]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/truncate.c
netfilter: add and use nf_ct_set helper
[mirror_ubuntu-artful-kernel.git] / mm / truncate.c
1 /*
2 * mm/truncate.c - code for taking down pages from address_spaces
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 10Sep2002 Andrew Morton
7 * Initial version.
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/dax.h>
13 #include <linux/gfp.h>
14 #include <linux/mm.h>
15 #include <linux/swap.h>
16 #include <linux/export.h>
17 #include <linux/pagemap.h>
18 #include <linux/highmem.h>
19 #include <linux/pagevec.h>
20 #include <linux/task_io_accounting_ops.h>
21 #include <linux/buffer_head.h> /* grr. try_to_release_page,
22 do_invalidatepage */
23 #include <linux/cleancache.h>
24 #include <linux/rmap.h>
25 #include "internal.h"
26
27 static void clear_exceptional_entry(struct address_space *mapping,
28 pgoff_t index, void *entry)
29 {
30 struct radix_tree_node *node;
31 void **slot;
32
33 /* Handled by shmem itself */
34 if (shmem_mapping(mapping))
35 return;
36
37 if (dax_mapping(mapping)) {
38 dax_delete_mapping_entry(mapping, index);
39 return;
40 }
41 spin_lock_irq(&mapping->tree_lock);
42 /*
43 * Regular page slots are stabilized by the page lock even
44 * without the tree itself locked. These unlocked entries
45 * need verification under the tree lock.
46 */
47 if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot))
48 goto unlock;
49 if (*slot != entry)
50 goto unlock;
51 __radix_tree_replace(&mapping->page_tree, node, slot, NULL,
52 workingset_update_node, mapping);
53 mapping->nrexceptional--;
54 unlock:
55 spin_unlock_irq(&mapping->tree_lock);
56 }
57
58 /**
59 * do_invalidatepage - invalidate part or all of a page
60 * @page: the page which is affected
61 * @offset: start of the range to invalidate
62 * @length: length of the range to invalidate
63 *
64 * do_invalidatepage() is called when all or part of the page has become
65 * invalidated by a truncate operation.
66 *
67 * do_invalidatepage() does not have to release all buffers, but it must
68 * ensure that no dirty buffer is left outside @offset and that no I/O
69 * is underway against any of the blocks which are outside the truncation
70 * point. Because the caller is about to free (and possibly reuse) those
71 * blocks on-disk.
72 */
73 void do_invalidatepage(struct page *page, unsigned int offset,
74 unsigned int length)
75 {
76 void (*invalidatepage)(struct page *, unsigned int, unsigned int);
77
78 invalidatepage = page->mapping->a_ops->invalidatepage;
79 #ifdef CONFIG_BLOCK
80 if (!invalidatepage)
81 invalidatepage = block_invalidatepage;
82 #endif
83 if (invalidatepage)
84 (*invalidatepage)(page, offset, length);
85 }
86
87 /*
88 * If truncate cannot remove the fs-private metadata from the page, the page
89 * becomes orphaned. It will be left on the LRU and may even be mapped into
90 * user pagetables if we're racing with filemap_fault().
91 *
92 * We need to bale out if page->mapping is no longer equal to the original
93 * mapping. This happens a) when the VM reclaimed the page while we waited on
94 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
95 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
96 */
97 static int
98 truncate_complete_page(struct address_space *mapping, struct page *page)
99 {
100 if (page->mapping != mapping)
101 return -EIO;
102
103 if (page_has_private(page))
104 do_invalidatepage(page, 0, PAGE_SIZE);
105
106 /*
107 * Some filesystems seem to re-dirty the page even after
108 * the VM has canceled the dirty bit (eg ext3 journaling).
109 * Hence dirty accounting check is placed after invalidation.
110 */
111 cancel_dirty_page(page);
112 ClearPageMappedToDisk(page);
113 delete_from_page_cache(page);
114 return 0;
115 }
116
117 /*
118 * This is for invalidate_mapping_pages(). That function can be called at
119 * any time, and is not supposed to throw away dirty pages. But pages can
120 * be marked dirty at any time too, so use remove_mapping which safely
121 * discards clean, unused pages.
122 *
123 * Returns non-zero if the page was successfully invalidated.
