]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/vmalloc.c
mm: remove vmalloc_sync_(un)mappings()
[mirror_ubuntu-jammy-kernel.git] / mm / vmalloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/vmalloc.c
4 *
5 * Copyright (C) 1993 Linus Torvalds
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
9 * Numa awareness, Christoph Lameter, SGI, June 2005
10 */
11
12 #include <linux/vmalloc.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/sched/signal.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/interrupt.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/set_memory.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/list.h>
26 #include <linux/notifier.h>
27 #include <linux/rbtree.h>
28 #include <linux/radix-tree.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/llist.h>
35 #include <linux/bitops.h>
36 #include <linux/rbtree_augmented.h>
37 #include <linux/overflow.h>
38
39 #include <linux/uaccess.h>
40 #include <asm/tlbflush.h>
41 #include <asm/shmparam.h>
42
43 #include "internal.h"
44
45 bool is_vmalloc_addr(const void *x)
46 {
47 unsigned long addr = (unsigned long)x;
48
49 return addr >= VMALLOC_START && addr < VMALLOC_END;
50 }
51 EXPORT_SYMBOL(is_vmalloc_addr);
52
53 struct vfree_deferred {
54 struct llist_head list;
55 struct work_struct wq;
56 };
57 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
58
59 static void __vunmap(const void *, int);
60
61 static void free_work(struct work_struct *w)
62 {
63 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
64 struct llist_node *t, *llnode;
65
66 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
67 __vunmap((void *)llnode, 1);
68 }
69
70 /*** Page table manipulation functions ***/
71
72 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
73 pgtbl_mod_mask *mask)
74 {
75 pte_t *pte;
76
77 pte = pte_offset_kernel(pmd, addr);
78 do {
79 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
80 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
81 } while (pte++, addr += PAGE_SIZE, addr != end);
82 *mask |= PGTBL_PTE_MODIFIED;
83 }
84
85 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
86 pgtbl_mod_mask *mask)
87 {
88 pmd_t *pmd;
89 unsigned long next;
90 int cleared;
91
92 pmd = pmd_offset(pud, addr);
93 do {
94 next = pmd_addr_end(addr, end);
95
96 cleared = pmd_clear_huge(pmd);
97 if (cleared || pmd_bad(*pmd))
98 *mask |= PGTBL_PMD_MODIFIED;
99
100 if (cleared)
101 continue;
102 if (pmd_none_or_clear_bad(pmd))
103 continue;
104 vunmap_pte_range(pmd, addr, next, mask);
105 } while (pmd++, addr = next, addr != end);
106 }
107
108 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
109 pgtbl_mod_mask *mask)
110 {
111 pud_t *pud;
112 unsigned long next;
113 int cleared;
114
115 pud = pud_offset(p4d, addr);
116 do {
117 next = pud_addr_end(addr, end);
118
119 cleared = pud_clear_huge(pud);
120 if (cleared || pud_bad(*pud))
121 *mask |= PGTBL_PUD_MODIFIED;
122
123 if (cleared)
124 continue;
125 if (pud_none_or_clear_bad(pud))
126 continue;
127 vunmap_pmd_range(pud, addr, next, mask);
128 } while (pud++, addr = next, addr != end);
129 }
130
131 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
132 pgtbl_mod_mask *mask)
133 {
134 p4d_t *p4d;
135 unsigned long next;
136 int cleared;
137
138 p4d = p4d_offset(pgd, addr);
139 do {
140 next = p4d_addr_end(addr, end);
141
142 cleared = p4d_clear_huge(p4d);
143 if (cleared || p4d_bad(*p4d))
144 *mask |= PGTBL_P4D_MODIFIED;
145
146 if (cleared)
147 continue;
148 if (p4d_none_or_clear_bad(p4d))
149 continue;
150 vunmap_pud_range(p4d, addr, next, mask);
151 } while (p4d++, addr = next, addr != end);
152 }
153
154 /**
155 * unmap_kernel_range_noflush - unmap kernel VM area
156 * @start: start of the VM area to unmap
157 * @size: size of the VM area to unmap
158 *
159 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size specify
160 * should have been allocated using get_vm_area() and its friends.
161 *
162 * NOTE:
163 * This function does NOT do any cache flushing. The caller is responsible
164 * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
165 * function and flush_tlb_kernel_range() after.
166 */
167 void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
168 {
169 unsigned long end = start + size;
170 unsigned long next;
171 pgd_t *pgd;
172 unsigned long addr = start;
173 pgtbl_mod_mask mask = 0;
174
175 BUG_ON(addr >= end);
176 start = addr;
177 pgd = pgd_offset_k(addr);
178 do {
179 next = pgd_addr_end(addr, end);
180 if (pgd_bad(*pgd))
181 mask |= PGTBL_PGD_MODIFIED;
182 if (pgd_none_or_clear_bad(pgd))
183 continue;
184 vunmap_p4d_range(pgd, addr, next, &mask);
185 } while (pgd++, addr = next, addr != end);
186
187 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
188 arch_sync_kernel_mappings(start, end);
189 }
190
191 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
192 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
193 pgtbl_mod_mask *mask)
194 {
195 pte_t *pte;
196
197 /*
198 * nr is a running index into the array which helps higher level
199 * callers keep track of where we're up to.
200 */
201
202 pte = pte_alloc_kernel_track(pmd, addr, mask);
203 if (!pte)
204 return -ENOMEM;
205 do {
206 struct page *page = pages[*nr];
207
208 if (WARN_ON(!pte_none(*pte)))
209 return -EBUSY;
210 if (WARN_ON(!page))
211 return -ENOMEM;
212 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
213 (*nr)++;
214 } while (pte++, addr += PAGE_SIZE, addr != end);
215 *mask |= PGTBL_PTE_MODIFIED;
216 return 0;
217 }
218
219 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
220 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
221 pgtbl_mod_mask *mask)
222 {
223 pmd_t *pmd;
224 unsigned long next;
225
226 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
227 if (!pmd)
228 return -ENOMEM;
229 do {
230 next = pmd_addr_end(addr, end);
231 if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
232 return -ENOMEM;
233 } while (pmd++, addr = next, addr != end);
234 return 0;
235 }
236
237 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
238 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
239 pgtbl_mod_mask *mask)
240 {
241 pud_t *pud;
242 unsigned long next;
243
244 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
245 if (!pud)
246 return -ENOMEM;
247 do {
248 next = pud_addr_end(addr, end);
249 if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
250 return -ENOMEM;
251 } while (pud++, addr = next, addr != end);
252 return 0;
253 }
254
255 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
256 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
257 pgtbl_mod_mask *mask)
258 {
259 p4d_t *p4d;
260 unsigned long next;
261
262 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
263 if (!p4d)
264 return -ENOMEM;
265 do {
266 next = p4d_addr_end(addr, end);
267 if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
268 return -ENOMEM;
269 } while (p4d++, addr = next, addr != end);
270 return 0;
271 }
272
273 /**
274 * map_kernel_range_noflush - map kernel VM area with the specified pages
275 * @addr: start of the VM area to map
276 * @size: size of the VM area to map
277 * @prot: page protection flags to use
278 * @pages: pages to map
279 *
280 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size specify should
281 * have been allocated using get_vm_area() and its friends.
282 *
283 * NOTE:
284 * This function does NOT do any cache flushing. The caller is responsible for
285 * calling flush_cache_vmap() on to-be-mapped areas before calling this
286 * function.
287 *
288 * RETURNS:
289 * 0 on success, -errno on failure.
290 */
291 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
292 pgprot_t prot, struct page **pages)
293 {
294 unsigned long start = addr;
295 unsigned long end = addr + size;
296 unsigned long next;
297 pgd_t *pgd;
298 int err = 0;
299 int nr = 0;
300 pgtbl_mod_mask mask = 0;
301
302 BUG_ON(addr >= end);
303 pgd = pgd_offset_k(addr);
304 do {
305 next = pgd_addr_end(addr, end);
306 if (pgd_bad(*pgd))
307 mask |= PGTBL_PGD_MODIFIED;
308 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
309 if (err)
310 return err;
311 } while (pgd++, addr = next, addr != end);
312
313 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
314 arch_sync_kernel_mappings(start, end);
315
316 return 0;
317 }
318
319 int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
320 struct page **pages)
321 {
322 int ret;
323
324 ret = map_kernel_range_noflush(start, size, prot, pages);
325 flush_cache_vmap(start, start + size);
326 return ret;
327 }
328
329 int is_vmalloc_or_module_addr(const void *x)
330 {
331 /*
332 * ARM, x86-64 and sparc64 put modules in a special place,
333 * and fall back on vmalloc() if that fails. Others
334 * just put it in the vmalloc space.
335 */
336 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
337 unsigned long addr = (unsigned long)x;
338 if (addr >= MODULES_VADDR && addr < MODULES_END)
339 return 1;
340 #endif
341 return is_vmalloc_addr(x);
342 }
343
344 /*
345 * Walk a vmap address to the struct page it maps.
346 */
347 struct page *vmalloc_to_page(const void *vmalloc_addr)
348 {
349 unsigned long addr = (unsigned long) vmalloc_addr;
350 struct page *page = NULL;
351 pgd_t *pgd = pgd_offset_k(addr);
352 p4d_t *p4d;
353 pud_t *pud;
354 pmd_t *pmd;
355 pte_t *ptep, pte;
356
357 /*
358 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
359 * architectures that do not vmalloc module space
360 */
361 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
362
363 if (pgd_none(*pgd))
364 return NULL;
365 p4d = p4d_offset(pgd, addr);
366 if (p4d_none(*p4d))
367 return NULL;
368 pud = pud_offset(p4d, addr);
369
370 /*
371 * Don't dereference bad PUD or PMD (below) entries. This will also
372 * identify huge mappings, which we may encounter on architectures
373 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
374 * identified as vmalloc addresses by is_vmalloc_addr(), but are
375 * not [unambiguously] associated with a struct page, so there is
376 * no correct value to return for them.
377 */
378 WARN_ON_ONCE(pud_bad(*pud));
379 if (pud_none(*pud) || pud_bad(*pud))
380 return NULL;
381 pmd = pmd_offset(pud, addr);
382 WARN_ON_ONCE(pmd_bad(*pmd));
383 if (pmd_none(*pmd) || pmd_bad(*pmd))
384 return NULL;
385
386 ptep = pte_offset_map(pmd, addr);
387 pte = *ptep;
388 if (pte_present(pte))
389 page = pte_page(pte);
390 pte_unmap(ptep);
391 return page;
392 }
393 EXPORT_SYMBOL(vmalloc_to_page);
394
395 /*
396 * Map a vmalloc()-space virtual address to the physical page frame number.
397 */
398 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
399 {
400 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
401 }
402 EXPORT_SYMBOL(vmalloc_to_pfn);
403
404
405 /*** Global kva allocator ***/
406
407 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
408 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
409
410
411 static DEFINE_SPINLOCK(vmap_area_lock);
412 static DEFINE_SPINLOCK(free_vmap_area_lock);
413 /* Export for kexec only */
414 LIST_HEAD(vmap_area_list);
415 static LLIST_HEAD(vmap_purge_list);
416 static struct rb_root vmap_area_root = RB_ROOT;
417 static bool vmap_initialized __read_mostly;
418
419 /*
420 * This kmem_cache is used for vmap_area objects. Instead of
421 * allocating from slab we reuse an object from this cache to
422 * make things faster. Especially in "no edge" splitting of
423 * free block.
424 */
425 static struct kmem_cache *vmap_area_cachep;
426
427 /*
428 * This linked list is used in pair with free_vmap_area_root.
429 * It gives O(1) access to prev/next to perform fast coalescing.
430 */
431 static LIST_HEAD(free_vmap_area_list);
432
433 /*
434 * This augment red-black tree represents the free vmap space.
435 * All vmap_area objects in this tree are sorted by va->va_start
436 * address. It is used for allocation and merging when a vmap
437 * object is released.
438 *
439 * Each vmap_area node contains a maximum available free block
440 * of its sub-tree, right or left. Therefore it is possible to
441 * find a lowest match of free area.
442 */
443 static struct rb_root free_vmap_area_root = RB_ROOT;
444
445 /*
446 * Preload a CPU with one object for "no edge" split case. The
447 * aim is to get rid of allocations from the atomic context, thus
448 * to use more permissive allocation masks.
449 */
450 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
451
452 static __always_inline unsigned long
453 va_size(struct vmap_area *va)
454 {
455 return (va->va_end - va->va_start);
456 }
457
458 static __always_inline unsigned long
459 get_subtree_max_size(struct rb_node *node)
460 {
461 struct vmap_area *va;
462
463 va = rb_entry_safe(node, struct vmap_area, rb_node);
464 return va ? va->subtree_max_size : 0;
465 }
466
467 /*
468 * Gets called when remove the node and rotate.
469 */
470 static __always_inline unsigned long
471 compute_subtree_max_size(struct vmap_area *va)
472 {
473 return max3(va_size(va),
474 get_subtree_max_size(va->rb_node.rb_left),
475 get_subtree_max_size(va->rb_node.rb_right));
476 }
477
478 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
479 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
480
481 static void purge_vmap_area_lazy(void);
482 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
483 static unsigned long lazy_max_pages(void);
484
485 static atomic_long_t nr_vmalloc_pages;
486
487 unsigned long vmalloc_nr_pages(void)
488 {
489 return atomic_long_read(&nr_vmalloc_pages);
490 }
491
492 static struct vmap_area *__find_vmap_area(unsigned long addr)
493 {
494 struct rb_node *n = vmap_area_root.rb_node;
495
496 while (n) {
497 struct vmap_area *va;
498
499 va = rb_entry(n, struct vmap_area, rb_node);
500 if (addr < va->va_start)
501 n = n->rb_left;
502 else if (addr >= va->va_end)
503 n = n->rb_right;
504 else
505 return va;
506 }
507
508 return NULL;
509 }
510
511 /*
512 * This function returns back addresses of parent node
513 * and its left or right link for further processing.
