]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/util.c
bpf: Wrap aux data inside bpf_sanitize_info container
[mirror_ubuntu-hirsute-kernel.git] / mm / util.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
26
27 #include <linux/uaccess.h>
28
29 #include "internal.h"
30
31 /**
32 * kfree_const - conditionally free memory
33 * @x: pointer to the memory
34 *
35 * Function calls kfree only if @x is not in .rodata section.
36 */
37 void kfree_const(const void *x)
38 {
39 if (!is_kernel_rodata((unsigned long)x))
40 kfree(x);
41 }
42 EXPORT_SYMBOL(kfree_const);
43
44 /**
45 * kstrdup - allocate space for and copy an existing string
46 * @s: the string to duplicate
47 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
48 *
49 * Return: newly allocated copy of @s or %NULL in case of error
50 */
51 char *kstrdup(const char *s, gfp_t gfp)
52 {
53 size_t len;
54 char *buf;
55
56 if (!s)
57 return NULL;
58
59 len = strlen(s) + 1;
60 buf = kmalloc_track_caller(len, gfp);
61 if (buf)
62 memcpy(buf, s, len);
63 return buf;
64 }
65 EXPORT_SYMBOL(kstrdup);
66
67 /**
68 * kstrdup_const - conditionally duplicate an existing const string
69 * @s: the string to duplicate
70 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
71 *
72 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
73 * must not be passed to krealloc().
74 *
75 * Return: source string if it is in .rodata section otherwise
76 * fallback to kstrdup.
77 */
78 const char *kstrdup_const(const char *s, gfp_t gfp)
79 {
80 if (is_kernel_rodata((unsigned long)s))
81 return s;
82
83 return kstrdup(s, gfp);
84 }
85 EXPORT_SYMBOL(kstrdup_const);
86
87 /**
88 * kstrndup - allocate space for and copy an existing string
89 * @s: the string to duplicate
90 * @max: read at most @max chars from @s
91 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
92 *
93 * Note: Use kmemdup_nul() instead if the size is known exactly.
94 *
95 * Return: newly allocated copy of @s or %NULL in case of error
96 */
97 char *kstrndup(const char *s, size_t max, gfp_t gfp)
98 {
99 size_t len;
100 char *buf;
101
102 if (!s)
103 return NULL;
104
105 len = strnlen(s, max);
106 buf = kmalloc_track_caller(len+1, gfp);
107 if (buf) {
108 memcpy(buf, s, len);
109 buf[len] = '\0';
110 }
111 return buf;
112 }
113 EXPORT_SYMBOL(kstrndup);
114
115 /**
116 * kmemdup - duplicate region of memory
117 *
118 * @src: memory region to duplicate
119 * @len: memory region length
120 * @gfp: GFP mask to use
121 *
122 * Return: newly allocated copy of @src or %NULL in case of error
123 */
124 void *kmemdup(const void *src, size_t len, gfp_t gfp)
125 {
126 void *p;
127
128 p = kmalloc_track_caller(len, gfp);
129 if (p)
130 memcpy(p, src, len);
131 return p;
132 }
133 EXPORT_SYMBOL(kmemdup);
134
135 /**
136 * kmemdup_nul - Create a NUL-terminated string from unterminated data
137 * @s: The data to stringify
138 * @len: The size of the data
139 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
140 *
141 * Return: newly allocated copy of @s with NUL-termination or %NULL in
142 * case of error
143 */
144 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
145 {
146 char *buf;
147
148 if (!s)
149 return NULL;
150
151 buf = kmalloc_track_caller(len + 1, gfp);
152 if (buf) {
153 memcpy(buf, s, len);
154 buf[len] = '\0';
155 }
156 return buf;
157 }
158 EXPORT_SYMBOL(kmemdup_nul);
159
160 /**
161 * memdup_user - duplicate memory region from user space
162 *
163 * @src: source address in user space
164 * @len: number of bytes to copy
165 *
166 * Return: an ERR_PTR() on failure. Result is physically
167 * contiguous, to be freed by kfree().
168 */
169 void *memdup_user(const void __user *src, size_t len)
170 {
171 void *p;
172
173 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
174 if (!p)
175 return ERR_PTR(-ENOMEM);
176
177 if (copy_from_user(p, src, len)) {
178 kfree(p);
179 return ERR_PTR(-EFAULT);
180 }
181
182 return p;
183 }
184 EXPORT_SYMBOL(memdup_user);
185
186 /**
187 * vmemdup_user - duplicate memory region from user space
188 *
189 * @src: source address in user space
190 * @len: number of bytes to copy
191 *
192 * Return: an ERR_PTR() on failure. Result may be not
193 * physically contiguous. Use kvfree() to free.