124 */
125 static int
126 invalidate_complete_page(struct address_space *mapping, struct page *page)
127 {
128 int ret;
129
130 if (page->mapping != mapping)
131 return 0;
132
133 if (page_has_private(page) && !try_to_release_page(page, 0))
134 return 0;
135
136 ret = remove_mapping(mapping, page);
137
138 return ret;
139 }
140
141 int truncate_inode_page(struct address_space *mapping, struct page *page)
142 {
143 loff_t holelen;
144 VM_BUG_ON_PAGE(PageTail(page), page);
145
146 holelen = PageTransHuge(page) ? HPAGE_PMD_SIZE : PAGE_SIZE;
147 if (page_mapped(page)) {
148 unmap_mapping_range(mapping,
149 (loff_t)page->index << PAGE_SHIFT,
150 holelen, 0);
151 }
152 return truncate_complete_page(mapping, page);
153 }
154
155 /*
156 * Used to get rid of pages on hardware memory corruption.
157 */
158 int generic_error_remove_page(struct address_space *mapping, struct page *page)
159 {
160 if (!mapping)
161 return -EINVAL;
162 /*
163 * Only punch for normal data pages for now.
164 * Handling other types like directories would need more auditing.
165 */
166 if (!S_ISREG(mapping->host->i_mode))
167 return -EIO;
168 return truncate_inode_page(mapping, page);
169 }
170 EXPORT_SYMBOL(generic_error_remove_page);
171
172 /*
173 * Safely invalidate one page from its pagecache mapping.
174 * It only drops clean, unused pages. The page must be locked.
175 *
176 * Returns 1 if the page is successfully invalidated, otherwise 0.
177 */
178 int invalidate_inode_page(struct page *page)
179 {
180 struct address_space *mapping = page_mapping(page);
181 if (!mapping)
182 return 0;
183 if (PageDirty(page) || PageWriteback(page))
184 return 0;
185 if (page_mapped(page))
186 return 0;
187 return invalidate_complete_page(mapping, page);
188 }
189
190 /**
191 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
192 * @mapping: mapping to truncate
193 * @lstart: offset from which to truncate
194 * @lend: offset to which to truncate (inclusive)
195 *
196 * Truncate the page cache, removing the pages that are between
197 * specified offsets (and zeroing out partial pages
198 * if lstart or lend + 1 is not page aligned).
199 *
200 * Truncate takes two passes - the first pass is nonblocking. It will not
201 * block on page locks and it will not block on writeback. The second pass
202 * will wait. This is to prevent as much IO as possible in the affected region.
203 * The first pass will remove most pages, so the search cost of the second pass
204 * is low.
205 *
206 * We pass down the cache-hot hint to the page freeing code. Even if the
207 * mapping is large, it is probably the case that the final pages are the most
208 * recently touched, and freeing happens in ascending file offset order.
209 *
210 * Note that since ->invalidatepage() accepts range to invalidate
211 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
212 * page aligned properly.
213 */
214 void truncate_inode_pages_range(struct address_space *mapping,
215 loff_t lstart, loff_t lend)
216 {
217 pgoff_t start; /* inclusive */
218 pgoff_t end; /* exclusive */
219 unsigned int partial_start; /* inclusive */
220 unsigned int partial_end; /* exclusive */
221 struct pagevec pvec;
222 pgoff_t indices[PAGEVEC_SIZE];
223 pgoff_t index;
224 int i;
225
226 cleancache_invalidate_inode(mapping);
227 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
228 return;
229
230 /* Offsets within partial pages */
231 partial_start = lstart & (PAGE_SIZE - 1);
232 partial_end = (lend + 1) & (PAGE_SIZE - 1);
233
234 /*
235 * 'start' and 'end' always covers the range of pages to be fully
236 * truncated. Partial pages are covered with 'partial_start' at the
237 * start of the range and 'partial_end' at the end of the range.
238 * Note that 'end' is exclusive while 'lend' is inclusive.
239 */
240 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
241 if (lend == -1)
242 /*
243 * lend == -1 indicates end-of-file so we have to set 'end'
244 * to the highest possible pgoff_t and since the type is
245 * unsigned we're using -1.
