]> git.proxmox.com Git - mirror_ubuntu-impish-kernel.git/blob - mm/vmalloc.c
UBUNTU: [Config] enable signing for ppc64el
[mirror_ubuntu-impish-kernel.git] / mm / vmalloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7 * Numa awareness, Christoph Lameter, SGI, June 2005
8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/rcupdate.h>
29 #include <linux/pfn.h>
30 #include <linux/kmemleak.h>
31 #include <linux/atomic.h>
32 #include <linux/compiler.h>
33 #include <linux/llist.h>
34 #include <linux/bitops.h>
35 #include <linux/rbtree_augmented.h>
36 #include <linux/overflow.h>
37 #include <linux/pgtable.h>
38 #include <linux/uaccess.h>
39 #include <asm/tlbflush.h>
40 #include <asm/shmparam.h>
41
42 #include "internal.h"
43 #include "pgalloc-track.h"
44
45 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
46 static bool __ro_after_init vmap_allow_huge = true;
47
48 static int __init set_nohugevmalloc(char *str)
49 {
50 vmap_allow_huge = false;
51 return 0;
52 }
53 early_param("nohugevmalloc", set_nohugevmalloc);
54 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
55 static const bool vmap_allow_huge = false;
56 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
57
58 bool is_vmalloc_addr(const void *x)
59 {
60 unsigned long addr = (unsigned long)x;
61
62 return addr >= VMALLOC_START && addr < VMALLOC_END;
63 }
64 EXPORT_SYMBOL(is_vmalloc_addr);
65
66 struct vfree_deferred {
67 struct llist_head list;
68 struct work_struct wq;
69 };
70 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
71
72 static void __vunmap(const void *, int);
73
74 static void free_work(struct work_struct *w)
75 {
76 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
77 struct llist_node *t, *llnode;
78
79 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
80 __vunmap((void *)llnode, 1);
81 }
82
83 /*** Page table manipulation functions ***/
84 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
85 phys_addr_t phys_addr, pgprot_t prot,
86 pgtbl_mod_mask *mask)
87 {
88 pte_t *pte;
89 u64 pfn;
90
91 pfn = phys_addr >> PAGE_SHIFT;
92 pte = pte_alloc_kernel_track(pmd, addr, mask);
93 if (!pte)
94 return -ENOMEM;
95 do {
96 BUG_ON(!pte_none(*pte));
97 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
98 pfn++;
99 } while (pte++, addr += PAGE_SIZE, addr != end);
100 *mask |= PGTBL_PTE_MODIFIED;
101 return 0;
102 }
103
104 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
105 phys_addr_t phys_addr, pgprot_t prot,
106 unsigned int max_page_shift)
107 {
108 if (max_page_shift < PMD_SHIFT)
109 return 0;
110
111 if (!arch_vmap_pmd_supported(prot))
112 return 0;
113
114 if ((end - addr) != PMD_SIZE)
115 return 0;
116
117 if (!IS_ALIGNED(addr, PMD_SIZE))
118 return 0;
119
120 if (!IS_ALIGNED(phys_addr, PMD_SIZE))
121 return 0;
122
123 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
124 return 0;
125
126 return pmd_set_huge(pmd, phys_addr, prot);
127 }
128
129 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
130 phys_addr_t phys_addr, pgprot_t prot,
131 unsigned int max_page_shift, pgtbl_mod_mask *mask)
132 {
133 pmd_t *pmd;
134 unsigned long next;
135
136 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
137 if (!pmd)
138 return -ENOMEM;
139 do {
140 next = pmd_addr_end(addr, end);
141
142 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
143 max_page_shift)) {
144 *mask |= PGTBL_PMD_MODIFIED;
145 continue;
146 }
147
148 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, mask))
149 return -ENOMEM;
150 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
151 return 0;
152 }
153
154 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
155 phys_addr_t phys_addr, pgprot_t prot,
156 unsigned int max_page_shift)
157 {
158 if (max_page_shift < PUD_SHIFT)
159 return 0;
160
161 if (!arch_vmap_pud_supported(prot))
162 return 0;
163
164 if ((end - addr) != PUD_SIZE)
165 return 0;
166
167 if (!IS_ALIGNED(addr, PUD_SIZE))
168 return 0;
169
170 if (!IS_ALIGNED(phys_addr, PUD_SIZE))
171 return 0;
172
173 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
174 return 0;
175
176 return pud_set_huge(pud, phys_addr, prot);
177 }
178
179 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
180 phys_addr_t phys_addr, pgprot_t prot,
181 unsigned int max_page_shift, pgtbl_mod_mask *mask)
182 {
183 pud_t *pud;
184 unsigned long next;
185
186 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
187 if (!pud)
188 return -ENOMEM;
189 do {
190 next = pud_addr_end(addr, end);
191
192 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
193 max_page_shift)) {
194 *mask |= PGTBL_PUD_MODIFIED;
195 continue;
196 }
197
198 if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
199 max_page_shift, mask))
200 return -ENOMEM;
201 } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
202 return 0;
203 }
204
205 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
206 phys_addr_t phys_addr, pgprot_t prot,
207 unsigned int max_page_shift)
208 {
209 if (max_page_shift < P4D_SHIFT)
210 return 0;
211
212 if (!arch_vmap_p4d_supported(prot))
213 return 0;
214
215 if ((end - addr) != P4D_SIZE)
216 return 0;
217
218 if (!IS_ALIGNED(addr, P4D_SIZE))
219 return 0;
220
221 if (!IS_ALIGNED(phys_addr, P4D_SIZE))
222 return 0;
223
224 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
225 return 0;
226
227 return p4d_set_huge(p4d, phys_addr, prot);
228 }
229
230 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
231 phys_addr_t phys_addr, pgprot_t prot,
232 unsigned int max_page_shift, pgtbl_mod_mask *mask)
233 {
234 p4d_t *p4d;
235 unsigned long next;
236
237 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
238 if (!p4d)
239 return -ENOMEM;
240 do {
241 next = p4d_addr_end(addr, end);
242
243 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
244 max_page_shift)) {
245 *mask |= PGTBL_P4D_MODIFIED;
246 continue;
247 }
248
249 if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
250 max_page_shift, mask))
251 return -ENOMEM;
252 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
253 return 0;
254 }
255
256 static int vmap_range_noflush(unsigned long addr, unsigned long end,
257 phys_addr_t phys_addr, pgprot_t prot,
258 unsigned int max_page_shift)
259 {
260 pgd_t *pgd;
261 unsigned long start;
262 unsigned long next;
263 int err;
264 pgtbl_mod_mask mask = 0;
265
266 might_sleep();
267 BUG_ON(addr >= end);
268
269 start = addr;
270 pgd = pgd_offset_k(addr);
271 do {
272 next = pgd_addr_end(addr, end);
273 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
274 max_page_shift, &mask);
275 if (err)
276 break;
277 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
278
279 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
280 arch_sync_kernel_mappings(start, end);
281
282 return err;
283 }
284
285 int vmap_range(unsigned long addr, unsigned long end,
286 phys_addr_t phys_addr, pgprot_t prot,
287 unsigned int max_page_shift)
288 {
289 int err;
290
291 err = vmap_range_noflush(addr, end, phys_addr, prot, max_page_shift);
292 flush_cache_vmap(addr, end);
293
294 return err;
295 }
296
297 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
298 pgtbl_mod_mask *mask)
299 {
300 pte_t *pte;
301
302 pte = pte_offset_kernel(pmd, addr);
303 do {
304 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
305 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
306 } while (pte++, addr += PAGE_SIZE, addr != end);
307 *mask |= PGTBL_PTE_MODIFIED;
308 }
309
310 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
311 pgtbl_mod_mask *mask)
312 {
313 pmd_t *pmd;
314 unsigned long next;
315 int cleared;
316
317 pmd = pmd_offset(pud, addr);
318 do {
319 next = pmd_addr_end(addr, end);
320
321 cleared = pmd_clear_huge(pmd);
322 if (cleared || pmd_bad(*pmd))
323 *mask |= PGTBL_PMD_MODIFIED;
324
325 if (cleared)
326 continue;
327 if (pmd_none_or_clear_bad(pmd))
328 continue;
329 vunmap_pte_range(pmd, addr, next, mask);
330
331 cond_resched();
332 } while (pmd++, addr = next, addr != end);
333 }
334
335 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
336 pgtbl_mod_mask *mask)
337 {
338 pud_t *pud;
339 unsigned long next;
340 int cleared;
341
342 pud = pud_offset(p4d, addr);
343 do {
344 next = pud_addr_end(addr, end);
345
346 cleared = pud_clear_huge(pud);
347 if (cleared || pud_bad(*pud))
348 *mask |= PGTBL_PUD_MODIFIED;
349
350 if (cleared)
351 continue;
352 if (pud_none_or_clear_bad(pud))
353 continue;
354 vunmap_pmd_range(pud, addr, next, mask);
355 } while (pud++, addr = next, addr != end);
356 }
357
358 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
359 pgtbl_mod_mask *mask)
360 {
361 p4d_t *p4d;
362 unsigned long next;
363 int cleared;
364
365 p4d = p4d_offset(pgd, addr);
366 do {
367 next = p4d_addr_end(addr, end);
368
369 cleared = p4d_clear_huge(p4d);
370 if (cleared || p4d_bad(*p4d))
371 *mask |= PGTBL_P4D_MODIFIED;
372
373 if (cleared)
374 continue;
375 if (p4d_none_or_clear_bad(p4d))
376 continue;
377 vunmap_pud_range(p4d, addr, next, mask);
378 } while (p4d++, addr = next, addr != end);
379 }
380
381 /*
382 * vunmap_range_noflush is similar to vunmap_range, but does not
383 * flush caches or TLBs.
384 *
385 * The caller is responsible for calling flush_cache_vmap() before calling
386 * this function, and flush_tlb_kernel_range after it has returned
387 * successfully (and before the addresses are expected to cause a page fault
388 * or be re-mapped for something else, if TLB flushes are being delayed or
389 * coalesced).
390 *
391 * This is an internal function only. Do not use outside mm/.
392 */
393 void vunmap_range_noflush(unsigned long start, unsigned long end)
394 {
395 unsigned long next;
396 pgd_t *pgd;
397 unsigned long addr = start;
398 pgtbl_mod_mask mask = 0;
399
400 BUG_ON(addr >= end);
401 pgd = pgd_offset_k(addr);
402 do {
403 next = pgd_addr_end(addr, end);
404 if (pgd_bad(*pgd))
405 mask |= PGTBL_PGD_MODIFIED;
406 if (pgd_none_or_clear_bad(pgd))
407 continue;
408 vunmap_p4d_range(pgd, addr, next, &mask);
409 } while (pgd++, addr = next, addr != end);
410
411 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
412 arch_sync_kernel_mappings(start, end);
413 }
414
415 /**
416 * vunmap_range - unmap kernel virtual addresses
417 * @addr: start of the VM area to unmap
418 * @end: end of the VM area to unmap (non-inclusive)
419 *
420 * Clears any present PTEs in the virtual address range, flushes TLBs and
421 * caches. Any subsequent access to the address before it has been re-mapped
422 * is a kernel bug.
423 */
424 void vunmap_range(unsigned long addr, unsigned long end)
425 {
426 flush_cache_vunmap(addr, end);
427 vunmap_range_noflush(addr, end);
428 flush_tlb_kernel_range(addr, end);
429 }
430
431 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
432 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
433 pgtbl_mod_mask *mask)
434 {
435 pte_t *pte;
436
437 /*
438 * nr is a running index into the array which helps higher level
439 * callers keep track of where we're up to.
440 */
441
442 pte = pte_alloc_kernel_track(pmd, addr, mask);
443 if (!pte)
444 return -ENOMEM;
445 do {
446 struct page *page = pages[*nr];
447
448 if (WARN_ON(!pte_none(*pte)))
449 return -EBUSY;
450 if (WARN_ON(!page))
451 return -ENOMEM;
452 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
453 (*nr)++;
454 } while (pte++, addr += PAGE_SIZE, addr != end);
455 *mask |= PGTBL_PTE_MODIFIED;
456 return 0;
457 }
458
459 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
460 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
461 pgtbl_mod_mask *mask)
462 {
463 pmd_t *pmd;
464 unsigned long next;
465
466 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
467 if (!pmd)
468 return -ENOMEM;
469 do {
470 next = pmd_addr_end(addr, end);
471 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
472 return -ENOMEM;
473 } while (pmd++, addr = next, addr != end);
474 return 0;
475 }
476
477 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
478 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
479 pgtbl_mod_mask *mask)
480 {
481 pud_t *pud;
482 unsigned long next;
483
484 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
485 if (!pud)
486 return -ENOMEM;
487 do {
488 next = pud_addr_end(addr, end);
489 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
490 return -ENOMEM;
491 } while (pud++, addr = next, addr != end);
492 return 0;
493 }
494
495 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
496 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
497 pgtbl_mod_mask *mask)
498 {
499 p4d_t *p4d;
500 unsigned long next;
501
502 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
503 if (!p4d)
504 return -ENOMEM;
505 do {
506 next = p4d_addr_end(addr, end);
507 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
508 return -ENOMEM;
509 } while (p4d++, addr = next, addr != end);
510 return 0;
511 }
512
513 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
514 pgprot_t prot, struct page **pages)
515 {
516 unsigned long start = addr;
517 pgd_t *pgd;
518 unsigned long next;
519 int err = 0;
520 int nr = 0;
521 pgtbl_mod_mask mask = 0;
522
523 BUG_ON(addr >= end);
524 pgd = pgd_offset_k(addr);
525 do {
526 next = pgd_addr_end(addr, end);
527 if (pgd_bad(*pgd))
528 mask |= PGTBL_PGD_MODIFIED;
529 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
530 if (err)
531 return err;
532 } while (pgd++, addr = next, addr != end);
533
534 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
535 arch_sync_kernel_mappings(start, end);
536
537 return 0;
538 }
539
540 /*
541 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
542 * flush caches.
543 *
544 * The caller is responsible for calling flush_cache_vmap() after this
545 * function returns successfully and before the addresses are accessed.
546 *
547 * This is an internal function only. Do not use outside mm/.
