]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/util.c
mm/mmap.c: extract __vma_unlink_list() as counterpart for __vma_link_list()
[mirror_ubuntu-hirsute-kernel.git] / mm / util.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
26
27 #include <linux/uaccess.h>
28
29 #include "internal.h"
30
31 /**
32 * kfree_const - conditionally free memory
33 * @x: pointer to the memory
34 *
35 * Function calls kfree only if @x is not in .rodata section.
36 */
37 void kfree_const(const void *x)
38 {
39 if (!is_kernel_rodata((unsigned long)x))
40 kfree(x);
41 }
42 EXPORT_SYMBOL(kfree_const);
43
44 /**
45 * kstrdup - allocate space for and copy an existing string
46 * @s: the string to duplicate
47 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
48 *
49 * Return: newly allocated copy of @s or %NULL in case of error
50 */
51 char *kstrdup(const char *s, gfp_t gfp)
52 {
53 size_t len;
54 char *buf;
55
56 if (!s)
57 return NULL;
58
59 len = strlen(s) + 1;
60 buf = kmalloc_track_caller(len, gfp);
61 if (buf)
62 memcpy(buf, s, len);
63 return buf;
64 }
65 EXPORT_SYMBOL(kstrdup);
66
67 /**
68 * kstrdup_const - conditionally duplicate an existing const string
69 * @s: the string to duplicate
70 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
71 *
72 * Note: Strings allocated by kstrdup_const should be freed by kfree_const.
73 *
74 * Return: source string if it is in .rodata section otherwise
75 * fallback to kstrdup.
76 */
77 const char *kstrdup_const(const char *s, gfp_t gfp)
78 {
79 if (is_kernel_rodata((unsigned long)s))
80 return s;
81
82 return kstrdup(s, gfp);
83 }
84 EXPORT_SYMBOL(kstrdup_const);
85
86 /**
87 * kstrndup - allocate space for and copy an existing string
88 * @s: the string to duplicate
89 * @max: read at most @max chars from @s
90 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
91 *
92 * Note: Use kmemdup_nul() instead if the size is known exactly.
93 *
94 * Return: newly allocated copy of @s or %NULL in case of error
95 */
96 char *kstrndup(const char *s, size_t max, gfp_t gfp)
97 {
98 size_t len;
99 char *buf;
100
101 if (!s)
102 return NULL;
103
104 len = strnlen(s, max);
105 buf = kmalloc_track_caller(len+1, gfp);
106 if (buf) {
107 memcpy(buf, s, len);
108 buf[len] = '\0';
109 }
110 return buf;
111 }
112 EXPORT_SYMBOL(kstrndup);
113
114 /**
115 * kmemdup - duplicate region of memory
116 *
117 * @src: memory region to duplicate
118 * @len: memory region length
119 * @gfp: GFP mask to use
120 *
121 * Return: newly allocated copy of @src or %NULL in case of error
122 */
123 void *kmemdup(const void *src, size_t len, gfp_t gfp)
124 {
125 void *p;
126
127 p = kmalloc_track_caller(len, gfp);
128 if (p)
129 memcpy(p, src, len);
130 return p;
131 }
132 EXPORT_SYMBOL(kmemdup);
133
134 /**
135 * kmemdup_nul - Create a NUL-terminated string from unterminated data
136 * @s: The data to stringify
137 * @len: The size of the data
138 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
139 *
140 * Return: newly allocated copy of @s with NUL-termination or %NULL in
141 * case of error
142 */
143 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
144 {
145 char *buf;
146
147 if (!s)
148 return NULL;
149
150 buf = kmalloc_track_caller(len + 1, gfp);
151 if (buf) {
152 memcpy(buf, s, len);
153 buf[len] = '\0';
154 }
155 return buf;
156 }
157 EXPORT_SYMBOL(kmemdup_nul);
158
159 /**
160 * memdup_user - duplicate memory region from user space
161 *
162 * @src: source address in user space
163 * @len: number of bytes to copy
164 *
165 * Return: an ERR_PTR() on failure. Result is physically
166 * contiguous, to be freed by kfree().
