]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/util.c
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[mirror_ubuntu-artful-kernel.git] / mm / util.c
1 #include <linux/mm.h>
2 #include <linux/slab.h>
3 #include <linux/string.h>
4 #include <linux/compiler.h>
5 #include <linux/export.h>
6 #include <linux/err.h>
7 #include <linux/sched.h>
8 #include <linux/sched/mm.h>
9 #include <linux/sched/task_stack.h>
10 #include <linux/security.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/mman.h>
14 #include <linux/hugetlb.h>
15 #include <linux/vmalloc.h>
16 #include <linux/userfaultfd_k.h>
17
18 #include <asm/sections.h>
19 #include <linux/uaccess.h>
20
21 #include "internal.h"
22
23 static inline int is_kernel_rodata(unsigned long addr)
24 {
25 return addr >= (unsigned long)__start_rodata &&
26 addr < (unsigned long)__end_rodata;
27 }
28
29 /**
30 * kfree_const - conditionally free memory
31 * @x: pointer to the memory
32 *
33 * Function calls kfree only if @x is not in .rodata section.
34 */
35 void kfree_const(const void *x)
36 {
37 if (!is_kernel_rodata((unsigned long)x))
38 kfree(x);
39 }
40 EXPORT_SYMBOL(kfree_const);
41
42 /**
43 * kstrdup - allocate space for and copy an existing string
44 * @s: the string to duplicate
45 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
46 */
47 char *kstrdup(const char *s, gfp_t gfp)
48 {
49 size_t len;
50 char *buf;
51
52 if (!s)
53 return NULL;
54
55 len = strlen(s) + 1;
56 buf = kmalloc_track_caller(len, gfp);
57 if (buf)
58 memcpy(buf, s, len);
59 return buf;
60 }
61 EXPORT_SYMBOL(kstrdup);
62
63 /**
64 * kstrdup_const - conditionally duplicate an existing const string
65 * @s: the string to duplicate
66 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
67 *
68 * Function returns source string if it is in .rodata section otherwise it
69 * fallbacks to kstrdup.
70 * Strings allocated by kstrdup_const should be freed by kfree_const.
71 */
72 const char *kstrdup_const(const char *s, gfp_t gfp)
73 {
74 if (is_kernel_rodata((unsigned long)s))
75 return s;
76
77 return kstrdup(s, gfp);
78 }
79 EXPORT_SYMBOL(kstrdup_const);
80
81 /**
82 * kstrndup - allocate space for and copy an existing string
83 * @s: the string to duplicate
84 * @max: read at most @max chars from @s
85 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
86 */
87 char *kstrndup(const char *s, size_t max, gfp_t gfp)
88 {
89 size_t len;
90 char *buf;
91
92 if (!s)
93 return NULL;
94
95 len = strnlen(s, max);
96 buf = kmalloc_track_caller(len+1, gfp);
97 if (buf) {
98 memcpy(buf, s, len);
99 buf[len] = '\0';
100 }
101 return buf;
102 }
103 EXPORT_SYMBOL(kstrndup);
104
105 /**
106 * kmemdup - duplicate region of memory
107 *
108 * @src: memory region to duplicate
109 * @len: memory region length
110 * @gfp: GFP mask to use
111 */
112 void *kmemdup(const void *src, size_t len, gfp_t gfp)
113 {
114 void *p;
115
116 p = kmalloc_track_caller(len, gfp);
117 if (p)
118 memcpy(p, src, len);
119 return p;
120 }
121 EXPORT_SYMBOL(kmemdup);
122
123 /**
124 * memdup_user - duplicate memory region from user space
125 *
126 * @src: source address in user space
127 * @len: number of bytes to copy
128 *
129 * Returns an ERR_PTR() on failure.
130 */
131 void *memdup_user(const void __user *src, size_t len)
132 {
133 void *p;
134
135 /*
136 * Always use GFP_KERNEL, since copy_from_user() can sleep and
137 * cause pagefault, which makes it pointless to use GFP_NOFS
138 * or GFP_ATOMIC.