548 */
549 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
550 pgprot_t prot, struct page **pages, unsigned int page_shift)
551 {
552 unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
553
554 WARN_ON(page_shift < PAGE_SHIFT);
555
556 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
557 page_shift == PAGE_SHIFT)
558 return vmap_small_pages_range_noflush(addr, end, prot, pages);
559
560 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
561 int err;
562
563 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
564 __pa(page_address(pages[i])), prot,
565 page_shift);
566 if (err)
567 return err;
568
569 addr += 1UL << page_shift;
570 }
571
572 return 0;
573 }
574
575 /**
576 * vmap_pages_range - map pages to a kernel virtual address
577 * @addr: start of the VM area to map
578 * @end: end of the VM area to map (non-inclusive)
579 * @prot: page protection flags to use
580 * @pages: pages to map (always PAGE_SIZE pages)
581 * @page_shift: maximum shift that the pages may be mapped with, @pages must
582 * be aligned and contiguous up to at least this shift.
583 *
584 * RETURNS:
585 * 0 on success, -errno on failure.
586 */
587 static int vmap_pages_range(unsigned long addr, unsigned long end,
588 pgprot_t prot, struct page **pages, unsigned int page_shift)
589 {
590 int err;
591
592 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
593 flush_cache_vmap(addr, end);
594 return err;
595 }
596
597 int is_vmalloc_or_module_addr(const void *x)
598 {
599 /*
600 * ARM, x86-64 and sparc64 put modules in a special place,
601 * and fall back on vmalloc() if that fails. Others
602 * just put it in the vmalloc space.
603 */
604 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
605 unsigned long addr = (unsigned long)x;
606 if (addr >= MODULES_VADDR && addr < MODULES_END)
607 return 1;
608 #endif
609 return is_vmalloc_addr(x);
610 }
611
612 /*
613 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
614 * return the tail page that corresponds to the base page address, which
615 * matches small vmap mappings.
616 */
617 struct page *vmalloc_to_page(const void *vmalloc_addr)
618 {
619 unsigned long addr = (unsigned long) vmalloc_addr;
620 struct page *page = NULL;
621 pgd_t *pgd = pgd_offset_k(addr);
622 p4d_t *p4d;
623 pud_t *pud;
624 pmd_t *pmd;
625 pte_t *ptep, pte;
626
627 /*
628 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
629 * architectures that do not vmalloc module space
630 */
631 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
632
633 if (pgd_none(*pgd))
634 return NULL;
635 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
636 return NULL; /* XXX: no allowance for huge pgd */
637 if (WARN_ON_ONCE(pgd_bad(*pgd)))
638 return NULL;
639
640 p4d = p4d_offset(pgd, addr);
641 if (p4d_none(*p4d))
642 return NULL;
643 if (p4d_leaf(*p4d))
644 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
645 if (WARN_ON_ONCE(p4d_bad(*p4d)))
646 return NULL;
647
648 pud = pud_offset(p4d, addr);
649 if (pud_none(*pud))
650 return NULL;
651 if (pud_leaf(*pud))
652 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
653 if (WARN_ON_ONCE(pud_bad(*pud)))
654 return NULL;
655
656 pmd = pmd_offset(pud, addr);
657 if (pmd_none(*pmd))
658 return NULL;
659 if (pmd_leaf(*pmd))
660 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
661 if (WARN_ON_ONCE(pmd_bad(*pmd)))
662 return NULL;
663
664 ptep = pte_offset_map(pmd, addr);
665 pte = *ptep;
666 if (pte_present(pte))
667 page = pte_page(pte);
668 pte_unmap(ptep);
669
670 return page;
671 }
672 EXPORT_SYMBOL(vmalloc_to_page);
673
674 /*
675 * Map a vmalloc()-space virtual address to the physical page frame number.
676 */
677 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
678 {
679 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
680 }
681 EXPORT_SYMBOL(vmalloc_to_pfn);
682
683
684 /*** Global kva allocator ***/
685
686 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
687 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
688
689
690 static DEFINE_SPINLOCK(vmap_area_lock);
691 static DEFINE_SPINLOCK(free_vmap_area_lock);
692 /* Export for kexec only */
693 LIST_HEAD(vmap_area_list);
694 static struct rb_root vmap_area_root = RB_ROOT;
695 static bool vmap_initialized __read_mostly;
696
697 static struct rb_root purge_vmap_area_root = RB_ROOT;
698 static LIST_HEAD(purge_vmap_area_list);
699 static DEFINE_SPINLOCK(purge_vmap_area_lock);
700
701 /*
702 * This kmem_cache is used for vmap_area objects. Instead of
703 * allocating from slab we reuse an object from this cache to
704 * make things faster. Especially in "no edge" splitting of
705 * free block.
706 */
707 static struct kmem_cache *vmap_area_cachep;
708
709 /*
710 * This linked list is used in pair with free_vmap_area_root.
711 * It gives O(1) access to prev/next to perform fast coalescing.
712 */
713 static LIST_HEAD(free_vmap_area_list);
714
715 /*
716 * This augment red-black tree represents the free vmap space.
717 * All vmap_area objects in this tree are sorted by va->va_start
718 * address. It is used for allocation and merging when a vmap
719 * object is released.
720 *
721 * Each vmap_area node contains a maximum available free block
722 * of its sub-tree, right or left. Therefore it is possible to
723 * find a lowest match of free area.
724 */
725 static struct rb_root free_vmap_area_root = RB_ROOT;
726
727 /*
728 * Preload a CPU with one object for "no edge" split case. The
729 * aim is to get rid of allocations from the atomic context, thus
730 * to use more permissive allocation masks.
731 */
732 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
733
734 static __always_inline unsigned long
735 va_size(struct vmap_area *va)
736 {
737 return (va->va_end - va->va_start);
738 }
739
740 static __always_inline unsigned long
741 get_subtree_max_size(struct rb_node *node)
742 {
743 struct vmap_area *va;
744
745 va = rb_entry_safe(node, struct vmap_area, rb_node);
746 return va ? va->subtree_max_size : 0;
747 }
748
749 /*
750 * Gets called when remove the node and rotate.
751 */
752 static __always_inline unsigned long
753 compute_subtree_max_size(struct vmap_area *va)
754 {
755 return max3(va_size(va),
756 get_subtree_max_size(va->rb_node.rb_left),
757 get_subtree_max_size(va->rb_node.rb_right));
758 }
759
760 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
761 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
762
763 static void purge_vmap_area_lazy(void);
764 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
765 static unsigned long lazy_max_pages(void);
766
767 static atomic_long_t nr_vmalloc_pages;
768
769 unsigned long vmalloc_nr_pages(void)
770 {
771 return atomic_long_read(&nr_vmalloc_pages);
772 }
773
774 static struct vmap_area *__find_vmap_area(unsigned long addr)
775 {
776 struct rb_node *n = vmap_area_root.rb_node;
777
778 while (n) {
779 struct vmap_area *va;
780
781 va = rb_entry(n, struct vmap_area, rb_node);
782 if (addr < va->va_start)
783 n = n->rb_left;
784 else if (addr >= va->va_end)
785 n = n->rb_right;
786 else
787 return va;
788 }
789
790 return NULL;
791 }
792
793 /*
794 * This function returns back addresses of parent node
795 * and its left or right link for further processing.
796 *
797 * Otherwise NULL is returned. In that case all further
798 * steps regarding inserting of conflicting overlap range
799 * have to be declined and actually considered as a bug.
800 */
801 static __always_inline struct rb_node **
802 find_va_links(struct vmap_area *va,
803 struct rb_root *root, struct rb_node *from,
804 struct rb_node **parent)
805 {
806 struct vmap_area *tmp_va;
807 struct rb_node **link;
808
809 if (root) {
810 link = &root->rb_node;
811 if (unlikely(!*link)) {
812 *parent = NULL;
813 return link;
814 }
815 } else {
816 link = &from;
817 }
818
819 /*
820 * Go to the bottom of the tree. When we hit the last point
821 * we end up with parent rb_node and correct direction, i name
822 * it link, where the new va->rb_node will be attached to.
823 */
824 do {
825 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
826
827 /*
828 * During the traversal we also do some sanity check.
829 * Trigger the BUG() if there are sides(left/right)
830 * or full overlaps.
831 */
832 if (va->va_start < tmp_va->va_end &&
833 va->va_end <= tmp_va->va_start)
834 link = &(*link)->rb_left;
835 else if (va->va_end > tmp_va->va_start &&
836 va->va_start >= tmp_va->va_end)
837 link = &(*link)->rb_right;
838 else {
839 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
840 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
841
842 return NULL;
843 }
844 } while (*link);
845
846 *parent = &tmp_va->rb_node;
847 return link;
848 }
849
850 static __always_inline struct list_head *
851 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
852 {
853 struct list_head *list;
854
855 if (unlikely(!parent))
856 /*
857 * The red-black tree where we try to find VA neighbors
858 * before merging or inserting is empty, i.e. it means
859 * there is no free vmap space. Normally it does not
860 * happen but we handle this case anyway.
861 */
862 return NULL;
863
864 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
865 return (&parent->rb_right == link ? list->next : list);
866 }
867
868 static __always_inline void
869 link_va(struct vmap_area *va, struct rb_root *root,
870 struct rb_node *parent, struct rb_node **link, struct list_head *head)
871 {
872 /*
873 * VA is still not in the list, but we can
874 * identify its future previous list_head node.
875 */
876 if (likely(parent)) {
877 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
878 if (&parent->rb_right != link)
879 head = head->prev;
880 }
881
882 /* Insert to the rb-tree */
883 rb_link_node(&va->rb_node, parent, link);
884 if (root == &free_vmap_area_root) {
885 /*
886 * Some explanation here. Just perform simple insertion
887 * to the tree. We do not set va->subtree_max_size to
888 * its current size before calling rb_insert_augmented().
889 * It is because of we populate the tree from the bottom
890 * to parent levels when the node _is_ in the tree.
891 *
892 * Therefore we set subtree_max_size to zero after insertion,
893 * to let __augment_tree_propagate_from() puts everything to
894 * the correct order later on.
895 */
896 rb_insert_augmented(&va->rb_node,
897 root, &free_vmap_area_rb_augment_cb);
898 va->subtree_max_size = 0;
899 } else {
900 rb_insert_color(&va->rb_node, root);
901 }
902
903 /* Address-sort this list */
904 list_add(&va->list, head);
905 }
906
907 static __always_inline void
908 unlink_va(struct vmap_area *va, struct rb_root *root)
909 {
910 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
911 return;
912
913 if (root == &free_vmap_area_root)
914 rb_erase_augmented(&va->rb_node,
915 root, &free_vmap_area_rb_augment_cb);
916 else
917 rb_erase(&va->rb_node, root);
918
919 list_del(&va->list);
920 RB_CLEAR_NODE(&va->rb_node);
921 }
922
923 #if DEBUG_AUGMENT_PROPAGATE_CHECK
924 static void
925 augment_tree_propagate_check(void)
926 {
927 struct vmap_area *va;
928 unsigned long computed_size;
929
930 list_for_each_entry(va, &free_vmap_area_list, list) {
931 computed_size = compute_subtree_max_size(va);
932 if (computed_size != va->subtree_max_size)
933 pr_emerg("tree is corrupted: %lu, %lu\n",
934 va_size(va), va->subtree_max_size);
935 }
936 }
937 #endif
938
939 /*
940 * This function populates subtree_max_size from bottom to upper
941 * levels starting from VA point. The propagation must be done
942 * when VA size is modified by changing its va_start/va_end. Or
943 * in case of newly inserting of VA to the tree.
944 *
945 * It means that __augment_tree_propagate_from() must be called:
946 * - After VA has been inserted to the tree(free path);
947 * - After VA has been shrunk(allocation path);
948 * - After VA has been increased(merging path).
949 *
950 * Please note that, it does not mean that upper parent nodes
951 * and their subtree_max_size are recalculated all the time up
952 * to the root node.
953 *
954 * 4--8
955 * /\
956 * / \
957 * / \
958 * 2--2 8--8
959 *
960 * For example if we modify the node 4, shrinking it to 2, then
961 * no any modification is required. If we shrink the node 2 to 1
962 * its subtree_max_size is updated only, and set to 1. If we shrink
963 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
964 * node becomes 4--6.
965 */
966 static __always_inline void
967 augment_tree_propagate_from(struct vmap_area *va)
968 {
969 /*
970 * Populate the tree from bottom towards the root until
971 * the calculated maximum available size of checked node
972 * is equal to its current one.
973 */
974 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
975
976 #if DEBUG_AUGMENT_PROPAGATE_CHECK
977 augment_tree_propagate_check();
978 #endif
979 }
980
981 static void
982 insert_vmap_area(struct vmap_area *va,
983 struct rb_root *root, struct list_head *head)
984 {
985 struct rb_node **link;
986 struct rb_node *parent;
987
988 link = find_va_links(va, root, NULL, &parent);
989 if (link)
990 link_va(va, root, parent, link, head);
991 }
992
993 static void
994 insert_vmap_area_augment(struct vmap_area *va,
995 struct rb_node *from, struct rb_root *root,
996 struct list_head *head)
997 {
998 struct rb_node **link;
999 struct rb_node *parent;
1000
1001 if (from)
1002 link = find_va_links(va, NULL, from, &parent);
1003 else
1004 link = find_va_links(va, root, NULL, &parent);
1005
1006 if (link) {
1007 link_va(va, root, parent, link, head);
1008 augment_tree_propagate_from(va);
1009 }
1010 }
1011
1012 /*
1013 * Merge de-allocated chunk of VA memory with previous
1014 * and next free blocks. If coalesce is not done a new
1015 * free area is inserted. If VA has been merged, it is
1016 * freed.
1017 *
1018 * Please note, it can return NULL in case of overlap
1019 * ranges, followed by WARN() report. Despite it is a
1020 * buggy behaviour, a system can be alive and keep
1021 * ongoing.
1022 */
1023 static __always_inline struct vmap_area *
1024 merge_or_add_vmap_area(struct vmap_area *va,
1025 struct rb_root *root, struct list_head *head)
1026 {
1027 struct vmap_area *sibling;
1028 struct list_head *next;
1029 struct rb_node **link;
1030 struct rb_node *parent;
1031 bool merged = false;
1032
1033 /*
1034 * Find a place in the tree where VA potentially will be
1035 * inserted, unless it is merged with its sibling/siblings.
