]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/vmalloc.c
netfilter: masquerade: attach nat extension if not present
[mirror_ubuntu-artful-kernel.git] / mm / vmalloc.c
1 /*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/notifier.h>
25 #include <linux/rbtree.h>
26 #include <linux/radix-tree.h>
27 #include <linux/rcupdate.h>
28 #include <linux/pfn.h>
29 #include <linux/kmemleak.h>
30 #include <linux/atomic.h>
31 #include <linux/compiler.h>
32 #include <linux/llist.h>
33 #include <linux/bitops.h>
34
35 #include <linux/uaccess.h>
36 #include <asm/tlbflush.h>
37 #include <asm/shmparam.h>
38
39 #include "internal.h"
40
41 struct vfree_deferred {
42 struct llist_head list;
43 struct work_struct wq;
44 };
45 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
46
47 static void __vunmap(const void *, int);
48
49 static void free_work(struct work_struct *w)
50 {
51 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
52 struct llist_node *llnode = llist_del_all(&p->list);
53 while (llnode) {
54 void *p = llnode;
55 llnode = llist_next(llnode);
56 __vunmap(p, 1);
57 }
58 }
59
60 /*** Page table manipulation functions ***/
61
62 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
63 {
64 pte_t *pte;
65
66 pte = pte_offset_kernel(pmd, addr);
67 do {
68 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
69 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
70 } while (pte++, addr += PAGE_SIZE, addr != end);
71 }
72
73 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
74 {
75 pmd_t *pmd;
76 unsigned long next;
77
78 pmd = pmd_offset(pud, addr);
79 do {
80 next = pmd_addr_end(addr, end);
81 if (pmd_clear_huge(pmd))
82 continue;
83 if (pmd_none_or_clear_bad(pmd))
84 continue;
85 vunmap_pte_range(pmd, addr, next);
86 } while (pmd++, addr = next, addr != end);
87 }
88
89 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
90 {
91 pud_t *pud;
92 unsigned long next;
93
94 pud = pud_offset(p4d, addr);
95 do {
96 next = pud_addr_end(addr, end);
97 if (pud_clear_huge(pud))
98 continue;
99 if (pud_none_or_clear_bad(pud))
100 continue;
101 vunmap_pmd_range(pud, addr, next);
102 } while (pud++, addr = next, addr != end);
103 }
104
105 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
106 {
107 p4d_t *p4d;
108 unsigned long next;
109
110 p4d = p4d_offset(pgd, addr);
111 do {
112 next = p4d_addr_end(addr, end);
113 if (p4d_clear_huge(p4d))
114 continue;
115 if (p4d_none_or_clear_bad(p4d))
116 continue;
117 vunmap_pud_range(p4d, addr, next);
118 } while (p4d++, addr = next, addr != end);
119 }
120
121 static void vunmap_page_range(unsigned long addr, unsigned long end)
122 {
123 pgd_t *pgd;
124 unsigned long next;
125
126 BUG_ON(addr >= end);
127 pgd = pgd_offset_k(addr);
128 do {
129 next = pgd_addr_end(addr, end);
130 if (pgd_none_or_clear_bad(pgd))
131 continue;
132 vunmap_p4d_range(pgd, addr, next);
133 } while (pgd++, addr = next, addr != end);
134 }
135
136 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
137 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
138 {
139 pte_t *pte;
140
141 /*
142 * nr is a running index into the array which helps higher level
143 * callers keep track of where we're up to.
144 */
145
146 pte = pte_alloc_kernel(pmd, addr);
147 if (!pte)
148 return -ENOMEM;
149 do {
150 struct page *page = pages[*nr];
151
152 if (WARN_ON(!pte_none(*pte)))
153 return -EBUSY;
154 if (WARN_ON(!page))
155 return -ENOMEM;
156 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
157 (*nr)++;
158 } while (pte++, addr += PAGE_SIZE, addr != end);
159 return 0;
160 }
161
162 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
163 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
164 {
165 pmd_t *pmd;
166 unsigned long next;
167
168 pmd = pmd_alloc(&init_mm, pud, addr);
169 if (!pmd)
170 return -ENOMEM;
171 do {
172 next = pmd_addr_end(addr, end);
173 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
174 return -ENOMEM;
175 } while (pmd++, addr = next, addr != end);
176 return 0;
177 }
178
179 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
180 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
181 {
182 pud_t *pud;
183 unsigned long next;
184
185 pud = pud_alloc(&init_mm, p4d, addr);
186 if (!pud)
187 return -ENOMEM;
188 do {
189 next = pud_addr_end(addr, end);
190 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
191 return -ENOMEM;
192 } while (pud++, addr = next, addr != end);
193 return 0;
194 }
195
196 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
197 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
198 {
199 p4d_t *p4d;
200 unsigned long next;
201
202 p4d = p4d_alloc(&init_mm, pgd, addr);
203 if (!p4d)
204 return -ENOMEM;
205 do {
206 next = p4d_addr_end(addr, end);
207 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
208 return -ENOMEM;
209 } while (p4d++, addr = next, addr != end);
210 return 0;
211 }
212
213 /*
214 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
215 * will have pfns corresponding to the "pages" array.
216 *
217 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
218 */
219 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
220 pgprot_t prot, struct page **pages)
221 {
222 pgd_t *pgd;
223 unsigned long next;
224 unsigned long addr = start;
225 int err = 0;
226 int nr = 0;
227
228 BUG_ON(addr >= end);
229 pgd = pgd_offset_k(addr);
230 do {
231 next = pgd_addr_end(addr, end);
232 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
233 if (err)
234 return err;
235 } while (pgd++, addr = next, addr != end);
236
237 return nr;
238 }
239
240 static int vmap_page_range(unsigned long start, unsigned long end,
241 pgprot_t prot, struct page **pages)
242 {
243 int ret;
244
245 ret = vmap_page_range_noflush(start, end, prot, pages);
246 flush_cache_vmap(start, end);
247 return ret;
248 }
249
250 int is_vmalloc_or_module_addr(const void *x)
251 {
252 /*
253 * ARM, x86-64 and sparc64 put modules in a special place,
254 * and fall back on vmalloc() if that fails. Others
255 * just put it in the vmalloc space.
256 */
257 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
258 unsigned long addr = (unsigned long)x;
259 if (addr >= MODULES_VADDR && addr < MODULES_END)
260 return 1;
261 #endif
262 return is_vmalloc_addr(x);
263 }
264
265 /*
266 * Walk a vmap address to the struct page it maps.
267 */
268 struct page *vmalloc_to_page(const void *vmalloc_addr)
269 {
270 unsigned long addr = (unsigned long) vmalloc_addr;
271 struct page *page = NULL;
272 pgd_t *pgd = pgd_offset_k(addr);
273 p4d_t *p4d;
274 pud_t *pud;
275 pmd_t *pmd;
276 pte_t *ptep, pte;
277
278 /*
279 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
280 * architectures that do not vmalloc module space
281 */
282 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
283
284 if (pgd_none(*pgd))
285 return NULL;
286 p4d = p4d_offset(pgd, addr);
287 if (p4d_none(*p4d))
288 return NULL;
289 pud = pud_offset(p4d, addr);
290 if (pud_none(*pud))
291 return NULL;
292 pmd = pmd_offset(pud, addr);
293 if (pmd_none(*pmd))
294 return NULL;
295
296 ptep = pte_offset_map(pmd, addr);
297 pte = *ptep;
298 if (pte_present(pte))
299 page = pte_page(pte);
300 pte_unmap(ptep);
301 return page;
302 }
303 EXPORT_SYMBOL(vmalloc_to_page);
304
305 /*
306 * Map a vmalloc()-space virtual address to the physical page frame number.
307 */
308 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
309 {
310 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
311 }
312 EXPORT_SYMBOL(vmalloc_to_pfn);
313
314
315 /*** Global kva allocator ***/
316
317 #define VM_VM_AREA 0x04
318
319 static DEFINE_SPINLOCK(vmap_area_lock);
320 /* Export for kexec only */
321 LIST_HEAD(vmap_area_list);
322 static LLIST_HEAD(vmap_purge_list);
323 static struct rb_root vmap_area_root = RB_ROOT;
324
325 /* The vmap cache globals are protected by vmap_area_lock */
326 static struct rb_node *free_vmap_cache;
327 static unsigned long cached_hole_size;
328 static unsigned long cached_vstart;
329 static unsigned long cached_align;
330
331 static unsigned long vmap_area_pcpu_hole;
332
333 static struct vmap_area *__find_vmap_area(unsigned long addr)
334 {
335 struct rb_node *n = vmap_area_root.rb_node;
336
337 while (n) {
338 struct vmap_area *va;
339
340 va = rb_entry(n, struct vmap_area, rb_node);
341 if (addr < va->va_start)
342 n = n->rb_left;
343 else if (addr >= va->va_end)
344 n = n->rb_right;
345 else
346 return va;
347 }
348
349 return NULL;
350 }
351
352 static void __insert_vmap_area(struct vmap_area *va)
353 {
354 struct rb_node **p = &vmap_area_root.rb_node;
355 struct rb_node *parent = NULL;
356 struct rb_node *tmp;
357
358 while (*p) {
359 struct vmap_area *tmp_va;
360
361 parent = *p;
362 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
363 if (va->va_start < tmp_va->va_end)
364 p = &(*p)->rb_left;
365 else if (va->va_end > tmp_va->va_start)
366 p = &(*p)->rb_right;
367 else
368 BUG();
369 }
370
371 rb_link_node(&va->rb_node, parent, p);
372 rb_insert_color(&va->rb_node, &vmap_area_root);
373
374 /* address-sort this list */
375 tmp = rb_prev(&va->rb_node);
376 if (tmp) {
377 struct vmap_area *prev;
378 prev = rb_entry(tmp, struct vmap_area, rb_node);
379 list_add_rcu(&va->list, &prev->list);
380 } else
381 list_add_rcu(&va->list, &vmap_area_list);
382 }
383
384 static void purge_vmap_area_lazy(void);
385
386 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
387
388 /*
389 * Allocate a region of KVA of the specified size and alignment, within the
390 * vstart and vend.