167 */
168 void *memdup_user(const void __user *src, size_t len)
169 {
170 void *p;
171
172 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
173 if (!p)
174 return ERR_PTR(-ENOMEM);
175
176 if (copy_from_user(p, src, len)) {
177 kfree(p);
178 return ERR_PTR(-EFAULT);
179 }
180
181 return p;
182 }
183 EXPORT_SYMBOL(memdup_user);
184
185 /**
186 * vmemdup_user - duplicate memory region from user space
187 *
188 * @src: source address in user space
189 * @len: number of bytes to copy
190 *
191 * Return: an ERR_PTR() on failure. Result may be not
192 * physically contiguous. Use kvfree() to free.
193 */
194 void *vmemdup_user(const void __user *src, size_t len)
195 {
196 void *p;
197
198 p = kvmalloc(len, GFP_USER);
199 if (!p)
200 return ERR_PTR(-ENOMEM);
201
202 if (copy_from_user(p, src, len)) {
203 kvfree(p);
204 return ERR_PTR(-EFAULT);
205 }
206
207 return p;
208 }
209 EXPORT_SYMBOL(vmemdup_user);
210
211 /**
212 * strndup_user - duplicate an existing string from user space
213 * @s: The string to duplicate
214 * @n: Maximum number of bytes to copy, including the trailing NUL.
215 *
216 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
217 */
218 char *strndup_user(const char __user *s, long n)
219 {
220 char *p;
221 long length;
222
223 length = strnlen_user(s, n);
224
225 if (!length)
226 return ERR_PTR(-EFAULT);
227
228 if (length > n)
229 return ERR_PTR(-EINVAL);
230
231 p = memdup_user(s, length);
232
233 if (IS_ERR(p))
234 return p;
235
236 p[length - 1] = '\0';
237
238 return p;
239 }
240 EXPORT_SYMBOL(strndup_user);
241
242 /**
243 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
244 *
245 * @src: source address in user space
246 * @len: number of bytes to copy
247 *
248 * Return: an ERR_PTR() on failure.
249 */
250 void *memdup_user_nul(const void __user *src, size_t len)
251 {
252 char *p;
253
254 /*
255 * Always use GFP_KERNEL, since copy_from_user() can sleep and
256 * cause pagefault, which makes it pointless to use GFP_NOFS
257 * or GFP_ATOMIC.
258 */
259 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
260 if (!p)
261 return ERR_PTR(-ENOMEM);
262
263 if (copy_from_user(p, src, len)) {
264 kfree(p);
265 return ERR_PTR(-EFAULT);
266 }
267 p[len] = '\0';
268
269 return p;
270 }
271 EXPORT_SYMBOL(memdup_user_nul);
272
273 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
274 struct vm_area_struct *prev, struct rb_node *rb_parent)
275 {
276 struct vm_area_struct *next;
277
278 vma->vm_prev = prev;
279 if (prev) {
280 next = prev->vm_next;
281 prev->vm_next = vma;
282 } else {
283 mm->mmap = vma;
284 if (rb_parent)
285 next = rb_entry(rb_parent,
286 struct vm_area_struct, vm_rb);
287 else
288 next = NULL;
289 }
290 vma->vm_next = next;
291 if (next)
292 next->vm_prev = vma;
293 }
294
295 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma)
296 {
297 struct vm_area_struct *prev, *next;
298
299 next = vma->vm_next;
300 prev = vma->vm_prev;
301 if (prev)
302 prev->vm_next = next;
303 else
304 mm->mmap = next;
305 if (next)
306 next->vm_prev = prev;
307 }
308
309 /* Check if the vma is being used as a stack by this task */
310 int vma_is_stack_for_current(struct vm_area_struct *vma)
311 {
312 struct task_struct * __maybe_unused t = current;
313
314 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
315 }
316
317 #ifndef STACK_RND_MASK
318 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
319 #endif
320
321 unsigned long randomize_stack_top(unsigned long stack_top)
322 {
323 unsigned long random_variable = 0;
324
325 if (current->flags & PF_RANDOMIZE) {
326 random_variable = get_random_long();
327 random_variable &= STACK_RND_MASK;
328 random_variable <<= PAGE_SHIFT;
329 }
330 #ifdef CONFIG_STACK_GROWSUP
331 return PAGE_ALIGN(stack_top) + random_variable;
332 #else
333 return PAGE_ALIGN(stack_top) - random_variable;
334 #endif
335 }
336
337 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
338 unsigned long arch_randomize_brk(struct mm_struct *mm)
339 {
340 /* Is the current task 32bit ? */
341 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
342 return randomize_page(mm->brk, SZ_32M);
343
344 return randomize_page(mm->brk, SZ_1G);
345 }
346
347 unsigned long arch_mmap_rnd(void)
348 {
349 unsigned long rnd;
350
351 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
352 if (is_compat_task())
353 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
354 else
355 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
356 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
357
358 return rnd << PAGE_SHIFT;
359 }
360
361 static int mmap_is_legacy(struct rlimit *rlim_stack)
362 {
363 if (current->personality & ADDR_COMPAT_LAYOUT)
364 return 1;
365
366 if (rlim_stack->rlim_cur == RLIM_INFINITY)
367 return 1;
368
369 return sysctl_legacy_va_layout;
370 }
371
372 /*
373 * Leave enough space between the mmap area and the stack to honour ulimit in
374 * the face of randomisation.
