)
37 XA_STATE(xas
, &mapping
->i_pages
, index
);
39 xas_set_update(&xas
, workingset_update_node
);
40 if (xas_load(&xas
) != entry
)
42 xas_store(&xas
, NULL
);
45 static void clear_shadow_entry(struct address_space
*mapping
, pgoff_t index
,
48 xa_lock_irq(&mapping
->i_pages
);
49 __clear_shadow_entry(mapping
, index
, entry
);
50 xa_unlock_irq(&mapping
->i_pages
);
54 * Unconditionally remove exceptional entries. Usually called from truncate
55 * path. Note that the pagevec may be altered by this function by removing
56 * exceptional entries similar to what pagevec_remove_exceptionals does.
58 static void truncate_exceptional_pvec_entries(struct address_space
*mapping
,
59 struct pagevec
*pvec
, pgoff_t
*indices
)
64 /* Handled by shmem itself */
65 if (shmem_mapping(mapping
))
68 for (j
= 0; j
< pagevec_count(pvec
); j
++)
69 if (xa_is_value(pvec
->pages
[j
]))
72 if (j
== pagevec_count(pvec
))
75 dax
= dax_mapping(mapping
);
77 xa_lock_irq(&mapping
->i_pages
);
79 for (i
= j
; i
< pagevec_count(pvec
); i
++) {
80 struct page
*page
= pvec
->pages
[i
];
81 pgoff_t index
= indices
[i
];
83 if (!xa_is_value(page
)) {
84 pvec
->pages
[j
++] = page
;
89 dax_delete_mapping_entry(mapping
, index
);
93 __clear_shadow_entry(mapping
, index
, page
);
97 xa_unlock_irq(&mapping
->i_pages
);
102 * Invalidate exceptional entry if easily possible. This handles exceptional
103 * entries for invalidate_inode_pages().
105 static int invalidate_exceptional_entry(struct address_space
*mapping
,
106 pgoff_t index
, void *entry
)
108 /* Handled by shmem itself, or for DAX we do nothing. */
109 if (shmem_mapping(mapping
) || dax_mapping(mapping
))
111 clear_shadow_entry(mapping
, index
, entry
);
116 * Invalidate exceptional entry if clean. This handles exceptional entries for
117 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
119 static int invalidate_exceptional_entry2(struct address_space
*mapping
,
120 pgoff_t index
, void *entry
)
122 /* Handled by shmem itself */
123 if (shmem_mapping(mapping
))
125 if (dax_mapping(mapping
))
126 return dax_invalidate_mapping_entry_sync(mapping
, index
);
127 clear_shadow_entry(mapping
, index
, entry
);
132 * do_invalidatepage - invalidate part or all of a page
133 * @page: the page which is affected
134 * @offset: start of the range to invalidate
135 * @length: length of the range to invalidate
137 * do_invalidatepage() is called when all or part of the page has become
138 * invalidated by a truncate operation.
140 * do_invalidatepage() does not have to release all buffers, but it must
141 * ensure that no dirty buffer is left outside @offset and that no I/O
142 * is underway against any of the blocks which are outside the truncation
143 * point. Because the caller is about to free (and possibly reuse) those
146 void do_invalidatepage(struct page
*page
, unsigned int offset
,
149 void (*invalidatepage
)(struct page
*, unsigned int, unsigned int);
151 invalidatepage
= page
->mapping
->a_ops
->invalidatepage
;
154 invalidatepage
= block_invalidatepage
;
157 (*invalidatepage
)(page
, offset
, length
);
161 * If truncate cannot remove the fs-private metadata from the page, the page
162 * becomes orphaned. It will be left on the LRU and may even be mapped into
163 * user pagetables if we're racing with filemap_fault().
165 * We need to bail out if page->mapping is no longer equal to the original
166 * mapping. This happens a) when the VM reclaimed the page while we waited on
167 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
168 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
170 static void truncate_cleanup_page(struct page
*page
)
172 if (page_mapped(page
))
173 unmap_mapping_page(page
);
175 if (page_has_private(page
))
176 do_invalidatepage(page
, 0, thp_size(page
));
179 * Some filesystems seem to re-dirty the page even after
180 * the VM has canceled the dirty bit (eg ext3 journaling).
