]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/util.c
scsi: hisi_sas: workaround SoC about abort timeout bug
[mirror_ubuntu-bionic-kernel.git] / mm / util.c
1 #include <linux/mm.h>
2 #include <linux/slab.h>
3 #include <linux/string.h>
4 #include <linux/compiler.h>
5 #include <linux/export.h>
6 #include <linux/err.h>
7 #include <linux/sched.h>
8 #include <linux/sched/mm.h>
9 #include <linux/sched/task_stack.h>
10 #include <linux/security.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/mman.h>
14 #include <linux/hugetlb.h>
15 #include <linux/vmalloc.h>
16 #include <linux/userfaultfd_k.h>
17
18 #include <asm/sections.h>
19 #include <linux/uaccess.h>
20
21 #include "internal.h"
22
23 static inline int is_kernel_rodata(unsigned long addr)
24 {
25 return addr >= (unsigned long)__start_rodata &&
26 addr < (unsigned long)__end_rodata;
27 }
28
29 /**
30 * kfree_const - conditionally free memory
31 * @x: pointer to the memory
32 *
33 * Function calls kfree only if @x is not in .rodata section.
34 */
35 void kfree_const(const void *x)
36 {
37 if (!is_kernel_rodata((unsigned long)x))
38 kfree(x);
39 }
40 EXPORT_SYMBOL(kfree_const);
41
42 /**
43 * kstrdup - allocate space for and copy an existing string
44 * @s: the string to duplicate
45 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
46 */
47 char *kstrdup(const char *s, gfp_t gfp)
48 {
49 size_t len;
50 char *buf;
51
52 if (!s)
53 return NULL;
54
55 len = strlen(s) + 1;
56 buf = kmalloc_track_caller(len, gfp);
57 if (buf)
58 memcpy(buf, s, len);
59 return buf;
60 }
61 EXPORT_SYMBOL(kstrdup);
62
63 /**
64 * kstrdup_const - conditionally duplicate an existing const string
65 * @s: the string to duplicate
66 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
67 *
68 * Function returns source string if it is in .rodata section otherwise it
69 * fallbacks to kstrdup.
70 * Strings allocated by kstrdup_const should be freed by kfree_const.
71 */
72 const char *kstrdup_const(const char *s, gfp_t gfp)
73 {
74 if (is_kernel_rodata((unsigned long)s))
75 return s;
76
77 return kstrdup(s, gfp);
78 }
79 EXPORT_SYMBOL(kstrdup_const);
80
81 /**
82 * kstrndup - allocate space for and copy an existing string
83 * @s: the string to duplicate
84 * @max: read at most @max chars from @s
85 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
86 */
87 char *kstrndup(const char *s, size_t max, gfp_t gfp)
88 {
89 size_t len;
90 char *buf;
91
92 if (!s)
93 return NULL;
94
95 len = strnlen(s, max);
96 buf = kmalloc_track_caller(len+1, gfp);
97 if (buf) {
98 memcpy(buf, s, len);
99 buf[len] = '\0';
100 }
101 return buf;
102 }
103 EXPORT_SYMBOL(kstrndup);
104
105 /**
106 * kmemdup - duplicate region of memory
107 *
108 * @src: memory region to duplicate
109 * @len: memory region length
110 * @gfp: GFP mask to use
111 */
112 void *kmemdup(const void *src, size_t len, gfp_t gfp)
113 {
114 void *p;
115
116 p = kmalloc_track_caller(len, gfp);
117 if (p)
118 memcpy(p, src, len);
119 return p;
120 }
121 EXPORT_SYMBOL(kmemdup);
122
123 /**
124 * memdup_user - duplicate memory region from user space
125 *
126 * @src: source address in user space
127 * @len: number of bytes to copy
128 *
129 * Returns an ERR_PTR() on failure.
130 */
131 void *memdup_user(const void __user *src, size_t len)
132 {
133 void *p;
134
135 /*
136 * Always use GFP_KERNEL, since copy_from_user() can sleep and
137 * cause pagefault, which makes it pointless to use GFP_NOFS
138 * or GFP_ATOMIC.
139 */
140 p = kmalloc_track_caller(len, GFP_KERNEL);
141 if (!p)
142 return ERR_PTR(-ENOMEM);
143
144 if (copy_from_user(p, src, len)) {
145 kfree(p);
146 return ERR_PTR(-EFAULT);
147 }
148
149 return p;
150 }
151 EXPORT_SYMBOL(memdup_user);
152
153 /*
154 * strndup_user - duplicate an existing string from user space
155 * @s: The string to duplicate
156 * @n: Maximum number of bytes to copy, including the trailing NUL.