1036 */
1037 link = find_va_links(va, root, NULL, &parent);
1038 if (!link)
1039 return NULL;
1040
1041 /*
1042 * Get next node of VA to check if merging can be done.
1043 */
1044 next = get_va_next_sibling(parent, link);
1045 if (unlikely(next == NULL))
1046 goto insert;
1047
1048 /*
1049 * start end
1050 * | |
1051 * |<------VA------>|<-----Next----->|
1052 * | |
1053 * start end
1054 */
1055 if (next != head) {
1056 sibling = list_entry(next, struct vmap_area, list);
1057 if (sibling->va_start == va->va_end) {
1058 sibling->va_start = va->va_start;
1059
1060 /* Free vmap_area object. */
1061 kmem_cache_free(vmap_area_cachep, va);
1062
1063 /* Point to the new merged area. */
1064 va = sibling;
1065 merged = true;
1066 }
1067 }
1068
1069 /*
1070 * start end
1071 * | |
1072 * |<-----Prev----->|<------VA------>|
1073 * | |
1074 * start end
1075 */
1076 if (next->prev != head) {
1077 sibling = list_entry(next->prev, struct vmap_area, list);
1078 if (sibling->va_end == va->va_start) {
1079 /*
1080 * If both neighbors are coalesced, it is important
1081 * to unlink the "next" node first, followed by merging
1082 * with "previous" one. Otherwise the tree might not be
1083 * fully populated if a sibling's augmented value is
1084 * "normalized" because of rotation operations.
1085 */
1086 if (merged)
1087 unlink_va(va, root);
1088
1089 sibling->va_end = va->va_end;
1090
1091 /* Free vmap_area object. */
1092 kmem_cache_free(vmap_area_cachep, va);
1093
1094 /* Point to the new merged area. */
1095 va = sibling;
1096 merged = true;
1097 }
1098 }
1099
1100 insert:
1101 if (!merged)
1102 link_va(va, root, parent, link, head);
1103
1104 return va;
1105 }
1106
1107 static __always_inline struct vmap_area *
1108 merge_or_add_vmap_area_augment(struct vmap_area *va,
1109 struct rb_root *root, struct list_head *head)
1110 {
1111 va = merge_or_add_vmap_area(va, root, head);
1112 if (va)
1113 augment_tree_propagate_from(va);
1114
1115 return va;
1116 }
1117
1118 static __always_inline bool
1119 is_within_this_va(struct vmap_area *va, unsigned long size,
1120 unsigned long align, unsigned long vstart)
1121 {
1122 unsigned long nva_start_addr;
1123
1124 if (va->va_start > vstart)
1125 nva_start_addr = ALIGN(va->va_start, align);
1126 else
1127 nva_start_addr = ALIGN(vstart, align);
1128
1129 /* Can be overflowed due to big size or alignment. */
1130 if (nva_start_addr + size < nva_start_addr ||
1131 nva_start_addr < vstart)
1132 return false;
1133
1134 return (nva_start_addr + size <= va->va_end);
1135 }
1136
1137 /*
1138 * Find the first free block(lowest start address) in the tree,
1139 * that will accomplish the request corresponding to passing
1140 * parameters.
1141 */
1142 static __always_inline struct vmap_area *
1143 find_vmap_lowest_match(unsigned long size,
1144 unsigned long align, unsigned long vstart)
1145 {
1146 struct vmap_area *va;
1147 struct rb_node *node;
1148 unsigned long length;
1149
1150 /* Start from the root. */
1151 node = free_vmap_area_root.rb_node;
1152
1153 /* Adjust the search size for alignment overhead. */
1154 length = size + align - 1;
1155
1156 while (node) {
1157 va = rb_entry(node, struct vmap_area, rb_node);
1158
1159 if (get_subtree_max_size(node->rb_left) >= length &&
1160 vstart < va->va_start) {
1161 node = node->rb_left;
1162 } else {
1163 if (is_within_this_va(va, size, align, vstart))
1164 return va;
1165
1166 /*
1167 * Does not make sense to go deeper towards the right
1168 * sub-tree if it does not have a free block that is
1169 * equal or bigger to the requested search length.
1170 */
1171 if (get_subtree_max_size(node->rb_right) >= length) {
1172 node = node->rb_right;
1173 continue;
1174 }
1175
1176 /*
1177 * OK. We roll back and find the first right sub-tree,
1178 * that will satisfy the search criteria. It can happen
1179 * only once due to "vstart" restriction.
1180 */
1181 while ((node = rb_parent(node))) {
1182 va = rb_entry(node, struct vmap_area, rb_node);
1183 if (is_within_this_va(va, size, align, vstart))
1184 return va;
1185
1186 if (get_subtree_max_size(node->rb_right) >= length &&
1187 vstart <= va->va_start) {
1188 node = node->rb_right;
1189 break;
1190 }
1191 }
1192 }
1193 }
1194
1195 return NULL;
1196 }
1197
1198 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1199 #include <linux/random.h>
1200
1201 static struct vmap_area *
1202 find_vmap_lowest_linear_match(unsigned long size,
1203 unsigned long align, unsigned long vstart)
1204 {
1205 struct vmap_area *va;
1206
1207 list_for_each_entry(va, &free_vmap_area_list, list) {
1208 if (!is_within_this_va(va, size, align, vstart))
1209 continue;
1210
1211 return va;
1212 }
1213
1214 return NULL;
1215 }
1216
1217 static void
1218 find_vmap_lowest_match_check(unsigned long size)
1219 {
1220 struct vmap_area *va_1, *va_2;
1221 unsigned long vstart;
1222 unsigned int rnd;
1223
1224 get_random_bytes(&rnd, sizeof(rnd));
1225 vstart = VMALLOC_START + rnd;
1226
1227 va_1 = find_vmap_lowest_match(size, 1, vstart);
1228 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
1229
1230 if (va_1 != va_2)
1231 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1232 va_1, va_2, vstart);
1233 }
1234 #endif
1235
1236 enum fit_type {
1237 NOTHING_FIT = 0,
1238 FL_FIT_TYPE = 1, /* full fit */
1239 LE_FIT_TYPE = 2, /* left edge fit */
1240 RE_FIT_TYPE = 3, /* right edge fit */
1241 NE_FIT_TYPE = 4 /* no edge fit */
1242 };
1243
1244 static __always_inline enum fit_type
1245 classify_va_fit_type(struct vmap_area *va,
1246 unsigned long nva_start_addr, unsigned long size)
1247 {
1248 enum fit_type type;
1249
1250 /* Check if it is within VA. */
1251 if (nva_start_addr < va->va_start ||
1252 nva_start_addr + size > va->va_end)
1253 return NOTHING_FIT;
1254
1255 /* Now classify. */
1256 if (va->va_start == nva_start_addr) {
1257 if (va->va_end == nva_start_addr + size)
1258 type = FL_FIT_TYPE;
1259 else
1260 type = LE_FIT_TYPE;
1261 } else if (va->va_end == nva_start_addr + size) {
1262 type = RE_FIT_TYPE;
1263 } else {
1264 type = NE_FIT_TYPE;
1265 }
1266
1267 return type;
1268 }
1269
1270 static __always_inline int
1271 adjust_va_to_fit_type(struct vmap_area *va,
1272 unsigned long nva_start_addr, unsigned long size,
1273 enum fit_type type)
1274 {
1275 struct vmap_area *lva = NULL;
1276
1277 if (type == FL_FIT_TYPE) {
1278 /*
1279 * No need to split VA, it fully fits.
1280 *
1281 * | |
1282 * V NVA V
1283 * |---------------|
1284 */
1285 unlink_va(va, &free_vmap_area_root);
1286 kmem_cache_free(vmap_area_cachep, va);
1287 } else if (type == LE_FIT_TYPE) {
1288 /*
1289 * Split left edge of fit VA.
1290 *
1291 * | |
1292 * V NVA V R
1293 * |-------|-------|
1294 */
1295 va->va_start += size;
1296 } else if (type == RE_FIT_TYPE) {
1297 /*
1298 * Split right edge of fit VA.
1299 *
1300 * | |
1301 * L V NVA V
1302 * |-------|-------|
1303 */
1304 va->va_end = nva_start_addr;
1305 } else if (type == NE_FIT_TYPE) {
1306 /*
1307 * Split no edge of fit VA.
1308 *
1309 * | |
1310 * L V NVA V R
1311 * |---|-------|---|
1312 */
1313 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1314 if (unlikely(!lva)) {
1315 /*
1316 * For percpu allocator we do not do any pre-allocation
1317 * and leave it as it is. The reason is it most likely
1318 * never ends up with NE_FIT_TYPE splitting. In case of
1319 * percpu allocations offsets and sizes are aligned to
1320 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1321 * are its main fitting cases.
1322 *
1323 * There are a few exceptions though, as an example it is
1324 * a first allocation (early boot up) when we have "one"
1325 * big free space that has to be split.
1326 *
1327 * Also we can hit this path in case of regular "vmap"
1328 * allocations, if "this" current CPU was not preloaded.
1329 * See the comment in alloc_vmap_area() why. If so, then
1330 * GFP_NOWAIT is used instead to get an extra object for
1331 * split purpose. That is rare and most time does not
1332 * occur.
1333 *
1334 * What happens if an allocation gets failed. Basically,
1335 * an "overflow" path is triggered to purge lazily freed
1336 * areas to free some memory, then, the "retry" path is
1337 * triggered to repeat one more time. See more details
1338 * in alloc_vmap_area() function.
1339 */
1340 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1341 if (!lva)
1342 return -1;
1343 }
1344
1345 /*
1346 * Build the remainder.
1347 */
1348 lva->va_start = va->va_start;
1349 lva->va_end = nva_start_addr;
1350
1351 /*
1352 * Shrink this VA to remaining size.
1353 */
1354 va->va_start = nva_start_addr + size;
1355 } else {
1356 return -1;
1357 }
1358
1359 if (type != FL_FIT_TYPE) {
1360 augment_tree_propagate_from(va);
1361
1362 if (lva) /* type == NE_FIT_TYPE */
1363 insert_vmap_area_augment(lva, &va->rb_node,
1364 &free_vmap_area_root, &free_vmap_area_list);
1365 }
1366
1367 return 0;
1368 }
1369
1370 /*
1371 * Returns a start address of the newly allocated area, if success.
1372 * Otherwise a vend is returned that indicates failure.
1373 */
1374 static __always_inline unsigned long
1375 __alloc_vmap_area(unsigned long size, unsigned long align,
1376 unsigned long vstart, unsigned long vend)
1377 {
1378 unsigned long nva_start_addr;
1379 struct vmap_area *va;
1380 enum fit_type type;
1381 int ret;
1382
1383 va = find_vmap_lowest_match(size, align, vstart);
1384 if (unlikely(!va))
1385 return vend;
1386
1387 if (va->va_start > vstart)
1388 nva_start_addr = ALIGN(va->va_start, align);
1389 else
1390 nva_start_addr = ALIGN(vstart, align);
1391
1392 /* Check the "vend" restriction. */
1393 if (nva_start_addr + size > vend)
1394 return vend;
1395
1396 /* Classify what we have found. */
1397 type = classify_va_fit_type(va, nva_start_addr, size);
1398 if (WARN_ON_ONCE(type == NOTHING_FIT))
1399 return vend;
1400
1401 /* Update the free vmap_area. */
1402 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1403 if (ret)
1404 return vend;
1405
1406 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1407 find_vmap_lowest_match_check(size);
1408 #endif
1409
1410 return nva_start_addr;
1411 }
1412
1413 /*
1414 * Free a region of KVA allocated by alloc_vmap_area
1415 */
1416 static void free_vmap_area(struct vmap_area *va)
1417 {
1418 /*
1419 * Remove from the busy tree/list.
1420 */
1421 spin_lock(&vmap_area_lock);
1422 unlink_va(va, &vmap_area_root);
1423 spin_unlock(&vmap_area_lock);
1424
1425 /*
1426 * Insert/Merge it back to the free tree/list.
1427 */
1428 spin_lock(&free_vmap_area_lock);
1429 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1430 spin_unlock(&free_vmap_area_lock);
1431 }
1432
1433 static inline void
1434 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1435 {
1436 struct vmap_area *va = NULL;
1437
1438 /*
1439 * Preload this CPU with one extra vmap_area object. It is used
1440 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1441 * a CPU that does an allocation is preloaded.
1442 *
1443 * We do it in non-atomic context, thus it allows us to use more
1444 * permissive allocation masks to be more stable under low memory
1445 * condition and high memory pressure.
1446 */
1447 if (!this_cpu_read(ne_fit_preload_node))
1448 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1449
1450 spin_lock(lock);
1451
1452 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1453 kmem_cache_free(vmap_area_cachep, va);
1454 }
1455
1456 /*
1457 * Allocate a region of KVA of the specified size and alignment, within the
1458 * vstart and vend.
1459 */
1460 static struct vmap_area *alloc_vmap_area(unsigned long size,
1461 unsigned long align,
1462 unsigned long vstart, unsigned long vend,
1463 int node, gfp_t gfp_mask)
1464 {
1465 struct vmap_area *va;
1466 unsigned long addr;
1467 int purged = 0;
1468 int ret;
1469
1470 BUG_ON(!size);
1471 BUG_ON(offset_in_page(size));
1472 BUG_ON(!is_power_of_2(align));
1473
1474 if (unlikely(!vmap_initialized))
1475 return ERR_PTR(-EBUSY);
1476
1477 might_sleep();
1478 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1479
1480 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1481 if (unlikely(!va))
1482 return ERR_PTR(-ENOMEM);
1483
1484 /*
1485 * Only scan the relevant parts containing pointers to other objects
1486 * to avoid false negatives.
1487 */
1488 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1489
1490 retry:
1491 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1492 addr = __alloc_vmap_area(size, align, vstart, vend);
1493 spin_unlock(&free_vmap_area_lock);
1494
1495 /*
1496 * If an allocation fails, the "vend" address is
1497 * returned. Therefore trigger the overflow path.
