]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/vmalloc.c
1f5501b43026e758d26a1433b9364db46a30bc69
[mirror_ubuntu-artful-kernel.git] / mm / vmalloc.c
1 /*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/notifier.h>
25 #include <linux/rbtree.h>
26 #include <linux/radix-tree.h>
27 #include <linux/rcupdate.h>
28 #include <linux/pfn.h>
29 #include <linux/kmemleak.h>
30 #include <linux/atomic.h>
31 #include <linux/compiler.h>
32 #include <linux/llist.h>
33 #include <linux/bitops.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/tlbflush.h>
37 #include <asm/shmparam.h>
38
39 #include "internal.h"
40
41 struct vfree_deferred {
42 struct llist_head list;
43 struct work_struct wq;
44 };
45 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
46
47 static void __vunmap(const void *, int);
48
49 static void free_work(struct work_struct *w)
50 {
51 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
52 struct llist_node *llnode = llist_del_all(&p->list);
53 while (llnode) {
54 void *p = llnode;
55 llnode = llist_next(llnode);
56 __vunmap(p, 1);
57 }
58 }
59
60 /*** Page table manipulation functions ***/
61
62 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
63 {
64 pte_t *pte;
65
66 pte = pte_offset_kernel(pmd, addr);
67 do {
68 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
69 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
70 } while (pte++, addr += PAGE_SIZE, addr != end);
71 }
72
73 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
74 {
75 pmd_t *pmd;
76 unsigned long next;
77
78 pmd = pmd_offset(pud, addr);
79 do {
80 next = pmd_addr_end(addr, end);
81 if (pmd_clear_huge(pmd))
82 continue;
83 if (pmd_none_or_clear_bad(pmd))
84 continue;
85 vunmap_pte_range(pmd, addr, next);
86 } while (pmd++, addr = next, addr != end);
87 }
88
89 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
90 {
91 pud_t *pud;
92 unsigned long next;
93
94 pud = pud_offset(pgd, addr);
95 do {
96 next = pud_addr_end(addr, end);
97 if (pud_clear_huge(pud))
98 continue;
99 if (pud_none_or_clear_bad(pud))
100 continue;
101 vunmap_pmd_range(pud, addr, next);
102 } while (pud++, addr = next, addr != end);
103 }
104
105 static void vunmap_page_range(unsigned long addr, unsigned long end)
106 {
107 pgd_t *pgd;
108 unsigned long next;
109
110 BUG_ON(addr >= end);
111 pgd = pgd_offset_k(addr);
112 do {
113 next = pgd_addr_end(addr, end);
114 if (pgd_none_or_clear_bad(pgd))
115 continue;
116 vunmap_pud_range(pgd, addr, next);
117 } while (pgd++, addr = next, addr != end);
118 }
119
120 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
121 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
122 {
123 pte_t *pte;
124
125 /*
126 * nr is a running index into the array which helps higher level
127 * callers keep track of where we're up to.
128 */
129
130 pte = pte_alloc_kernel(pmd, addr);
131 if (!pte)
132 return -ENOMEM;
133 do {
134 struct page *page = pages[*nr];
135
136 if (WARN_ON(!pte_none(*pte)))
137 return -EBUSY;
138 if (WARN_ON(!page))
139 return -ENOMEM;
140 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
141 (*nr)++;
142 } while (pte++, addr += PAGE_SIZE, addr != end);
143 return 0;
144 }
145
146 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
147 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
148 {
149 pmd_t *pmd;
150 unsigned long next;
151
152 pmd = pmd_alloc(&init_mm, pud, addr);
153 if (!pmd)
154 return -ENOMEM;
155 do {
156 next = pmd_addr_end(addr, end);
157 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
158 return -ENOMEM;
159 } while (pmd++, addr = next, addr != end);
160 return 0;
161 }
162
163 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
164 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
165 {
166 pud_t *pud;
167 unsigned long next;
168
169 pud = pud_alloc(&init_mm, pgd, addr);
170 if (!pud)
171 return -ENOMEM;
172 do {
173 next = pud_addr_end(addr, end);
174 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
175 return -ENOMEM;
176 } while (pud++, addr = next, addr != end);
177 return 0;
178 }
179
180 /*
181 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
182 * will have pfns corresponding to the "pages" array.
183 *
184 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
185 */
186 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
187 pgprot_t prot, struct page **pages)
188 {
189 pgd_t *pgd;
190 unsigned long next;
191 unsigned long addr = start;
192 int err = 0;
193 int nr = 0;
194
195 BUG_ON(addr >= end);
196 pgd = pgd_offset_k(addr);
197 do {
198 next = pgd_addr_end(addr, end);
199 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
200 if (err)
201 return err;
202 } while (pgd++, addr = next, addr != end);
203
204 return nr;
205 }
206
207 static int vmap_page_range(unsigned long start, unsigned long end,
208 pgprot_t prot, struct page **pages)
209 {
210 int ret;
211
212 ret = vmap_page_range_noflush(start, end, prot, pages);
213 flush_cache_vmap(start, end);
214 return ret;
215 }
216
217 int is_vmalloc_or_module_addr(const void *x)
218 {
219 /*
220 * ARM, x86-64 and sparc64 put modules in a special place,
221 * and fall back on vmalloc() if that fails. Others
222 * just put it in the vmalloc space.
223 */
224 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
225 unsigned long addr = (unsigned long)x;
226 if (addr >= MODULES_VADDR && addr < MODULES_END)
227 return 1;
228 #endif
229 return is_vmalloc_addr(x);
230 }
231
232 /*
233 * Walk a vmap address to the struct page it maps.
234 */
235 struct page *vmalloc_to_page(const void *vmalloc_addr)
236 {
237 unsigned long addr = (unsigned long) vmalloc_addr;
238 struct page *page = NULL;
239 pgd_t *pgd = pgd_offset_k(addr);
240
241 /*
242 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
243 * architectures that do not vmalloc module space
244 */
245 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
246
247 if (!pgd_none(*pgd)) {
248 pud_t *pud = pud_offset(pgd, addr);
249 if (!pud_none(*pud)) {
250 pmd_t *pmd = pmd_offset(pud, addr);
251 if (!pmd_none(*pmd)) {
252 pte_t *ptep, pte;
253
254 ptep = pte_offset_map(pmd, addr);
255 pte = *ptep;
256 if (pte_present(pte))
257 page = pte_page(pte);
258 pte_unmap(ptep);
259 }
260 }
261 }
262 return page;
263 }
264 EXPORT_SYMBOL(vmalloc_to_page);
265
266 /*
267 * Map a vmalloc()-space virtual address to the physical page frame number.
268 */
269 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
270 {
271 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
272 }
273 EXPORT_SYMBOL(vmalloc_to_pfn);
274
275
276 /*** Global kva allocator ***/
277
278 #define VM_VM_AREA 0x04
279
280 static DEFINE_SPINLOCK(vmap_area_lock);
281 /* Export for kexec only */
282 LIST_HEAD(vmap_area_list);
283 static LLIST_HEAD(vmap_purge_list);
284 static struct rb_root vmap_area_root = RB_ROOT;
285
286 /* The vmap cache globals are protected by vmap_area_lock */
287 static struct rb_node *free_vmap_cache;
288 static unsigned long cached_hole_size;
289 static unsigned long cached_vstart;
290 static unsigned long cached_align;
291
292 static unsigned long vmap_area_pcpu_hole;
293
294 static struct vmap_area *__find_vmap_area(unsigned long addr)
295 {
296 struct rb_node *n = vmap_area_root.rb_node;
297
298 while (n) {
299 struct vmap_area *va;
300
301 va = rb_entry(n, struct vmap_area, rb_node);
302 if (addr < va->va_start)
303 n = n->rb_left;
304 else if (addr >= va->va_end)
305 n = n->rb_right;
306 else
307 return va;
308 }
309
310 return NULL;
311 }
312
313 static void __insert_vmap_area(struct vmap_area *va)
314 {
315 struct rb_node **p = &vmap_area_root.rb_node;
316 struct rb_node *parent = NULL;
317 struct rb_node *tmp;
318
319 while (*p) {
320 struct vmap_area *tmp_va;
321
322 parent = *p;
323 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
324 if (va->va_start < tmp_va->va_end)
325 p = &(*p)->rb_left;
326 else if (va->va_end > tmp_va->va_start)
327 p = &(*p)->rb_right;
328 else
329 BUG();
330 }
331
332 rb_link_node(&va->rb_node, parent, p);
333 rb_insert_color(&va->rb_node, &vmap_area_root);
334
335 /* address-sort this list */
336 tmp = rb_prev(&va->rb_node);
337 if (tmp) {
338 struct vmap_area *prev;
339 prev = rb_entry(tmp, struct vmap_area, rb_node);
340 list_add_rcu(&va->list, &prev->list);
341 } else
342 list_add_rcu(&va->list, &vmap_area_list);
343 }
344
345 static void purge_vmap_area_lazy(void);
346
347 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
348
349 /*
350 * Allocate a region of KVA of the specified size and alignment, within the
351 * vstart and vend.
352 */
353 static struct vmap_area *alloc_vmap_area(unsigned long size,
354 unsigned long align,
355 unsigned long vstart, unsigned long vend,
356 int node, gfp_t gfp_mask)
357 {
358 struct vmap_area *va;
359 struct rb_node *n;
360 unsigned long addr;
361 int purged = 0;
362 struct vmap_area *first;
363
364 BUG_ON(!size);
365 BUG_ON(offset_in_page(size));
366 BUG_ON(!is_power_of_2(align));
367
368 might_sleep_if(gfpflags_allow_blocking(gfp_mask));
369
370 va = kmalloc_node(sizeof(struct vmap_area),
371 gfp_mask & GFP_RECLAIM_MASK, node);
372 if (unlikely(!va))
373 return ERR_PTR(-ENOMEM);
374
375 /*
376 * Only scan the relevant parts containing pointers to other objects
377 * to avoid false negatives.
