]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/util.c
Merge tag 'platform-drivers-x86-v4.9-2' of git://git.infradead.org/users/dvhart/linux...
[mirror_ubuntu-zesty-kernel.git] / mm / util.c
1 #include <linux/mm.h>
2 #include <linux/slab.h>
3 #include <linux/string.h>
4 #include <linux/compiler.h>
5 #include <linux/export.h>
6 #include <linux/err.h>
7 #include <linux/sched.h>
8 #include <linux/security.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
11 #include <linux/mman.h>
12 #include <linux/hugetlb.h>
13 #include <linux/vmalloc.h>
14
15 #include <asm/sections.h>
16 #include <asm/uaccess.h>
17
18 #include "internal.h"
19
20 static inline int is_kernel_rodata(unsigned long addr)
21 {
22 return addr >= (unsigned long)__start_rodata &&
23 addr < (unsigned long)__end_rodata;
24 }
25
26 /**
27 * kfree_const - conditionally free memory
28 * @x: pointer to the memory
29 *
30 * Function calls kfree only if @x is not in .rodata section.
31 */
32 void kfree_const(const void *x)
33 {
34 if (!is_kernel_rodata((unsigned long)x))
35 kfree(x);
36 }
37 EXPORT_SYMBOL(kfree_const);
38
39 /**
40 * kstrdup - allocate space for and copy an existing string
41 * @s: the string to duplicate
42 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
43 */
44 char *kstrdup(const char *s, gfp_t gfp)
45 {
46 size_t len;
47 char *buf;
48
49 if (!s)
50 return NULL;
51
52 len = strlen(s) + 1;
53 buf = kmalloc_track_caller(len, gfp);
54 if (buf)
55 memcpy(buf, s, len);
56 return buf;
57 }
58 EXPORT_SYMBOL(kstrdup);
59
60 /**
61 * kstrdup_const - conditionally duplicate an existing const string
62 * @s: the string to duplicate
63 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
64 *
65 * Function returns source string if it is in .rodata section otherwise it
66 * fallbacks to kstrdup.
67 * Strings allocated by kstrdup_const should be freed by kfree_const.
68 */
69 const char *kstrdup_const(const char *s, gfp_t gfp)
70 {
71 if (is_kernel_rodata((unsigned long)s))
72 return s;
73
74 return kstrdup(s, gfp);
75 }
76 EXPORT_SYMBOL(kstrdup_const);
77
78 /**
79 * kstrndup - allocate space for and copy an existing string
80 * @s: the string to duplicate
81 * @max: read at most @max chars from @s
82 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
83 */
84 char *kstrndup(const char *s, size_t max, gfp_t gfp)
85 {
86 size_t len;
87 char *buf;
88
89 if (!s)
90 return NULL;
91
92 len = strnlen(s, max);
93 buf = kmalloc_track_caller(len+1, gfp);
94 if (buf) {
95 memcpy(buf, s, len);
96 buf[len] = '\0';
97 }
98 return buf;
99 }
100 EXPORT_SYMBOL(kstrndup);
101
102 /**
103 * kmemdup - duplicate region of memory
104 *
105 * @src: memory region to duplicate
106 * @len: memory region length
107 * @gfp: GFP mask to use
108 */
109 void *kmemdup(const void *src, size_t len, gfp_t gfp)
110 {
111 void *p;
112
113 p = kmalloc_track_caller(len, gfp);
114 if (p)
115 memcpy(p, src, len);
116 return p;
117 }
118 EXPORT_SYMBOL(kmemdup);
119
120 /**
121 * memdup_user - duplicate memory region from user space
122 *
123 * @src: source address in user space
124 * @len: number of bytes to copy
125 *
126 * Returns an ERR_PTR() on failure.
127 */
128 void *memdup_user(const void __user *src, size_t len)
129 {
130 void *p;
131
132 /*
133 * Always use GFP_KERNEL, since copy_from_user() can sleep and
134 * cause pagefault, which makes it pointless to use GFP_NOFS
135 * or GFP_ATOMIC.
136 */
137 p = kmalloc_track_caller(len, GFP_KERNEL);
138 if (!p)
139 return ERR_PTR(-ENOMEM);
140
141 if (copy_from_user(p, src, len)) {
142 kfree(p);
143 return ERR_PTR(-EFAULT);
144 }
145
146 return p;
147 }
148 EXPORT_SYMBOL(memdup_user);
149
150 /*
151 * strndup_user - duplicate an existing string from user space
152 * @s: The string to duplicate
153 * @n: Maximum number of bytes to copy, including the trailing NUL.