1498 */
1499 if (unlikely(addr == vend))
1500 goto overflow;
1501
1502 va->va_start = addr;
1503 va->va_end = addr + size;
1504 va->vm = NULL;
1505
1506 spin_lock(&vmap_area_lock);
1507 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1508 spin_unlock(&vmap_area_lock);
1509
1510 BUG_ON(!IS_ALIGNED(va->va_start, align));
1511 BUG_ON(va->va_start < vstart);
1512 BUG_ON(va->va_end > vend);
1513
1514 ret = kasan_populate_vmalloc(addr, size);
1515 if (ret) {
1516 free_vmap_area(va);
1517 return ERR_PTR(ret);
1518 }
1519
1520 return va;
1521
1522 overflow:
1523 if (!purged) {
1524 purge_vmap_area_lazy();
1525 purged = 1;
1526 goto retry;
1527 }
1528
1529 if (gfpflags_allow_blocking(gfp_mask)) {
1530 unsigned long freed = 0;
1531 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1532 if (freed > 0) {
1533 purged = 0;
1534 goto retry;
1535 }
1536 }
1537
1538 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1539 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1540 size);
1541
1542 kmem_cache_free(vmap_area_cachep, va);
1543 return ERR_PTR(-EBUSY);
1544 }
1545
1546 int register_vmap_purge_notifier(struct notifier_block *nb)
1547 {
1548 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1549 }
1550 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1551
1552 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1553 {
1554 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1555 }
1556 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1557
1558 /*
1559 * lazy_max_pages is the maximum amount of virtual address space we gather up
1560 * before attempting to purge with a TLB flush.
1561 *
1562 * There is a tradeoff here: a larger number will cover more kernel page tables
1563 * and take slightly longer to purge, but it will linearly reduce the number of
1564 * global TLB flushes that must be performed. It would seem natural to scale
1565 * this number up linearly with the number of CPUs (because vmapping activity
1566 * could also scale linearly with the number of CPUs), however it is likely
1567 * that in practice, workloads might be constrained in other ways that mean
1568 * vmap activity will not scale linearly with CPUs. Also, I want to be
1569 * conservative and not introduce a big latency on huge systems, so go with
1570 * a less aggressive log scale. It will still be an improvement over the old
1571 * code, and it will be simple to change the scale factor if we find that it
1572 * becomes a problem on bigger systems.
1573 */
1574 static unsigned long lazy_max_pages(void)
1575 {
1576 unsigned int log;
1577
1578 log = fls(num_online_cpus());
1579
1580 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1581 }
1582
1583 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1584
1585 /*
1586 * Serialize vmap purging. There is no actual critical section protected
1587 * by this look, but we want to avoid concurrent calls for performance
1588 * reasons and to make the pcpu_get_vm_areas more deterministic.
1589 */
1590 static DEFINE_MUTEX(vmap_purge_lock);
1591
1592 /* for per-CPU blocks */
1593 static void purge_fragmented_blocks_allcpus(void);
1594
1595 /*
1596 * called before a call to iounmap() if the caller wants vm_area_struct's
1597 * immediately freed.
1598 */
1599 void set_iounmap_nonlazy(void)
1600 {
1601 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1602 }
1603
1604 /*
1605 * Purges all lazily-freed vmap areas.
1606 */
1607 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1608 {
1609 unsigned long resched_threshold;
1610 struct list_head local_pure_list;
1611 struct vmap_area *va, *n_va;
1612
1613 lockdep_assert_held(&vmap_purge_lock);
1614
1615 spin_lock(&purge_vmap_area_lock);
1616 purge_vmap_area_root = RB_ROOT;
1617 list_replace_init(&purge_vmap_area_list, &local_pure_list);
1618 spin_unlock(&purge_vmap_area_lock);
1619
1620 if (unlikely(list_empty(&local_pure_list)))
1621 return false;
1622
1623 start = min(start,
1624 list_first_entry(&local_pure_list,
1625 struct vmap_area, list)->va_start);
1626
1627 end = max(end,
1628 list_last_entry(&local_pure_list,
1629 struct vmap_area, list)->va_end);
1630
1631 flush_tlb_kernel_range(start, end);
1632 resched_threshold = lazy_max_pages() << 1;
1633
1634 spin_lock(&free_vmap_area_lock);
1635 list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
1636 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1637 unsigned long orig_start = va->va_start;
1638 unsigned long orig_end = va->va_end;
1639
1640 /*
1641 * Finally insert or merge lazily-freed area. It is
1642 * detached and there is no need to "unlink" it from
1643 * anything.
1644 */
1645 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1646 &free_vmap_area_list);
1647
1648 if (!va)
1649 continue;
1650
1651 if (is_vmalloc_or_module_addr((void *)orig_start))
1652 kasan_release_vmalloc(orig_start, orig_end,
1653 va->va_start, va->va_end);
1654
1655 atomic_long_sub(nr, &vmap_lazy_nr);
1656
1657 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1658 cond_resched_lock(&free_vmap_area_lock);
1659 }
1660 spin_unlock(&free_vmap_area_lock);
1661 return true;
1662 }
1663
1664 /*
1665 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1666 * is already purging.
1667 */
1668 static void try_purge_vmap_area_lazy(void)
1669 {
1670 if (mutex_trylock(&vmap_purge_lock)) {
1671 __purge_vmap_area_lazy(ULONG_MAX, 0);
1672 mutex_unlock(&vmap_purge_lock);
1673 }
1674 }
1675
1676 /*
1677 * Kick off a purge of the outstanding lazy areas.
1678 */
1679 static void purge_vmap_area_lazy(void)
1680 {
1681 mutex_lock(&vmap_purge_lock);
1682 purge_fragmented_blocks_allcpus();
1683 __purge_vmap_area_lazy(ULONG_MAX, 0);
1684 mutex_unlock(&vmap_purge_lock);
1685 }
1686
1687 /*
1688 * Free a vmap area, caller ensuring that the area has been unmapped
1689 * and flush_cache_vunmap had been called for the correct range
1690 * previously.
1691 */
1692 static void free_vmap_area_noflush(struct vmap_area *va)
1693 {
1694 unsigned long nr_lazy;
1695
1696 spin_lock(&vmap_area_lock);
1697 unlink_va(va, &vmap_area_root);
1698 spin_unlock(&vmap_area_lock);
1699
1700 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1701 PAGE_SHIFT, &vmap_lazy_nr);
1702
1703 /*
1704 * Merge or place it to the purge tree/list.
1705 */
1706 spin_lock(&purge_vmap_area_lock);
1707 merge_or_add_vmap_area(va,
1708 &purge_vmap_area_root, &purge_vmap_area_list);
1709 spin_unlock(&purge_vmap_area_lock);
1710
1711 /* After this point, we may free va at any time */
1712 if (unlikely(nr_lazy > lazy_max_pages()))
1713 try_purge_vmap_area_lazy();
1714 }
1715
1716 /*
1717 * Free and unmap a vmap area
1718 */
1719 static void free_unmap_vmap_area(struct vmap_area *va)
1720 {
1721 flush_cache_vunmap(va->va_start, va->va_end);
1722 vunmap_range_noflush(va->va_start, va->va_end);
1723 if (debug_pagealloc_enabled_static())
1724 flush_tlb_kernel_range(va->va_start, va->va_end);
1725
1726 free_vmap_area_noflush(va);
1727 }
1728
1729 static struct vmap_area *find_vmap_area(unsigned long addr)
1730 {
1731 struct vmap_area *va;
1732
1733 spin_lock(&vmap_area_lock);
1734 va = __find_vmap_area(addr);
1735 spin_unlock(&vmap_area_lock);
1736
1737 return va;
1738 }
1739
1740 /*** Per cpu kva allocator ***/
1741
1742 /*
1743 * vmap space is limited especially on 32 bit architectures. Ensure there is
1744 * room for at least 16 percpu vmap blocks per CPU.
1745 */
1746 /*
1747 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1748 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1749 * instead (we just need a rough idea)
1750 */
1751 #if BITS_PER_LONG == 32
1752 #define VMALLOC_SPACE (128UL*1024*1024)
1753 #else
1754 #define VMALLOC_SPACE (128UL*1024*1024*1024)
1755 #endif
1756
1757 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1758 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1759 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1760 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1761 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1762 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1763 #define VMAP_BBMAP_BITS \
1764 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1765 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1766 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1767
1768 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1769
1770 struct vmap_block_queue {
1771 spinlock_t lock;
1772 struct list_head free;
1773 };
1774
1775 struct vmap_block {
1776 spinlock_t lock;
1777 struct vmap_area *va;
1778 unsigned long free, dirty;
1779 unsigned long dirty_min, dirty_max; /*< dirty range */
1780 struct list_head free_list;
1781 struct rcu_head rcu_head;
1782 struct list_head purge;
1783 };
1784
1785 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1786 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1787
1788 /*
1789 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1790 * in the free path. Could get rid of this if we change the API to return a
1791 * "cookie" from alloc, to be passed to free. But no big deal yet.
1792 */
1793 static DEFINE_XARRAY(vmap_blocks);
1794
1795 /*
1796 * We should probably have a fallback mechanism to allocate virtual memory
1797 * out of partially filled vmap blocks. However vmap block sizing should be
1798 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1799 * big problem.
1800 */
1801
1802 static unsigned long addr_to_vb_idx(unsigned long addr)
1803 {
1804 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1805 addr /= VMAP_BLOCK_SIZE;
1806 return addr;
1807 }
1808
1809 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1810 {
1811 unsigned long addr;
1812
1813 addr = va_start + (pages_off << PAGE_SHIFT);
1814 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1815 return (void *)addr;
1816 }
1817
1818 /**
1819 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1820 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1821 * @order: how many 2^order pages should be occupied in newly allocated block
1822 * @gfp_mask: flags for the page level allocator
1823 *
1824 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1825 */
1826 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1827 {
1828 struct vmap_block_queue *vbq;
1829 struct vmap_block *vb;
1830 struct vmap_area *va;
1831 unsigned long vb_idx;
1832 int node, err;
1833 void *vaddr;
1834
1835 node = numa_node_id();
1836
1837 vb = kmalloc_node(sizeof(struct vmap_block),
1838 gfp_mask & GFP_RECLAIM_MASK, node);
1839 if (unlikely(!vb))
1840 return ERR_PTR(-ENOMEM);
1841
1842 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1843 VMALLOC_START, VMALLOC_END,
1844 node, gfp_mask);
1845 if (IS_ERR(va)) {
1846 kfree(vb);
1847 return ERR_CAST(va);
1848 }
1849
1850 vaddr = vmap_block_vaddr(va->va_start, 0);
1851 spin_lock_init(&vb->lock);
1852 vb->va = va;
1853 /* At least something should be left free */
1854 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1855 vb->free = VMAP_BBMAP_BITS - (1UL << order);
1856 vb->dirty = 0;
1857 vb->dirty_min = VMAP_BBMAP_BITS;
1858 vb->dirty_max = 0;
1859 INIT_LIST_HEAD(&vb->free_list);
1860
1861 vb_idx = addr_to_vb_idx(va->va_start);
1862 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1863 if (err) {
1864 kfree(vb);
1865 free_vmap_area(va);
1866 return ERR_PTR(err);
1867 }
1868
1869 vbq = &get_cpu_var(vmap_block_queue);
1870 spin_lock(&vbq->lock);
1871 list_add_tail_rcu(&vb->free_list, &vbq->free);
1872 spin_unlock(&vbq->lock);
1873 put_cpu_var(vmap_block_queue);
1874
1875 return vaddr;
1876 }
1877
1878 static void free_vmap_block(struct vmap_block *vb)
1879 {
1880 struct vmap_block *tmp;
1881
1882 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
1883 BUG_ON(tmp != vb);
1884
1885 free_vmap_area_noflush(vb->va);
1886 kfree_rcu(vb, rcu_head);
1887 }
1888
1889 static void purge_fragmented_blocks(int cpu)
1890 {
1891 LIST_HEAD(purge);
1892 struct vmap_block *vb;
1893 struct vmap_block *n_vb;
1894 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1895
1896 rcu_read_lock();
1897 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1898
1899 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1900 continue;
1901
1902 spin_lock(&vb->lock);
1903 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1904 vb->free = 0; /* prevent further allocs after releasing lock */
1905 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1906 vb->dirty_min = 0;
1907 vb->dirty_max = VMAP_BBMAP_BITS;
1908 spin_lock(&vbq->lock);
1909 list_del_rcu(&vb->free_list);
1910 spin_unlock(&vbq->lock);
1911 spin_unlock(&vb->lock);
1912 list_add_tail(&vb->purge, &purge);
1913 } else
1914 spin_unlock(&vb->lock);
1915 }
1916 rcu_read_unlock();
1917
1918 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1919 list_del(&vb->purge);
1920 free_vmap_block(vb);
1921 }
1922 }
1923
1924 static void purge_fragmented_blocks_allcpus(void)
1925 {
1926 int cpu;
1927
1928 for_each_possible_cpu(cpu)
1929 purge_fragmented_blocks(cpu);
1930 }
1931
1932 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1933 {
1934 struct vmap_block_queue *vbq;
1935 struct vmap_block *vb;
1936 void *vaddr = NULL;
1937 unsigned int order;
1938
1939 BUG_ON(offset_in_page(size));
1940 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1941 if (WARN_ON(size == 0)) {
1942 /*
1943 * Allocating 0 bytes isn't what caller wants since
1944 * get_order(0) returns funny result. Just warn and terminate
1945 * early.