194 */
195 void *vmemdup_user(const void __user *src, size_t len)
196 {
197 void *p;
198
199 p = kvmalloc(len, GFP_USER);
200 if (!p)
201 return ERR_PTR(-ENOMEM);
202
203 if (copy_from_user(p, src, len)) {
204 kvfree(p);
205 return ERR_PTR(-EFAULT);
206 }
207
208 return p;
209 }
210 EXPORT_SYMBOL(vmemdup_user);
211
212 /**
213 * strndup_user - duplicate an existing string from user space
214 * @s: The string to duplicate
215 * @n: Maximum number of bytes to copy, including the trailing NUL.
216 *
217 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
218 */
219 char *strndup_user(const char __user *s, long n)
220 {
221 char *p;
222 long length;
223
224 length = strnlen_user(s, n);
225
226 if (!length)
227 return ERR_PTR(-EFAULT);
228
229 if (length > n)
230 return ERR_PTR(-EINVAL);
231
232 p = memdup_user(s, length);
233
234 if (IS_ERR(p))
235 return p;
236
237 p[length - 1] = '\0';
238
239 return p;
240 }
241 EXPORT_SYMBOL(strndup_user);
242
243 /**
244 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
245 *
246 * @src: source address in user space
247 * @len: number of bytes to copy
248 *
249 * Return: an ERR_PTR() on failure.
250 */
251 void *memdup_user_nul(const void __user *src, size_t len)
252 {
253 char *p;
254
255 /*
256 * Always use GFP_KERNEL, since copy_from_user() can sleep and
257 * cause pagefault, which makes it pointless to use GFP_NOFS
258 * or GFP_ATOMIC.
259 */
260 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
261 if (!p)
262 return ERR_PTR(-ENOMEM);
263
264 if (copy_from_user(p, src, len)) {
265 kfree(p);
266 return ERR_PTR(-EFAULT);
267 }
268 p[len] = '\0';
269
270 return p;
271 }
272 EXPORT_SYMBOL(memdup_user_nul);
273
274 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
275 struct vm_area_struct *prev)
276 {
277 struct vm_area_struct *next;
278
279 vma->vm_prev = prev;
280 if (prev) {
281 next = prev->vm_next;
282 prev->vm_next = vma;
283 } else {
284 next = mm->mmap;
285 mm->mmap = vma;
286 }
287 vma->vm_next = next;
288 if (next)
289 next->vm_prev = vma;
290 }
291
292 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma)
293 {
294 struct vm_area_struct *prev, *next;
295
296 next = vma->vm_next;
297 prev = vma->vm_prev;
298 if (prev)
299 prev->vm_next = next;
300 else
301 mm->mmap = next;
302 if (next)
303 next->vm_prev = prev;
304 }
305
306 /* Check if the vma is being used as a stack by this task */
307 int vma_is_stack_for_current(struct vm_area_struct *vma)
308 {
309 struct task_struct * __maybe_unused t = current;
310
311 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
312 }
313
314 /*
315 * Change backing file, only valid to use during initial VMA setup.
316 */
317 void vma_set_file(struct vm_area_struct *vma, struct file *file)
318 {
319 /* Changing an anonymous vma with this is illegal */
320 get_file(file);
321 swap(vma->vm_file, file);
322 fput(file);
323 }
324 EXPORT_SYMBOL(vma_set_file);
325
326 #ifndef STACK_RND_MASK
327 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
328 #endif
329
330 unsigned long randomize_stack_top(unsigned long stack_top)
331 {
332 unsigned long random_variable = 0;
333
334 if (current->flags & PF_RANDOMIZE) {
335 random_variable = get_random_long();
336 random_variable &= STACK_RND_MASK;
337 random_variable <<= PAGE_SHIFT;
338 }
339 #ifdef CONFIG_STACK_GROWSUP
340 return PAGE_ALIGN(stack_top) + random_variable;
341 #else
342 return PAGE_ALIGN(stack_top) - random_variable;
343 #endif
344 }
345
346 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
347 unsigned long arch_randomize_brk(struct mm_struct *mm)
348 {
349 /* Is the current task 32bit ? */
350 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
351 return randomize_page(mm->brk, SZ_32M);
352
353 return randomize_page(mm->brk, SZ_1G);
354 }
355
356 unsigned long arch_mmap_rnd(void)
357 {
358 unsigned long rnd;
359
360 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
361 if (is_compat_task())
362 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
363 else
364 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
365 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
366
367 return rnd << PAGE_SHIFT;
368 }
369
370 static int mmap_is_legacy(struct rlimit *rlim_stack)
371 {
372 if (current->personality & ADDR_COMPAT_LAYOUT)
373 return 1;
374
375 if (rlim_stack->rlim_cur == RLIM_INFINITY)
376 return 1;
377
378 return sysctl_legacy_va_layout;
379 }
380
381 /*
382 * Leave enough space between the mmap area and the stack to honour ulimit in
383 * the face of randomisation.