154 */
155 char *strndup_user(const char __user *s, long n)
156 {
157 char *p;
158 long length;
159
160 length = strnlen_user(s, n);
161
162 if (!length)
163 return ERR_PTR(-EFAULT);
164
165 if (length > n)
166 return ERR_PTR(-EINVAL);
167
168 p = memdup_user(s, length);
169
170 if (IS_ERR(p))
171 return p;
172
173 p[length - 1] = '\0';
174
175 return p;
176 }
177 EXPORT_SYMBOL(strndup_user);
178
179 /**
180 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
181 *
182 * @src: source address in user space
183 * @len: number of bytes to copy
184 *
185 * Returns an ERR_PTR() on failure.
186 */
187 void *memdup_user_nul(const void __user *src, size_t len)
188 {
189 char *p;
190
191 /*
192 * Always use GFP_KERNEL, since copy_from_user() can sleep and
193 * cause pagefault, which makes it pointless to use GFP_NOFS
194 * or GFP_ATOMIC.
195 */
196 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
197 if (!p)
198 return ERR_PTR(-ENOMEM);
199
200 if (copy_from_user(p, src, len)) {
201 kfree(p);
202 return ERR_PTR(-EFAULT);
203 }
204 p[len] = '\0';
205
206 return p;
207 }
208 EXPORT_SYMBOL(memdup_user_nul);
209
210 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
211 struct vm_area_struct *prev, struct rb_node *rb_parent)
212 {
213 struct vm_area_struct *next;
214
215 vma->vm_prev = prev;
216 if (prev) {
217 next = prev->vm_next;
218 prev->vm_next = vma;
219 } else {
220 mm->mmap = vma;
221 if (rb_parent)
222 next = rb_entry(rb_parent,
223 struct vm_area_struct, vm_rb);
224 else
225 next = NULL;
226 }
227 vma->vm_next = next;
228 if (next)
229 next->vm_prev = vma;
230 }
231
232 /* Check if the vma is being used as a stack by this task */
233 int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t)
234 {
235 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
236 }
237
238 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
239 void arch_pick_mmap_layout(struct mm_struct *mm)
240 {
241 mm->mmap_base = TASK_UNMAPPED_BASE;
242 mm->get_unmapped_area = arch_get_unmapped_area;
243 }
244 #endif
245
246 /*
247 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
248 * back to the regular GUP.
249 * If the architecture not support this function, simply return with no
250 * page pinned
251 */
252 int __weak __get_user_pages_fast(unsigned long start,
253 int nr_pages, int write, struct page **pages)
254 {
255 return 0;
256 }
257 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
258
259 /**
260 * get_user_pages_fast() - pin user pages in memory
261 * @start: starting user address
262 * @nr_pages: number of pages from start to pin
263 * @write: whether pages will be written to
264 * @pages: array that receives pointers to the pages pinned.
265 * Should be at least nr_pages long.
266 *
267 * Returns number of pages pinned. This may be fewer than the number
268 * requested. If nr_pages is 0 or negative, returns 0. If no pages
269 * were pinned, returns -errno.
270 *
271 * get_user_pages_fast provides equivalent functionality to get_user_pages,
272 * operating on current and current->mm, with force=0 and vma=NULL. However
273 * unlike get_user_pages, it must be called without mmap_sem held.
274 *
275 * get_user_pages_fast may take mmap_sem and page table locks, so no
276 * assumptions can be made about lack of locking. get_user_pages_fast is to be
277 * implemented in a way that is advantageous (vs get_user_pages()) when the
278 * user memory area is already faulted in and present in ptes. However if the
279 * pages have to be faulted in, it may turn out to be slightly slower so
280 * callers need to carefully consider what to use. On many architectures,
281 * get_user_pages_fast simply falls back to get_user_pages.