378 */
379 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
380
381 retry:
382 spin_lock(&vmap_area_lock);
383 /*
384 * Invalidate cache if we have more permissive parameters.
385 * cached_hole_size notes the largest hole noticed _below_
386 * the vmap_area cached in free_vmap_cache: if size fits
387 * into that hole, we want to scan from vstart to reuse
388 * the hole instead of allocating above free_vmap_cache.
389 * Note that __free_vmap_area may update free_vmap_cache
390 * without updating cached_hole_size or cached_align.
391 */
392 if (!free_vmap_cache ||
393 size < cached_hole_size ||
394 vstart < cached_vstart ||
395 align < cached_align) {
396 nocache:
397 cached_hole_size = 0;
398 free_vmap_cache = NULL;
399 }
400 /* record if we encounter less permissive parameters */
401 cached_vstart = vstart;
402 cached_align = align;
403
404 /* find starting point for our search */
405 if (free_vmap_cache) {
406 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
407 addr = ALIGN(first->va_end, align);
408 if (addr < vstart)
409 goto nocache;
410 if (addr + size < addr)
411 goto overflow;
412
413 } else {
414 addr = ALIGN(vstart, align);
415 if (addr + size < addr)
416 goto overflow;
417
418 n = vmap_area_root.rb_node;
419 first = NULL;
420
421 while (n) {
422 struct vmap_area *tmp;
423 tmp = rb_entry(n, struct vmap_area, rb_node);
424 if (tmp->va_end >= addr) {
425 first = tmp;
426 if (tmp->va_start <= addr)
427 break;
428 n = n->rb_left;
429 } else
430 n = n->rb_right;
431 }
432
433 if (!first)
434 goto found;
435 }
436
437 /* from the starting point, walk areas until a suitable hole is found */
438 while (addr + size > first->va_start && addr + size <= vend) {
439 if (addr + cached_hole_size < first->va_start)
440 cached_hole_size = first->va_start - addr;
441 addr = ALIGN(first->va_end, align);
442 if (addr + size < addr)
443 goto overflow;
444
445 if (list_is_last(&first->list, &vmap_area_list))
446 goto found;
447
448 first = list_next_entry(first, list);
449 }
450
451 found:
452 if (addr + size > vend)
453 goto overflow;
454
455 va->va_start = addr;
456 va->va_end = addr + size;
457 va->flags = 0;
458 __insert_vmap_area(va);
459 free_vmap_cache = &va->rb_node;
460 spin_unlock(&vmap_area_lock);
461
462 BUG_ON(!IS_ALIGNED(va->va_start, align));
463 BUG_ON(va->va_start < vstart);
464 BUG_ON(va->va_end > vend);
465
466 return va;
467
468 overflow:
469 spin_unlock(&vmap_area_lock);
470 if (!purged) {
471 purge_vmap_area_lazy();
472 purged = 1;
473 goto retry;
474 }
475
476 if (gfpflags_allow_blocking(gfp_mask)) {
477 unsigned long freed = 0;
478 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
479 if (freed > 0) {
480 purged = 0;
481 goto retry;
482 }
483 }
484
485 if (printk_ratelimit())
486 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
487 size);
488 kfree(va);
489 return ERR_PTR(-EBUSY);
490 }
491
492 int register_vmap_purge_notifier(struct notifier_block *nb)
493 {
494 return blocking_notifier_chain_register(&vmap_notify_list, nb);
495 }
496 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
497
498 int unregister_vmap_purge_notifier(struct notifier_block *nb)
499 {
500 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
501 }
502 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
503
504 static void __free_vmap_area(struct vmap_area *va)
505 {
506 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
507
508 if (free_vmap_cache) {
509 if (va->va_end < cached_vstart) {
510 free_vmap_cache = NULL;
511 } else {
512 struct vmap_area *cache;
513 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
514 if (va->va_start <= cache->va_start) {
515 free_vmap_cache = rb_prev(&va->rb_node);
516 /*
517 * We don't try to update cached_hole_size or
518 * cached_align, but it won't go very wrong.
519 */
520 }
521 }
522 }
523 rb_erase(&va->rb_node, &vmap_area_root);
524 RB_CLEAR_NODE(&va->rb_node);
525 list_del_rcu(&va->list);
526
527 /*
528 * Track the highest possible candidate for pcpu area
529 * allocation. Areas outside of vmalloc area can be returned
530 * here too, consider only end addresses which fall inside
531 * vmalloc area proper.
532 */
533 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
534 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
535
536 kfree_rcu(va, rcu_head);
537 }
538
539 /*
540 * Free a region of KVA allocated by alloc_vmap_area
541 */
542 static void free_vmap_area(struct vmap_area *va)
543 {
544 spin_lock(&vmap_area_lock);
545 __free_vmap_area(va);
546 spin_unlock(&vmap_area_lock);
547 }
548
549 /*
550 * Clear the pagetable entries of a given vmap_area
551 */
552 static void unmap_vmap_area(struct vmap_area *va)
553 {
554 vunmap_page_range(va->va_start, va->va_end);
555 }
556
557 static void vmap_debug_free_range(unsigned long start, unsigned long end)
558 {
559 /*
560 * Unmap page tables and force a TLB flush immediately if pagealloc
561 * debugging is enabled. This catches use after free bugs similarly to
562 * those in linear kernel virtual address space after a page has been
563 * freed.
564 *
565 * All the lazy freeing logic is still retained, in order to minimise
566 * intrusiveness of this debugging feature.
567 *
568 * This is going to be *slow* (linear kernel virtual address debugging
569 * doesn't do a broadcast TLB flush so it is a lot faster).
570 */
571 if (debug_pagealloc_enabled()) {
572 vunmap_page_range(start, end);
573 flush_tlb_kernel_range(start, end);
574 }
575 }
576
577 /*
578 * lazy_max_pages is the maximum amount of virtual address space we gather up
579 * before attempting to purge with a TLB flush.
580 *
581 * There is a tradeoff here: a larger number will cover more kernel page tables
582 * and take slightly longer to purge, but it will linearly reduce the number of
583 * global TLB flushes that must be performed. It would seem natural to scale
584 * this number up linearly with the number of CPUs (because vmapping activity
585 * could also scale linearly with the number of CPUs), however it is likely
586 * that in practice, workloads might be constrained in other ways that mean
587 * vmap activity will not scale linearly with CPUs. Also, I want to be
588 * conservative and not introduce a big latency on huge systems, so go with
589 * a less aggressive log scale. It will still be an improvement over the old
590 * code, and it will be simple to change the scale factor if we find that it
591 * becomes a problem on bigger systems.
592 */
593 static unsigned long lazy_max_pages(void)
594 {
595 unsigned int log;
596
597 log = fls(num_online_cpus());
598
599 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
600 }
601
602 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
603
604 /*
605 * Serialize vmap purging. There is no actual criticial section protected
606 * by this look, but we want to avoid concurrent calls for performance
607 * reasons and to make the pcpu_get_vm_areas more deterministic.
608 */
609 static DEFINE_SPINLOCK(vmap_purge_lock);
610
611 /* for per-CPU blocks */
612 static void purge_fragmented_blocks_allcpus(void);
613
614 /*
615 * called before a call to iounmap() if the caller wants vm_area_struct's
616 * immediately freed.
617 */
618 void set_iounmap_nonlazy(void)
619 {
620 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
621 }
622
623 /*
624 * Purges all lazily-freed vmap areas.
625 */
626 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
627 {
628 struct llist_node *valist;
629 struct vmap_area *va;
630 struct vmap_area *n_va;
631 int nr = 0;
632
633 lockdep_assert_held(&vmap_purge_lock);
634
635 valist = llist_del_all(&vmap_purge_list);
636 llist_for_each_entry(va, valist, purge_list) {
637 if (va->va_start < start)
638 start = va->va_start;
639 if (va->va_end > end)
640 end = va->va_end;
641 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
642 }
643
644 if (!nr)
645 return false;
646
647 atomic_sub(nr, &vmap_lazy_nr);
648 flush_tlb_kernel_range(start, end);
649
650 spin_lock(&vmap_area_lock);
651 llist_for_each_entry_safe(va, n_va, valist, purge_list)
652 __free_vmap_area(va);
653 spin_unlock(&vmap_area_lock);
654 return true;
655 }
656
657 /*
658 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
659 * is already purging.
660 */
661 static void try_purge_vmap_area_lazy(void)
662 {
663 if (spin_trylock(&vmap_purge_lock)) {
664 __purge_vmap_area_lazy(ULONG_MAX, 0);
665 spin_unlock(&vmap_purge_lock);
666 }
667 }
668
669 /*
670 * Kick off a purge of the outstanding lazy areas.
671 */
672 static void purge_vmap_area_lazy(void)
673 {
674 spin_lock(&vmap_purge_lock);
675 purge_fragmented_blocks_allcpus();
676 __purge_vmap_area_lazy(ULONG_MAX, 0);
677 spin_unlock(&vmap_purge_lock);
678 }
679
680 /*
681 * Free a vmap area, caller ensuring that the area has been unmapped
682 * and flush_cache_vunmap had been called for the correct range
683 * previously.