181 * Hence dirty accounting check is placed after invalidation.
183 cancel_dirty_page(page
);
184 ClearPageMappedToDisk(page
);
188 * This is for invalidate_mapping_pages(). That function can be called at
189 * any time, and is not supposed to throw away dirty pages. But pages can
190 * be marked dirty at any time too, so use remove_mapping which safely
191 * discards clean, unused pages.
193 * Returns non-zero if the page was successfully invalidated.
196 invalidate_complete_page(struct address_space
*mapping
, struct page
*page
)
200 if (page
->mapping
!= mapping
)
203 if (page_has_private(page
) && !try_to_release_page(page
, 0))
206 ret
= remove_mapping(mapping
, page
);
211 int truncate_inode_page(struct address_space
*mapping
, struct page
*page
)
213 VM_BUG_ON_PAGE(PageTail(page
), page
);
215 if (page
->mapping
!= mapping
)
218 truncate_cleanup_page(page
);
219 delete_from_page_cache(page
);
224 * Used to get rid of pages on hardware memory corruption.
226 int generic_error_remove_page(struct address_space
*mapping
, struct page
*page
)
231 * Only punch for normal data pages for now.
232 * Handling other types like directories would need more auditing.
234 if (!S_ISREG(mapping
->host
->i_mode
))
236 return truncate_inode_page(mapping
, page
);
238 EXPORT_SYMBOL(generic_error_remove_page
);
241 * Safely invalidate one page from its pagecache mapping.
242 * It only drops clean, unused pages. The page must be locked.
244 * Returns 1 if the page is successfully invalidated, otherwise 0.
246 int invalidate_inode_page(struct page
*page
)
248 struct address_space
*mapping
= page_mapping(page
);
251 if (PageDirty(page
) || PageWriteback(page
))
253 if (page_mapped(page
))
255 return invalidate_complete_page(mapping
, page
);
259 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
260 * @mapping: mapping to truncate
261 * @lstart: offset from which to truncate
262 * @lend: offset to which to truncate (inclusive)
264 * Truncate the page cache, removing the pages that are between
265 * specified offsets (and zeroing out partial pages
266 * if lstart or lend + 1 is not page aligned).
268 * Truncate takes two passes - the first pass is nonblocking. It will not
269 * block on page locks and it will not block on writeback. The second pass
270 * will wait. This is to prevent as much IO as possible in the affected region.
271 * The first pass will remove most pages, so the search cost of the second pass
274 * We pass down the cache-hot hint to the page freeing code. Even if the
275 * mapping is large, it is probably the case that the final pages are the most
276 * recently touched, and freeing happens in ascending file offset order.
278 * Note that since ->invalidatepage() accepts range to invalidate
279 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
280 * page aligned properly.
282 void truncate_inode_pages_range(struct address_space
*mapping
,
283 loff_t lstart
, loff_t lend
)
285 pgoff_t start
; /* inclusive */
286 pgoff_t end
; /* exclusive */
287 unsigned int partial_start
; /* inclusive */
288 unsigned int partial_end
; /* exclusive */
290 pgoff_t indices
[PAGEVEC_SIZE
];
294 if (mapping_empty(mapping
))
297 /* Offsets within partial pages */
298 partial_start
= lstart
& (PAGE_SIZE
- 1);
299 partial_end
= (lend
+ 1) & (PAGE_SIZE
- 1);
302 * 'start' and 'end' always covers the range of pages to be fully
303 * truncated. Partial pages are covered with 'partial_start' at the
304 * start of the range and 'partial_end' at the end of the range.
305 * Note that 'end' is exclusive while 'lend' is inclusive.
307 start
= (lstart
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
310 * lend == -1 indicates end-of-file so we have to set 'end'
311 * to the highest possible pgoff_t and since the type is
312 * unsigned we're using -1.