391 */
392 static struct vmap_area *alloc_vmap_area(unsigned long size,
393 unsigned long align,
394 unsigned long vstart, unsigned long vend,
395 int node, gfp_t gfp_mask)
396 {
397 struct vmap_area *va;
398 struct rb_node *n;
399 unsigned long addr;
400 int purged = 0;
401 struct vmap_area *first;
402
403 BUG_ON(!size);
404 BUG_ON(offset_in_page(size));
405 BUG_ON(!is_power_of_2(align));
406
407 might_sleep();
408
409 va = kmalloc_node(sizeof(struct vmap_area),
410 gfp_mask & GFP_RECLAIM_MASK, node);
411 if (unlikely(!va))
412 return ERR_PTR(-ENOMEM);
413
414 /*
415 * Only scan the relevant parts containing pointers to other objects
416 * to avoid false negatives.
417 */
418 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
419
420 retry:
421 spin_lock(&vmap_area_lock);
422 /*
423 * Invalidate cache if we have more permissive parameters.
424 * cached_hole_size notes the largest hole noticed _below_
425 * the vmap_area cached in free_vmap_cache: if size fits
426 * into that hole, we want to scan from vstart to reuse
427 * the hole instead of allocating above free_vmap_cache.
428 * Note that __free_vmap_area may update free_vmap_cache
429 * without updating cached_hole_size or cached_align.
430 */
431 if (!free_vmap_cache ||
432 size < cached_hole_size ||
433 vstart < cached_vstart ||
434 align < cached_align) {
435 nocache:
436 cached_hole_size = 0;
437 free_vmap_cache = NULL;
438 }
439 /* record if we encounter less permissive parameters */
440 cached_vstart = vstart;
441 cached_align = align;
442
443 /* find starting point for our search */
444 if (free_vmap_cache) {
445 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
446 addr = ALIGN(first->va_end, align);
447 if (addr < vstart)
448 goto nocache;
449 if (addr + size < addr)
450 goto overflow;
451
452 } else {
453 addr = ALIGN(vstart, align);
454 if (addr + size < addr)
455 goto overflow;
456
457 n = vmap_area_root.rb_node;
458 first = NULL;
459
460 while (n) {
461 struct vmap_area *tmp;
462 tmp = rb_entry(n, struct vmap_area, rb_node);
463 if (tmp->va_end >= addr) {
464 first = tmp;
465 if (tmp->va_start <= addr)
466 break;
467 n = n->rb_left;
468 } else
469 n = n->rb_right;
470 }
471
472 if (!first)
473 goto found;
474 }
475
476 /* from the starting point, walk areas until a suitable hole is found */
477 while (addr + size > first->va_start && addr + size <= vend) {
478 if (addr + cached_hole_size < first->va_start)
479 cached_hole_size = first->va_start - addr;
480 addr = ALIGN(first->va_end, align);
481 if (addr + size < addr)
482 goto overflow;
483
484 if (list_is_last(&first->list, &vmap_area_list))
485 goto found;
486
487 first = list_next_entry(first, list);
488 }
489
490 found:
491 if (addr + size > vend)
492 goto overflow;
493
494 va->va_start = addr;
495 va->va_end = addr + size;
496 va->flags = 0;
497 __insert_vmap_area(va);
498 free_vmap_cache = &va->rb_node;
499 spin_unlock(&vmap_area_lock);
500
501 BUG_ON(!IS_ALIGNED(va->va_start, align));
502 BUG_ON(va->va_start < vstart);
503 BUG_ON(va->va_end > vend);
504
505 return va;
506
507 overflow:
508 spin_unlock(&vmap_area_lock);
509 if (!purged) {
510 purge_vmap_area_lazy();
511 purged = 1;
512 goto retry;
513 }
514
515 if (gfpflags_allow_blocking(gfp_mask)) {
516 unsigned long freed = 0;
517 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
518 if (freed > 0) {
519 purged = 0;
520 goto retry;
521 }
522 }
523
524 if (printk_ratelimit())
525 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
526 size);
527 kfree(va);
528 return ERR_PTR(-EBUSY);
529 }
530
531 int register_vmap_purge_notifier(struct notifier_block *nb)
532 {
533 return blocking_notifier_chain_register(&vmap_notify_list, nb);
534 }
535 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
536
537 int unregister_vmap_purge_notifier(struct notifier_block *nb)
538 {
539 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
540 }
541 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
542
543 static void __free_vmap_area(struct vmap_area *va)
544 {
545 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
546
547 if (free_vmap_cache) {
548 if (va->va_end < cached_vstart) {
549 free_vmap_cache = NULL;
550 } else {
551 struct vmap_area *cache;
552 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
553 if (va->va_start <= cache->va_start) {
554 free_vmap_cache = rb_prev(&va->rb_node);
555 /*
556 * We don't try to update cached_hole_size or
557 * cached_align, but it won't go very wrong.
558 */
559 }
560 }
561 }
562 rb_erase(&va->rb_node, &vmap_area_root);
563 RB_CLEAR_NODE(&va->rb_node);
564 list_del_rcu(&va->list);
565
566 /*
567 * Track the highest possible candidate for pcpu area
568 * allocation. Areas outside of vmalloc area can be returned
569 * here too, consider only end addresses which fall inside
570 * vmalloc area proper.
571 */
572 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
573 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
574
575 kfree_rcu(va, rcu_head);
576 }
577
578 /*
579 * Free a region of KVA allocated by alloc_vmap_area
580 */
581 static void free_vmap_area(struct vmap_area *va)
582 {
583 spin_lock(&vmap_area_lock);
584 __free_vmap_area(va);
585 spin_unlock(&vmap_area_lock);
586 }
587
588 /*
589 * Clear the pagetable entries of a given vmap_area
590 */
591 static void unmap_vmap_area(struct vmap_area *va)
592 {
593 vunmap_page_range(va->va_start, va->va_end);
594 }
595
596 static void vmap_debug_free_range(unsigned long start, unsigned long end)
597 {
598 /*
599 * Unmap page tables and force a TLB flush immediately if pagealloc
600 * debugging is enabled. This catches use after free bugs similarly to
601 * those in linear kernel virtual address space after a page has been
602 * freed.
603 *
604 * All the lazy freeing logic is still retained, in order to minimise
605 * intrusiveness of this debugging feature.
606 *
607 * This is going to be *slow* (linear kernel virtual address debugging
608 * doesn't do a broadcast TLB flush so it is a lot faster).
609 */
610 if (debug_pagealloc_enabled()) {
611 vunmap_page_range(start, end);
612 flush_tlb_kernel_range(start, end);
613 }
614 }
615
616 /*
617 * lazy_max_pages is the maximum amount of virtual address space we gather up
618 * before attempting to purge with a TLB flush.
619 *
620 * There is a tradeoff here: a larger number will cover more kernel page tables
621 * and take slightly longer to purge, but it will linearly reduce the number of
622 * global TLB flushes that must be performed. It would seem natural to scale
623 * this number up linearly with the number of CPUs (because vmapping activity
624 * could also scale linearly with the number of CPUs), however it is likely
625 * that in practice, workloads might be constrained in other ways that mean
626 * vmap activity will not scale linearly with CPUs. Also, I want to be
627 * conservative and not introduce a big latency on huge systems, so go with
628 * a less aggressive log scale. It will still be an improvement over the old
629 * code, and it will be simple to change the scale factor if we find that it
630 * becomes a problem on bigger systems.
631 */
632 static unsigned long lazy_max_pages(void)
633 {
634 unsigned int log;
635
636 log = fls(num_online_cpus());
637
638 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
639 }
640
641 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
642
643 /*
644 * Serialize vmap purging. There is no actual criticial section protected
645 * by this look, but we want to avoid concurrent calls for performance
646 * reasons and to make the pcpu_get_vm_areas more deterministic.
647 */
648 static DEFINE_MUTEX(vmap_purge_lock);
649
650 /* for per-CPU blocks */
651 static void purge_fragmented_blocks_allcpus(void);
652
653 /*
654 * called before a call to iounmap() if the caller wants vm_area_struct's
655 * immediately freed.
656 */
657 void set_iounmap_nonlazy(void)
658 {
659 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
660 }
661
662 /*
663 * Purges all lazily-freed vmap areas.
664 */
665 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
666 {
667 struct llist_node *valist;
668 struct vmap_area *va;
669 struct vmap_area *n_va;
670 bool do_free = false;
671
672 lockdep_assert_held(&vmap_purge_lock);
673
674 valist = llist_del_all(&vmap_purge_list);
675 llist_for_each_entry(va, valist, purge_list) {
676 if (va->va_start < start)
677 start = va->va_start;
678 if (va->va_end > end)
679 end = va->va_end;
680 do_free = true;
681 }
682
683 if (!do_free)
684 return false;
685
686 flush_tlb_kernel_range(start, end);
687
688 spin_lock(&vmap_area_lock);
689 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
690 int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
691
692 __free_vmap_area(va);
693 atomic_sub(nr, &vmap_lazy_nr);
694 cond_resched_lock(&vmap_area_lock);
695 }
696 spin_unlock(&vmap_area_lock);
697 return true;
698 }
699
700 /*
701 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
702 * is already purging.
703 */
704 static void try_purge_vmap_area_lazy(void)
705 {
706 if (mutex_trylock(&vmap_purge_lock)) {
707 __purge_vmap_area_lazy(ULONG_MAX, 0);
708 mutex_unlock(&vmap_purge_lock);
709 }
710 }
711
712 /*
713 * Kick off a purge of the outstanding lazy areas.
714 */
715 static void purge_vmap_area_lazy(void)
716 {
717 mutex_lock(&vmap_purge_lock);
718 purge_fragmented_blocks_allcpus();
719 __purge_vmap_area_lazy(ULONG_MAX, 0);
720 mutex_unlock(&vmap_purge_lock);
721 }
722
723 /*
724 * Free a vmap area, caller ensuring that the area has been unmapped
725 * and flush_cache_vunmap had been called for the correct range
726 * previously.
