]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/truncate.c
mm: fix 'ERROR: do not initialise globals to 0 or NULL' and coding style
[mirror_ubuntu-zesty-kernel.git] / mm / truncate.c
1 /*
2 * mm/truncate.c - code for taking down pages from address_spaces
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 10Sep2002 Andrew Morton
7 * Initial version.
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/gfp.h>
13 #include <linux/mm.h>
14 #include <linux/swap.h>
15 #include <linux/export.h>
16 #include <linux/pagemap.h>
17 #include <linux/highmem.h>
18 #include <linux/pagevec.h>
19 #include <linux/task_io_accounting_ops.h>
20 #include <linux/buffer_head.h> /* grr. try_to_release_page,
21 do_invalidatepage */
22 #include <linux/cleancache.h>
23 #include "internal.h"
24
25 static void clear_exceptional_entry(struct address_space *mapping,
26 pgoff_t index, void *entry)
27 {
28 struct radix_tree_node *node;
29 void **slot;
30
31 /* Handled by shmem itself */
32 if (shmem_mapping(mapping))
33 return;
34
35 spin_lock_irq(&mapping->tree_lock);
36 /*
37 * Regular page slots are stabilized by the page lock even
38 * without the tree itself locked. These unlocked entries
39 * need verification under the tree lock.
40 */
41 if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot))
42 goto unlock;
43 if (*slot != entry)
44 goto unlock;
45 radix_tree_replace_slot(slot, NULL);
46 mapping->nrshadows--;
47 if (!node)
48 goto unlock;
49 workingset_node_shadows_dec(node);
50 /*
51 * Don't track node without shadow entries.
52 *
53 * Avoid acquiring the list_lru lock if already untracked.
54 * The list_empty() test is safe as node->private_list is
55 * protected by mapping->tree_lock.
56 */
57 if (!workingset_node_shadows(node) &&
58 !list_empty(&node->private_list))
59 list_lru_del(&workingset_shadow_nodes, &node->private_list);
60 __radix_tree_delete_node(&mapping->page_tree, node);
61 unlock:
62 spin_unlock_irq(&mapping->tree_lock);
63 }
64
65 /**
66 * do_invalidatepage - invalidate part or all of a page
67 * @page: the page which is affected
68 * @offset: start of the range to invalidate
69 * @length: length of the range to invalidate
70 *
71 * do_invalidatepage() is called when all or part of the page has become
72 * invalidated by a truncate operation.
73 *
74 * do_invalidatepage() does not have to release all buffers, but it must
75 * ensure that no dirty buffer is left outside @offset and that no I/O
76 * is underway against any of the blocks which are outside the truncation
77 * point. Because the caller is about to free (and possibly reuse) those
78 * blocks on-disk.
79 */
80 void do_invalidatepage(struct page *page, unsigned int offset,
81 unsigned int length)
82 {
83 void (*invalidatepage)(struct page *, unsigned int, unsigned int);
84
85 invalidatepage = page->mapping->a_ops->invalidatepage;
86 #ifdef CONFIG_BLOCK
87 if (!invalidatepage)
88 invalidatepage = block_invalidatepage;
89 #endif
90 if (invalidatepage)
91 (*invalidatepage)(page, offset, length);
92 }
93
94 /*
95 * This cancels just the dirty bit on the kernel page itself, it
96 * does NOT actually remove dirty bits on any mmap's that may be
97 * around. It also leaves the page tagged dirty, so any sync
98 * activity will still find it on the dirty lists, and in particular,
99 * clear_page_dirty_for_io() will still look at the dirty bits in
100 * the VM.
101 *
102 * Doing this should *normally* only ever be done when a page
103 * is truncated, and is not actually mapped anywhere at all. However,
104 * fs/buffer.c does this when it notices that somebody has cleaned
105 * out all the buffers on a page without actually doing it through
106 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
107 */
108 void cancel_dirty_page(struct page *page, unsigned int account_size)
109 {
110 if (TestClearPageDirty(page)) {
111 struct address_space *mapping = page->mapping;
112 if (mapping && mapping_cap_account_dirty(mapping)) {
113 dec_zone_page_state(page, NR_FILE_DIRTY);
114 dec_bdi_stat(mapping->backing_dev_info,
115 BDI_RECLAIMABLE);
116 if (account_size)
117 task_io_account_cancelled_write(account_size);
118 }
119 }
120 }
121 EXPORT_SYMBOL(cancel_dirty_page);
122
123 /*
124 * If truncate cannot remove the fs-private metadata from the page, the page
125 * becomes orphaned. It will be left on the LRU and may even be mapped into
126 * user pagetables if we're racing with filemap_fault().