384 */
385 #define MIN_GAP (SZ_128M)
386 #define MAX_GAP (STACK_TOP / 6 * 5)
387
388 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
389 {
390 unsigned long gap = rlim_stack->rlim_cur;
391 unsigned long pad = stack_guard_gap;
392
393 /* Account for stack randomization if necessary */
394 if (current->flags & PF_RANDOMIZE)
395 pad += (STACK_RND_MASK << PAGE_SHIFT);
396
397 /* Values close to RLIM_INFINITY can overflow. */
398 if (gap + pad > gap)
399 gap += pad;
400
401 if (gap < MIN_GAP)
402 gap = MIN_GAP;
403 else if (gap > MAX_GAP)
404 gap = MAX_GAP;
405
406 return PAGE_ALIGN(STACK_TOP - gap - rnd);
407 }
408
409 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
410 {
411 unsigned long random_factor = 0UL;
412
413 if (current->flags & PF_RANDOMIZE)
414 random_factor = arch_mmap_rnd();
415
416 if (mmap_is_legacy(rlim_stack)) {
417 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
418 mm->get_unmapped_area = arch_get_unmapped_area;
419 } else {
420 mm->mmap_base = mmap_base(random_factor, rlim_stack);
421 mm->get_unmapped_area = arch_get_unmapped_area_topdown;
422 }
423 }
424 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
425 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
426 {
427 mm->mmap_base = TASK_UNMAPPED_BASE;
428 mm->get_unmapped_area = arch_get_unmapped_area;
429 }
430 #endif
431
432 /**
433 * __account_locked_vm - account locked pages to an mm's locked_vm
434 * @mm: mm to account against
435 * @pages: number of pages to account
436 * @inc: %true if @pages should be considered positive, %false if not
437 * @task: task used to check RLIMIT_MEMLOCK
438 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
439 *
440 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
441 * that mmap_lock is held as writer.
442 *
443 * Return:
444 * * 0 on success
445 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
446 */
447 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
448 struct task_struct *task, bool bypass_rlim)
449 {
450 unsigned long locked_vm, limit;
451 int ret = 0;
452
453 mmap_assert_write_locked(mm);
454
455 locked_vm = mm->locked_vm;
456 if (inc) {
457 if (!bypass_rlim) {
458 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
459 if (locked_vm + pages > limit)
460 ret = -ENOMEM;
461 }
462 if (!ret)
463 mm->locked_vm = locked_vm + pages;
464 } else {
465 WARN_ON_ONCE(pages > locked_vm);
466 mm->locked_vm = locked_vm - pages;
467 }
468
469 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
470 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
471 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
472 ret ? " - exceeded" : "");
473
474 return ret;
475 }
476 EXPORT_SYMBOL_GPL(__account_locked_vm);
477
478 /**
479 * account_locked_vm - account locked pages to an mm's locked_vm
480 * @mm: mm to account against, may be NULL
481 * @pages: number of pages to account
482 * @inc: %true if @pages should be considered positive, %false if not
483 *
484 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
485 *
486 * Return:
487 * * 0 on success, or if mm is NULL
488 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
489 */
490 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
491 {
492 int ret;
493
494 if (pages == 0 || !mm)
495 return 0;
496
497 mmap_write_lock(mm);
498 ret = __account_locked_vm(mm, pages, inc, current,
499 capable(CAP_IPC_LOCK));
500 mmap_write_unlock(mm);
501
502 return ret;
503 }
504 EXPORT_SYMBOL_GPL(account_locked_vm);
505
506 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
507 unsigned long len, unsigned long prot,
508 unsigned long flag, unsigned long pgoff)
509 {
510 unsigned long ret;
511 struct mm_struct *mm = current->mm;
512 unsigned long populate;
513 LIST_HEAD(uf);
514
515 ret = security_mmap_file(file, prot, flag);
516 if (!ret) {
517 if (mmap_write_lock_killable(mm))
518 return -EINTR;
519 ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate,
520 &uf);
521 mmap_write_unlock(mm);
522 userfaultfd_unmap_complete(mm, &uf);
523 if (populate)
524 mm_populate(ret, populate);
525 }
526 return ret;
527 }
528
529 unsigned long vm_mmap(struct file *file, unsigned long addr,
530 unsigned long len, unsigned long prot,
531 unsigned long flag, unsigned long offset)
532 {
533 if (unlikely(offset + PAGE_ALIGN(len) < offset))
534 return -EINVAL;
535 if (unlikely(offset_in_page(offset)))
536 return -EINVAL;
537
538 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
539 }
540 EXPORT_SYMBOL(vm_mmap);
541
542 /**
543 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
544 * failure, fall back to non-contiguous (vmalloc) allocation.