139 */
140 p = kmalloc_track_caller(len, GFP_KERNEL);
141 if (!p)
142 return ERR_PTR(-ENOMEM);
143
144 if (copy_from_user(p, src, len)) {
145 kfree(p);
146 return ERR_PTR(-EFAULT);
147 }
148
149 return p;
150 }
151 EXPORT_SYMBOL(memdup_user);
152
153 /*
154 * strndup_user - duplicate an existing string from user space
155 * @s: The string to duplicate
156 * @n: Maximum number of bytes to copy, including the trailing NUL.
157 */
158 char *strndup_user(const char __user *s, long n)
159 {
160 char *p;
161 long length;
162
163 length = strnlen_user(s, n);
164
165 if (!length)
166 return ERR_PTR(-EFAULT);
167
168 if (length > n)
169 return ERR_PTR(-EINVAL);
170
171 p = memdup_user(s, length);
172
173 if (IS_ERR(p))
174 return p;
175
176 p[length - 1] = '\0';
177
178 return p;
179 }
180 EXPORT_SYMBOL(strndup_user);
181
182 /**
183 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
184 *
185 * @src: source address in user space
186 * @len: number of bytes to copy
187 *
188 * Returns an ERR_PTR() on failure.
189 */
190 void *memdup_user_nul(const void __user *src, size_t len)
191 {
192 char *p;
193
194 /*
195 * Always use GFP_KERNEL, since copy_from_user() can sleep and
196 * cause pagefault, which makes it pointless to use GFP_NOFS
197 * or GFP_ATOMIC.
198 */
199 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
200 if (!p)
201 return ERR_PTR(-ENOMEM);
202
203 if (copy_from_user(p, src, len)) {
204 kfree(p);
205 return ERR_PTR(-EFAULT);
206 }
207 p[len] = '\0';
208
209 return p;
210 }
211 EXPORT_SYMBOL(memdup_user_nul);
212
213 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
214 struct vm_area_struct *prev, struct rb_node *rb_parent)
215 {
216 struct vm_area_struct *next;
217
218 vma->vm_prev = prev;
219 if (prev) {
220 next = prev->vm_next;
221 prev->vm_next = vma;
222 } else {
223 mm->mmap = vma;
224 if (rb_parent)
225 next = rb_entry(rb_parent,
226 struct vm_area_struct, vm_rb);
227 else
228 next = NULL;
229 }
230 vma->vm_next = next;
231 if (next)
232 next->vm_prev = vma;
233 }
234
235 /* Check if the vma is being used as a stack by this task */
236 int vma_is_stack_for_current(struct vm_area_struct *vma)
237 {
238 struct task_struct * __maybe_unused t = current;
239
240 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
241 }
242
243 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
244 void arch_pick_mmap_layout(struct mm_struct *mm)
245 {
246 mm->mmap_base = TASK_UNMAPPED_BASE;
247 mm->get_unmapped_area = arch_get_unmapped_area;
248 }
249 #endif
250
251 /*
252 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
253 * back to the regular GUP.
254 * If the architecture not support this function, simply return with no
255 * page pinned
256 */
257 int __weak __get_user_pages_fast(unsigned long start,
258 int nr_pages, int write, struct page **pages)
259 {
260 return 0;
261 }
262 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
263
264 /**
265 * get_user_pages_fast() - pin user pages in memory
266 * @start: starting user address
267 * @nr_pages: number of pages from start to pin
268 * @write: whether pages will be written to
269 * @pages: array that receives pointers to the pages pinned.
270 * Should be at least nr_pages long.
271 *
272 * Returns number of pages pinned. This may be fewer than the number
273 * requested. If nr_pages is 0 or negative, returns 0. If no pages
274 * were pinned, returns -errno.
275 *
276 * get_user_pages_fast provides equivalent functionality to get_user_pages,
277 * operating on current and current->mm, with force=0 and vma=NULL. However
278 * unlike get_user_pages, it must be called without mmap_sem held.
279 *
280 * get_user_pages_fast may take mmap_sem and page table locks, so no
281 * assumptions can be made about lack of locking. get_user_pages_fast is to be
282 * implemented in a way that is advantageous (vs get_user_pages()) when the
283 * user memory area is already faulted in and present in ptes. However if the
284 * pages have to be faulted in, it may turn out to be slightly slower so
285 * callers need to carefully consider what to use. On many architectures,
286 * get_user_pages_fast simply falls back to get_user_pages.