684 */
685 static void free_vmap_area_noflush(struct vmap_area *va)
686 {
687 int nr_lazy;
688
689 nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
690 &vmap_lazy_nr);
691
692 /* After this point, we may free va at any time */
693 llist_add(&va->purge_list, &vmap_purge_list);
694
695 if (unlikely(nr_lazy > lazy_max_pages()))
696 try_purge_vmap_area_lazy();
697 }
698
699 /*
700 * Free and unmap a vmap area
701 */
702 static void free_unmap_vmap_area(struct vmap_area *va)
703 {
704 flush_cache_vunmap(va->va_start, va->va_end);
705 unmap_vmap_area(va);
706 free_vmap_area_noflush(va);
707 }
708
709 static struct vmap_area *find_vmap_area(unsigned long addr)
710 {
711 struct vmap_area *va;
712
713 spin_lock(&vmap_area_lock);
714 va = __find_vmap_area(addr);
715 spin_unlock(&vmap_area_lock);
716
717 return va;
718 }
719
720 /*** Per cpu kva allocator ***/
721
722 /*
723 * vmap space is limited especially on 32 bit architectures. Ensure there is
724 * room for at least 16 percpu vmap blocks per CPU.
725 */
726 /*
727 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
728 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
729 * instead (we just need a rough idea)
730 */
731 #if BITS_PER_LONG == 32
732 #define VMALLOC_SPACE (128UL*1024*1024)
733 #else
734 #define VMALLOC_SPACE (128UL*1024*1024*1024)
735 #endif
736
737 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
738 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
739 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
740 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
741 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
742 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
743 #define VMAP_BBMAP_BITS \
744 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
745 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
746 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
747
748 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
749
750 static bool vmap_initialized __read_mostly = false;
751
752 struct vmap_block_queue {
753 spinlock_t lock;
754 struct list_head free;
755 };
756
757 struct vmap_block {
758 spinlock_t lock;
759 struct vmap_area *va;
760 unsigned long free, dirty;
761 unsigned long dirty_min, dirty_max; /*< dirty range */
762 struct list_head free_list;
763 struct rcu_head rcu_head;
764 struct list_head purge;
765 };
766
767 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
768 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
769
770 /*
771 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
772 * in the free path. Could get rid of this if we change the API to return a
773 * "cookie" from alloc, to be passed to free. But no big deal yet.
774 */
775 static DEFINE_SPINLOCK(vmap_block_tree_lock);
776 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
777
778 /*
779 * We should probably have a fallback mechanism to allocate virtual memory
780 * out of partially filled vmap blocks. However vmap block sizing should be
781 * fairly reasonable according to the vmalloc size, so it shouldn't be a
782 * big problem.
783 */
784
785 static unsigned long addr_to_vb_idx(unsigned long addr)
786 {
787 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
788 addr /= VMAP_BLOCK_SIZE;
789 return addr;
790 }
791
792 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
793 {
794 unsigned long addr;
795
796 addr = va_start + (pages_off << PAGE_SHIFT);
797 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
798 return (void *)addr;
799 }
800
801 /**
802 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
803 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
804 * @order: how many 2^order pages should be occupied in newly allocated block
805 * @gfp_mask: flags for the page level allocator
806 *
807 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
808 */
809 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
810 {
811 struct vmap_block_queue *vbq;
812 struct vmap_block *vb;
813 struct vmap_area *va;
814 unsigned long vb_idx;
815 int node, err;
816 void *vaddr;
817
818 node = numa_node_id();
819
820 vb = kmalloc_node(sizeof(struct vmap_block),
821 gfp_mask & GFP_RECLAIM_MASK, node);
822 if (unlikely(!vb))
823 return ERR_PTR(-ENOMEM);
824
825 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
826 VMALLOC_START, VMALLOC_END,
827 node, gfp_mask);
828 if (IS_ERR(va)) {
829 kfree(vb);
830 return ERR_CAST(va);
831 }
832
833 err = radix_tree_preload(gfp_mask);
834 if (unlikely(err)) {
835 kfree(vb);
836 free_vmap_area(va);
837 return ERR_PTR(err);
838 }
839
840 vaddr = vmap_block_vaddr(va->va_start, 0);
841 spin_lock_init(&vb->lock);
842 vb->va = va;
843 /* At least something should be left free */
844 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
845 vb->free = VMAP_BBMAP_BITS - (1UL << order);
846 vb->dirty = 0;
847 vb->dirty_min = VMAP_BBMAP_BITS;
848 vb->dirty_max = 0;
849 INIT_LIST_HEAD(&vb->free_list);
850
851 vb_idx = addr_to_vb_idx(va->va_start);
852 spin_lock(&vmap_block_tree_lock);
853 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
854 spin_unlock(&vmap_block_tree_lock);
855 BUG_ON(err);
856 radix_tree_preload_end();
857
858 vbq = &get_cpu_var(vmap_block_queue);
859 spin_lock(&vbq->lock);
860 list_add_tail_rcu(&vb->free_list, &vbq->free);
861 spin_unlock(&vbq->lock);
862 put_cpu_var(vmap_block_queue);
863
864 return vaddr;
865 }
866
867 static void free_vmap_block(struct vmap_block *vb)
868 {
869 struct vmap_block *tmp;
870 unsigned long vb_idx;
871
872 vb_idx = addr_to_vb_idx(vb->va->va_start);
873 spin_lock(&vmap_block_tree_lock);
874 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
875 spin_unlock(&vmap_block_tree_lock);
876 BUG_ON(tmp != vb);
877
878 free_vmap_area_noflush(vb->va);
879 kfree_rcu(vb, rcu_head);
880 }
881
882 static void purge_fragmented_blocks(int cpu)
883 {
884 LIST_HEAD(purge);
885 struct vmap_block *vb;
886 struct vmap_block *n_vb;
887 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
888
889 rcu_read_lock();
890 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
891
892 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
893 continue;
894
895 spin_lock(&vb->lock);
896 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
897 vb->free = 0; /* prevent further allocs after releasing lock */
898 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
899 vb->dirty_min = 0;
900 vb->dirty_max = VMAP_BBMAP_BITS;
901 spin_lock(&vbq->lock);
902 list_del_rcu(&vb->free_list);
903 spin_unlock(&vbq->lock);
904 spin_unlock(&vb->lock);
905 list_add_tail(&vb->purge, &purge);
906 } else
907 spin_unlock(&vb->lock);
908 }
909 rcu_read_unlock();
910
911 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
912 list_del(&vb->purge);
913 free_vmap_block(vb);
914 }
915 }
916
917 static void purge_fragmented_blocks_allcpus(void)
918 {
919 int cpu;
920
921 for_each_possible_cpu(cpu)
922 purge_fragmented_blocks(cpu);
923 }
924
925 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
926 {
927 struct vmap_block_queue *vbq;
928 struct vmap_block *vb;
929 void *vaddr = NULL;
930 unsigned int order;
931
932 BUG_ON(offset_in_page(size));
933 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
934 if (WARN_ON(size == 0)) {
935 /*
936 * Allocating 0 bytes isn't what caller wants since
937 * get_order(0) returns funny result. Just warn and terminate
938 * early.
939 */
940 return NULL;
941 }
942 order = get_order(size);
943
944 rcu_read_lock();
945 vbq = &get_cpu_var(vmap_block_queue);
946 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
947 unsigned long pages_off;
948
949 spin_lock(&vb->lock);
950 if (vb->free < (1UL << order)) {
951 spin_unlock(&vb->lock);
952 continue;
953 }
954
955 pages_off = VMAP_BBMAP_BITS - vb->free;
956 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
957 vb->free -= 1UL << order;
958 if (vb->free == 0) {
959 spin_lock(&vbq->lock);
960 list_del_rcu(&vb->free_list);
961 spin_unlock(&vbq->lock);
962 }
963
964 spin_unlock(&vb->lock);
965 break;
966 }
967
968 put_cpu_var(vmap_block_queue);
969 rcu_read_unlock();
970
971 /* Allocate new block if nothing was found */
972 if (!vaddr)
973 vaddr = new_vmap_block(order, gfp_mask);
974
975 return vaddr;
976 }
977
978 static void vb_free(const void *addr, unsigned long size)
979 {
980 unsigned long offset;
981 unsigned long vb_idx;
982 unsigned int order;
983 struct vmap_block *vb;
984
985 BUG_ON(offset_in_page(size));
986 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
987
988 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
989
990 order = get_order(size);
991
992 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
993 offset >>= PAGE_SHIFT;
994
995 vb_idx = addr_to_vb_idx((unsigned long)addr);
996 rcu_read_lock();
997 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
998 rcu_read_unlock();
999 BUG_ON(!vb);
1000
1001 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1002
1003 spin_lock(&vb->lock);
1004
1005 /* Expand dirty range */
1006 vb->dirty_min = min(vb->dirty_min, offset);
1007 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1008
1009 vb->dirty += 1UL << order;
1010 if (vb->dirty == VMAP_BBMAP_BITS) {
1011 BUG_ON(vb->free);
1012 spin_unlock(&vb->lock);
1013 free_vmap_block(vb);
1014 } else
1015 spin_unlock(&vb->lock);
1016 }
1017
1018 /**
1019 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1020 *
1021 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1022 * to amortize TLB flushing overheads. What this means is that any page you
1023 * have now, may, in a former life, have been mapped into kernel virtual
1024 * address by the vmap layer and so there might be some CPUs with TLB entries
1025 * still referencing that page (additional to the regular 1:1 kernel mapping).
1026 *
1027 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1028 * be sure that none of the pages we have control over will have any aliases
1029 * from the vmap layer.