282 */
283 int __weak get_user_pages_fast(unsigned long start,
284 int nr_pages, int write, struct page **pages)
285 {
286 return get_user_pages_unlocked(start, nr_pages, pages,
287 write ? FOLL_WRITE : 0);
288 }
289 EXPORT_SYMBOL_GPL(get_user_pages_fast);
290
291 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
292 unsigned long len, unsigned long prot,
293 unsigned long flag, unsigned long pgoff)
294 {
295 unsigned long ret;
296 struct mm_struct *mm = current->mm;
297 unsigned long populate;
298
299 ret = security_mmap_file(file, prot, flag);
300 if (!ret) {
301 if (down_write_killable(&mm->mmap_sem))
302 return -EINTR;
303 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
304 &populate);
305 up_write(&mm->mmap_sem);
306 if (populate)
307 mm_populate(ret, populate);
308 }
309 return ret;
310 }
311
312 unsigned long vm_mmap(struct file *file, unsigned long addr,
313 unsigned long len, unsigned long prot,
314 unsigned long flag, unsigned long offset)
315 {
316 if (unlikely(offset + PAGE_ALIGN(len) < offset))
317 return -EINVAL;
318 if (unlikely(offset_in_page(offset)))
319 return -EINVAL;
320
321 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
322 }
323 EXPORT_SYMBOL(vm_mmap);
324
325 void kvfree(const void *addr)
326 {
327 if (is_vmalloc_addr(addr))
328 vfree(addr);
329 else
330 kfree(addr);
331 }
332 EXPORT_SYMBOL(kvfree);
333
334 static inline void *__page_rmapping(struct page *page)
335 {
336 unsigned long mapping;
337
338 mapping = (unsigned long)page->mapping;
339 mapping &= ~PAGE_MAPPING_FLAGS;
340
341 return (void *)mapping;
342 }
343
344 /* Neutral page->mapping pointer to address_space or anon_vma or other */
345 void *page_rmapping(struct page *page)
346 {
347 page = compound_head(page);
348 return __page_rmapping(page);
349 }
350
351 /*
352 * Return true if this page is mapped into pagetables.
353 * For compound page it returns true if any subpage of compound page is mapped.
354 */
355 bool page_mapped(struct page *page)
356 {
357 int i;
358
359 if (likely(!PageCompound(page)))
360 return atomic_read(&page->_mapcount) >= 0;
361 page = compound_head(page);
362 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
363 return true;
364 if (PageHuge(page))
365 return false;
366 for (i = 0; i < hpage_nr_pages(page); i++) {
367 if (atomic_read(&page[i]._mapcount) >= 0)
368 return true;
369 }
370 return false;
371 }
372 EXPORT_SYMBOL(page_mapped);
373
374 struct anon_vma *page_anon_vma(struct page *page)
375 {
376 unsigned long mapping;
377
378 page = compound_head(page);
379 mapping = (unsigned long)page->mapping;
380 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
381 return NULL;
382 return __page_rmapping(page);
383 }
384
385 struct address_space *page_mapping(struct page *page)
386 {
387 struct address_space *mapping;
388
389 page = compound_head(page);
390
391 /* This happens if someone calls flush_dcache_page on slab page */
392 if (unlikely(PageSlab(page)))
393 return NULL;
394
395 if (unlikely(PageSwapCache(page))) {
396 swp_entry_t entry;
397
398 entry.val = page_private(page);
399 return swap_address_space(entry);
400 }
401
402 mapping = page->mapping;
403 if ((unsigned long)mapping & PAGE_MAPPING_ANON)
404 return NULL;
405
406 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
407 }
408 EXPORT_SYMBOL(page_mapping);
409
410 /* Slow path of page_mapcount() for compound pages */
411 int __page_mapcount(struct page *page)
412 {
413 int ret;
414
415 ret = atomic_read(&page->_mapcount) + 1;
416 /*
417 * For file THP page->_mapcount contains total number of mapping
418 * of the page: no need to look into compound_mapcount.
419 */
420 if (!PageAnon(page) && !PageHuge(page))
421 return ret;
422 page = compound_head(page);
423 ret += atomic_read(compound_mapcount_ptr(page)) + 1;
424 if (PageDoubleMap(page))
425 ret--;
426 return ret;
427 }
428 EXPORT_SYMBOL_GPL(__page_mapcount);
429
430 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
431 int sysctl_overcommit_ratio __read_mostly = 50;
432 unsigned long sysctl_overcommit_kbytes __read_mostly;
433 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
434 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
435 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
436
437 int overcommit_ratio_handler(struct ctl_table *table, int write,
438 void __user *buffer, size_t *lenp,
439 loff_t *ppos)
440 {
441 int ret;
442
443 ret = proc_dointvec(table, write, buffer, lenp, ppos);
444 if (ret == 0 && write)
445 sysctl_overcommit_kbytes = 0;
446 return ret;
447 }
448
449 int overcommit_kbytes_handler(struct ctl_table *table, int write,
450 void __user *buffer, size_t *lenp,
451 loff_t *ppos)
452 {
453 int ret;
454
455 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
456 if (ret == 0 && write)
457 sysctl_overcommit_ratio = 0;
458 return ret;
459 }
460
461 /*
462 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
463 */
464 unsigned long vm_commit_limit(void)
465 {
466 unsigned long allowed;
467
468 if (sysctl_overcommit_kbytes)
469 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
470 else
471 allowed = ((totalram_pages - hugetlb_total_pages())
472 * sysctl_overcommit_ratio / 100);
473 allowed += total_swap_pages;
474
475 return allowed;
476 }
477
478 /*
479 * Make sure vm_committed_as in one cacheline and not cacheline shared with
480 * other variables. It can be updated by several CPUs frequently.