1946 */
1947 return NULL;
1948 }
1949 order = get_order(size);
1950
1951 rcu_read_lock();
1952 vbq = &get_cpu_var(vmap_block_queue);
1953 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1954 unsigned long pages_off;
1955
1956 spin_lock(&vb->lock);
1957 if (vb->free < (1UL << order)) {
1958 spin_unlock(&vb->lock);
1959 continue;
1960 }
1961
1962 pages_off = VMAP_BBMAP_BITS - vb->free;
1963 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1964 vb->free -= 1UL << order;
1965 if (vb->free == 0) {
1966 spin_lock(&vbq->lock);
1967 list_del_rcu(&vb->free_list);
1968 spin_unlock(&vbq->lock);
1969 }
1970
1971 spin_unlock(&vb->lock);
1972 break;
1973 }
1974
1975 put_cpu_var(vmap_block_queue);
1976 rcu_read_unlock();
1977
1978 /* Allocate new block if nothing was found */
1979 if (!vaddr)
1980 vaddr = new_vmap_block(order, gfp_mask);
1981
1982 return vaddr;
1983 }
1984
1985 static void vb_free(unsigned long addr, unsigned long size)
1986 {
1987 unsigned long offset;
1988 unsigned int order;
1989 struct vmap_block *vb;
1990
1991 BUG_ON(offset_in_page(size));
1992 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1993
1994 flush_cache_vunmap(addr, addr + size);
1995
1996 order = get_order(size);
1997 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
1998 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
1999
2000 vunmap_range_noflush(addr, addr + size);
2001
2002 if (debug_pagealloc_enabled_static())
2003 flush_tlb_kernel_range(addr, addr + size);
2004
2005 spin_lock(&vb->lock);
2006
2007 /* Expand dirty range */
2008 vb->dirty_min = min(vb->dirty_min, offset);
2009 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2010
2011 vb->dirty += 1UL << order;
2012 if (vb->dirty == VMAP_BBMAP_BITS) {
2013 BUG_ON(vb->free);
2014 spin_unlock(&vb->lock);
2015 free_vmap_block(vb);
2016 } else
2017 spin_unlock(&vb->lock);
2018 }
2019
2020 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2021 {
2022 int cpu;
2023
2024 if (unlikely(!vmap_initialized))
2025 return;
2026
2027 might_sleep();
2028
2029 for_each_possible_cpu(cpu) {
2030 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2031 struct vmap_block *vb;
2032
2033 rcu_read_lock();
2034 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2035 spin_lock(&vb->lock);
2036 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
2037 unsigned long va_start = vb->va->va_start;
2038 unsigned long s, e;
2039
2040 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2041 e = va_start + (vb->dirty_max << PAGE_SHIFT);
2042
2043 start = min(s, start);
2044 end = max(e, end);
2045
2046 flush = 1;
2047 }
2048 spin_unlock(&vb->lock);
2049 }
2050 rcu_read_unlock();
2051 }
2052
2053 mutex_lock(&vmap_purge_lock);
2054 purge_fragmented_blocks_allcpus();
2055 if (!__purge_vmap_area_lazy(start, end) && flush)
2056 flush_tlb_kernel_range(start, end);
2057 mutex_unlock(&vmap_purge_lock);
2058 }
2059
2060 /**
2061 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2062 *
2063 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2064 * to amortize TLB flushing overheads. What this means is that any page you
2065 * have now, may, in a former life, have been mapped into kernel virtual
2066 * address by the vmap layer and so there might be some CPUs with TLB entries
2067 * still referencing that page (additional to the regular 1:1 kernel mapping).
2068 *
2069 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2070 * be sure that none of the pages we have control over will have any aliases
2071 * from the vmap layer.
2072 */
2073 void vm_unmap_aliases(void)
2074 {
2075 unsigned long start = ULONG_MAX, end = 0;
2076 int flush = 0;
2077
2078 _vm_unmap_aliases(start, end, flush);
2079 }
2080 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2081
2082 /**
2083 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2084 * @mem: the pointer returned by vm_map_ram
2085 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2086 */
2087 void vm_unmap_ram(const void *mem, unsigned int count)
2088 {
2089 unsigned long size = (unsigned long)count << PAGE_SHIFT;
2090 unsigned long addr = (unsigned long)mem;
2091 struct vmap_area *va;
2092
2093 might_sleep();
2094 BUG_ON(!addr);
2095 BUG_ON(addr < VMALLOC_START);
2096 BUG_ON(addr > VMALLOC_END);
2097 BUG_ON(!PAGE_ALIGNED(addr));
2098
2099 kasan_poison_vmalloc(mem, size);
2100
2101 if (likely(count <= VMAP_MAX_ALLOC)) {
2102 debug_check_no_locks_freed(mem, size);
2103 vb_free(addr, size);
2104 return;
2105 }
2106
2107 va = find_vmap_area(addr);
2108 BUG_ON(!va);
2109 debug_check_no_locks_freed((void *)va->va_start,
2110 (va->va_end - va->va_start));
2111 free_unmap_vmap_area(va);
2112 }
2113 EXPORT_SYMBOL(vm_unmap_ram);
2114
2115 /**
2116 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2117 * @pages: an array of pointers to the pages to be mapped
2118 * @count: number of pages
2119 * @node: prefer to allocate data structures on this node
2120 *
2121 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2122 * faster than vmap so it's good. But if you mix long-life and short-life
2123 * objects with vm_map_ram(), it could consume lots of address space through
2124 * fragmentation (especially on a 32bit machine). You could see failures in
2125 * the end. Please use this function for short-lived objects.
2126 *
2127 * Returns: a pointer to the address that has been mapped, or %NULL on failure
2128 */
2129 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2130 {
2131 unsigned long size = (unsigned long)count << PAGE_SHIFT;
2132 unsigned long addr;
2133 void *mem;
2134
2135 if (likely(count <= VMAP_MAX_ALLOC)) {
2136 mem = vb_alloc(size, GFP_KERNEL);
2137 if (IS_ERR(mem))
2138 return NULL;
2139 addr = (unsigned long)mem;
2140 } else {
2141 struct vmap_area *va;
2142 va = alloc_vmap_area(size, PAGE_SIZE,
2143 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2144 if (IS_ERR(va))
2145 return NULL;
2146
2147 addr = va->va_start;
2148 mem = (void *)addr;
2149 }
2150
2151 kasan_unpoison_vmalloc(mem, size);
2152
2153 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2154 pages, PAGE_SHIFT) < 0) {
2155 vm_unmap_ram(mem, count);
2156 return NULL;
2157 }
2158
2159 return mem;
2160 }
2161 EXPORT_SYMBOL(vm_map_ram);
2162
2163 static struct vm_struct *vmlist __initdata;
2164
2165 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2166 {
2167 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2168 return vm->page_order;
2169 #else
2170 return 0;
2171 #endif
2172 }
2173
2174 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2175 {
2176 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2177 vm->page_order = order;
2178 #else
2179 BUG_ON(order != 0);
2180 #endif
2181 }
2182
2183 /**
2184 * vm_area_add_early - add vmap area early during boot
2185 * @vm: vm_struct to add
2186 *
2187 * This function is used to add fixed kernel vm area to vmlist before
2188 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
2189 * should contain proper values and the other fields should be zero.
2190 *
2191 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2192 */
2193 void __init vm_area_add_early(struct vm_struct *vm)
2194 {
2195 struct vm_struct *tmp, **p;
2196
2197 BUG_ON(vmap_initialized);
2198 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2199 if (tmp->addr >= vm->addr) {
2200 BUG_ON(tmp->addr < vm->addr + vm->size);
2201 break;
2202 } else
2203 BUG_ON(tmp->addr + tmp->size > vm->addr);
2204 }
2205 vm->next = *p;
2206 *p = vm;
2207 }
2208
2209 /**
2210 * vm_area_register_early - register vmap area early during boot
2211 * @vm: vm_struct to register
2212 * @align: requested alignment
2213 *
2214 * This function is used to register kernel vm area before
2215 * vmalloc_init() is called. @vm->size and @vm->flags should contain
2216 * proper values on entry and other fields should be zero. On return,
2217 * vm->addr contains the allocated address.
2218 *
2219 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2220 */
2221 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2222 {
2223 static size_t vm_init_off __initdata;
2224 unsigned long addr;
2225
2226 addr = ALIGN(VMALLOC_START + vm_init_off, align);
2227 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
2228
2229 vm->addr = (void *)addr;
2230
2231 vm_area_add_early(vm);
2232 }
2233
2234 static void vmap_init_free_space(void)
2235 {
2236 unsigned long vmap_start = 1;
2237 const unsigned long vmap_end = ULONG_MAX;
2238 struct vmap_area *busy, *free;
2239
2240 /*
2241 * B F B B B F
2242 * -|-----|.....|-----|-----|-----|.....|-
2243 * | The KVA space |
2244 * |<--------------------------------->|
2245 */
2246 list_for_each_entry(busy, &vmap_area_list, list) {
2247 if (busy->va_start - vmap_start > 0) {
2248 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2249 if (!WARN_ON_ONCE(!free)) {
2250 free->va_start = vmap_start;
2251 free->va_end = busy->va_start;
2252
2253 insert_vmap_area_augment(free, NULL,
2254 &free_vmap_area_root,
2255 &free_vmap_area_list);
2256 }
2257 }
2258
2259 vmap_start = busy->va_end;
2260 }
2261
2262 if (vmap_end - vmap_start > 0) {
2263 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2264 if (!WARN_ON_ONCE(!free)) {
2265 free->va_start = vmap_start;
2266 free->va_end = vmap_end;
2267
2268 insert_vmap_area_augment(free, NULL,
2269 &free_vmap_area_root,
2270 &free_vmap_area_list);
2271 }
2272 }
2273 }
2274
2275 void __init vmalloc_init(void)
2276 {
2277 struct vmap_area *va;
2278 struct vm_struct *tmp;
2279 int i;
2280
2281 /*
2282 * Create the cache for vmap_area objects.
2283 */
2284 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2285
2286 for_each_possible_cpu(i) {
2287 struct vmap_block_queue *vbq;
2288 struct vfree_deferred *p;
2289
2290 vbq = &per_cpu(vmap_block_queue, i);
2291 spin_lock_init(&vbq->lock);
2292 INIT_LIST_HEAD(&vbq->free);
2293 p = &per_cpu(vfree_deferred, i);
2294 init_llist_head(&p->list);
2295 INIT_WORK(&p->wq, free_work);
2296 }
2297
2298 /* Import existing vmlist entries. */
2299 for (tmp = vmlist; tmp; tmp = tmp->next) {
2300 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2301 if (WARN_ON_ONCE(!va))
2302 continue;
2303
2304 va->va_start = (unsigned long)tmp->addr;
2305 va->va_end = va->va_start + tmp->size;
2306 va->vm = tmp;
2307 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2308 }
2309
2310 /*
2311 * Now we can initialize a free vmap space.
2312 */
2313 vmap_init_free_space();
2314 vmap_initialized = true;
2315 }
2316
2317 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2318 struct vmap_area *va, unsigned long flags, const void *caller)
2319 {
2320 vm->flags = flags;
2321 vm->addr = (void *)va->va_start;
2322 vm->size = va->va_end - va->va_start;
2323 vm->caller = caller;
2324 va->vm = vm;
2325 }
2326
2327 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2328 unsigned long flags, const void *caller)
2329 {
2330 spin_lock(&vmap_area_lock);
2331 setup_vmalloc_vm_locked(vm, va, flags, caller);
2332 spin_unlock(&vmap_area_lock);
2333 }
2334
2335 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2336 {
2337 /*
2338 * Before removing VM_UNINITIALIZED,
2339 * we should make sure that vm has proper values.
2340 * Pair with smp_rmb() in show_numa_info().
2341 */
2342 smp_wmb();
2343 vm->flags &= ~VM_UNINITIALIZED;
2344 }
2345
2346 static struct vm_struct *__get_vm_area_node(unsigned long size,
2347 unsigned long align, unsigned long shift, unsigned long flags,
2348 unsigned long start, unsigned long end, int node,
2349 gfp_t gfp_mask, const void *caller)
2350 {
2351 struct vmap_area *va;
2352 struct vm_struct *area;
2353 unsigned long requested_size = size;
2354
2355 BUG_ON(in_interrupt());
2356 size = ALIGN(size, 1ul << shift);
2357 if (unlikely(!size))
2358 return NULL;
2359
2360 if (flags & VM_IOREMAP)
2361 align = 1ul << clamp_t(int, get_count_order_long(size),
2362 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2363
2364 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2365 if (unlikely(!area))
2366 return NULL;
2367
2368 if (!(flags & VM_NO_GUARD))
2369 size += PAGE_SIZE;
2370
2371 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2372 if (IS_ERR(va)) {
2373 kfree(area);
2374 return NULL;
2375 }
2376
2377 kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2378
2379 setup_vmalloc_vm(area, va, flags, caller);
2380
2381 return area;
2382 }
2383
2384 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2385 unsigned long start, unsigned long end,
2386 const void *caller)
2387 {
2388 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2389 NUMA_NO_NODE, GFP_KERNEL, caller);
2390 }
2391
2392 /**
2393 * get_vm_area - reserve a contiguous kernel virtual area
2394 * @size: size of the area
2395 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2396 *
2397 * Search an area of @size in the kernel virtual mapping area,
2398 * and reserved it for out purposes. Returns the area descriptor
2399 * on success or %NULL on failure.
2400 *
2401 * Return: the area descriptor on success or %NULL on failure.
2402 */
2403 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2404 {
2405 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2406 VMALLOC_START, VMALLOC_END,
2407 NUMA_NO_NODE, GFP_KERNEL,
2408 __builtin_return_address(0));
2409 }
2410 EXPORT_SYMBOL(get_vm_area);
2411
2412 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2413 const void *caller)
2414 {
2415 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2416 VMALLOC_START, VMALLOC_END,
2417 NUMA_NO_NODE, GFP_KERNEL, caller);
2418 }
2419
2420 /**
2421 * find_vm_area - find a continuous kernel virtual area
2422 * @addr: base address
2423 *
2424 * Search for the kernel VM area starting at @addr, and return it.
2425 * It is up to the caller to do all required locking to keep the returned
2426 * pointer valid.
2427 *
2428 * Return: the area descriptor on success or %NULL on failure.
2429 */
2430 struct vm_struct *find_vm_area(const void *addr)
2431 {
2432 struct vmap_area *va;
2433
2434 va = find_vmap_area((unsigned long)addr);
2435 if (!va)
2436 return NULL;
2437
2438 return va->vm;
2439 }
2440
2441 /**
2442 * remove_vm_area - find and remove a continuous kernel virtual area
2443 * @addr: base address
2444 *
2445 * Search for the kernel VM area starting at @addr, and remove it.
2446 * This function returns the found VM area, but using it is NOT safe
2447 * on SMP machines, except for its size or flags.
2448 *
2449 * Return: the area descriptor on success or %NULL on failure.