1030 */
1031 void vm_unmap_aliases(void)
1032 {
1033 unsigned long start = ULONG_MAX, end = 0;
1034 int cpu;
1035 int flush = 0;
1036
1037 if (unlikely(!vmap_initialized))
1038 return;
1039
1040 for_each_possible_cpu(cpu) {
1041 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1042 struct vmap_block *vb;
1043
1044 rcu_read_lock();
1045 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1046 spin_lock(&vb->lock);
1047 if (vb->dirty) {
1048 unsigned long va_start = vb->va->va_start;
1049 unsigned long s, e;
1050
1051 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1052 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1053
1054 start = min(s, start);
1055 end = max(e, end);
1056
1057 flush = 1;
1058 }
1059 spin_unlock(&vb->lock);
1060 }
1061 rcu_read_unlock();
1062 }
1063
1064 spin_lock(&vmap_purge_lock);
1065 purge_fragmented_blocks_allcpus();
1066 if (!__purge_vmap_area_lazy(start, end) && flush)
1067 flush_tlb_kernel_range(start, end);
1068 spin_unlock(&vmap_purge_lock);
1069 }
1070 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1071
1072 /**
1073 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1074 * @mem: the pointer returned by vm_map_ram
1075 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1076 */
1077 void vm_unmap_ram(const void *mem, unsigned int count)
1078 {
1079 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1080 unsigned long addr = (unsigned long)mem;
1081 struct vmap_area *va;
1082
1083 BUG_ON(!addr);
1084 BUG_ON(addr < VMALLOC_START);
1085 BUG_ON(addr > VMALLOC_END);
1086 BUG_ON(!PAGE_ALIGNED(addr));
1087
1088 debug_check_no_locks_freed(mem, size);
1089 vmap_debug_free_range(addr, addr+size);
1090
1091 if (likely(count <= VMAP_MAX_ALLOC)) {
1092 vb_free(mem, size);
1093 return;
1094 }
1095
1096 va = find_vmap_area(addr);
1097 BUG_ON(!va);
1098 free_unmap_vmap_area(va);
1099 }
1100 EXPORT_SYMBOL(vm_unmap_ram);
1101
1102 /**
1103 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1104 * @pages: an array of pointers to the pages to be mapped
1105 * @count: number of pages
1106 * @node: prefer to allocate data structures on this node
1107 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1108 *
1109 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1110 * faster than vmap so it's good. But if you mix long-life and short-life
1111 * objects with vm_map_ram(), it could consume lots of address space through
1112 * fragmentation (especially on a 32bit machine). You could see failures in
1113 * the end. Please use this function for short-lived objects.
1114 *
1115 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1116 */
1117 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1118 {
1119 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1120 unsigned long addr;
1121 void *mem;
1122
1123 if (likely(count <= VMAP_MAX_ALLOC)) {
1124 mem = vb_alloc(size, GFP_KERNEL);
1125 if (IS_ERR(mem))
1126 return NULL;
1127 addr = (unsigned long)mem;
1128 } else {
1129 struct vmap_area *va;
1130 va = alloc_vmap_area(size, PAGE_SIZE,
1131 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1132 if (IS_ERR(va))
1133 return NULL;
1134
1135 addr = va->va_start;
1136 mem = (void *)addr;
1137 }
1138 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1139 vm_unmap_ram(mem, count);
1140 return NULL;
1141 }
1142 return mem;
1143 }
1144 EXPORT_SYMBOL(vm_map_ram);
1145
1146 static struct vm_struct *vmlist __initdata;
1147 /**
1148 * vm_area_add_early - add vmap area early during boot
1149 * @vm: vm_struct to add
1150 *
1151 * This function is used to add fixed kernel vm area to vmlist before
1152 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1153 * should contain proper values and the other fields should be zero.
1154 *
1155 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1156 */
1157 void __init vm_area_add_early(struct vm_struct *vm)
1158 {
1159 struct vm_struct *tmp, **p;
1160
1161 BUG_ON(vmap_initialized);
1162 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1163 if (tmp->addr >= vm->addr) {
1164 BUG_ON(tmp->addr < vm->addr + vm->size);
1165 break;
1166 } else
1167 BUG_ON(tmp->addr + tmp->size > vm->addr);
1168 }
1169 vm->next = *p;
1170 *p = vm;
1171 }
1172
1173 /**
1174 * vm_area_register_early - register vmap area early during boot
1175 * @vm: vm_struct to register
1176 * @align: requested alignment
1177 *
1178 * This function is used to register kernel vm area before
1179 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1180 * proper values on entry and other fields should be zero. On return,
1181 * vm->addr contains the allocated address.
1182 *
1183 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1184 */
1185 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1186 {
1187 static size_t vm_init_off __initdata;
1188 unsigned long addr;
1189
1190 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1191 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1192
1193 vm->addr = (void *)addr;
1194
1195 vm_area_add_early(vm);
1196 }
1197
1198 void __init vmalloc_init(void)
1199 {
1200 struct vmap_area *va;
1201 struct vm_struct *tmp;
1202 int i;
1203
1204 for_each_possible_cpu(i) {
1205 struct vmap_block_queue *vbq;
1206 struct vfree_deferred *p;
1207
1208 vbq = &per_cpu(vmap_block_queue, i);
1209 spin_lock_init(&vbq->lock);
1210 INIT_LIST_HEAD(&vbq->free);
1211 p = &per_cpu(vfree_deferred, i);
1212 init_llist_head(&p->list);
1213 INIT_WORK(&p->wq, free_work);
1214 }
1215
1216 /* Import existing vmlist entries. */
1217 for (tmp = vmlist; tmp; tmp = tmp->next) {
1218 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1219 va->flags = VM_VM_AREA;
1220 va->va_start = (unsigned long)tmp->addr;
1221 va->va_end = va->va_start + tmp->size;
1222 va->vm = tmp;
1223 __insert_vmap_area(va);
1224 }
1225
1226 vmap_area_pcpu_hole = VMALLOC_END;
1227
1228 vmap_initialized = true;
1229 }
1230
1231 /**
1232 * map_kernel_range_noflush - map kernel VM area with the specified pages
1233 * @addr: start of the VM area to map
1234 * @size: size of the VM area to map
1235 * @prot: page protection flags to use
1236 * @pages: pages to map
1237 *
1238 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1239 * specify should have been allocated using get_vm_area() and its
1240 * friends.
1241 *
1242 * NOTE:
1243 * This function does NOT do any cache flushing. The caller is
1244 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1245 * before calling this function.
1246 *
1247 * RETURNS:
1248 * The number of pages mapped on success, -errno on failure.
1249 */
1250 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1251 pgprot_t prot, struct page **pages)
1252 {
1253 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1254 }
1255
1256 /**
1257 * unmap_kernel_range_noflush - unmap kernel VM area
1258 * @addr: start of the VM area to unmap
1259 * @size: size of the VM area to unmap
1260 *
1261 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1262 * specify should have been allocated using get_vm_area() and its
1263 * friends.
1264 *
1265 * NOTE:
1266 * This function does NOT do any cache flushing. The caller is
1267 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1268 * before calling this function and flush_tlb_kernel_range() after.
1269 */
1270 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1271 {
1272 vunmap_page_range(addr, addr + size);
1273 }
1274 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1275
1276 /**
1277 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1278 * @addr: start of the VM area to unmap
1279 * @size: size of the VM area to unmap
1280 *
1281 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1282 * the unmapping and tlb after.
1283 */
1284 void unmap_kernel_range(unsigned long addr, unsigned long size)
1285 {
1286 unsigned long end = addr + size;
1287
1288 flush_cache_vunmap(addr, end);
1289 vunmap_page_range(addr, end);
1290 flush_tlb_kernel_range(addr, end);
1291 }
1292 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1293
1294 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1295 {
1296 unsigned long addr = (unsigned long)area->addr;
1297 unsigned long end = addr + get_vm_area_size(area);
1298 int err;
1299
1300 err = vmap_page_range(addr, end, prot, pages);
1301
1302 return err > 0 ? 0 : err;
1303 }
1304 EXPORT_SYMBOL_GPL(map_vm_area);
1305
1306 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1307 unsigned long flags, const void *caller)
1308 {
1309 spin_lock(&vmap_area_lock);
1310 vm->flags = flags;
1311 vm->addr = (void *)va->va_start;
1312 vm->size = va->va_end - va->va_start;
1313 vm->caller = caller;
1314 va->vm = vm;
1315 va->flags |= VM_VM_AREA;
1316 spin_unlock(&vmap_area_lock);
1317 }
1318
1319 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1320 {
1321 /*
1322 * Before removing VM_UNINITIALIZED,
1323 * we should make sure that vm has proper values.
1324 * Pair with smp_rmb() in show_numa_info().
1325 */
1326 smp_wmb();
1327 vm->flags &= ~VM_UNINITIALIZED;
1328 }
1329
1330 static struct vm_struct *__get_vm_area_node(unsigned long size,
1331 unsigned long align, unsigned long flags, unsigned long start,
1332 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1333 {
1334 struct vmap_area *va;
1335 struct vm_struct *area;
1336
1337 BUG_ON(in_interrupt());
1338 size = PAGE_ALIGN(size);
1339 if (unlikely(!size))
1340 return NULL;
1341
1342 if (flags & VM_IOREMAP)
1343 align = 1ul << clamp_t(int, get_count_order_long(size),
1344 PAGE_SHIFT, IOREMAP_MAX_ORDER);
1345
1346 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1347 if (unlikely(!area))
1348 return NULL;
1349
1350 if (!(flags & VM_NO_GUARD))
1351 size += PAGE_SIZE;
1352
1353 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1354 if (IS_ERR(va)) {
1355 kfree(area);
1356 return NULL;
1357 }
1358
1359 setup_vmalloc_vm(area, va, flags, caller);
1360
1361 return area;
1362 }
1363
1364 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1365 unsigned long start, unsigned long end)
1366 {
1367 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1368 GFP_KERNEL, __builtin_return_address(0));
1369 }
1370 EXPORT_SYMBOL_GPL(__get_vm_area);
1371
1372 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1373 unsigned long start, unsigned long end,
1374 const void *caller)
1375 {
1376 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1377 GFP_KERNEL, caller);
1378 }
1379
1380 /**
1381 * get_vm_area - reserve a contiguous kernel virtual area
1382 * @size: size of the area
1383 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1384 *
1385 * Search an area of @size in the kernel virtual mapping area,
1386 * and reserved it for out purposes. Returns the area descriptor
1387 * on success or %NULL on failure.