514 */
515 static __always_inline struct rb_node **
516 find_va_links(struct vmap_area *va,
517 struct rb_root *root, struct rb_node *from,
518 struct rb_node **parent)
519 {
520 struct vmap_area *tmp_va;
521 struct rb_node **link;
522
523 if (root) {
524 link = &root->rb_node;
525 if (unlikely(!*link)) {
526 *parent = NULL;
527 return link;
528 }
529 } else {
530 link = &from;
531 }
532
533 /*
534 * Go to the bottom of the tree. When we hit the last point
535 * we end up with parent rb_node and correct direction, i name
536 * it link, where the new va->rb_node will be attached to.
537 */
538 do {
539 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
540
541 /*
542 * During the traversal we also do some sanity check.
543 * Trigger the BUG() if there are sides(left/right)
544 * or full overlaps.
545 */
546 if (va->va_start < tmp_va->va_end &&
547 va->va_end <= tmp_va->va_start)
548 link = &(*link)->rb_left;
549 else if (va->va_end > tmp_va->va_start &&
550 va->va_start >= tmp_va->va_end)
551 link = &(*link)->rb_right;
552 else
553 BUG();
554 } while (*link);
555
556 *parent = &tmp_va->rb_node;
557 return link;
558 }
559
560 static __always_inline struct list_head *
561 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
562 {
563 struct list_head *list;
564
565 if (unlikely(!parent))
566 /*
567 * The red-black tree where we try to find VA neighbors
568 * before merging or inserting is empty, i.e. it means
569 * there is no free vmap space. Normally it does not
570 * happen but we handle this case anyway.
571 */
572 return NULL;
573
574 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
575 return (&parent->rb_right == link ? list->next : list);
576 }
577
578 static __always_inline void
579 link_va(struct vmap_area *va, struct rb_root *root,
580 struct rb_node *parent, struct rb_node **link, struct list_head *head)
581 {
582 /*
583 * VA is still not in the list, but we can
584 * identify its future previous list_head node.
585 */
586 if (likely(parent)) {
587 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
588 if (&parent->rb_right != link)
589 head = head->prev;
590 }
591
592 /* Insert to the rb-tree */
593 rb_link_node(&va->rb_node, parent, link);
594 if (root == &free_vmap_area_root) {
595 /*
596 * Some explanation here. Just perform simple insertion
597 * to the tree. We do not set va->subtree_max_size to
598 * its current size before calling rb_insert_augmented().
599 * It is because of we populate the tree from the bottom
600 * to parent levels when the node _is_ in the tree.
601 *
602 * Therefore we set subtree_max_size to zero after insertion,
603 * to let __augment_tree_propagate_from() puts everything to
604 * the correct order later on.
605 */
606 rb_insert_augmented(&va->rb_node,
607 root, &free_vmap_area_rb_augment_cb);
608 va->subtree_max_size = 0;
609 } else {
610 rb_insert_color(&va->rb_node, root);
611 }
612
613 /* Address-sort this list */
614 list_add(&va->list, head);
615 }
616
617 static __always_inline void
618 unlink_va(struct vmap_area *va, struct rb_root *root)
619 {
620 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
621 return;
622
623 if (root == &free_vmap_area_root)
624 rb_erase_augmented(&va->rb_node,
625 root, &free_vmap_area_rb_augment_cb);
626 else
627 rb_erase(&va->rb_node, root);
628
629 list_del(&va->list);
630 RB_CLEAR_NODE(&va->rb_node);
631 }
632
633 #if DEBUG_AUGMENT_PROPAGATE_CHECK
634 static void
635 augment_tree_propagate_check(struct rb_node *n)
636 {
637 struct vmap_area *va;
638 struct rb_node *node;
639 unsigned long size;
640 bool found = false;
641
642 if (n == NULL)
643 return;
644
645 va = rb_entry(n, struct vmap_area, rb_node);
646 size = va->subtree_max_size;
647 node = n;
648
649 while (node) {
650 va = rb_entry(node, struct vmap_area, rb_node);
651
652 if (get_subtree_max_size(node->rb_left) == size) {
653 node = node->rb_left;
654 } else {
655 if (va_size(va) == size) {
656 found = true;
657 break;
658 }
659
660 node = node->rb_right;
661 }
662 }
663
664 if (!found) {
665 va = rb_entry(n, struct vmap_area, rb_node);
666 pr_emerg("tree is corrupted: %lu, %lu\n",
667 va_size(va), va->subtree_max_size);
668 }
669
670 augment_tree_propagate_check(n->rb_left);
671 augment_tree_propagate_check(n->rb_right);
672 }
673 #endif
674
675 /*
676 * This function populates subtree_max_size from bottom to upper
677 * levels starting from VA point. The propagation must be done
678 * when VA size is modified by changing its va_start/va_end. Or
679 * in case of newly inserting of VA to the tree.
680 *
681 * It means that __augment_tree_propagate_from() must be called:
682 * - After VA has been inserted to the tree(free path);
683 * - After VA has been shrunk(allocation path);
684 * - After VA has been increased(merging path).
685 *
686 * Please note that, it does not mean that upper parent nodes
687 * and their subtree_max_size are recalculated all the time up
688 * to the root node.
689 *
690 * 4--8
691 * /\
692 * / \
693 * / \
694 * 2--2 8--8
695 *
696 * For example if we modify the node 4, shrinking it to 2, then
697 * no any modification is required. If we shrink the node 2 to 1
698 * its subtree_max_size is updated only, and set to 1. If we shrink
699 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
700 * node becomes 4--6.
701 */
702 static __always_inline void
703 augment_tree_propagate_from(struct vmap_area *va)
704 {
705 struct rb_node *node = &va->rb_node;
706 unsigned long new_va_sub_max_size;
707
708 while (node) {
709 va = rb_entry(node, struct vmap_area, rb_node);
710 new_va_sub_max_size = compute_subtree_max_size(va);
711
712 /*
713 * If the newly calculated maximum available size of the
714 * subtree is equal to the current one, then it means that
715 * the tree is propagated correctly. So we have to stop at
716 * this point to save cycles.
717 */
718 if (va->subtree_max_size == new_va_sub_max_size)
719 break;
720
721 va->subtree_max_size = new_va_sub_max_size;
722 node = rb_parent(&va->rb_node);
723 }
724
725 #if DEBUG_AUGMENT_PROPAGATE_CHECK
726 augment_tree_propagate_check(free_vmap_area_root.rb_node);
727 #endif
728 }
729
730 static void
731 insert_vmap_area(struct vmap_area *va,
732 struct rb_root *root, struct list_head *head)
733 {
734 struct rb_node **link;
735 struct rb_node *parent;
736
737 link = find_va_links(va, root, NULL, &parent);
738 link_va(va, root, parent, link, head);
739 }
740
741 static void
742 insert_vmap_area_augment(struct vmap_area *va,
743 struct rb_node *from, struct rb_root *root,
744 struct list_head *head)
745 {
746 struct rb_node **link;
747 struct rb_node *parent;
748
749 if (from)
750 link = find_va_links(va, NULL, from, &parent);
751 else
752 link = find_va_links(va, root, NULL, &parent);
753
754 link_va(va, root, parent, link, head);
755 augment_tree_propagate_from(va);
756 }
757
758 /*
759 * Merge de-allocated chunk of VA memory with previous
760 * and next free blocks. If coalesce is not done a new
761 * free area is inserted. If VA has been merged, it is
762 * freed.
763 */
764 static __always_inline struct vmap_area *
765 merge_or_add_vmap_area(struct vmap_area *va,
766 struct rb_root *root, struct list_head *head)
767 {
768 struct vmap_area *sibling;
769 struct list_head *next;
770 struct rb_node **link;
771 struct rb_node *parent;
772 bool merged = false;
773
774 /*
775 * Find a place in the tree where VA potentially will be
776 * inserted, unless it is merged with its sibling/siblings.
777 */
778 link = find_va_links(va, root, NULL, &parent);
779
780 /*
781 * Get next node of VA to check if merging can be done.
782 */
783 next = get_va_next_sibling(parent, link);
784 if (unlikely(next == NULL))
785 goto insert;
786
787 /*
788 * start end
789 * | |
790 * |<------VA------>|<-----Next----->|
791 * | |
792 * start end
793 */
794 if (next != head) {
795 sibling = list_entry(next, struct vmap_area, list);
796 if (sibling->va_start == va->va_end) {
797 sibling->va_start = va->va_start;
798
799 /* Check and update the tree if needed. */
800 augment_tree_propagate_from(sibling);
801
802 /* Free vmap_area object. */
803 kmem_cache_free(vmap_area_cachep, va);
804
805 /* Point to the new merged area. */
806 va = sibling;
807 merged = true;
808 }
809 }
810
811 /*
812 * start end
813 * | |
814 * |<-----Prev----->|<------VA------>|
815 * | |
816 * start end
817 */
818 if (next->prev != head) {
819 sibling = list_entry(next->prev, struct vmap_area, list);
820 if (sibling->va_end == va->va_start) {
821 sibling->va_end = va->va_end;
822
823 /* Check and update the tree if needed. */
824 augment_tree_propagate_from(sibling);
825
826 if (merged)
827 unlink_va(va, root);
828
829 /* Free vmap_area object. */
830 kmem_cache_free(vmap_area_cachep, va);
831
832 /* Point to the new merged area. */
833 va = sibling;
834 merged = true;
835 }
836 }
837
838 insert:
839 if (!merged) {
840 link_va(va, root, parent, link, head);
841 augment_tree_propagate_from(va);
842 }
843
844 return va;
845 }
846
847 static __always_inline bool
848 is_within_this_va(struct vmap_area *va, unsigned long size,
849 unsigned long align, unsigned long vstart)
850 {
851 unsigned long nva_start_addr;
852
853 if (va->va_start > vstart)
854 nva_start_addr = ALIGN(va->va_start, align);
855 else
856 nva_start_addr = ALIGN(vstart, align);
857
858 /* Can be overflowed due to big size or alignment. */
859 if (nva_start_addr + size < nva_start_addr ||
860 nva_start_addr < vstart)
861 return false;
862
863 return (nva_start_addr + size <= va->va_end);
864 }
865
866 /*
867 * Find the first free block(lowest start address) in the tree,
868 * that will accomplish the request corresponding to passing
869 * parameters.
870 */
871 static __always_inline struct vmap_area *
872 find_vmap_lowest_match(unsigned long size,
873 unsigned long align, unsigned long vstart)
874 {
875 struct vmap_area *va;
876 struct rb_node *node;
877 unsigned long length;
878
879 /* Start from the root. */
880 node = free_vmap_area_root.rb_node;
881
882 /* Adjust the search size for alignment overhead. */
883 length = size + align - 1;
884
885 while (node) {
886 va = rb_entry(node, struct vmap_area, rb_node);
887
888 if (get_subtree_max_size(node->rb_left) >= length &&
889 vstart < va->va_start) {
890 node = node->rb_left;
891 } else {
892 if (is_within_this_va(va, size, align, vstart))
893 return va;
894
895 /*
896 * Does not make sense to go deeper towards the right
897 * sub-tree if it does not have a free block that is
898 * equal or bigger to the requested search length.
899 */
900 if (get_subtree_max_size(node->rb_right) >= length) {
901 node = node->rb_right;
902 continue;
903 }
904
905 /*
906 * OK. We roll back and find the first right sub-tree,
907 * that will satisfy the search criteria. It can happen
908 * only once due to "vstart" restriction.
909 */
910 while ((node = rb_parent(node))) {
911 va = rb_entry(node, struct vmap_area, rb_node);
912 if (is_within_this_va(va, size, align, vstart))
913 return va;
914
915 if (get_subtree_max_size(node->rb_right) >= length &&
916 vstart <= va->va_start) {
917 node = node->rb_right;
918 break;
919 }
920 }
921 }
922 }
923
924 return NULL;
925 }
926
927 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
928 #include <linux/random.h>
929
930 static struct vmap_area *
931 find_vmap_lowest_linear_match(unsigned long size,
932 unsigned long align, unsigned long vstart)
933 {
934 struct vmap_area *va;
935
936 list_for_each_entry(va, &free_vmap_area_list, list) {
937 if (!is_within_this_va(va, size, align, vstart))
938 continue;
939
940 return va;
941 }
942
943 return NULL;
944 }
945
946 static void
947 find_vmap_lowest_match_check(unsigned long size)
948 {
949 struct vmap_area *va_1, *va_2;
950 unsigned long vstart;
951 unsigned int rnd;
952
953 get_random_bytes(&rnd, sizeof(rnd));
954 vstart = VMALLOC_START + rnd;
955
956 va_1 = find_vmap_lowest_match(size, 1, vstart);
957 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
958
959 if (va_1 != va_2)
960 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
961 va_1, va_2, vstart);
962 }
963 #endif
964
965 enum fit_type {
966 NOTHING_FIT = 0,
967 FL_FIT_TYPE = 1, /* full fit */
968 LE_FIT_TYPE = 2, /* left edge fit */
969 RE_FIT_TYPE = 3, /* right edge fit */
970 NE_FIT_TYPE = 4 /* no edge fit */
971 };
972
973 static __always_inline enum fit_type
974 classify_va_fit_type(struct vmap_area *va,
975 unsigned long nva_start_addr, unsigned long size)
976 {
977 enum fit_type type;
978
979 /* Check if it is within VA. */
980 if (nva_start_addr < va->va_start ||
981 nva_start_addr + size > va->va_end)
982 return NOTHING_FIT;
983
984 /* Now classify. */
985 if (va->va_start == nva_start_addr) {
986 if (va->va_end == nva_start_addr + size)
987 type = FL_FIT_TYPE;
988 else
989 type = LE_FIT_TYPE;
990 } else if (va->va_end == nva_start_addr + size) {
991 type = RE_FIT_TYPE;
992 } else {
993 type = NE_FIT_TYPE;
994 }
995
996 return type;
997 }
998
999 static __always_inline int
1000 adjust_va_to_fit_type(struct vmap_area *va,
1001 unsigned long nva_start_addr, unsigned long size,
1002 enum fit_type type)
1003 {
1004 struct vmap_area *lva = NULL;
1005
1006 if (type == FL_FIT_TYPE) {
1007 /*
1008 * No need to split VA, it fully fits.
