]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/util.c
Merge tag 'mfd-for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[mirror_ubuntu-zesty-kernel.git] / mm / util.c
1 #include <linux/mm.h>
2 #include <linux/slab.h>
3 #include <linux/string.h>
4 #include <linux/compiler.h>
5 #include <linux/export.h>
6 #include <linux/err.h>
7 #include <linux/sched.h>
8 #include <linux/security.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
11 #include <linux/mman.h>
12 #include <linux/hugetlb.h>
13 #include <linux/vmalloc.h>
14
15 #include <asm/sections.h>
16 #include <asm/uaccess.h>
17
18 #include "internal.h"
19
20 static inline int is_kernel_rodata(unsigned long addr)
21 {
22 return addr >= (unsigned long)__start_rodata &&
23 addr < (unsigned long)__end_rodata;
24 }
25
26 /**
27 * kfree_const - conditionally free memory
28 * @x: pointer to the memory
29 *
30 * Function calls kfree only if @x is not in .rodata section.
31 */
32 void kfree_const(const void *x)
33 {
34 if (!is_kernel_rodata((unsigned long)x))
35 kfree(x);
36 }
37 EXPORT_SYMBOL(kfree_const);
38
39 /**
40 * kstrdup - allocate space for and copy an existing string
41 * @s: the string to duplicate
42 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
43 */
44 char *kstrdup(const char *s, gfp_t gfp)
45 {
46 size_t len;
47 char *buf;
48
49 if (!s)
50 return NULL;
51
52 len = strlen(s) + 1;
53 buf = kmalloc_track_caller(len, gfp);
54 if (buf)
55 memcpy(buf, s, len);
56 return buf;
57 }
58 EXPORT_SYMBOL(kstrdup);
59
60 /**
61 * kstrdup_const - conditionally duplicate an existing const string
62 * @s: the string to duplicate
63 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
64 *
65 * Function returns source string if it is in .rodata section otherwise it
66 * fallbacks to kstrdup.
67 * Strings allocated by kstrdup_const should be freed by kfree_const.
68 */
69 const char *kstrdup_const(const char *s, gfp_t gfp)
70 {
71 if (is_kernel_rodata((unsigned long)s))
72 return s;
73
74 return kstrdup(s, gfp);
75 }
76 EXPORT_SYMBOL(kstrdup_const);
77
78 /**
79 * kstrndup - allocate space for and copy an existing string
80 * @s: the string to duplicate
81 * @max: read at most @max chars from @s
82 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
83 */
84 char *kstrndup(const char *s, size_t max, gfp_t gfp)
85 {
86 size_t len;
87 char *buf;
88
89 if (!s)
90 return NULL;
91
92 len = strnlen(s, max);
93 buf = kmalloc_track_caller(len+1, gfp);
94 if (buf) {
95 memcpy(buf, s, len);
96 buf[len] = '\0';
97 }
98 return buf;
99 }
100 EXPORT_SYMBOL(kstrndup);
101
102 /**
103 * kmemdup - duplicate region of memory
104 *
105 * @src: memory region to duplicate
106 * @len: memory region length
107 * @gfp: GFP mask to use
108 */
109 void *kmemdup(const void *src, size_t len, gfp_t gfp)
110 {
111 void *p;
112
113 p = kmalloc_track_caller(len, gfp);
114 if (p)
115 memcpy(p, src, len);
116 return p;
117 }
118 EXPORT_SYMBOL(kmemdup);
119
120 /**
121 * memdup_user - duplicate memory region from user space
122 *
123 * @src: source address in user space
124 * @len: number of bytes to copy
125 *
126 * Returns an ERR_PTR() on failure.
127 */
128 void *memdup_user(const void __user *src, size_t len)
129 {
130 void *p;
131
132 /*
133 * Always use GFP_KERNEL, since copy_from_user() can sleep and
134 * cause pagefault, which makes it pointless to use GFP_NOFS
135 * or GFP_ATOMIC.
136 */
137 p = kmalloc_track_caller(len, GFP_KERNEL);
138 if (!p)
139 return ERR_PTR(-ENOMEM);
140
141 if (copy_from_user(p, src, len)) {
142 kfree(p);
143 return ERR_PTR(-EFAULT);
144 }
145
146 return p;
147 }
148 EXPORT_SYMBOL(memdup_user);
149
150 /*
151 * strndup_user - duplicate an existing string from user space
152 * @s: The string to duplicate
153 * @n: Maximum number of bytes to copy, including the trailing NUL.