316 end
= (lend
+ 1) >> PAGE_SHIFT
;
320 while (index
< end
&& find_lock_entries(mapping
, index
, end
- 1,
322 index
= indices
[pagevec_count(&pvec
) - 1] + 1;
323 truncate_exceptional_pvec_entries(mapping
, &pvec
, indices
);
324 for (i
= 0; i
< pagevec_count(&pvec
); i
++)
325 truncate_cleanup_page(pvec
.pages
[i
]);
326 delete_from_page_cache_batch(mapping
, &pvec
);
327 for (i
= 0; i
< pagevec_count(&pvec
); i
++)
328 unlock_page(pvec
.pages
[i
]);
329 pagevec_release(&pvec
);
334 struct page
*page
= find_lock_page(mapping
, start
- 1);
336 unsigned int top
= PAGE_SIZE
;
338 /* Truncation within a single page */
342 wait_on_page_writeback(page
);
343 zero_user_segment(page
, partial_start
, top
);
344 cleancache_invalidate_page(mapping
, page
);
345 if (page_has_private(page
))
346 do_invalidatepage(page
, partial_start
,
347 top
- partial_start
);
353 struct page
*page
= find_lock_page(mapping
, end
);
355 wait_on_page_writeback(page
);
356 zero_user_segment(page
, 0, partial_end
);
357 cleancache_invalidate_page(mapping
, page
);
358 if (page_has_private(page
))
359 do_invalidatepage(page
, 0,
366 * If the truncation happened within a single page no pages
367 * will be released, just zeroed, so we can bail out now.
375 if (!find_get_entries(mapping
, index
, end
- 1, &pvec
,
377 /* If all gone from start onwards, we're done */
380 /* Otherwise restart to make sure all gone */
385 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
386 struct page
*page
= pvec
.pages
[i
];
388 /* We rely upon deletion not changing page->index */
391 if (xa_is_value(page
))
395 WARN_ON(page_to_index(page
) != index
);
396 wait_on_page_writeback(page
);
397 truncate_inode_page(mapping
, page
);
400 truncate_exceptional_pvec_entries(mapping
, &pvec
, indices
);
401 pagevec_release(&pvec
);
406 cleancache_invalidate_inode(mapping
);
408 EXPORT_SYMBOL(truncate_inode_pages_range
);
411 * truncate_inode_pages - truncate *all* the pages from an offset
412 * @mapping: mapping to truncate
413 * @lstart: offset from which to truncate
415 * Called under (and serialised by) inode->i_rwsem and
416 * mapping->invalidate_lock.
418 * Note: When this function returns, there can be a page in the process of
419 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
420 * mapping->nrpages can be non-zero when this function returns even after
421 * truncation of the whole mapping.
423 void truncate_inode_pages(struct address_space
*mapping
, loff_t lstart
)
425 truncate_inode_pages_range(mapping
, lstart
, (loff_t
)-1);
427 EXPORT_SYMBOL(truncate_inode_pages
);
430 * truncate_inode_pages_final - truncate *all* pages before inode dies
431 * @mapping: mapping to truncate
433 * Called under (and serialized by) inode->i_rwsem.
435 * Filesystems have to use this in the .evict_inode path to inform the
436 * VM that this is the final truncate and the inode is going away.
438 void truncate_inode_pages_final(struct address_space
*mapping
)
441 * Page reclaim can not participate in regular inode lifetime
442 * management (can't call iput()) and thus can race with the
443 * inode teardown. Tell it when the address space is exiting,
444 * so that it does not install eviction information after the
445 * final truncate has begun.
447 mapping_set_exiting(mapping
);
449 if (!mapping_empty(mapping
)) {
451 * As truncation uses a lockless tree lookup, cycle
452 * the tree lock to make sure any ongoing tree
453 * modification that does not see AS_EXITING is
454 * completed before starting the final truncate.