1009 *
1010 * | |
1011 * V NVA V
1012 * |---------------|
1013 */
1014 unlink_va(va, &free_vmap_area_root);
1015 kmem_cache_free(vmap_area_cachep, va);
1016 } else if (type == LE_FIT_TYPE) {
1017 /*
1018 * Split left edge of fit VA.
1019 *
1020 * | |
1021 * V NVA V R
1022 * |-------|-------|
1023 */
1024 va->va_start += size;
1025 } else if (type == RE_FIT_TYPE) {
1026 /*
1027 * Split right edge of fit VA.
1028 *
1029 * | |
1030 * L V NVA V
1031 * |-------|-------|
1032 */
1033 va->va_end = nva_start_addr;
1034 } else if (type == NE_FIT_TYPE) {
1035 /*
1036 * Split no edge of fit VA.
1037 *
1038 * | |
1039 * L V NVA V R
1040 * |---|-------|---|
1041 */
1042 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1043 if (unlikely(!lva)) {
1044 /*
1045 * For percpu allocator we do not do any pre-allocation
1046 * and leave it as it is. The reason is it most likely
1047 * never ends up with NE_FIT_TYPE splitting. In case of
1048 * percpu allocations offsets and sizes are aligned to
1049 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1050 * are its main fitting cases.
1051 *
1052 * There are a few exceptions though, as an example it is
1053 * a first allocation (early boot up) when we have "one"
1054 * big free space that has to be split.
1055 *
1056 * Also we can hit this path in case of regular "vmap"
1057 * allocations, if "this" current CPU was not preloaded.
1058 * See the comment in alloc_vmap_area() why. If so, then
1059 * GFP_NOWAIT is used instead to get an extra object for
1060 * split purpose. That is rare and most time does not
1061 * occur.
1062 *
1063 * What happens if an allocation gets failed. Basically,
1064 * an "overflow" path is triggered to purge lazily freed
1065 * areas to free some memory, then, the "retry" path is
1066 * triggered to repeat one more time. See more details
1067 * in alloc_vmap_area() function.
1068 */
1069 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1070 if (!lva)
1071 return -1;
1072 }
1073
1074 /*
1075 * Build the remainder.
1076 */
1077 lva->va_start = va->va_start;
1078 lva->va_end = nva_start_addr;
1079
1080 /*
1081 * Shrink this VA to remaining size.
1082 */
1083 va->va_start = nva_start_addr + size;
1084 } else {
1085 return -1;
1086 }
1087
1088 if (type != FL_FIT_TYPE) {
1089 augment_tree_propagate_from(va);
1090
1091 if (lva) /* type == NE_FIT_TYPE */
1092 insert_vmap_area_augment(lva, &va->rb_node,
1093 &free_vmap_area_root, &free_vmap_area_list);
1094 }
1095
1096 return 0;
1097 }
1098
1099 /*
1100 * Returns a start address of the newly allocated area, if success.
1101 * Otherwise a vend is returned that indicates failure.
1102 */
1103 static __always_inline unsigned long
1104 __alloc_vmap_area(unsigned long size, unsigned long align,
1105 unsigned long vstart, unsigned long vend)
1106 {
1107 unsigned long nva_start_addr;
1108 struct vmap_area *va;
1109 enum fit_type type;
1110 int ret;
1111
1112 va = find_vmap_lowest_match(size, align, vstart);
1113 if (unlikely(!va))
1114 return vend;
1115
1116 if (va->va_start > vstart)
1117 nva_start_addr = ALIGN(va->va_start, align);
1118 else
1119 nva_start_addr = ALIGN(vstart, align);
1120
1121 /* Check the "vend" restriction. */
1122 if (nva_start_addr + size > vend)
1123 return vend;
1124
1125 /* Classify what we have found. */
1126 type = classify_va_fit_type(va, nva_start_addr, size);
1127 if (WARN_ON_ONCE(type == NOTHING_FIT))
1128 return vend;
1129
1130 /* Update the free vmap_area. */
1131 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1132 if (ret)
1133 return vend;
1134
1135 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1136 find_vmap_lowest_match_check(size);
1137 #endif
1138
1139 return nva_start_addr;
1140 }
1141
1142 /*
1143 * Free a region of KVA allocated by alloc_vmap_area
1144 */
1145 static void free_vmap_area(struct vmap_area *va)
1146 {
1147 /*
1148 * Remove from the busy tree/list.
1149 */
1150 spin_lock(&vmap_area_lock);
1151 unlink_va(va, &vmap_area_root);
1152 spin_unlock(&vmap_area_lock);
1153
1154 /*
1155 * Insert/Merge it back to the free tree/list.
1156 */
1157 spin_lock(&free_vmap_area_lock);
1158 merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
1159 spin_unlock(&free_vmap_area_lock);
1160 }
1161
1162 /*
1163 * Allocate a region of KVA of the specified size and alignment, within the
1164 * vstart and vend.
1165 */
1166 static struct vmap_area *alloc_vmap_area(unsigned long size,
1167 unsigned long align,
1168 unsigned long vstart, unsigned long vend,
1169 int node, gfp_t gfp_mask)
1170 {
1171 struct vmap_area *va, *pva;
1172 unsigned long addr;
1173 int purged = 0;
1174 int ret;
1175
1176 BUG_ON(!size);
1177 BUG_ON(offset_in_page(size));
1178 BUG_ON(!is_power_of_2(align));
1179
1180 if (unlikely(!vmap_initialized))
1181 return ERR_PTR(-EBUSY);
1182
1183 might_sleep();
1184 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1185
1186 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1187 if (unlikely(!va))
1188 return ERR_PTR(-ENOMEM);
1189
1190 /*
1191 * Only scan the relevant parts containing pointers to other objects
1192 * to avoid false negatives.
1193 */
1194 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1195
1196 retry:
1197 /*
1198 * Preload this CPU with one extra vmap_area object. It is used
1199 * when fit type of free area is NE_FIT_TYPE. Please note, it
1200 * does not guarantee that an allocation occurs on a CPU that
1201 * is preloaded, instead we minimize the case when it is not.
1202 * It can happen because of cpu migration, because there is a
1203 * race until the below spinlock is taken.
1204 *
1205 * The preload is done in non-atomic context, thus it allows us
1206 * to use more permissive allocation masks to be more stable under
1207 * low memory condition and high memory pressure. In rare case,
1208 * if not preloaded, GFP_NOWAIT is used.
1209 *
1210 * Set "pva" to NULL here, because of "retry" path.
1211 */
1212 pva = NULL;
1213
1214 if (!this_cpu_read(ne_fit_preload_node))
1215 /*
1216 * Even if it fails we do not really care about that.
1217 * Just proceed as it is. If needed "overflow" path
1218 * will refill the cache we allocate from.
1219 */
1220 pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1221
1222 spin_lock(&free_vmap_area_lock);
1223
1224 if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1225 kmem_cache_free(vmap_area_cachep, pva);
1226
1227 /*
1228 * If an allocation fails, the "vend" address is
1229 * returned. Therefore trigger the overflow path.
1230 */
1231 addr = __alloc_vmap_area(size, align, vstart, vend);
1232 spin_unlock(&free_vmap_area_lock);
1233
1234 if (unlikely(addr == vend))
1235 goto overflow;
1236
1237 va->va_start = addr;
1238 va->va_end = addr + size;
1239 va->vm = NULL;
1240
1241
1242 spin_lock(&vmap_area_lock);
1243 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1244 spin_unlock(&vmap_area_lock);
1245
1246 BUG_ON(!IS_ALIGNED(va->va_start, align));
1247 BUG_ON(va->va_start < vstart);
1248 BUG_ON(va->va_end > vend);
1249
1250 ret = kasan_populate_vmalloc(addr, size);
1251 if (ret) {
1252 free_vmap_area(va);
1253 return ERR_PTR(ret);
1254 }
1255
1256 return va;
1257
1258 overflow:
1259 if (!purged) {
1260 purge_vmap_area_lazy();
1261 purged = 1;
1262 goto retry;
1263 }
1264
1265 if (gfpflags_allow_blocking(gfp_mask)) {
1266 unsigned long freed = 0;
1267 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1268 if (freed > 0) {
1269 purged = 0;
1270 goto retry;
1271 }
1272 }
1273
1274 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1275 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1276 size);
1277
1278 kmem_cache_free(vmap_area_cachep, va);
1279 return ERR_PTR(-EBUSY);
1280 }
1281
1282 int register_vmap_purge_notifier(struct notifier_block *nb)
1283 {
1284 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1285 }
1286 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1287
1288 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1289 {
1290 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1291 }
1292 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1293
1294 /*
1295 * lazy_max_pages is the maximum amount of virtual address space we gather up
1296 * before attempting to purge with a TLB flush.
1297 *
1298 * There is a tradeoff here: a larger number will cover more kernel page tables
1299 * and take slightly longer to purge, but it will linearly reduce the number of
1300 * global TLB flushes that must be performed. It would seem natural to scale
1301 * this number up linearly with the number of CPUs (because vmapping activity
1302 * could also scale linearly with the number of CPUs), however it is likely
1303 * that in practice, workloads might be constrained in other ways that mean
1304 * vmap activity will not scale linearly with CPUs. Also, I want to be
1305 * conservative and not introduce a big latency on huge systems, so go with
1306 * a less aggressive log scale. It will still be an improvement over the old
1307 * code, and it will be simple to change the scale factor if we find that it
1308 * becomes a problem on bigger systems.
1309 */
1310 static unsigned long lazy_max_pages(void)
1311 {
1312 unsigned int log;
1313
1314 log = fls(num_online_cpus());
1315
1316 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1317 }
1318
1319 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1320
1321 /*
1322 * Serialize vmap purging. There is no actual criticial section protected
1323 * by this look, but we want to avoid concurrent calls for performance
1324 * reasons and to make the pcpu_get_vm_areas more deterministic.
1325 */
1326 static DEFINE_MUTEX(vmap_purge_lock);
1327
1328 /* for per-CPU blocks */
1329 static void purge_fragmented_blocks_allcpus(void);
1330
1331 /*
1332 * called before a call to iounmap() if the caller wants vm_area_struct's
1333 * immediately freed.
1334 */
1335 void set_iounmap_nonlazy(void)
1336 {
1337 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1338 }
1339
1340 /*
1341 * Purges all lazily-freed vmap areas.
1342 */
1343 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1344 {
1345 unsigned long resched_threshold;
1346 struct llist_node *valist;
1347 struct vmap_area *va;
1348 struct vmap_area *n_va;
1349
1350 lockdep_assert_held(&vmap_purge_lock);
1351
1352 valist = llist_del_all(&vmap_purge_list);
1353 if (unlikely(valist == NULL))
1354 return false;
1355
1356 /*
1357 * TODO: to calculate a flush range without looping.
1358 * The list can be up to lazy_max_pages() elements.
1359 */
1360 llist_for_each_entry(va, valist, purge_list) {
1361 if (va->va_start < start)
1362 start = va->va_start;
1363 if (va->va_end > end)
1364 end = va->va_end;
1365 }
1366
1367 flush_tlb_kernel_range(start, end);
1368 resched_threshold = lazy_max_pages() << 1;
1369
1370 spin_lock(&free_vmap_area_lock);
1371 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1372 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1373 unsigned long orig_start = va->va_start;
1374 unsigned long orig_end = va->va_end;
1375
1376 /*
1377 * Finally insert or merge lazily-freed area. It is
1378 * detached and there is no need to "unlink" it from
1379 * anything.
1380 */
1381 va = merge_or_add_vmap_area(va, &free_vmap_area_root,
1382 &free_vmap_area_list);
1383
1384 if (is_vmalloc_or_module_addr((void *)orig_start))
1385 kasan_release_vmalloc(orig_start, orig_end,
1386 va->va_start, va->va_end);
1387
1388 atomic_long_sub(nr, &vmap_lazy_nr);
1389
1390 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1391 cond_resched_lock(&free_vmap_area_lock);
1392 }
1393 spin_unlock(&free_vmap_area_lock);
1394 return true;
1395 }
1396
1397 /*
1398 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1399 * is already purging.