545 * @size: size of the request.
546 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
547 * @node: numa node to allocate from
548 *
549 * Uses kmalloc to get the memory but if the allocation fails then falls back
550 * to the vmalloc allocator. Use kvfree for freeing the memory.
551 *
552 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
553 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
554 * preferable to the vmalloc fallback, due to visible performance drawbacks.
555 *
556 * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
557 * fall back to vmalloc.
558 *
559 * Return: pointer to the allocated memory of %NULL in case of failure
560 */
561 void *kvmalloc_node(size_t size, gfp_t flags, int node)
562 {
563 gfp_t kmalloc_flags = flags;
564 void *ret;
565
566 /*
567 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
568 * so the given set of flags has to be compatible.
569 */
570 if ((flags & GFP_KERNEL) != GFP_KERNEL)
571 return kmalloc_node(size, flags, node);
572
573 /*
574 * We want to attempt a large physically contiguous block first because
575 * it is less likely to fragment multiple larger blocks and therefore
576 * contribute to a long term fragmentation less than vmalloc fallback.
577 * However make sure that larger requests are not too disruptive - no
578 * OOM killer and no allocation failure warnings as we have a fallback.
579 */
580 if (size > PAGE_SIZE) {
581 kmalloc_flags |= __GFP_NOWARN;
582
583 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
584 kmalloc_flags |= __GFP_NORETRY;
585 }
586
587 ret = kmalloc_node(size, kmalloc_flags, node);
588
589 /*
590 * It doesn't really make sense to fallback to vmalloc for sub page
591 * requests
592 */
593 if (ret || size <= PAGE_SIZE)
594 return ret;
595
596 return __vmalloc_node(size, 1, flags, node,
597 __builtin_return_address(0));
598 }
599 EXPORT_SYMBOL(kvmalloc_node);
600
601 /**
602 * kvfree() - Free memory.
603 * @addr: Pointer to allocated memory.
604 *
605 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
606 * It is slightly more efficient to use kfree() or vfree() if you are certain
607 * that you know which one to use.
608 *
609 * Context: Either preemptible task context or not-NMI interrupt.
610 */
611 void kvfree(const void *addr)
612 {
613 if (is_vmalloc_addr(addr))
614 vfree(addr);
615 else
616 kfree(addr);
617 }
618 EXPORT_SYMBOL(kvfree);
619
620 /**
621 * kvfree_sensitive - Free a data object containing sensitive information.
622 * @addr: address of the data object to be freed.
623 * @len: length of the data object.
624 *
625 * Use the special memzero_explicit() function to clear the content of a
626 * kvmalloc'ed object containing sensitive data to make sure that the
627 * compiler won't optimize out the data clearing.
628 */
629 void kvfree_sensitive(const void *addr, size_t len)
630 {
631 if (likely(!ZERO_OR_NULL_PTR(addr))) {
632 memzero_explicit((void *)addr, len);
633 kvfree(addr);
634 }
635 }
636 EXPORT_SYMBOL(kvfree_sensitive);
637
638 static inline void *__page_rmapping(struct page *page)
639 {
640 unsigned long mapping;
641
642 mapping = (unsigned long)page->mapping;
643 mapping &= ~PAGE_MAPPING_FLAGS;
644
645 return (void *)mapping;
646 }
647
648 /* Neutral page->mapping pointer to address_space or anon_vma or other */
649 void *page_rmapping(struct page *page)
650 {
651 page = compound_head(page);
652 return __page_rmapping(page);
653 }
654
655 /*
656 * Return true if this page is mapped into pagetables.