157 */
158 char *strndup_user(const char __user *s, long n)
159 {
160 char *p;
161 long length;
162
163 length = strnlen_user(s, n);
164
165 if (!length)
166 return ERR_PTR(-EFAULT);
167
168 if (length > n)
169 return ERR_PTR(-EINVAL);
170
171 p = memdup_user(s, length);
172
173 if (IS_ERR(p))
174 return p;
175
176 p[length - 1] = '\0';
177
178 return p;
179 }
180 EXPORT_SYMBOL(strndup_user);
181
182 /**
183 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
184 *
185 * @src: source address in user space
186 * @len: number of bytes to copy
187 *
188 * Returns an ERR_PTR() on failure.
189 */
190 void *memdup_user_nul(const void __user *src, size_t len)
191 {
192 char *p;
193
194 /*
195 * Always use GFP_KERNEL, since copy_from_user() can sleep and
196 * cause pagefault, which makes it pointless to use GFP_NOFS
197 * or GFP_ATOMIC.
198 */
199 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
200 if (!p)
201 return ERR_PTR(-ENOMEM);
202
203 if (copy_from_user(p, src, len)) {
204 kfree(p);
205 return ERR_PTR(-EFAULT);
206 }
207 p[len] = '\0';
208
209 return p;
210 }
211 EXPORT_SYMBOL(memdup_user_nul);
212
213 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
214 struct vm_area_struct *prev, struct rb_node *rb_parent)
215 {
216 struct vm_area_struct *next;
217
218 vma->vm_prev = prev;
219 if (prev) {
220 next = prev->vm_next;
221 prev->vm_next = vma;
222 } else {
223 mm->mmap = vma;
224 if (rb_parent)
225 next = rb_entry(rb_parent,
226 struct vm_area_struct, vm_rb);
227 else
228 next = NULL;
229 }
230 vma->vm_next = next;
231 if (next)
232 next->vm_prev = vma;
233 }
234
235 /* Check if the vma is being used as a stack by this task */
236 int vma_is_stack_for_current(struct vm_area_struct *vma)
237 {
238 struct task_struct * __maybe_unused t = current;
239
240 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
241 }
242
243 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
244 void arch_pick_mmap_layout(struct mm_struct *mm)
245 {
246 mm->mmap_base = TASK_UNMAPPED_BASE;
247 mm->get_unmapped_area = arch_get_unmapped_area;
248 }
249 #endif
250
251 /*
252 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
253 * back to the regular GUP.
254 * If the architecture not support this function, simply return with no
255 * page pinned
256 */
257 int __weak __get_user_pages_fast(unsigned long start,
258 int nr_pages, int write, struct page **pages)
259 {
260 return 0;
261 }
262 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
263
264 /**
265 * get_user_pages_fast() - pin user pages in memory
266 * @start: starting user address
267 * @nr_pages: number of pages from start to pin
268 * @write: whether pages will be written to
269 * @pages: array that receives pointers to the pages pinned.
270 * Should be at least nr_pages long.
271 *
272 * Returns number of pages pinned. This may be fewer than the number
273 * requested. If nr_pages is 0 or negative, returns 0. If no pages
274 * were pinned, returns -errno.
275 *
276 * get_user_pages_fast provides equivalent functionality to get_user_pages,
277 * operating on current and current->mm, with force=0 and vma=NULL. However
278 * unlike get_user_pages, it must be called without mmap_sem held.
279 *
280 * get_user_pages_fast may take mmap_sem and page table locks, so no
281 * assumptions can be made about lack of locking. get_user_pages_fast is to be
282 * implemented in a way that is advantageous (vs get_user_pages()) when the
283 * user memory area is already faulted in and present in ptes. However if the
284 * pages have to be faulted in, it may turn out to be slightly slower so
285 * callers need to carefully consider what to use. On many architectures,
286 * get_user_pages_fast simply falls back to get_user_pages.