456 xa_lock_irq(&mapping
->i_pages
);
457 xa_unlock_irq(&mapping
->i_pages
);
461 * Cleancache needs notification even if there are no pages or shadow
464 truncate_inode_pages(mapping
, 0);
466 EXPORT_SYMBOL(truncate_inode_pages_final
);
468 static unsigned long __invalidate_mapping_pages(struct address_space
*mapping
,
469 pgoff_t start
, pgoff_t end
, unsigned long *nr_pagevec
)
471 pgoff_t indices
[PAGEVEC_SIZE
];
473 pgoff_t index
= start
;
475 unsigned long count
= 0;
479 while (find_lock_entries(mapping
, index
, end
, &pvec
, indices
)) {
480 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
481 struct page
*page
= pvec
.pages
[i
];
483 /* We rely upon deletion not changing page->index */
486 if (xa_is_value(page
)) {
487 count
+= invalidate_exceptional_entry(mapping
,
492 index
+= thp_nr_pages(page
) - 1;
494 ret
= invalidate_inode_page(page
);
497 * Invalidation is a hint that the page is no longer
498 * of interest and try to speed up its reclaim.
501 deactivate_file_page(page
);
502 /* It is likely on the pagevec of a remote CPU */
508 pagevec_remove_exceptionals(&pvec
);
509 pagevec_release(&pvec
);
517 * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode
518 * @mapping: the address_space which holds the cache to invalidate
519 * @start: the offset 'from' which to invalidate
520 * @end: the offset 'to' which to invalidate (inclusive)
522 * This function removes pages that are clean, unmapped and unlocked,
523 * as well as shadow entries. It will not block on IO activity.
525 * If you want to remove all the pages of one inode, regardless of
526 * their use and writeback state, use truncate_inode_pages().
528 * Return: the number of the cache entries that were invalidated
530 unsigned long invalidate_mapping_pages(struct address_space
*mapping
,
531 pgoff_t start
, pgoff_t end
)
533 return __invalidate_mapping_pages(mapping
, start
, end
, NULL
);
535 EXPORT_SYMBOL(invalidate_mapping_pages
);
538 * invalidate_mapping_pagevec - Invalidate all the unlocked pages of one inode
539 * @mapping: the address_space which holds the pages to invalidate
540 * @start: the offset 'from' which to invalidate
541 * @end: the offset 'to' which to invalidate (inclusive)
542 * @nr_pagevec: invalidate failed page number for caller
544 * This helper is similar to invalidate_mapping_pages(), except that it accounts
545 * for pages that are likely on a pagevec and counts them in @nr_pagevec, which
546 * will be used by the caller.
548 void invalidate_mapping_pagevec(struct address_space
*mapping
,
549 pgoff_t start
, pgoff_t end
, unsigned long *nr_pagevec
)
551 __invalidate_mapping_pages(mapping
, start
, end
, nr_pagevec
);
555 * This is like invalidate_complete_page(), except it ignores the page's
556 * refcount. We do this because invalidate_inode_pages2() needs stronger
557 * invalidation guarantees, and cannot afford to leave pages behind because
558 * shrink_page_list() has a temp ref on them, or because they're transiently
559 * sitting in the lru_cache_add() pagevecs.
562 invalidate_complete_page2(struct address_space
*mapping
, struct page
*page
)
564 if (page
->mapping
!= mapping
)
567 if (page_has_private(page
) && !try_to_release_page(page
, GFP_KERNEL
))
570 xa_lock_irq(&mapping
->i_pages
);
574 BUG_ON(page_has_private(page
));
575 __delete_from_page_cache(page
, NULL
);
576 xa_unlock_irq(&mapping
->i_pages
);
578 if (mapping
->a_ops
->freepage
)
579 mapping
->a_ops
->freepage(page
);
581 put_page(page
); /* pagecache ref */
584 xa_unlock_irq(&mapping
->i_pages
);
588 static int do_launder_page(struct address_space
*mapping
, struct page
*page
)
590 if (!PageDirty(page
))
592 if (page
->mapping
!= mapping
|| mapping
->a_ops
->launder_page
== NULL
)
594 return mapping
->a_ops
->launder_page(page
);
598 * invalidate_inode_pages2_range - remove range of pages from an address_space
599 * @mapping: the address_space
600 * @start: the page offset 'from' which to invalidate
601 * @end: the page offset 'to' which to invalidate (inclusive)
603 * Any pages which are found to be mapped into pagetables are unmapped prior to
606 * Return: -EBUSY if any pages could not be invalidated.