481 */
482 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
483
484 /*
485 * The global memory commitment made in the system can be a metric
486 * that can be used to drive ballooning decisions when Linux is hosted
487 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
488 * balancing memory across competing virtual machines that are hosted.
489 * Several metrics drive this policy engine including the guest reported
490 * memory commitment.
491 */
492 unsigned long vm_memory_committed(void)
493 {
494 return percpu_counter_read_positive(&vm_committed_as);
495 }
496 EXPORT_SYMBOL_GPL(vm_memory_committed);
497
498 /*
499 * Check that a process has enough memory to allocate a new virtual
500 * mapping. 0 means there is enough memory for the allocation to
501 * succeed and -ENOMEM implies there is not.
502 *
503 * We currently support three overcommit policies, which are set via the
504 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
505 *
506 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
507 * Additional code 2002 Jul 20 by Robert Love.
508 *
509 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
510 *
511 * Note this is a helper function intended to be used by LSMs which
512 * wish to use this logic.
513 */
514 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
515 {
516 long free, allowed, reserve;
517
518 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
519 -(s64)vm_committed_as_batch * num_online_cpus(),
520 "memory commitment underflow");
521
522 vm_acct_memory(pages);
523
524 /*
525 * Sometimes we want to use more memory than we have
526 */
527 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
528 return 0;
529
530 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
531 free = global_page_state(NR_FREE_PAGES);
532 free += global_node_page_state(NR_FILE_PAGES);
533
534 /*
535 * shmem pages shouldn't be counted as free in this
536 * case, they can't be purged, only swapped out, and
537 * that won't affect the overall amount of available
538 * memory in the system.
539 */
540 free -= global_node_page_state(NR_SHMEM);
541
542 free += get_nr_swap_pages();
543
544 /*
545 * Any slabs which are created with the
546 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
547 * which are reclaimable, under pressure. The dentry
548 * cache and most inode caches should fall into this
549 */
550 free += global_page_state(NR_SLAB_RECLAIMABLE);
551
552 /*
553 * Leave reserved pages. The pages are not for anonymous pages.
554 */
555 if (free <= totalreserve_pages)
556 goto error;
557 else
558 free -= totalreserve_pages;
559
560 /*
561 * Reserve some for root
562 */
563 if (!cap_sys_admin)
564 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
565
566 if (free > pages)
567 return 0;
568
569 goto error;
570 }
571
572 allowed = vm_commit_limit();
573 /*
574 * Reserve some for root
575 */
576 if (!cap_sys_admin)
577 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
578
579 /*
580 * Don't let a single process grow so big a user can't recover
581 */
582 if (mm) {
583 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
584 allowed -= min_t(long, mm->total_vm / 32, reserve);
585 }
586
587 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
588 return 0;
589 error:
590 vm_unacct_memory(pages);
591
592 return -ENOMEM;
593 }
594
595 /**
596 * get_cmdline() - copy the cmdline value to a buffer.
597 * @task: the task whose cmdline value to copy.
598 * @buffer: the buffer to copy to.
599 * @buflen: the length of the buffer. Larger cmdline values are truncated
600 * to this length.
601 * Returns the size of the cmdline field copied. Note that the copy does
602 * not guarantee an ending NULL byte.
603 */
604 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
605 {
606 int res = 0;
607 unsigned int len;
608 struct mm_struct *mm = get_task_mm(task);
609 unsigned long arg_start, arg_end, env_start, env_end;
610 if (!mm)
611 goto out;
612 if (!mm->arg_end)
613 goto out_mm; /* Shh! No looking before we're done */
614
615 down_read(&mm->mmap_sem);
616 arg_start = mm->arg_start;
617 arg_end = mm->arg_end;
618 env_start = mm->env_start;
619 env_end = mm->env_end;
620 up_read(&mm->mmap_sem);
621
622 len = arg_end - arg_start;
623
624 if (len > buflen)
625 len = buflen;
626
627 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
628
629 /*
630 * If the nul at the end of args has been overwritten, then
631 * assume application is using setproctitle(3).
632 */
633 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
634 len = strnlen(buffer, res);
635 if (len < res) {
636 res = len;
637 } else {
638 len = env_end - env_start;
639 if (len > buflen - res)
640 len = buflen - res;
641 res += access_process_vm(task, env_start,
642 buffer+res, len,
643 FOLL_FORCE);
644 res = strnlen(buffer, res);
645 }
646 }
647 out_mm:
648 mmput(mm);
649 out:
650 return res;
651 }