2450 */
2451 struct vm_struct *remove_vm_area(const void *addr)
2452 {
2453 struct vmap_area *va;
2454
2455 might_sleep();
2456
2457 spin_lock(&vmap_area_lock);
2458 va = __find_vmap_area((unsigned long)addr);
2459 if (va && va->vm) {
2460 struct vm_struct *vm = va->vm;
2461
2462 va->vm = NULL;
2463 spin_unlock(&vmap_area_lock);
2464
2465 kasan_free_shadow(vm);
2466 free_unmap_vmap_area(va);
2467
2468 return vm;
2469 }
2470
2471 spin_unlock(&vmap_area_lock);
2472 return NULL;
2473 }
2474
2475 static inline void set_area_direct_map(const struct vm_struct *area,
2476 int (*set_direct_map)(struct page *page))
2477 {
2478 int i;
2479
2480 /* HUGE_VMALLOC passes small pages to set_direct_map */
2481 for (i = 0; i < area->nr_pages; i++)
2482 if (page_address(area->pages[i]))
2483 set_direct_map(area->pages[i]);
2484 }
2485
2486 /* Handle removing and resetting vm mappings related to the vm_struct. */
2487 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2488 {
2489 unsigned long start = ULONG_MAX, end = 0;
2490 unsigned int page_order = vm_area_page_order(area);
2491 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2492 int flush_dmap = 0;
2493 int i;
2494
2495 remove_vm_area(area->addr);
2496
2497 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2498 if (!flush_reset)
2499 return;
2500
2501 /*
2502 * If not deallocating pages, just do the flush of the VM area and
2503 * return.
2504 */
2505 if (!deallocate_pages) {
2506 vm_unmap_aliases();
2507 return;
2508 }
2509
2510 /*
2511 * If execution gets here, flush the vm mapping and reset the direct
2512 * map. Find the start and end range of the direct mappings to make sure
2513 * the vm_unmap_aliases() flush includes the direct map.
2514 */
2515 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2516 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2517 if (addr) {
2518 unsigned long page_size;
2519
2520 page_size = PAGE_SIZE << page_order;
2521 start = min(addr, start);
2522 end = max(addr + page_size, end);
2523 flush_dmap = 1;
2524 }
2525 }
2526
2527 /*
2528 * Set direct map to something invalid so that it won't be cached if
2529 * there are any accesses after the TLB flush, then flush the TLB and
2530 * reset the direct map permissions to the default.
2531 */
2532 set_area_direct_map(area, set_direct_map_invalid_noflush);
2533 _vm_unmap_aliases(start, end, flush_dmap);
2534 set_area_direct_map(area, set_direct_map_default_noflush);
2535 }
2536
2537 static void __vunmap(const void *addr, int deallocate_pages)
2538 {
2539 struct vm_struct *area;
2540
2541 if (!addr)
2542 return;
2543
2544 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2545 addr))
2546 return;
2547
2548 area = find_vm_area(addr);
2549 if (unlikely(!area)) {
2550 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2551 addr);
2552 return;
2553 }
2554
2555 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2556 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2557
2558 kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2559
2560 vm_remove_mappings(area, deallocate_pages);
2561
2562 if (deallocate_pages) {
2563 unsigned int page_order = vm_area_page_order(area);
2564 int i;
2565
2566 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2567 struct page *page = area->pages[i];
2568
2569 BUG_ON(!page);
2570 __free_pages(page, page_order);
2571 }
2572 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2573
2574 kvfree(area->pages);
2575 }
2576
2577 kfree(area);
2578 }
2579
2580 static inline void __vfree_deferred(const void *addr)
2581 {
2582 /*
2583 * Use raw_cpu_ptr() because this can be called from preemptible
2584 * context. Preemption is absolutely fine here, because the llist_add()
2585 * implementation is lockless, so it works even if we are adding to
2586 * another cpu's list. schedule_work() should be fine with this too.
2587 */
2588 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2589
2590 if (llist_add((struct llist_node *)addr, &p->list))
2591 schedule_work(&p->wq);
2592 }
2593
2594 /**
2595 * vfree_atomic - release memory allocated by vmalloc()
2596 * @addr: memory base address
2597 *
2598 * This one is just like vfree() but can be called in any atomic context
2599 * except NMIs.
2600 */
2601 void vfree_atomic(const void *addr)
2602 {
2603 BUG_ON(in_nmi());
2604
2605 kmemleak_free(addr);
2606
2607 if (!addr)
2608 return;
2609 __vfree_deferred(addr);
2610 }
2611
2612 static void __vfree(const void *addr)
2613 {
2614 if (unlikely(in_interrupt()))
2615 __vfree_deferred(addr);
2616 else
2617 __vunmap(addr, 1);
2618 }
2619
2620 /**
2621 * vfree - Release memory allocated by vmalloc()
2622 * @addr: Memory base address
2623 *
2624 * Free the virtually continuous memory area starting at @addr, as obtained
2625 * from one of the vmalloc() family of APIs. This will usually also free the
2626 * physical memory underlying the virtual allocation, but that memory is
2627 * reference counted, so it will not be freed until the last user goes away.
2628 *
2629 * If @addr is NULL, no operation is performed.
2630 *
2631 * Context:
2632 * May sleep if called *not* from interrupt context.
2633 * Must not be called in NMI context (strictly speaking, it could be
2634 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2635 * conventions for vfree() arch-dependent would be a really bad idea).
2636 */
2637 void vfree(const void *addr)
2638 {
2639 BUG_ON(in_nmi());
2640
2641 kmemleak_free(addr);
2642
2643 might_sleep_if(!in_interrupt());
2644
2645 if (!addr)
2646 return;
2647
2648 __vfree(addr);
2649 }
2650 EXPORT_SYMBOL(vfree);
2651
2652 /**
2653 * vunmap - release virtual mapping obtained by vmap()
2654 * @addr: memory base address
2655 *
2656 * Free the virtually contiguous memory area starting at @addr,
2657 * which was created from the page array passed to vmap().
2658 *
2659 * Must not be called in interrupt context.
2660 */
2661 void vunmap(const void *addr)
2662 {
2663 BUG_ON(in_interrupt());
2664 might_sleep();
2665 if (addr)
2666 __vunmap(addr, 0);
2667 }
2668 EXPORT_SYMBOL(vunmap);
2669
2670 /**
2671 * vmap - map an array of pages into virtually contiguous space
2672 * @pages: array of page pointers
2673 * @count: number of pages to map
2674 * @flags: vm_area->flags
2675 * @prot: page protection for the mapping
2676 *
2677 * Maps @count pages from @pages into contiguous kernel virtual space.
2678 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2679 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2680 * are transferred from the caller to vmap(), and will be freed / dropped when
2681 * vfree() is called on the return value.
2682 *
2683 * Return: the address of the area or %NULL on failure
2684 */
2685 void *vmap(struct page **pages, unsigned int count,
2686 unsigned long flags, pgprot_t prot)
2687 {
2688 struct vm_struct *area;
2689 unsigned long addr;
2690 unsigned long size; /* In bytes */
2691
2692 might_sleep();
2693
2694 if (count > totalram_pages())
2695 return NULL;
2696
2697 size = (unsigned long)count << PAGE_SHIFT;
2698 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2699 if (!area)
2700 return NULL;
2701
2702 addr = (unsigned long)area->addr;
2703 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2704 pages, PAGE_SHIFT) < 0) {
2705 vunmap(area->addr);
2706 return NULL;
2707 }
2708
2709 if (flags & VM_MAP_PUT_PAGES) {
2710 area->pages = pages;
2711 area->nr_pages = count;
2712 }
2713 return area->addr;
2714 }
2715 EXPORT_SYMBOL(vmap);
2716
2717 #ifdef CONFIG_VMAP_PFN
2718 struct vmap_pfn_data {
2719 unsigned long *pfns;
2720 pgprot_t prot;
2721 unsigned int idx;
2722 };
2723
2724 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2725 {
2726 struct vmap_pfn_data *data = private;
2727
2728 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2729 return -EINVAL;
2730 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2731 return 0;
2732 }
2733
2734 /**
2735 * vmap_pfn - map an array of PFNs into virtually contiguous space
2736 * @pfns: array of PFNs
2737 * @count: number of pages to map
2738 * @prot: page protection for the mapping
2739 *
2740 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2741 * the start address of the mapping.
2742 */
2743 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2744 {
2745 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2746 struct vm_struct *area;
2747
2748 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2749 __builtin_return_address(0));
2750 if (!area)
2751 return NULL;
2752 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2753 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2754 free_vm_area(area);
2755 return NULL;
2756 }
2757 return area->addr;
2758 }
2759 EXPORT_SYMBOL_GPL(vmap_pfn);
2760 #endif /* CONFIG_VMAP_PFN */
2761
2762 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2763 pgprot_t prot, unsigned int page_shift,
2764 int node)
2765 {
2766 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2767 unsigned long addr = (unsigned long)area->addr;
2768 unsigned long size = get_vm_area_size(area);
2769 unsigned long array_size;
2770 unsigned int nr_small_pages = size >> PAGE_SHIFT;
2771 unsigned int page_order;
2772 struct page **pages;
2773 unsigned int i;
2774
2775 array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
2776 gfp_mask |= __GFP_NOWARN;
2777 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2778 gfp_mask |= __GFP_HIGHMEM;
2779
2780 /* Please note that the recursion is strictly bounded. */
2781 if (array_size > PAGE_SIZE) {
2782 pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2783 area->caller);
2784 } else {
2785 pages = kmalloc_node(array_size, nested_gfp, node);
2786 }
2787
2788 if (!pages) {
2789 free_vm_area(area);
2790 warn_alloc(gfp_mask, NULL,
2791 "vmalloc size %lu allocation failure: "
2792 "page array size %lu allocation failed",
2793 nr_small_pages * PAGE_SIZE, array_size);
2794 return NULL;
2795 }
2796
2797 area->pages = pages;
2798 area->nr_pages = nr_small_pages;
2799 set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
2800
2801 page_order = vm_area_page_order(area);
2802
2803 /*
2804 * Careful, we allocate and map page_order pages, but tracking is done
2805 * per PAGE_SIZE page so as to keep the vm_struct APIs independent of
2806 * the physical/mapped size.
2807 */
2808 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2809 struct page *page;
2810 int p;
2811
2812 /* Compound pages required for remap_vmalloc_page */
2813 page = alloc_pages_node(node, gfp_mask | __GFP_COMP, page_order);
2814 if (unlikely(!page)) {
2815 /* Successfully allocated i pages, free them in __vfree() */
2816 area->nr_pages = i;
2817 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2818 warn_alloc(gfp_mask, NULL,
2819 "vmalloc size %lu allocation failure: "
2820 "page order %u allocation failed",
2821 area->nr_pages * PAGE_SIZE, page_order);
2822 goto fail;
2823 }
2824
2825 for (p = 0; p < (1U << page_order); p++)
2826 area->pages[i + p] = page + p;
2827
2828 if (gfpflags_allow_blocking(gfp_mask))
2829 cond_resched();
2830 }
2831 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2832
2833 if (vmap_pages_range(addr, addr + size, prot, pages, page_shift) < 0) {
2834 warn_alloc(gfp_mask, NULL,
2835 "vmalloc size %lu allocation failure: "
2836 "failed to map pages",
2837 area->nr_pages * PAGE_SIZE);
2838 goto fail;
2839 }
2840
2841 return area->addr;
2842
2843 fail:
2844 __vfree(area->addr);
2845 return NULL;
2846 }
2847
2848 /**
2849 * __vmalloc_node_range - allocate virtually contiguous memory
2850 * @size: allocation size
2851 * @align: desired alignment
2852 * @start: vm area range start
2853 * @end: vm area range end
2854 * @gfp_mask: flags for the page level allocator
2855 * @prot: protection mask for the allocated pages
2856 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2857 * @node: node to use for allocation or NUMA_NO_NODE
2858 * @caller: caller's return address
2859 *
2860 * Allocate enough pages to cover @size from the page level
2861 * allocator with @gfp_mask flags. Map them into contiguous
2862 * kernel virtual space, using a pagetable protection of @prot.
2863 *
2864 * Return: the address of the area or %NULL on failure
2865 */
2866 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2867 unsigned long start, unsigned long end, gfp_t gfp_mask,
2868 pgprot_t prot, unsigned long vm_flags, int node,
2869 const void *caller)
2870 {
2871 struct vm_struct *area;
2872 void *addr;
2873 unsigned long real_size = size;
2874 unsigned long real_align = align;
2875 unsigned int shift = PAGE_SHIFT;
2876
2877 if (WARN_ON_ONCE(!size))
2878 return NULL;
2879
2880 if ((size >> PAGE_SHIFT) > totalram_pages()) {
2881 warn_alloc(gfp_mask, NULL,
2882 "vmalloc size %lu allocation failure: "
2883 "exceeds total pages", real_size);
2884 return NULL;
2885 }
2886
2887 if (vmap_allow_huge && !(vm_flags & VM_NO_HUGE_VMAP) &&
2888 arch_vmap_pmd_supported(prot)) {
2889 unsigned long size_per_node;
2890
2891 /*
2892 * Try huge pages. Only try for PAGE_KERNEL allocations,
2893 * others like modules don't yet expect huge pages in
2894 * their allocations due to apply_to_page_range not
2895 * supporting them.
2896 */
2897
2898 size_per_node = size;
2899 if (node == NUMA_NO_NODE)
2900 size_per_node /= num_online_nodes();
2901 if (size_per_node >= PMD_SIZE) {
2902 shift = PMD_SHIFT;
2903 align = max(real_align, 1UL << shift);
2904 size = ALIGN(real_size, 1UL << shift);
2905 }
2906 }
2907
2908 again:
2909 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
2910 VM_UNINITIALIZED | vm_flags, start, end, node,
2911 gfp_mask, caller);
2912 if (!area) {
2913 warn_alloc(gfp_mask, NULL,
2914 "vmalloc size %lu allocation failure: "
2915 "vm_struct allocation failed", real_size);
2916 goto fail;
2917 }
2918
2919 addr = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
2920 if (!addr)
2921 goto fail;
2922
2923 /*
2924 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2925 * flag. It means that vm_struct is not fully initialized.
2926 * Now, it is fully initialized, so remove this flag here.
2927 */
2928 clear_vm_uninitialized_flag(area);
2929
2930 size = PAGE_ALIGN(size);
2931 kmemleak_vmalloc(area, size, gfp_mask);
2932
2933 return addr;
2934
2935 fail:
2936 if (shift > PAGE_SHIFT) {
2937 shift = PAGE_SHIFT;
2938 align = real_align;
2939 size = real_size;
2940 goto again;
2941 }
2942
2943 return NULL;
2944 }
2945
2946 /**
2947 * __vmalloc_node - allocate virtually contiguous memory
2948 * @size: allocation size
2949 * @align: desired alignment
2950 * @gfp_mask: flags for the page level allocator
2951 * @node: node to use for allocation or NUMA_NO_NODE
2952 * @caller: caller's return address
2953 *
2954 * Allocate enough pages to cover @size from the page level allocator with
2955 * @gfp_mask flags. Map them into contiguous kernel virtual space.