727 */
728 static void free_vmap_area_noflush(struct vmap_area *va)
729 {
730 int nr_lazy;
731
732 nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
733 &vmap_lazy_nr);
734
735 /* After this point, we may free va at any time */
736 llist_add(&va->purge_list, &vmap_purge_list);
737
738 if (unlikely(nr_lazy > lazy_max_pages()))
739 try_purge_vmap_area_lazy();
740 }
741
742 /*
743 * Free and unmap a vmap area
744 */
745 static void free_unmap_vmap_area(struct vmap_area *va)
746 {
747 flush_cache_vunmap(va->va_start, va->va_end);
748 unmap_vmap_area(va);
749 free_vmap_area_noflush(va);
750 }
751
752 static struct vmap_area *find_vmap_area(unsigned long addr)
753 {
754 struct vmap_area *va;
755
756 spin_lock(&vmap_area_lock);
757 va = __find_vmap_area(addr);
758 spin_unlock(&vmap_area_lock);
759
760 return va;
761 }
762
763 /*** Per cpu kva allocator ***/
764
765 /*
766 * vmap space is limited especially on 32 bit architectures. Ensure there is
767 * room for at least 16 percpu vmap blocks per CPU.
768 */
769 /*
770 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
771 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
772 * instead (we just need a rough idea)
773 */
774 #if BITS_PER_LONG == 32
775 #define VMALLOC_SPACE (128UL*1024*1024)
776 #else
777 #define VMALLOC_SPACE (128UL*1024*1024*1024)
778 #endif
779
780 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
781 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
782 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
783 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
784 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
785 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
786 #define VMAP_BBMAP_BITS \
787 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
788 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
789 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
790
791 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
792
793 static bool vmap_initialized __read_mostly = false;
794
795 struct vmap_block_queue {
796 spinlock_t lock;
797 struct list_head free;
798 };
799
800 struct vmap_block {
801 spinlock_t lock;
802 struct vmap_area *va;
803 unsigned long free, dirty;
804 unsigned long dirty_min, dirty_max; /*< dirty range */
805 struct list_head free_list;
806 struct rcu_head rcu_head;
807 struct list_head purge;
808 };
809
810 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
811 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
812
813 /*
814 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
815 * in the free path. Could get rid of this if we change the API to return a
816 * "cookie" from alloc, to be passed to free. But no big deal yet.
817 */
818 static DEFINE_SPINLOCK(vmap_block_tree_lock);
819 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
820
821 /*
822 * We should probably have a fallback mechanism to allocate virtual memory
823 * out of partially filled vmap blocks. However vmap block sizing should be
824 * fairly reasonable according to the vmalloc size, so it shouldn't be a
825 * big problem.
826 */
827
828 static unsigned long addr_to_vb_idx(unsigned long addr)
829 {
830 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
831 addr /= VMAP_BLOCK_SIZE;
832 return addr;
833 }
834
835 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
836 {
837 unsigned long addr;
838
839 addr = va_start + (pages_off << PAGE_SHIFT);
840 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
841 return (void *)addr;
842 }
843
844 /**
845 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
846 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
847 * @order: how many 2^order pages should be occupied in newly allocated block
848 * @gfp_mask: flags for the page level allocator
849 *
850 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
851 */
852 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
853 {
854 struct vmap_block_queue *vbq;
855 struct vmap_block *vb;
856 struct vmap_area *va;
857 unsigned long vb_idx;
858 int node, err;
859 void *vaddr;
860
861 node = numa_node_id();
862
863 vb = kmalloc_node(sizeof(struct vmap_block),
864 gfp_mask & GFP_RECLAIM_MASK, node);
865 if (unlikely(!vb))
866 return ERR_PTR(-ENOMEM);
867
868 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
869 VMALLOC_START, VMALLOC_END,
870 node, gfp_mask);
871 if (IS_ERR(va)) {
872 kfree(vb);
873 return ERR_CAST(va);
874 }
875
876 err = radix_tree_preload(gfp_mask);
877 if (unlikely(err)) {
878 kfree(vb);
879 free_vmap_area(va);
880 return ERR_PTR(err);
881 }
882
883 vaddr = vmap_block_vaddr(va->va_start, 0);
884 spin_lock_init(&vb->lock);
885 vb->va = va;
886 /* At least something should be left free */
887 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
888 vb->free = VMAP_BBMAP_BITS - (1UL << order);
889 vb->dirty = 0;
890 vb->dirty_min = VMAP_BBMAP_BITS;
891 vb->dirty_max = 0;
892 INIT_LIST_HEAD(&vb->free_list);
893
894 vb_idx = addr_to_vb_idx(va->va_start);
895 spin_lock(&vmap_block_tree_lock);
896 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
897 spin_unlock(&vmap_block_tree_lock);
898 BUG_ON(err);
899 radix_tree_preload_end();
900
901 vbq = &get_cpu_var(vmap_block_queue);
902 spin_lock(&vbq->lock);
903 list_add_tail_rcu(&vb->free_list, &vbq->free);
904 spin_unlock(&vbq->lock);
905 put_cpu_var(vmap_block_queue);
906
907 return vaddr;
908 }
909
910 static void free_vmap_block(struct vmap_block *vb)
911 {
912 struct vmap_block *tmp;
913 unsigned long vb_idx;
914
915 vb_idx = addr_to_vb_idx(vb->va->va_start);
916 spin_lock(&vmap_block_tree_lock);
917 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
918 spin_unlock(&vmap_block_tree_lock);
919 BUG_ON(tmp != vb);
920
921 free_vmap_area_noflush(vb->va);
922 kfree_rcu(vb, rcu_head);
923 }
924
925 static void purge_fragmented_blocks(int cpu)
926 {
927 LIST_HEAD(purge);
928 struct vmap_block *vb;
929 struct vmap_block *n_vb;
930 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
931
932 rcu_read_lock();
933 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
934
935 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
936 continue;
937
938 spin_lock(&vb->lock);
939 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
940 vb->free = 0; /* prevent further allocs after releasing lock */
941 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
942 vb->dirty_min = 0;
943 vb->dirty_max = VMAP_BBMAP_BITS;
944 spin_lock(&vbq->lock);
945 list_del_rcu(&vb->free_list);
946 spin_unlock(&vbq->lock);
947 spin_unlock(&vb->lock);
948 list_add_tail(&vb->purge, &purge);
949 } else
950 spin_unlock(&vb->lock);
951 }
952 rcu_read_unlock();
953
954 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
955 list_del(&vb->purge);
956 free_vmap_block(vb);
957 }
958 }
959
960 static void purge_fragmented_blocks_allcpus(void)
961 {
962 int cpu;
963
964 for_each_possible_cpu(cpu)
965 purge_fragmented_blocks(cpu);
966 }
967
968 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
969 {
970 struct vmap_block_queue *vbq;
971 struct vmap_block *vb;
972 void *vaddr = NULL;
973 unsigned int order;
974
975 BUG_ON(offset_in_page(size));
976 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
977 if (WARN_ON(size == 0)) {
978 /*
979 * Allocating 0 bytes isn't what caller wants since
980 * get_order(0) returns funny result. Just warn and terminate
981 * early.
982 */
983 return NULL;
984 }
985 order = get_order(size);
986
987 rcu_read_lock();
988 vbq = &get_cpu_var(vmap_block_queue);
989 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
990 unsigned long pages_off;
991
992 spin_lock(&vb->lock);
993 if (vb->free < (1UL << order)) {
994 spin_unlock(&vb->lock);
995 continue;
996 }
997
998 pages_off = VMAP_BBMAP_BITS - vb->free;
999 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1000 vb->free -= 1UL << order;
1001 if (vb->free == 0) {
1002 spin_lock(&vbq->lock);
1003 list_del_rcu(&vb->free_list);
1004 spin_unlock(&vbq->lock);
1005 }
1006
1007 spin_unlock(&vb->lock);
1008 break;
1009 }
1010
1011 put_cpu_var(vmap_block_queue);
1012 rcu_read_unlock();
1013
1014 /* Allocate new block if nothing was found */
1015 if (!vaddr)
1016 vaddr = new_vmap_block(order, gfp_mask);
1017
1018 return vaddr;
1019 }
1020
1021 static void vb_free(const void *addr, unsigned long size)
1022 {
1023 unsigned long offset;
1024 unsigned long vb_idx;
1025 unsigned int order;
1026 struct vmap_block *vb;
1027
1028 BUG_ON(offset_in_page(size));
1029 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1030
1031 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1032
1033 order = get_order(size);
1034
1035 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1036 offset >>= PAGE_SHIFT;
1037
1038 vb_idx = addr_to_vb_idx((unsigned long)addr);
1039 rcu_read_lock();
1040 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1041 rcu_read_unlock();
1042 BUG_ON(!vb);
1043
1044 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1045
1046 spin_lock(&vb->lock);
1047
1048 /* Expand dirty range */
1049 vb->dirty_min = min(vb->dirty_min, offset);
1050 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1051
1052 vb->dirty += 1UL << order;
1053 if (vb->dirty == VMAP_BBMAP_BITS) {
1054 BUG_ON(vb->free);
1055 spin_unlock(&vb->lock);
1056 free_vmap_block(vb);
1057 } else
1058 spin_unlock(&vb->lock);
1059 }
1060
1061 /**
1062 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1063 *
1064 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1065 * to amortize TLB flushing overheads. What this means is that any page you
1066 * have now, may, in a former life, have been mapped into kernel virtual
1067 * address by the vmap layer and so there might be some CPUs with TLB entries
1068 * still referencing that page (additional to the regular 1:1 kernel mapping).
1069 *
1070 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1071 * be sure that none of the pages we have control over will have any aliases
1072 * from the vmap layer.