1388 */
1389 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1390 {
1391 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1392 NUMA_NO_NODE, GFP_KERNEL,
1393 __builtin_return_address(0));
1394 }
1395
1396 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1397 const void *caller)
1398 {
1399 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1400 NUMA_NO_NODE, GFP_KERNEL, caller);
1401 }
1402
1403 /**
1404 * find_vm_area - find a continuous kernel virtual area
1405 * @addr: base address
1406 *
1407 * Search for the kernel VM area starting at @addr, and return it.
1408 * It is up to the caller to do all required locking to keep the returned
1409 * pointer valid.
1410 */
1411 struct vm_struct *find_vm_area(const void *addr)
1412 {
1413 struct vmap_area *va;
1414
1415 va = find_vmap_area((unsigned long)addr);
1416 if (va && va->flags & VM_VM_AREA)
1417 return va->vm;
1418
1419 return NULL;
1420 }
1421
1422 /**
1423 * remove_vm_area - find and remove a continuous kernel virtual area
1424 * @addr: base address
1425 *
1426 * Search for the kernel VM area starting at @addr, and remove it.
1427 * This function returns the found VM area, but using it is NOT safe
1428 * on SMP machines, except for its size or flags.
1429 */
1430 struct vm_struct *remove_vm_area(const void *addr)
1431 {
1432 struct vmap_area *va;
1433
1434 va = find_vmap_area((unsigned long)addr);
1435 if (va && va->flags & VM_VM_AREA) {
1436 struct vm_struct *vm = va->vm;
1437
1438 spin_lock(&vmap_area_lock);
1439 va->vm = NULL;
1440 va->flags &= ~VM_VM_AREA;
1441 spin_unlock(&vmap_area_lock);
1442
1443 vmap_debug_free_range(va->va_start, va->va_end);
1444 kasan_free_shadow(vm);
1445 free_unmap_vmap_area(va);
1446
1447 return vm;
1448 }
1449 return NULL;
1450 }
1451
1452 static void __vunmap(const void *addr, int deallocate_pages)
1453 {
1454 struct vm_struct *area;
1455
1456 if (!addr)
1457 return;
1458
1459 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1460 addr))
1461 return;
1462
1463 area = remove_vm_area(addr);
1464 if (unlikely(!area)) {
1465 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1466 addr);
1467 return;
1468 }
1469
1470 debug_check_no_locks_freed(addr, get_vm_area_size(area));
1471 debug_check_no_obj_freed(addr, get_vm_area_size(area));
1472
1473 if (deallocate_pages) {
1474 int i;
1475
1476 for (i = 0; i < area->nr_pages; i++) {
1477 struct page *page = area->pages[i];
1478
1479 BUG_ON(!page);
1480 __free_pages(page, 0);
1481 }
1482
1483 kvfree(area->pages);
1484 }
1485
1486 kfree(area);
1487 return;
1488 }
1489
1490 /**
1491 * vfree - release memory allocated by vmalloc()
1492 * @addr: memory base address
1493 *
1494 * Free the virtually continuous memory area starting at @addr, as
1495 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1496 * NULL, no operation is performed.
1497 *
1498 * Must not be called in NMI context (strictly speaking, only if we don't
1499 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1500 * conventions for vfree() arch-depenedent would be a really bad idea)
1501 *
1502 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1503 */
1504 void vfree(const void *addr)
1505 {
1506 BUG_ON(in_nmi());
1507
1508 kmemleak_free(addr);
1509
1510 if (!addr)
1511 return;
1512 if (unlikely(in_interrupt())) {
1513 struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
1514 if (llist_add((struct llist_node *)addr, &p->list))
1515 schedule_work(&p->wq);
1516 } else
1517 __vunmap(addr, 1);
1518 }
1519 EXPORT_SYMBOL(vfree);
1520
1521 /**
1522 * vunmap - release virtual mapping obtained by vmap()
1523 * @addr: memory base address
1524 *
1525 * Free the virtually contiguous memory area starting at @addr,
1526 * which was created from the page array passed to vmap().
1527 *
1528 * Must not be called in interrupt context.
1529 */
1530 void vunmap(const void *addr)
1531 {
1532 BUG_ON(in_interrupt());
1533 might_sleep();
1534 if (addr)
1535 __vunmap(addr, 0);
1536 }
1537 EXPORT_SYMBOL(vunmap);
1538
1539 /**
1540 * vmap - map an array of pages into virtually contiguous space
1541 * @pages: array of page pointers
1542 * @count: number of pages to map
1543 * @flags: vm_area->flags
1544 * @prot: page protection for the mapping
1545 *
1546 * Maps @count pages from @pages into contiguous kernel virtual
1547 * space.
1548 */
1549 void *vmap(struct page **pages, unsigned int count,
1550 unsigned long flags, pgprot_t prot)
1551 {
1552 struct vm_struct *area;
1553 unsigned long size; /* In bytes */
1554
1555 might_sleep();
1556
1557 if (count > totalram_pages)
1558 return NULL;
1559
1560 size = (unsigned long)count << PAGE_SHIFT;
1561 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1562 if (!area)
1563 return NULL;
1564
1565 if (map_vm_area(area, prot, pages)) {
1566 vunmap(area->addr);
1567 return NULL;
1568 }
1569
1570 return area->addr;
1571 }
1572 EXPORT_SYMBOL(vmap);
1573
1574 static void *__vmalloc_node(unsigned long size, unsigned long align,
1575 gfp_t gfp_mask, pgprot_t prot,
1576 int node, const void *caller);
1577 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1578 pgprot_t prot, int node)
1579 {
1580 struct page **pages;
1581 unsigned int nr_pages, array_size, i;
1582 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1583 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1584
1585 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1586 array_size = (nr_pages * sizeof(struct page *));
1587
1588 area->nr_pages = nr_pages;
1589 /* Please note that the recursion is strictly bounded. */
1590 if (array_size > PAGE_SIZE) {
1591 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1592 PAGE_KERNEL, node, area->caller);
1593 } else {
1594 pages = kmalloc_node(array_size, nested_gfp, node);
1595 }
1596 area->pages = pages;
1597 if (!area->pages) {
1598 remove_vm_area(area->addr);
1599 kfree(area);
1600 return NULL;
1601 }
1602
1603 for (i = 0; i < area->nr_pages; i++) {
1604 struct page *page;
1605
1606 if (node == NUMA_NO_NODE)
1607 page = alloc_page(alloc_mask);
1608 else
1609 page = alloc_pages_node(node, alloc_mask, 0);
1610
1611 if (unlikely(!page)) {
1612 /* Successfully allocated i pages, free them in __vunmap() */
1613 area->nr_pages = i;
1614 goto fail;
1615 }
1616 area->pages[i] = page;
1617 if (gfpflags_allow_blocking(gfp_mask))
1618 cond_resched();
1619 }
1620
1621 if (map_vm_area(area, prot, pages))
1622 goto fail;
1623 return area->addr;
1624
1625 fail:
1626 warn_alloc(gfp_mask,
1627 "vmalloc: allocation failure, allocated %ld of %ld bytes",
1628 (area->nr_pages*PAGE_SIZE), area->size);
1629 vfree(area->addr);
1630 return NULL;
1631 }
1632
1633 /**
1634 * __vmalloc_node_range - allocate virtually contiguous memory
1635 * @size: allocation size
1636 * @align: desired alignment
1637 * @start: vm area range start
1638 * @end: vm area range end
1639 * @gfp_mask: flags for the page level allocator
1640 * @prot: protection mask for the allocated pages
1641 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
1642 * @node: node to use for allocation or NUMA_NO_NODE
1643 * @caller: caller's return address
1644 *
1645 * Allocate enough pages to cover @size from the page level
1646 * allocator with @gfp_mask flags. Map them into contiguous
1647 * kernel virtual space, using a pagetable protection of @prot.
1648 */
1649 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1650 unsigned long start, unsigned long end, gfp_t gfp_mask,
1651 pgprot_t prot, unsigned long vm_flags, int node,
1652 const void *caller)
1653 {
1654 struct vm_struct *area;
1655 void *addr;
1656 unsigned long real_size = size;
1657
1658 size = PAGE_ALIGN(size);
1659 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1660 goto fail;
1661
1662 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1663 vm_flags, start, end, node, gfp_mask, caller);
1664 if (!area)
1665 goto fail;
1666
1667 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1668 if (!addr)
1669 return NULL;
1670
1671 /*
1672 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1673 * flag. It means that vm_struct is not fully initialized.
1674 * Now, it is fully initialized, so remove this flag here.
1675 */
1676 clear_vm_uninitialized_flag(area);
1677
1678 /*
1679 * A ref_count = 2 is needed because vm_struct allocated in
1680 * __get_vm_area_node() contains a reference to the virtual address of
1681 * the vmalloc'ed block.
1682 */
1683 kmemleak_alloc(addr, real_size, 2, gfp_mask);
1684
1685 return addr;
1686
1687 fail:
1688 warn_alloc(gfp_mask,
1689 "vmalloc: allocation failure: %lu bytes", real_size);
1690 return NULL;
1691 }
1692
1693 /**
1694 * __vmalloc_node - allocate virtually contiguous memory
1695 * @size: allocation size
1696 * @align: desired alignment
1697 * @gfp_mask: flags for the page level allocator
1698 * @prot: protection mask for the allocated pages
1699 * @node: node to use for allocation or NUMA_NO_NODE
1700 * @caller: caller's return address
1701 *
1702 * Allocate enough pages to cover @size from the page level
1703 * allocator with @gfp_mask flags. Map them into contiguous
1704 * kernel virtual space, using a pagetable protection of @prot.