2956 *
2957 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2958 * and __GFP_NOFAIL are not supported
2959 *
2960 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2961 * with mm people.
2962 *
2963 * Return: pointer to the allocated memory or %NULL on error
2964 */
2965 void *__vmalloc_node(unsigned long size, unsigned long align,
2966 gfp_t gfp_mask, int node, const void *caller)
2967 {
2968 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2969 gfp_mask, PAGE_KERNEL, 0, node, caller);
2970 }
2971 /*
2972 * This is only for performance analysis of vmalloc and stress purpose.
2973 * It is required by vmalloc test module, therefore do not use it other
2974 * than that.
2975 */
2976 #ifdef CONFIG_TEST_VMALLOC_MODULE
2977 EXPORT_SYMBOL_GPL(__vmalloc_node);
2978 #endif
2979
2980 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
2981 {
2982 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
2983 __builtin_return_address(0));
2984 }
2985 EXPORT_SYMBOL(__vmalloc);
2986
2987 /**
2988 * vmalloc - allocate virtually contiguous memory
2989 * @size: allocation size
2990 *
2991 * Allocate enough pages to cover @size from the page level
2992 * allocator and map them into contiguous kernel virtual space.
2993 *
2994 * For tight control over page level allocator and protection flags
2995 * use __vmalloc() instead.
2996 *
2997 * Return: pointer to the allocated memory or %NULL on error
2998 */
2999 void *vmalloc(unsigned long size)
3000 {
3001 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3002 __builtin_return_address(0));
3003 }
3004 EXPORT_SYMBOL(vmalloc);
3005
3006 /**
3007 * vmalloc_no_huge - allocate virtually contiguous memory using small pages
3008 * @size: allocation size
3009 *
3010 * Allocate enough non-huge pages to cover @size from the page level
3011 * allocator and map them into contiguous kernel virtual space.
3012 *
3013 * Return: pointer to the allocated memory or %NULL on error
3014 */
3015 void *vmalloc_no_huge(unsigned long size)
3016 {
3017 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3018 GFP_KERNEL, PAGE_KERNEL, VM_NO_HUGE_VMAP,
3019 NUMA_NO_NODE, __builtin_return_address(0));
3020 }
3021 EXPORT_SYMBOL(vmalloc_no_huge);
3022
3023 /**
3024 * vzalloc - allocate virtually contiguous memory with zero fill
3025 * @size: allocation size
3026 *
3027 * Allocate enough pages to cover @size from the page level
3028 * allocator and map them into contiguous kernel virtual space.
3029 * The memory allocated is set to zero.
3030 *
3031 * For tight control over page level allocator and protection flags
3032 * use __vmalloc() instead.
3033 *
3034 * Return: pointer to the allocated memory or %NULL on error
3035 */
3036 void *vzalloc(unsigned long size)
3037 {
3038 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3039 __builtin_return_address(0));
3040 }
3041 EXPORT_SYMBOL(vzalloc);
3042
3043 /**
3044 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3045 * @size: allocation size
3046 *
3047 * The resulting memory area is zeroed so it can be mapped to userspace
3048 * without leaking data.
3049 *
3050 * Return: pointer to the allocated memory or %NULL on error
3051 */
3052 void *vmalloc_user(unsigned long size)
3053 {
3054 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3055 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3056 VM_USERMAP, NUMA_NO_NODE,
3057 __builtin_return_address(0));
3058 }
3059 EXPORT_SYMBOL(vmalloc_user);
3060
3061 /**
3062 * vmalloc_node - allocate memory on a specific node
3063 * @size: allocation size
3064 * @node: numa node
3065 *
3066 * Allocate enough pages to cover @size from the page level
3067 * allocator and map them into contiguous kernel virtual space.
3068 *
3069 * For tight control over page level allocator and protection flags
3070 * use __vmalloc() instead.
3071 *
3072 * Return: pointer to the allocated memory or %NULL on error
3073 */
3074 void *vmalloc_node(unsigned long size, int node)
3075 {
3076 return __vmalloc_node(size, 1, GFP_KERNEL, node,
3077 __builtin_return_address(0));
3078 }
3079 EXPORT_SYMBOL(vmalloc_node);
3080
3081 /**
3082 * vzalloc_node - allocate memory on a specific node with zero fill
3083 * @size: allocation size
3084 * @node: numa node
3085 *
3086 * Allocate enough pages to cover @size from the page level
3087 * allocator and map them into contiguous kernel virtual space.
3088 * The memory allocated is set to zero.
3089 *
3090 * Return: pointer to the allocated memory or %NULL on error
3091 */
3092 void *vzalloc_node(unsigned long size, int node)
3093 {
3094 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3095 __builtin_return_address(0));
3096 }
3097 EXPORT_SYMBOL(vzalloc_node);
3098
3099 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3100 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3101 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3102 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3103 #else
3104 /*
3105 * 64b systems should always have either DMA or DMA32 zones. For others
3106 * GFP_DMA32 should do the right thing and use the normal zone.
3107 */
3108 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3109 #endif
3110
3111 /**
3112 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3113 * @size: allocation size
3114 *
3115 * Allocate enough 32bit PA addressable pages to cover @size from the
3116 * page level allocator and map them into contiguous kernel virtual space.
3117 *
3118 * Return: pointer to the allocated memory or %NULL on error
3119 */
3120 void *vmalloc_32(unsigned long size)
3121 {
3122 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3123 __builtin_return_address(0));
3124 }
3125 EXPORT_SYMBOL(vmalloc_32);
3126
3127 /**
3128 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3129 * @size: allocation size
3130 *
3131 * The resulting memory area is 32bit addressable and zeroed so it can be
3132 * mapped to userspace without leaking data.
3133 *
3134 * Return: pointer to the allocated memory or %NULL on error
3135 */
3136 void *vmalloc_32_user(unsigned long size)
3137 {
3138 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3139 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3140 VM_USERMAP, NUMA_NO_NODE,
3141 __builtin_return_address(0));
3142 }
3143 EXPORT_SYMBOL(vmalloc_32_user);
3144
3145 /*
3146 * small helper routine , copy contents to buf from addr.
3147 * If the page is not present, fill zero.
3148 */
3149
3150 static int aligned_vread(char *buf, char *addr, unsigned long count)
3151 {
3152 struct page *p;
3153 int copied = 0;
3154
3155 while (count) {
3156 unsigned long offset, length;
3157
3158 offset = offset_in_page(addr);
3159 length = PAGE_SIZE - offset;
3160 if (length > count)
3161 length = count;
3162 p = vmalloc_to_page(addr);
3163 /*
3164 * To do safe access to this _mapped_ area, we need
3165 * lock. But adding lock here means that we need to add
3166 * overhead of vmalloc()/vfree() calls for this _debug_
3167 * interface, rarely used. Instead of that, we'll use
3168 * kmap() and get small overhead in this access function.
3169 */
3170 if (p) {
3171 /* We can expect USER0 is not used -- see vread() */
3172 void *map = kmap_atomic(p);
3173 memcpy(buf, map + offset, length);
3174 kunmap_atomic(map);
3175 } else
3176 memset(buf, 0, length);
3177
3178 addr += length;
3179 buf += length;
3180 copied += length;
3181 count -= length;
3182 }
3183 return copied;
3184 }
3185
3186 /**
3187 * vread() - read vmalloc area in a safe way.
3188 * @buf: buffer for reading data
3189 * @addr: vm address.
3190 * @count: number of bytes to be read.
3191 *
3192 * This function checks that addr is a valid vmalloc'ed area, and
3193 * copy data from that area to a given buffer. If the given memory range
3194 * of [addr...addr+count) includes some valid address, data is copied to
3195 * proper area of @buf. If there are memory holes, they'll be zero-filled.
3196 * IOREMAP area is treated as memory hole and no copy is done.
3197 *
3198 * If [addr...addr+count) doesn't includes any intersects with alive
3199 * vm_struct area, returns 0. @buf should be kernel's buffer.
3200 *
3201 * Note: In usual ops, vread() is never necessary because the caller
3202 * should know vmalloc() area is valid and can use memcpy().
3203 * This is for routines which have to access vmalloc area without
3204 * any information, as /proc/kcore.
3205 *
3206 * Return: number of bytes for which addr and buf should be increased
3207 * (same number as @count) or %0 if [addr...addr+count) doesn't
3208 * include any intersection with valid vmalloc area
3209 */
3210 long vread(char *buf, char *addr, unsigned long count)
3211 {
3212 struct vmap_area *va;
3213 struct vm_struct *vm;
3214 char *vaddr, *buf_start = buf;
3215 unsigned long buflen = count;
3216 unsigned long n;
3217
3218 /* Don't allow overflow */
3219 if ((unsigned long) addr + count < count)
3220 count = -(unsigned long) addr;
3221
3222 spin_lock(&vmap_area_lock);
3223 va = __find_vmap_area((unsigned long)addr);
3224 if (!va)
3225 goto finished;
3226 list_for_each_entry_from(va, &vmap_area_list, list) {
3227 if (!count)
3228 break;
3229
3230 if (!va->vm)
3231 continue;
3232
3233 vm = va->vm;
3234 vaddr = (char *) vm->addr;
3235 if (addr >= vaddr + get_vm_area_size(vm))
3236 continue;
3237 while (addr < vaddr) {
3238 if (count == 0)
3239 goto finished;
3240 *buf = '\0';
3241 buf++;
3242 addr++;
3243 count--;
3244 }
3245 n = vaddr + get_vm_area_size(vm) - addr;
3246 if (n > count)
3247 n = count;
3248 if (!(vm->flags & VM_IOREMAP))
3249 aligned_vread(buf, addr, n);
3250 else /* IOREMAP area is treated as memory hole */
3251 memset(buf, 0, n);
3252 buf += n;
3253 addr += n;
3254 count -= n;
3255 }
3256 finished:
3257 spin_unlock(&vmap_area_lock);
3258
3259 if (buf == buf_start)
3260 return 0;
3261 /* zero-fill memory holes */
3262 if (buf != buf_start + buflen)
3263 memset(buf, 0, buflen - (buf - buf_start));
3264
3265 return buflen;
3266 }
3267
3268 /**
3269 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3270 * @vma: vma to cover
3271 * @uaddr: target user address to start at
3272 * @kaddr: virtual address of vmalloc kernel memory
3273 * @pgoff: offset from @kaddr to start at
3274 * @size: size of map area
3275 *
3276 * Returns: 0 for success, -Exxx on failure
3277 *
3278 * This function checks that @kaddr is a valid vmalloc'ed area,
3279 * and that it is big enough to cover the range starting at
3280 * @uaddr in @vma. Will return failure if that criteria isn't
3281 * met.
3282 *
3283 * Similar to remap_pfn_range() (see mm/memory.c)
3284 */
3285 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3286 void *kaddr, unsigned long pgoff,
3287 unsigned long size)
3288 {
3289 struct vm_struct *area;
3290 unsigned long off;
3291 unsigned long end_index;
3292
3293 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3294 return -EINVAL;
3295
3296 size = PAGE_ALIGN(size);
3297
3298 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3299 return -EINVAL;
3300
3301 area = find_vm_area(kaddr);
3302 if (!area)
3303 return -EINVAL;
3304
3305 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3306 return -EINVAL;
3307
3308 if (check_add_overflow(size, off, &end_index) ||
3309 end_index > get_vm_area_size(area))
3310 return -EINVAL;
3311 kaddr += off;
3312
3313 do {
3314 struct page *page = vmalloc_to_page(kaddr);
3315 int ret;
3316
3317 ret = vm_insert_page(vma, uaddr, page);
3318 if (ret)
3319 return ret;
3320
3321 uaddr += PAGE_SIZE;
3322 kaddr += PAGE_SIZE;
3323 size -= PAGE_SIZE;
3324 } while (size > 0);
3325
3326 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3327
3328 return 0;
3329 }
3330
3331 /**
3332 * remap_vmalloc_range - map vmalloc pages to userspace
3333 * @vma: vma to cover (map full range of vma)
3334 * @addr: vmalloc memory
3335 * @pgoff: number of pages into addr before first page to map
3336 *
3337 * Returns: 0 for success, -Exxx on failure
3338 *
3339 * This function checks that addr is a valid vmalloc'ed area, and
3340 * that it is big enough to cover the vma. Will return failure if
3341 * that criteria isn't met.
3342 *
3343 * Similar to remap_pfn_range() (see mm/memory.c)
3344 */
3345 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3346 unsigned long pgoff)
3347 {
3348 return remap_vmalloc_range_partial(vma, vma->vm_start,
3349 addr, pgoff,
3350 vma->vm_end - vma->vm_start);
3351 }
3352 EXPORT_SYMBOL(remap_vmalloc_range);
3353
3354 void free_vm_area(struct vm_struct *area)
3355 {
3356 struct vm_struct *ret;
3357 ret = remove_vm_area(area->addr);
3358 BUG_ON(ret != area);
3359 kfree(area);
3360 }
3361 EXPORT_SYMBOL_GPL(free_vm_area);
3362
3363 #ifdef CONFIG_SMP
3364 static struct vmap_area *node_to_va(struct rb_node *n)
3365 {
3366 return rb_entry_safe(n, struct vmap_area, rb_node);
3367 }
3368
3369 /**
3370 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3371 * @addr: target address
3372 *
3373 * Returns: vmap_area if it is found. If there is no such area
3374 * the first highest(reverse order) vmap_area is returned
3375 * i.e. va->va_start < addr && va->va_end < addr or NULL
3376 * if there are no any areas before @addr.
3377 */
3378 static struct vmap_area *
3379 pvm_find_va_enclose_addr(unsigned long addr)
3380 {
3381 struct vmap_area *va, *tmp;
3382 struct rb_node *n;
3383
3384 n = free_vmap_area_root.rb_node;
3385 va = NULL;
3386
3387 while (n) {
3388 tmp = rb_entry(n, struct vmap_area, rb_node);
3389 if (tmp->va_start <= addr) {
3390 va = tmp;
3391 if (tmp->va_end >= addr)
3392 break;
3393
3394 n = n->rb_right;
3395 } else {
3396 n = n->rb_left;
3397 }
3398 }
3399
3400 return va;
3401 }
3402
3403 /**
3404 * pvm_determine_end_from_reverse - find the highest aligned address
3405 * of free block below VMALLOC_END
3406 * @va:
3407 * in - the VA we start the search(reverse order);
3408 * out - the VA with the highest aligned end address.
