]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/vmalloc.c
mm: memcg/slab: synchronize access to kmem_cache dying flag using a spinlock
[mirror_ubuntu-hirsute-kernel.git] / mm / vmalloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/vmalloc.c
4 *
5 * Copyright (C) 1993 Linus Torvalds
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
9 * Numa awareness, Christoph Lameter, SGI, June 2005
10 */
11
12 #include <linux/vmalloc.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/sched/signal.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/interrupt.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/set_memory.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/list.h>
26 #include <linux/notifier.h>
27 #include <linux/rbtree.h>
28 #include <linux/radix-tree.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/llist.h>
35 #include <linux/bitops.h>
36 #include <linux/rbtree_augmented.h>
37
38 #include <linux/uaccess.h>
39 #include <asm/tlbflush.h>
40 #include <asm/shmparam.h>
41
42 #include "internal.h"
43
44 struct vfree_deferred {
45 struct llist_head list;
46 struct work_struct wq;
47 };
48 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
49
50 static void __vunmap(const void *, int);
51
52 static void free_work(struct work_struct *w)
53 {
54 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
55 struct llist_node *t, *llnode;
56
57 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
58 __vunmap((void *)llnode, 1);
59 }
60
61 /*** Page table manipulation functions ***/
62
63 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
64 {
65 pte_t *pte;
66
67 pte = pte_offset_kernel(pmd, addr);
68 do {
69 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
70 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
71 } while (pte++, addr += PAGE_SIZE, addr != end);
72 }
73
74 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
75 {
76 pmd_t *pmd;
77 unsigned long next;
78
79 pmd = pmd_offset(pud, addr);
80 do {
81 next = pmd_addr_end(addr, end);
82 if (pmd_clear_huge(pmd))
83 continue;
84 if (pmd_none_or_clear_bad(pmd))
85 continue;
86 vunmap_pte_range(pmd, addr, next);
87 } while (pmd++, addr = next, addr != end);
88 }
89
90 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
91 {
92 pud_t *pud;
93 unsigned long next;
94
95 pud = pud_offset(p4d, addr);
96 do {
97 next = pud_addr_end(addr, end);
98 if (pud_clear_huge(pud))
99 continue;
100 if (pud_none_or_clear_bad(pud))
101 continue;
102 vunmap_pmd_range(pud, addr, next);
103 } while (pud++, addr = next, addr != end);
104 }
105
106 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
107 {
108 p4d_t *p4d;
109 unsigned long next;
110
111 p4d = p4d_offset(pgd, addr);
112 do {
113 next = p4d_addr_end(addr, end);
114 if (p4d_clear_huge(p4d))
115 continue;
116 if (p4d_none_or_clear_bad(p4d))
117 continue;
118 vunmap_pud_range(p4d, addr, next);
119 } while (p4d++, addr = next, addr != end);
120 }
121
122 static void vunmap_page_range(unsigned long addr, unsigned long end)
123 {
124 pgd_t *pgd;
125 unsigned long next;
126
127 BUG_ON(addr >= end);
128 pgd = pgd_offset_k(addr);
129 do {
130 next = pgd_addr_end(addr, end);
131 if (pgd_none_or_clear_bad(pgd))
132 continue;
133 vunmap_p4d_range(pgd, addr, next);
134 } while (pgd++, addr = next, addr != end);
135 }
136
137 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
138 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
139 {
140 pte_t *pte;
141
142 /*
143 * nr is a running index into the array which helps higher level
144 * callers keep track of where we're up to.
145 */
146
147 pte = pte_alloc_kernel(pmd, addr);
148 if (!pte)
149 return -ENOMEM;
150 do {
151 struct page *page = pages[*nr];
152
153 if (WARN_ON(!pte_none(*pte)))
154 return -EBUSY;
155 if (WARN_ON(!page))
156 return -ENOMEM;
157 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
158 (*nr)++;
159 } while (pte++, addr += PAGE_SIZE, addr != end);
160 return 0;
161 }
162
163 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
164 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
165 {
166 pmd_t *pmd;
167 unsigned long next;
168
169 pmd = pmd_alloc(&init_mm, pud, addr);
170 if (!pmd)
171 return -ENOMEM;
172 do {
173 next = pmd_addr_end(addr, end);
174 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
175 return -ENOMEM;
176 } while (pmd++, addr = next, addr != end);
177 return 0;
178 }
179
180 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
181 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
182 {
183 pud_t *pud;
184 unsigned long next;
185
186 pud = pud_alloc(&init_mm, p4d, addr);
187 if (!pud)
188 return -ENOMEM;
189 do {
190 next = pud_addr_end(addr, end);
191 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
192 return -ENOMEM;
193 } while (pud++, addr = next, addr != end);
194 return 0;
195 }
196
197 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
198 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
199 {
200 p4d_t *p4d;
201 unsigned long next;
202
203 p4d = p4d_alloc(&init_mm, pgd, addr);
204 if (!p4d)
205 return -ENOMEM;
206 do {
207 next = p4d_addr_end(addr, end);
208 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
209 return -ENOMEM;
210 } while (p4d++, addr = next, addr != end);
211 return 0;
212 }
213
214 /*
215 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
216 * will have pfns corresponding to the "pages" array.
217 *
218 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
219 */
220 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
221 pgprot_t prot, struct page **pages)
222 {
223 pgd_t *pgd;
224 unsigned long next;
225 unsigned long addr = start;
226 int err = 0;
227 int nr = 0;
228
229 BUG_ON(addr >= end);
230 pgd = pgd_offset_k(addr);
231 do {
232 next = pgd_addr_end(addr, end);
233 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
234 if (err)
235 return err;
236 } while (pgd++, addr = next, addr != end);
237
238 return nr;
239 }
240
241 static int vmap_page_range(unsigned long start, unsigned long end,
242 pgprot_t prot, struct page **pages)
243 {
244 int ret;
245
246 ret = vmap_page_range_noflush(start, end, prot, pages);
247 flush_cache_vmap(start, end);
248 return ret;
249 }
250
251 int is_vmalloc_or_module_addr(const void *x)
252 {
253 /*
254 * ARM, x86-64 and sparc64 put modules in a special place,
255 * and fall back on vmalloc() if that fails. Others
256 * just put it in the vmalloc space.
257 */
258 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
259 unsigned long addr = (unsigned long)x;
260 if (addr >= MODULES_VADDR && addr < MODULES_END)
261 return 1;
262 #endif
263 return is_vmalloc_addr(x);
264 }
265
266 /*
267 * Walk a vmap address to the struct page it maps.
268 */
269 struct page *vmalloc_to_page(const void *vmalloc_addr)
270 {
271 unsigned long addr = (unsigned long) vmalloc_addr;
272 struct page *page = NULL;
273 pgd_t *pgd = pgd_offset_k(addr);
274 p4d_t *p4d;
275 pud_t *pud;
276 pmd_t *pmd;
277 pte_t *ptep, pte;
278
279 /*
280 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
281 * architectures that do not vmalloc module space
282 */
283 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
284
285 if (pgd_none(*pgd))
286 return NULL;
287 p4d = p4d_offset(pgd, addr);
288 if (p4d_none(*p4d))
289 return NULL;
290 pud = pud_offset(p4d, addr);
291
292 /*
293 * Don't dereference bad PUD or PMD (below) entries. This will also
294 * identify huge mappings, which we may encounter on architectures
295 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
296 * identified as vmalloc addresses by is_vmalloc_addr(), but are
297 * not [unambiguously] associated with a struct page, so there is
298 * no correct value to return for them.
299 */
300 WARN_ON_ONCE(pud_bad(*pud));
301 if (pud_none(*pud) || pud_bad(*pud))
302 return NULL;
303 pmd = pmd_offset(pud, addr);
304 WARN_ON_ONCE(pmd_bad(*pmd));
305 if (pmd_none(*pmd) || pmd_bad(*pmd))
306 return NULL;
307
308 ptep = pte_offset_map(pmd, addr);
309 pte = *ptep;
310 if (pte_present(pte))
311 page = pte_page(pte);
312 pte_unmap(ptep);
313 return page;
314 }
315 EXPORT_SYMBOL(vmalloc_to_page);
316
317 /*
318 * Map a vmalloc()-space virtual address to the physical page frame number.
319 */
320 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
321 {
322 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
323 }
324 EXPORT_SYMBOL(vmalloc_to_pfn);
325
326
327 /*** Global kva allocator ***/
328
329 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
330 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
331
332 #define VM_LAZY_FREE 0x02
333 #define VM_VM_AREA 0x04
334
335 static DEFINE_SPINLOCK(vmap_area_lock);
336 /* Export for kexec only */
337 LIST_HEAD(vmap_area_list);
338 static LLIST_HEAD(vmap_purge_list);
339 static struct rb_root vmap_area_root = RB_ROOT;
340 static bool vmap_initialized __read_mostly;
341
342 /*
343 * This kmem_cache is used for vmap_area objects. Instead of
344 * allocating from slab we reuse an object from this cache to
345 * make things faster. Especially in "no edge" splitting of
346 * free block.
347 */
348 static struct kmem_cache *vmap_area_cachep;
349
350 /*
351 * This linked list is used in pair with free_vmap_area_root.
352 * It gives O(1) access to prev/next to perform fast coalescing.
353 */
354 static LIST_HEAD(free_vmap_area_list);
355
356 /*
357 * This augment red-black tree represents the free vmap space.
358 * All vmap_area objects in this tree are sorted by va->va_start
359 * address. It is used for allocation and merging when a vmap
360 * object is released.
361 *
362 * Each vmap_area node contains a maximum available free block
363 * of its sub-tree, right or left. Therefore it is possible to
364 * find a lowest match of free area.
365 */
366 static struct rb_root free_vmap_area_root = RB_ROOT;
367
368 static __always_inline unsigned long
369 va_size(struct vmap_area *va)
370 {
371 return (va->va_end - va->va_start);
372 }
373
374 static __always_inline unsigned long
375 get_subtree_max_size(struct rb_node *node)
376 {
377 struct vmap_area *va;
378
379 va = rb_entry_safe(node, struct vmap_area, rb_node);
380 return va ? va->subtree_max_size : 0;
381 }
382
383 /*
384 * Gets called when remove the node and rotate.
385 */
386 static __always_inline unsigned long
387 compute_subtree_max_size(struct vmap_area *va)
388 {
389 return max3(va_size(va),
390 get_subtree_max_size(va->rb_node.rb_left),
391 get_subtree_max_size(va->rb_node.rb_right));
392 }
393
394 RB_DECLARE_CALLBACKS(static, free_vmap_area_rb_augment_cb,
395 struct vmap_area, rb_node, unsigned long, subtree_max_size,
396 compute_subtree_max_size)
397
398 static void purge_vmap_area_lazy(void);
399 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
400 static unsigned long lazy_max_pages(void);
401
402 static struct vmap_area *__find_vmap_area(unsigned long addr)
403 {
404 struct rb_node *n = vmap_area_root.rb_node;
405
406 while (n) {
407 struct vmap_area *va;
408
409 va = rb_entry(n, struct vmap_area, rb_node);
410 if (addr < va->va_start)
411 n = n->rb_left;
412 else if (addr >= va->va_end)
413 n = n->rb_right;
414 else
415 return va;
416 }
417
418 return NULL;
419 }
420
421 /*
422 * This function returns back addresses of parent node
423 * and its left or right link for further processing.
424 */
425 static __always_inline struct rb_node **
426 find_va_links(struct vmap_area *va,
427 struct rb_root *root, struct rb_node *from,
428 struct rb_node **parent)
429 {
430 struct vmap_area *tmp_va;
431 struct rb_node **link;
432
433 if (root) {
434 link = &root->rb_node;
435 if (unlikely(!*link)) {
436 *parent = NULL;
437 return link;
438 }
439 } else {
440 link = &from;
441 }
442
443 /*
444 * Go to the bottom of the tree. When we hit the last point
445 * we end up with parent rb_node and correct direction, i name
446 * it link, where the new va->rb_node will be attached to.
447 */
448 do {
449 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
450
451 /*
452 * During the traversal we also do some sanity check.
453 * Trigger the BUG() if there are sides(left/right)
454 * or full overlaps.
455 */
456 if (va->va_start < tmp_va->va_end &&
457 va->va_end <= tmp_va->va_start)
458 link = &(*link)->rb_left;
459 else if (va->va_end > tmp_va->va_start &&
460 va->va_start >= tmp_va->va_end)
461 link = &(*link)->rb_right;
462 else
463 BUG();
464 } while (*link);
465
466 *parent = &tmp_va->rb_node;
467 return link;
468 }
469
470 static __always_inline struct list_head *
471 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
472 {
473 struct list_head *list;
474
475 if (unlikely(!parent))
476 /*
477 * The red-black tree where we try to find VA neighbors
478 * before merging or inserting is empty, i.e. it means
479 * there is no free vmap space. Normally it does not
480 * happen but we handle this case anyway.