127 *
128 * We need to bale out if page->mapping is no longer equal to the original
129 * mapping. This happens a) when the VM reclaimed the page while we waited on
130 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
131 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
132 */
133 static int
134 truncate_complete_page(struct address_space *mapping, struct page *page)
135 {
136 if (page->mapping != mapping)
137 return -EIO;
138
139 if (page_has_private(page))
140 do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
141
142 cancel_dirty_page(page, PAGE_CACHE_SIZE);
143
144 ClearPageMappedToDisk(page);
145 delete_from_page_cache(page);
146 return 0;
147 }
148
149 /*
150 * This is for invalidate_mapping_pages(). That function can be called at
151 * any time, and is not supposed to throw away dirty pages. But pages can
152 * be marked dirty at any time too, so use remove_mapping which safely
153 * discards clean, unused pages.
154 *
155 * Returns non-zero if the page was successfully invalidated.
156 */
157 static int
158 invalidate_complete_page(struct address_space *mapping, struct page *page)
159 {
160 int ret;
161
162 if (page->mapping != mapping)
163 return 0;
164
165 if (page_has_private(page) && !try_to_release_page(page, 0))
166 return 0;
167
168 ret = remove_mapping(mapping, page);
169
170 return ret;
171 }
172
173 int truncate_inode_page(struct address_space *mapping, struct page *page)
174 {
175 if (page_mapped(page)) {
176 unmap_mapping_range(mapping,
177 (loff_t)page->index << PAGE_CACHE_SHIFT,
178 PAGE_CACHE_SIZE, 0);
179 }
180 return truncate_complete_page(mapping, page);
181 }
182
183 /*
184 * Used to get rid of pages on hardware memory corruption.
185 */
186 int generic_error_remove_page(struct address_space *mapping, struct page *page)
187 {
188 if (!mapping)
189 return -EINVAL;
190 /*
191 * Only punch for normal data pages for now.
192 * Handling other types like directories would need more auditing.
193 */
194 if (!S_ISREG(mapping->host->i_mode))
195 return -EIO;
196 return truncate_inode_page(mapping, page);
197 }
198 EXPORT_SYMBOL(generic_error_remove_page);
199
200 /*
201 * Safely invalidate one page from its pagecache mapping.
202 * It only drops clean, unused pages. The page must be locked.
203 *
204 * Returns 1 if the page is successfully invalidated, otherwise 0.
205 */
206 int invalidate_inode_page(struct page *page)
207 {
208 struct address_space *mapping = page_mapping(page);
209 if (!mapping)
210 return 0;
211 if (PageDirty(page) || PageWriteback(page))
212 return 0;
213 if (page_mapped(page))
214 return 0;
215 return invalidate_complete_page(mapping, page);
216 }
217
218 /**
219 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
220 * @mapping: mapping to truncate
221 * @lstart: offset from which to truncate
222 * @lend: offset to which to truncate (inclusive)
223 *
224 * Truncate the page cache, removing the pages that are between
225 * specified offsets (and zeroing out partial pages
226 * if lstart or lend + 1 is not page aligned).
227 *
228 * Truncate takes two passes - the first pass is nonblocking. It will not
229 * block on page locks and it will not block on writeback. The second pass
230 * will wait. This is to prevent as much IO as possible in the affected region.
231 * The first pass will remove most pages, so the search cost of the second pass
232 * is low.
233 *
234 * We pass down the cache-hot hint to the page freeing code. Even if the
235 * mapping is large, it is probably the case that the final pages are the most
236 * recently touched, and freeing happens in ascending file offset order.
237 *
238 * Note that since ->invalidatepage() accepts range to invalidate
239 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
240 * page aligned properly.