3409 * @align: alignment for required highest address
3410 *
3411 * Returns: determined end address within vmap_area
3412 */
3413 static unsigned long
3414 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3415 {
3416 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3417 unsigned long addr;
3418
3419 if (likely(*va)) {
3420 list_for_each_entry_from_reverse((*va),
3421 &free_vmap_area_list, list) {
3422 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3423 if ((*va)->va_start < addr)
3424 return addr;
3425 }
3426 }
3427
3428 return 0;
3429 }
3430
3431 /**
3432 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3433 * @offsets: array containing offset of each area
3434 * @sizes: array containing size of each area
3435 * @nr_vms: the number of areas to allocate
3436 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3437 *
3438 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3439 * vm_structs on success, %NULL on failure
3440 *
3441 * Percpu allocator wants to use congruent vm areas so that it can
3442 * maintain the offsets among percpu areas. This function allocates
3443 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3444 * be scattered pretty far, distance between two areas easily going up
3445 * to gigabytes. To avoid interacting with regular vmallocs, these
3446 * areas are allocated from top.
3447 *
3448 * Despite its complicated look, this allocator is rather simple. It
3449 * does everything top-down and scans free blocks from the end looking
3450 * for matching base. While scanning, if any of the areas do not fit the
3451 * base address is pulled down to fit the area. Scanning is repeated till
3452 * all the areas fit and then all necessary data structures are inserted
3453 * and the result is returned.
3454 */
3455 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3456 const size_t *sizes, int nr_vms,
3457 size_t align)
3458 {
3459 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3460 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3461 struct vmap_area **vas, *va;
3462 struct vm_struct **vms;
3463 int area, area2, last_area, term_area;
3464 unsigned long base, start, size, end, last_end, orig_start, orig_end;
3465 bool purged = false;
3466 enum fit_type type;
3467
3468 /* verify parameters and allocate data structures */
3469 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3470 for (last_area = 0, area = 0; area < nr_vms; area++) {
3471 start = offsets[area];
3472 end = start + sizes[area];
3473
3474 /* is everything aligned properly? */
3475 BUG_ON(!IS_ALIGNED(offsets[area], align));
3476 BUG_ON(!IS_ALIGNED(sizes[area], align));
3477
3478 /* detect the area with the highest address */
3479 if (start > offsets[last_area])
3480 last_area = area;
3481
3482 for (area2 = area + 1; area2 < nr_vms; area2++) {
3483 unsigned long start2 = offsets[area2];
3484 unsigned long end2 = start2 + sizes[area2];
3485
3486 BUG_ON(start2 < end && start < end2);
3487 }
3488 }
3489 last_end = offsets[last_area] + sizes[last_area];
3490
3491 if (vmalloc_end - vmalloc_start < last_end) {
3492 WARN_ON(true);
3493 return NULL;
3494 }
3495
3496 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3497 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3498 if (!vas || !vms)
3499 goto err_free2;
3500
3501 for (area = 0; area < nr_vms; area++) {
3502 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3503 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3504 if (!vas[area] || !vms[area])
3505 goto err_free;
3506 }
3507 retry:
3508 spin_lock(&free_vmap_area_lock);
3509
3510 /* start scanning - we scan from the top, begin with the last area */
3511 area = term_area = last_area;
3512 start = offsets[area];
3513 end = start + sizes[area];
3514
3515 va = pvm_find_va_enclose_addr(vmalloc_end);
3516 base = pvm_determine_end_from_reverse(&va, align) - end;
3517
3518 while (true) {
3519 /*
3520 * base might have underflowed, add last_end before
3521 * comparing.
3522 */
3523 if (base + last_end < vmalloc_start + last_end)
3524 goto overflow;
3525
3526 /*
3527 * Fitting base has not been found.
3528 */
3529 if (va == NULL)
3530 goto overflow;
3531
3532 /*
3533 * If required width exceeds current VA block, move
3534 * base downwards and then recheck.
3535 */
3536 if (base + end > va->va_end) {
3537 base = pvm_determine_end_from_reverse(&va, align) - end;
3538 term_area = area;
3539 continue;
3540 }
3541
3542 /*
3543 * If this VA does not fit, move base downwards and recheck.
3544 */
3545 if (base + start < va->va_start) {
3546 va = node_to_va(rb_prev(&va->rb_node));
3547 base = pvm_determine_end_from_reverse(&va, align) - end;
3548 term_area = area;
3549 continue;
3550 }
3551
3552 /*
3553 * This area fits, move on to the previous one. If
3554 * the previous one is the terminal one, we're done.
3555 */
3556 area = (area + nr_vms - 1) % nr_vms;
3557 if (area == term_area)
3558 break;
3559
3560 start = offsets[area];
3561 end = start + sizes[area];
3562 va = pvm_find_va_enclose_addr(base + end);
3563 }
3564
3565 /* we've found a fitting base, insert all va's */
3566 for (area = 0; area < nr_vms; area++) {
3567 int ret;
3568
3569 start = base + offsets[area];
3570 size = sizes[area];
3571
3572 va = pvm_find_va_enclose_addr(start);
3573 if (WARN_ON_ONCE(va == NULL))
3574 /* It is a BUG(), but trigger recovery instead. */
3575 goto recovery;
3576
3577 type = classify_va_fit_type(va, start, size);
3578 if (WARN_ON_ONCE(type == NOTHING_FIT))
3579 /* It is a BUG(), but trigger recovery instead. */
3580 goto recovery;
3581
3582 ret = adjust_va_to_fit_type(va, start, size, type);
3583 if (unlikely(ret))
3584 goto recovery;
3585
3586 /* Allocated area. */
3587 va = vas[area];
3588 va->va_start = start;
3589 va->va_end = start + size;
3590 }
3591
3592 spin_unlock(&free_vmap_area_lock);
3593
3594 /* populate the kasan shadow space */
3595 for (area = 0; area < nr_vms; area++) {
3596 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3597 goto err_free_shadow;
3598
3599 kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3600 sizes[area]);
3601 }
3602
3603 /* insert all vm's */
3604 spin_lock(&vmap_area_lock);
3605 for (area = 0; area < nr_vms; area++) {
3606 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3607
3608 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3609 pcpu_get_vm_areas);
3610 }
3611 spin_unlock(&vmap_area_lock);
3612
3613 kfree(vas);
3614 return vms;
3615
3616 recovery:
3617 /*
3618 * Remove previously allocated areas. There is no
3619 * need in removing these areas from the busy tree,
3620 * because they are inserted only on the final step
3621 * and when pcpu_get_vm_areas() is success.
3622 */
3623 while (area--) {
3624 orig_start = vas[area]->va_start;
3625 orig_end = vas[area]->va_end;
3626 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3627 &free_vmap_area_list);
3628 if (va)
3629 kasan_release_vmalloc(orig_start, orig_end,
3630 va->va_start, va->va_end);
3631 vas[area] = NULL;
3632 }
3633
3634 overflow:
3635 spin_unlock(&free_vmap_area_lock);
3636 if (!purged) {
3637 purge_vmap_area_lazy();
3638 purged = true;
3639
3640 /* Before "retry", check if we recover. */
3641 for (area = 0; area < nr_vms; area++) {
3642 if (vas[area])
3643 continue;
3644
3645 vas[area] = kmem_cache_zalloc(
3646 vmap_area_cachep, GFP_KERNEL);
3647 if (!vas[area])
3648 goto err_free;
3649 }
3650
3651 goto retry;
3652 }
3653
3654 err_free:
3655 for (area = 0; area < nr_vms; area++) {
3656 if (vas[area])
3657 kmem_cache_free(vmap_area_cachep, vas[area]);
3658
3659 kfree(vms[area]);
3660 }
3661 err_free2:
3662 kfree(vas);
3663 kfree(vms);
3664 return NULL;
3665
3666 err_free_shadow:
3667 spin_lock(&free_vmap_area_lock);
3668 /*
3669 * We release all the vmalloc shadows, even the ones for regions that
3670 * hadn't been successfully added. This relies on kasan_release_vmalloc
3671 * being able to tolerate this case.
3672 */
3673 for (area = 0; area < nr_vms; area++) {
3674 orig_start = vas[area]->va_start;
3675 orig_end = vas[area]->va_end;
3676 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3677 &free_vmap_area_list);
3678 if (va)
3679 kasan_release_vmalloc(orig_start, orig_end,
3680 va->va_start, va->va_end);
3681 vas[area] = NULL;
3682 kfree(vms[area]);
3683 }
3684 spin_unlock(&free_vmap_area_lock);
3685 kfree(vas);
3686 kfree(vms);
3687 return NULL;
3688 }
3689
3690 /**
3691 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3692 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3693 * @nr_vms: the number of allocated areas
3694 *
3695 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3696 */
3697 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3698 {
3699 int i;
3700
3701 for (i = 0; i < nr_vms; i++)
3702 free_vm_area(vms[i]);
3703 kfree(vms);
3704 }
3705 #endif /* CONFIG_SMP */
3706
3707 #ifdef CONFIG_PRINTK
3708 bool vmalloc_dump_obj(void *object)
3709 {
3710 struct vm_struct *vm;
3711 void *objp = (void *)PAGE_ALIGN((unsigned long)object);
3712
3713 vm = find_vm_area(objp);
3714 if (!vm)
3715 return false;
3716 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
3717 vm->nr_pages, (unsigned long)vm->addr, vm->caller);
3718 return true;
3719 }
3720 #endif
3721
3722 #ifdef CONFIG_PROC_FS
3723 static void *s_start(struct seq_file *m, loff_t *pos)
3724 __acquires(&vmap_purge_lock)
3725 __acquires(&vmap_area_lock)
3726 {
3727 mutex_lock(&vmap_purge_lock);
3728 spin_lock(&vmap_area_lock);
3729
3730 return seq_list_start(&vmap_area_list, *pos);
3731 }
3732
3733 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3734 {
3735 return seq_list_next(p, &vmap_area_list, pos);
3736 }
3737
3738 static void s_stop(struct seq_file *m, void *p)
3739 __releases(&vmap_area_lock)
3740 __releases(&vmap_purge_lock)
3741 {
3742 spin_unlock(&vmap_area_lock);
3743 mutex_unlock(&vmap_purge_lock);
3744 }
3745
3746 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3747 {
3748 if (IS_ENABLED(CONFIG_NUMA)) {
3749 unsigned int nr, *counters = m->private;
3750
3751 if (!counters)
3752 return;
3753
3754 if (v->flags & VM_UNINITIALIZED)
3755 return;
3756 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3757 smp_rmb();
3758
3759 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3760
3761 for (nr = 0; nr < v->nr_pages; nr++)
3762 counters[page_to_nid(v->pages[nr])]++;
3763
3764 for_each_node_state(nr, N_HIGH_MEMORY)
3765 if (counters[nr])
3766 seq_printf(m, " N%u=%u", nr, counters[nr]);
3767 }
3768 }
3769
3770 static void show_purge_info(struct seq_file *m)
3771 {
3772 struct vmap_area *va;
3773
3774 spin_lock(&purge_vmap_area_lock);
3775 list_for_each_entry(va, &purge_vmap_area_list, list) {
3776 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3777 (void *)va->va_start, (void *)va->va_end,
3778 va->va_end - va->va_start);
3779 }
3780 spin_unlock(&purge_vmap_area_lock);
3781 }
3782
3783 static int s_show(struct seq_file *m, void *p)
3784 {
3785 struct vmap_area *va;
3786 struct vm_struct *v;
3787
3788 va = list_entry(p, struct vmap_area, list);
3789
3790 /*
3791 * s_show can encounter race with remove_vm_area, !vm on behalf
3792 * of vmap area is being tear down or vm_map_ram allocation.
3793 */
3794 if (!va->vm) {
3795 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3796 (void *)va->va_start, (void *)va->va_end,
3797 va->va_end - va->va_start);
3798
3799 return 0;
3800 }
3801
3802 v = va->vm;
3803
3804 seq_printf(m, "0x%pK-0x%pK %7ld",
3805 v->addr, v->addr + v->size, v->size);
3806
3807 if (v->caller)
3808 seq_printf(m, " %pS", v->caller);
3809
3810 if (v->nr_pages)
3811 seq_printf(m, " pages=%d", v->nr_pages);
3812
3813 if (v->phys_addr)
3814 seq_printf(m, " phys=%pa", &v->phys_addr);
3815
3816 if (v->flags & VM_IOREMAP)
3817 seq_puts(m, " ioremap");
3818
3819 if (v->flags & VM_ALLOC)
3820 seq_puts(m, " vmalloc");
3821
3822 if (v->flags & VM_MAP)
3823 seq_puts(m, " vmap");
3824
3825 if (v->flags & VM_USERMAP)
3826 seq_puts(m, " user");
3827
3828 if (v->flags & VM_DMA_COHERENT)
3829 seq_puts(m, " dma-coherent");
3830
3831 if (is_vmalloc_addr(v->pages))
3832 seq_puts(m, " vpages");
3833
3834 show_numa_info(m, v);
3835 seq_putc(m, '\n');
3836
3837 /*
3838 * As a final step, dump "unpurged" areas.
3839 */
3840 if (list_is_last(&va->list, &vmap_area_list))
3841 show_purge_info(m);
3842
3843 return 0;
3844 }
3845
3846 static const struct seq_operations vmalloc_op = {
3847 .start = s_start,
3848 .next = s_next,
3849 .stop = s_stop,
3850 .show = s_show,
3851 };
3852
3853 static int __init proc_vmalloc_init(void)
3854 {
3855 if (IS_ENABLED(CONFIG_NUMA))
3856 proc_create_seq_private("vmallocinfo", 0400, NULL,
3857 &vmalloc_op,
3858 nr_node_ids * sizeof(unsigned int), NULL);
3859 else
3860 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3861 return 0;
3862 }
3863 module_init(proc_vmalloc_init);
3864
3865 #endif