1705 */
1706 static void *__vmalloc_node(unsigned long size, unsigned long align,
1707 gfp_t gfp_mask, pgprot_t prot,
1708 int node, const void *caller)
1709 {
1710 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1711 gfp_mask, prot, 0, node, caller);
1712 }
1713
1714 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1715 {
1716 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1717 __builtin_return_address(0));
1718 }
1719 EXPORT_SYMBOL(__vmalloc);
1720
1721 static inline void *__vmalloc_node_flags(unsigned long size,
1722 int node, gfp_t flags)
1723 {
1724 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1725 node, __builtin_return_address(0));
1726 }
1727
1728 /**
1729 * vmalloc - allocate virtually contiguous memory
1730 * @size: allocation size
1731 * Allocate enough pages to cover @size from the page level
1732 * allocator and map them into contiguous kernel virtual space.
1733 *
1734 * For tight control over page level allocator and protection flags
1735 * use __vmalloc() instead.
1736 */
1737 void *vmalloc(unsigned long size)
1738 {
1739 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1740 GFP_KERNEL | __GFP_HIGHMEM);
1741 }
1742 EXPORT_SYMBOL(vmalloc);
1743
1744 /**
1745 * vzalloc - allocate virtually contiguous memory with zero fill
1746 * @size: allocation size
1747 * Allocate enough pages to cover @size from the page level
1748 * allocator and map them into contiguous kernel virtual space.
1749 * The memory allocated is set to zero.
1750 *
1751 * For tight control over page level allocator and protection flags
1752 * use __vmalloc() instead.
1753 */
1754 void *vzalloc(unsigned long size)
1755 {
1756 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1757 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1758 }
1759 EXPORT_SYMBOL(vzalloc);
1760
1761 /**
1762 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1763 * @size: allocation size
1764 *
1765 * The resulting memory area is zeroed so it can be mapped to userspace
1766 * without leaking data.
1767 */
1768 void *vmalloc_user(unsigned long size)
1769 {
1770 struct vm_struct *area;
1771 void *ret;
1772
1773 ret = __vmalloc_node(size, SHMLBA,
1774 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1775 PAGE_KERNEL, NUMA_NO_NODE,
1776 __builtin_return_address(0));
1777 if (ret) {
1778 area = find_vm_area(ret);
1779 area->flags |= VM_USERMAP;
1780 }
1781 return ret;
1782 }
1783 EXPORT_SYMBOL(vmalloc_user);
1784
1785 /**
1786 * vmalloc_node - allocate memory on a specific node
1787 * @size: allocation size
1788 * @node: numa node
1789 *
1790 * Allocate enough pages to cover @size from the page level
1791 * allocator and map them into contiguous kernel virtual space.
1792 *
1793 * For tight control over page level allocator and protection flags
1794 * use __vmalloc() instead.
1795 */
1796 void *vmalloc_node(unsigned long size, int node)
1797 {
1798 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1799 node, __builtin_return_address(0));
1800 }
1801 EXPORT_SYMBOL(vmalloc_node);
1802
1803 /**
1804 * vzalloc_node - allocate memory on a specific node with zero fill
1805 * @size: allocation size
1806 * @node: numa node
1807 *
1808 * Allocate enough pages to cover @size from the page level
1809 * allocator and map them into contiguous kernel virtual space.
1810 * The memory allocated is set to zero.
1811 *
1812 * For tight control over page level allocator and protection flags
1813 * use __vmalloc_node() instead.
1814 */
1815 void *vzalloc_node(unsigned long size, int node)
1816 {
1817 return __vmalloc_node_flags(size, node,
1818 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1819 }
1820 EXPORT_SYMBOL(vzalloc_node);
1821
1822 #ifndef PAGE_KERNEL_EXEC
1823 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1824 #endif
1825
1826 /**
1827 * vmalloc_exec - allocate virtually contiguous, executable memory
1828 * @size: allocation size
1829 *
1830 * Kernel-internal function to allocate enough pages to cover @size
1831 * the page level allocator and map them into contiguous and
1832 * executable kernel virtual space.
1833 *
1834 * For tight control over page level allocator and protection flags
1835 * use __vmalloc() instead.
1836 */
1837
1838 void *vmalloc_exec(unsigned long size)
1839 {
1840 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1841 NUMA_NO_NODE, __builtin_return_address(0));
1842 }
1843
1844 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1845 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1846 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1847 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1848 #else
1849 #define GFP_VMALLOC32 GFP_KERNEL
1850 #endif
1851
1852 /**
1853 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1854 * @size: allocation size
1855 *
1856 * Allocate enough 32bit PA addressable pages to cover @size from the
1857 * page level allocator and map them into contiguous kernel virtual space.
1858 */
1859 void *vmalloc_32(unsigned long size)
1860 {
1861 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1862 NUMA_NO_NODE, __builtin_return_address(0));
1863 }
1864 EXPORT_SYMBOL(vmalloc_32);
1865
1866 /**
1867 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1868 * @size: allocation size
1869 *
1870 * The resulting memory area is 32bit addressable and zeroed so it can be
1871 * mapped to userspace without leaking data.
1872 */
1873 void *vmalloc_32_user(unsigned long size)
1874 {
1875 struct vm_struct *area;
1876 void *ret;
1877
1878 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1879 NUMA_NO_NODE, __builtin_return_address(0));
1880 if (ret) {
1881 area = find_vm_area(ret);
1882 area->flags |= VM_USERMAP;
1883 }
1884 return ret;
1885 }
1886 EXPORT_SYMBOL(vmalloc_32_user);
1887
1888 /*
1889 * small helper routine , copy contents to buf from addr.
1890 * If the page is not present, fill zero.
1891 */
1892
1893 static int aligned_vread(char *buf, char *addr, unsigned long count)
1894 {
1895 struct page *p;
1896 int copied = 0;
1897
1898 while (count) {
1899 unsigned long offset, length;
1900
1901 offset = offset_in_page(addr);
1902 length = PAGE_SIZE - offset;
1903 if (length > count)
1904 length = count;
1905 p = vmalloc_to_page(addr);
1906 /*
1907 * To do safe access to this _mapped_ area, we need
1908 * lock. But adding lock here means that we need to add
1909 * overhead of vmalloc()/vfree() calles for this _debug_
1910 * interface, rarely used. Instead of that, we'll use
1911 * kmap() and get small overhead in this access function.
1912 */
1913 if (p) {
1914 /*
1915 * we can expect USER0 is not used (see vread/vwrite's
1916 * function description)
1917 */
1918 void *map = kmap_atomic(p);
1919 memcpy(buf, map + offset, length);
1920 kunmap_atomic(map);
1921 } else
1922 memset(buf, 0, length);
1923
1924 addr += length;
1925 buf += length;
1926 copied += length;
1927 count -= length;
1928 }
1929 return copied;
1930 }
1931
1932 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1933 {
1934 struct page *p;
1935 int copied = 0;
1936
1937 while (count) {
1938 unsigned long offset, length;
1939
1940 offset = offset_in_page(addr);
1941 length = PAGE_SIZE - offset;
1942 if (length > count)
1943 length = count;
1944 p = vmalloc_to_page(addr);
1945 /*
1946 * To do safe access to this _mapped_ area, we need
1947 * lock. But adding lock here means that we need to add
1948 * overhead of vmalloc()/vfree() calles for this _debug_
1949 * interface, rarely used. Instead of that, we'll use
1950 * kmap() and get small overhead in this access function.
1951 */
1952 if (p) {
1953 /*
1954 * we can expect USER0 is not used (see vread/vwrite's
1955 * function description)
1956 */
1957 void *map = kmap_atomic(p);
1958 memcpy(map + offset, buf, length);
1959 kunmap_atomic(map);
1960 }
1961 addr += length;
1962 buf += length;
1963 copied += length;
1964 count -= length;
1965 }
1966 return copied;
1967 }
1968
1969 /**
1970 * vread() - read vmalloc area in a safe way.
1971 * @buf: buffer for reading data
1972 * @addr: vm address.
1973 * @count: number of bytes to be read.
1974 *
1975 * Returns # of bytes which addr and buf should be increased.
1976 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1977 * includes any intersect with alive vmalloc area.
1978 *
1979 * This function checks that addr is a valid vmalloc'ed area, and
1980 * copy data from that area to a given buffer. If the given memory range
1981 * of [addr...addr+count) includes some valid address, data is copied to
1982 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1983 * IOREMAP area is treated as memory hole and no copy is done.
1984 *
1985 * If [addr...addr+count) doesn't includes any intersects with alive
1986 * vm_struct area, returns 0. @buf should be kernel's buffer.
1987 *
1988 * Note: In usual ops, vread() is never necessary because the caller
1989 * should know vmalloc() area is valid and can use memcpy().
1990 * This is for routines which have to access vmalloc area without
1991 * any informaion, as /dev/kmem.