481 */
482 return NULL;
483
484 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
485 return (&parent->rb_right == link ? list->next : list);
486 }
487
488 static __always_inline void
489 link_va(struct vmap_area *va, struct rb_root *root,
490 struct rb_node *parent, struct rb_node **link, struct list_head *head)
491 {
492 /*
493 * VA is still not in the list, but we can
494 * identify its future previous list_head node.
495 */
496 if (likely(parent)) {
497 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
498 if (&parent->rb_right != link)
499 head = head->prev;
500 }
501
502 /* Insert to the rb-tree */
503 rb_link_node(&va->rb_node, parent, link);
504 if (root == &free_vmap_area_root) {
505 /*
506 * Some explanation here. Just perform simple insertion
507 * to the tree. We do not set va->subtree_max_size to
508 * its current size before calling rb_insert_augmented().
509 * It is because of we populate the tree from the bottom
510 * to parent levels when the node _is_ in the tree.
511 *
512 * Therefore we set subtree_max_size to zero after insertion,
513 * to let __augment_tree_propagate_from() puts everything to
514 * the correct order later on.
515 */
516 rb_insert_augmented(&va->rb_node,
517 root, &free_vmap_area_rb_augment_cb);
518 va->subtree_max_size = 0;
519 } else {
520 rb_insert_color(&va->rb_node, root);
521 }
522
523 /* Address-sort this list */
524 list_add(&va->list, head);
525 }
526
527 static __always_inline void
528 unlink_va(struct vmap_area *va, struct rb_root *root)
529 {
530 /*
531 * During merging a VA node can be empty, therefore
532 * not linked with the tree nor list. Just check it.
533 */
534 if (!RB_EMPTY_NODE(&va->rb_node)) {
535 if (root == &free_vmap_area_root)
536 rb_erase_augmented(&va->rb_node,
537 root, &free_vmap_area_rb_augment_cb);
538 else
539 rb_erase(&va->rb_node, root);
540
541 list_del(&va->list);
542 RB_CLEAR_NODE(&va->rb_node);
543 }
544 }
545
546 #if DEBUG_AUGMENT_PROPAGATE_CHECK
547 static void
548 augment_tree_propagate_check(struct rb_node *n)
549 {
550 struct vmap_area *va;
551 struct rb_node *node;
552 unsigned long size;
553 bool found = false;
554
555 if (n == NULL)
556 return;
557
558 va = rb_entry(n, struct vmap_area, rb_node);
559 size = va->subtree_max_size;
560 node = n;
561
562 while (node) {
563 va = rb_entry(node, struct vmap_area, rb_node);
564
565 if (get_subtree_max_size(node->rb_left) == size) {
566 node = node->rb_left;
567 } else {
568 if (va_size(va) == size) {
569 found = true;
570 break;
571 }
572
573 node = node->rb_right;
574 }
575 }
576
577 if (!found) {
578 va = rb_entry(n, struct vmap_area, rb_node);
579 pr_emerg("tree is corrupted: %lu, %lu\n",
580 va_size(va), va->subtree_max_size);
581 }
582
583 augment_tree_propagate_check(n->rb_left);
584 augment_tree_propagate_check(n->rb_right);
585 }
586 #endif
587
588 /*
589 * This function populates subtree_max_size from bottom to upper
590 * levels starting from VA point. The propagation must be done
591 * when VA size is modified by changing its va_start/va_end. Or
592 * in case of newly inserting of VA to the tree.
593 *
594 * It means that __augment_tree_propagate_from() must be called:
595 * - After VA has been inserted to the tree(free path);
596 * - After VA has been shrunk(allocation path);
597 * - After VA has been increased(merging path).
598 *
599 * Please note that, it does not mean that upper parent nodes
600 * and their subtree_max_size are recalculated all the time up
601 * to the root node.
602 *
603 * 4--8
604 * /\
605 * / \
606 * / \
607 * 2--2 8--8
608 *
609 * For example if we modify the node 4, shrinking it to 2, then
610 * no any modification is required. If we shrink the node 2 to 1
611 * its subtree_max_size is updated only, and set to 1. If we shrink
612 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
613 * node becomes 4--6.
614 */
615 static __always_inline void
616 augment_tree_propagate_from(struct vmap_area *va)
617 {
618 struct rb_node *node = &va->rb_node;
619 unsigned long new_va_sub_max_size;
620
621 while (node) {
622 va = rb_entry(node, struct vmap_area, rb_node);
623 new_va_sub_max_size = compute_subtree_max_size(va);
624
625 /*
626 * If the newly calculated maximum available size of the
627 * subtree is equal to the current one, then it means that
628 * the tree is propagated correctly. So we have to stop at
629 * this point to save cycles.
630 */
631 if (va->subtree_max_size == new_va_sub_max_size)
632 break;
633
634 va->subtree_max_size = new_va_sub_max_size;
635 node = rb_parent(&va->rb_node);
636 }
637
638 #if DEBUG_AUGMENT_PROPAGATE_CHECK
639 augment_tree_propagate_check(free_vmap_area_root.rb_node);
640 #endif
641 }
642
643 static void
644 insert_vmap_area(struct vmap_area *va,
645 struct rb_root *root, struct list_head *head)
646 {
647 struct rb_node **link;
648 struct rb_node *parent;
649
650 link = find_va_links(va, root, NULL, &parent);
651 link_va(va, root, parent, link, head);
652 }
653
654 static void
655 insert_vmap_area_augment(struct vmap_area *va,
656 struct rb_node *from, struct rb_root *root,
657 struct list_head *head)
658 {
659 struct rb_node **link;
660 struct rb_node *parent;
661
662 if (from)
663 link = find_va_links(va, NULL, from, &parent);
664 else
665 link = find_va_links(va, root, NULL, &parent);
666
667 link_va(va, root, parent, link, head);
668 augment_tree_propagate_from(va);
669 }
670
671 /*
672 * Merge de-allocated chunk of VA memory with previous
673 * and next free blocks. If coalesce is not done a new
674 * free area is inserted. If VA has been merged, it is
675 * freed.
676 */
677 static __always_inline void
678 merge_or_add_vmap_area(struct vmap_area *va,
679 struct rb_root *root, struct list_head *head)
680 {
681 struct vmap_area *sibling;
682 struct list_head *next;
683 struct rb_node **link;
684 struct rb_node *parent;
685 bool merged = false;
686
687 /*
688 * Find a place in the tree where VA potentially will be
689 * inserted, unless it is merged with its sibling/siblings.
690 */
691 link = find_va_links(va, root, NULL, &parent);
692
693 /*
694 * Get next node of VA to check if merging can be done.
695 */
696 next = get_va_next_sibling(parent, link);
697 if (unlikely(next == NULL))
698 goto insert;
699
700 /*
701 * start end
702 * | |
703 * |<------VA------>|<-----Next----->|
704 * | |
705 * start end
706 */
707 if (next != head) {
708 sibling = list_entry(next, struct vmap_area, list);
709 if (sibling->va_start == va->va_end) {
710 sibling->va_start = va->va_start;
711
712 /* Check and update the tree if needed. */
713 augment_tree_propagate_from(sibling);
714
715 /* Remove this VA, it has been merged. */
716 unlink_va(va, root);
717
718 /* Free vmap_area object. */
719 kmem_cache_free(vmap_area_cachep, va);
720
721 /* Point to the new merged area. */
722 va = sibling;
723 merged = true;
724 }
725 }
726
727 /*
728 * start end
729 * | |
730 * |<-----Prev----->|<------VA------>|
731 * | |
732 * start end
733 */
734 if (next->prev != head) {
735 sibling = list_entry(next->prev, struct vmap_area, list);
736 if (sibling->va_end == va->va_start) {
737 sibling->va_end = va->va_end;
738
739 /* Check and update the tree if needed. */
740 augment_tree_propagate_from(sibling);
741
742 /* Remove this VA, it has been merged. */
743 unlink_va(va, root);
744
745 /* Free vmap_area object. */
746 kmem_cache_free(vmap_area_cachep, va);
747
748 return;
749 }
750 }
751
752 insert:
753 if (!merged) {
754 link_va(va, root, parent, link, head);
755 augment_tree_propagate_from(va);
756 }
757 }
758
759 static __always_inline bool
760 is_within_this_va(struct vmap_area *va, unsigned long size,
761 unsigned long align, unsigned long vstart)
762 {
763 unsigned long nva_start_addr;
764
765 if (va->va_start > vstart)
766 nva_start_addr = ALIGN(va->va_start, align);
767 else
768 nva_start_addr = ALIGN(vstart, align);
769
770 /* Can be overflowed due to big size or alignment. */
771 if (nva_start_addr + size < nva_start_addr ||
772 nva_start_addr < vstart)
773 return false;
774
775 return (nva_start_addr + size <= va->va_end);
776 }
777
778 /*
779 * Find the first free block(lowest start address) in the tree,
780 * that will accomplish the request corresponding to passing
781 * parameters.
782 */
783 static __always_inline struct vmap_area *
784 find_vmap_lowest_match(unsigned long size,
785 unsigned long align, unsigned long vstart)
786 {
787 struct vmap_area *va;
788 struct rb_node *node;
789 unsigned long length;
790
791 /* Start from the root. */
792 node = free_vmap_area_root.rb_node;
793
794 /* Adjust the search size for alignment overhead. */
795 length = size + align - 1;
796
797 while (node) {
798 va = rb_entry(node, struct vmap_area, rb_node);
799
800 if (get_subtree_max_size(node->rb_left) >= length &&
801 vstart < va->va_start) {
802 node = node->rb_left;
803 } else {
804 if (is_within_this_va(va, size, align, vstart))
805 return va;
806
807 /*
808 * Does not make sense to go deeper towards the right
809 * sub-tree if it does not have a free block that is
810 * equal or bigger to the requested search length.
811 */
812 if (get_subtree_max_size(node->rb_right) >= length) {
813 node = node->rb_right;
814 continue;
815 }
816
817 /*
818 * OK. We roll back and find the first right sub-tree,
819 * that will satisfy the search criteria. It can happen
820 * only once due to "vstart" restriction.
821 */
822 while ((node = rb_parent(node))) {
823 va = rb_entry(node, struct vmap_area, rb_node);
824 if (is_within_this_va(va, size, align, vstart))
825 return va;
826
827 if (get_subtree_max_size(node->rb_right) >= length &&
828 vstart <= va->va_start) {
829 node = node->rb_right;
830 break;
831 }
832 }
833 }
834 }
835
836 return NULL;
837 }
838
839 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
840 #include <linux/random.h>
841
842 static struct vmap_area *
843 find_vmap_lowest_linear_match(unsigned long size,
844 unsigned long align, unsigned long vstart)
845 {
846 struct vmap_area *va;
847
848 list_for_each_entry(va, &free_vmap_area_list, list) {
849 if (!is_within_this_va(va, size, align, vstart))
850 continue;
851
852 return va;
853 }
854
855 return NULL;
856 }
857
858 static void
859 find_vmap_lowest_match_check(unsigned long size)
860 {
861 struct vmap_area *va_1, *va_2;
862 unsigned long vstart;
863 unsigned int rnd;
864
865 get_random_bytes(&rnd, sizeof(rnd));
866 vstart = VMALLOC_START + rnd;
867
868 va_1 = find_vmap_lowest_match(size, 1, vstart);
869 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
870
871 if (va_1 != va_2)
872 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
873 va_1, va_2, vstart);
874 }
875 #endif
876
877 enum fit_type {
878 NOTHING_FIT = 0,
879 FL_FIT_TYPE = 1, /* full fit */
880 LE_FIT_TYPE = 2, /* left edge fit */
881 RE_FIT_TYPE = 3, /* right edge fit */
882 NE_FIT_TYPE = 4 /* no edge fit */
883 };
884
885 static __always_inline enum fit_type
886 classify_va_fit_type(struct vmap_area *va,
887 unsigned long nva_start_addr, unsigned long size)
888 {
889 enum fit_type type;
890
891 /* Check if it is within VA. */
892 if (nva_start_addr < va->va_start ||
893 nva_start_addr + size > va->va_end)
894 return NOTHING_FIT;
895
896 /* Now classify. */
897 if (va->va_start == nva_start_addr) {
898 if (va->va_end == nva_start_addr + size)
899 type = FL_FIT_TYPE;
900 else
901 type = LE_FIT_TYPE;
902 } else if (va->va_end == nva_start_addr + size) {
903 type = RE_FIT_TYPE;
904 } else {
905 type = NE_FIT_TYPE;
906 }
907
908 return type;
909 }
910
911 static __always_inline int
912 adjust_va_to_fit_type(struct vmap_area *va,
913 unsigned long nva_start_addr, unsigned long size,
914 enum fit_type type)
915 {
916 struct vmap_area *lva = NULL;
917
918 if (type == FL_FIT_TYPE) {
919 /*
920 * No need to split VA, it fully fits.