1400 */
1401 static void try_purge_vmap_area_lazy(void)
1402 {
1403 if (mutex_trylock(&vmap_purge_lock)) {
1404 __purge_vmap_area_lazy(ULONG_MAX, 0);
1405 mutex_unlock(&vmap_purge_lock);
1406 }
1407 }
1408
1409 /*
1410 * Kick off a purge of the outstanding lazy areas.
1411 */
1412 static void purge_vmap_area_lazy(void)
1413 {
1414 mutex_lock(&vmap_purge_lock);
1415 purge_fragmented_blocks_allcpus();
1416 __purge_vmap_area_lazy(ULONG_MAX, 0);
1417 mutex_unlock(&vmap_purge_lock);
1418 }
1419
1420 /*
1421 * Free a vmap area, caller ensuring that the area has been unmapped
1422 * and flush_cache_vunmap had been called for the correct range
1423 * previously.
1424 */
1425 static void free_vmap_area_noflush(struct vmap_area *va)
1426 {
1427 unsigned long nr_lazy;
1428
1429 spin_lock(&vmap_area_lock);
1430 unlink_va(va, &vmap_area_root);
1431 spin_unlock(&vmap_area_lock);
1432
1433 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1434 PAGE_SHIFT, &vmap_lazy_nr);
1435
1436 /* After this point, we may free va at any time */
1437 llist_add(&va->purge_list, &vmap_purge_list);
1438
1439 if (unlikely(nr_lazy > lazy_max_pages()))
1440 try_purge_vmap_area_lazy();
1441 }
1442
1443 /*
1444 * Free and unmap a vmap area
1445 */
1446 static void free_unmap_vmap_area(struct vmap_area *va)
1447 {
1448 flush_cache_vunmap(va->va_start, va->va_end);
1449 unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
1450 if (debug_pagealloc_enabled_static())
1451 flush_tlb_kernel_range(va->va_start, va->va_end);
1452
1453 free_vmap_area_noflush(va);
1454 }
1455
1456 static struct vmap_area *find_vmap_area(unsigned long addr)
1457 {
1458 struct vmap_area *va;
1459
1460 spin_lock(&vmap_area_lock);
1461 va = __find_vmap_area(addr);
1462 spin_unlock(&vmap_area_lock);
1463
1464 return va;
1465 }
1466
1467 /*** Per cpu kva allocator ***/
1468
1469 /*
1470 * vmap space is limited especially on 32 bit architectures. Ensure there is
1471 * room for at least 16 percpu vmap blocks per CPU.
1472 */
1473 /*
1474 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1475 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1476 * instead (we just need a rough idea)
1477 */
1478 #if BITS_PER_LONG == 32
1479 #define VMALLOC_SPACE (128UL*1024*1024)
1480 #else
1481 #define VMALLOC_SPACE (128UL*1024*1024*1024)
1482 #endif
1483
1484 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1485 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1486 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1487 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1488 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1489 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1490 #define VMAP_BBMAP_BITS \
1491 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1492 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1493 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1494
1495 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1496
1497 struct vmap_block_queue {
1498 spinlock_t lock;
1499 struct list_head free;
1500 };
1501
1502 struct vmap_block {
1503 spinlock_t lock;
1504 struct vmap_area *va;
1505 unsigned long free, dirty;
1506 unsigned long dirty_min, dirty_max; /*< dirty range */
1507 struct list_head free_list;
1508 struct rcu_head rcu_head;
1509 struct list_head purge;
1510 };
1511
1512 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1513 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1514
1515 /*
1516 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1517 * in the free path. Could get rid of this if we change the API to return a
1518 * "cookie" from alloc, to be passed to free. But no big deal yet.
1519 */
1520 static DEFINE_SPINLOCK(vmap_block_tree_lock);
1521 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1522
1523 /*
1524 * We should probably have a fallback mechanism to allocate virtual memory
1525 * out of partially filled vmap blocks. However vmap block sizing should be
1526 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1527 * big problem.
1528 */
1529
1530 static unsigned long addr_to_vb_idx(unsigned long addr)
1531 {
1532 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1533 addr /= VMAP_BLOCK_SIZE;
1534 return addr;
1535 }
1536
1537 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1538 {
1539 unsigned long addr;
1540
1541 addr = va_start + (pages_off << PAGE_SHIFT);
1542 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1543 return (void *)addr;
1544 }
1545
1546 /**
1547 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1548 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1549 * @order: how many 2^order pages should be occupied in newly allocated block
1550 * @gfp_mask: flags for the page level allocator
1551 *
1552 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1553 */
1554 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1555 {
1556 struct vmap_block_queue *vbq;
1557 struct vmap_block *vb;
1558 struct vmap_area *va;
1559 unsigned long vb_idx;
1560 int node, err;
1561 void *vaddr;
1562
1563 node = numa_node_id();
1564
1565 vb = kmalloc_node(sizeof(struct vmap_block),
1566 gfp_mask & GFP_RECLAIM_MASK, node);
1567 if (unlikely(!vb))
1568 return ERR_PTR(-ENOMEM);
1569
1570 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1571 VMALLOC_START, VMALLOC_END,
1572 node, gfp_mask);
1573 if (IS_ERR(va)) {
1574 kfree(vb);
1575 return ERR_CAST(va);
1576 }
1577
1578 err = radix_tree_preload(gfp_mask);
1579 if (unlikely(err)) {
1580 kfree(vb);
1581 free_vmap_area(va);
1582 return ERR_PTR(err);
1583 }
1584
1585 vaddr = vmap_block_vaddr(va->va_start, 0);
1586 spin_lock_init(&vb->lock);
1587 vb->va = va;
1588 /* At least something should be left free */
1589 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1590 vb->free = VMAP_BBMAP_BITS - (1UL << order);
1591 vb->dirty = 0;
1592 vb->dirty_min = VMAP_BBMAP_BITS;
1593 vb->dirty_max = 0;
1594 INIT_LIST_HEAD(&vb->free_list);
1595
1596 vb_idx = addr_to_vb_idx(va->va_start);
1597 spin_lock(&vmap_block_tree_lock);
1598 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1599 spin_unlock(&vmap_block_tree_lock);
1600 BUG_ON(err);
1601 radix_tree_preload_end();
1602
1603 vbq = &get_cpu_var(vmap_block_queue);
1604 spin_lock(&vbq->lock);
1605 list_add_tail_rcu(&vb->free_list, &vbq->free);
1606 spin_unlock(&vbq->lock);
1607 put_cpu_var(vmap_block_queue);
1608
1609 return vaddr;
1610 }
1611
1612 static void free_vmap_block(struct vmap_block *vb)
1613 {
1614 struct vmap_block *tmp;
1615 unsigned long vb_idx;
1616
1617 vb_idx = addr_to_vb_idx(vb->va->va_start);
1618 spin_lock(&vmap_block_tree_lock);
1619 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1620 spin_unlock(&vmap_block_tree_lock);
1621 BUG_ON(tmp != vb);
1622
1623 free_vmap_area_noflush(vb->va);
1624 kfree_rcu(vb, rcu_head);
1625 }
1626
1627 static void purge_fragmented_blocks(int cpu)
1628 {
1629 LIST_HEAD(purge);
1630 struct vmap_block *vb;
1631 struct vmap_block *n_vb;
1632 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1633
1634 rcu_read_lock();
1635 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1636
1637 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1638 continue;
1639
1640 spin_lock(&vb->lock);
1641 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1642 vb->free = 0; /* prevent further allocs after releasing lock */
1643 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1644 vb->dirty_min = 0;
1645 vb->dirty_max = VMAP_BBMAP_BITS;
1646 spin_lock(&vbq->lock);
1647 list_del_rcu(&vb->free_list);
1648 spin_unlock(&vbq->lock);
1649 spin_unlock(&vb->lock);
1650 list_add_tail(&vb->purge, &purge);
1651 } else
1652 spin_unlock(&vb->lock);
1653 }
1654 rcu_read_unlock();
1655
1656 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1657 list_del(&vb->purge);
1658 free_vmap_block(vb);
1659 }
1660 }
1661
1662 static void purge_fragmented_blocks_allcpus(void)
1663 {
1664 int cpu;
1665
1666 for_each_possible_cpu(cpu)
1667 purge_fragmented_blocks(cpu);
1668 }
1669
1670 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1671 {
1672 struct vmap_block_queue *vbq;
1673 struct vmap_block *vb;
1674 void *vaddr = NULL;
1675 unsigned int order;
1676
1677 BUG_ON(offset_in_page(size));
1678 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1679 if (WARN_ON(size == 0)) {
1680 /*
1681 * Allocating 0 bytes isn't what caller wants since
1682 * get_order(0) returns funny result. Just warn and terminate
1683 * early.
1684 */
1685 return NULL;
1686 }
1687 order = get_order(size);
1688
1689 rcu_read_lock();
1690 vbq = &get_cpu_var(vmap_block_queue);
1691 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1692 unsigned long pages_off;
1693
1694 spin_lock(&vb->lock);
1695 if (vb->free < (1UL << order)) {
1696 spin_unlock(&vb->lock);
1697 continue;
1698 }
1699
1700 pages_off = VMAP_BBMAP_BITS - vb->free;
1701 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1702 vb->free -= 1UL << order;
1703 if (vb->free == 0) {
1704 spin_lock(&vbq->lock);
1705 list_del_rcu(&vb->free_list);
1706 spin_unlock(&vbq->lock);
1707 }
1708
1709 spin_unlock(&vb->lock);
1710 break;
1711 }
1712
1713 put_cpu_var(vmap_block_queue);
1714 rcu_read_unlock();
1715
1716 /* Allocate new block if nothing was found */
1717 if (!vaddr)
1718 vaddr = new_vmap_block(order, gfp_mask);
1719
1720 return vaddr;
1721 }
1722
1723 static void vb_free(unsigned long addr, unsigned long size)
1724 {
1725 unsigned long offset;
1726 unsigned long vb_idx;
1727 unsigned int order;
1728 struct vmap_block *vb;
1729
1730 BUG_ON(offset_in_page(size));
1731 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1732
1733 flush_cache_vunmap(addr, addr + size);
1734
1735 order = get_order(size);
1736
1737 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
1738
1739 vb_idx = addr_to_vb_idx(addr);
1740 rcu_read_lock();
1741 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1742 rcu_read_unlock();
1743 BUG_ON(!vb);
1744
1745 unmap_kernel_range_noflush(addr, size);
1746
1747 if (debug_pagealloc_enabled_static())
1748 flush_tlb_kernel_range(addr, addr + size);
1749
1750 spin_lock(&vb->lock);
1751
1752 /* Expand dirty range */
1753 vb->dirty_min = min(vb->dirty_min, offset);
1754 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1755
1756 vb->dirty += 1UL << order;
1757 if (vb->dirty == VMAP_BBMAP_BITS) {
1758 BUG_ON(vb->free);
1759 spin_unlock(&vb->lock);
1760 free_vmap_block(vb);
1761 } else
1762 spin_unlock(&vb->lock);
1763 }
1764
1765 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1766 {
1767 int cpu;
1768
1769 if (unlikely(!vmap_initialized))
1770 return;
1771
1772 might_sleep();
1773
1774 for_each_possible_cpu(cpu) {
1775 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1776 struct vmap_block *vb;
1777
1778 rcu_read_lock();
1779 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1780 spin_lock(&vb->lock);
1781 if (vb->dirty) {
1782 unsigned long va_start = vb->va->va_start;
1783 unsigned long s, e;
1784
1785 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1786 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1787
1788 start = min(s, start);
1789 end = max(e, end);
1790
1791 flush = 1;
1792 }
1793 spin_unlock(&vb->lock);
1794 }
1795 rcu_read_unlock();
1796 }
1797
1798 mutex_lock(&vmap_purge_lock);
1799 purge_fragmented_blocks_allcpus();
1800 if (!__purge_vmap_area_lazy(start, end) && flush)
1801 flush_tlb_kernel_range(start, end);
1802 mutex_unlock(&vmap_purge_lock);
1803 }
1804
1805 /**
1806 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1807 *
1808 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1809 * to amortize TLB flushing overheads. What this means is that any page you
1810 * have now, may, in a former life, have been mapped into kernel virtual
1811 * address by the vmap layer and so there might be some CPUs with TLB entries
1812 * still referencing that page (additional to the regular 1:1 kernel mapping).
1813 *
1814 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1815 * be sure that none of the pages we have control over will have any aliases
1816 * from the vmap layer.
1817 */
1818 void vm_unmap_aliases(void)
1819 {
1820 unsigned long start = ULONG_MAX, end = 0;
1821 int flush = 0;
1822
1823 _vm_unmap_aliases(start, end, flush);
1824 }
1825 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1826
1827 /**
1828 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1829 * @mem: the pointer returned by vm_map_ram
1830 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1831 */
1832 void vm_unmap_ram(const void *mem, unsigned int count)
1833 {
1834 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1835 unsigned long addr = (unsigned long)mem;
1836 struct vmap_area *va;
1837
1838 might_sleep();
1839 BUG_ON(!addr);
1840 BUG_ON(addr < VMALLOC_START);
1841 BUG_ON(addr > VMALLOC_END);
1842 BUG_ON(!PAGE_ALIGNED(addr));
1843
1844 kasan_poison_vmalloc(mem, size);
1845
1846 if (likely(count <= VMAP_MAX_ALLOC)) {
1847 debug_check_no_locks_freed(mem, size);
1848 vb_free(addr, size);
1849 return;
1850 }
1851
1852 va = find_vmap_area(addr);
1853 BUG_ON(!va);
1854 debug_check_no_locks_freed((void *)va->va_start,
1855 (va->va_end - va->va_start));
1856 free_unmap_vmap_area(va);
1857 }
1858 EXPORT_SYMBOL(vm_unmap_ram);
1859
1860 /**
1861 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1862 * @pages: an array of pointers to the pages to be mapped
1863 * @count: number of pages
1864 * @node: prefer to allocate data structures on this node
1865 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1866 *
1867 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1868 * faster than vmap so it's good. But if you mix long-life and short-life
1869 * objects with vm_map_ram(), it could consume lots of address space through
1870 * fragmentation (especially on a 32bit machine). You could see failures in
1871 * the end. Please use this function for short-lived objects.