608 int invalidate_inode_pages2_range(struct address_space
*mapping
,
609 pgoff_t start
, pgoff_t end
)
611 pgoff_t indices
[PAGEVEC_SIZE
];
617 int did_range_unmap
= 0;
619 if (mapping_empty(mapping
))
624 while (find_get_entries(mapping
, index
, end
, &pvec
, indices
)) {
625 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
626 struct page
*page
= pvec
.pages
[i
];
628 /* We rely upon deletion not changing page->index */
631 if (xa_is_value(page
)) {
632 if (!invalidate_exceptional_entry2(mapping
,
638 if (!did_range_unmap
&& page_mapped(page
)) {
640 * If page is mapped, before taking its lock,
641 * zap the rest of the file in one hit.
643 unmap_mapping_pages(mapping
, index
,
644 (1 + end
- index
), false);
649 WARN_ON(page_to_index(page
) != index
);
650 if (page
->mapping
!= mapping
) {
654 wait_on_page_writeback(page
);
656 if (page_mapped(page
))
657 unmap_mapping_page(page
);
658 BUG_ON(page_mapped(page
));
660 ret2
= do_launder_page(mapping
, page
);
662 if (!invalidate_complete_page2(mapping
, page
))
669 pagevec_remove_exceptionals(&pvec
);
670 pagevec_release(&pvec
);
675 * For DAX we invalidate page tables after invalidating page cache. We
676 * could invalidate page tables while invalidating each entry however
677 * that would be expensive. And doing range unmapping before doesn't
678 * work as we have no cheap way to find whether page cache entry didn't
679 * get remapped later.
681 if (dax_mapping(mapping
)) {
682 unmap_mapping_pages(mapping
, start
, end
- start
+ 1, false);
685 cleancache_invalidate_inode(mapping
);
688 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range
);
691 * invalidate_inode_pages2 - remove all pages from an address_space
692 * @mapping: the address_space
694 * Any pages which are found to be mapped into pagetables are unmapped prior to
697 * Return: -EBUSY if any pages could not be invalidated.
699 int invalidate_inode_pages2(struct address_space
*mapping
)
701 return invalidate_inode_pages2_range(mapping
, 0, -1);
703 EXPORT_SYMBOL_GPL(invalidate_inode_pages2
);
706 * truncate_pagecache - unmap and remove pagecache that has been truncated
708 * @newsize: new file size
710 * inode's new i_size must already be written before truncate_pagecache
713 * This function should typically be called before the filesystem
714 * releases resources associated with the freed range (eg. deallocates
715 * blocks). This way, pagecache will always stay logically coherent
716 * with on-disk format, and the filesystem would not have to deal with
717 * situations such as writepage being called for a page that has already
718 * had its underlying blocks deallocated.
720 void truncate_pagecache(struct inode
*inode
, loff_t newsize
)
722 struct address_space
*mapping
= inode
->i_mapping
;
723 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
726 * unmap_mapping_range is called twice, first simply for
727 * efficiency so that truncate_inode_pages does fewer
728 * single-page unmaps. However after this first call, and
729 * before truncate_inode_pages finishes, it is possible for
730 * private pages to be COWed, which remain after
731 * truncate_inode_pages finishes, hence the second
732 * unmap_mapping_range call must be made for correctness.
734 unmap_mapping_range(mapping
, holebegin
, 0, 1);
735 truncate_inode_pages(mapping
, newsize
);
736 unmap_mapping_range(mapping
, holebegin
, 0, 1);
738 EXPORT_SYMBOL(truncate_pagecache
);
741 * truncate_setsize - update inode and pagecache for a new file size
743 * @newsize: new file size
745 * truncate_setsize updates i_size and performs pagecache truncation (if
746 * necessary) to @newsize. It will be typically be called from the filesystem's
747 * setattr function when ATTR_SIZE is passed in.