1992 *
1993 */
1994
1995 long vread(char *buf, char *addr, unsigned long count)
1996 {
1997 struct vmap_area *va;
1998 struct vm_struct *vm;
1999 char *vaddr, *buf_start = buf;
2000 unsigned long buflen = count;
2001 unsigned long n;
2002
2003 /* Don't allow overflow */
2004 if ((unsigned long) addr + count < count)
2005 count = -(unsigned long) addr;
2006
2007 spin_lock(&vmap_area_lock);
2008 list_for_each_entry(va, &vmap_area_list, list) {
2009 if (!count)
2010 break;
2011
2012 if (!(va->flags & VM_VM_AREA))
2013 continue;
2014
2015 vm = va->vm;
2016 vaddr = (char *) vm->addr;
2017 if (addr >= vaddr + get_vm_area_size(vm))
2018 continue;
2019 while (addr < vaddr) {
2020 if (count == 0)
2021 goto finished;
2022 *buf = '\0';
2023 buf++;
2024 addr++;
2025 count--;
2026 }
2027 n = vaddr + get_vm_area_size(vm) - addr;
2028 if (n > count)
2029 n = count;
2030 if (!(vm->flags & VM_IOREMAP))
2031 aligned_vread(buf, addr, n);
2032 else /* IOREMAP area is treated as memory hole */
2033 memset(buf, 0, n);
2034 buf += n;
2035 addr += n;
2036 count -= n;
2037 }
2038 finished:
2039 spin_unlock(&vmap_area_lock);
2040
2041 if (buf == buf_start)
2042 return 0;
2043 /* zero-fill memory holes */
2044 if (buf != buf_start + buflen)
2045 memset(buf, 0, buflen - (buf - buf_start));
2046
2047 return buflen;
2048 }
2049
2050 /**
2051 * vwrite() - write vmalloc area in a safe way.
2052 * @buf: buffer for source data
2053 * @addr: vm address.
2054 * @count: number of bytes to be read.
2055 *
2056 * Returns # of bytes which addr and buf should be incresed.
2057 * (same number to @count).
2058 * If [addr...addr+count) doesn't includes any intersect with valid
2059 * vmalloc area, returns 0.
2060 *
2061 * This function checks that addr is a valid vmalloc'ed area, and
2062 * copy data from a buffer to the given addr. If specified range of
2063 * [addr...addr+count) includes some valid address, data is copied from
2064 * proper area of @buf. If there are memory holes, no copy to hole.
2065 * IOREMAP area is treated as memory hole and no copy is done.
2066 *
2067 * If [addr...addr+count) doesn't includes any intersects with alive
2068 * vm_struct area, returns 0. @buf should be kernel's buffer.
2069 *
2070 * Note: In usual ops, vwrite() is never necessary because the caller
2071 * should know vmalloc() area is valid and can use memcpy().
2072 * This is for routines which have to access vmalloc area without
2073 * any informaion, as /dev/kmem.
2074 */
2075
2076 long vwrite(char *buf, char *addr, unsigned long count)
2077 {
2078 struct vmap_area *va;
2079 struct vm_struct *vm;
2080 char *vaddr;
2081 unsigned long n, buflen;
2082 int copied = 0;
2083
2084 /* Don't allow overflow */
2085 if ((unsigned long) addr + count < count)
2086 count = -(unsigned long) addr;
2087 buflen = count;
2088
2089 spin_lock(&vmap_area_lock);
2090 list_for_each_entry(va, &vmap_area_list, list) {
2091 if (!count)
2092 break;
2093
2094 if (!(va->flags & VM_VM_AREA))
2095 continue;
2096
2097 vm = va->vm;
2098 vaddr = (char *) vm->addr;
2099 if (addr >= vaddr + get_vm_area_size(vm))
2100 continue;
2101 while (addr < vaddr) {
2102 if (count == 0)
2103 goto finished;
2104 buf++;
2105 addr++;
2106 count--;
2107 }
2108 n = vaddr + get_vm_area_size(vm) - addr;
2109 if (n > count)
2110 n = count;
2111 if (!(vm->flags & VM_IOREMAP)) {
2112 aligned_vwrite(buf, addr, n);
2113 copied++;
2114 }
2115 buf += n;
2116 addr += n;
2117 count -= n;
2118 }
2119 finished:
2120 spin_unlock(&vmap_area_lock);
2121 if (!copied)
2122 return 0;
2123 return buflen;
2124 }
2125
2126 /**
2127 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2128 * @vma: vma to cover
2129 * @uaddr: target user address to start at
2130 * @kaddr: virtual address of vmalloc kernel memory
2131 * @size: size of map area
2132 *
2133 * Returns: 0 for success, -Exxx on failure
2134 *
2135 * This function checks that @kaddr is a valid vmalloc'ed area,
2136 * and that it is big enough to cover the range starting at
2137 * @uaddr in @vma. Will return failure if that criteria isn't
2138 * met.
2139 *
2140 * Similar to remap_pfn_range() (see mm/memory.c)
2141 */
2142 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2143 void *kaddr, unsigned long size)
2144 {
2145 struct vm_struct *area;
2146
2147 size = PAGE_ALIGN(size);
2148
2149 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2150 return -EINVAL;
2151
2152 area = find_vm_area(kaddr);
2153 if (!area)
2154 return -EINVAL;
2155
2156 if (!(area->flags & VM_USERMAP))
2157 return -EINVAL;
2158
2159 if (kaddr + size > area->addr + area->size)
2160 return -EINVAL;
2161
2162 do {
2163 struct page *page = vmalloc_to_page(kaddr);
2164 int ret;
2165
2166 ret = vm_insert_page(vma, uaddr, page);
2167 if (ret)
2168 return ret;
2169
2170 uaddr += PAGE_SIZE;
2171 kaddr += PAGE_SIZE;
2172 size -= PAGE_SIZE;
2173 } while (size > 0);
2174
2175 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2176
2177 return 0;
2178 }
2179 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2180
2181 /**
2182 * remap_vmalloc_range - map vmalloc pages to userspace
2183 * @vma: vma to cover (map full range of vma)
2184 * @addr: vmalloc memory
2185 * @pgoff: number of pages into addr before first page to map
2186 *
2187 * Returns: 0 for success, -Exxx on failure
2188 *
2189 * This function checks that addr is a valid vmalloc'ed area, and
2190 * that it is big enough to cover the vma. Will return failure if
2191 * that criteria isn't met.
2192 *
2193 * Similar to remap_pfn_range() (see mm/memory.c)
2194 */
2195 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2196 unsigned long pgoff)
2197 {
2198 return remap_vmalloc_range_partial(vma, vma->vm_start,
2199 addr + (pgoff << PAGE_SHIFT),
2200 vma->vm_end - vma->vm_start);
2201 }
2202 EXPORT_SYMBOL(remap_vmalloc_range);
2203
2204 /*
2205 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2206 * have one.
2207 */
2208 void __weak vmalloc_sync_all(void)
2209 {
2210 }
2211
2212
2213 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2214 {
2215 pte_t ***p = data;
2216
2217 if (p) {
2218 *(*p) = pte;
2219 (*p)++;
2220 }
2221 return 0;
2222 }
2223
2224 /**
2225 * alloc_vm_area - allocate a range of kernel address space
2226 * @size: size of the area
2227 * @ptes: returns the PTEs for the address space
2228 *
2229 * Returns: NULL on failure, vm_struct on success
2230 *
2231 * This function reserves a range of kernel address space, and
2232 * allocates pagetables to map that range. No actual mappings
2233 * are created.
2234 *
2235 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2236 * allocated for the VM area are returned.
2237 */
2238 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2239 {
2240 struct vm_struct *area;
2241
2242 area = get_vm_area_caller(size, VM_IOREMAP,
2243 __builtin_return_address(0));
2244 if (area == NULL)
2245 return NULL;
2246
2247 /*
2248 * This ensures that page tables are constructed for this region
2249 * of kernel virtual address space and mapped into init_mm.
2250 */
2251 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2252 size, f, ptes ? &ptes : NULL)) {
2253 free_vm_area(area);
2254 return NULL;
2255 }
2256
2257 return area;
2258 }
2259 EXPORT_SYMBOL_GPL(alloc_vm_area);
2260
2261 void free_vm_area(struct vm_struct *area)
2262 {
2263 struct vm_struct *ret;
2264 ret = remove_vm_area(area->addr);
2265 BUG_ON(ret != area);
2266 kfree(area);
2267 }
2268 EXPORT_SYMBOL_GPL(free_vm_area);
2269
2270 #ifdef CONFIG_SMP
2271 static struct vmap_area *node_to_va(struct rb_node *n)
2272 {
2273 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2274 }
2275
2276 /**
2277 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2278 * @end: target address
2279 * @pnext: out arg for the next vmap_area
2280 * @pprev: out arg for the previous vmap_area
2281 *
2282 * Returns: %true if either or both of next and prev are found,
2283 * %false if no vmap_area exists
2284 *
2285 * Find vmap_areas end addresses of which enclose @end. ie. if not
2286 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2287 */
2288 static bool pvm_find_next_prev(unsigned long end,
2289 struct vmap_area **pnext,
2290 struct vmap_area **pprev)
2291 {
2292 struct rb_node *n = vmap_area_root.rb_node;
2293 struct vmap_area *va = NULL;
2294
2295 while (n) {
2296 va = rb_entry(n, struct vmap_area, rb_node);
2297 if (end < va->va_end)
2298 n = n->rb_left;
2299 else if (end > va->va_end)
2300 n = n->rb_right;
2301 else
2302 break;
2303 }
2304
2305 if (!va)
2306 return false;
2307
2308 if (va->va_end > end) {
2309 *pnext = va;
2310 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2311 } else {
2312 *pprev = va;
2313 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2314 }
2315 return true;
2316 }
2317
2318 /**
2319 * pvm_determine_end - find the highest aligned address between two vmap_areas
2320 * @pnext: in/out arg for the next vmap_area
2321 * @pprev: in/out arg for the previous vmap_area
2322 * @align: alignment
2323 *
2324 * Returns: determined end address
2325 *
2326 * Find the highest aligned address between *@pnext and *@pprev below
2327 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2328 * down address is between the end addresses of the two vmap_areas.
2329 *
2330 * Please note that the address returned by this function may fall
2331 * inside *@pnext vmap_area. The caller is responsible for checking
2332 * that.