1073 */
1074 void vm_unmap_aliases(void)
1075 {
1076 unsigned long start = ULONG_MAX, end = 0;
1077 int cpu;
1078 int flush = 0;
1079
1080 if (unlikely(!vmap_initialized))
1081 return;
1082
1083 might_sleep();
1084
1085 for_each_possible_cpu(cpu) {
1086 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1087 struct vmap_block *vb;
1088
1089 rcu_read_lock();
1090 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1091 spin_lock(&vb->lock);
1092 if (vb->dirty) {
1093 unsigned long va_start = vb->va->va_start;
1094 unsigned long s, e;
1095
1096 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1097 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1098
1099 start = min(s, start);
1100 end = max(e, end);
1101
1102 flush = 1;
1103 }
1104 spin_unlock(&vb->lock);
1105 }
1106 rcu_read_unlock();
1107 }
1108
1109 mutex_lock(&vmap_purge_lock);
1110 purge_fragmented_blocks_allcpus();
1111 if (!__purge_vmap_area_lazy(start, end) && flush)
1112 flush_tlb_kernel_range(start, end);
1113 mutex_unlock(&vmap_purge_lock);
1114 }
1115 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1116
1117 /**
1118 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1119 * @mem: the pointer returned by vm_map_ram
1120 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1121 */
1122 void vm_unmap_ram(const void *mem, unsigned int count)
1123 {
1124 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1125 unsigned long addr = (unsigned long)mem;
1126 struct vmap_area *va;
1127
1128 might_sleep();
1129 BUG_ON(!addr);
1130 BUG_ON(addr < VMALLOC_START);
1131 BUG_ON(addr > VMALLOC_END);
1132 BUG_ON(!PAGE_ALIGNED(addr));
1133
1134 debug_check_no_locks_freed(mem, size);
1135 vmap_debug_free_range(addr, addr+size);
1136
1137 if (likely(count <= VMAP_MAX_ALLOC)) {
1138 vb_free(mem, size);
1139 return;
1140 }
1141
1142 va = find_vmap_area(addr);
1143 BUG_ON(!va);
1144 free_unmap_vmap_area(va);
1145 }
1146 EXPORT_SYMBOL(vm_unmap_ram);
1147
1148 /**
1149 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1150 * @pages: an array of pointers to the pages to be mapped
1151 * @count: number of pages
1152 * @node: prefer to allocate data structures on this node
1153 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1154 *
1155 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1156 * faster than vmap so it's good. But if you mix long-life and short-life
1157 * objects with vm_map_ram(), it could consume lots of address space through
1158 * fragmentation (especially on a 32bit machine). You could see failures in
1159 * the end. Please use this function for short-lived objects.
1160 *
1161 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1162 */
1163 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1164 {
1165 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1166 unsigned long addr;
1167 void *mem;
1168
1169 if (likely(count <= VMAP_MAX_ALLOC)) {
1170 mem = vb_alloc(size, GFP_KERNEL);
1171 if (IS_ERR(mem))
1172 return NULL;
1173 addr = (unsigned long)mem;
1174 } else {
1175 struct vmap_area *va;
1176 va = alloc_vmap_area(size, PAGE_SIZE,
1177 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1178 if (IS_ERR(va))
1179 return NULL;
1180
1181 addr = va->va_start;
1182 mem = (void *)addr;
1183 }
1184 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1185 vm_unmap_ram(mem, count);
1186 return NULL;
1187 }
1188 return mem;
1189 }
1190 EXPORT_SYMBOL(vm_map_ram);
1191
1192 static struct vm_struct *vmlist __initdata;
1193 /**
1194 * vm_area_add_early - add vmap area early during boot
1195 * @vm: vm_struct to add
1196 *
1197 * This function is used to add fixed kernel vm area to vmlist before
1198 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1199 * should contain proper values and the other fields should be zero.
1200 *
1201 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1202 */
1203 void __init vm_area_add_early(struct vm_struct *vm)
1204 {
1205 struct vm_struct *tmp, **p;
1206
1207 BUG_ON(vmap_initialized);
1208 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1209 if (tmp->addr >= vm->addr) {
1210 BUG_ON(tmp->addr < vm->addr + vm->size);
1211 break;
1212 } else
1213 BUG_ON(tmp->addr + tmp->size > vm->addr);
1214 }
1215 vm->next = *p;
1216 *p = vm;
1217 }
1218
1219 /**
1220 * vm_area_register_early - register vmap area early during boot
1221 * @vm: vm_struct to register
1222 * @align: requested alignment
1223 *
1224 * This function is used to register kernel vm area before
1225 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1226 * proper values on entry and other fields should be zero. On return,
1227 * vm->addr contains the allocated address.
1228 *
1229 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1230 */
1231 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1232 {
1233 static size_t vm_init_off __initdata;
1234 unsigned long addr;
1235
1236 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1237 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1238
1239 vm->addr = (void *)addr;
1240
1241 vm_area_add_early(vm);
1242 }
1243
1244 void __init vmalloc_init(void)
1245 {
1246 struct vmap_area *va;
1247 struct vm_struct *tmp;
1248 int i;
1249
1250 for_each_possible_cpu(i) {
1251 struct vmap_block_queue *vbq;
1252 struct vfree_deferred *p;
1253
1254 vbq = &per_cpu(vmap_block_queue, i);
1255 spin_lock_init(&vbq->lock);
1256 INIT_LIST_HEAD(&vbq->free);
1257 p = &per_cpu(vfree_deferred, i);
1258 init_llist_head(&p->list);
1259 INIT_WORK(&p->wq, free_work);
1260 }
1261
1262 /* Import existing vmlist entries. */
1263 for (tmp = vmlist; tmp; tmp = tmp->next) {
1264 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1265 va->flags = VM_VM_AREA;
1266 va->va_start = (unsigned long)tmp->addr;
1267 va->va_end = va->va_start + tmp->size;
1268 va->vm = tmp;
1269 __insert_vmap_area(va);
1270 }
1271
1272 vmap_area_pcpu_hole = VMALLOC_END;
1273
1274 vmap_initialized = true;
1275 }
1276
1277 /**
1278 * map_kernel_range_noflush - map kernel VM area with the specified pages
1279 * @addr: start of the VM area to map
1280 * @size: size of the VM area to map
1281 * @prot: page protection flags to use
1282 * @pages: pages to map
1283 *
1284 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1285 * specify should have been allocated using get_vm_area() and its
1286 * friends.
1287 *
1288 * NOTE:
1289 * This function does NOT do any cache flushing. The caller is
1290 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1291 * before calling this function.
1292 *
1293 * RETURNS:
1294 * The number of pages mapped on success, -errno on failure.
1295 */
1296 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1297 pgprot_t prot, struct page **pages)
1298 {
1299 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1300 }
1301
1302 /**
1303 * unmap_kernel_range_noflush - unmap kernel VM area
1304 * @addr: start of the VM area to unmap
1305 * @size: size of the VM area to unmap
1306 *
1307 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1308 * specify should have been allocated using get_vm_area() and its
1309 * friends.
1310 *
1311 * NOTE:
1312 * This function does NOT do any cache flushing. The caller is
1313 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1314 * before calling this function and flush_tlb_kernel_range() after.
1315 */
1316 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1317 {
1318 vunmap_page_range(addr, addr + size);
1319 }
1320 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1321
1322 /**
1323 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1324 * @addr: start of the VM area to unmap
1325 * @size: size of the VM area to unmap
1326 *
1327 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1328 * the unmapping and tlb after.
1329 */
1330 void unmap_kernel_range(unsigned long addr, unsigned long size)
1331 {
1332 unsigned long end = addr + size;
1333
1334 flush_cache_vunmap(addr, end);
1335 vunmap_page_range(addr, end);
1336 flush_tlb_kernel_range(addr, end);
1337 }
1338 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1339
1340 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1341 {
1342 unsigned long addr = (unsigned long)area->addr;
1343 unsigned long end = addr + get_vm_area_size(area);
1344 int err;
1345
1346 err = vmap_page_range(addr, end, prot, pages);
1347
1348 return err > 0 ? 0 : err;
1349 }
1350 EXPORT_SYMBOL_GPL(map_vm_area);
1351
1352 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1353 unsigned long flags, const void *caller)
1354 {
1355 spin_lock(&vmap_area_lock);
1356 vm->flags = flags;
1357 vm->addr = (void *)va->va_start;
1358 vm->size = va->va_end - va->va_start;
1359 vm->caller = caller;
1360 va->vm = vm;
1361 va->flags |= VM_VM_AREA;
1362 spin_unlock(&vmap_area_lock);
1363 }
1364
1365 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1366 {
1367 /*
1368 * Before removing VM_UNINITIALIZED,
1369 * we should make sure that vm has proper values.
1370 * Pair with smp_rmb() in show_numa_info().
1371 */
1372 smp_wmb();
1373 vm->flags &= ~VM_UNINITIALIZED;
1374 }
1375
1376 static struct vm_struct *__get_vm_area_node(unsigned long size,
1377 unsigned long align, unsigned long flags, unsigned long start,
1378 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1379 {
1380 struct vmap_area *va;
1381 struct vm_struct *area;
1382
1383 BUG_ON(in_interrupt());
1384 size = PAGE_ALIGN(size);
1385 if (unlikely(!size))
1386 return NULL;
1387
1388 if (flags & VM_IOREMAP)
1389 align = 1ul << clamp_t(int, get_count_order_long(size),
1390 PAGE_SHIFT, IOREMAP_MAX_ORDER);
1391
1392 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1393 if (unlikely(!area))
1394 return NULL;
1395
1396 if (!(flags & VM_NO_GUARD))
1397 size += PAGE_SIZE;
1398
1399 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1400 if (IS_ERR(va)) {
1401 kfree(area);
1402 return NULL;
1403 }
1404
1405 setup_vmalloc_vm(area, va, flags, caller);
1406
1407 return area;
1408 }
1409
1410 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1411 unsigned long start, unsigned long end)
1412 {
1413 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1414 GFP_KERNEL, __builtin_return_address(0));
1415 }
1416 EXPORT_SYMBOL_GPL(__get_vm_area);
1417
1418 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1419 unsigned long start, unsigned long end,
1420 const void *caller)
1421 {
1422 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1423 GFP_KERNEL, caller);
1424 }
1425
1426 /**
1427 * get_vm_area - reserve a contiguous kernel virtual area
1428 * @size: size of the area
1429 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1430 *
1431 * Search an area of @size in the kernel virtual mapping area,
1432 * and reserved it for out purposes. Returns the area descriptor
1433 * on success or %NULL on failure.
