]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/vmalloc.c
Merge tag 'xfs-pnfs-for-linus-3.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / mm / vmalloc.c
1 /*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <linux/atomic.h>
30 #include <linux/compiler.h>
31 #include <linux/llist.h>
32
33 #include <asm/uaccess.h>
34 #include <asm/tlbflush.h>
35 #include <asm/shmparam.h>
36
37 struct vfree_deferred {
38 struct llist_head list;
39 struct work_struct wq;
40 };
41 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
42
43 static void __vunmap(const void *, int);
44
45 static void free_work(struct work_struct *w)
46 {
47 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
48 struct llist_node *llnode = llist_del_all(&p->list);
49 while (llnode) {
50 void *p = llnode;
51 llnode = llist_next(llnode);
52 __vunmap(p, 1);
53 }
54 }
55
56 /*** Page table manipulation functions ***/
57
58 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
59 {
60 pte_t *pte;
61
62 pte = pte_offset_kernel(pmd, addr);
63 do {
64 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
65 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
66 } while (pte++, addr += PAGE_SIZE, addr != end);
67 }
68
69 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
70 {
71 pmd_t *pmd;
72 unsigned long next;
73
74 pmd = pmd_offset(pud, addr);
75 do {
76 next = pmd_addr_end(addr, end);
77 if (pmd_none_or_clear_bad(pmd))
78 continue;
79 vunmap_pte_range(pmd, addr, next);
80 } while (pmd++, addr = next, addr != end);
81 }
82
83 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
84 {
85 pud_t *pud;
86 unsigned long next;
87
88 pud = pud_offset(pgd, addr);
89 do {
90 next = pud_addr_end(addr, end);
91 if (pud_none_or_clear_bad(pud))
92 continue;
93 vunmap_pmd_range(pud, addr, next);
94 } while (pud++, addr = next, addr != end);
95 }
96
97 static void vunmap_page_range(unsigned long addr, unsigned long end)
98 {
99 pgd_t *pgd;
100 unsigned long next;
101
102 BUG_ON(addr >= end);
103 pgd = pgd_offset_k(addr);
104 do {
105 next = pgd_addr_end(addr, end);
106 if (pgd_none_or_clear_bad(pgd))
107 continue;
108 vunmap_pud_range(pgd, addr, next);
109 } while (pgd++, addr = next, addr != end);
110 }
111
112 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
113 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
114 {
115 pte_t *pte;
116
117 /*
118 * nr is a running index into the array which helps higher level
119 * callers keep track of where we're up to.
120 */
121
122 pte = pte_alloc_kernel(pmd, addr);
123 if (!pte)
124 return -ENOMEM;
125 do {
126 struct page *page = pages[*nr];
127
128 if (WARN_ON(!pte_none(*pte)))
129 return -EBUSY;
130 if (WARN_ON(!page))
131 return -ENOMEM;
132 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
133 (*nr)++;
134 } while (pte++, addr += PAGE_SIZE, addr != end);
135 return 0;
136 }
137
138 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
139 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
140 {
141 pmd_t *pmd;
142 unsigned long next;
143
144 pmd = pmd_alloc(&init_mm, pud, addr);
145 if (!pmd)
146 return -ENOMEM;
147 do {
148 next = pmd_addr_end(addr, end);
149 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
150 return -ENOMEM;
151 } while (pmd++, addr = next, addr != end);
152 return 0;
153 }
154
155 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
156 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
157 {
158 pud_t *pud;
159 unsigned long next;
160
161 pud = pud_alloc(&init_mm, pgd, addr);
162 if (!pud)
163 return -ENOMEM;
164 do {
165 next = pud_addr_end(addr, end);
166 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
167 return -ENOMEM;
168 } while (pud++, addr = next, addr != end);
169 return 0;
170 }
171
172 /*
173 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
174 * will have pfns corresponding to the "pages" array.
175 *
176 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
177 */
178 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
179 pgprot_t prot, struct page **pages)
180 {
181 pgd_t *pgd;
182 unsigned long next;
183 unsigned long addr = start;
184 int err = 0;
185 int nr = 0;
186
187 BUG_ON(addr >= end);
188 pgd = pgd_offset_k(addr);
189 do {
190 next = pgd_addr_end(addr, end);
191 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
192 if (err)
193 return err;
194 } while (pgd++, addr = next, addr != end);
195
196 return nr;
197 }
198
199 static int vmap_page_range(unsigned long start, unsigned long end,
200 pgprot_t prot, struct page **pages)
201 {
202 int ret;
203
204 ret = vmap_page_range_noflush(start, end, prot, pages);
205 flush_cache_vmap(start, end);
206 return ret;
207 }
208
209 int is_vmalloc_or_module_addr(const void *x)
210 {
211 /*
212 * ARM, x86-64 and sparc64 put modules in a special place,
213 * and fall back on vmalloc() if that fails. Others
214 * just put it in the vmalloc space.
215 */
216 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
217 unsigned long addr = (unsigned long)x;
218 if (addr >= MODULES_VADDR && addr < MODULES_END)
219 return 1;
220 #endif
221 return is_vmalloc_addr(x);
222 }
223
224 /*
225 * Walk a vmap address to the struct page it maps.