2333 */
2334 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2335 struct vmap_area **pprev,
2336 unsigned long align)
2337 {
2338 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2339 unsigned long addr;
2340
2341 if (*pnext)
2342 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2343 else
2344 addr = vmalloc_end;
2345
2346 while (*pprev && (*pprev)->va_end > addr) {
2347 *pnext = *pprev;
2348 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2349 }
2350
2351 return addr;
2352 }
2353
2354 /**
2355 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2356 * @offsets: array containing offset of each area
2357 * @sizes: array containing size of each area
2358 * @nr_vms: the number of areas to allocate
2359 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2360 *
2361 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2362 * vm_structs on success, %NULL on failure
2363 *
2364 * Percpu allocator wants to use congruent vm areas so that it can
2365 * maintain the offsets among percpu areas. This function allocates
2366 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2367 * be scattered pretty far, distance between two areas easily going up
2368 * to gigabytes. To avoid interacting with regular vmallocs, these
2369 * areas are allocated from top.
2370 *
2371 * Despite its complicated look, this allocator is rather simple. It
2372 * does everything top-down and scans areas from the end looking for
2373 * matching slot. While scanning, if any of the areas overlaps with
2374 * existing vmap_area, the base address is pulled down to fit the
2375 * area. Scanning is repeated till all the areas fit and then all
2376 * necessary data structres are inserted and the result is returned.
2377 */
2378 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2379 const size_t *sizes, int nr_vms,
2380 size_t align)
2381 {
2382 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2383 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2384 struct vmap_area **vas, *prev, *next;
2385 struct vm_struct **vms;
2386 int area, area2, last_area, term_area;
2387 unsigned long base, start, end, last_end;
2388 bool purged = false;
2389
2390 /* verify parameters and allocate data structures */
2391 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2392 for (last_area = 0, area = 0; area < nr_vms; area++) {
2393 start = offsets[area];
2394 end = start + sizes[area];
2395
2396 /* is everything aligned properly? */
2397 BUG_ON(!IS_ALIGNED(offsets[area], align));
2398 BUG_ON(!IS_ALIGNED(sizes[area], align));
2399
2400 /* detect the area with the highest address */
2401 if (start > offsets[last_area])
2402 last_area = area;
2403
2404 for (area2 = 0; area2 < nr_vms; area2++) {
2405 unsigned long start2 = offsets[area2];
2406 unsigned long end2 = start2 + sizes[area2];
2407
2408 if (area2 == area)
2409 continue;
2410
2411 BUG_ON(start2 >= start && start2 < end);
2412 BUG_ON(end2 <= end && end2 > start);
2413 }
2414 }
2415 last_end = offsets[last_area] + sizes[last_area];
2416
2417 if (vmalloc_end - vmalloc_start < last_end) {
2418 WARN_ON(true);
2419 return NULL;
2420 }
2421
2422 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2423 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2424 if (!vas || !vms)
2425 goto err_free2;
2426
2427 for (area = 0; area < nr_vms; area++) {
2428 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2429 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2430 if (!vas[area] || !vms[area])
2431 goto err_free;
2432 }
2433 retry:
2434 spin_lock(&vmap_area_lock);
2435
2436 /* start scanning - we scan from the top, begin with the last area */
2437 area = term_area = last_area;
2438 start = offsets[area];
2439 end = start + sizes[area];
2440
2441 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2442 base = vmalloc_end - last_end;
2443 goto found;
2444 }
2445 base = pvm_determine_end(&next, &prev, align) - end;
2446
2447 while (true) {
2448 BUG_ON(next && next->va_end <= base + end);
2449 BUG_ON(prev && prev->va_end > base + end);
2450
2451 /*
2452 * base might have underflowed, add last_end before
2453 * comparing.
2454 */
2455 if (base + last_end < vmalloc_start + last_end) {
2456 spin_unlock(&vmap_area_lock);
2457 if (!purged) {
2458 purge_vmap_area_lazy();
2459 purged = true;
2460 goto retry;
2461 }
2462 goto err_free;
2463 }
2464
2465 /*
2466 * If next overlaps, move base downwards so that it's
2467 * right below next and then recheck.
2468 */
2469 if (next && next->va_start < base + end) {
2470 base = pvm_determine_end(&next, &prev, align) - end;
2471 term_area = area;
2472 continue;
2473 }
2474
2475 /*
2476 * If prev overlaps, shift down next and prev and move
2477 * base so that it's right below new next and then
2478 * recheck.
2479 */
2480 if (prev && prev->va_end > base + start) {
2481 next = prev;
2482 prev = node_to_va(rb_prev(&next->rb_node));
2483 base = pvm_determine_end(&next, &prev, align) - end;
2484 term_area = area;
2485 continue;
2486 }
2487
2488 /*
2489 * This area fits, move on to the previous one. If
2490 * the previous one is the terminal one, we're done.
2491 */
2492 area = (area + nr_vms - 1) % nr_vms;
2493 if (area == term_area)
2494 break;
2495 start = offsets[area];
2496 end = start + sizes[area];
2497 pvm_find_next_prev(base + end, &next, &prev);
2498 }
2499 found:
2500 /* we've found a fitting base, insert all va's */
2501 for (area = 0; area < nr_vms; area++) {
2502 struct vmap_area *va = vas[area];
2503
2504 va->va_start = base + offsets[area];
2505 va->va_end = va->va_start + sizes[area];
2506 __insert_vmap_area(va);
2507 }
2508
2509 vmap_area_pcpu_hole = base + offsets[last_area];
2510
2511 spin_unlock(&vmap_area_lock);
2512
2513 /* insert all vm's */
2514 for (area = 0; area < nr_vms; area++)
2515 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2516 pcpu_get_vm_areas);
2517
2518 kfree(vas);
2519 return vms;
2520
2521 err_free:
2522 for (area = 0; area < nr_vms; area++) {
2523 kfree(vas[area]);
2524 kfree(vms[area]);
2525 }
2526 err_free2:
2527 kfree(vas);
2528 kfree(vms);
2529 return NULL;
2530 }
2531
2532 /**
2533 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2534 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2535 * @nr_vms: the number of allocated areas
2536 *
2537 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2538 */
2539 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2540 {
2541 int i;
2542
2543 for (i = 0; i < nr_vms; i++)
2544 free_vm_area(vms[i]);
2545 kfree(vms);
2546 }
2547 #endif /* CONFIG_SMP */
2548
2549 #ifdef CONFIG_PROC_FS
2550 static void *s_start(struct seq_file *m, loff_t *pos)
2551 __acquires(&vmap_area_lock)
2552 {
2553 spin_lock(&vmap_area_lock);
2554 return seq_list_start(&vmap_area_list, *pos);
2555 }
2556
2557 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2558 {
2559 return seq_list_next(p, &vmap_area_list, pos);
2560 }
2561
2562 static void s_stop(struct seq_file *m, void *p)
2563 __releases(&vmap_area_lock)
2564 {
2565 spin_unlock(&vmap_area_lock);
2566 }
2567
2568 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2569 {
2570 if (IS_ENABLED(CONFIG_NUMA)) {
2571 unsigned int nr, *counters = m->private;
2572
2573 if (!counters)
2574 return;
2575
2576 if (v->flags & VM_UNINITIALIZED)
2577 return;
2578 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2579 smp_rmb();
2580
2581 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2582
2583 for (nr = 0; nr < v->nr_pages; nr++)
2584 counters[page_to_nid(v->pages[nr])]++;
2585
2586 for_each_node_state(nr, N_HIGH_MEMORY)
2587 if (counters[nr])
2588 seq_printf(m, " N%u=%u", nr, counters[nr]);
2589 }
2590 }
2591
2592 static int s_show(struct seq_file *m, void *p)
2593 {
2594 struct vmap_area *va;
2595 struct vm_struct *v;
2596
2597 va = list_entry(p, struct vmap_area, list);
2598
2599 /*
2600 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2601 * behalf of vmap area is being tear down or vm_map_ram allocation.
2602 */
2603 if (!(va->flags & VM_VM_AREA))
2604 return 0;
2605
2606 v = va->vm;
2607
2608 seq_printf(m, "0x%pK-0x%pK %7ld",
2609 v->addr, v->addr + v->size, v->size);
2610
2611 if (v->caller)
2612 seq_printf(m, " %pS", v->caller);
2613
2614 if (v->nr_pages)
2615 seq_printf(m, " pages=%d", v->nr_pages);
2616
2617 if (v->phys_addr)
2618 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2619
2620 if (v->flags & VM_IOREMAP)
2621 seq_puts(m, " ioremap");
2622
2623 if (v->flags & VM_ALLOC)
2624 seq_puts(m, " vmalloc");
2625
2626 if (v->flags & VM_MAP)
2627 seq_puts(m, " vmap");
2628
2629 if (v->flags & VM_USERMAP)
2630 seq_puts(m, " user");
2631
2632 if (is_vmalloc_addr(v->pages))
2633 seq_puts(m, " vpages");
2634
2635 show_numa_info(m, v);
2636 seq_putc(m, '\n');
2637 return 0;
2638 }
2639
2640 static const struct seq_operations vmalloc_op = {
2641 .start = s_start,
2642 .next = s_next,
2643 .stop = s_stop,
2644 .show = s_show,
2645 };
2646
2647 static int vmalloc_open(struct inode *inode, struct file *file)
2648 {
2649 if (IS_ENABLED(CONFIG_NUMA))
2650 return seq_open_private(file, &vmalloc_op,
2651 nr_node_ids * sizeof(unsigned int));
2652 else
2653 return seq_open(file, &vmalloc_op);
2654 }
2655
2656 static const struct file_operations proc_vmalloc_operations = {
2657 .open = vmalloc_open,
2658 .read = seq_read,
2659 .llseek = seq_lseek,
2660 .release = seq_release_private,
2661 };
2662
2663 static int __init proc_vmalloc_init(void)
2664 {
2665 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2666 return 0;
2667 }
2668 module_init(proc_vmalloc_init);
2669
2670 #endif
2671