1434 */
1435 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1436 {
1437 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1438 NUMA_NO_NODE, GFP_KERNEL,
1439 __builtin_return_address(0));
1440 }
1441
1442 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1443 const void *caller)
1444 {
1445 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1446 NUMA_NO_NODE, GFP_KERNEL, caller);
1447 }
1448
1449 /**
1450 * find_vm_area - find a continuous kernel virtual area
1451 * @addr: base address
1452 *
1453 * Search for the kernel VM area starting at @addr, and return it.
1454 * It is up to the caller to do all required locking to keep the returned
1455 * pointer valid.
1456 */
1457 struct vm_struct *find_vm_area(const void *addr)
1458 {
1459 struct vmap_area *va;
1460
1461 va = find_vmap_area((unsigned long)addr);
1462 if (va && va->flags & VM_VM_AREA)
1463 return va->vm;
1464
1465 return NULL;
1466 }
1467
1468 /**
1469 * remove_vm_area - find and remove a continuous kernel virtual area
1470 * @addr: base address
1471 *
1472 * Search for the kernel VM area starting at @addr, and remove it.
1473 * This function returns the found VM area, but using it is NOT safe
1474 * on SMP machines, except for its size or flags.
1475 */
1476 struct vm_struct *remove_vm_area(const void *addr)
1477 {
1478 struct vmap_area *va;
1479
1480 might_sleep();
1481
1482 va = find_vmap_area((unsigned long)addr);
1483 if (va && va->flags & VM_VM_AREA) {
1484 struct vm_struct *vm = va->vm;
1485
1486 spin_lock(&vmap_area_lock);
1487 va->vm = NULL;
1488 va->flags &= ~VM_VM_AREA;
1489 spin_unlock(&vmap_area_lock);
1490
1491 vmap_debug_free_range(va->va_start, va->va_end);
1492 kasan_free_shadow(vm);
1493 free_unmap_vmap_area(va);
1494
1495 return vm;
1496 }
1497 return NULL;
1498 }
1499
1500 static void __vunmap(const void *addr, int deallocate_pages)
1501 {
1502 struct vm_struct *area;
1503
1504 if (!addr)
1505 return;
1506
1507 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1508 addr))
1509 return;
1510
1511 area = remove_vm_area(addr);
1512 if (unlikely(!area)) {
1513 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1514 addr);
1515 return;
1516 }
1517
1518 debug_check_no_locks_freed(addr, get_vm_area_size(area));
1519 debug_check_no_obj_freed(addr, get_vm_area_size(area));
1520
1521 if (deallocate_pages) {
1522 int i;
1523
1524 for (i = 0; i < area->nr_pages; i++) {
1525 struct page *page = area->pages[i];
1526
1527 BUG_ON(!page);
1528 __free_pages(page, 0);
1529 }
1530
1531 kvfree(area->pages);
1532 }
1533
1534 kfree(area);
1535 return;
1536 }
1537
1538 static inline void __vfree_deferred(const void *addr)
1539 {
1540 /*
1541 * Use raw_cpu_ptr() because this can be called from preemptible
1542 * context. Preemption is absolutely fine here, because the llist_add()
1543 * implementation is lockless, so it works even if we are adding to
1544 * nother cpu's list. schedule_work() should be fine with this too.
1545 */
1546 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1547
1548 if (llist_add((struct llist_node *)addr, &p->list))
1549 schedule_work(&p->wq);
1550 }
1551
1552 /**
1553 * vfree_atomic - release memory allocated by vmalloc()
1554 * @addr: memory base address
1555 *
1556 * This one is just like vfree() but can be called in any atomic context
1557 * except NMIs.
1558 */
1559 void vfree_atomic(const void *addr)
1560 {
1561 BUG_ON(in_nmi());
1562
1563 kmemleak_free(addr);
1564
1565 if (!addr)
1566 return;
1567 __vfree_deferred(addr);
1568 }
1569
1570 /**
1571 * vfree - release memory allocated by vmalloc()
1572 * @addr: memory base address
1573 *
1574 * Free the virtually continuous memory area starting at @addr, as
1575 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1576 * NULL, no operation is performed.
1577 *
1578 * Must not be called in NMI context (strictly speaking, only if we don't
1579 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1580 * conventions for vfree() arch-depenedent would be a really bad idea)
1581 *
1582 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1583 */
1584 void vfree(const void *addr)
1585 {
1586 BUG_ON(in_nmi());
1587
1588 kmemleak_free(addr);
1589
1590 if (!addr)
1591 return;
1592 if (unlikely(in_interrupt()))
1593 __vfree_deferred(addr);
1594 else
1595 __vunmap(addr, 1);
1596 }
1597 EXPORT_SYMBOL(vfree);
1598
1599 /**
1600 * vunmap - release virtual mapping obtained by vmap()
1601 * @addr: memory base address
1602 *
1603 * Free the virtually contiguous memory area starting at @addr,
1604 * which was created from the page array passed to vmap().
1605 *
1606 * Must not be called in interrupt context.
1607 */
1608 void vunmap(const void *addr)
1609 {
1610 BUG_ON(in_interrupt());
1611 might_sleep();
1612 if (addr)
1613 __vunmap(addr, 0);
1614 }
1615 EXPORT_SYMBOL(vunmap);
1616
1617 /**
1618 * vmap - map an array of pages into virtually contiguous space
1619 * @pages: array of page pointers
1620 * @count: number of pages to map
1621 * @flags: vm_area->flags
1622 * @prot: page protection for the mapping
1623 *
1624 * Maps @count pages from @pages into contiguous kernel virtual
1625 * space.
1626 */
1627 void *vmap(struct page **pages, unsigned int count,
1628 unsigned long flags, pgprot_t prot)
1629 {
1630 struct vm_struct *area;
1631 unsigned long size; /* In bytes */
1632
1633 might_sleep();
1634
1635 if (count > totalram_pages)
1636 return NULL;
1637
1638 size = (unsigned long)count << PAGE_SHIFT;
1639 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1640 if (!area)
1641 return NULL;
1642
1643 if (map_vm_area(area, prot, pages)) {
1644 vunmap(area->addr);
1645 return NULL;
1646 }
1647
1648 return area->addr;
1649 }
1650 EXPORT_SYMBOL(vmap);
1651
1652 static void *__vmalloc_node(unsigned long size, unsigned long align,
1653 gfp_t gfp_mask, pgprot_t prot,
1654 int node, const void *caller);
1655 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1656 pgprot_t prot, int node)
1657 {
1658 struct page **pages;
1659 unsigned int nr_pages, array_size, i;
1660 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1661 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1662
1663 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1664 array_size = (nr_pages * sizeof(struct page *));
1665
1666 area->nr_pages = nr_pages;
1667 /* Please note that the recursion is strictly bounded. */
1668 if (array_size > PAGE_SIZE) {
1669 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1670 PAGE_KERNEL, node, area->caller);
1671 } else {
1672 pages = kmalloc_node(array_size, nested_gfp, node);
1673 }
1674 area->pages = pages;
1675 if (!area->pages) {
1676 remove_vm_area(area->addr);
1677 kfree(area);
1678 return NULL;
1679 }
1680
1681 for (i = 0; i < area->nr_pages; i++) {
1682 struct page *page;
1683
1684 if (fatal_signal_pending(current)) {
1685 area->nr_pages = i;
1686 goto fail_no_warn;
1687 }
1688
1689 if (node == NUMA_NO_NODE)
1690 page = alloc_page(alloc_mask);
1691 else
1692 page = alloc_pages_node(node, alloc_mask, 0);
1693
1694 if (unlikely(!page)) {
1695 /* Successfully allocated i pages, free them in __vunmap() */
1696 area->nr_pages = i;
1697 goto fail;
1698 }
1699 area->pages[i] = page;
1700 if (gfpflags_allow_blocking(gfp_mask))
1701 cond_resched();
1702 }
1703
1704 if (map_vm_area(area, prot, pages))
1705 goto fail;
1706 return area->addr;
1707
1708 fail:
1709 warn_alloc(gfp_mask, NULL,
1710 "vmalloc: allocation failure, allocated %ld of %ld bytes",
1711 (area->nr_pages*PAGE_SIZE), area->size);
1712 fail_no_warn:
1713 vfree(area->addr);
1714 return NULL;
1715 }
1716
1717 /**
1718 * __vmalloc_node_range - allocate virtually contiguous memory
1719 * @size: allocation size
1720 * @align: desired alignment
1721 * @start: vm area range start
1722 * @end: vm area range end
1723 * @gfp_mask: flags for the page level allocator
1724 * @prot: protection mask for the allocated pages
1725 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
1726 * @node: node to use for allocation or NUMA_NO_NODE
1727 * @caller: caller's return address
1728 *
1729 * Allocate enough pages to cover @size from the page level
1730 * allocator with @gfp_mask flags. Map them into contiguous
1731 * kernel virtual space, using a pagetable protection of @prot.
1732 */
1733 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1734 unsigned long start, unsigned long end, gfp_t gfp_mask,
1735 pgprot_t prot, unsigned long vm_flags, int node,
1736 const void *caller)
1737 {
1738 struct vm_struct *area;
1739 void *addr;
1740 unsigned long real_size = size;
1741
1742 size = PAGE_ALIGN(size);
1743 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1744 goto fail;
1745
1746 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1747 vm_flags, start, end, node, gfp_mask, caller);
1748 if (!area)
1749 goto fail;
1750
1751 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1752 if (!addr)
1753 return NULL;
1754
1755 /*
1756 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1757 * flag. It means that vm_struct is not fully initialized.
1758 * Now, it is fully initialized, so remove this flag here.
1759 */
1760 clear_vm_uninitialized_flag(area);
1761
1762 /*
1763 * A ref_count = 2 is needed because vm_struct allocated in
1764 * __get_vm_area_node() contains a reference to the virtual address of
1765 * the vmalloc'ed block.