375 */
376 #define MIN_GAP (SZ_128M)
377 #define MAX_GAP (STACK_TOP / 6 * 5)
378
379 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
380 {
381 unsigned long gap = rlim_stack->rlim_cur;
382 unsigned long pad = stack_guard_gap;
383
384 /* Account for stack randomization if necessary */
385 if (current->flags & PF_RANDOMIZE)
386 pad += (STACK_RND_MASK << PAGE_SHIFT);
387
388 /* Values close to RLIM_INFINITY can overflow. */
389 if (gap + pad > gap)
390 gap += pad;
391
392 if (gap < MIN_GAP)
393 gap = MIN_GAP;
394 else if (gap > MAX_GAP)
395 gap = MAX_GAP;
396
397 return PAGE_ALIGN(STACK_TOP - gap - rnd);
398 }
399
400 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
401 {
402 unsigned long random_factor = 0UL;
403
404 if (current->flags & PF_RANDOMIZE)
405 random_factor = arch_mmap_rnd();
406
407 if (mmap_is_legacy(rlim_stack)) {
408 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
409 mm->get_unmapped_area = arch_get_unmapped_area;
410 } else {
411 mm->mmap_base = mmap_base(random_factor, rlim_stack);
412 mm->get_unmapped_area = arch_get_unmapped_area_topdown;
413 }
414 }
415 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
416 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
417 {
418 mm->mmap_base = TASK_UNMAPPED_BASE;
419 mm->get_unmapped_area = arch_get_unmapped_area;
420 }
421 #endif
422
423 /**
424 * __account_locked_vm - account locked pages to an mm's locked_vm
425 * @mm: mm to account against
426 * @pages: number of pages to account
427 * @inc: %true if @pages should be considered positive, %false if not
428 * @task: task used to check RLIMIT_MEMLOCK
429 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
430 *
431 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
432 * that mmap_sem is held as writer.