921 *
922 * | |
923 * V NVA V
924 * |---------------|
925 */
926 unlink_va(va, &free_vmap_area_root);
927 kmem_cache_free(vmap_area_cachep, va);
928 } else if (type == LE_FIT_TYPE) {
929 /*
930 * Split left edge of fit VA.
931 *
932 * | |
933 * V NVA V R
934 * |-------|-------|
935 */
936 va->va_start += size;
937 } else if (type == RE_FIT_TYPE) {
938 /*
939 * Split right edge of fit VA.
940 *
941 * | |
942 * L V NVA V
943 * |-------|-------|
944 */
945 va->va_end = nva_start_addr;
946 } else if (type == NE_FIT_TYPE) {
947 /*
948 * Split no edge of fit VA.
949 *
950 * | |
951 * L V NVA V R
952 * |---|-------|---|
953 */
954 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
955 if (unlikely(!lva))
956 return -1;
957
958 /*
959 * Build the remainder.
960 */
961 lva->va_start = va->va_start;
962 lva->va_end = nva_start_addr;
963
964 /*
965 * Shrink this VA to remaining size.
966 */
967 va->va_start = nva_start_addr + size;
968 } else {
969 return -1;
970 }
971
972 if (type != FL_FIT_TYPE) {
973 augment_tree_propagate_from(va);
974
975 if (lva) /* type == NE_FIT_TYPE */
976 insert_vmap_area_augment(lva, &va->rb_node,
977 &free_vmap_area_root, &free_vmap_area_list);
978 }
979
980 return 0;
981 }
982
983 /*
984 * Returns a start address of the newly allocated area, if success.
985 * Otherwise a vend is returned that indicates failure.
986 */
987 static __always_inline unsigned long
988 __alloc_vmap_area(unsigned long size, unsigned long align,
989 unsigned long vstart, unsigned long vend, int node)
990 {
991 unsigned long nva_start_addr;
992 struct vmap_area *va;
993 enum fit_type type;
994 int ret;
995
996 va = find_vmap_lowest_match(size, align, vstart);
997 if (unlikely(!va))
998 return vend;
999
1000 if (va->va_start > vstart)
1001 nva_start_addr = ALIGN(va->va_start, align);
1002 else
1003 nva_start_addr = ALIGN(vstart, align);
1004
1005 /* Check the "vend" restriction. */
1006 if (nva_start_addr + size > vend)
1007 return vend;
1008
1009 /* Classify what we have found. */
1010 type = classify_va_fit_type(va, nva_start_addr, size);
1011 if (WARN_ON_ONCE(type == NOTHING_FIT))
1012 return vend;
1013
1014 /* Update the free vmap_area. */
1015 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1016 if (ret)
1017 return vend;
1018
1019 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1020 find_vmap_lowest_match_check(size);
1021 #endif
1022
1023 return nva_start_addr;
1024 }
1025
1026 /*
1027 * Allocate a region of KVA of the specified size and alignment, within the
1028 * vstart and vend.
1029 */
1030 static struct vmap_area *alloc_vmap_area(unsigned long size,
1031 unsigned long align,
1032 unsigned long vstart, unsigned long vend,
1033 int node, gfp_t gfp_mask)
1034 {
1035 struct vmap_area *va;
1036 unsigned long addr;
1037 int purged = 0;
1038
1039 BUG_ON(!size);
1040 BUG_ON(offset_in_page(size));
1041 BUG_ON(!is_power_of_2(align));
1042
1043 if (unlikely(!vmap_initialized))
1044 return ERR_PTR(-EBUSY);
1045
1046 might_sleep();
1047
1048 va = kmem_cache_alloc_node(vmap_area_cachep,
1049 gfp_mask & GFP_RECLAIM_MASK, node);
1050 if (unlikely(!va))
1051 return ERR_PTR(-ENOMEM);
1052
1053 /*
1054 * Only scan the relevant parts containing pointers to other objects
1055 * to avoid false negatives.
1056 */
1057 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
1058
1059 retry:
1060 spin_lock(&vmap_area_lock);
1061
1062 /*
1063 * If an allocation fails, the "vend" address is
1064 * returned. Therefore trigger the overflow path.
1065 */
1066 addr = __alloc_vmap_area(size, align, vstart, vend, node);
1067 if (unlikely(addr == vend))
1068 goto overflow;
1069
1070 va->va_start = addr;
1071 va->va_end = addr + size;
1072 va->flags = 0;
1073 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1074
1075 spin_unlock(&vmap_area_lock);
1076
1077 BUG_ON(!IS_ALIGNED(va->va_start, align));
1078 BUG_ON(va->va_start < vstart);
1079 BUG_ON(va->va_end > vend);
1080
1081 return va;
1082
1083 overflow:
1084 spin_unlock(&vmap_area_lock);
1085 if (!purged) {
1086 purge_vmap_area_lazy();
1087 purged = 1;
1088 goto retry;
1089 }
1090
1091 if (gfpflags_allow_blocking(gfp_mask)) {
1092 unsigned long freed = 0;
1093 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1094 if (freed > 0) {
1095 purged = 0;
1096 goto retry;
1097 }
1098 }
1099
1100 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1101 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1102 size);
1103
1104 kmem_cache_free(vmap_area_cachep, va);
1105 return ERR_PTR(-EBUSY);
1106 }
1107
1108 int register_vmap_purge_notifier(struct notifier_block *nb)
1109 {
1110 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1111 }
1112 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1113
1114 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1115 {
1116 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1117 }
1118 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1119
1120 static void __free_vmap_area(struct vmap_area *va)
1121 {
1122 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
1123
1124 /*
1125 * Remove from the busy tree/list.
1126 */
1127 unlink_va(va, &vmap_area_root);
1128
1129 /*
1130 * Merge VA with its neighbors, otherwise just add it.
1131 */
1132 merge_or_add_vmap_area(va,
1133 &free_vmap_area_root, &free_vmap_area_list);
1134 }
1135
1136 /*
1137 * Free a region of KVA allocated by alloc_vmap_area
1138 */
1139 static void free_vmap_area(struct vmap_area *va)
1140 {
1141 spin_lock(&vmap_area_lock);
1142 __free_vmap_area(va);
1143 spin_unlock(&vmap_area_lock);
1144 }
1145
1146 /*
1147 * Clear the pagetable entries of a given vmap_area
1148 */
1149 static void unmap_vmap_area(struct vmap_area *va)
1150 {
1151 vunmap_page_range(va->va_start, va->va_end);
1152 }
1153
1154 /*
1155 * lazy_max_pages is the maximum amount of virtual address space we gather up
1156 * before attempting to purge with a TLB flush.
1157 *
1158 * There is a tradeoff here: a larger number will cover more kernel page tables
1159 * and take slightly longer to purge, but it will linearly reduce the number of
1160 * global TLB flushes that must be performed. It would seem natural to scale
1161 * this number up linearly with the number of CPUs (because vmapping activity
1162 * could also scale linearly with the number of CPUs), however it is likely
1163 * that in practice, workloads might be constrained in other ways that mean
1164 * vmap activity will not scale linearly with CPUs. Also, I want to be
1165 * conservative and not introduce a big latency on huge systems, so go with
1166 * a less aggressive log scale. It will still be an improvement over the old
1167 * code, and it will be simple to change the scale factor if we find that it
1168 * becomes a problem on bigger systems.
1169 */
1170 static unsigned long lazy_max_pages(void)
1171 {
1172 unsigned int log;
1173
1174 log = fls(num_online_cpus());
1175
1176 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1177 }
1178
1179 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1180
1181 /*
1182 * Serialize vmap purging. There is no actual criticial section protected
1183 * by this look, but we want to avoid concurrent calls for performance
1184 * reasons and to make the pcpu_get_vm_areas more deterministic.
1185 */
1186 static DEFINE_MUTEX(vmap_purge_lock);
1187
1188 /* for per-CPU blocks */
1189 static void purge_fragmented_blocks_allcpus(void);
1190
1191 /*
1192 * called before a call to iounmap() if the caller wants vm_area_struct's
1193 * immediately freed.
1194 */
1195 void set_iounmap_nonlazy(void)
1196 {
1197 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1198 }
1199
1200 /*
1201 * Purges all lazily-freed vmap areas.
1202 */
1203 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1204 {
1205 unsigned long resched_threshold;
1206 struct llist_node *valist;
1207 struct vmap_area *va;
1208 struct vmap_area *n_va;
1209
1210 lockdep_assert_held(&vmap_purge_lock);
1211
1212 valist = llist_del_all(&vmap_purge_list);
1213 if (unlikely(valist == NULL))
1214 return false;
1215
1216 /*
1217 * TODO: to calculate a flush range without looping.
1218 * The list can be up to lazy_max_pages() elements.
1219 */
1220 llist_for_each_entry(va, valist, purge_list) {
1221 if (va->va_start < start)
1222 start = va->va_start;
1223 if (va->va_end > end)
1224 end = va->va_end;
1225 }
1226
1227 flush_tlb_kernel_range(start, end);
1228 resched_threshold = lazy_max_pages() << 1;
1229
1230 spin_lock(&vmap_area_lock);
1231 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1232 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1233
1234 __free_vmap_area(va);
1235 atomic_long_sub(nr, &vmap_lazy_nr);
1236
1237 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1238 cond_resched_lock(&vmap_area_lock);
1239 }
1240 spin_unlock(&vmap_area_lock);
1241 return true;
1242 }
1243
1244 /*
1245 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1246 * is already purging.
1247 */
1248 static void try_purge_vmap_area_lazy(void)
1249 {
1250 if (mutex_trylock(&vmap_purge_lock)) {
1251 __purge_vmap_area_lazy(ULONG_MAX, 0);
1252 mutex_unlock(&vmap_purge_lock);
1253 }
1254 }
1255
1256 /*
1257 * Kick off a purge of the outstanding lazy areas.
1258 */
1259 static void purge_vmap_area_lazy(void)
1260 {
1261 mutex_lock(&vmap_purge_lock);
1262 purge_fragmented_blocks_allcpus();
1263 __purge_vmap_area_lazy(ULONG_MAX, 0);
1264 mutex_unlock(&vmap_purge_lock);
1265 }
1266
1267 /*
1268 * Free a vmap area, caller ensuring that the area has been unmapped
1269 * and flush_cache_vunmap had been called for the correct range
1270 * previously.
1271 */
1272 static void free_vmap_area_noflush(struct vmap_area *va)
1273 {
1274 unsigned long nr_lazy;
1275
1276 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1277 PAGE_SHIFT, &vmap_lazy_nr);
1278
1279 /* After this point, we may free va at any time */
1280 llist_add(&va->purge_list, &vmap_purge_list);
1281
1282 if (unlikely(nr_lazy > lazy_max_pages()))
1283 try_purge_vmap_area_lazy();
1284 }
1285
1286 /*
1287 * Free and unmap a vmap area
1288 */
1289 static void free_unmap_vmap_area(struct vmap_area *va)
1290 {
1291 flush_cache_vunmap(va->va_start, va->va_end);
1292 unmap_vmap_area(va);
1293 if (debug_pagealloc_enabled())
1294 flush_tlb_kernel_range(va->va_start, va->va_end);
1295
1296 free_vmap_area_noflush(va);
1297 }
1298
1299 static struct vmap_area *find_vmap_area(unsigned long addr)
1300 {
1301 struct vmap_area *va;
1302
1303 spin_lock(&vmap_area_lock);
1304 va = __find_vmap_area(addr);
1305 spin_unlock(&vmap_area_lock);
1306
1307 return va;
1308 }
1309
1310 /*** Per cpu kva allocator ***/
1311
1312 /*
1313 * vmap space is limited especially on 32 bit architectures. Ensure there is
1314 * room for at least 16 percpu vmap blocks per CPU.