241 */
242 void truncate_inode_pages_range(struct address_space *mapping,
243 loff_t lstart, loff_t lend)
244 {
245 pgoff_t start; /* inclusive */
246 pgoff_t end; /* exclusive */
247 unsigned int partial_start; /* inclusive */
248 unsigned int partial_end; /* exclusive */
249 struct pagevec pvec;
250 pgoff_t indices[PAGEVEC_SIZE];
251 pgoff_t index;
252 int i;
253
254 cleancache_invalidate_inode(mapping);
255 if (mapping->nrpages == 0 && mapping->nrshadows == 0)
256 return;
257
258 /* Offsets within partial pages */
259 partial_start = lstart & (PAGE_CACHE_SIZE - 1);
260 partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
261
262 /*
263 * 'start' and 'end' always covers the range of pages to be fully
264 * truncated. Partial pages are covered with 'partial_start' at the
265 * start of the range and 'partial_end' at the end of the range.
266 * Note that 'end' is exclusive while 'lend' is inclusive.
267 */
268 start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
269 if (lend == -1)
270 /*
271 * lend == -1 indicates end-of-file so we have to set 'end'
272 * to the highest possible pgoff_t and since the type is
273 * unsigned we're using -1.
274 */
275 end = -1;
276 else
277 end = (lend + 1) >> PAGE_CACHE_SHIFT;
278
279 pagevec_init(&pvec, 0);
280 index = start;
281 while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
282 min(end - index, (pgoff_t)PAGEVEC_SIZE),
283 indices)) {
284 mem_cgroup_uncharge_start();
285 for (i = 0; i < pagevec_count(&pvec); i++) {
286 struct page *page = pvec.pages[i];
287
288 /* We rely upon deletion not changing page->index */
289 index = indices[i];
290 if (index >= end)
291 break;
292
293 if (radix_tree_exceptional_entry(page)) {
294 clear_exceptional_entry(mapping, index, page);
295 continue;
296 }
297
298 if (!trylock_page(page))
299 continue;
300 WARN_ON(page->index != index);
301 if (PageWriteback(page)) {
302 unlock_page(page);
303 continue;
304 }
305 truncate_inode_page(mapping, page);
306 unlock_page(page);
307 }
308 pagevec_remove_exceptionals(&pvec);
309 pagevec_release(&pvec);
310 mem_cgroup_uncharge_end();
311 cond_resched();
312 index++;
313 }
314
315 if (partial_start) {
316 struct page *page = find_lock_page(mapping, start - 1);
317 if (page) {
318 unsigned int top = PAGE_CACHE_SIZE;
319 if (start > end) {
320 /* Truncation within a single page */
321 top = partial_end;
322 partial_end = 0;
323 }
324 wait_on_page_writeback(page);
325 zero_user_segment(page, partial_start, top);
326 cleancache_invalidate_page(mapping, page);
327 if (page_has_private(page))
328 do_invalidatepage(page, partial_start,
329 top - partial_start);
330 unlock_page(page);
331 page_cache_release(page);
332 }
333 }
334 if (partial_end) {
335 struct page *page = find_lock_page(mapping, end);
336 if (page) {
337 wait_on_page_writeback(page);
338 zero_user_segment(page, 0, partial_end);
339 cleancache_invalidate_page(mapping, page);
340 if (page_has_private(page))
341 do_invalidatepage(page, 0,
342 partial_end);
343 unlock_page(page);
344 page_cache_release(page);
345 }
346 }
347 /*
348 * If the truncation happened within a single page no pages
349 * will be released, just zeroed, so we can bail out now.
350 */
351 if (start >= end)
352 return;
353
354 index = start;
355 for ( ; ; ) {
356 cond_resched();
357 if (!pagevec_lookup_entries(&pvec, mapping, index,
358 min(end - index, (pgoff_t)PAGEVEC_SIZE),
359 indices)) {
360 if (index == start)
361 break;
362 index = start;
363 continue;
364 }
365 if (index == start && indices[0] >= end) {
366 pagevec_remove_exceptionals(&pvec);
367 pagevec_release(&pvec);
368 break;
369 }
370 mem_cgroup_uncharge_start();
371 for (i = 0; i < pagevec_count(&pvec); i++) {
372 struct page *page = pvec.pages[i];
373
374 /* We rely upon deletion not changing page->index */
375 index = indices[i];
376 if (index >= end)
377 break;
378
379 if (radix_tree_exceptional_entry(page)) {
380 clear_exceptional_entry(mapping, index, page);
381 continue;
382 }
383
384 lock_page(page);
385 WARN_ON(page->index != index);
386 wait_on_page_writeback(page);
387 truncate_inode_page(mapping, page);
388 unlock_page(page);
389 }
390 pagevec_remove_exceptionals(&pvec);
391 pagevec_release(&pvec);
392 mem_cgroup_uncharge_end();
393 index++;
394 }
395 cleancache_invalidate_inode(mapping);
396 }
397 EXPORT_SYMBOL(truncate_inode_pages_range);
398
399 /**
400 * truncate_inode_pages - truncate *all* the pages from an offset
401 * @mapping: mapping to truncate
402 * @lstart: offset from which to truncate
403 *
404 * Called under (and serialised by) inode->i_mutex.