749 * Must be called with a lock serializing truncates and writes (generally
750 * i_rwsem but e.g. xfs uses a different lock) and before all filesystem
751 * specific block truncation has been performed.
753 void truncate_setsize(struct inode
*inode
, loff_t newsize
)
755 loff_t oldsize
= inode
->i_size
;
757 i_size_write(inode
, newsize
);
758 if (newsize
> oldsize
)
759 pagecache_isize_extended(inode
, oldsize
, newsize
);
760 truncate_pagecache(inode
, newsize
);
762 EXPORT_SYMBOL(truncate_setsize
);
765 * pagecache_isize_extended - update pagecache after extension of i_size
766 * @inode: inode for which i_size was extended
767 * @from: original inode size
768 * @to: new inode size
770 * Handle extension of inode size either caused by extending truncate or by
771 * write starting after current i_size. We mark the page straddling current
772 * i_size RO so that page_mkwrite() is called on the nearest write access to
773 * the page. This way filesystem can be sure that page_mkwrite() is called on
774 * the page before user writes to the page via mmap after the i_size has been
777 * The function must be called after i_size is updated so that page fault
778 * coming after we unlock the page will already see the new i_size.
779 * The function must be called while we still hold i_rwsem - this not only
780 * makes sure i_size is stable but also that userspace cannot observe new
781 * i_size value before we are prepared to store mmap writes at new inode size.
783 void pagecache_isize_extended(struct inode
*inode
, loff_t from
, loff_t to
)
785 int bsize
= i_blocksize(inode
);
790 WARN_ON(to
> inode
->i_size
);
792 if (from
>= to
|| bsize
== PAGE_SIZE
)
794 /* Page straddling @from will not have any hole block created? */
795 rounded_from
= round_up(from
, bsize
);
796 if (to
<= rounded_from
|| !(rounded_from
& (PAGE_SIZE
- 1)))
799 index
= from
>> PAGE_SHIFT
;
800 page
= find_lock_page(inode
->i_mapping
, index
);
801 /* Page not cached? Nothing to do */
805 * See clear_page_dirty_for_io() for details why set_page_dirty()
808 if (page_mkclean(page
))
809 set_page_dirty(page
);
813 EXPORT_SYMBOL(pagecache_isize_extended
);
816 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
818 * @lstart: offset of beginning of hole
819 * @lend: offset of last byte of hole
821 * This function should typically be called before the filesystem
822 * releases resources associated with the freed range (eg. deallocates
823 * blocks). This way, pagecache will always stay logically coherent
824 * with on-disk format, and the filesystem would not have to deal with
825 * situations such as writepage being called for a page that has already
826 * had its underlying blocks deallocated.
828 void truncate_pagecache_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
830 struct address_space
*mapping
= inode
->i_mapping
;
831 loff_t unmap_start
= round_up(lstart
, PAGE_SIZE
);
832 loff_t unmap_end
= round_down(1 + lend
, PAGE_SIZE
) - 1;
834 * This rounding is currently just for example: unmap_mapping_range
835 * expands its hole outwards, whereas we want it to contract the hole
836 * inwards. However, existing callers of truncate_pagecache_range are
837 * doing their own page rounding first. Note that unmap_mapping_range
838 * allows holelen 0 for all, and we allow lend -1 for end of file.
842 * Unlike in truncate_pagecache, unmap_mapping_range is called only
843 * once (before truncating pagecache), and without "even_cows" flag:
844 * hole-punching should not remove private COWed pages from the hole.
846 if ((u64
)unmap_end
> (u64
)unmap_start
)
847 unmap_mapping_range(mapping
, unmap_start
,
848 1 + unmap_end
- unmap_start
, 0);
849 truncate_inode_pages_range(mapping
, lstart
, lend
);
851 EXPORT_SYMBOL(truncate_pagecache_range
);