1766 */
1767 kmemleak_alloc(addr, real_size, 2, gfp_mask);
1768
1769 return addr;
1770
1771 fail:
1772 warn_alloc(gfp_mask, NULL,
1773 "vmalloc: allocation failure: %lu bytes", real_size);
1774 return NULL;
1775 }
1776
1777 /**
1778 * __vmalloc_node - allocate virtually contiguous memory
1779 * @size: allocation size
1780 * @align: desired alignment
1781 * @gfp_mask: flags for the page level allocator
1782 * @prot: protection mask for the allocated pages
1783 * @node: node to use for allocation or NUMA_NO_NODE
1784 * @caller: caller's return address
1785 *
1786 * Allocate enough pages to cover @size from the page level
1787 * allocator with @gfp_mask flags. Map them into contiguous
1788 * kernel virtual space, using a pagetable protection of @prot.
1789 */
1790 static void *__vmalloc_node(unsigned long size, unsigned long align,
1791 gfp_t gfp_mask, pgprot_t prot,
1792 int node, const void *caller)
1793 {
1794 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1795 gfp_mask, prot, 0, node, caller);
1796 }
1797
1798 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1799 {
1800 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1801 __builtin_return_address(0));
1802 }
1803 EXPORT_SYMBOL(__vmalloc);
1804
1805 static inline void *__vmalloc_node_flags(unsigned long size,
1806 int node, gfp_t flags)
1807 {
1808 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1809 node, __builtin_return_address(0));
1810 }
1811
1812 /**
1813 * vmalloc - allocate virtually contiguous memory
1814 * @size: allocation size
1815 * Allocate enough pages to cover @size from the page level
1816 * allocator and map them into contiguous kernel virtual space.
1817 *
1818 * For tight control over page level allocator and protection flags
1819 * use __vmalloc() instead.
1820 */
1821 void *vmalloc(unsigned long size)
1822 {
1823 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1824 GFP_KERNEL | __GFP_HIGHMEM);
1825 }
1826 EXPORT_SYMBOL(vmalloc);
1827
1828 /**
1829 * vzalloc - allocate virtually contiguous memory with zero fill
1830 * @size: allocation size
1831 * Allocate enough pages to cover @size from the page level
1832 * allocator and map them into contiguous kernel virtual space.
1833 * The memory allocated is set to zero.
1834 *
1835 * For tight control over page level allocator and protection flags
1836 * use __vmalloc() instead.
1837 */
1838 void *vzalloc(unsigned long size)
1839 {
1840 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1841 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1842 }
1843 EXPORT_SYMBOL(vzalloc);
1844
1845 /**
1846 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1847 * @size: allocation size
1848 *
1849 * The resulting memory area is zeroed so it can be mapped to userspace
1850 * without leaking data.
1851 */
1852 void *vmalloc_user(unsigned long size)
1853 {
1854 struct vm_struct *area;
1855 void *ret;
1856
1857 ret = __vmalloc_node(size, SHMLBA,
1858 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1859 PAGE_KERNEL, NUMA_NO_NODE,
1860 __builtin_return_address(0));
1861 if (ret) {
1862 area = find_vm_area(ret);
1863 area->flags |= VM_USERMAP;
1864 }
1865 return ret;
1866 }
1867 EXPORT_SYMBOL(vmalloc_user);
1868
1869 /**
1870 * vmalloc_node - allocate memory on a specific node
1871 * @size: allocation size
1872 * @node: numa node
1873 *
1874 * Allocate enough pages to cover @size from the page level
1875 * allocator and map them into contiguous kernel virtual space.
1876 *
1877 * For tight control over page level allocator and protection flags
1878 * use __vmalloc() instead.
1879 */
1880 void *vmalloc_node(unsigned long size, int node)
1881 {
1882 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1883 node, __builtin_return_address(0));
1884 }
1885 EXPORT_SYMBOL(vmalloc_node);
1886
1887 /**
1888 * vzalloc_node - allocate memory on a specific node with zero fill
1889 * @size: allocation size
1890 * @node: numa node
1891 *
1892 * Allocate enough pages to cover @size from the page level
1893 * allocator and map them into contiguous kernel virtual space.
1894 * The memory allocated is set to zero.
1895 *
1896 * For tight control over page level allocator and protection flags
1897 * use __vmalloc_node() instead.
1898 */
1899 void *vzalloc_node(unsigned long size, int node)
1900 {
1901 return __vmalloc_node_flags(size, node,
1902 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1903 }
1904 EXPORT_SYMBOL(vzalloc_node);
1905
1906 #ifndef PAGE_KERNEL_EXEC
1907 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1908 #endif
1909
1910 /**
1911 * vmalloc_exec - allocate virtually contiguous, executable memory
1912 * @size: allocation size
1913 *
1914 * Kernel-internal function to allocate enough pages to cover @size
1915 * the page level allocator and map them into contiguous and
1916 * executable kernel virtual space.
1917 *
1918 * For tight control over page level allocator and protection flags
1919 * use __vmalloc() instead.
1920 */
1921
1922 void *vmalloc_exec(unsigned long size)
1923 {
1924 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1925 NUMA_NO_NODE, __builtin_return_address(0));
1926 }
1927
1928 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1929 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1930 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1931 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1932 #else
1933 #define GFP_VMALLOC32 GFP_KERNEL
1934 #endif
1935
1936 /**
1937 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1938 * @size: allocation size
1939 *
1940 * Allocate enough 32bit PA addressable pages to cover @size from the
1941 * page level allocator and map them into contiguous kernel virtual space.
1942 */
1943 void *vmalloc_32(unsigned long size)
1944 {
1945 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1946 NUMA_NO_NODE, __builtin_return_address(0));
1947 }
1948 EXPORT_SYMBOL(vmalloc_32);
1949
1950 /**
1951 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1952 * @size: allocation size
1953 *
1954 * The resulting memory area is 32bit addressable and zeroed so it can be
1955 * mapped to userspace without leaking data.
1956 */
1957 void *vmalloc_32_user(unsigned long size)
1958 {
1959 struct vm_struct *area;
1960 void *ret;
1961
1962 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1963 NUMA_NO_NODE, __builtin_return_address(0));
1964 if (ret) {
1965 area = find_vm_area(ret);
1966 area->flags |= VM_USERMAP;
1967 }
1968 return ret;
1969 }
1970 EXPORT_SYMBOL(vmalloc_32_user);
1971
1972 /*
1973 * small helper routine , copy contents to buf from addr.
1974 * If the page is not present, fill zero.
1975 */
1976
1977 static int aligned_vread(char *buf, char *addr, unsigned long count)
1978 {
1979 struct page *p;
1980 int copied = 0;
1981
1982 while (count) {
1983 unsigned long offset, length;
1984
1985 offset = offset_in_page(addr);
1986 length = PAGE_SIZE - offset;
1987 if (length > count)
1988 length = count;
1989 p = vmalloc_to_page(addr);
1990 /*
1991 * To do safe access to this _mapped_ area, we need
1992 * lock. But adding lock here means that we need to add
1993 * overhead of vmalloc()/vfree() calles for this _debug_
1994 * interface, rarely used. Instead of that, we'll use
1995 * kmap() and get small overhead in this access function.
1996 */
1997 if (p) {
1998 /*
1999 * we can expect USER0 is not used (see vread/vwrite's
2000 * function description)
2001 */
2002 void *map = kmap_atomic(p);
2003 memcpy(buf, map + offset, length);
2004 kunmap_atomic(map);
2005 } else
2006 memset(buf, 0, length);
2007
2008 addr += length;
2009 buf += length;
2010 copied += length;
2011 count -= length;
2012 }
2013 return copied;
2014 }
2015
2016 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2017 {
2018 struct page *p;
2019 int copied = 0;
2020
2021 while (count) {
2022 unsigned long offset, length;
2023
2024 offset = offset_in_page(addr);
2025 length = PAGE_SIZE - offset;
2026 if (length > count)
2027 length = count;
2028 p = vmalloc_to_page(addr);
2029 /*
2030 * To do safe access to this _mapped_ area, we need
2031 * lock. But adding lock here means that we need to add
2032 * overhead of vmalloc()/vfree() calles for this _debug_
2033 * interface, rarely used. Instead of that, we'll use
2034 * kmap() and get small overhead in this access function.
2035 */
2036 if (p) {
2037 /*
2038 * we can expect USER0 is not used (see vread/vwrite's
2039 * function description)
2040 */
2041 void *map = kmap_atomic(p);
2042 memcpy(map + offset, buf, length);
2043 kunmap_atomic(map);
2044 }
2045 addr += length;
2046 buf += length;
2047 copied += length;
2048 count -= length;
2049 }
2050 return copied;
2051 }
2052
2053 /**
2054 * vread() - read vmalloc area in a safe way.
2055 * @buf: buffer for reading data
2056 * @addr: vm address.
2057 * @count: number of bytes to be read.
2058 *
2059 * Returns # of bytes which addr and buf should be increased.
2060 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
2061 * includes any intersect with alive vmalloc area.
2062 *
2063 * This function checks that addr is a valid vmalloc'ed area, and
2064 * copy data from that area to a given buffer. If the given memory range
2065 * of [addr...addr+count) includes some valid address, data is copied to
2066 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2067 * IOREMAP area is treated as memory hole and no copy is done.
2068 *
2069 * If [addr...addr+count) doesn't includes any intersects with alive
2070 * vm_struct area, returns 0. @buf should be kernel's buffer.
2071 *
2072 * Note: In usual ops, vread() is never necessary because the caller
2073 * should know vmalloc() area is valid and can use memcpy().
2074 * This is for routines which have to access vmalloc area without
2075 * any informaion, as /dev/kmem.