1315 */
1316 /*
1317 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1318 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1319 * instead (we just need a rough idea)
1320 */
1321 #if BITS_PER_LONG == 32
1322 #define VMALLOC_SPACE (128UL*1024*1024)
1323 #else
1324 #define VMALLOC_SPACE (128UL*1024*1024*1024)
1325 #endif
1326
1327 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1328 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1329 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1330 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1331 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1332 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1333 #define VMAP_BBMAP_BITS \
1334 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1335 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1336 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1337
1338 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1339
1340 struct vmap_block_queue {
1341 spinlock_t lock;
1342 struct list_head free;
1343 };
1344
1345 struct vmap_block {
1346 spinlock_t lock;
1347 struct vmap_area *va;
1348 unsigned long free, dirty;
1349 unsigned long dirty_min, dirty_max; /*< dirty range */
1350 struct list_head free_list;
1351 struct rcu_head rcu_head;
1352 struct list_head purge;
1353 };
1354
1355 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1356 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1357
1358 /*
1359 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1360 * in the free path. Could get rid of this if we change the API to return a
1361 * "cookie" from alloc, to be passed to free. But no big deal yet.
1362 */
1363 static DEFINE_SPINLOCK(vmap_block_tree_lock);
1364 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1365
1366 /*
1367 * We should probably have a fallback mechanism to allocate virtual memory
1368 * out of partially filled vmap blocks. However vmap block sizing should be
1369 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1370 * big problem.
1371 */
1372
1373 static unsigned long addr_to_vb_idx(unsigned long addr)
1374 {
1375 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1376 addr /= VMAP_BLOCK_SIZE;
1377 return addr;
1378 }
1379
1380 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1381 {
1382 unsigned long addr;
1383
1384 addr = va_start + (pages_off << PAGE_SHIFT);
1385 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1386 return (void *)addr;
1387 }
1388
1389 /**
1390 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1391 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1392 * @order: how many 2^order pages should be occupied in newly allocated block
1393 * @gfp_mask: flags for the page level allocator
1394 *
1395 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1396 */
1397 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1398 {
1399 struct vmap_block_queue *vbq;
1400 struct vmap_block *vb;
1401 struct vmap_area *va;
1402 unsigned long vb_idx;
1403 int node, err;
1404 void *vaddr;
1405
1406 node = numa_node_id();
1407
1408 vb = kmalloc_node(sizeof(struct vmap_block),
1409 gfp_mask & GFP_RECLAIM_MASK, node);
1410 if (unlikely(!vb))
1411 return ERR_PTR(-ENOMEM);
1412
1413 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1414 VMALLOC_START, VMALLOC_END,
1415 node, gfp_mask);
1416 if (IS_ERR(va)) {
1417 kfree(vb);
1418 return ERR_CAST(va);
1419 }
1420
1421 err = radix_tree_preload(gfp_mask);
1422 if (unlikely(err)) {
1423 kfree(vb);
1424 free_vmap_area(va);
1425 return ERR_PTR(err);
1426 }
1427
1428 vaddr = vmap_block_vaddr(va->va_start, 0);
1429 spin_lock_init(&vb->lock);
1430 vb->va = va;
1431 /* At least something should be left free */
1432 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1433 vb->free = VMAP_BBMAP_BITS - (1UL << order);
1434 vb->dirty = 0;
1435 vb->dirty_min = VMAP_BBMAP_BITS;
1436 vb->dirty_max = 0;
1437 INIT_LIST_HEAD(&vb->free_list);
1438
1439 vb_idx = addr_to_vb_idx(va->va_start);
1440 spin_lock(&vmap_block_tree_lock);
1441 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1442 spin_unlock(&vmap_block_tree_lock);
1443 BUG_ON(err);
1444 radix_tree_preload_end();
1445
1446 vbq = &get_cpu_var(vmap_block_queue);
1447 spin_lock(&vbq->lock);
1448 list_add_tail_rcu(&vb->free_list, &vbq->free);
1449 spin_unlock(&vbq->lock);
1450 put_cpu_var(vmap_block_queue);
1451
1452 return vaddr;
1453 }
1454
1455 static void free_vmap_block(struct vmap_block *vb)
1456 {
1457 struct vmap_block *tmp;
1458 unsigned long vb_idx;
1459
1460 vb_idx = addr_to_vb_idx(vb->va->va_start);
1461 spin_lock(&vmap_block_tree_lock);
1462 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1463 spin_unlock(&vmap_block_tree_lock);
1464 BUG_ON(tmp != vb);
1465
1466 free_vmap_area_noflush(vb->va);
1467 kfree_rcu(vb, rcu_head);
1468 }
1469
1470 static void purge_fragmented_blocks(int cpu)
1471 {
1472 LIST_HEAD(purge);
1473 struct vmap_block *vb;
1474 struct vmap_block *n_vb;
1475 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1476
1477 rcu_read_lock();
1478 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1479
1480 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1481 continue;
1482
1483 spin_lock(&vb->lock);
1484 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1485 vb->free = 0; /* prevent further allocs after releasing lock */
1486 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1487 vb->dirty_min = 0;
1488 vb->dirty_max = VMAP_BBMAP_BITS;
1489 spin_lock(&vbq->lock);
1490 list_del_rcu(&vb->free_list);
1491 spin_unlock(&vbq->lock);
1492 spin_unlock(&vb->lock);
1493 list_add_tail(&vb->purge, &purge);
1494 } else
1495 spin_unlock(&vb->lock);
1496 }
1497 rcu_read_unlock();
1498
1499 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1500 list_del(&vb->purge);
1501 free_vmap_block(vb);
1502 }
1503 }
1504
1505 static void purge_fragmented_blocks_allcpus(void)
1506 {
1507 int cpu;
1508
1509 for_each_possible_cpu(cpu)
1510 purge_fragmented_blocks(cpu);
1511 }
1512
1513 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1514 {
1515 struct vmap_block_queue *vbq;
1516 struct vmap_block *vb;
1517 void *vaddr = NULL;
1518 unsigned int order;
1519
1520 BUG_ON(offset_in_page(size));
1521 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1522 if (WARN_ON(size == 0)) {
1523 /*
1524 * Allocating 0 bytes isn't what caller wants since
1525 * get_order(0) returns funny result. Just warn and terminate
1526 * early.
1527 */
1528 return NULL;
1529 }
1530 order = get_order(size);
1531
1532 rcu_read_lock();
1533 vbq = &get_cpu_var(vmap_block_queue);
1534 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1535 unsigned long pages_off;
1536
1537 spin_lock(&vb->lock);
1538 if (vb->free < (1UL << order)) {
1539 spin_unlock(&vb->lock);
1540 continue;
1541 }
1542
1543 pages_off = VMAP_BBMAP_BITS - vb->free;
1544 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1545 vb->free -= 1UL << order;
1546 if (vb->free == 0) {
1547 spin_lock(&vbq->lock);
1548 list_del_rcu(&vb->free_list);
1549 spin_unlock(&vbq->lock);
1550 }
1551
1552 spin_unlock(&vb->lock);
1553 break;
1554 }
1555
1556 put_cpu_var(vmap_block_queue);
1557 rcu_read_unlock();
1558
1559 /* Allocate new block if nothing was found */
1560 if (!vaddr)
1561 vaddr = new_vmap_block(order, gfp_mask);
1562
1563 return vaddr;
1564 }
1565
1566 static void vb_free(const void *addr, unsigned long size)
1567 {
1568 unsigned long offset;
1569 unsigned long vb_idx;
1570 unsigned int order;
1571 struct vmap_block *vb;
1572
1573 BUG_ON(offset_in_page(size));
1574 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1575
1576 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1577
1578 order = get_order(size);
1579
1580 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1581 offset >>= PAGE_SHIFT;
1582
1583 vb_idx = addr_to_vb_idx((unsigned long)addr);
1584 rcu_read_lock();
1585 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1586 rcu_read_unlock();
1587 BUG_ON(!vb);
1588
1589 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1590
1591 if (debug_pagealloc_enabled())
1592 flush_tlb_kernel_range((unsigned long)addr,
1593 (unsigned long)addr + size);
1594
1595 spin_lock(&vb->lock);
1596
1597 /* Expand dirty range */
1598 vb->dirty_min = min(vb->dirty_min, offset);
1599 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1600
1601 vb->dirty += 1UL << order;
1602 if (vb->dirty == VMAP_BBMAP_BITS) {
1603 BUG_ON(vb->free);
1604 spin_unlock(&vb->lock);
1605 free_vmap_block(vb);
1606 } else
1607 spin_unlock(&vb->lock);
1608 }
1609
1610 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1611 {
1612 int cpu;
1613
1614 if (unlikely(!vmap_initialized))
1615 return;
1616
1617 might_sleep();
1618
1619 for_each_possible_cpu(cpu) {
1620 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1621 struct vmap_block *vb;
1622
1623 rcu_read_lock();
1624 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1625 spin_lock(&vb->lock);
1626 if (vb->dirty) {
1627 unsigned long va_start = vb->va->va_start;
1628 unsigned long s, e;
1629
1630 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1631 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1632
1633 start = min(s, start);
1634 end = max(e, end);
1635
1636 flush = 1;
1637 }
1638 spin_unlock(&vb->lock);
1639 }
1640 rcu_read_unlock();
1641 }
1642
1643 mutex_lock(&vmap_purge_lock);
1644 purge_fragmented_blocks_allcpus();
1645 if (!__purge_vmap_area_lazy(start, end) && flush)
1646 flush_tlb_kernel_range(start, end);
1647 mutex_unlock(&vmap_purge_lock);
1648 }
1649
1650 /**
1651 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1652 *
1653 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1654 * to amortize TLB flushing overheads. What this means is that any page you
1655 * have now, may, in a former life, have been mapped into kernel virtual
1656 * address by the vmap layer and so there might be some CPUs with TLB entries
1657 * still referencing that page (additional to the regular 1:1 kernel mapping).
1658 *
1659 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1660 * be sure that none of the pages we have control over will have any aliases
1661 * from the vmap layer.
1662 */
1663 void vm_unmap_aliases(void)
1664 {
1665 unsigned long start = ULONG_MAX, end = 0;
1666 int flush = 0;
1667
1668 _vm_unmap_aliases(start, end, flush);
1669 }
1670 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1671
1672 /**
1673 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1674 * @mem: the pointer returned by vm_map_ram
1675 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1676 */
1677 void vm_unmap_ram(const void *mem, unsigned int count)
1678 {
1679 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1680 unsigned long addr = (unsigned long)mem;
1681 struct vmap_area *va;
1682
1683 might_sleep();
1684 BUG_ON(!addr);
1685 BUG_ON(addr < VMALLOC_START);
1686 BUG_ON(addr > VMALLOC_END);
1687 BUG_ON(!PAGE_ALIGNED(addr));
1688
1689 if (likely(count <= VMAP_MAX_ALLOC)) {
1690 debug_check_no_locks_freed(mem, size);
1691 vb_free(mem, size);
1692 return;
1693 }
1694
1695 va = find_vmap_area(addr);
1696 BUG_ON(!va);
1697 debug_check_no_locks_freed((void *)va->va_start,
1698 (va->va_end - va->va_start));
1699 free_unmap_vmap_area(va);
1700 }
1701 EXPORT_SYMBOL(vm_unmap_ram);
1702
1703 /**
1704 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1705 * @pages: an array of pointers to the pages to be mapped
1706 * @count: number of pages
1707 * @node: prefer to allocate data structures on this node
1708 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1709 *
1710 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1711 * faster than vmap so it's good. But if you mix long-life and short-life
1712 * objects with vm_map_ram(), it could consume lots of address space through
1713 * fragmentation (especially on a 32bit machine). You could see failures in
1714 * the end. Please use this function for short-lived objects.
1715 *
1716 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1717 */
1718 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1719 {
1720 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1721 unsigned long addr;
1722 void *mem;
1723
1724 if (likely(count <= VMAP_MAX_ALLOC)) {
1725 mem = vb_alloc(size, GFP_KERNEL);
1726 if (IS_ERR(mem))
1727 return NULL;
1728 addr = (unsigned long)mem;
1729 } else {
1730 struct vmap_area *va;
1731 va = alloc_vmap_area(size, PAGE_SIZE,
1732 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1733 if (IS_ERR(va))
1734 return NULL;
1735
1736 addr = va->va_start;
1737 mem = (void *)addr;
1738 }
1739 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1740 vm_unmap_ram(mem, count);
1741 return NULL;
1742 }
1743 return mem;
1744 }
1745 EXPORT_SYMBOL(vm_map_ram);
1746
1747 static struct vm_struct *vmlist __initdata;
1748
1749 /**
1750 * vm_area_add_early - add vmap area early during boot
1751 * @vm: vm_struct to add
1752 *
1753 * This function is used to add fixed kernel vm area to vmlist before
1754 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1755 * should contain proper values and the other fields should be zero.