246 */
247 end = -1;
248 else
249 end = (lend + 1) >> PAGE_SHIFT;
250
251 pagevec_init(&pvec, 0);
252 index = start;
253 while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
254 min(end - index, (pgoff_t)PAGEVEC_SIZE),
255 indices)) {
256 for (i = 0; i < pagevec_count(&pvec); i++) {
257 struct page *page = pvec.pages[i];
258
259 /* We rely upon deletion not changing page->index */
260 index = indices[i];
261 if (index >= end)
262 break;
263
264 if (radix_tree_exceptional_entry(page)) {
265 clear_exceptional_entry(mapping, index, page);
266 continue;
267 }
268
269 if (!trylock_page(page))
270 continue;
271 WARN_ON(page_to_index(page) != index);
272 if (PageWriteback(page)) {
273 unlock_page(page);
274 continue;
275 }
276 truncate_inode_page(mapping, page);
277 unlock_page(page);
278 }
279 pagevec_remove_exceptionals(&pvec);
280 pagevec_release(&pvec);
281 cond_resched();
282 index++;
283 }
284
285 if (partial_start) {
286 struct page *page = find_lock_page(mapping, start - 1);
287 if (page) {
288 unsigned int top = PAGE_SIZE;
289 if (start > end) {
290 /* Truncation within a single page */
291 top = partial_end;
292 partial_end = 0;
293 }
294 wait_on_page_writeback(page);
295 zero_user_segment(page, partial_start, top);
296 cleancache_invalidate_page(mapping, page);
297 if (page_has_private(page))
298 do_invalidatepage(page, partial_start,
299 top - partial_start);
300 unlock_page(page);
301 put_page(page);
302 }
303 }
304 if (partial_end) {
305 struct page *page = find_lock_page(mapping, end);
306 if (page) {
307 wait_on_page_writeback(page);
308 zero_user_segment(page, 0, partial_end);
309 cleancache_invalidate_page(mapping, page);
310 if (page_has_private(page))
311 do_invalidatepage(page, 0,
312 partial_end);
313 unlock_page(page);
314 put_page(page);
315 }
316 }
317 /*
318 * If the truncation happened within a single page no pages
319 * will be released, just zeroed, so we can bail out now.
320 */
321 if (start >= end)
322 return;
323
324 index = start;
325 for ( ; ; ) {
326 cond_resched();
327 if (!pagevec_lookup_entries(&pvec, mapping, index,
328 min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
329 /* If all gone from start onwards, we're done */
330 if (index == start)
331 break;
332 /* Otherwise restart to make sure all gone */
333 index = start;
334 continue;
335 }
336 if (index == start && indices[0] >= end) {
337 /* All gone out of hole to be punched, we're done */
338 pagevec_remove_exceptionals(&pvec);
339 pagevec_release(&pvec);
340 break;
341 }
342 for (i = 0; i < pagevec_count(&pvec); i++) {
343 struct page *page = pvec.pages[i];
344
345 /* We rely upon deletion not changing page->index */
346 index = indices[i];
347 if (index >= end) {
348 /* Restart punch to make sure all gone */
349 index = start - 1;
350 break;
351 }
352
353 if (radix_tree_exceptional_entry(page)) {
354 clear_exceptional_entry(mapping, index, page);
355 continue;
356 }
357
358 lock_page(page);
359 WARN_ON(page_to_index(page) != index);
360 wait_on_page_writeback(page);
361 truncate_inode_page(mapping, page);
362 unlock_page(page);
363 }
364 pagevec_remove_exceptionals(&pvec);
365 pagevec_release(&pvec);
366 index++;
367 }
368 cleancache_invalidate_inode(mapping);
369 }
370 EXPORT_SYMBOL(truncate_inode_pages_range);
371
372 /**
373 * truncate_inode_pages - truncate *all* the pages from an offset
374 * @mapping: mapping to truncate
375 * @lstart: offset from which to truncate
376 *
377 * Called under (and serialised by) inode->i_mutex.
378 *
379 * Note: When this function returns, there can be a page in the process of
380 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
381 * mapping->nrpages can be non-zero when this function returns even after
382 * truncation of the whole mapping.
383 */
384 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
385 {
386 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
387 }
388 EXPORT_SYMBOL(truncate_inode_pages);
389
390 /**
391 * truncate_inode_pages_final - truncate *all* pages before inode dies
392 * @mapping: mapping to truncate
393 *
394 * Called under (and serialized by) inode->i_mutex.
395 *
396 * Filesystems have to use this in the .evict_inode path to inform the
397 * VM that this is the final truncate and the inode is going away.
398 */
399 void truncate_inode_pages_final(struct address_space *mapping)
400 {
401 unsigned long nrexceptional;
402 unsigned long nrpages;
403
404 /*
405 * Page reclaim can not participate in regular inode lifetime
406 * management (can't call iput()) and thus can race with the
407 * inode teardown. Tell it when the address space is exiting,
408 * so that it does not install eviction information after the
409 * final truncate has begun.