2076 *
2077 */
2078
2079 long vread(char *buf, char *addr, unsigned long count)
2080 {
2081 struct vmap_area *va;
2082 struct vm_struct *vm;
2083 char *vaddr, *buf_start = buf;
2084 unsigned long buflen = count;
2085 unsigned long n;
2086
2087 /* Don't allow overflow */
2088 if ((unsigned long) addr + count < count)
2089 count = -(unsigned long) addr;
2090
2091 spin_lock(&vmap_area_lock);
2092 list_for_each_entry(va, &vmap_area_list, list) {
2093 if (!count)
2094 break;
2095
2096 if (!(va->flags & VM_VM_AREA))
2097 continue;
2098
2099 vm = va->vm;
2100 vaddr = (char *) vm->addr;
2101 if (addr >= vaddr + get_vm_area_size(vm))
2102 continue;
2103 while (addr < vaddr) {
2104 if (count == 0)
2105 goto finished;
2106 *buf = '\0';
2107 buf++;
2108 addr++;
2109 count--;
2110 }
2111 n = vaddr + get_vm_area_size(vm) - addr;
2112 if (n > count)
2113 n = count;
2114 if (!(vm->flags & VM_IOREMAP))
2115 aligned_vread(buf, addr, n);
2116 else /* IOREMAP area is treated as memory hole */
2117 memset(buf, 0, n);
2118 buf += n;
2119 addr += n;
2120 count -= n;
2121 }
2122 finished:
2123 spin_unlock(&vmap_area_lock);
2124
2125 if (buf == buf_start)
2126 return 0;
2127 /* zero-fill memory holes */
2128 if (buf != buf_start + buflen)
2129 memset(buf, 0, buflen - (buf - buf_start));
2130
2131 return buflen;
2132 }
2133
2134 /**
2135 * vwrite() - write vmalloc area in a safe way.
2136 * @buf: buffer for source data
2137 * @addr: vm address.
2138 * @count: number of bytes to be read.
2139 *
2140 * Returns # of bytes which addr and buf should be incresed.
2141 * (same number to @count).
2142 * If [addr...addr+count) doesn't includes any intersect with valid
2143 * vmalloc area, returns 0.
2144 *
2145 * This function checks that addr is a valid vmalloc'ed area, and
2146 * copy data from a buffer to the given addr. If specified range of
2147 * [addr...addr+count) includes some valid address, data is copied from
2148 * proper area of @buf. If there are memory holes, no copy to hole.
2149 * IOREMAP area is treated as memory hole and no copy is done.
2150 *
2151 * If [addr...addr+count) doesn't includes any intersects with alive
2152 * vm_struct area, returns 0. @buf should be kernel's buffer.
2153 *
2154 * Note: In usual ops, vwrite() is never necessary because the caller
2155 * should know vmalloc() area is valid and can use memcpy().
2156 * This is for routines which have to access vmalloc area without
2157 * any informaion, as /dev/kmem.
2158 */
2159
2160 long vwrite(char *buf, char *addr, unsigned long count)
2161 {
2162 struct vmap_area *va;
2163 struct vm_struct *vm;
2164 char *vaddr;
2165 unsigned long n, buflen;
2166 int copied = 0;
2167
2168 /* Don't allow overflow */
2169 if ((unsigned long) addr + count < count)
2170 count = -(unsigned long) addr;
2171 buflen = count;
2172
2173 spin_lock(&vmap_area_lock);
2174 list_for_each_entry(va, &vmap_area_list, list) {
2175 if (!count)
2176 break;
2177
2178 if (!(va->flags & VM_VM_AREA))
2179 continue;
2180
2181 vm = va->vm;
2182 vaddr = (char *) vm->addr;
2183 if (addr >= vaddr + get_vm_area_size(vm))
2184 continue;
2185 while (addr < vaddr) {
2186 if (count == 0)
2187 goto finished;
2188 buf++;
2189 addr++;
2190 count--;
2191 }
2192 n = vaddr + get_vm_area_size(vm) - addr;
2193 if (n > count)
2194 n = count;
2195 if (!(vm->flags & VM_IOREMAP)) {
2196 aligned_vwrite(buf, addr, n);
2197 copied++;
2198 }
2199 buf += n;
2200 addr += n;
2201 count -= n;
2202 }
2203 finished:
2204 spin_unlock(&vmap_area_lock);
2205 if (!copied)
2206 return 0;
2207 return buflen;
2208 }
2209
2210 /**
2211 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2212 * @vma: vma to cover
2213 * @uaddr: target user address to start at
2214 * @kaddr: virtual address of vmalloc kernel memory
2215 * @size: size of map area
2216 *
2217 * Returns: 0 for success, -Exxx on failure
2218 *
2219 * This function checks that @kaddr is a valid vmalloc'ed area,
2220 * and that it is big enough to cover the range starting at
2221 * @uaddr in @vma. Will return failure if that criteria isn't
2222 * met.
2223 *
2224 * Similar to remap_pfn_range() (see mm/memory.c)
2225 */
2226 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2227 void *kaddr, unsigned long size)
2228 {
2229 struct vm_struct *area;
2230
2231 size = PAGE_ALIGN(size);
2232
2233 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2234 return -EINVAL;
2235
2236 area = find_vm_area(kaddr);
2237 if (!area)
2238 return -EINVAL;
2239
2240 if (!(area->flags & VM_USERMAP))
2241 return -EINVAL;
2242
2243 if (kaddr + size > area->addr + area->size)
2244 return -EINVAL;
2245
2246 do {
2247 struct page *page = vmalloc_to_page(kaddr);
2248 int ret;
2249
2250 ret = vm_insert_page(vma, uaddr, page);
2251 if (ret)
2252 return ret;
2253
2254 uaddr += PAGE_SIZE;
2255 kaddr += PAGE_SIZE;
2256 size -= PAGE_SIZE;
2257 } while (size > 0);
2258
2259 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2260
2261 return 0;
2262 }
2263 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2264
2265 /**
2266 * remap_vmalloc_range - map vmalloc pages to userspace
2267 * @vma: vma to cover (map full range of vma)
2268 * @addr: vmalloc memory
2269 * @pgoff: number of pages into addr before first page to map
2270 *
2271 * Returns: 0 for success, -Exxx on failure
2272 *
2273 * This function checks that addr is a valid vmalloc'ed area, and
2274 * that it is big enough to cover the vma. Will return failure if
2275 * that criteria isn't met.
2276 *
2277 * Similar to remap_pfn_range() (see mm/memory.c)
2278 */
2279 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2280 unsigned long pgoff)
2281 {
2282 return remap_vmalloc_range_partial(vma, vma->vm_start,
2283 addr + (pgoff << PAGE_SHIFT),
2284 vma->vm_end - vma->vm_start);
2285 }
2286 EXPORT_SYMBOL(remap_vmalloc_range);
2287
2288 /*
2289 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2290 * have one.
2291 */
2292 void __weak vmalloc_sync_all(void)
2293 {
2294 }
2295
2296
2297 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2298 {
2299 pte_t ***p = data;
2300
2301 if (p) {
2302 *(*p) = pte;
2303 (*p)++;
2304 }
2305 return 0;
2306 }
2307
2308 /**
2309 * alloc_vm_area - allocate a range of kernel address space
2310 * @size: size of the area
2311 * @ptes: returns the PTEs for the address space
2312 *
2313 * Returns: NULL on failure, vm_struct on success
2314 *
2315 * This function reserves a range of kernel address space, and
2316 * allocates pagetables to map that range. No actual mappings
2317 * are created.
2318 *
2319 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2320 * allocated for the VM area are returned.
2321 */
2322 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2323 {
2324 struct vm_struct *area;
2325
2326 area = get_vm_area_caller(size, VM_IOREMAP,
2327 __builtin_return_address(0));
2328 if (area == NULL)
2329 return NULL;
2330
2331 /*
2332 * This ensures that page tables are constructed for this region
2333 * of kernel virtual address space and mapped into init_mm.
2334 */
2335 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2336 size, f, ptes ? &ptes : NULL)) {
2337 free_vm_area(area);
2338 return NULL;
2339 }
2340
2341 return area;
2342 }
2343 EXPORT_SYMBOL_GPL(alloc_vm_area);
2344
2345 void free_vm_area(struct vm_struct *area)
2346 {
2347 struct vm_struct *ret;
2348 ret = remove_vm_area(area->addr);
2349 BUG_ON(ret != area);
2350 kfree(area);
2351 }
2352 EXPORT_SYMBOL_GPL(free_vm_area);
2353
2354 #ifdef CONFIG_SMP
2355 static struct vmap_area *node_to_va(struct rb_node *n)
2356 {
2357 return rb_entry_safe(n, struct vmap_area, rb_node);
2358 }
2359
2360 /**
2361 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2362 * @end: target address
2363 * @pnext: out arg for the next vmap_area
2364 * @pprev: out arg for the previous vmap_area
2365 *
2366 * Returns: %true if either or both of next and prev are found,
2367 * %false if no vmap_area exists
2368 *
2369 * Find vmap_areas end addresses of which enclose @end. ie. if not
2370 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2371 */
2372 static bool pvm_find_next_prev(unsigned long end,
2373 struct vmap_area **pnext,
2374 struct vmap_area **pprev)
2375 {
2376 struct rb_node *n = vmap_area_root.rb_node;
2377 struct vmap_area *va = NULL;
2378
2379 while (n) {
2380 va = rb_entry(n, struct vmap_area, rb_node);
2381 if (end < va->va_end)
2382 n = n->rb_left;
2383 else if (end > va->va_end)
2384 n = n->rb_right;
2385 else
2386 break;
2387 }
2388
2389 if (!va)
2390 return false;
2391
2392 if (va->va_end > end) {
2393 *pnext = va;
2394 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2395 } else {
2396 *pprev = va;
2397 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2398 }
2399 return true;
2400 }
2401
2402 /**
2403 * pvm_determine_end - find the highest aligned address between two vmap_areas
2404 * @pnext: in/out arg for the next vmap_area
2405 * @pprev: in/out arg for the previous vmap_area
2406 * @align: alignment
2407 *
2408 * Returns: determined end address
2409 *
2410 * Find the highest aligned address between *@pnext and *@pprev below
2411 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2412 * down address is between the end addresses of the two vmap_areas.
2413 *
2414 * Please note that the address returned by this function may fall
2415 * inside *@pnext vmap_area. The caller is responsible for checking
2416 * that.