1756 *
1757 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1758 */
1759 void __init vm_area_add_early(struct vm_struct *vm)
1760 {
1761 struct vm_struct *tmp, **p;
1762
1763 BUG_ON(vmap_initialized);
1764 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1765 if (tmp->addr >= vm->addr) {
1766 BUG_ON(tmp->addr < vm->addr + vm->size);
1767 break;
1768 } else
1769 BUG_ON(tmp->addr + tmp->size > vm->addr);
1770 }
1771 vm->next = *p;
1772 *p = vm;
1773 }
1774
1775 /**
1776 * vm_area_register_early - register vmap area early during boot
1777 * @vm: vm_struct to register
1778 * @align: requested alignment
1779 *
1780 * This function is used to register kernel vm area before
1781 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1782 * proper values on entry and other fields should be zero. On return,
1783 * vm->addr contains the allocated address.
1784 *
1785 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1786 */
1787 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1788 {
1789 static size_t vm_init_off __initdata;
1790 unsigned long addr;
1791
1792 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1793 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1794
1795 vm->addr = (void *)addr;
1796
1797 vm_area_add_early(vm);
1798 }
1799
1800 static void vmap_init_free_space(void)
1801 {
1802 unsigned long vmap_start = 1;
1803 const unsigned long vmap_end = ULONG_MAX;
1804 struct vmap_area *busy, *free;
1805
1806 /*
1807 * B F B B B F
1808 * -|-----|.....|-----|-----|-----|.....|-
1809 * | The KVA space |
1810 * |<--------------------------------->|
1811 */
1812 list_for_each_entry(busy, &vmap_area_list, list) {
1813 if (busy->va_start - vmap_start > 0) {
1814 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1815 if (!WARN_ON_ONCE(!free)) {
1816 free->va_start = vmap_start;
1817 free->va_end = busy->va_start;
1818
1819 insert_vmap_area_augment(free, NULL,
1820 &free_vmap_area_root,
1821 &free_vmap_area_list);
1822 }
1823 }
1824
1825 vmap_start = busy->va_end;
1826 }
1827
1828 if (vmap_end - vmap_start > 0) {
1829 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1830 if (!WARN_ON_ONCE(!free)) {
1831 free->va_start = vmap_start;
1832 free->va_end = vmap_end;
1833
1834 insert_vmap_area_augment(free, NULL,
1835 &free_vmap_area_root,
1836 &free_vmap_area_list);
1837 }
1838 }
1839 }
1840
1841 void __init vmalloc_init(void)
1842 {
1843 struct vmap_area *va;
1844 struct vm_struct *tmp;
1845 int i;
1846
1847 /*
1848 * Create the cache for vmap_area objects.
1849 */
1850 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1851
1852 for_each_possible_cpu(i) {
1853 struct vmap_block_queue *vbq;
1854 struct vfree_deferred *p;
1855
1856 vbq = &per_cpu(vmap_block_queue, i);
1857 spin_lock_init(&vbq->lock);
1858 INIT_LIST_HEAD(&vbq->free);
1859 p = &per_cpu(vfree_deferred, i);
1860 init_llist_head(&p->list);
1861 INIT_WORK(&p->wq, free_work);
1862 }
1863
1864 /* Import existing vmlist entries. */
1865 for (tmp = vmlist; tmp; tmp = tmp->next) {
1866 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1867 if (WARN_ON_ONCE(!va))
1868 continue;
1869
1870 va->flags = VM_VM_AREA;
1871 va->va_start = (unsigned long)tmp->addr;
1872 va->va_end = va->va_start + tmp->size;
1873 va->vm = tmp;
1874 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1875 }
1876
1877 /*
1878 * Now we can initialize a free vmap space.
1879 */
1880 vmap_init_free_space();
1881 vmap_initialized = true;
1882 }
1883
1884 /**
1885 * map_kernel_range_noflush - map kernel VM area with the specified pages
1886 * @addr: start of the VM area to map
1887 * @size: size of the VM area to map
1888 * @prot: page protection flags to use
1889 * @pages: pages to map
1890 *
1891 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1892 * specify should have been allocated using get_vm_area() and its
1893 * friends.
1894 *
1895 * NOTE:
1896 * This function does NOT do any cache flushing. The caller is
1897 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1898 * before calling this function.
1899 *
1900 * RETURNS:
1901 * The number of pages mapped on success, -errno on failure.
1902 */
1903 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1904 pgprot_t prot, struct page **pages)
1905 {
1906 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1907 }
1908
1909 /**
1910 * unmap_kernel_range_noflush - unmap kernel VM area
1911 * @addr: start of the VM area to unmap
1912 * @size: size of the VM area to unmap
1913 *
1914 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1915 * specify should have been allocated using get_vm_area() and its
1916 * friends.
1917 *
1918 * NOTE:
1919 * This function does NOT do any cache flushing. The caller is
1920 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1921 * before calling this function and flush_tlb_kernel_range() after.
1922 */
1923 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1924 {
1925 vunmap_page_range(addr, addr + size);
1926 }
1927 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1928
1929 /**
1930 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1931 * @addr: start of the VM area to unmap
1932 * @size: size of the VM area to unmap
1933 *
1934 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1935 * the unmapping and tlb after.
1936 */
1937 void unmap_kernel_range(unsigned long addr, unsigned long size)
1938 {
1939 unsigned long end = addr + size;
1940
1941 flush_cache_vunmap(addr, end);
1942 vunmap_page_range(addr, end);
1943 flush_tlb_kernel_range(addr, end);
1944 }
1945 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1946
1947 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1948 {
1949 unsigned long addr = (unsigned long)area->addr;
1950 unsigned long end = addr + get_vm_area_size(area);
1951 int err;
1952
1953 err = vmap_page_range(addr, end, prot, pages);
1954
1955 return err > 0 ? 0 : err;
1956 }
1957 EXPORT_SYMBOL_GPL(map_vm_area);
1958
1959 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1960 unsigned long flags, const void *caller)
1961 {
1962 spin_lock(&vmap_area_lock);
1963 vm->flags = flags;
1964 vm->addr = (void *)va->va_start;
1965 vm->size = va->va_end - va->va_start;
1966 vm->caller = caller;
1967 va->vm = vm;
1968 va->flags |= VM_VM_AREA;
1969 spin_unlock(&vmap_area_lock);
1970 }
1971
1972 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1973 {
1974 /*
1975 * Before removing VM_UNINITIALIZED,
1976 * we should make sure that vm has proper values.
1977 * Pair with smp_rmb() in show_numa_info().
1978 */
1979 smp_wmb();
1980 vm->flags &= ~VM_UNINITIALIZED;
1981 }
1982
1983 static struct vm_struct *__get_vm_area_node(unsigned long size,
1984 unsigned long align, unsigned long flags, unsigned long start,
1985 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1986 {
1987 struct vmap_area *va;
1988 struct vm_struct *area;
1989
1990 BUG_ON(in_interrupt());
1991 size = PAGE_ALIGN(size);
1992 if (unlikely(!size))
1993 return NULL;
1994
1995 if (flags & VM_IOREMAP)
1996 align = 1ul << clamp_t(int, get_count_order_long(size),
1997 PAGE_SHIFT, IOREMAP_MAX_ORDER);
1998
1999 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2000 if (unlikely(!area))
2001 return NULL;
2002
2003 if (!(flags & VM_NO_GUARD))
2004 size += PAGE_SIZE;
2005
2006 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2007 if (IS_ERR(va)) {
2008 kfree(area);
2009 return NULL;
2010 }
2011
2012 setup_vmalloc_vm(area, va, flags, caller);
2013
2014 return area;
2015 }
2016
2017 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2018 unsigned long start, unsigned long end)
2019 {
2020 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2021 GFP_KERNEL, __builtin_return_address(0));
2022 }
2023 EXPORT_SYMBOL_GPL(__get_vm_area);
2024
2025 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2026 unsigned long start, unsigned long end,
2027 const void *caller)
2028 {
2029 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2030 GFP_KERNEL, caller);
2031 }
2032
2033 /**
2034 * get_vm_area - reserve a contiguous kernel virtual area
2035 * @size: size of the area
2036 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2037 *
2038 * Search an area of @size in the kernel virtual mapping area,
2039 * and reserved it for out purposes. Returns the area descriptor
2040 * on success or %NULL on failure.
2041 *
2042 * Return: the area descriptor on success or %NULL on failure.
2043 */
2044 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2045 {
2046 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2047 NUMA_NO_NODE, GFP_KERNEL,
2048 __builtin_return_address(0));
2049 }
2050
2051 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2052 const void *caller)
2053 {
2054 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2055 NUMA_NO_NODE, GFP_KERNEL, caller);
2056 }
2057
2058 /**
2059 * find_vm_area - find a continuous kernel virtual area
2060 * @addr: base address
2061 *
2062 * Search for the kernel VM area starting at @addr, and return it.
2063 * It is up to the caller to do all required locking to keep the returned
2064 * pointer valid.
2065 *
2066 * Return: pointer to the found area or %NULL on faulure
2067 */
2068 struct vm_struct *find_vm_area(const void *addr)
2069 {
2070 struct vmap_area *va;
2071
2072 va = find_vmap_area((unsigned long)addr);
2073 if (va && va->flags & VM_VM_AREA)
2074 return va->vm;
2075
2076 return NULL;
2077 }
2078
2079 /**
2080 * remove_vm_area - find and remove a continuous kernel virtual area
2081 * @addr: base address
2082 *
2083 * Search for the kernel VM area starting at @addr, and remove it.
2084 * This function returns the found VM area, but using it is NOT safe
2085 * on SMP machines, except for its size or flags.
2086 *
2087 * Return: pointer to the found area or %NULL on faulure
2088 */
2089 struct vm_struct *remove_vm_area(const void *addr)
2090 {
2091 struct vmap_area *va;
2092
2093 might_sleep();
2094
2095 va = find_vmap_area((unsigned long)addr);
2096 if (va && va->flags & VM_VM_AREA) {
2097 struct vm_struct *vm = va->vm;
2098
2099 spin_lock(&vmap_area_lock);
2100 va->vm = NULL;
2101 va->flags &= ~VM_VM_AREA;
2102 va->flags |= VM_LAZY_FREE;
2103 spin_unlock(&vmap_area_lock);
2104
2105 kasan_free_shadow(vm);
2106 free_unmap_vmap_area(va);
2107
2108 return vm;
2109 }
2110 return NULL;
2111 }
2112
2113 static inline void set_area_direct_map(const struct vm_struct *area,
2114 int (*set_direct_map)(struct page *page))
2115 {
2116 int i;
2117
2118 for (i = 0; i < area->nr_pages; i++)
2119 if (page_address(area->pages[i]))
2120 set_direct_map(area->pages[i]);
2121 }
2122
2123 /* Handle removing and resetting vm mappings related to the vm_struct. */
2124 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2125 {
2126 unsigned long start = ULONG_MAX, end = 0;
2127 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2128 int flush_dmap = 0;
2129 int i;
2130
2131 remove_vm_area(area->addr);
2132
2133 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2134 if (!flush_reset)
2135 return;
2136
2137 /*
2138 * If not deallocating pages, just do the flush of the VM area and
2139 * return.
2140 */
2141 if (!deallocate_pages) {
2142 vm_unmap_aliases();
2143 return;
2144 }
2145
2146 /*
2147 * If execution gets here, flush the vm mapping and reset the direct
2148 * map. Find the start and end range of the direct mappings to make sure
2149 * the vm_unmap_aliases() flush includes the direct map.
2150 */
2151 for (i = 0; i < area->nr_pages; i++) {
2152 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2153 if (addr) {
2154 start = min(addr, start);
2155 end = max(addr + PAGE_SIZE, end);
2156 flush_dmap = 1;
2157 }
2158 }
2159
2160 /*
2161 * Set direct map to something invalid so that it won't be cached if
2162 * there are any accesses after the TLB flush, then flush the TLB and
2163 * reset the direct map permissions to the default.
2164 */
2165 set_area_direct_map(area, set_direct_map_invalid_noflush);
2166 _vm_unmap_aliases(start, end, flush_dmap);
2167 set_area_direct_map(area, set_direct_map_default_noflush);
2168 }
2169
2170 static void __vunmap(const void *addr, int deallocate_pages)
2171 {
2172 struct vm_struct *area;
2173
2174 if (!addr)
2175 return;
2176
2177 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2178 addr))
2179 return;
2180
2181 area = find_vm_area(addr);
2182 if (unlikely(!area)) {
2183 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2184 addr);
2185 return;
2186 }
2187
2188 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2189 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2190
2191 vm_remove_mappings(area, deallocate_pages);
2192
2193 if (deallocate_pages) {
2194 int i;
2195
2196 for (i = 0; i < area->nr_pages; i++) {
2197 struct page *page = area->pages[i];
2198
2199 BUG_ON(!page);
2200 __free_pages(page, 0);
2201 }
2202
2203 kvfree(area->pages);
2204 }
2205
2206 kfree(area);
2207 return;
2208 }
2209
2210 static inline void __vfree_deferred(const void *addr)
2211 {
2212 /*
2213 * Use raw_cpu_ptr() because this can be called from preemptible
2214 * context. Preemption is absolutely fine here, because the llist_add()
2215 * implementation is lockless, so it works even if we are adding to
2216 * nother cpu's list. schedule_work() should be fine with this too.