154 */
155 char *strndup_user(const char __user *s, long n)
156 {
157 char *p;
158 long length;
159
160 length = strnlen_user(s, n);
161
162 if (!length)
163 return ERR_PTR(-EFAULT);
164
165 if (length > n)
166 return ERR_PTR(-EINVAL);
167
168 p = memdup_user(s, length);
169
170 if (IS_ERR(p))
171 return p;
172
173 p[length - 1] = '\0';
174
175 return p;
176 }
177 EXPORT_SYMBOL(strndup_user);
178
179 /**
180 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
181 *
182 * @src: source address in user space
183 * @len: number of bytes to copy
184 *
185 * Returns an ERR_PTR() on failure.
186 */
187 void *memdup_user_nul(const void __user *src, size_t len)
188 {
189 char *p;
190
191 /*
192 * Always use GFP_KERNEL, since copy_from_user() can sleep and
193 * cause pagefault, which makes it pointless to use GFP_NOFS
194 * or GFP_ATOMIC.
195 */
196 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
197 if (!p)
198 return ERR_PTR(-ENOMEM);
199
200 if (copy_from_user(p, src, len)) {
201 kfree(p);
202 return ERR_PTR(-EFAULT);
203 }
204 p[len] = '\0';
205
206 return p;
207 }
208 EXPORT_SYMBOL(memdup_user_nul);
209
210 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
211 struct vm_area_struct *prev, struct rb_node *rb_parent)
212 {
213 struct vm_area_struct *next;
214
215 vma->vm_prev = prev;
216 if (prev) {
217 next = prev->vm_next;
218 prev->vm_next = vma;
219 } else {
220 mm->mmap = vma;
221 if (rb_parent)
222 next = rb_entry(rb_parent,
223 struct vm_area_struct, vm_rb);
224 else
225 next = NULL;
226 }
227 vma->vm_next = next;
228 if (next)
229 next->vm_prev = vma;
230 }
231
232 /* Check if the vma is being used as a stack by this task */
233 int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t)
234 {
235 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
236 }
237
238 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
239 void arch_pick_mmap_layout(struct mm_struct *mm)
240 {
241 mm->mmap_base = TASK_UNMAPPED_BASE;
242 mm->get_unmapped_area = arch_get_unmapped_area;
243 }
244 #endif
245
246 /*
247 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
248 * back to the regular GUP.
249 * If the architecture not support this function, simply return with no
250 * page pinned
251 */
252 int __weak __get_user_pages_fast(unsigned long start,
253 int nr_pages, int write, struct page **pages)
254 {
255 return 0;
256 }
257 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
258
259 /**
260 * get_user_pages_fast() - pin user pages in memory
261 * @start: starting user address
262 * @nr_pages: number of pages from start to pin
263 * @write: whether pages will be written to
264 * @pages: array that receives pointers to the pages pinned.
265 * Should be at least nr_pages long.
266 *
267 * Returns number of pages pinned. This may be fewer than the number
268 * requested. If nr_pages is 0 or negative, returns 0. If no pages
269 * were pinned, returns -errno.
270 *
271 * get_user_pages_fast provides equivalent functionality to get_user_pages,
272 * operating on current and current->mm, with force=0 and vma=NULL. However
273 * unlike get_user_pages, it must be called without mmap_sem held.
274 *
275 * get_user_pages_fast may take mmap_sem and page table locks, so no
276 * assumptions can be made about lack of locking. get_user_pages_fast is to be
277 * implemented in a way that is advantageous (vs get_user_pages()) when the
278 * user memory area is already faulted in and present in ptes. However if the
279 * pages have to be faulted in, it may turn out to be slightly slower so
280 * callers need to carefully consider what to use. On many architectures,
281 * get_user_pages_fast simply falls back to get_user_pages.