433 *
434 * Return:
435 * * 0 on success
436 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
437 */
438 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
439 struct task_struct *task, bool bypass_rlim)
440 {
441 unsigned long locked_vm, limit;
442 int ret = 0;
443
444 lockdep_assert_held_write(&mm->mmap_sem);
445
446 locked_vm = mm->locked_vm;
447 if (inc) {
448 if (!bypass_rlim) {
449 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
450 if (locked_vm + pages > limit)
451 ret = -ENOMEM;
452 }
453 if (!ret)
454 mm->locked_vm = locked_vm + pages;
455 } else {
456 WARN_ON_ONCE(pages > locked_vm);
457 mm->locked_vm = locked_vm - pages;
458 }
459
460 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
461 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
462 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
463 ret ? " - exceeded" : "");
464
465 return ret;
466 }
467 EXPORT_SYMBOL_GPL(__account_locked_vm);
468
469 /**
470 * account_locked_vm - account locked pages to an mm's locked_vm
471 * @mm: mm to account against, may be NULL
472 * @pages: number of pages to account
473 * @inc: %true if @pages should be considered positive, %false if not
474 *
475 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
476 *
477 * Return:
478 * * 0 on success, or if mm is NULL
479 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
480 */
481 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
482 {
483 int ret;
484
485 if (pages == 0 || !mm)
486 return 0;
487
488 down_write(&mm->mmap_sem);
489 ret = __account_locked_vm(mm, pages, inc, current,
490 capable(CAP_IPC_LOCK));
491 up_write(&mm->mmap_sem);
492
493 return ret;
494 }
495 EXPORT_SYMBOL_GPL(account_locked_vm);
496
497 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
498 unsigned long len, unsigned long prot,
499 unsigned long flag, unsigned long pgoff)
500 {
501 unsigned long ret;
502 struct mm_struct *mm = current->mm;
503 unsigned long populate;
504 LIST_HEAD(uf);
505
506 ret = security_mmap_file(file, prot, flag);
507 if (!ret) {
508 if (down_write_killable(&mm->mmap_sem))
509 return -EINTR;
510 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
511 &populate, &uf);
512 up_write(&mm->mmap_sem);
513 userfaultfd_unmap_complete(mm, &uf);
514 if (populate)
515 mm_populate(ret, populate);
516 }
517 return ret;
518 }
519
520 unsigned long vm_mmap(struct file *file, unsigned long addr,
521 unsigned long len, unsigned long prot,
522 unsigned long flag, unsigned long offset)
523 {
524 if (unlikely(offset + PAGE_ALIGN(len) < offset))
525 return -EINVAL;
526 if (unlikely(offset_in_page(offset)))
527 return -EINVAL;
528
529 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
530 }
531 EXPORT_SYMBOL(vm_mmap);
532
533 /**
534 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
535 * failure, fall back to non-contiguous (vmalloc) allocation.
536 * @size: size of the request.
537 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
538 * @node: numa node to allocate from
539 *
540 * Uses kmalloc to get the memory but if the allocation fails then falls back
541 * to the vmalloc allocator. Use kvfree for freeing the memory.
542 *
543 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
544 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
545 * preferable to the vmalloc fallback, due to visible performance drawbacks.
546 *
547 * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
548 * fall back to vmalloc.
549 *
550 * Return: pointer to the allocated memory of %NULL in case of failure
551 */
552 void *kvmalloc_node(size_t size, gfp_t flags, int node)
553 {
554 gfp_t kmalloc_flags = flags;
555 void *ret;
556
557 /*
558 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
559 * so the given set of flags has to be compatible.
560 */
561 if ((flags & GFP_KERNEL) != GFP_KERNEL)
562 return kmalloc_node(size, flags, node);
563
564 /*
565 * We want to attempt a large physically contiguous block first because
566 * it is less likely to fragment multiple larger blocks and therefore
567 * contribute to a long term fragmentation less than vmalloc fallback.
568 * However make sure that larger requests are not too disruptive - no
569 * OOM killer and no allocation failure warnings as we have a fallback.
570 */
571 if (size > PAGE_SIZE) {
572 kmalloc_flags |= __GFP_NOWARN;
573
574 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
575 kmalloc_flags |= __GFP_NORETRY;
576 }
577
578 ret = kmalloc_node(size, kmalloc_flags, node);
579
580 /*
581 * It doesn't really make sense to fallback to vmalloc for sub page
582 * requests
583 */
584 if (ret || size <= PAGE_SIZE)
585 return ret;
586
587 return __vmalloc_node_flags_caller(size, node, flags,
588 __builtin_return_address(0));
589 }
590 EXPORT_SYMBOL(kvmalloc_node);
591
592 /**
593 * kvfree() - Free memory.
594 * @addr: Pointer to allocated memory.
595 *
596 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
597 * It is slightly more efficient to use kfree() or vfree() if you are certain
598 * that you know which one to use.
599 *
600 * Context: Either preemptible task context or not-NMI interrupt.