2217 */
2218 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2219
2220 if (llist_add((struct llist_node *)addr, &p->list))
2221 schedule_work(&p->wq);
2222 }
2223
2224 /**
2225 * vfree_atomic - release memory allocated by vmalloc()
2226 * @addr: memory base address
2227 *
2228 * This one is just like vfree() but can be called in any atomic context
2229 * except NMIs.
2230 */
2231 void vfree_atomic(const void *addr)
2232 {
2233 BUG_ON(in_nmi());
2234
2235 kmemleak_free(addr);
2236
2237 if (!addr)
2238 return;
2239 __vfree_deferred(addr);
2240 }
2241
2242 static void __vfree(const void *addr)
2243 {
2244 if (unlikely(in_interrupt()))
2245 __vfree_deferred(addr);
2246 else
2247 __vunmap(addr, 1);
2248 }
2249
2250 /**
2251 * vfree - release memory allocated by vmalloc()
2252 * @addr: memory base address
2253 *
2254 * Free the virtually continuous memory area starting at @addr, as
2255 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2256 * NULL, no operation is performed.
2257 *
2258 * Must not be called in NMI context (strictly speaking, only if we don't
2259 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2260 * conventions for vfree() arch-depenedent would be a really bad idea)
2261 *
2262 * May sleep if called *not* from interrupt context.
2263 *
2264 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
2265 */
2266 void vfree(const void *addr)
2267 {
2268 BUG_ON(in_nmi());
2269
2270 kmemleak_free(addr);
2271
2272 might_sleep_if(!in_interrupt());
2273
2274 if (!addr)
2275 return;
2276
2277 __vfree(addr);
2278 }
2279 EXPORT_SYMBOL(vfree);
2280
2281 /**
2282 * vunmap - release virtual mapping obtained by vmap()
2283 * @addr: memory base address
2284 *
2285 * Free the virtually contiguous memory area starting at @addr,
2286 * which was created from the page array passed to vmap().
2287 *
2288 * Must not be called in interrupt context.
2289 */
2290 void vunmap(const void *addr)
2291 {
2292 BUG_ON(in_interrupt());
2293 might_sleep();
2294 if (addr)
2295 __vunmap(addr, 0);
2296 }
2297 EXPORT_SYMBOL(vunmap);
2298
2299 /**
2300 * vmap - map an array of pages into virtually contiguous space
2301 * @pages: array of page pointers
2302 * @count: number of pages to map
2303 * @flags: vm_area->flags
2304 * @prot: page protection for the mapping
2305 *
2306 * Maps @count pages from @pages into contiguous kernel virtual
2307 * space.
2308 *
2309 * Return: the address of the area or %NULL on failure
2310 */
2311 void *vmap(struct page **pages, unsigned int count,
2312 unsigned long flags, pgprot_t prot)
2313 {
2314 struct vm_struct *area;
2315 unsigned long size; /* In bytes */
2316
2317 might_sleep();
2318
2319 if (count > totalram_pages())
2320 return NULL;
2321
2322 size = (unsigned long)count << PAGE_SHIFT;
2323 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2324 if (!area)
2325 return NULL;
2326
2327 if (map_vm_area(area, prot, pages)) {
2328 vunmap(area->addr);
2329 return NULL;
2330 }
2331
2332 return area->addr;
2333 }
2334 EXPORT_SYMBOL(vmap);
2335
2336 static void *__vmalloc_node(unsigned long size, unsigned long align,
2337 gfp_t gfp_mask, pgprot_t prot,
2338 int node, const void *caller);
2339 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2340 pgprot_t prot, int node)
2341 {
2342 struct page **pages;
2343 unsigned int nr_pages, array_size, i;
2344 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2345 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2346 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2347 0 :
2348 __GFP_HIGHMEM;
2349
2350 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2351 array_size = (nr_pages * sizeof(struct page *));
2352
2353 area->nr_pages = nr_pages;
2354 /* Please note that the recursion is strictly bounded. */
2355 if (array_size > PAGE_SIZE) {
2356 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2357 PAGE_KERNEL, node, area->caller);
2358 } else {
2359 pages = kmalloc_node(array_size, nested_gfp, node);
2360 }
2361 area->pages = pages;
2362 if (!area->pages) {
2363 remove_vm_area(area->addr);
2364 kfree(area);
2365 return NULL;
2366 }
2367
2368 for (i = 0; i < area->nr_pages; i++) {
2369 struct page *page;
2370
2371 if (node == NUMA_NO_NODE)
2372 page = alloc_page(alloc_mask|highmem_mask);
2373 else
2374 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2375
2376 if (unlikely(!page)) {
2377 /* Successfully allocated i pages, free them in __vunmap() */
2378 area->nr_pages = i;
2379 goto fail;
2380 }
2381 area->pages[i] = page;
2382 if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
2383 cond_resched();
2384 }
2385
2386 if (map_vm_area(area, prot, pages))
2387 goto fail;
2388 return area->addr;
2389
2390 fail:
2391 warn_alloc(gfp_mask, NULL,
2392 "vmalloc: allocation failure, allocated %ld of %ld bytes",
2393 (area->nr_pages*PAGE_SIZE), area->size);
2394 __vfree(area->addr);
2395 return NULL;
2396 }
2397
2398 /**
2399 * __vmalloc_node_range - allocate virtually contiguous memory
2400 * @size: allocation size
2401 * @align: desired alignment
2402 * @start: vm area range start
2403 * @end: vm area range end
2404 * @gfp_mask: flags for the page level allocator
2405 * @prot: protection mask for the allocated pages
2406 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2407 * @node: node to use for allocation or NUMA_NO_NODE
2408 * @caller: caller's return address
2409 *
2410 * Allocate enough pages to cover @size from the page level
2411 * allocator with @gfp_mask flags. Map them into contiguous
2412 * kernel virtual space, using a pagetable protection of @prot.
2413 *
2414 * Return: the address of the area or %NULL on failure
2415 */
2416 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2417 unsigned long start, unsigned long end, gfp_t gfp_mask,
2418 pgprot_t prot, unsigned long vm_flags, int node,
2419 const void *caller)
2420 {
2421 struct vm_struct *area;
2422 void *addr;
2423 unsigned long real_size = size;
2424
2425 size = PAGE_ALIGN(size);
2426 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2427 goto fail;
2428
2429 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2430 vm_flags, start, end, node, gfp_mask, caller);
2431 if (!area)
2432 goto fail;
2433
2434 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2435 if (!addr)
2436 return NULL;
2437
2438 /*
2439 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2440 * flag. It means that vm_struct is not fully initialized.
2441 * Now, it is fully initialized, so remove this flag here.
2442 */
2443 clear_vm_uninitialized_flag(area);
2444
2445 kmemleak_vmalloc(area, size, gfp_mask);
2446
2447 return addr;
2448
2449 fail:
2450 warn_alloc(gfp_mask, NULL,
2451 "vmalloc: allocation failure: %lu bytes", real_size);
2452 return NULL;
2453 }
2454
2455 /*
2456 * This is only for performance analysis of vmalloc and stress purpose.
2457 * It is required by vmalloc test module, therefore do not use it other
2458 * than that.
2459 */
2460 #ifdef CONFIG_TEST_VMALLOC_MODULE
2461 EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2462 #endif
2463
2464 /**
2465 * __vmalloc_node - allocate virtually contiguous memory
2466 * @size: allocation size
2467 * @align: desired alignment
2468 * @gfp_mask: flags for the page level allocator
2469 * @prot: protection mask for the allocated pages
2470 * @node: node to use for allocation or NUMA_NO_NODE
2471 * @caller: caller's return address
2472 *
2473 * Allocate enough pages to cover @size from the page level
2474 * allocator with @gfp_mask flags. Map them into contiguous
2475 * kernel virtual space, using a pagetable protection of @prot.
2476 *
2477 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2478 * and __GFP_NOFAIL are not supported
2479 *
2480 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2481 * with mm people.
2482 *
2483 * Return: pointer to the allocated memory or %NULL on error
2484 */
2485 static void *__vmalloc_node(unsigned long size, unsigned long align,
2486 gfp_t gfp_mask, pgprot_t prot,
2487 int node, const void *caller)
2488 {
2489 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2490 gfp_mask, prot, 0, node, caller);
2491 }
2492
2493 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2494 {
2495 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2496 __builtin_return_address(0));
2497 }
2498 EXPORT_SYMBOL(__vmalloc);
2499
2500 static inline void *__vmalloc_node_flags(unsigned long size,
2501 int node, gfp_t flags)
2502 {
2503 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2504 node, __builtin_return_address(0));
2505 }
2506
2507
2508 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2509 void *caller)
2510 {
2511 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2512 }
2513
2514 /**
2515 * vmalloc - allocate virtually contiguous memory
2516 * @size: allocation size
2517 *
2518 * Allocate enough pages to cover @size from the page level
2519 * allocator and map them into contiguous kernel virtual space.
2520 *
2521 * For tight control over page level allocator and protection flags
2522 * use __vmalloc() instead.
2523 *
2524 * Return: pointer to the allocated memory or %NULL on error
2525 */
2526 void *vmalloc(unsigned long size)
2527 {
2528 return __vmalloc_node_flags(size, NUMA_NO_NODE,
2529 GFP_KERNEL);
2530 }
2531 EXPORT_SYMBOL(vmalloc);
2532
2533 /**
2534 * vzalloc - allocate virtually contiguous memory with zero fill
2535 * @size: allocation size
2536 *
2537 * Allocate enough pages to cover @size from the page level
2538 * allocator and map them into contiguous kernel virtual space.
2539 * The memory allocated is set to zero.
2540 *
2541 * For tight control over page level allocator and protection flags
2542 * use __vmalloc() instead.
2543 *
2544 * Return: pointer to the allocated memory or %NULL on error
2545 */
2546 void *vzalloc(unsigned long size)
2547 {
2548 return __vmalloc_node_flags(size, NUMA_NO_NODE,
2549 GFP_KERNEL | __GFP_ZERO);
2550 }
2551 EXPORT_SYMBOL(vzalloc);
2552
2553 /**
2554 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2555 * @size: allocation size
2556 *
2557 * The resulting memory area is zeroed so it can be mapped to userspace
2558 * without leaking data.
2559 *
2560 * Return: pointer to the allocated memory or %NULL on error
2561 */
2562 void *vmalloc_user(unsigned long size)
2563 {
2564 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2565 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2566 VM_USERMAP, NUMA_NO_NODE,
2567 __builtin_return_address(0));
2568 }
2569 EXPORT_SYMBOL(vmalloc_user);
2570
2571 /**
2572 * vmalloc_node - allocate memory on a specific node
2573 * @size: allocation size
2574 * @node: numa node
2575 *
2576 * Allocate enough pages to cover @size from the page level
2577 * allocator and map them into contiguous kernel virtual space.
2578 *
2579 * For tight control over page level allocator and protection flags
2580 * use __vmalloc() instead.
2581 *
2582 * Return: pointer to the allocated memory or %NULL on error
2583 */
2584 void *vmalloc_node(unsigned long size, int node)
2585 {
2586 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2587 node, __builtin_return_address(0));
2588 }
2589 EXPORT_SYMBOL(vmalloc_node);
2590
2591 /**
2592 * vzalloc_node - allocate memory on a specific node with zero fill
2593 * @size: allocation size
2594 * @node: numa node
2595 *
2596 * Allocate enough pages to cover @size from the page level
2597 * allocator and map them into contiguous kernel virtual space.
2598 * The memory allocated is set to zero.
2599 *
2600 * For tight control over page level allocator and protection flags
2601 * use __vmalloc_node() instead.
2602 *
2603 * Return: pointer to the allocated memory or %NULL on error
2604 */
2605 void *vzalloc_node(unsigned long size, int node)
2606 {
2607 return __vmalloc_node_flags(size, node,
2608 GFP_KERNEL | __GFP_ZERO);
2609 }
2610 EXPORT_SYMBOL(vzalloc_node);
2611
2612 /**
2613 * vmalloc_exec - allocate virtually contiguous, executable memory
2614 * @size: allocation size
2615 *
2616 * Kernel-internal function to allocate enough pages to cover @size
2617 * the page level allocator and map them into contiguous and
2618 * executable kernel virtual space.
2619 *
2620 * For tight control over page level allocator and protection flags
2621 * use __vmalloc() instead.