410 */
411 mapping_set_exiting(mapping);
412
413 /*
414 * When reclaim installs eviction entries, it increases
415 * nrexceptional first, then decreases nrpages. Make sure we see
416 * this in the right order or we might miss an entry.
417 */
418 nrpages = mapping->nrpages;
419 smp_rmb();
420 nrexceptional = mapping->nrexceptional;
421
422 if (nrpages || nrexceptional) {
423 /*
424 * As truncation uses a lockless tree lookup, cycle
425 * the tree lock to make sure any ongoing tree
426 * modification that does not see AS_EXITING is
427 * completed before starting the final truncate.
428 */
429 spin_lock_irq(&mapping->tree_lock);
430 spin_unlock_irq(&mapping->tree_lock);
431
432 truncate_inode_pages(mapping, 0);
433 }
434 }
435 EXPORT_SYMBOL(truncate_inode_pages_final);
436
437 /**
438 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
439 * @mapping: the address_space which holds the pages to invalidate
440 * @start: the offset 'from' which to invalidate
441 * @end: the offset 'to' which to invalidate (inclusive)
442 *
443 * This function only removes the unlocked pages, if you want to
444 * remove all the pages of one inode, you must call truncate_inode_pages.
445 *
446 * invalidate_mapping_pages() will not block on IO activity. It will not
447 * invalidate pages which are dirty, locked, under writeback or mapped into
448 * pagetables.
449 */
450 unsigned long invalidate_mapping_pages(struct address_space *mapping,
451 pgoff_t start, pgoff_t end)
452 {
453 pgoff_t indices[PAGEVEC_SIZE];
454 struct pagevec pvec;
455 pgoff_t index = start;
456 unsigned long ret;
457 unsigned long count = 0;
458 int i;
459
460 pagevec_init(&pvec, 0);
461 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
462 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
463 indices)) {
464 for (i = 0; i < pagevec_count(&pvec); i++) {
465 struct page *page = pvec.pages[i];
466
467 /* We rely upon deletion not changing page->index */
468 index = indices[i];
469 if (index > end)
470 break;
471
472 if (radix_tree_exceptional_entry(page)) {
473 clear_exceptional_entry(mapping, index, page);
474 continue;
475 }
476
477 if (!trylock_page(page))
478 continue;
479
480 WARN_ON(page_to_index(page) != index);
481
482 /* Middle of THP: skip */
483 if (PageTransTail(page)) {
484 unlock_page(page);
485 continue;
486 } else if (PageTransHuge(page)) {
487 index += HPAGE_PMD_NR - 1;
488 i += HPAGE_PMD_NR - 1;
489 /* 'end' is in the middle of THP */
490 if (index == round_down(end, HPAGE_PMD_NR))
491 continue;
492 }
493
494 ret = invalidate_inode_page(page);
495 unlock_page(page);
496 /*
497 * Invalidation is a hint that the page is no longer
498 * of interest and try to speed up its reclaim.
499 */
500 if (!ret)
501 deactivate_file_page(page);
502 count += ret;
503 }
504 pagevec_remove_exceptionals(&pvec);
505 pagevec_release(&pvec);
506 cond_resched();
507 index++;
508 }
509 return count;
510 }
511 EXPORT_SYMBOL(invalidate_mapping_pages);
512
513 /*
514 * This is like invalidate_complete_page(), except it ignores the page's
515 * refcount. We do this because invalidate_inode_pages2() needs stronger
516 * invalidation guarantees, and cannot afford to leave pages behind because
517 * shrink_page_list() has a temp ref on them, or because they're transiently
518 * sitting in the lru_cache_add() pagevecs.
519 */
520 static int
521 invalidate_complete_page2(struct address_space *mapping, struct page *page)
522 {
523 unsigned long flags;
524
525 if (page->mapping != mapping)
526 return 0;
527
528 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
529 return 0;
530
531 spin_lock_irqsave(&mapping->tree_lock, flags);
532 if (PageDirty(page))
533 goto failed;
534
535 BUG_ON(page_has_private(page));
536 __delete_from_page_cache(page, NULL);
537 spin_unlock_irqrestore(&mapping->tree_lock, flags);
538
539 if (mapping->a_ops->freepage)
540 mapping->a_ops->freepage(page);
541
542 put_page(page); /* pagecache ref */
543 return 1;
544 failed:
545 spin_unlock_irqrestore(&mapping->tree_lock, flags);
546 return 0;
547 }
548
549 static int do_launder_page(struct address_space *mapping, struct page *page)
550 {
551 if (!PageDirty(page))
552 return 0;
553 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
554 return 0;
555 return mapping->a_ops->launder_page(page);
556 }
557
558 /**
559 * invalidate_inode_pages2_range - remove range of pages from an address_space
560 * @mapping: the address_space
561 * @start: the page offset 'from' which to invalidate
562 * @end: the page offset 'to' which to invalidate (inclusive)
563 *
564 * Any pages which are found to be mapped into pagetables are unmapped prior to
565 * invalidation.