2417 */
2418 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2419 struct vmap_area **pprev,
2420 unsigned long align)
2421 {
2422 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2423 unsigned long addr;
2424
2425 if (*pnext)
2426 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2427 else
2428 addr = vmalloc_end;
2429
2430 while (*pprev && (*pprev)->va_end > addr) {
2431 *pnext = *pprev;
2432 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2433 }
2434
2435 return addr;
2436 }
2437
2438 /**
2439 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2440 * @offsets: array containing offset of each area
2441 * @sizes: array containing size of each area
2442 * @nr_vms: the number of areas to allocate
2443 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2444 *
2445 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2446 * vm_structs on success, %NULL on failure
2447 *
2448 * Percpu allocator wants to use congruent vm areas so that it can
2449 * maintain the offsets among percpu areas. This function allocates
2450 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2451 * be scattered pretty far, distance between two areas easily going up
2452 * to gigabytes. To avoid interacting with regular vmallocs, these
2453 * areas are allocated from top.
2454 *
2455 * Despite its complicated look, this allocator is rather simple. It
2456 * does everything top-down and scans areas from the end looking for
2457 * matching slot. While scanning, if any of the areas overlaps with
2458 * existing vmap_area, the base address is pulled down to fit the
2459 * area. Scanning is repeated till all the areas fit and then all
2460 * necessary data structres are inserted and the result is returned.
2461 */
2462 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2463 const size_t *sizes, int nr_vms,
2464 size_t align)
2465 {
2466 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2467 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2468 struct vmap_area **vas, *prev, *next;
2469 struct vm_struct **vms;
2470 int area, area2, last_area, term_area;
2471 unsigned long base, start, end, last_end;
2472 bool purged = false;
2473
2474 /* verify parameters and allocate data structures */
2475 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2476 for (last_area = 0, area = 0; area < nr_vms; area++) {
2477 start = offsets[area];
2478 end = start + sizes[area];
2479
2480 /* is everything aligned properly? */
2481 BUG_ON(!IS_ALIGNED(offsets[area], align));
2482 BUG_ON(!IS_ALIGNED(sizes[area], align));
2483
2484 /* detect the area with the highest address */
2485 if (start > offsets[last_area])
2486 last_area = area;
2487
2488 for (area2 = 0; area2 < nr_vms; area2++) {
2489 unsigned long start2 = offsets[area2];
2490 unsigned long end2 = start2 + sizes[area2];
2491
2492 if (area2 == area)
2493 continue;
2494
2495 BUG_ON(start2 >= start && start2 < end);
2496 BUG_ON(end2 <= end && end2 > start);
2497 }
2498 }
2499 last_end = offsets[last_area] + sizes[last_area];
2500
2501 if (vmalloc_end - vmalloc_start < last_end) {
2502 WARN_ON(true);
2503 return NULL;
2504 }
2505
2506 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2507 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2508 if (!vas || !vms)
2509 goto err_free2;
2510
2511 for (area = 0; area < nr_vms; area++) {
2512 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2513 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2514 if (!vas[area] || !vms[area])
2515 goto err_free;
2516 }
2517 retry:
2518 spin_lock(&vmap_area_lock);
2519
2520 /* start scanning - we scan from the top, begin with the last area */
2521 area = term_area = last_area;
2522 start = offsets[area];
2523 end = start + sizes[area];
2524
2525 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2526 base = vmalloc_end - last_end;
2527 goto found;
2528 }
2529 base = pvm_determine_end(&next, &prev, align) - end;
2530
2531 while (true) {
2532 BUG_ON(next && next->va_end <= base + end);
2533 BUG_ON(prev && prev->va_end > base + end);
2534
2535 /*
2536 * base might have underflowed, add last_end before
2537 * comparing.
2538 */
2539 if (base + last_end < vmalloc_start + last_end) {
2540 spin_unlock(&vmap_area_lock);
2541 if (!purged) {
2542 purge_vmap_area_lazy();
2543 purged = true;
2544 goto retry;
2545 }
2546 goto err_free;
2547 }
2548
2549 /*
2550 * If next overlaps, move base downwards so that it's
2551 * right below next and then recheck.
2552 */
2553 if (next && next->va_start < base + end) {
2554 base = pvm_determine_end(&next, &prev, align) - end;
2555 term_area = area;
2556 continue;
2557 }
2558
2559 /*
2560 * If prev overlaps, shift down next and prev and move
2561 * base so that it's right below new next and then
2562 * recheck.
2563 */
2564 if (prev && prev->va_end > base + start) {
2565 next = prev;
2566 prev = node_to_va(rb_prev(&next->rb_node));
2567 base = pvm_determine_end(&next, &prev, align) - end;
2568 term_area = area;
2569 continue;
2570 }
2571
2572 /*
2573 * This area fits, move on to the previous one. If
2574 * the previous one is the terminal one, we're done.
2575 */
2576 area = (area + nr_vms - 1) % nr_vms;
2577 if (area == term_area)
2578 break;
2579 start = offsets[area];
2580 end = start + sizes[area];
2581 pvm_find_next_prev(base + end, &next, &prev);
2582 }
2583 found:
2584 /* we've found a fitting base, insert all va's */
2585 for (area = 0; area < nr_vms; area++) {
2586 struct vmap_area *va = vas[area];
2587
2588 va->va_start = base + offsets[area];
2589 va->va_end = va->va_start + sizes[area];
2590 __insert_vmap_area(va);
2591 }
2592
2593 vmap_area_pcpu_hole = base + offsets[last_area];
2594
2595 spin_unlock(&vmap_area_lock);
2596
2597 /* insert all vm's */
2598 for (area = 0; area < nr_vms; area++)
2599 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2600 pcpu_get_vm_areas);
2601
2602 kfree(vas);
2603 return vms;
2604
2605 err_free:
2606 for (area = 0; area < nr_vms; area++) {
2607 kfree(vas[area]);
2608 kfree(vms[area]);
2609 }
2610 err_free2:
2611 kfree(vas);
2612 kfree(vms);
2613 return NULL;
2614 }
2615
2616 /**
2617 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2618 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2619 * @nr_vms: the number of allocated areas
2620 *
2621 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2622 */
2623 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2624 {
2625 int i;
2626
2627 for (i = 0; i < nr_vms; i++)
2628 free_vm_area(vms[i]);
2629 kfree(vms);
2630 }
2631 #endif /* CONFIG_SMP */
2632
2633 #ifdef CONFIG_PROC_FS
2634 static void *s_start(struct seq_file *m, loff_t *pos)
2635 __acquires(&vmap_area_lock)
2636 {
2637 spin_lock(&vmap_area_lock);
2638 return seq_list_start(&vmap_area_list, *pos);
2639 }
2640
2641 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2642 {
2643 return seq_list_next(p, &vmap_area_list, pos);
2644 }
2645
2646 static void s_stop(struct seq_file *m, void *p)
2647 __releases(&vmap_area_lock)
2648 {
2649 spin_unlock(&vmap_area_lock);
2650 }
2651
2652 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2653 {
2654 if (IS_ENABLED(CONFIG_NUMA)) {
2655 unsigned int nr, *counters = m->private;
2656
2657 if (!counters)
2658 return;
2659
2660 if (v->flags & VM_UNINITIALIZED)
2661 return;
2662 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2663 smp_rmb();
2664
2665 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2666
2667 for (nr = 0; nr < v->nr_pages; nr++)
2668 counters[page_to_nid(v->pages[nr])]++;
2669
2670 for_each_node_state(nr, N_HIGH_MEMORY)
2671 if (counters[nr])
2672 seq_printf(m, " N%u=%u", nr, counters[nr]);
2673 }
2674 }
2675
2676 static int s_show(struct seq_file *m, void *p)
2677 {
2678 struct vmap_area *va;
2679 struct vm_struct *v;
2680
2681 va = list_entry(p, struct vmap_area, list);
2682
2683 /*
2684 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2685 * behalf of vmap area is being tear down or vm_map_ram allocation.
2686 */
2687 if (!(va->flags & VM_VM_AREA))
2688 return 0;
2689
2690 v = va->vm;
2691
2692 seq_printf(m, "0x%pK-0x%pK %7ld",
2693 v->addr, v->addr + v->size, v->size);
2694
2695 if (v->caller)
2696 seq_printf(m, " %pS", v->caller);
2697
2698 if (v->nr_pages)
2699 seq_printf(m, " pages=%d", v->nr_pages);
2700
2701 if (v->phys_addr)
2702 seq_printf(m, " phys=%pa", &v->phys_addr);
2703
2704 if (v->flags & VM_IOREMAP)
2705 seq_puts(m, " ioremap");
2706
2707 if (v->flags & VM_ALLOC)
2708 seq_puts(m, " vmalloc");
2709
2710 if (v->flags & VM_MAP)
2711 seq_puts(m, " vmap");
2712
2713 if (v->flags & VM_USERMAP)
2714 seq_puts(m, " user");
2715
2716 if (is_vmalloc_addr(v->pages))
2717 seq_puts(m, " vpages");
2718
2719 show_numa_info(m, v);
2720 seq_putc(m, '\n');
2721 return 0;
2722 }
2723
2724 static const struct seq_operations vmalloc_op = {
2725 .start = s_start,
2726 .next = s_next,
2727 .stop = s_stop,
2728 .show = s_show,
2729 };
2730
2731 static int vmalloc_open(struct inode *inode, struct file *file)
2732 {
2733 if (IS_ENABLED(CONFIG_NUMA))
2734 return seq_open_private(file, &vmalloc_op,
2735 nr_node_ids * sizeof(unsigned int));
2736 else
2737 return seq_open(file, &vmalloc_op);
2738 }
2739
2740 static const struct file_operations proc_vmalloc_operations = {
2741 .open = vmalloc_open,
2742 .read = seq_read,
2743 .llseek = seq_lseek,
2744 .release = seq_release_private,
2745 };
2746
2747 static int __init proc_vmalloc_init(void)
2748 {
2749 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2750 return 0;
2751 }
2752 module_init(proc_vmalloc_init);
2753
2754 #endif
2755