282 */
283 int __weak get_user_pages_fast(unsigned long start,
284 int nr_pages, int write, struct page **pages)
285 {
286 return get_user_pages_unlocked(start, nr_pages, write, 0, pages);
287 }
288 EXPORT_SYMBOL_GPL(get_user_pages_fast);
289
290 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
291 unsigned long len, unsigned long prot,
292 unsigned long flag, unsigned long pgoff)
293 {
294 unsigned long ret;
295 struct mm_struct *mm = current->mm;
296 unsigned long populate;
297
298 ret = security_mmap_file(file, prot, flag);
299 if (!ret) {
300 down_write(&mm->mmap_sem);
301 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
302 &populate);
303 up_write(&mm->mmap_sem);
304 if (populate)
305 mm_populate(ret, populate);
306 }
307 return ret;
308 }
309
310 unsigned long vm_mmap(struct file *file, unsigned long addr,
311 unsigned long len, unsigned long prot,
312 unsigned long flag, unsigned long offset)
313 {
314 if (unlikely(offset + PAGE_ALIGN(len) < offset))
315 return -EINVAL;
316 if (unlikely(offset_in_page(offset)))
317 return -EINVAL;
318
319 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
320 }
321 EXPORT_SYMBOL(vm_mmap);
322
323 void kvfree(const void *addr)
324 {
325 if (is_vmalloc_addr(addr))
326 vfree(addr);
327 else
328 kfree(addr);
329 }
330 EXPORT_SYMBOL(kvfree);
331
332 static inline void *__page_rmapping(struct page *page)
333 {
334 unsigned long mapping;
335
336 mapping = (unsigned long)page->mapping;
337 mapping &= ~PAGE_MAPPING_FLAGS;
338
339 return (void *)mapping;
340 }
341
342 /* Neutral page->mapping pointer to address_space or anon_vma or other */
343 void *page_rmapping(struct page *page)
344 {
345 page = compound_head(page);
346 return __page_rmapping(page);
347 }
348
349 /*
350 * Return true if this page is mapped into pagetables.
351 * For compound page it returns true if any subpage of compound page is mapped.
352 */
353 bool page_mapped(struct page *page)
354 {
355 int i;
356
357 if (likely(!PageCompound(page)))
358 return atomic_read(&page->_mapcount) >= 0;
359 page = compound_head(page);
360 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
361 return true;
362 if (PageHuge(page))
363 return false;
364 for (i = 0; i < hpage_nr_pages(page); i++) {
365 if (atomic_read(&page[i]._mapcount) >= 0)
366 return true;
367 }
368 return false;
369 }
370 EXPORT_SYMBOL(page_mapped);
371
372 struct anon_vma *page_anon_vma(struct page *page)
373 {
374 unsigned long mapping;
375
376 page = compound_head(page);
377 mapping = (unsigned long)page->mapping;
378 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
379 return NULL;
380 return __page_rmapping(page);
381 }
382
383 struct address_space *page_mapping(struct page *page)
384 {
385 struct address_space *mapping;
386
387 page = compound_head(page);
388
389 /* This happens if someone calls flush_dcache_page on slab page */
390 if (unlikely(PageSlab(page)))
391 return NULL;
392
393 if (unlikely(PageSwapCache(page))) {
394 swp_entry_t entry;
395
396 entry.val = page_private(page);
397 return swap_address_space(entry);
398 }
399
400 mapping = page->mapping;
401 if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
402 return NULL;
403 return mapping;
404 }
405
406 /* Slow path of page_mapcount() for compound pages */
407 int __page_mapcount(struct page *page)
408 {
409 int ret;
410
411 ret = atomic_read(&page->_mapcount) + 1;
412 page = compound_head(page);
413 ret += atomic_read(compound_mapcount_ptr(page)) + 1;
414 if (PageDoubleMap(page))
415 ret--;
416 return ret;
417 }
418 EXPORT_SYMBOL_GPL(__page_mapcount);
419
420 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
421 int sysctl_overcommit_ratio __read_mostly = 50;
422 unsigned long sysctl_overcommit_kbytes __read_mostly;
423 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
424 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
425 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
426
427 int overcommit_ratio_handler(struct ctl_table *table, int write,
428 void __user *buffer, size_t *lenp,
429 loff_t *ppos)
430 {
431 int ret;
432
433 ret = proc_dointvec(table, write, buffer, lenp, ppos);
434 if (ret == 0 && write)
435 sysctl_overcommit_kbytes = 0;
436 return ret;
437 }
438
439 int overcommit_kbytes_handler(struct ctl_table *table, int write,
440 void __user *buffer, size_t *lenp,
441 loff_t *ppos)
442 {
443 int ret;
444
445 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
446 if (ret == 0 && write)
447 sysctl_overcommit_ratio = 0;
448 return ret;
449 }
450
451 /*
452 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
453 */
454 unsigned long vm_commit_limit(void)
455 {
456 unsigned long allowed;
457
458 if (sysctl_overcommit_kbytes)
459 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
460 else
461 allowed = ((totalram_pages - hugetlb_total_pages())
462 * sysctl_overcommit_ratio / 100);
463 allowed += total_swap_pages;
464
465 return allowed;
466 }
467
468 /*
469 * Make sure vm_committed_as in one cacheline and not cacheline shared with
470 * other variables. It can be updated by several CPUs frequently.