287 */
288 int __weak get_user_pages_fast(unsigned long start,
289 int nr_pages, int write, struct page **pages)
290 {
291 return get_user_pages_unlocked(start, nr_pages, pages,
292 write ? FOLL_WRITE : 0);
293 }
294 EXPORT_SYMBOL_GPL(get_user_pages_fast);
295
296 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
297 unsigned long len, unsigned long prot,
298 unsigned long flag, unsigned long pgoff)
299 {
300 unsigned long ret;
301 struct mm_struct *mm = current->mm;
302 unsigned long populate;
303 LIST_HEAD(uf);
304
305 ret = security_mmap_file(file, prot, flag);
306 if (!ret) {
307 if (down_write_killable(&mm->mmap_sem))
308 return -EINTR;
309 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
310 &populate, &uf);
311 up_write(&mm->mmap_sem);
312 userfaultfd_unmap_complete(mm, &uf);
313 if (populate)
314 mm_populate(ret, populate);
315 }
316 return ret;
317 }
318
319 unsigned long vm_mmap(struct file *file, unsigned long addr,
320 unsigned long len, unsigned long prot,
321 unsigned long flag, unsigned long offset)
322 {
323 if (unlikely(offset + PAGE_ALIGN(len) < offset))
324 return -EINVAL;
325 if (unlikely(offset_in_page(offset)))
326 return -EINVAL;
327
328 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
329 }
330 EXPORT_SYMBOL(vm_mmap);
331
332 /**
333 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
334 * failure, fall back to non-contiguous (vmalloc) allocation.
335 * @size: size of the request.
336 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
337 * @node: numa node to allocate from
338 *
339 * Uses kmalloc to get the memory but if the allocation fails then falls back
340 * to the vmalloc allocator. Use kvfree for freeing the memory.
341 *
342 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
343 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
344 * preferable to the vmalloc fallback, due to visible performance drawbacks.
345 *
346 * Any use of gfp flags outside of GFP_KERNEL should be consulted with mm people.
347 */
348 void *kvmalloc_node(size_t size, gfp_t flags, int node)
349 {
350 gfp_t kmalloc_flags = flags;
351 void *ret;
352
353 /*
354 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
355 * so the given set of flags has to be compatible.
356 */
357 WARN_ON_ONCE((flags & GFP_KERNEL) != GFP_KERNEL);
358
359 /*
360 * We want to attempt a large physically contiguous block first because
361 * it is less likely to fragment multiple larger blocks and therefore
362 * contribute to a long term fragmentation less than vmalloc fallback.
363 * However make sure that larger requests are not too disruptive - no
364 * OOM killer and no allocation failure warnings as we have a fallback.
365 */
366 if (size > PAGE_SIZE) {
367 kmalloc_flags |= __GFP_NOWARN;
368
369 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
370 kmalloc_flags |= __GFP_NORETRY;
371 }
372
373 ret = kmalloc_node(size, kmalloc_flags, node);
374
375 /*
376 * It doesn't really make sense to fallback to vmalloc for sub page
377 * requests
378 */
379 if (ret || size <= PAGE_SIZE)
380 return ret;
381
382 return __vmalloc_node_flags_caller(size, node, flags,
383 __builtin_return_address(0));
384 }
385 EXPORT_SYMBOL(kvmalloc_node);
386
387 void kvfree(const void *addr)
388 {
389 if (is_vmalloc_addr(addr))
390 vfree(addr);
391 else
392 kfree(addr);
393 }
394 EXPORT_SYMBOL(kvfree);
395
396 static inline void *__page_rmapping(struct page *page)
397 {
398 unsigned long mapping;
399
400 mapping = (unsigned long)page->mapping;
401 mapping &= ~PAGE_MAPPING_FLAGS;
402
403 return (void *)mapping;
404 }
405
406 /* Neutral page->mapping pointer to address_space or anon_vma or other */
407 void *page_rmapping(struct page *page)
408 {
409 page = compound_head(page);
410 return __page_rmapping(page);
411 }
412
413 /*
414 * Return true if this page is mapped into pagetables.