601 */
602 void kvfree(const void *addr)
603 {
604 if (is_vmalloc_addr(addr))
605 vfree(addr);
606 else
607 kfree(addr);
608 }
609 EXPORT_SYMBOL(kvfree);
610
611 static inline void *__page_rmapping(struct page *page)
612 {
613 unsigned long mapping;
614
615 mapping = (unsigned long)page->mapping;
616 mapping &= ~PAGE_MAPPING_FLAGS;
617
618 return (void *)mapping;
619 }
620
621 /* Neutral page->mapping pointer to address_space or anon_vma or other */
622 void *page_rmapping(struct page *page)
623 {
624 page = compound_head(page);
625 return __page_rmapping(page);
626 }
627
628 /*
629 * Return true if this page is mapped into pagetables.
630 * For compound page it returns true if any subpage of compound page is mapped.
631 */
632 bool page_mapped(struct page *page)
633 {
634 int i;
635
636 if (likely(!PageCompound(page)))
637 return atomic_read(&page->_mapcount) >= 0;
638 page = compound_head(page);
639 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
640 return true;
641 if (PageHuge(page))
642 return false;
643 for (i = 0; i < compound_nr(page); i++) {
644 if (atomic_read(&page[i]._mapcount) >= 0)
645 return true;
646 }
647 return false;
648 }
649 EXPORT_SYMBOL(page_mapped);
650
651 struct anon_vma *page_anon_vma(struct page *page)
652 {
653 unsigned long mapping;
654
655 page = compound_head(page);
656 mapping = (unsigned long)page->mapping;
657 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
658 return NULL;
659 return __page_rmapping(page);
660 }
661
662 struct address_space *page_mapping(struct page *page)
663 {
664 struct address_space *mapping;
665
666 page = compound_head(page);
667
668 /* This happens if someone calls flush_dcache_page on slab page */
669 if (unlikely(PageSlab(page)))
670 return NULL;
671
672 if (unlikely(PageSwapCache(page))) {
673 swp_entry_t entry;
674
675 entry.val = page_private(page);
676 return swap_address_space(entry);
677 }
678
679 mapping = page->mapping;
680 if ((unsigned long)mapping & PAGE_MAPPING_ANON)
681 return NULL;
682
683 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
684 }
685 EXPORT_SYMBOL(page_mapping);
686
687 /*
688 * For file cache pages, return the address_space, otherwise return NULL
689 */
690 struct address_space *page_mapping_file(struct page *page)
691 {
692 if (unlikely(PageSwapCache(page)))
693 return NULL;
694 return page_mapping(page);
695 }
696
697 /* Slow path of page_mapcount() for compound pages */
698 int __page_mapcount(struct page *page)
699 {
700 int ret;
701
702 ret = atomic_read(&page->_mapcount) + 1;
703 /*
704 * For file THP page->_mapcount contains total number of mapping
705 * of the page: no need to look into compound_mapcount.
706 */
707 if (!PageAnon(page) && !PageHuge(page))
708 return ret;
709 page = compound_head(page);
710 ret += atomic_read(compound_mapcount_ptr(page)) + 1;
711 if (PageDoubleMap(page))
712 ret--;
713 return ret;
714 }
715 EXPORT_SYMBOL_GPL(__page_mapcount);
716
717 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
718 int sysctl_overcommit_ratio __read_mostly = 50;
719 unsigned long sysctl_overcommit_kbytes __read_mostly;
720 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
721 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
722 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
723
724 int overcommit_ratio_handler(struct ctl_table *table, int write,
725 void __user *buffer, size_t *lenp,
726 loff_t *ppos)
727 {
728 int ret;
729
730 ret = proc_dointvec(table, write, buffer, lenp, ppos);
731 if (ret == 0 && write)
732 sysctl_overcommit_kbytes = 0;
733 return ret;
734 }
735
736 int overcommit_kbytes_handler(struct ctl_table *table, int write,
737 void __user *buffer, size_t *lenp,
738 loff_t *ppos)
739 {
740 int ret;
741
742 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
743 if (ret == 0 && write)
744 sysctl_overcommit_ratio = 0;
745 return ret;
746 }
747
748 /*
749 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
750 */
751 unsigned long vm_commit_limit(void)
752 {
753 unsigned long allowed;
754
755 if (sysctl_overcommit_kbytes)
756 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
757 else
758 allowed = ((totalram_pages() - hugetlb_total_pages())
759 * sysctl_overcommit_ratio / 100);
760 allowed += total_swap_pages;
761
762 return allowed;
763 }
764
765 /*
766 * Make sure vm_committed_as in one cacheline and not cacheline shared with
767 * other variables. It can be updated by several CPUs frequently.