1872 *
1873 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1874 */
1875 void *vm_map_ram(struct page **pages, unsigned int count, int node)
1876 {
1877 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1878 unsigned long addr;
1879 void *mem;
1880
1881 if (likely(count <= VMAP_MAX_ALLOC)) {
1882 mem = vb_alloc(size, GFP_KERNEL);
1883 if (IS_ERR(mem))
1884 return NULL;
1885 addr = (unsigned long)mem;
1886 } else {
1887 struct vmap_area *va;
1888 va = alloc_vmap_area(size, PAGE_SIZE,
1889 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1890 if (IS_ERR(va))
1891 return NULL;
1892
1893 addr = va->va_start;
1894 mem = (void *)addr;
1895 }
1896
1897 kasan_unpoison_vmalloc(mem, size);
1898
1899 if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
1900 vm_unmap_ram(mem, count);
1901 return NULL;
1902 }
1903 return mem;
1904 }
1905 EXPORT_SYMBOL(vm_map_ram);
1906
1907 static struct vm_struct *vmlist __initdata;
1908
1909 /**
1910 * vm_area_add_early - add vmap area early during boot
1911 * @vm: vm_struct to add
1912 *
1913 * This function is used to add fixed kernel vm area to vmlist before
1914 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1915 * should contain proper values and the other fields should be zero.
1916 *
1917 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1918 */
1919 void __init vm_area_add_early(struct vm_struct *vm)
1920 {
1921 struct vm_struct *tmp, **p;
1922
1923 BUG_ON(vmap_initialized);
1924 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1925 if (tmp->addr >= vm->addr) {
1926 BUG_ON(tmp->addr < vm->addr + vm->size);
1927 break;
1928 } else
1929 BUG_ON(tmp->addr + tmp->size > vm->addr);
1930 }
1931 vm->next = *p;
1932 *p = vm;
1933 }
1934
1935 /**
1936 * vm_area_register_early - register vmap area early during boot
1937 * @vm: vm_struct to register
1938 * @align: requested alignment
1939 *
1940 * This function is used to register kernel vm area before
1941 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1942 * proper values on entry and other fields should be zero. On return,
1943 * vm->addr contains the allocated address.
1944 *
1945 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1946 */
1947 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1948 {
1949 static size_t vm_init_off __initdata;
1950 unsigned long addr;
1951
1952 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1953 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1954
1955 vm->addr = (void *)addr;
1956
1957 vm_area_add_early(vm);
1958 }
1959
1960 static void vmap_init_free_space(void)
1961 {
1962 unsigned long vmap_start = 1;
1963 const unsigned long vmap_end = ULONG_MAX;
1964 struct vmap_area *busy, *free;
1965
1966 /*
1967 * B F B B B F
1968 * -|-----|.....|-----|-----|-----|.....|-
1969 * | The KVA space |
1970 * |<--------------------------------->|
1971 */
1972 list_for_each_entry(busy, &vmap_area_list, list) {
1973 if (busy->va_start - vmap_start > 0) {
1974 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1975 if (!WARN_ON_ONCE(!free)) {
1976 free->va_start = vmap_start;
1977 free->va_end = busy->va_start;
1978
1979 insert_vmap_area_augment(free, NULL,
1980 &free_vmap_area_root,
1981 &free_vmap_area_list);
1982 }
1983 }
1984
1985 vmap_start = busy->va_end;
1986 }
1987
1988 if (vmap_end - vmap_start > 0) {
1989 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1990 if (!WARN_ON_ONCE(!free)) {
1991 free->va_start = vmap_start;
1992 free->va_end = vmap_end;
1993
1994 insert_vmap_area_augment(free, NULL,
1995 &free_vmap_area_root,
1996 &free_vmap_area_list);
1997 }
1998 }
1999 }
2000
2001 void __init vmalloc_init(void)
2002 {
2003 struct vmap_area *va;
2004 struct vm_struct *tmp;
2005 int i;
2006
2007 /*
2008 * Create the cache for vmap_area objects.
2009 */
2010 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2011
2012 for_each_possible_cpu(i) {
2013 struct vmap_block_queue *vbq;
2014 struct vfree_deferred *p;
2015
2016 vbq = &per_cpu(vmap_block_queue, i);
2017 spin_lock_init(&vbq->lock);
2018 INIT_LIST_HEAD(&vbq->free);
2019 p = &per_cpu(vfree_deferred, i);
2020 init_llist_head(&p->list);
2021 INIT_WORK(&p->wq, free_work);
2022 }
2023
2024 /* Import existing vmlist entries. */
2025 for (tmp = vmlist; tmp; tmp = tmp->next) {
2026 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2027 if (WARN_ON_ONCE(!va))
2028 continue;
2029
2030 va->va_start = (unsigned long)tmp->addr;
2031 va->va_end = va->va_start + tmp->size;
2032 va->vm = tmp;
2033 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2034 }
2035
2036 /*
2037 * Now we can initialize a free vmap space.
2038 */
2039 vmap_init_free_space();
2040 vmap_initialized = true;
2041 }
2042
2043 /**
2044 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2045 * @addr: start of the VM area to unmap
2046 * @size: size of the VM area to unmap
2047 *
2048 * Similar to unmap_kernel_range_noflush() but flushes vcache before
2049 * the unmapping and tlb after.
2050 */
2051 void unmap_kernel_range(unsigned long addr, unsigned long size)
2052 {
2053 unsigned long end = addr + size;
2054
2055 flush_cache_vunmap(addr, end);
2056 unmap_kernel_range_noflush(addr, size);
2057 flush_tlb_kernel_range(addr, end);
2058 }
2059
2060 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2061 struct vmap_area *va, unsigned long flags, const void *caller)
2062 {
2063 vm->flags = flags;
2064 vm->addr = (void *)va->va_start;
2065 vm->size = va->va_end - va->va_start;
2066 vm->caller = caller;
2067 va->vm = vm;
2068 }
2069
2070 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2071 unsigned long flags, const void *caller)
2072 {
2073 spin_lock(&vmap_area_lock);
2074 setup_vmalloc_vm_locked(vm, va, flags, caller);
2075 spin_unlock(&vmap_area_lock);
2076 }
2077
2078 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2079 {
2080 /*
2081 * Before removing VM_UNINITIALIZED,
2082 * we should make sure that vm has proper values.
2083 * Pair with smp_rmb() in show_numa_info().
2084 */
2085 smp_wmb();
2086 vm->flags &= ~VM_UNINITIALIZED;
2087 }
2088
2089 static struct vm_struct *__get_vm_area_node(unsigned long size,
2090 unsigned long align, unsigned long flags, unsigned long start,
2091 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2092 {
2093 struct vmap_area *va;
2094 struct vm_struct *area;
2095 unsigned long requested_size = size;
2096
2097 BUG_ON(in_interrupt());
2098 size = PAGE_ALIGN(size);
2099 if (unlikely(!size))
2100 return NULL;
2101
2102 if (flags & VM_IOREMAP)
2103 align = 1ul << clamp_t(int, get_count_order_long(size),
2104 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2105
2106 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2107 if (unlikely(!area))
2108 return NULL;
2109
2110 if (!(flags & VM_NO_GUARD))
2111 size += PAGE_SIZE;
2112
2113 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2114 if (IS_ERR(va)) {
2115 kfree(area);
2116 return NULL;
2117 }
2118
2119 kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2120
2121 setup_vmalloc_vm(area, va, flags, caller);
2122
2123 return area;
2124 }
2125
2126 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2127 unsigned long start, unsigned long end,
2128 const void *caller)
2129 {
2130 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2131 GFP_KERNEL, caller);
2132 }
2133
2134 /**
2135 * get_vm_area - reserve a contiguous kernel virtual area
2136 * @size: size of the area
2137 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2138 *
2139 * Search an area of @size in the kernel virtual mapping area,
2140 * and reserved it for out purposes. Returns the area descriptor
2141 * on success or %NULL on failure.
2142 *
2143 * Return: the area descriptor on success or %NULL on failure.
2144 */
2145 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2146 {
2147 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2148 NUMA_NO_NODE, GFP_KERNEL,
2149 __builtin_return_address(0));
2150 }
2151
2152 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2153 const void *caller)
2154 {
2155 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2156 NUMA_NO_NODE, GFP_KERNEL, caller);
2157 }
2158
2159 /**
2160 * find_vm_area - find a continuous kernel virtual area
2161 * @addr: base address
2162 *
2163 * Search for the kernel VM area starting at @addr, and return it.
2164 * It is up to the caller to do all required locking to keep the returned
2165 * pointer valid.
2166 *
2167 * Return: pointer to the found area or %NULL on faulure
2168 */
2169 struct vm_struct *find_vm_area(const void *addr)
2170 {
2171 struct vmap_area *va;
2172
2173 va = find_vmap_area((unsigned long)addr);
2174 if (!va)
2175 return NULL;
2176
2177 return va->vm;
2178 }
2179
2180 /**
2181 * remove_vm_area - find and remove a continuous kernel virtual area
2182 * @addr: base address
2183 *
2184 * Search for the kernel VM area starting at @addr, and remove it.
2185 * This function returns the found VM area, but using it is NOT safe
2186 * on SMP machines, except for its size or flags.
2187 *
2188 * Return: pointer to the found area or %NULL on faulure
2189 */
2190 struct vm_struct *remove_vm_area(const void *addr)
2191 {
2192 struct vmap_area *va;
2193
2194 might_sleep();
2195
2196 spin_lock(&vmap_area_lock);
2197 va = __find_vmap_area((unsigned long)addr);
2198 if (va && va->vm) {
2199 struct vm_struct *vm = va->vm;
2200
2201 va->vm = NULL;
2202 spin_unlock(&vmap_area_lock);
2203
2204 kasan_free_shadow(vm);
2205 free_unmap_vmap_area(va);
2206
2207 return vm;
2208 }
2209
2210 spin_unlock(&vmap_area_lock);
2211 return NULL;
2212 }
2213
2214 static inline void set_area_direct_map(const struct vm_struct *area,
2215 int (*set_direct_map)(struct page *page))
2216 {
2217 int i;
2218
2219 for (i = 0; i < area->nr_pages; i++)
2220 if (page_address(area->pages[i]))
2221 set_direct_map(area->pages[i]);
2222 }
2223
2224 /* Handle removing and resetting vm mappings related to the vm_struct. */
2225 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2226 {
2227 unsigned long start = ULONG_MAX, end = 0;
2228 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2229 int flush_dmap = 0;
2230 int i;
2231
2232 remove_vm_area(area->addr);
2233
2234 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2235 if (!flush_reset)
2236 return;
2237
2238 /*
2239 * If not deallocating pages, just do the flush of the VM area and
2240 * return.
2241 */
2242 if (!deallocate_pages) {
2243 vm_unmap_aliases();
2244 return;
2245 }
2246
2247 /*
2248 * If execution gets here, flush the vm mapping and reset the direct
2249 * map. Find the start and end range of the direct mappings to make sure
2250 * the vm_unmap_aliases() flush includes the direct map.
2251 */
2252 for (i = 0; i < area->nr_pages; i++) {
2253 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2254 if (addr) {
2255 start = min(addr, start);
2256 end = max(addr + PAGE_SIZE, end);
2257 flush_dmap = 1;
2258 }
2259 }
2260
2261 /*
2262 * Set direct map to something invalid so that it won't be cached if
2263 * there are any accesses after the TLB flush, then flush the TLB and
2264 * reset the direct map permissions to the default.
2265 */
2266 set_area_direct_map(area, set_direct_map_invalid_noflush);
2267 _vm_unmap_aliases(start, end, flush_dmap);
2268 set_area_direct_map(area, set_direct_map_default_noflush);
2269 }
2270
2271 static void __vunmap(const void *addr, int deallocate_pages)
2272 {
2273 struct vm_struct *area;
2274
2275 if (!addr)
2276 return;
2277
2278 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2279 addr))
2280 return;
2281
2282 area = find_vm_area(addr);
2283 if (unlikely(!area)) {
2284 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2285 addr);
2286 return;
2287 }
2288
2289 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2290 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2291
2292 kasan_poison_vmalloc(area->addr, area->size);
2293
2294 vm_remove_mappings(area, deallocate_pages);
2295
2296 if (deallocate_pages) {
2297 int i;
2298
2299 for (i = 0; i < area->nr_pages; i++) {
2300 struct page *page = area->pages[i];
2301
2302 BUG_ON(!page);
2303 __free_pages(page, 0);
2304 }
2305 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2306
2307 kvfree(area->pages);
2308 }
2309
2310 kfree(area);
2311 return;
2312 }
2313
2314 static inline void __vfree_deferred(const void *addr)
2315 {
2316 /*
2317 * Use raw_cpu_ptr() because this can be called from preemptible
2318 * context. Preemption is absolutely fine here, because the llist_add()
2319 * implementation is lockless, so it works even if we are adding to
2320 * nother cpu's list. schedule_work() should be fine with this too.