415 * For compound page it returns true if any subpage of compound page is mapped.
416 */
417 bool page_mapped(struct page *page)
418 {
419 int i;
420
421 if (likely(!PageCompound(page)))
422 return atomic_read(&page->_mapcount) >= 0;
423 page = compound_head(page);
424 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
425 return true;
426 if (PageHuge(page))
427 return false;
428 for (i = 0; i < hpage_nr_pages(page); i++) {
429 if (atomic_read(&page[i]._mapcount) >= 0)
430 return true;
431 }
432 return false;
433 }
434 EXPORT_SYMBOL(page_mapped);
435
436 struct anon_vma *page_anon_vma(struct page *page)
437 {
438 unsigned long mapping;
439
440 page = compound_head(page);
441 mapping = (unsigned long)page->mapping;
442 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
443 return NULL;
444 return __page_rmapping(page);
445 }
446
447 struct address_space *page_mapping(struct page *page)
448 {
449 struct address_space *mapping;
450
451 page = compound_head(page);
452
453 /* This happens if someone calls flush_dcache_page on slab page */
454 if (unlikely(PageSlab(page)))
455 return NULL;
456
457 if (unlikely(PageSwapCache(page))) {
458 swp_entry_t entry;
459
460 entry.val = page_private(page);
461 return swap_address_space(entry);
462 }
463
464 mapping = page->mapping;
465 if ((unsigned long)mapping & PAGE_MAPPING_ANON)
466 return NULL;
467
468 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
469 }
470 EXPORT_SYMBOL(page_mapping);
471
472 /* Slow path of page_mapcount() for compound pages */
473 int __page_mapcount(struct page *page)
474 {
475 int ret;
476
477 ret = atomic_read(&page->_mapcount) + 1;
478 /*
479 * For file THP page->_mapcount contains total number of mapping
480 * of the page: no need to look into compound_mapcount.
481 */
482 if (!PageAnon(page) && !PageHuge(page))
483 return ret;
484 page = compound_head(page);
485 ret += atomic_read(compound_mapcount_ptr(page)) + 1;
486 if (PageDoubleMap(page))
487 ret--;
488 return ret;
489 }
490 EXPORT_SYMBOL_GPL(__page_mapcount);
491
492 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
493 int sysctl_overcommit_ratio __read_mostly = 50;
494 unsigned long sysctl_overcommit_kbytes __read_mostly;
495 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
496 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
497 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
498
499 int overcommit_ratio_handler(struct ctl_table *table, int write,
500 void __user *buffer, size_t *lenp,
501 loff_t *ppos)
502 {
503 int ret;
504
505 ret = proc_dointvec(table, write, buffer, lenp, ppos);
506 if (ret == 0 && write)
507 sysctl_overcommit_kbytes = 0;
508 return ret;
509 }
510
511 int overcommit_kbytes_handler(struct ctl_table *table, int write,
512 void __user *buffer, size_t *lenp,
513 loff_t *ppos)
514 {
515 int ret;
516
517 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
518 if (ret == 0 && write)
519 sysctl_overcommit_ratio = 0;
520 return ret;
521 }
522
523 /*
524 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
525 */
526 unsigned long vm_commit_limit(void)
527 {
528 unsigned long allowed;
529
530 if (sysctl_overcommit_kbytes)
531 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
532 else
533 allowed = ((totalram_pages - hugetlb_total_pages())
534 * sysctl_overcommit_ratio / 100);
535 allowed += total_swap_pages;
536
537 return allowed;
538 }
539
540 /*
541 * Make sure vm_committed_as in one cacheline and not cacheline shared with
542 * other variables. It can be updated by several CPUs frequently.
543 */
544 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
545
546 /*
547 * The global memory commitment made in the system can be a metric
548 * that can be used to drive ballooning decisions when Linux is hosted
549 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
550 * balancing memory across competing virtual machines that are hosted.
551 * Several metrics drive this policy engine including the guest reported
552 * memory commitment.