566 *
567 * Returns -EBUSY if any pages could not be invalidated.
568 */
569 int invalidate_inode_pages2_range(struct address_space *mapping,
570 pgoff_t start, pgoff_t end)
571 {
572 pgoff_t indices[PAGEVEC_SIZE];
573 struct pagevec pvec;
574 pgoff_t index;
575 int i;
576 int ret = 0;
577 int ret2 = 0;
578 int did_range_unmap = 0;
579
580 cleancache_invalidate_inode(mapping);
581 pagevec_init(&pvec, 0);
582 index = start;
583 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
584 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
585 indices)) {
586 for (i = 0; i < pagevec_count(&pvec); i++) {
587 struct page *page = pvec.pages[i];
588
589 /* We rely upon deletion not changing page->index */
590 index = indices[i];
591 if (index > end)
592 break;
593
594 if (radix_tree_exceptional_entry(page)) {
595 clear_exceptional_entry(mapping, index, page);
596 continue;
597 }
598
599 lock_page(page);
600 WARN_ON(page_to_index(page) != index);
601 if (page->mapping != mapping) {
602 unlock_page(page);
603 continue;
604 }
605 wait_on_page_writeback(page);
606 if (page_mapped(page)) {
607 if (!did_range_unmap) {
608 /*
609 * Zap the rest of the file in one hit.
610 */
611 unmap_mapping_range(mapping,
612 (loff_t)index << PAGE_SHIFT,
613 (loff_t)(1 + end - index)
614 << PAGE_SHIFT,
615 0);
616 did_range_unmap = 1;
617 } else {
618 /*
619 * Just zap this page
620 */
621 unmap_mapping_range(mapping,
622 (loff_t)index << PAGE_SHIFT,
623 PAGE_SIZE, 0);
624 }
625 }
626 BUG_ON(page_mapped(page));
627 ret2 = do_launder_page(mapping, page);
628 if (ret2 == 0) {
629 if (!invalidate_complete_page2(mapping, page))
630 ret2 = -EBUSY;
631 }
632 if (ret2 < 0)
633 ret = ret2;
634 unlock_page(page);
635 }
636 pagevec_remove_exceptionals(&pvec);
637 pagevec_release(&pvec);
638 cond_resched();
639 index++;
640 }
641 cleancache_invalidate_inode(mapping);
642 return ret;
643 }
644 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
645
646 /**
647 * invalidate_inode_pages2 - remove all pages from an address_space
648 * @mapping: the address_space
649 *
650 * Any pages which are found to be mapped into pagetables are unmapped prior to
651 * invalidation.
652 *
653 * Returns -EBUSY if any pages could not be invalidated.
654 */
655 int invalidate_inode_pages2(struct address_space *mapping)
656 {
657 return invalidate_inode_pages2_range(mapping, 0, -1);
658 }
659 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
660
661 /**
662 * truncate_pagecache - unmap and remove pagecache that has been truncated
663 * @inode: inode
664 * @newsize: new file size
665 *
666 * inode's new i_size must already be written before truncate_pagecache
667 * is called.
668 *
669 * This function should typically be called before the filesystem
670 * releases resources associated with the freed range (eg. deallocates
671 * blocks). This way, pagecache will always stay logically coherent
672 * with on-disk format, and the filesystem would not have to deal with
673 * situations such as writepage being called for a page that has already
674 * had its underlying blocks deallocated.
675 */
676 void truncate_pagecache(struct inode *inode, loff_t newsize)
677 {
678 struct address_space *mapping = inode->i_mapping;
679 loff_t holebegin = round_up(newsize, PAGE_SIZE);
680
681 /*
682 * unmap_mapping_range is called twice, first simply for
683 * efficiency so that truncate_inode_pages does fewer
684 * single-page unmaps. However after this first call, and
685 * before truncate_inode_pages finishes, it is possible for
686 * private pages to be COWed, which remain after
687 * truncate_inode_pages finishes, hence the second
688 * unmap_mapping_range call must be made for correctness.