2321 */
2322 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2323
2324 if (llist_add((struct llist_node *)addr, &p->list))
2325 schedule_work(&p->wq);
2326 }
2327
2328 /**
2329 * vfree_atomic - release memory allocated by vmalloc()
2330 * @addr: memory base address
2331 *
2332 * This one is just like vfree() but can be called in any atomic context
2333 * except NMIs.
2334 */
2335 void vfree_atomic(const void *addr)
2336 {
2337 BUG_ON(in_nmi());
2338
2339 kmemleak_free(addr);
2340
2341 if (!addr)
2342 return;
2343 __vfree_deferred(addr);
2344 }
2345
2346 static void __vfree(const void *addr)
2347 {
2348 if (unlikely(in_interrupt()))
2349 __vfree_deferred(addr);
2350 else
2351 __vunmap(addr, 1);
2352 }
2353
2354 /**
2355 * vfree - release memory allocated by vmalloc()
2356 * @addr: memory base address
2357 *
2358 * Free the virtually continuous memory area starting at @addr, as
2359 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2360 * NULL, no operation is performed.
2361 *
2362 * Must not be called in NMI context (strictly speaking, only if we don't
2363 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2364 * conventions for vfree() arch-depenedent would be a really bad idea)
2365 *
2366 * May sleep if called *not* from interrupt context.
2367 *
2368 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
2369 */
2370 void vfree(const void *addr)
2371 {
2372 BUG_ON(in_nmi());
2373
2374 kmemleak_free(addr);
2375
2376 might_sleep_if(!in_interrupt());
2377
2378 if (!addr)
2379 return;
2380
2381 __vfree(addr);
2382 }
2383 EXPORT_SYMBOL(vfree);
2384
2385 /**
2386 * vunmap - release virtual mapping obtained by vmap()
2387 * @addr: memory base address
2388 *
2389 * Free the virtually contiguous memory area starting at @addr,
2390 * which was created from the page array passed to vmap().
2391 *
2392 * Must not be called in interrupt context.
2393 */
2394 void vunmap(const void *addr)
2395 {
2396 BUG_ON(in_interrupt());
2397 might_sleep();
2398 if (addr)
2399 __vunmap(addr, 0);
2400 }
2401 EXPORT_SYMBOL(vunmap);
2402
2403 /**
2404 * vmap - map an array of pages into virtually contiguous space
2405 * @pages: array of page pointers
2406 * @count: number of pages to map
2407 * @flags: vm_area->flags
2408 * @prot: page protection for the mapping
2409 *
2410 * Maps @count pages from @pages into contiguous kernel virtual
2411 * space.
2412 *
2413 * Return: the address of the area or %NULL on failure
2414 */
2415 void *vmap(struct page **pages, unsigned int count,
2416 unsigned long flags, pgprot_t prot)
2417 {
2418 struct vm_struct *area;
2419 unsigned long size; /* In bytes */
2420
2421 might_sleep();
2422
2423 if (count > totalram_pages())
2424 return NULL;
2425
2426 size = (unsigned long)count << PAGE_SHIFT;
2427 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2428 if (!area)
2429 return NULL;
2430
2431 if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
2432 pages) < 0) {
2433 vunmap(area->addr);
2434 return NULL;
2435 }
2436
2437 return area->addr;
2438 }
2439 EXPORT_SYMBOL(vmap);
2440
2441 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2442 pgprot_t prot, int node)
2443 {
2444 struct page **pages;
2445 unsigned int nr_pages, array_size, i;
2446 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2447 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2448 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2449 0 :
2450 __GFP_HIGHMEM;
2451
2452 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2453 array_size = (nr_pages * sizeof(struct page *));
2454
2455 /* Please note that the recursion is strictly bounded. */
2456 if (array_size > PAGE_SIZE) {
2457 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2458 node, area->caller);
2459 } else {
2460 pages = kmalloc_node(array_size, nested_gfp, node);
2461 }
2462
2463 if (!pages) {
2464 remove_vm_area(area->addr);
2465 kfree(area);
2466 return NULL;
2467 }
2468
2469 area->pages = pages;
2470 area->nr_pages = nr_pages;
2471
2472 for (i = 0; i < area->nr_pages; i++) {
2473 struct page *page;
2474
2475 if (node == NUMA_NO_NODE)
2476 page = alloc_page(alloc_mask|highmem_mask);
2477 else
2478 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2479
2480 if (unlikely(!page)) {
2481 /* Successfully allocated i pages, free them in __vunmap() */
2482 area->nr_pages = i;
2483 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2484 goto fail;
2485 }
2486 area->pages[i] = page;
2487 if (gfpflags_allow_blocking(gfp_mask))
2488 cond_resched();
2489 }
2490 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2491
2492 if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
2493 prot, pages) < 0)
2494 goto fail;
2495
2496 return area->addr;
2497
2498 fail:
2499 warn_alloc(gfp_mask, NULL,
2500 "vmalloc: allocation failure, allocated %ld of %ld bytes",
2501 (area->nr_pages*PAGE_SIZE), area->size);
2502 __vfree(area->addr);
2503 return NULL;
2504 }
2505
2506 /**
2507 * __vmalloc_node_range - allocate virtually contiguous memory
2508 * @size: allocation size
2509 * @align: desired alignment
2510 * @start: vm area range start
2511 * @end: vm area range end
2512 * @gfp_mask: flags for the page level allocator
2513 * @prot: protection mask for the allocated pages
2514 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2515 * @node: node to use for allocation or NUMA_NO_NODE
2516 * @caller: caller's return address
2517 *
2518 * Allocate enough pages to cover @size from the page level
2519 * allocator with @gfp_mask flags. Map them into contiguous
2520 * kernel virtual space, using a pagetable protection of @prot.
2521 *
2522 * Return: the address of the area or %NULL on failure
2523 */
2524 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2525 unsigned long start, unsigned long end, gfp_t gfp_mask,
2526 pgprot_t prot, unsigned long vm_flags, int node,
2527 const void *caller)
2528 {
2529 struct vm_struct *area;
2530 void *addr;
2531 unsigned long real_size = size;
2532
2533 size = PAGE_ALIGN(size);
2534 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2535 goto fail;
2536
2537 area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2538 vm_flags, start, end, node, gfp_mask, caller);
2539 if (!area)
2540 goto fail;
2541
2542 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2543 if (!addr)
2544 return NULL;
2545
2546 /*
2547 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2548 * flag. It means that vm_struct is not fully initialized.
2549 * Now, it is fully initialized, so remove this flag here.
2550 */
2551 clear_vm_uninitialized_flag(area);
2552
2553 kmemleak_vmalloc(area, size, gfp_mask);
2554
2555 return addr;
2556
2557 fail:
2558 warn_alloc(gfp_mask, NULL,
2559 "vmalloc: allocation failure: %lu bytes", real_size);
2560 return NULL;
2561 }
2562
2563 /**
2564 * __vmalloc_node - allocate virtually contiguous memory
2565 * @size: allocation size
2566 * @align: desired alignment
2567 * @gfp_mask: flags for the page level allocator
2568 * @node: node to use for allocation or NUMA_NO_NODE
2569 * @caller: caller's return address
2570 *
2571 * Allocate enough pages to cover @size from the page level allocator with
2572 * @gfp_mask flags. Map them into contiguous kernel virtual space.
2573 *
2574 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2575 * and __GFP_NOFAIL are not supported
2576 *
2577 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2578 * with mm people.
2579 *
2580 * Return: pointer to the allocated memory or %NULL on error
2581 */
2582 void *__vmalloc_node(unsigned long size, unsigned long align,
2583 gfp_t gfp_mask, int node, const void *caller)
2584 {
2585 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2586 gfp_mask, PAGE_KERNEL, 0, node, caller);
2587 }
2588 /*
2589 * This is only for performance analysis of vmalloc and stress purpose.
2590 * It is required by vmalloc test module, therefore do not use it other
2591 * than that.
2592 */
2593 #ifdef CONFIG_TEST_VMALLOC_MODULE
2594 EXPORT_SYMBOL_GPL(__vmalloc_node);
2595 #endif
2596
2597 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
2598 {
2599 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
2600 __builtin_return_address(0));
2601 }
2602 EXPORT_SYMBOL(__vmalloc);
2603
2604 /**
2605 * vmalloc - allocate virtually contiguous memory
2606 * @size: allocation size
2607 *
2608 * Allocate enough pages to cover @size from the page level
2609 * allocator and map them into contiguous kernel virtual space.
2610 *
2611 * For tight control over page level allocator and protection flags
2612 * use __vmalloc() instead.
2613 *
2614 * Return: pointer to the allocated memory or %NULL on error
2615 */
2616 void *vmalloc(unsigned long size)
2617 {
2618 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
2619 __builtin_return_address(0));
2620 }
2621 EXPORT_SYMBOL(vmalloc);
2622
2623 /**
2624 * vzalloc - allocate virtually contiguous memory with zero fill
2625 * @size: allocation size
2626 *
2627 * Allocate enough pages to cover @size from the page level
2628 * allocator and map them into contiguous kernel virtual space.
2629 * The memory allocated is set to zero.
2630 *
2631 * For tight control over page level allocator and protection flags
2632 * use __vmalloc() instead.
2633 *
2634 * Return: pointer to the allocated memory or %NULL on error
2635 */
2636 void *vzalloc(unsigned long size)
2637 {
2638 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
2639 __builtin_return_address(0));
2640 }
2641 EXPORT_SYMBOL(vzalloc);
2642
2643 /**
2644 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2645 * @size: allocation size
2646 *
2647 * The resulting memory area is zeroed so it can be mapped to userspace
2648 * without leaking data.
2649 *
2650 * Return: pointer to the allocated memory or %NULL on error
2651 */
2652 void *vmalloc_user(unsigned long size)
2653 {
2654 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2655 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2656 VM_USERMAP, NUMA_NO_NODE,
2657 __builtin_return_address(0));
2658 }
2659 EXPORT_SYMBOL(vmalloc_user);
2660
2661 /**
2662 * vmalloc_node - allocate memory on a specific node
2663 * @size: allocation size
2664 * @node: numa node
2665 *
2666 * Allocate enough pages to cover @size from the page level
2667 * allocator and map them into contiguous kernel virtual space.
2668 *
2669 * For tight control over page level allocator and protection flags
2670 * use __vmalloc() instead.
2671 *
2672 * Return: pointer to the allocated memory or %NULL on error
2673 */
2674 void *vmalloc_node(unsigned long size, int node)
2675 {
2676 return __vmalloc_node(size, 1, GFP_KERNEL, node,
2677 __builtin_return_address(0));
2678 }
2679 EXPORT_SYMBOL(vmalloc_node);
2680
2681 /**
2682 * vzalloc_node - allocate memory on a specific node with zero fill
2683 * @size: allocation size
2684 * @node: numa node
2685 *
2686 * Allocate enough pages to cover @size from the page level
2687 * allocator and map them into contiguous kernel virtual space.
2688 * The memory allocated is set to zero.
2689 *
2690 * Return: pointer to the allocated memory or %NULL on error
2691 */
2692 void *vzalloc_node(unsigned long size, int node)
2693 {
2694 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
2695 __builtin_return_address(0));
2696 }
2697 EXPORT_SYMBOL(vzalloc_node);
2698
2699 /**
2700 * vmalloc_exec - allocate virtually contiguous, executable memory
2701 * @size: allocation size
2702 *
2703 * Kernel-internal function to allocate enough pages to cover @size
2704 * the page level allocator and map them into contiguous and
2705 * executable kernel virtual space.
2706 *
2707 * For tight control over page level allocator and protection flags
2708 * use __vmalloc() instead.
2709 *
2710 * Return: pointer to the allocated memory or %NULL on error
2711 */
2712 void *vmalloc_exec(unsigned long size)
2713 {
2714 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2715 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2716 NUMA_NO_NODE, __builtin_return_address(0));
2717 }
2718
2719 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2720 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2721 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2722 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2723 #else
2724 /*
2725 * 64b systems should always have either DMA or DMA32 zones. For others
2726 * GFP_DMA32 should do the right thing and use the normal zone.
2727 */
2728 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2729 #endif
2730
2731 /**
2732 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2733 * @size: allocation size
2734 *
2735 * Allocate enough 32bit PA addressable pages to cover @size from the
2736 * page level allocator and map them into contiguous kernel virtual space.
2737 *
2738 * Return: pointer to the allocated memory or %NULL on error
2739 */
2740 void *vmalloc_32(unsigned long size)
2741 {
2742 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
2743 __builtin_return_address(0));
2744 }
2745 EXPORT_SYMBOL(vmalloc_32);
2746
2747 /**
2748 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2749 * @size: allocation size
2750 *
2751 * The resulting memory area is 32bit addressable and zeroed so it can be
2752 * mapped to userspace without leaking data.
2753 *
2754 * Return: pointer to the allocated memory or %NULL on error
2755 */
2756 void *vmalloc_32_user(unsigned long size)
2757 {
2758 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2759 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2760 VM_USERMAP, NUMA_NO_NODE,
2761 __builtin_return_address(0));
2762 }
2763 EXPORT_SYMBOL(vmalloc_32_user);
2764
2765 /*
2766 * small helper routine , copy contents to buf from addr.