657 * For compound page it returns true if any subpage of compound page is mapped.
658 */
659 bool page_mapped(struct page *page)
660 {
661 int i;
662
663 if (likely(!PageCompound(page)))
664 return atomic_read(&page->_mapcount) >= 0;
665 page = compound_head(page);
666 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
667 return true;
668 if (PageHuge(page))
669 return false;
670 for (i = 0; i < compound_nr(page); i++) {
671 if (atomic_read(&page[i]._mapcount) >= 0)
672 return true;
673 }
674 return false;
675 }
676 EXPORT_SYMBOL(page_mapped);
677
678 struct anon_vma *page_anon_vma(struct page *page)
679 {
680 unsigned long mapping;
681
682 page = compound_head(page);
683 mapping = (unsigned long)page->mapping;
684 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
685 return NULL;
686 return __page_rmapping(page);
687 }
688
689 struct address_space *page_mapping(struct page *page)
690 {
691 struct address_space *mapping;
692
693 page = compound_head(page);
694
695 /* This happens if someone calls flush_dcache_page on slab page */
696 if (unlikely(PageSlab(page)))
697 return NULL;
698
699 if (unlikely(PageSwapCache(page))) {
700 swp_entry_t entry;
701
702 entry.val = page_private(page);
703 return swap_address_space(entry);
704 }
705
706 mapping = page->mapping;
707 if ((unsigned long)mapping & PAGE_MAPPING_ANON)
708 return NULL;
709
710 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
711 }
712 EXPORT_SYMBOL(page_mapping);
713
714 /*
715 * For file cache pages, return the address_space, otherwise return NULL
716 */
717 struct address_space *page_mapping_file(struct page *page)
718 {
719 if (unlikely(PageSwapCache(page)))
720 return NULL;
721 return page_mapping(page);
722 }
723
724 /* Slow path of page_mapcount() for compound pages */
725 int __page_mapcount(struct page *page)
726 {
727 int ret;
728
729 ret = atomic_read(&page->_mapcount) + 1;
730 /*
731 * For file THP page->_mapcount contains total number of mapping
732 * of the page: no need to look into compound_mapcount.
733 */
734 if (!PageAnon(page) && !PageHuge(page))
735 return ret;
736 page = compound_head(page);
737 ret += atomic_read(compound_mapcount_ptr(page)) + 1;
738 if (PageDoubleMap(page))
739 ret--;
740 return ret;
741 }
742 EXPORT_SYMBOL_GPL(__page_mapcount);
743
744 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
745 int sysctl_overcommit_ratio __read_mostly = 50;
746 unsigned long sysctl_overcommit_kbytes __read_mostly;
747 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
748 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
749 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
750
751 int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
752 size_t *lenp, loff_t *ppos)
753 {
754 int ret;
755
756 ret = proc_dointvec(table, write, buffer, lenp, ppos);
757 if (ret == 0 && write)
758 sysctl_overcommit_kbytes = 0;
759 return ret;
760 }
761
762 static void sync_overcommit_as(struct work_struct *dummy)
763 {
764 percpu_counter_sync(&vm_committed_as);
765 }
766
767 int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
768 size_t *lenp, loff_t *ppos)
769 {
770 struct ctl_table t;
771 int new_policy;
772 int ret;
773
774 /*
775 * The deviation of sync_overcommit_as could be big with loose policy
776 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
777 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
778 * with the strict "NEVER", and to avoid possible race condtion (even
779 * though user usually won't too frequently do the switching to policy
780 * OVERCOMMIT_NEVER), the switch is done in the following order:
781 * 1. changing the batch
782 * 2. sync percpu count on each CPU
783 * 3. switch the policy
784 */
785 if (write) {
786 t = *table;
787 t.data = &new_policy;
788 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
789 if (ret)
790 return ret;
791
792 mm_compute_batch(new_policy);
793 if (new_policy == OVERCOMMIT_NEVER)
794 schedule_on_each_cpu(sync_overcommit_as);
795 sysctl_overcommit_memory = new_policy;
796 } else {
797 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
798 }
799
800 return ret;
801 }
802
803 int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
804 size_t *lenp, loff_t *ppos)
805 {
806 int ret;
807
808 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
809 if (ret == 0 && write)
810 sysctl_overcommit_ratio = 0;
811 return ret;
812 }
813
814 /*
815 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
816 */
817 unsigned long vm_commit_limit(void)
818 {
819 unsigned long allowed;
820
821 if (sysctl_overcommit_kbytes)
822 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
823 else
824 allowed = ((totalram_pages() - hugetlb_total_pages())
825 * sysctl_overcommit_ratio / 100);
826 allowed += total_swap_pages;
827
828 return allowed;
829 }
830
831 /*
832 * Make sure vm_committed_as in one cacheline and not cacheline shared with
833 * other variables. It can be updated by several CPUs frequently.