405 *
406 * Note: When this function returns, there can be a page in the process of
407 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
408 * mapping->nrpages can be non-zero when this function returns even after
409 * truncation of the whole mapping.
410 */
411 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
412 {
413 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
414 }
415 EXPORT_SYMBOL(truncate_inode_pages);
416
417 /**
418 * truncate_inode_pages_final - truncate *all* pages before inode dies
419 * @mapping: mapping to truncate
420 *
421 * Called under (and serialized by) inode->i_mutex.
422 *
423 * Filesystems have to use this in the .evict_inode path to inform the
424 * VM that this is the final truncate and the inode is going away.
425 */
426 void truncate_inode_pages_final(struct address_space *mapping)
427 {
428 unsigned long nrshadows;
429 unsigned long nrpages;
430
431 /*
432 * Page reclaim can not participate in regular inode lifetime
433 * management (can't call iput()) and thus can race with the
434 * inode teardown. Tell it when the address space is exiting,
435 * so that it does not install eviction information after the
436 * final truncate has begun.
437 */
438 mapping_set_exiting(mapping);
439
440 /*
441 * When reclaim installs eviction entries, it increases
442 * nrshadows first, then decreases nrpages. Make sure we see
443 * this in the right order or we might miss an entry.
444 */
445 nrpages = mapping->nrpages;
446 smp_rmb();
447 nrshadows = mapping->nrshadows;
448
449 if (nrpages || nrshadows) {
450 /*
451 * As truncation uses a lockless tree lookup, cycle
452 * the tree lock to make sure any ongoing tree
453 * modification that does not see AS_EXITING is
454 * completed before starting the final truncate.
455 */
456 spin_lock_irq(&mapping->tree_lock);
457 spin_unlock_irq(&mapping->tree_lock);
458
459 truncate_inode_pages(mapping, 0);
460 }
461 }
462 EXPORT_SYMBOL(truncate_inode_pages_final);
463
464 /**
465 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
466 * @mapping: the address_space which holds the pages to invalidate
467 * @start: the offset 'from' which to invalidate
468 * @end: the offset 'to' which to invalidate (inclusive)
469 *
470 * This function only removes the unlocked pages, if you want to
471 * remove all the pages of one inode, you must call truncate_inode_pages.
472 *
473 * invalidate_mapping_pages() will not block on IO activity. It will not
474 * invalidate pages which are dirty, locked, under writeback or mapped into
475 * pagetables.
476 */
477 unsigned long invalidate_mapping_pages(struct address_space *mapping,
478 pgoff_t start, pgoff_t end)
479 {
480 pgoff_t indices[PAGEVEC_SIZE];
481 struct pagevec pvec;
482 pgoff_t index = start;
483 unsigned long ret;
484 unsigned long count = 0;
485 int i;
486
487 /*
488 * Note: this function may get called on a shmem/tmpfs mapping:
489 * pagevec_lookup() might then return 0 prematurely (because it
490 * got a gangful of swap entries); but it's hardly worth worrying
491 * about - it can rarely have anything to free from such a mapping
492 * (most pages are dirty), and already skips over any difficulties.
493 */
494
495 pagevec_init(&pvec, 0);
496 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
497 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
498 indices)) {
499 mem_cgroup_uncharge_start();
500 for (i = 0; i < pagevec_count(&pvec); i++) {
501 struct page *page = pvec.pages[i];
502
503 /* We rely upon deletion not changing page->index */
504 index = indices[i];
505 if (index > end)
506 break;
507
508 if (radix_tree_exceptional_entry(page)) {
509 clear_exceptional_entry(mapping, index, page);
510 continue;
511 }
512
513 if (!trylock_page(page))
514 continue;
515 WARN_ON(page->index != index);
516 ret = invalidate_inode_page(page);
517 unlock_page(page);
518 /*
519 * Invalidation is a hint that the page is no longer
520 * of interest and try to speed up its reclaim.