768 */
769 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
770
771 /*
772 * The global memory commitment made in the system can be a metric
773 * that can be used to drive ballooning decisions when Linux is hosted
774 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
775 * balancing memory across competing virtual machines that are hosted.
776 * Several metrics drive this policy engine including the guest reported
777 * memory commitment.
778 */
779 unsigned long vm_memory_committed(void)
780 {
781 return percpu_counter_read_positive(&vm_committed_as);
782 }
783 EXPORT_SYMBOL_GPL(vm_memory_committed);
784
785 /*
786 * Check that a process has enough memory to allocate a new virtual
787 * mapping. 0 means there is enough memory for the allocation to
788 * succeed and -ENOMEM implies there is not.
789 *
790 * We currently support three overcommit policies, which are set via the
791 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst
792 *
793 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
794 * Additional code 2002 Jul 20 by Robert Love.
795 *
796 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
797 *
798 * Note this is a helper function intended to be used by LSMs which
799 * wish to use this logic.
800 */
801 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
802 {
803 long allowed;
804
805 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
806 -(s64)vm_committed_as_batch * num_online_cpus(),
807 "memory commitment underflow");
808
809 vm_acct_memory(pages);
810
811 /*
812 * Sometimes we want to use more memory than we have
813 */
814 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
815 return 0;
816
817 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
818 if (pages > totalram_pages() + total_swap_pages)
819 goto error;
820 return 0;
821 }
822
823 allowed = vm_commit_limit();
824 /*
825 * Reserve some for root
826 */
827 if (!cap_sys_admin)
828 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
829
830 /*
831 * Don't let a single process grow so big a user can't recover
832 */
833 if (mm) {
834 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
835
836 allowed -= min_t(long, mm->total_vm / 32, reserve);
837 }
838
839 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
840 return 0;
841 error:
842 vm_unacct_memory(pages);
843
844 return -ENOMEM;
845 }
846
847 /**
848 * get_cmdline() - copy the cmdline value to a buffer.
849 * @task: the task whose cmdline value to copy.
850 * @buffer: the buffer to copy to.
851 * @buflen: the length of the buffer. Larger cmdline values are truncated
852 * to this length.
853 *
854 * Return: the size of the cmdline field copied. Note that the copy does
855 * not guarantee an ending NULL byte.
856 */
857 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
858 {
859 int res = 0;
860 unsigned int len;
861 struct mm_struct *mm = get_task_mm(task);
862 unsigned long arg_start, arg_end, env_start, env_end;
863 if (!mm)
864 goto out;
865 if (!mm->arg_end)
866 goto out_mm; /* Shh! No looking before we're done */
867
868 spin_lock(&mm->arg_lock);
869 arg_start = mm->arg_start;
870 arg_end = mm->arg_end;
871 env_start = mm->env_start;
872 env_end = mm->env_end;
873 spin_unlock(&mm->arg_lock);
874
875 len = arg_end - arg_start;
876
877 if (len > buflen)
878 len = buflen;
879
880 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
881
882 /*
883 * If the nul at the end of args has been overwritten, then
884 * assume application is using setproctitle(3).
885 */
886 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
887 len = strnlen(buffer, res);
888 if (len < res) {
889 res = len;
890 } else {
891 len = env_end - env_start;
892 if (len > buflen - res)
893 len = buflen - res;
894 res += access_process_vm(task, env_start,
895 buffer+res, len,
896 FOLL_FORCE);
897 res = strnlen(buffer, res);
898 }
899 }
900 out_mm:
901 mmput(mm);
902 out:
903 return res;
904 }
905
906 int memcmp_pages(struct page *page1, struct page *page2)
907 {
908 char *addr1, *addr2;
909 int ret;
910
911 addr1 = kmap_atomic(page1);
912 addr2 = kmap_atomic(page2);
913 ret = memcmp(addr1, addr2, PAGE_SIZE);
914 kunmap_atomic(addr2);
915 kunmap_atomic(addr1);
916 return ret;
917 }