2767 * If the page is not present, fill zero.
2768 */
2769
2770 static int aligned_vread(char *buf, char *addr, unsigned long count)
2771 {
2772 struct page *p;
2773 int copied = 0;
2774
2775 while (count) {
2776 unsigned long offset, length;
2777
2778 offset = offset_in_page(addr);
2779 length = PAGE_SIZE - offset;
2780 if (length > count)
2781 length = count;
2782 p = vmalloc_to_page(addr);
2783 /*
2784 * To do safe access to this _mapped_ area, we need
2785 * lock. But adding lock here means that we need to add
2786 * overhead of vmalloc()/vfree() calles for this _debug_
2787 * interface, rarely used. Instead of that, we'll use
2788 * kmap() and get small overhead in this access function.
2789 */
2790 if (p) {
2791 /*
2792 * we can expect USER0 is not used (see vread/vwrite's
2793 * function description)
2794 */
2795 void *map = kmap_atomic(p);
2796 memcpy(buf, map + offset, length);
2797 kunmap_atomic(map);
2798 } else
2799 memset(buf, 0, length);
2800
2801 addr += length;
2802 buf += length;
2803 copied += length;
2804 count -= length;
2805 }
2806 return copied;
2807 }
2808
2809 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2810 {
2811 struct page *p;
2812 int copied = 0;
2813
2814 while (count) {
2815 unsigned long offset, length;
2816
2817 offset = offset_in_page(addr);
2818 length = PAGE_SIZE - offset;
2819 if (length > count)
2820 length = count;
2821 p = vmalloc_to_page(addr);
2822 /*
2823 * To do safe access to this _mapped_ area, we need
2824 * lock. But adding lock here means that we need to add
2825 * overhead of vmalloc()/vfree() calles for this _debug_
2826 * interface, rarely used. Instead of that, we'll use
2827 * kmap() and get small overhead in this access function.
2828 */
2829 if (p) {
2830 /*
2831 * we can expect USER0 is not used (see vread/vwrite's
2832 * function description)
2833 */
2834 void *map = kmap_atomic(p);
2835 memcpy(map + offset, buf, length);
2836 kunmap_atomic(map);
2837 }
2838 addr += length;
2839 buf += length;
2840 copied += length;
2841 count -= length;
2842 }
2843 return copied;
2844 }
2845
2846 /**
2847 * vread() - read vmalloc area in a safe way.
2848 * @buf: buffer for reading data
2849 * @addr: vm address.
2850 * @count: number of bytes to be read.
2851 *
2852 * This function checks that addr is a valid vmalloc'ed area, and
2853 * copy data from that area to a given buffer. If the given memory range
2854 * of [addr...addr+count) includes some valid address, data is copied to
2855 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2856 * IOREMAP area is treated as memory hole and no copy is done.
2857 *
2858 * If [addr...addr+count) doesn't includes any intersects with alive
2859 * vm_struct area, returns 0. @buf should be kernel's buffer.
2860 *
2861 * Note: In usual ops, vread() is never necessary because the caller
2862 * should know vmalloc() area is valid and can use memcpy().
2863 * This is for routines which have to access vmalloc area without
2864 * any information, as /dev/kmem.
2865 *
2866 * Return: number of bytes for which addr and buf should be increased
2867 * (same number as @count) or %0 if [addr...addr+count) doesn't
2868 * include any intersection with valid vmalloc area
2869 */
2870 long vread(char *buf, char *addr, unsigned long count)
2871 {
2872 struct vmap_area *va;
2873 struct vm_struct *vm;
2874 char *vaddr, *buf_start = buf;
2875 unsigned long buflen = count;
2876 unsigned long n;
2877
2878 /* Don't allow overflow */
2879 if ((unsigned long) addr + count < count)
2880 count = -(unsigned long) addr;
2881
2882 spin_lock(&vmap_area_lock);
2883 list_for_each_entry(va, &vmap_area_list, list) {
2884 if (!count)
2885 break;
2886
2887 if (!va->vm)
2888 continue;
2889
2890 vm = va->vm;
2891 vaddr = (char *) vm->addr;
2892 if (addr >= vaddr + get_vm_area_size(vm))
2893 continue;
2894 while (addr < vaddr) {
2895 if (count == 0)
2896 goto finished;
2897 *buf = '\0';
2898 buf++;
2899 addr++;
2900 count--;
2901 }
2902 n = vaddr + get_vm_area_size(vm) - addr;
2903 if (n > count)
2904 n = count;
2905 if (!(vm->flags & VM_IOREMAP))
2906 aligned_vread(buf, addr, n);
2907 else /* IOREMAP area is treated as memory hole */
2908 memset(buf, 0, n);
2909 buf += n;
2910 addr += n;
2911 count -= n;
2912 }
2913 finished:
2914 spin_unlock(&vmap_area_lock);
2915
2916 if (buf == buf_start)
2917 return 0;
2918 /* zero-fill memory holes */
2919 if (buf != buf_start + buflen)
2920 memset(buf, 0, buflen - (buf - buf_start));
2921
2922 return buflen;
2923 }
2924
2925 /**
2926 * vwrite() - write vmalloc area in a safe way.
2927 * @buf: buffer for source data
2928 * @addr: vm address.
2929 * @count: number of bytes to be read.
2930 *
2931 * This function checks that addr is a valid vmalloc'ed area, and
2932 * copy data from a buffer to the given addr. If specified range of
2933 * [addr...addr+count) includes some valid address, data is copied from
2934 * proper area of @buf. If there are memory holes, no copy to hole.
2935 * IOREMAP area is treated as memory hole and no copy is done.
2936 *
2937 * If [addr...addr+count) doesn't includes any intersects with alive
2938 * vm_struct area, returns 0. @buf should be kernel's buffer.
2939 *
2940 * Note: In usual ops, vwrite() is never necessary because the caller
2941 * should know vmalloc() area is valid and can use memcpy().
2942 * This is for routines which have to access vmalloc area without
2943 * any information, as /dev/kmem.
2944 *
2945 * Return: number of bytes for which addr and buf should be
2946 * increased (same number as @count) or %0 if [addr...addr+count)
2947 * doesn't include any intersection with valid vmalloc area
2948 */
2949 long vwrite(char *buf, char *addr, unsigned long count)
2950 {
2951 struct vmap_area *va;
2952 struct vm_struct *vm;
2953 char *vaddr;
2954 unsigned long n, buflen;
2955 int copied = 0;
2956
2957 /* Don't allow overflow */
2958 if ((unsigned long) addr + count < count)
2959 count = -(unsigned long) addr;
2960 buflen = count;
2961
2962 spin_lock(&vmap_area_lock);
2963 list_for_each_entry(va, &vmap_area_list, list) {
2964 if (!count)
2965 break;
2966
2967 if (!va->vm)
2968 continue;
2969
2970 vm = va->vm;
2971 vaddr = (char *) vm->addr;
2972 if (addr >= vaddr + get_vm_area_size(vm))
2973 continue;
2974 while (addr < vaddr) {
2975 if (count == 0)
2976 goto finished;
2977 buf++;
2978 addr++;
2979 count--;
2980 }
2981 n = vaddr + get_vm_area_size(vm) - addr;
2982 if (n > count)
2983 n = count;
2984 if (!(vm->flags & VM_IOREMAP)) {
2985 aligned_vwrite(buf, addr, n);
2986 copied++;
2987 }
2988 buf += n;
2989 addr += n;
2990 count -= n;
2991 }
2992 finished:
2993 spin_unlock(&vmap_area_lock);
2994 if (!copied)
2995 return 0;
2996 return buflen;
2997 }
2998
2999 /**
3000 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3001 * @vma: vma to cover
3002 * @uaddr: target user address to start at
3003 * @kaddr: virtual address of vmalloc kernel memory
3004 * @pgoff: offset from @kaddr to start at
3005 * @size: size of map area
3006 *
3007 * Returns: 0 for success, -Exxx on failure
3008 *
3009 * This function checks that @kaddr is a valid vmalloc'ed area,
3010 * and that it is big enough to cover the range starting at
3011 * @uaddr in @vma. Will return failure if that criteria isn't
3012 * met.
3013 *
3014 * Similar to remap_pfn_range() (see mm/memory.c)
3015 */
3016 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3017 void *kaddr, unsigned long pgoff,
3018 unsigned long size)
3019 {
3020 struct vm_struct *area;
3021 unsigned long off;
3022 unsigned long end_index;
3023
3024 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3025 return -EINVAL;
3026
3027 size = PAGE_ALIGN(size);
3028
3029 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3030 return -EINVAL;
3031
3032 area = find_vm_area(kaddr);
3033 if (!area)
3034 return -EINVAL;
3035
3036 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3037 return -EINVAL;
3038
3039 if (check_add_overflow(size, off, &end_index) ||
3040 end_index > get_vm_area_size(area))
3041 return -EINVAL;
3042 kaddr += off;
3043
3044 do {
3045 struct page *page = vmalloc_to_page(kaddr);
3046 int ret;
3047
3048 ret = vm_insert_page(vma, uaddr, page);
3049 if (ret)
3050 return ret;
3051
3052 uaddr += PAGE_SIZE;
3053 kaddr += PAGE_SIZE;
3054 size -= PAGE_SIZE;
3055 } while (size > 0);
3056
3057 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3058
3059 return 0;
3060 }
3061 EXPORT_SYMBOL(remap_vmalloc_range_partial);
3062
3063 /**
3064 * remap_vmalloc_range - map vmalloc pages to userspace
3065 * @vma: vma to cover (map full range of vma)
3066 * @addr: vmalloc memory
3067 * @pgoff: number of pages into addr before first page to map
3068 *
3069 * Returns: 0 for success, -Exxx on failure
3070 *
3071 * This function checks that addr is a valid vmalloc'ed area, and
3072 * that it is big enough to cover the vma. Will return failure if
3073 * that criteria isn't met.
3074 *
3075 * Similar to remap_pfn_range() (see mm/memory.c)
3076 */
3077 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3078 unsigned long pgoff)
3079 {
3080 return remap_vmalloc_range_partial(vma, vma->vm_start,
3081 addr, pgoff,
3082 vma->vm_end - vma->vm_start);
3083 }
3084 EXPORT_SYMBOL(remap_vmalloc_range);
3085
3086 static int f(pte_t *pte, unsigned long addr, void *data)
3087 {
3088 pte_t ***p = data;
3089
3090 if (p) {
3091 *(*p) = pte;
3092 (*p)++;
3093 }
3094 return 0;
3095 }
3096
3097 /**
3098 * alloc_vm_area - allocate a range of kernel address space
3099 * @size: size of the area
3100 * @ptes: returns the PTEs for the address space
3101 *
3102 * Returns: NULL on failure, vm_struct on success
3103 *
3104 * This function reserves a range of kernel address space, and
3105 * allocates pagetables to map that range. No actual mappings
3106 * are created.
3107 *
3108 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3109 * allocated for the VM area are returned.
3110 */
3111 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3112 {
3113 struct vm_struct *area;
3114
3115 area = get_vm_area_caller(size, VM_IOREMAP,
3116 __builtin_return_address(0));
3117 if (area == NULL)
3118 return NULL;
3119
3120 /*
3121 * This ensures that page tables are constructed for this region
3122 * of kernel virtual address space and mapped into init_mm.
3123 */
3124 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3125 size, f, ptes ? &ptes : NULL)) {
3126 free_vm_area(area);
3127 return NULL;
3128 }
3129
3130 return area;
3131 }
3132 EXPORT_SYMBOL_GPL(alloc_vm_area);
3133
3134 void free_vm_area(struct vm_struct *area)
3135 {
3136 struct vm_struct *ret;
3137 ret = remove_vm_area(area->addr);
3138 BUG_ON(ret != area);
3139 kfree(area);
3140 }
3141 EXPORT_SYMBOL_GPL(free_vm_area);
3142
3143 #ifdef CONFIG_SMP
3144 static struct vmap_area *node_to_va(struct rb_node *n)
3145 {
3146 return rb_entry_safe(n, struct vmap_area, rb_node);
3147 }
3148
3149 /**
3150 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3151 * @addr: target address
3152 *
3153 * Returns: vmap_area if it is found. If there is no such area
3154 * the first highest(reverse order) vmap_area is returned
3155 * i.e. va->va_start < addr && va->va_end < addr or NULL
3156 * if there are no any areas before @addr.
3157 */
3158 static struct vmap_area *
3159 pvm_find_va_enclose_addr(unsigned long addr)
3160 {
3161 struct vmap_area *va, *tmp;
3162 struct rb_node *n;
3163
3164 n = free_vmap_area_root.rb_node;
3165 va = NULL;
3166
3167 while (n) {
3168 tmp = rb_entry(n, struct vmap_area, rb_node);
3169 if (tmp->va_start <= addr) {
3170 va = tmp;
3171 if (tmp->va_end >= addr)
3172 break;
3173
3174 n = n->rb_right;
3175 } else {
3176 n = n->rb_left;
3177 }
3178 }
3179
3180 return va;
3181 }
3182
3183 /**
3184 * pvm_determine_end_from_reverse - find the highest aligned address
3185 * of free block below VMALLOC_END
3186 * @va:
3187 * in - the VA we start the search(reverse order);
3188 * out - the VA with the highest aligned end address.