689 */
690 unmap_mapping_range(mapping, holebegin, 0, 1);
691 truncate_inode_pages(mapping, newsize);
692 unmap_mapping_range(mapping, holebegin, 0, 1);
693 }
694 EXPORT_SYMBOL(truncate_pagecache);
695
696 /**
697 * truncate_setsize - update inode and pagecache for a new file size
698 * @inode: inode
699 * @newsize: new file size
700 *
701 * truncate_setsize updates i_size and performs pagecache truncation (if
702 * necessary) to @newsize. It will be typically be called from the filesystem's
703 * setattr function when ATTR_SIZE is passed in.
704 *
705 * Must be called with a lock serializing truncates and writes (generally
706 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
707 * specific block truncation has been performed.
708 */
709 void truncate_setsize(struct inode *inode, loff_t newsize)
710 {
711 loff_t oldsize = inode->i_size;
712
713 i_size_write(inode, newsize);
714 if (newsize > oldsize)
715 pagecache_isize_extended(inode, oldsize, newsize);
716 truncate_pagecache(inode, newsize);
717 }
718 EXPORT_SYMBOL(truncate_setsize);
719
720 /**
721 * pagecache_isize_extended - update pagecache after extension of i_size
722 * @inode: inode for which i_size was extended
723 * @from: original inode size
724 * @to: new inode size
725 *
726 * Handle extension of inode size either caused by extending truncate or by
727 * write starting after current i_size. We mark the page straddling current
728 * i_size RO so that page_mkwrite() is called on the nearest write access to
729 * the page. This way filesystem can be sure that page_mkwrite() is called on
730 * the page before user writes to the page via mmap after the i_size has been
731 * changed.
732 *
733 * The function must be called after i_size is updated so that page fault
734 * coming after we unlock the page will already see the new i_size.
735 * The function must be called while we still hold i_mutex - this not only
736 * makes sure i_size is stable but also that userspace cannot observe new
737 * i_size value before we are prepared to store mmap writes at new inode size.
738 */
739 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
740 {
741 int bsize = 1 << inode->i_blkbits;
742 loff_t rounded_from;
743 struct page *page;
744 pgoff_t index;
745
746 WARN_ON(to > inode->i_size);
747
748 if (from >= to || bsize == PAGE_SIZE)
749 return;
750 /* Page straddling @from will not have any hole block created? */
751 rounded_from = round_up(from, bsize);
752 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
753 return;
754
755 index = from >> PAGE_SHIFT;
756 page = find_lock_page(inode->i_mapping, index);
757 /* Page not cached? Nothing to do */
758 if (!page)
759 return;
760 /*
761 * See clear_page_dirty_for_io() for details why set_page_dirty()
762 * is needed.
763 */
764 if (page_mkclean(page))
765 set_page_dirty(page);
766 unlock_page(page);
767 put_page(page);
768 }
769 EXPORT_SYMBOL(pagecache_isize_extended);
770
771 /**
772 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
773 * @inode: inode
774 * @lstart: offset of beginning of hole
775 * @lend: offset of last byte of hole
776 *
777 * This function should typically be called before the filesystem
778 * releases resources associated with the freed range (eg. deallocates
779 * blocks). This way, pagecache will always stay logically coherent
780 * with on-disk format, and the filesystem would not have to deal with
781 * situations such as writepage being called for a page that has already
782 * had its underlying blocks deallocated.
783 */
784 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
785 {
786 struct address_space *mapping = inode->i_mapping;
787 loff_t unmap_start = round_up(lstart, PAGE_SIZE);
788 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
789 /*
790 * This rounding is currently just for example: unmap_mapping_range
791 * expands its hole outwards, whereas we want it to contract the hole
792 * inwards. However, existing callers of truncate_pagecache_range are
793 * doing their own page rounding first. Note that unmap_mapping_range
794 * allows holelen 0 for all, and we allow lend -1 for end of file.
795 */
796
797 /*
798 * Unlike in truncate_pagecache, unmap_mapping_range is called only
799 * once (before truncating pagecache), and without "even_cows" flag:
800 * hole-punching should not remove private COWed pages from the hole.
801 */
802 if ((u64)unmap_end > (u64)unmap_start)
803 unmap_mapping_range(mapping, unmap_start,
804 1 + unmap_end - unmap_start, 0);
805 truncate_inode_pages_range(mapping, lstart, lend);
806 }
807 EXPORT_SYMBOL(truncate_pagecache_range);