834 */
835 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
836
837 /*
838 * The global memory commitment made in the system can be a metric
839 * that can be used to drive ballooning decisions when Linux is hosted
840 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
841 * balancing memory across competing virtual machines that are hosted.
842 * Several metrics drive this policy engine including the guest reported
843 * memory commitment.
844 *
845 * The time cost of this is very low for small platforms, and for big
846 * platform like a 2S/36C/72T Skylake server, in worst case where
847 * vm_committed_as's spinlock is under severe contention, the time cost
848 * could be about 30~40 microseconds.
849 */
850 unsigned long vm_memory_committed(void)
851 {
852 return percpu_counter_sum_positive(&vm_committed_as);
853 }
854 EXPORT_SYMBOL_GPL(vm_memory_committed);
855
856 /*
857 * Check that a process has enough memory to allocate a new virtual
858 * mapping. 0 means there is enough memory for the allocation to
859 * succeed and -ENOMEM implies there is not.
860 *
861 * We currently support three overcommit policies, which are set via the
862 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst
863 *
864 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
865 * Additional code 2002 Jul 20 by Robert Love.
866 *
867 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
868 *
869 * Note this is a helper function intended to be used by LSMs which
870 * wish to use this logic.
871 */
872 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
873 {
874 long allowed;
875
876 vm_acct_memory(pages);
877
878 /*
879 * Sometimes we want to use more memory than we have
880 */
881 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
882 return 0;
883
884 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
885 if (pages > totalram_pages() + total_swap_pages)
886 goto error;
887 return 0;
888 }
889
890 allowed = vm_commit_limit();
891 /*
892 * Reserve some for root
893 */
894 if (!cap_sys_admin)
895 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
896
897 /*
898 * Don't let a single process grow so big a user can't recover
899 */
900 if (mm) {
901 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
902
903 allowed -= min_t(long, mm->total_vm / 32, reserve);
904 }
905
906 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
907 return 0;
908 error:
909 vm_unacct_memory(pages);
910
911 return -ENOMEM;
912 }
913
914 /**
915 * get_cmdline() - copy the cmdline value to a buffer.
916 * @task: the task whose cmdline value to copy.
917 * @buffer: the buffer to copy to.
918 * @buflen: the length of the buffer. Larger cmdline values are truncated
919 * to this length.
920 *
921 * Return: the size of the cmdline field copied. Note that the copy does
922 * not guarantee an ending NULL byte.
923 */
924 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
925 {
926 int res = 0;
927 unsigned int len;
928 struct mm_struct *mm = get_task_mm(task);
929 unsigned long arg_start, arg_end, env_start, env_end;
930 if (!mm)
931 goto out;
932 if (!mm->arg_end)
933 goto out_mm; /* Shh! No looking before we're done */
934
935 spin_lock(&mm->arg_lock);
936 arg_start = mm->arg_start;
937 arg_end = mm->arg_end;
938 env_start = mm->env_start;
939 env_end = mm->env_end;
940 spin_unlock(&mm->arg_lock);
941
942 len = arg_end - arg_start;
943
944 if (len > buflen)
945 len = buflen;
946
947 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
948
949 /*
950 * If the nul at the end of args has been overwritten, then
951 * assume application is using setproctitle(3).
952 */
953 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
954 len = strnlen(buffer, res);
955 if (len < res) {
956 res = len;
957 } else {
958 len = env_end - env_start;
959 if (len > buflen - res)
960 len = buflen - res;
961 res += access_process_vm(task, env_start,
962 buffer+res, len,
963 FOLL_FORCE);
964 res = strnlen(buffer, res);
965 }
966 }
967 out_mm:
968 mmput(mm);
969 out:
970 return res;
971 }
972
973 int __weak memcmp_pages(struct page *page1, struct page *page2)
974 {
975 char *addr1, *addr2;
976 int ret;
977
978 addr1 = kmap_atomic(page1);
979 addr2 = kmap_atomic(page2);
980 ret = memcmp(addr1, addr2, PAGE_SIZE);
981 kunmap_atomic(addr2);
982 kunmap_atomic(addr1);
983 return ret;
984 }