3189 *
3190 * Returns: determined end address within vmap_area
3191 */
3192 static unsigned long
3193 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3194 {
3195 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3196 unsigned long addr;
3197
3198 if (likely(*va)) {
3199 list_for_each_entry_from_reverse((*va),
3200 &free_vmap_area_list, list) {
3201 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3202 if ((*va)->va_start < addr)
3203 return addr;
3204 }
3205 }
3206
3207 return 0;
3208 }
3209
3210 /**
3211 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3212 * @offsets: array containing offset of each area
3213 * @sizes: array containing size of each area
3214 * @nr_vms: the number of areas to allocate
3215 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3216 *
3217 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3218 * vm_structs on success, %NULL on failure
3219 *
3220 * Percpu allocator wants to use congruent vm areas so that it can
3221 * maintain the offsets among percpu areas. This function allocates
3222 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3223 * be scattered pretty far, distance between two areas easily going up
3224 * to gigabytes. To avoid interacting with regular vmallocs, these
3225 * areas are allocated from top.
3226 *
3227 * Despite its complicated look, this allocator is rather simple. It
3228 * does everything top-down and scans free blocks from the end looking
3229 * for matching base. While scanning, if any of the areas do not fit the
3230 * base address is pulled down to fit the area. Scanning is repeated till
3231 * all the areas fit and then all necessary data structures are inserted
3232 * and the result is returned.
3233 */
3234 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3235 const size_t *sizes, int nr_vms,
3236 size_t align)
3237 {
3238 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3239 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3240 struct vmap_area **vas, *va;
3241 struct vm_struct **vms;
3242 int area, area2, last_area, term_area;
3243 unsigned long base, start, size, end, last_end, orig_start, orig_end;
3244 bool purged = false;
3245 enum fit_type type;
3246
3247 /* verify parameters and allocate data structures */
3248 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3249 for (last_area = 0, area = 0; area < nr_vms; area++) {
3250 start = offsets[area];
3251 end = start + sizes[area];
3252
3253 /* is everything aligned properly? */
3254 BUG_ON(!IS_ALIGNED(offsets[area], align));
3255 BUG_ON(!IS_ALIGNED(sizes[area], align));
3256
3257 /* detect the area with the highest address */
3258 if (start > offsets[last_area])
3259 last_area = area;
3260
3261 for (area2 = area + 1; area2 < nr_vms; area2++) {
3262 unsigned long start2 = offsets[area2];
3263 unsigned long end2 = start2 + sizes[area2];
3264
3265 BUG_ON(start2 < end && start < end2);
3266 }
3267 }
3268 last_end = offsets[last_area] + sizes[last_area];
3269
3270 if (vmalloc_end - vmalloc_start < last_end) {
3271 WARN_ON(true);
3272 return NULL;
3273 }
3274
3275 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3276 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3277 if (!vas || !vms)
3278 goto err_free2;
3279
3280 for (area = 0; area < nr_vms; area++) {
3281 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3282 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3283 if (!vas[area] || !vms[area])
3284 goto err_free;
3285 }
3286 retry:
3287 spin_lock(&free_vmap_area_lock);
3288
3289 /* start scanning - we scan from the top, begin with the last area */
3290 area = term_area = last_area;
3291 start = offsets[area];
3292 end = start + sizes[area];
3293
3294 va = pvm_find_va_enclose_addr(vmalloc_end);
3295 base = pvm_determine_end_from_reverse(&va, align) - end;
3296
3297 while (true) {
3298 /*
3299 * base might have underflowed, add last_end before
3300 * comparing.
3301 */
3302 if (base + last_end < vmalloc_start + last_end)
3303 goto overflow;
3304
3305 /*
3306 * Fitting base has not been found.
3307 */
3308 if (va == NULL)
3309 goto overflow;
3310
3311 /*
3312 * If required width exceeds current VA block, move
3313 * base downwards and then recheck.
3314 */
3315 if (base + end > va->va_end) {
3316 base = pvm_determine_end_from_reverse(&va, align) - end;
3317 term_area = area;
3318 continue;
3319 }
3320
3321 /*
3322 * If this VA does not fit, move base downwards and recheck.
3323 */
3324 if (base + start < va->va_start) {
3325 va = node_to_va(rb_prev(&va->rb_node));
3326 base = pvm_determine_end_from_reverse(&va, align) - end;
3327 term_area = area;
3328 continue;
3329 }
3330
3331 /*
3332 * This area fits, move on to the previous one. If
3333 * the previous one is the terminal one, we're done.
3334 */
3335 area = (area + nr_vms - 1) % nr_vms;
3336 if (area == term_area)
3337 break;
3338
3339 start = offsets[area];
3340 end = start + sizes[area];
3341 va = pvm_find_va_enclose_addr(base + end);
3342 }
3343
3344 /* we've found a fitting base, insert all va's */
3345 for (area = 0; area < nr_vms; area++) {
3346 int ret;
3347
3348 start = base + offsets[area];
3349 size = sizes[area];
3350
3351 va = pvm_find_va_enclose_addr(start);
3352 if (WARN_ON_ONCE(va == NULL))
3353 /* It is a BUG(), but trigger recovery instead. */
3354 goto recovery;
3355
3356 type = classify_va_fit_type(va, start, size);
3357 if (WARN_ON_ONCE(type == NOTHING_FIT))
3358 /* It is a BUG(), but trigger recovery instead. */
3359 goto recovery;
3360
3361 ret = adjust_va_to_fit_type(va, start, size, type);
3362 if (unlikely(ret))
3363 goto recovery;
3364
3365 /* Allocated area. */
3366 va = vas[area];
3367 va->va_start = start;
3368 va->va_end = start + size;
3369 }
3370
3371 spin_unlock(&free_vmap_area_lock);
3372
3373 /* populate the kasan shadow space */
3374 for (area = 0; area < nr_vms; area++) {
3375 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3376 goto err_free_shadow;
3377
3378 kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3379 sizes[area]);
3380 }
3381
3382 /* insert all vm's */
3383 spin_lock(&vmap_area_lock);
3384 for (area = 0; area < nr_vms; area++) {
3385 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3386
3387 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3388 pcpu_get_vm_areas);
3389 }
3390 spin_unlock(&vmap_area_lock);
3391
3392 kfree(vas);
3393 return vms;
3394
3395 recovery:
3396 /*
3397 * Remove previously allocated areas. There is no
3398 * need in removing these areas from the busy tree,
3399 * because they are inserted only on the final step
3400 * and when pcpu_get_vm_areas() is success.
3401 */
3402 while (area--) {
3403 orig_start = vas[area]->va_start;
3404 orig_end = vas[area]->va_end;
3405 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3406 &free_vmap_area_list);
3407 kasan_release_vmalloc(orig_start, orig_end,
3408 va->va_start, va->va_end);
3409 vas[area] = NULL;
3410 }
3411
3412 overflow:
3413 spin_unlock(&free_vmap_area_lock);
3414 if (!purged) {
3415 purge_vmap_area_lazy();
3416 purged = true;
3417
3418 /* Before "retry", check if we recover. */
3419 for (area = 0; area < nr_vms; area++) {
3420 if (vas[area])
3421 continue;
3422
3423 vas[area] = kmem_cache_zalloc(
3424 vmap_area_cachep, GFP_KERNEL);
3425 if (!vas[area])
3426 goto err_free;
3427 }
3428
3429 goto retry;
3430 }
3431
3432 err_free:
3433 for (area = 0; area < nr_vms; area++) {
3434 if (vas[area])
3435 kmem_cache_free(vmap_area_cachep, vas[area]);
3436
3437 kfree(vms[area]);
3438 }
3439 err_free2:
3440 kfree(vas);
3441 kfree(vms);
3442 return NULL;
3443
3444 err_free_shadow:
3445 spin_lock(&free_vmap_area_lock);
3446 /*
3447 * We release all the vmalloc shadows, even the ones for regions that
3448 * hadn't been successfully added. This relies on kasan_release_vmalloc
3449 * being able to tolerate this case.
3450 */
3451 for (area = 0; area < nr_vms; area++) {
3452 orig_start = vas[area]->va_start;
3453 orig_end = vas[area]->va_end;
3454 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3455 &free_vmap_area_list);
3456 kasan_release_vmalloc(orig_start, orig_end,
3457 va->va_start, va->va_end);
3458 vas[area] = NULL;
3459 kfree(vms[area]);
3460 }
3461 spin_unlock(&free_vmap_area_lock);
3462 kfree(vas);
3463 kfree(vms);
3464 return NULL;
3465 }
3466
3467 /**
3468 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3469 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3470 * @nr_vms: the number of allocated areas
3471 *
3472 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3473 */
3474 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3475 {
3476 int i;
3477
3478 for (i = 0; i < nr_vms; i++)
3479 free_vm_area(vms[i]);
3480 kfree(vms);
3481 }
3482 #endif /* CONFIG_SMP */
3483
3484 #ifdef CONFIG_PROC_FS
3485 static void *s_start(struct seq_file *m, loff_t *pos)
3486 __acquires(&vmap_purge_lock)
3487 __acquires(&vmap_area_lock)
3488 {
3489 mutex_lock(&vmap_purge_lock);
3490 spin_lock(&vmap_area_lock);
3491
3492 return seq_list_start(&vmap_area_list, *pos);
3493 }
3494
3495 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3496 {
3497 return seq_list_next(p, &vmap_area_list, pos);
3498 }
3499
3500 static void s_stop(struct seq_file *m, void *p)
3501 __releases(&vmap_purge_lock)
3502 __releases(&vmap_area_lock)
3503 {
3504 mutex_unlock(&vmap_purge_lock);
3505 spin_unlock(&vmap_area_lock);
3506 }
3507
3508 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3509 {
3510 if (IS_ENABLED(CONFIG_NUMA)) {
3511 unsigned int nr, *counters = m->private;
3512
3513 if (!counters)
3514 return;
3515
3516 if (v->flags & VM_UNINITIALIZED)
3517 return;
3518 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3519 smp_rmb();
3520
3521 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3522
3523 for (nr = 0; nr < v->nr_pages; nr++)
3524 counters[page_to_nid(v->pages[nr])]++;
3525
3526 for_each_node_state(nr, N_HIGH_MEMORY)
3527 if (counters[nr])
3528 seq_printf(m, " N%u=%u", nr, counters[nr]);
3529 }
3530 }
3531
3532 static void show_purge_info(struct seq_file *m)
3533 {
3534 struct llist_node *head;
3535 struct vmap_area *va;
3536
3537 head = READ_ONCE(vmap_purge_list.first);
3538 if (head == NULL)
3539 return;
3540
3541 llist_for_each_entry(va, head, purge_list) {
3542 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3543 (void *)va->va_start, (void *)va->va_end,
3544 va->va_end - va->va_start);
3545 }
3546 }
3547
3548 static int s_show(struct seq_file *m, void *p)
3549 {
3550 struct vmap_area *va;
3551 struct vm_struct *v;
3552
3553 va = list_entry(p, struct vmap_area, list);
3554
3555 /*
3556 * s_show can encounter race with remove_vm_area, !vm on behalf
3557 * of vmap area is being tear down or vm_map_ram allocation.
3558 */
3559 if (!va->vm) {
3560 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3561 (void *)va->va_start, (void *)va->va_end,
3562 va->va_end - va->va_start);
3563
3564 return 0;
3565 }
3566
3567 v = va->vm;
3568
3569 seq_printf(m, "0x%pK-0x%pK %7ld",
3570 v->addr, v->addr + v->size, v->size);
3571
3572 if (v->caller)
3573 seq_printf(m, " %pS", v->caller);
3574
3575 if (v->nr_pages)
3576 seq_printf(m, " pages=%d", v->nr_pages);
3577
3578 if (v->phys_addr)
3579 seq_printf(m, " phys=%pa", &v->phys_addr);
3580
3581 if (v->flags & VM_IOREMAP)
3582 seq_puts(m, " ioremap");
3583
3584 if (v->flags & VM_ALLOC)
3585 seq_puts(m, " vmalloc");
3586
3587 if (v->flags & VM_MAP)
3588 seq_puts(m, " vmap");
3589
3590 if (v->flags & VM_USERMAP)
3591 seq_puts(m, " user");
3592
3593 if (v->flags & VM_DMA_COHERENT)
3594 seq_puts(m, " dma-coherent");
3595
3596 if (is_vmalloc_addr(v->pages))
3597 seq_puts(m, " vpages");
3598
3599 show_numa_info(m, v);
3600 seq_putc(m, '\n');
3601
3602 /*
3603 * As a final step, dump "unpurged" areas. Note,
3604 * that entire "/proc/vmallocinfo" output will not
3605 * be address sorted, because the purge list is not
3606 * sorted.
3607 */
3608 if (list_is_last(&va->list, &vmap_area_list))
3609 show_purge_info(m);
3610
3611 return 0;
3612 }
3613
3614 static const struct seq_operations vmalloc_op = {
3615 .start = s_start,
3616 .next = s_next,
3617 .stop = s_stop,
3618 .show = s_show,
3619 };
3620
3621 static int __init proc_vmalloc_init(void)
3622 {
3623 if (IS_ENABLED(CONFIG_NUMA))
3624 proc_create_seq_private("vmallocinfo", 0400, NULL,
3625 &vmalloc_op,
3626 nr_node_ids * sizeof(unsigned int), NULL);
3627 else
3628 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3629 return 0;
3630 }
3631 module_init(proc_vmalloc_init);
3632
3633 #endif