226 */
227 struct page *vmalloc_to_page(const void *vmalloc_addr)
228 {
229 unsigned long addr = (unsigned long) vmalloc_addr;
230 struct page *page = NULL;
231 pgd_t *pgd = pgd_offset_k(addr);
232
233 /*
234 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
235 * architectures that do not vmalloc module space
236 */
237 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
238
239 if (!pgd_none(*pgd)) {
240 pud_t *pud = pud_offset(pgd, addr);
241 if (!pud_none(*pud)) {
242 pmd_t *pmd = pmd_offset(pud, addr);
243 if (!pmd_none(*pmd)) {
244 pte_t *ptep, pte;
245
246 ptep = pte_offset_map(pmd, addr);
247 pte = *ptep;
248 if (pte_present(pte))
249 page = pte_page(pte);
250 pte_unmap(ptep);
251 }
252 }
253 }
254 return page;
255 }
256 EXPORT_SYMBOL(vmalloc_to_page);
257
258 /*
259 * Map a vmalloc()-space virtual address to the physical page frame number.
260 */
261 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
262 {
263 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
264 }
265 EXPORT_SYMBOL(vmalloc_to_pfn);
266
267
268 /*** Global kva allocator ***/
269
270 #define VM_LAZY_FREE 0x01
271 #define VM_LAZY_FREEING 0x02
272 #define VM_VM_AREA 0x04
273
274 static DEFINE_SPINLOCK(vmap_area_lock);
275 /* Export for kexec only */
276 LIST_HEAD(vmap_area_list);
277 static struct rb_root vmap_area_root = RB_ROOT;
278
279 /* The vmap cache globals are protected by vmap_area_lock */
280 static struct rb_node *free_vmap_cache;
281 static unsigned long cached_hole_size;
282 static unsigned long cached_vstart;
283 static unsigned long cached_align;
284
285 static unsigned long vmap_area_pcpu_hole;
286
287 static struct vmap_area *__find_vmap_area(unsigned long addr)
288 {
289 struct rb_node *n = vmap_area_root.rb_node;
290
291 while (n) {
292 struct vmap_area *va;
293
294 va = rb_entry(n, struct vmap_area, rb_node);
295 if (addr < va->va_start)
296 n = n->rb_left;
297 else if (addr >= va->va_end)
298 n = n->rb_right;
299 else
300 return va;
301 }
302
303 return NULL;
304 }
305
306 static void __insert_vmap_area(struct vmap_area *va)
307 {
308 struct rb_node **p = &vmap_area_root.rb_node;
309 struct rb_node *parent = NULL;
310 struct rb_node *tmp;
311
312 while (*p) {
313 struct vmap_area *tmp_va;
314
315 parent = *p;
316 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
317 if (va->va_start < tmp_va->va_end)
318 p = &(*p)->rb_left;
319 else if (va->va_end > tmp_va->va_start)
320 p = &(*p)->rb_right;
321 else
322 BUG();
323 }
324
325 rb_link_node(&va->rb_node, parent, p);
326 rb_insert_color(&va->rb_node, &vmap_area_root);
327
328 /* address-sort this list */
329 tmp = rb_prev(&va->rb_node);
330 if (tmp) {
331 struct vmap_area *prev;
332 prev = rb_entry(tmp, struct vmap_area, rb_node);
333 list_add_rcu(&va->list, &prev->list);
334 } else
335 list_add_rcu(&va->list, &vmap_area_list);
336 }
337
338 static void purge_vmap_area_lazy(void);
339
340 /*
341 * Allocate a region of KVA of the specified size and alignment, within the
342 * vstart and vend.
343 */
344 static struct vmap_area *alloc_vmap_area(unsigned long size,
345 unsigned long align,
346 unsigned long vstart, unsigned long vend,
347 int node, gfp_t gfp_mask)
348 {
349 struct vmap_area *va;
350 struct rb_node *n;
351 unsigned long addr;
352 int purged = 0;
353 struct vmap_area *first;
354
355 BUG_ON(!size);
356 BUG_ON(size & ~PAGE_MASK);
357 BUG_ON(!is_power_of_2(align));
358
359 va = kmalloc_node(sizeof(struct vmap_area),
360 gfp_mask & GFP_RECLAIM_MASK, node);
361 if (unlikely(!va))
362 return ERR_PTR(-ENOMEM);
363
364 /*
365 * Only scan the relevant parts containing pointers to other objects
366 * to avoid false negatives.
367 */
368 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
369
370 retry:
371 spin_lock(&vmap_area_lock);
372 /*
373 * Invalidate cache if we have more permissive parameters.
374 * cached_hole_size notes the largest hole noticed _below_
375 * the vmap_area cached in free_vmap_cache: if size fits
376 * into that hole, we want to scan from vstart to reuse
377 * the hole instead of allocating above free_vmap_cache.
378 * Note that __free_vmap_area may update free_vmap_cache
379 * without updating cached_hole_size or cached_align.