287 */
288 int __weak get_user_pages_fast(unsigned long start,
289 int nr_pages, int write, struct page **pages)
290 {
291 return get_user_pages_unlocked(start, nr_pages, pages,
292 write ? FOLL_WRITE : 0);
293 }
294 EXPORT_SYMBOL_GPL(get_user_pages_fast);
295
296 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
297 unsigned long len, unsigned long prot,
298 unsigned long flag, unsigned long pgoff)
299 {
300 unsigned long ret;
301 struct mm_struct *mm = current->mm;
302 unsigned long populate;
303 LIST_HEAD(uf);
304
305 ret = security_mmap_file(file, prot, flag);
306 if (!ret) {
307 if (down_write_killable(&mm->mmap_sem))
308 return -EINTR;
309 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
310 &populate, &uf);
311 up_write(&mm->mmap_sem);
312 userfaultfd_unmap_complete(mm, &uf);
313 if (populate)
314 mm_populate(ret, populate);
315 }
316 return ret;
317 }
318
319 unsigned long vm_mmap(struct file *file, unsigned long addr,
320 unsigned long len, unsigned long prot,
321 unsigned long flag, unsigned long offset)
322 {
323 if (unlikely(offset + PAGE_ALIGN(len) < offset))
324 return -EINVAL;
325 if (unlikely(offset_in_page(offset)))
326 return -EINVAL;
327
328 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
329 }
330 EXPORT_SYMBOL(vm_mmap);
331
332 void kvfree(const void *addr)
333 {
334 if (is_vmalloc_addr(addr))
335 vfree(addr);
336 else
337 kfree(addr);
338 }
339 EXPORT_SYMBOL(kvfree);
340
341 static inline void *__page_rmapping(struct page *page)
342 {
343 unsigned long mapping;
344
345 mapping = (unsigned long)page->mapping;
346 mapping &= ~PAGE_MAPPING_FLAGS;
347
348 return (void *)mapping;
349 }
350
351 /* Neutral page->mapping pointer to address_space or anon_vma or other */
352 void *page_rmapping(struct page *page)
353 {
354 page = compound_head(page);
355 return __page_rmapping(page);
356 }
357
358 /*
359 * Return true if this page is mapped into pagetables.
360 * For compound page it returns true if any subpage of compound page is mapped.
361 */
362 bool page_mapped(struct page *page)
363 {
364 int i;
365
366 if (likely(!PageCompound(page)))
367 return atomic_read(&page->_mapcount) >= 0;
368 page = compound_head(page);
369 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
370 return true;
371 if (PageHuge(page))
372 return false;
373 for (i = 0; i < hpage_nr_pages(page); i++) {
374 if (atomic_read(&page[i]._mapcount) >= 0)
375 return true;
376 }
377 return false;
378 }
379 EXPORT_SYMBOL(page_mapped);
380
381 struct anon_vma *page_anon_vma(struct page *page)
382 {
383 unsigned long mapping;
384
385 page = compound_head(page);
386 mapping = (unsigned long)page->mapping;
387 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
388 return NULL;
389 return __page_rmapping(page);
390 }
391
392 struct address_space *page_mapping(struct page *page)
393 {
394 struct address_space *mapping;
395
396 page = compound_head(page);
397
398 /* This happens if someone calls flush_dcache_page on slab page */
399 if (unlikely(PageSlab(page)))
400 return NULL;
401
402 if (unlikely(PageSwapCache(page))) {
403 swp_entry_t entry;
404
405 entry.val = page_private(page);
406 return swap_address_space(entry);
407 }
408
409 mapping = page->mapping;
410 if ((unsigned long)mapping & PAGE_MAPPING_ANON)
411 return NULL;
412
413 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
414 }
415 EXPORT_SYMBOL(page_mapping);
416
417 /* Slow path of page_mapcount() for compound pages */
418 int __page_mapcount(struct page *page)
419 {
420 int ret;
421
422 ret = atomic_read(&page->_mapcount) + 1;
423 /*
424 * For file THP page->_mapcount contains total number of mapping
425 * of the page: no need to look into compound_mapcount.
426 */
427 if (!PageAnon(page) && !PageHuge(page))
428 return ret;
429 page = compound_head(page);
430 ret += atomic_read(compound_mapcount_ptr(page)) + 1;
431 if (PageDoubleMap(page))
432 ret--;
433 return ret;
434 }
435 EXPORT_SYMBOL_GPL(__page_mapcount);
436
437 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
438 int sysctl_overcommit_ratio __read_mostly = 50;
439 unsigned long sysctl_overcommit_kbytes __read_mostly;
440 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
441 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
442 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
443
444 int overcommit_ratio_handler(struct ctl_table *table, int write,
445 void __user *buffer, size_t *lenp,
446 loff_t *ppos)
447 {
448 int ret;
449
450 ret = proc_dointvec(table, write, buffer, lenp, ppos);
451 if (ret == 0 && write)
452 sysctl_overcommit_kbytes = 0;
453 return ret;
454 }
455
456 int overcommit_kbytes_handler(struct ctl_table *table, int write,
457 void __user *buffer, size_t *lenp,
458 loff_t *ppos)
459 {
460 int ret;
461
462 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
463 if (ret == 0 && write)
464 sysctl_overcommit_ratio = 0;
465 return ret;
466 }
467
468 /*
469 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
470 */
471 unsigned long vm_commit_limit(void)
472 {
473 unsigned long allowed;
474
475 if (sysctl_overcommit_kbytes)
476 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
477 else
478 allowed = ((totalram_pages - hugetlb_total_pages())
479 * sysctl_overcommit_ratio / 100);
480 allowed += total_swap_pages;
481
482 return allowed;
483 }
484
485 /*
486 * Make sure vm_committed_as in one cacheline and not cacheline shared with
487 * other variables. It can be updated by several CPUs frequently.