471 */
472 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
473
474 /*
475 * The global memory commitment made in the system can be a metric
476 * that can be used to drive ballooning decisions when Linux is hosted
477 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
478 * balancing memory across competing virtual machines that are hosted.
479 * Several metrics drive this policy engine including the guest reported
480 * memory commitment.
481 */
482 unsigned long vm_memory_committed(void)
483 {
484 return percpu_counter_read_positive(&vm_committed_as);
485 }
486 EXPORT_SYMBOL_GPL(vm_memory_committed);
487
488 /*
489 * Check that a process has enough memory to allocate a new virtual
490 * mapping. 0 means there is enough memory for the allocation to
491 * succeed and -ENOMEM implies there is not.
492 *
493 * We currently support three overcommit policies, which are set via the
494 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
495 *
496 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
497 * Additional code 2002 Jul 20 by Robert Love.
498 *
499 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
500 *
501 * Note this is a helper function intended to be used by LSMs which
502 * wish to use this logic.
503 */
504 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
505 {
506 long free, allowed, reserve;
507
508 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
509 -(s64)vm_committed_as_batch * num_online_cpus(),
510 "memory commitment underflow");
511
512 vm_acct_memory(pages);
513
514 /*
515 * Sometimes we want to use more memory than we have
516 */
517 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
518 return 0;
519
520 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
521 free = global_page_state(NR_FREE_PAGES);
522 free += global_page_state(NR_FILE_PAGES);
523
524 /*
525 * shmem pages shouldn't be counted as free in this
526 * case, they can't be purged, only swapped out, and
527 * that won't affect the overall amount of available
528 * memory in the system.
529 */
530 free -= global_page_state(NR_SHMEM);
531
532 free += get_nr_swap_pages();
533
534 /*
535 * Any slabs which are created with the
536 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
537 * which are reclaimable, under pressure. The dentry
538 * cache and most inode caches should fall into this
539 */
540 free += global_page_state(NR_SLAB_RECLAIMABLE);
541
542 /*
543 * Leave reserved pages. The pages are not for anonymous pages.
544 */
545 if (free <= totalreserve_pages)
546 goto error;
547 else
548 free -= totalreserve_pages;
549
550 /*
551 * Reserve some for root
552 */
553 if (!cap_sys_admin)
554 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
555
556 if (free > pages)
557 return 0;
558
559 goto error;
560 }
561
562 allowed = vm_commit_limit();
563 /*
564 * Reserve some for root
565 */
566 if (!cap_sys_admin)
567 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
568
569 /*
570 * Don't let a single process grow so big a user can't recover
571 */
572 if (mm) {
573 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
574 allowed -= min_t(long, mm->total_vm / 32, reserve);
575 }
576
577 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
578 return 0;
579 error:
580 vm_unacct_memory(pages);
581
582 return -ENOMEM;
583 }
584
585 /**
586 * get_cmdline() - copy the cmdline value to a buffer.
587 * @task: the task whose cmdline value to copy.
588 * @buffer: the buffer to copy to.
589 * @buflen: the length of the buffer. Larger cmdline values are truncated
590 * to this length.
591 * Returns the size of the cmdline field copied. Note that the copy does
592 * not guarantee an ending NULL byte.
593 */
594 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
595 {
596 int res = 0;
597 unsigned int len;
598 struct mm_struct *mm = get_task_mm(task);
599 unsigned long arg_start, arg_end, env_start, env_end;
600 if (!mm)
601 goto out;
602 if (!mm->arg_end)
603 goto out_mm; /* Shh! No looking before we're done */
604
605 down_read(&mm->mmap_sem);
606 arg_start = mm->arg_start;
607 arg_end = mm->arg_end;
608 env_start = mm->env_start;
609 env_end = mm->env_end;
610 up_read(&mm->mmap_sem);
611
612 len = arg_end - arg_start;
613
614 if (len > buflen)
615 len = buflen;
616
617 res = access_process_vm(task, arg_start, buffer, len, 0);
618
619 /*
620 * If the nul at the end of args has been overwritten, then
621 * assume application is using setproctitle(3).
622 */
623 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
624 len = strnlen(buffer, res);
625 if (len < res) {
626 res = len;
627 } else {
628 len = env_end - env_start;
629 if (len > buflen - res)
630 len = buflen - res;
631 res += access_process_vm(task, env_start,
632 buffer+res, len, 0);
633 res = strnlen(buffer, res);
634 }
635 }
636 out_mm:
637 mmput(mm);
638 out:
639 return res;
640 }