2622 *
2623 * Return: pointer to the allocated memory or %NULL on error
2624 */
2625 void *vmalloc_exec(unsigned long size)
2626 {
2627 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2628 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2629 NUMA_NO_NODE, __builtin_return_address(0));
2630 }
2631
2632 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2633 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2634 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2635 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2636 #else
2637 /*
2638 * 64b systems should always have either DMA or DMA32 zones. For others
2639 * GFP_DMA32 should do the right thing and use the normal zone.
2640 */
2641 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2642 #endif
2643
2644 /**
2645 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2646 * @size: allocation size
2647 *
2648 * Allocate enough 32bit PA addressable pages to cover @size from the
2649 * page level allocator and map them into contiguous kernel virtual space.
2650 *
2651 * Return: pointer to the allocated memory or %NULL on error
2652 */
2653 void *vmalloc_32(unsigned long size)
2654 {
2655 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
2656 NUMA_NO_NODE, __builtin_return_address(0));
2657 }
2658 EXPORT_SYMBOL(vmalloc_32);
2659
2660 /**
2661 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2662 * @size: allocation size
2663 *
2664 * The resulting memory area is 32bit addressable and zeroed so it can be
2665 * mapped to userspace without leaking data.
2666 *
2667 * Return: pointer to the allocated memory or %NULL on error
2668 */
2669 void *vmalloc_32_user(unsigned long size)
2670 {
2671 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2672 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2673 VM_USERMAP, NUMA_NO_NODE,
2674 __builtin_return_address(0));
2675 }
2676 EXPORT_SYMBOL(vmalloc_32_user);
2677
2678 /*
2679 * small helper routine , copy contents to buf from addr.
2680 * If the page is not present, fill zero.
2681 */
2682
2683 static int aligned_vread(char *buf, char *addr, unsigned long count)
2684 {
2685 struct page *p;
2686 int copied = 0;
2687
2688 while (count) {
2689 unsigned long offset, length;
2690
2691 offset = offset_in_page(addr);
2692 length = PAGE_SIZE - offset;
2693 if (length > count)
2694 length = count;
2695 p = vmalloc_to_page(addr);
2696 /*
2697 * To do safe access to this _mapped_ area, we need
2698 * lock. But adding lock here means that we need to add
2699 * overhead of vmalloc()/vfree() calles for this _debug_
2700 * interface, rarely used. Instead of that, we'll use
2701 * kmap() and get small overhead in this access function.
2702 */
2703 if (p) {
2704 /*
2705 * we can expect USER0 is not used (see vread/vwrite's
2706 * function description)
2707 */
2708 void *map = kmap_atomic(p);
2709 memcpy(buf, map + offset, length);
2710 kunmap_atomic(map);
2711 } else
2712 memset(buf, 0, length);
2713
2714 addr += length;
2715 buf += length;
2716 copied += length;
2717 count -= length;
2718 }
2719 return copied;
2720 }
2721
2722 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2723 {
2724 struct page *p;
2725 int copied = 0;
2726
2727 while (count) {
2728 unsigned long offset, length;
2729
2730 offset = offset_in_page(addr);
2731 length = PAGE_SIZE - offset;
2732 if (length > count)
2733 length = count;
2734 p = vmalloc_to_page(addr);
2735 /*
2736 * To do safe access to this _mapped_ area, we need
2737 * lock. But adding lock here means that we need to add
2738 * overhead of vmalloc()/vfree() calles for this _debug_
2739 * interface, rarely used. Instead of that, we'll use
2740 * kmap() and get small overhead in this access function.
2741 */
2742 if (p) {
2743 /*
2744 * we can expect USER0 is not used (see vread/vwrite's
2745 * function description)
2746 */
2747 void *map = kmap_atomic(p);
2748 memcpy(map + offset, buf, length);
2749 kunmap_atomic(map);
2750 }
2751 addr += length;
2752 buf += length;
2753 copied += length;
2754 count -= length;
2755 }
2756 return copied;
2757 }
2758
2759 /**
2760 * vread() - read vmalloc area in a safe way.
2761 * @buf: buffer for reading data
2762 * @addr: vm address.
2763 * @count: number of bytes to be read.
2764 *
2765 * This function checks that addr is a valid vmalloc'ed area, and
2766 * copy data from that area to a given buffer. If the given memory range
2767 * of [addr...addr+count) includes some valid address, data is copied to
2768 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2769 * IOREMAP area is treated as memory hole and no copy is done.
2770 *
2771 * If [addr...addr+count) doesn't includes any intersects with alive
2772 * vm_struct area, returns 0. @buf should be kernel's buffer.
2773 *
2774 * Note: In usual ops, vread() is never necessary because the caller
2775 * should know vmalloc() area is valid and can use memcpy().
2776 * This is for routines which have to access vmalloc area without
2777 * any informaion, as /dev/kmem.
2778 *
2779 * Return: number of bytes for which addr and buf should be increased
2780 * (same number as @count) or %0 if [addr...addr+count) doesn't
2781 * include any intersection with valid vmalloc area
2782 */
2783 long vread(char *buf, char *addr, unsigned long count)
2784 {
2785 struct vmap_area *va;
2786 struct vm_struct *vm;
2787 char *vaddr, *buf_start = buf;
2788 unsigned long buflen = count;
2789 unsigned long n;
2790
2791 /* Don't allow overflow */
2792 if ((unsigned long) addr + count < count)
2793 count = -(unsigned long) addr;
2794
2795 spin_lock(&vmap_area_lock);
2796 list_for_each_entry(va, &vmap_area_list, list) {
2797 if (!count)
2798 break;
2799
2800 if (!(va->flags & VM_VM_AREA))
2801 continue;
2802
2803 vm = va->vm;
2804 vaddr = (char *) vm->addr;
2805 if (addr >= vaddr + get_vm_area_size(vm))
2806 continue;
2807 while (addr < vaddr) {
2808 if (count == 0)
2809 goto finished;
2810 *buf = '\0';
2811 buf++;
2812 addr++;
2813 count--;
2814 }
2815 n = vaddr + get_vm_area_size(vm) - addr;
2816 if (n > count)
2817 n = count;
2818 if (!(vm->flags & VM_IOREMAP))
2819 aligned_vread(buf, addr, n);
2820 else /* IOREMAP area is treated as memory hole */
2821 memset(buf, 0, n);
2822 buf += n;
2823 addr += n;
2824 count -= n;
2825 }
2826 finished:
2827 spin_unlock(&vmap_area_lock);
2828
2829 if (buf == buf_start)
2830 return 0;
2831 /* zero-fill memory holes */
2832 if (buf != buf_start + buflen)
2833 memset(buf, 0, buflen - (buf - buf_start));
2834
2835 return buflen;
2836 }
2837
2838 /**
2839 * vwrite() - write vmalloc area in a safe way.
2840 * @buf: buffer for source data
2841 * @addr: vm address.
2842 * @count: number of bytes to be read.
2843 *
2844 * This function checks that addr is a valid vmalloc'ed area, and
2845 * copy data from a buffer to the given addr. If specified range of
2846 * [addr...addr+count) includes some valid address, data is copied from
2847 * proper area of @buf. If there are memory holes, no copy to hole.
2848 * IOREMAP area is treated as memory hole and no copy is done.
2849 *
2850 * If [addr...addr+count) doesn't includes any intersects with alive
2851 * vm_struct area, returns 0. @buf should be kernel's buffer.
2852 *
2853 * Note: In usual ops, vwrite() is never necessary because the caller
2854 * should know vmalloc() area is valid and can use memcpy().
2855 * This is for routines which have to access vmalloc area without
2856 * any informaion, as /dev/kmem.
2857 *
2858 * Return: number of bytes for which addr and buf should be
2859 * increased (same number as @count) or %0 if [addr...addr+count)
2860 * doesn't include any intersection with valid vmalloc area
2861 */
2862 long vwrite(char *buf, char *addr, unsigned long count)
2863 {
2864 struct vmap_area *va;
2865 struct vm_struct *vm;
2866 char *vaddr;
2867 unsigned long n, buflen;
2868 int copied = 0;
2869
2870 /* Don't allow overflow */
2871 if ((unsigned long) addr + count < count)
2872 count = -(unsigned long) addr;
2873 buflen = count;
2874
2875 spin_lock(&vmap_area_lock);
2876 list_for_each_entry(va, &vmap_area_list, list) {
2877 if (!count)
2878 break;
2879
2880 if (!(va->flags & VM_VM_AREA))
2881 continue;
2882
2883 vm = va->vm;
2884 vaddr = (char *) vm->addr;
2885 if (addr >= vaddr + get_vm_area_size(vm))
2886 continue;
2887 while (addr < vaddr) {
2888 if (count == 0)
2889 goto finished;
2890 buf++;
2891 addr++;
2892 count--;
2893 }
2894 n = vaddr + get_vm_area_size(vm) - addr;
2895 if (n > count)
2896 n = count;
2897 if (!(vm->flags & VM_IOREMAP)) {
2898 aligned_vwrite(buf, addr, n);
2899 copied++;
2900 }
2901 buf += n;
2902 addr += n;
2903 count -= n;
2904 }
2905 finished:
2906 spin_unlock(&vmap_area_lock);
2907 if (!copied)
2908 return 0;
2909 return buflen;
2910 }
2911
2912 /**
2913 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2914 * @vma: vma to cover
2915 * @uaddr: target user address to start at
2916 * @kaddr: virtual address of vmalloc kernel memory
2917 * @size: size of map area
2918 *
2919 * Returns: 0 for success, -Exxx on failure
2920 *
2921 * This function checks that @kaddr is a valid vmalloc'ed area,
2922 * and that it is big enough to cover the range starting at
2923 * @uaddr in @vma. Will return failure if that criteria isn't
2924 * met.
2925 *
2926 * Similar to remap_pfn_range() (see mm/memory.c)
2927 */
2928 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2929 void *kaddr, unsigned long size)
2930 {
2931 struct vm_struct *area;
2932
2933 size = PAGE_ALIGN(size);
2934
2935 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2936 return -EINVAL;
2937
2938 area = find_vm_area(kaddr);
2939 if (!area)
2940 return -EINVAL;
2941
2942 if (!(area->flags & VM_USERMAP))
2943 return -EINVAL;
2944
2945 if (kaddr + size > area->addr + get_vm_area_size(area))
2946 return -EINVAL;
2947
2948 do {
2949 struct page *page = vmalloc_to_page(kaddr);
2950 int ret;
2951
2952 ret = vm_insert_page(vma, uaddr, page);
2953 if (ret)
2954 return ret;
2955
2956 uaddr += PAGE_SIZE;
2957 kaddr += PAGE_SIZE;
2958 size -= PAGE_SIZE;
2959 } while (size > 0);
2960
2961 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2962
2963 return 0;
2964 }
2965 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2966
2967 /**
2968 * remap_vmalloc_range - map vmalloc pages to userspace
2969 * @vma: vma to cover (map full range of vma)
2970 * @addr: vmalloc memory
2971 * @pgoff: number of pages into addr before first page to map
2972 *
2973 * Returns: 0 for success, -Exxx on failure
2974 *
2975 * This function checks that addr is a valid vmalloc'ed area, and
2976 * that it is big enough to cover the vma. Will return failure if
2977 * that criteria isn't met.
2978 *
2979 * Similar to remap_pfn_range() (see mm/memory.c)
2980 */
2981 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2982 unsigned long pgoff)
2983 {
2984 return remap_vmalloc_range_partial(vma, vma->vm_start,
2985 addr + (pgoff << PAGE_SHIFT),
2986 vma->vm_end - vma->vm_start);
2987 }
2988 EXPORT_SYMBOL(remap_vmalloc_range);
2989
2990 /*
2991 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2992 * have one.
2993 */
2994 void __weak vmalloc_sync_all(void)
2995 {
2996 }
2997
2998
2999 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
3000 {
3001 pte_t ***p = data;
3002
3003 if (p) {
3004 *(*p) = pte;
3005 (*p)++;
3006 }
3007 return 0;
3008 }
3009
3010 /**
3011 * alloc_vm_area - allocate a range of kernel address space
3012 * @size: size of the area
3013 * @ptes: returns the PTEs for the address space
3014 *
3015 * Returns: NULL on failure, vm_struct on success
3016 *
3017 * This function reserves a range of kernel address space, and
3018 * allocates pagetables to map that range. No actual mappings
3019 * are created.
3020 *
3021 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3022 * allocated for the VM area are returned.
3023 */
3024 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3025 {
3026 struct vm_struct *area;
3027
3028 area = get_vm_area_caller(size, VM_IOREMAP,
3029 __builtin_return_address(0));
3030 if (area == NULL)
3031 return NULL;
3032
3033 /*
3034 * This ensures that page tables are constructed for this region
3035 * of kernel virtual address space and mapped into init_mm.