488 */
489 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
490
491 /*
492 * The global memory commitment made in the system can be a metric
493 * that can be used to drive ballooning decisions when Linux is hosted
494 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
495 * balancing memory across competing virtual machines that are hosted.
496 * Several metrics drive this policy engine including the guest reported
497 * memory commitment.
498 */
499 unsigned long vm_memory_committed(void)
500 {
501 return percpu_counter_read_positive(&vm_committed_as);
502 }
503 EXPORT_SYMBOL_GPL(vm_memory_committed);
504
505 /*
506 * Check that a process has enough memory to allocate a new virtual
507 * mapping. 0 means there is enough memory for the allocation to
508 * succeed and -ENOMEM implies there is not.
509 *
510 * We currently support three overcommit policies, which are set via the
511 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
512 *
513 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
514 * Additional code 2002 Jul 20 by Robert Love.
515 *
516 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
517 *
518 * Note this is a helper function intended to be used by LSMs which
519 * wish to use this logic.
520 */
521 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
522 {
523 long free, allowed, reserve;
524
525 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
526 -(s64)vm_committed_as_batch * num_online_cpus(),
527 "memory commitment underflow");
528
529 vm_acct_memory(pages);
530
531 /*
532 * Sometimes we want to use more memory than we have
533 */
534 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
535 return 0;
536
537 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
538 free = global_page_state(NR_FREE_PAGES);
539 free += global_node_page_state(NR_FILE_PAGES);
540
541 /*
542 * shmem pages shouldn't be counted as free in this
543 * case, they can't be purged, only swapped out, and
544 * that won't affect the overall amount of available
545 * memory in the system.
546 */
547 free -= global_node_page_state(NR_SHMEM);
548
549 free += get_nr_swap_pages();
550
551 /*
552 * Any slabs which are created with the
553 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
554 * which are reclaimable, under pressure. The dentry
555 * cache and most inode caches should fall into this
556 */
557 free += global_page_state(NR_SLAB_RECLAIMABLE);
558
559 /*
560 * Leave reserved pages. The pages are not for anonymous pages.
561 */
562 if (free <= totalreserve_pages)
563 goto error;
564 else
565 free -= totalreserve_pages;
566
567 /*
568 * Reserve some for root
569 */
570 if (!cap_sys_admin)
571 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
572
573 if (free > pages)
574 return 0;
575
576 goto error;
577 }
578
579 allowed = vm_commit_limit();
580 /*
581 * Reserve some for root
582 */
583 if (!cap_sys_admin)
584 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
585
586 /*
587 * Don't let a single process grow so big a user can't recover
588 */
589 if (mm) {
590 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
591 allowed -= min_t(long, mm->total_vm / 32, reserve);
592 }
593
594 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
595 return 0;
596 error:
597 vm_unacct_memory(pages);
598
599 return -ENOMEM;
600 }
601
602 /**
603 * get_cmdline() - copy the cmdline value to a buffer.
604 * @task: the task whose cmdline value to copy.
605 * @buffer: the buffer to copy to.
606 * @buflen: the length of the buffer. Larger cmdline values are truncated
607 * to this length.
608 * Returns the size of the cmdline field copied. Note that the copy does
609 * not guarantee an ending NULL byte.
610 */
611 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
612 {
613 int res = 0;
614 unsigned int len;
615 struct mm_struct *mm = get_task_mm(task);
616 unsigned long arg_start, arg_end, env_start, env_end;
617 if (!mm)
618 goto out;
619 if (!mm->arg_end)
620 goto out_mm; /* Shh! No looking before we're done */
621
622 down_read(&mm->mmap_sem);
623 arg_start = mm->arg_start;
624 arg_end = mm->arg_end;
625 env_start = mm->env_start;
626 env_end = mm->env_end;
627 up_read(&mm->mmap_sem);
628
629 len = arg_end - arg_start;
630
631 if (len > buflen)
632 len = buflen;
633
634 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
635
636 /*
637 * If the nul at the end of args has been overwritten, then
638 * assume application is using setproctitle(3).
639 */
640 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
641 len = strnlen(buffer, res);
642 if (len < res) {
643 res = len;
644 } else {
645 len = env_end - env_start;
646 if (len > buflen - res)
647 len = buflen - res;
648 res += access_process_vm(task, env_start,
649 buffer+res, len,
650 FOLL_FORCE);
651 res = strnlen(buffer, res);
652 }
653 }
654 out_mm:
655 mmput(mm);
656 out:
657 return res;
658 }