521 */
522 if (!ret)
523 deactivate_page(page);
524 count += ret;
525 }
526 pagevec_remove_exceptionals(&pvec);
527 pagevec_release(&pvec);
528 mem_cgroup_uncharge_end();
529 cond_resched();
530 index++;
531 }
532 return count;
533 }
534 EXPORT_SYMBOL(invalidate_mapping_pages);
535
536 /*
537 * This is like invalidate_complete_page(), except it ignores the page's
538 * refcount. We do this because invalidate_inode_pages2() needs stronger
539 * invalidation guarantees, and cannot afford to leave pages behind because
540 * shrink_page_list() has a temp ref on them, or because they're transiently
541 * sitting in the lru_cache_add() pagevecs.
542 */
543 static int
544 invalidate_complete_page2(struct address_space *mapping, struct page *page)
545 {
546 if (page->mapping != mapping)
547 return 0;
548
549 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
550 return 0;
551
552 spin_lock_irq(&mapping->tree_lock);
553 if (PageDirty(page))
554 goto failed;
555
556 BUG_ON(page_has_private(page));
557 __delete_from_page_cache(page, NULL);
558 spin_unlock_irq(&mapping->tree_lock);
559 mem_cgroup_uncharge_cache_page(page);
560
561 if (mapping->a_ops->freepage)
562 mapping->a_ops->freepage(page);
563
564 page_cache_release(page); /* pagecache ref */
565 return 1;
566 failed:
567 spin_unlock_irq(&mapping->tree_lock);
568 return 0;
569 }
570
571 static int do_launder_page(struct address_space *mapping, struct page *page)
572 {
573 if (!PageDirty(page))
574 return 0;
575 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
576 return 0;
577 return mapping->a_ops->launder_page(page);
578 }
579
580 /**
581 * invalidate_inode_pages2_range - remove range of pages from an address_space
582 * @mapping: the address_space
583 * @start: the page offset 'from' which to invalidate
584 * @end: the page offset 'to' which to invalidate (inclusive)
585 *
586 * Any pages which are found to be mapped into pagetables are unmapped prior to
587 * invalidation.
588 *
589 * Returns -EBUSY if any pages could not be invalidated.
590 */
591 int invalidate_inode_pages2_range(struct address_space *mapping,
592 pgoff_t start, pgoff_t end)
593 {
594 pgoff_t indices[PAGEVEC_SIZE];
595 struct pagevec pvec;
596 pgoff_t index;
597 int i;
598 int ret = 0;
599 int ret2 = 0;
600 int did_range_unmap = 0;
601
602 cleancache_invalidate_inode(mapping);
603 pagevec_init(&pvec, 0);
604 index = start;
605 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
606 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
607 indices)) {
608 mem_cgroup_uncharge_start();
609 for (i = 0; i < pagevec_count(&pvec); i++) {
610 struct page *page = pvec.pages[i];
611
612 /* We rely upon deletion not changing page->index */
613 index = indices[i];
614 if (index > end)
615 break;
616
617 if (radix_tree_exceptional_entry(page)) {
618 clear_exceptional_entry(mapping, index, page);
619 continue;
620 }
621
622 lock_page(page);
623 WARN_ON(page->index != index);
624 if (page->mapping != mapping) {
625 unlock_page(page);
626 continue;
627 }
628 wait_on_page_writeback(page);
629 if (page_mapped(page)) {
630 if (!did_range_unmap) {
631 /*
632 * Zap the rest of the file in one hit.
633 */
634 unmap_mapping_range(mapping,
635 (loff_t)index << PAGE_CACHE_SHIFT,
636 (loff_t)(1 + end - index)
637 << PAGE_CACHE_SHIFT,
638 0);
639 did_range_unmap = 1;
640 } else {
641 /*
642 * Just zap this page
643 */
644 unmap_mapping_range(mapping,
645 (loff_t)index << PAGE_CACHE_SHIFT,
646 PAGE_CACHE_SIZE, 0);
647 }
648 }
649 BUG_ON(page_mapped(page));
650 ret2 = do_launder_page(mapping, page);
651 if (ret2 == 0) {
652 if (!invalidate_complete_page2(mapping, page))
653 ret2 = -EBUSY;
654 }
655 if (ret2 < 0)
656 ret = ret2;
657 unlock_page(page);
658 }
659 pagevec_remove_exceptionals(&pvec);
660 pagevec_release(&pvec);
661 mem_cgroup_uncharge_end();
662 cond_resched();
663 index++;
664 }
665 cleancache_invalidate_inode(mapping);
666 return ret;
667 }
668 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
669
670 /**
671 * invalidate_inode_pages2 - remove all pages from an address_space
672 * @mapping: the address_space
673 *
674 * Any pages which are found to be mapped into pagetables are unmapped prior to
675 * invalidation.