553 */
554 unsigned long vm_memory_committed(void)
555 {
556 return percpu_counter_read_positive(&vm_committed_as);
557 }
558 EXPORT_SYMBOL_GPL(vm_memory_committed);
559
560 /*
561 * Check that a process has enough memory to allocate a new virtual
562 * mapping. 0 means there is enough memory for the allocation to
563 * succeed and -ENOMEM implies there is not.
564 *
565 * We currently support three overcommit policies, which are set via the
566 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
567 *
568 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
569 * Additional code 2002 Jul 20 by Robert Love.
570 *
571 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
572 *
573 * Note this is a helper function intended to be used by LSMs which
574 * wish to use this logic.
575 */
576 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
577 {
578 long free, allowed, reserve;
579
580 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
581 -(s64)vm_committed_as_batch * num_online_cpus(),
582 "memory commitment underflow");
583
584 vm_acct_memory(pages);
585
586 /*
587 * Sometimes we want to use more memory than we have
588 */
589 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
590 return 0;
591
592 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
593 free = global_page_state(NR_FREE_PAGES);
594 free += global_node_page_state(NR_FILE_PAGES);
595
596 /*
597 * shmem pages shouldn't be counted as free in this
598 * case, they can't be purged, only swapped out, and
599 * that won't affect the overall amount of available
600 * memory in the system.
601 */
602 free -= global_node_page_state(NR_SHMEM);
603
604 free += get_nr_swap_pages();
605
606 /*
607 * Any slabs which are created with the
608 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
609 * which are reclaimable, under pressure. The dentry
610 * cache and most inode caches should fall into this
611 */
612 free += global_page_state(NR_SLAB_RECLAIMABLE);
613
614 /*
615 * Leave reserved pages. The pages are not for anonymous pages.
616 */
617 if (free <= totalreserve_pages)
618 goto error;
619 else
620 free -= totalreserve_pages;
621
622 /*
623 * Reserve some for root
624 */
625 if (!cap_sys_admin)
626 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
627
628 if (free > pages)
629 return 0;
630
631 goto error;
632 }
633
634 allowed = vm_commit_limit();
635 /*
636 * Reserve some for root
637 */
638 if (!cap_sys_admin)
639 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
640
641 /*
642 * Don't let a single process grow so big a user can't recover
643 */
644 if (mm) {
645 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
646 allowed -= min_t(long, mm->total_vm / 32, reserve);
647 }
648
649 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
650 return 0;
651 error:
652 vm_unacct_memory(pages);
653
654 return -ENOMEM;
655 }
656
657 /**
658 * get_cmdline() - copy the cmdline value to a buffer.
659 * @task: the task whose cmdline value to copy.
660 * @buffer: the buffer to copy to.
661 * @buflen: the length of the buffer. Larger cmdline values are truncated
662 * to this length.
663 * Returns the size of the cmdline field copied. Note that the copy does
664 * not guarantee an ending NULL byte.
665 */
666 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
667 {
668 int res = 0;
669 unsigned int len;
670 struct mm_struct *mm = get_task_mm(task);
671 unsigned long arg_start, arg_end, env_start, env_end;
672 if (!mm)
673 goto out;
674 if (!mm->arg_end)
675 goto out_mm; /* Shh! No looking before we're done */
676
677 down_read(&mm->mmap_sem);
678 arg_start = mm->arg_start;
679 arg_end = mm->arg_end;
680 env_start = mm->env_start;
681 env_end = mm->env_end;
682 up_read(&mm->mmap_sem);
683
684 len = arg_end - arg_start;
685
686 if (len > buflen)
687 len = buflen;
688
689 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
690
691 /*
692 * If the nul at the end of args has been overwritten, then
693 * assume application is using setproctitle(3).
694 */
695 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
696 len = strnlen(buffer, res);
697 if (len < res) {
698 res = len;
699 } else {
700 len = env_end - env_start;
701 if (len > buflen - res)
702 len = buflen - res;
703 res += access_process_vm(task, env_start,
704 buffer+res, len,
705 FOLL_FORCE);
706 res = strnlen(buffer, res);
707 }
708 }
709 out_mm:
710 mmput(mm);
711 out:
712 return res;
713 }