3036 */
3037 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3038 size, f, ptes ? &ptes : NULL)) {
3039 free_vm_area(area);
3040 return NULL;
3041 }
3042
3043 return area;
3044 }
3045 EXPORT_SYMBOL_GPL(alloc_vm_area);
3046
3047 void free_vm_area(struct vm_struct *area)
3048 {
3049 struct vm_struct *ret;
3050 ret = remove_vm_area(area->addr);
3051 BUG_ON(ret != area);
3052 kfree(area);
3053 }
3054 EXPORT_SYMBOL_GPL(free_vm_area);
3055
3056 #ifdef CONFIG_SMP
3057 static struct vmap_area *node_to_va(struct rb_node *n)
3058 {
3059 return rb_entry_safe(n, struct vmap_area, rb_node);
3060 }
3061
3062 /**
3063 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3064 * @addr: target address
3065 *
3066 * Returns: vmap_area if it is found. If there is no such area
3067 * the first highest(reverse order) vmap_area is returned
3068 * i.e. va->va_start < addr && va->va_end < addr or NULL
3069 * if there are no any areas before @addr.
3070 */
3071 static struct vmap_area *
3072 pvm_find_va_enclose_addr(unsigned long addr)
3073 {
3074 struct vmap_area *va, *tmp;
3075 struct rb_node *n;
3076
3077 n = free_vmap_area_root.rb_node;
3078 va = NULL;
3079
3080 while (n) {
3081 tmp = rb_entry(n, struct vmap_area, rb_node);
3082 if (tmp->va_start <= addr) {
3083 va = tmp;
3084 if (tmp->va_end >= addr)
3085 break;
3086
3087 n = n->rb_right;
3088 } else {
3089 n = n->rb_left;
3090 }
3091 }
3092
3093 return va;
3094 }
3095
3096 /**
3097 * pvm_determine_end_from_reverse - find the highest aligned address
3098 * of free block below VMALLOC_END
3099 * @va:
3100 * in - the VA we start the search(reverse order);
3101 * out - the VA with the highest aligned end address.
3102 *
3103 * Returns: determined end address within vmap_area
3104 */
3105 static unsigned long
3106 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3107 {
3108 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3109 unsigned long addr;
3110
3111 if (likely(*va)) {
3112 list_for_each_entry_from_reverse((*va),
3113 &free_vmap_area_list, list) {
3114 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3115 if ((*va)->va_start < addr)
3116 return addr;
3117 }
3118 }
3119
3120 return 0;
3121 }
3122
3123 /**
3124 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3125 * @offsets: array containing offset of each area
3126 * @sizes: array containing size of each area
3127 * @nr_vms: the number of areas to allocate
3128 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3129 *
3130 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3131 * vm_structs on success, %NULL on failure
3132 *
3133 * Percpu allocator wants to use congruent vm areas so that it can
3134 * maintain the offsets among percpu areas. This function allocates
3135 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3136 * be scattered pretty far, distance between two areas easily going up
3137 * to gigabytes. To avoid interacting with regular vmallocs, these
3138 * areas are allocated from top.
3139 *
3140 * Despite its complicated look, this allocator is rather simple. It
3141 * does everything top-down and scans free blocks from the end looking
3142 * for matching base. While scanning, if any of the areas do not fit the
3143 * base address is pulled down to fit the area. Scanning is repeated till
3144 * all the areas fit and then all necessary data structures are inserted
3145 * and the result is returned.
3146 */
3147 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3148 const size_t *sizes, int nr_vms,
3149 size_t align)
3150 {
3151 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3152 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3153 struct vmap_area **vas, *va;
3154 struct vm_struct **vms;
3155 int area, area2, last_area, term_area;
3156 unsigned long base, start, size, end, last_end;
3157 bool purged = false;
3158 enum fit_type type;
3159
3160 /* verify parameters and allocate data structures */
3161 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3162 for (last_area = 0, area = 0; area < nr_vms; area++) {
3163 start = offsets[area];
3164 end = start + sizes[area];
3165
3166 /* is everything aligned properly? */
3167 BUG_ON(!IS_ALIGNED(offsets[area], align));
3168 BUG_ON(!IS_ALIGNED(sizes[area], align));
3169
3170 /* detect the area with the highest address */
3171 if (start > offsets[last_area])
3172 last_area = area;
3173
3174 for (area2 = area + 1; area2 < nr_vms; area2++) {
3175 unsigned long start2 = offsets[area2];
3176 unsigned long end2 = start2 + sizes[area2];
3177
3178 BUG_ON(start2 < end && start < end2);
3179 }
3180 }
3181 last_end = offsets[last_area] + sizes[last_area];
3182
3183 if (vmalloc_end - vmalloc_start < last_end) {
3184 WARN_ON(true);
3185 return NULL;
3186 }
3187
3188 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3189 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3190 if (!vas || !vms)
3191 goto err_free2;
3192
3193 for (area = 0; area < nr_vms; area++) {
3194 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3195 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3196 if (!vas[area] || !vms[area])
3197 goto err_free;
3198 }
3199 retry:
3200 spin_lock(&vmap_area_lock);
3201
3202 /* start scanning - we scan from the top, begin with the last area */
3203 area = term_area = last_area;
3204 start = offsets[area];
3205 end = start + sizes[area];
3206
3207 va = pvm_find_va_enclose_addr(vmalloc_end);
3208 base = pvm_determine_end_from_reverse(&va, align) - end;
3209
3210 while (true) {
3211 /*
3212 * base might have underflowed, add last_end before
3213 * comparing.
3214 */
3215 if (base + last_end < vmalloc_start + last_end)
3216 goto overflow;
3217
3218 /*
3219 * Fitting base has not been found.
3220 */
3221 if (va == NULL)
3222 goto overflow;
3223
3224 /*
3225 * If this VA does not fit, move base downwards and recheck.
3226 */
3227 if (base + start < va->va_start || base + end > va->va_end) {
3228 va = node_to_va(rb_prev(&va->rb_node));
3229 base = pvm_determine_end_from_reverse(&va, align) - end;
3230 term_area = area;
3231 continue;
3232 }
3233
3234 /*
3235 * This area fits, move on to the previous one. If
3236 * the previous one is the terminal one, we're done.
3237 */
3238 area = (area + nr_vms - 1) % nr_vms;
3239 if (area == term_area)
3240 break;
3241
3242 start = offsets[area];
3243 end = start + sizes[area];
3244 va = pvm_find_va_enclose_addr(base + end);
3245 }
3246
3247 /* we've found a fitting base, insert all va's */
3248 for (area = 0; area < nr_vms; area++) {
3249 int ret;
3250
3251 start = base + offsets[area];
3252 size = sizes[area];
3253
3254 va = pvm_find_va_enclose_addr(start);
3255 if (WARN_ON_ONCE(va == NULL))
3256 /* It is a BUG(), but trigger recovery instead. */
3257 goto recovery;
3258
3259 type = classify_va_fit_type(va, start, size);
3260 if (WARN_ON_ONCE(type == NOTHING_FIT))
3261 /* It is a BUG(), but trigger recovery instead. */
3262 goto recovery;
3263
3264 ret = adjust_va_to_fit_type(va, start, size, type);
3265 if (unlikely(ret))
3266 goto recovery;
3267
3268 /* Allocated area. */
3269 va = vas[area];
3270 va->va_start = start;
3271 va->va_end = start + size;
3272
3273 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
3274 }
3275
3276 spin_unlock(&vmap_area_lock);
3277
3278 /* insert all vm's */
3279 for (area = 0; area < nr_vms; area++)
3280 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
3281 pcpu_get_vm_areas);
3282
3283 kfree(vas);
3284 return vms;
3285
3286 recovery:
3287 /* Remove previously inserted areas. */
3288 while (area--) {
3289 __free_vmap_area(vas[area]);
3290 vas[area] = NULL;
3291 }
3292
3293 overflow:
3294 spin_unlock(&vmap_area_lock);
3295 if (!purged) {
3296 purge_vmap_area_lazy();
3297 purged = true;
3298
3299 /* Before "retry", check if we recover. */
3300 for (area = 0; area < nr_vms; area++) {
3301 if (vas[area])
3302 continue;
3303
3304 vas[area] = kmem_cache_zalloc(
3305 vmap_area_cachep, GFP_KERNEL);
3306 if (!vas[area])
3307 goto err_free;
3308 }
3309
3310 goto retry;
3311 }
3312
3313 err_free:
3314 for (area = 0; area < nr_vms; area++) {
3315 if (vas[area])
3316 kmem_cache_free(vmap_area_cachep, vas[area]);
3317
3318 kfree(vms[area]);
3319 }
3320 err_free2:
3321 kfree(vas);
3322 kfree(vms);
3323 return NULL;
3324 }
3325
3326 /**
3327 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3328 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3329 * @nr_vms: the number of allocated areas
3330 *
3331 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3332 */
3333 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3334 {
3335 int i;
3336
3337 for (i = 0; i < nr_vms; i++)
3338 free_vm_area(vms[i]);
3339 kfree(vms);
3340 }
3341 #endif /* CONFIG_SMP */
3342
3343 #ifdef CONFIG_PROC_FS
3344 static void *s_start(struct seq_file *m, loff_t *pos)
3345 __acquires(&vmap_area_lock)
3346 {
3347 spin_lock(&vmap_area_lock);
3348 return seq_list_start(&vmap_area_list, *pos);
3349 }
3350
3351 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3352 {
3353 return seq_list_next(p, &vmap_area_list, pos);
3354 }
3355
3356 static void s_stop(struct seq_file *m, void *p)
3357 __releases(&vmap_area_lock)
3358 {
3359 spin_unlock(&vmap_area_lock);
3360 }
3361
3362 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3363 {
3364 if (IS_ENABLED(CONFIG_NUMA)) {
3365 unsigned int nr, *counters = m->private;
3366
3367 if (!counters)
3368 return;
3369
3370 if (v->flags & VM_UNINITIALIZED)
3371 return;
3372 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3373 smp_rmb();
3374
3375 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3376
3377 for (nr = 0; nr < v->nr_pages; nr++)
3378 counters[page_to_nid(v->pages[nr])]++;
3379
3380 for_each_node_state(nr, N_HIGH_MEMORY)
3381 if (counters[nr])
3382 seq_printf(m, " N%u=%u", nr, counters[nr]);
3383 }
3384 }
3385
3386 static int s_show(struct seq_file *m, void *p)
3387 {
3388 struct vmap_area *va;
3389 struct vm_struct *v;
3390
3391 va = list_entry(p, struct vmap_area, list);
3392
3393 /*
3394 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
3395 * behalf of vmap area is being tear down or vm_map_ram allocation.
3396 */
3397 if (!(va->flags & VM_VM_AREA)) {
3398 seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
3399 (void *)va->va_start, (void *)va->va_end,
3400 va->va_end - va->va_start,
3401 va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
3402
3403 return 0;
3404 }
3405
3406 v = va->vm;
3407
3408 seq_printf(m, "0x%pK-0x%pK %7ld",
3409 v->addr, v->addr + v->size, v->size);
3410
3411 if (v->caller)
3412 seq_printf(m, " %pS", v->caller);
3413
3414 if (v->nr_pages)
3415 seq_printf(m, " pages=%d", v->nr_pages);
3416
3417 if (v->phys_addr)
3418 seq_printf(m, " phys=%pa", &v->phys_addr);
3419
3420 if (v->flags & VM_IOREMAP)
3421 seq_puts(m, " ioremap");
3422
3423 if (v->flags & VM_ALLOC)
3424 seq_puts(m, " vmalloc");
3425
3426 if (v->flags & VM_MAP)
3427 seq_puts(m, " vmap");
3428
3429 if (v->flags & VM_USERMAP)
3430 seq_puts(m, " user");
3431
3432 if (is_vmalloc_addr(v->pages))
3433 seq_puts(m, " vpages");
3434
3435 show_numa_info(m, v);
3436 seq_putc(m, '\n');
3437 return 0;
3438 }
3439
3440 static const struct seq_operations vmalloc_op = {
3441 .start = s_start,
3442 .next = s_next,
3443 .stop = s_stop,
3444 .show = s_show,
3445 };
3446
3447 static int __init proc_vmalloc_init(void)
3448 {
3449 if (IS_ENABLED(CONFIG_NUMA))
3450 proc_create_seq_private("vmallocinfo", 0400, NULL,
3451 &vmalloc_op,
3452 nr_node_ids * sizeof(unsigned int), NULL);
3453 else
3454 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3455 return 0;
3456 }
3457 module_init(proc_vmalloc_init);
3458
3459 #endif