676 *
677 * Returns -EBUSY if any pages could not be invalidated.
678 */
679 int invalidate_inode_pages2(struct address_space *mapping)
680 {
681 return invalidate_inode_pages2_range(mapping, 0, -1);
682 }
683 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
684
685 /**
686 * truncate_pagecache - unmap and remove pagecache that has been truncated
687 * @inode: inode
688 * @newsize: new file size
689 *
690 * inode's new i_size must already be written before truncate_pagecache
691 * is called.
692 *
693 * This function should typically be called before the filesystem
694 * releases resources associated with the freed range (eg. deallocates
695 * blocks). This way, pagecache will always stay logically coherent
696 * with on-disk format, and the filesystem would not have to deal with
697 * situations such as writepage being called for a page that has already
698 * had its underlying blocks deallocated.
699 */
700 void truncate_pagecache(struct inode *inode, loff_t newsize)
701 {
702 struct address_space *mapping = inode->i_mapping;
703 loff_t holebegin = round_up(newsize, PAGE_SIZE);
704
705 /*
706 * unmap_mapping_range is called twice, first simply for
707 * efficiency so that truncate_inode_pages does fewer
708 * single-page unmaps. However after this first call, and
709 * before truncate_inode_pages finishes, it is possible for
710 * private pages to be COWed, which remain after
711 * truncate_inode_pages finishes, hence the second
712 * unmap_mapping_range call must be made for correctness.
713 */
714 unmap_mapping_range(mapping, holebegin, 0, 1);
715 truncate_inode_pages(mapping, newsize);
716 unmap_mapping_range(mapping, holebegin, 0, 1);
717 }
718 EXPORT_SYMBOL(truncate_pagecache);
719
720 /**
721 * truncate_setsize - update inode and pagecache for a new file size
722 * @inode: inode
723 * @newsize: new file size
724 *
725 * truncate_setsize updates i_size and performs pagecache truncation (if
726 * necessary) to @newsize. It will be typically be called from the filesystem's
727 * setattr function when ATTR_SIZE is passed in.
728 *
729 * Must be called with inode_mutex held and before all filesystem specific
730 * block truncation has been performed.
731 */
732 void truncate_setsize(struct inode *inode, loff_t newsize)
733 {
734 i_size_write(inode, newsize);
735 truncate_pagecache(inode, newsize);
736 }
737 EXPORT_SYMBOL(truncate_setsize);
738
739 /**
740 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
741 * @inode: inode
742 * @lstart: offset of beginning of hole
743 * @lend: offset of last byte of hole
744 *
745 * This function should typically be called before the filesystem
746 * releases resources associated with the freed range (eg. deallocates
747 * blocks). This way, pagecache will always stay logically coherent
748 * with on-disk format, and the filesystem would not have to deal with
749 * situations such as writepage being called for a page that has already
750 * had its underlying blocks deallocated.
751 */
752 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
753 {
754 struct address_space *mapping = inode->i_mapping;
755 loff_t unmap_start = round_up(lstart, PAGE_SIZE);
756 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
757 /*
758 * This rounding is currently just for example: unmap_mapping_range
759 * expands its hole outwards, whereas we want it to contract the hole
760 * inwards. However, existing callers of truncate_pagecache_range are
761 * doing their own page rounding first. Note that unmap_mapping_range
762 * allows holelen 0 for all, and we allow lend -1 for end of file.
763 */
764
765 /*
766 * Unlike in truncate_pagecache, unmap_mapping_range is called only
767 * once (before truncating pagecache), and without "even_cows" flag:
768 * hole-punching should not remove private COWed pages from the hole.
769 */
770 if ((u64)unmap_end > (u64)unmap_start)
771 unmap_mapping_range(mapping, unmap_start,
772 1 + unmap_end - unmap_start, 0);
773 truncate_inode_pages_range(mapping, lstart, lend);
774 }
775 EXPORT_SYMBOL(truncate_pagecache_range);