380 */
381 if (!free_vmap_cache ||
382 size < cached_hole_size ||
383 vstart < cached_vstart ||
384 align < cached_align) {
385 nocache:
386 cached_hole_size = 0;
387 free_vmap_cache = NULL;
388 }
389 /* record if we encounter less permissive parameters */
390 cached_vstart = vstart;
391 cached_align = align;
392
393 /* find starting point for our search */
394 if (free_vmap_cache) {
395 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
396 addr = ALIGN(first->va_end, align);
397 if (addr < vstart)
398 goto nocache;
399 if (addr + size < addr)
400 goto overflow;
401
402 } else {
403 addr = ALIGN(vstart, align);
404 if (addr + size < addr)
405 goto overflow;
406
407 n = vmap_area_root.rb_node;
408 first = NULL;
409
410 while (n) {
411 struct vmap_area *tmp;
412 tmp = rb_entry(n, struct vmap_area, rb_node);
413 if (tmp->va_end >= addr) {
414 first = tmp;
415 if (tmp->va_start <= addr)
416 break;
417 n = n->rb_left;
418 } else
419 n = n->rb_right;
420 }
421
422 if (!first)
423 goto found;
424 }
425
426 /* from the starting point, walk areas until a suitable hole is found */
427 while (addr + size > first->va_start && addr + size <= vend) {
428 if (addr + cached_hole_size < first->va_start)
429 cached_hole_size = first->va_start - addr;
430 addr = ALIGN(first->va_end, align);
431 if (addr + size < addr)
432 goto overflow;
433
434 if (list_is_last(&first->list, &vmap_area_list))
435 goto found;
436
437 first = list_entry(first->list.next,
438 struct vmap_area, list);
439 }
440
441 found:
442 if (addr + size > vend)
443 goto overflow;
444
445 va->va_start = addr;
446 va->va_end = addr + size;
447 va->flags = 0;
448 __insert_vmap_area(va);
449 free_vmap_cache = &va->rb_node;
450 spin_unlock(&vmap_area_lock);
451
452 BUG_ON(va->va_start & (align-1));
453 BUG_ON(va->va_start < vstart);
454 BUG_ON(va->va_end > vend);
455
456 return va;
457
458 overflow:
459 spin_unlock(&vmap_area_lock);
460 if (!purged) {
461 purge_vmap_area_lazy();
462 purged = 1;
463 goto retry;
464 }
465 if (printk_ratelimit())
466 pr_warn("vmap allocation for size %lu failed: "
467 "use vmalloc=<size> to increase size.\n", size);
468 kfree(va);
469 return ERR_PTR(-EBUSY);
470 }
471
472 static void __free_vmap_area(struct vmap_area *va)
473 {
474 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
475
476 if (free_vmap_cache) {
477 if (va->va_end < cached_vstart) {
478 free_vmap_cache = NULL;
479 } else {
480 struct vmap_area *cache;
481 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
482 if (va->va_start <= cache->va_start) {
483 free_vmap_cache = rb_prev(&va->rb_node);
484 /*
485 * We don't try to update cached_hole_size or
486 * cached_align, but it won't go very wrong.
487 */
488 }
489 }
490 }
491 rb_erase(&va->rb_node, &vmap_area_root);
492 RB_CLEAR_NODE(&va->rb_node);
493 list_del_rcu(&va->list);
494
495 /*
496 * Track the highest possible candidate for pcpu area
497 * allocation. Areas outside of vmalloc area can be returned
498 * here too, consider only end addresses which fall inside
499 * vmalloc area proper.
500 */
501 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
502 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
503
504 kfree_rcu(va, rcu_head);
505 }
506
507 /*
508 * Free a region of KVA allocated by alloc_vmap_area
509 */
510 static void free_vmap_area(struct vmap_area *va)
511 {
512 spin_lock(&vmap_area_lock);
513 __free_vmap_area(va);
514 spin_unlock(&vmap_area_lock);
515 }
516
517 /*
518 * Clear the pagetable entries of a given vmap_area
519 */
520 static void unmap_vmap_area(struct vmap_area *va)
521 {
522 vunmap_page_range(va->va_start, va->va_end);
523 }
524
525 static void vmap_debug_free_range(unsigned long start, unsigned long end)
526 {
527 /*
528 * Unmap page tables and force a TLB flush immediately if
529 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
530 * bugs similarly to those in linear kernel virtual address
531 * space after a page has been freed.
532 *
533 * All the lazy freeing logic is still retained, in order to
534 * minimise intrusiveness of this debugging feature.
535 *
536 * This is going to be *slow* (linear kernel virtual address
537 * debugging doesn't do a broadcast TLB flush so it is a lot
538 * faster).
539 */
540 #ifdef CONFIG_DEBUG_PAGEALLOC
541 vunmap_page_range(start, end);
542 flush_tlb_kernel_range(start, end);
543 #endif
544 }
545
546 /*
547 * lazy_max_pages is the maximum amount of virtual address space we gather up
548 * before attempting to purge with a TLB flush.
549 *
550 * There is a tradeoff here: a larger number will cover more kernel page tables
551 * and take slightly longer to purge, but it will linearly reduce the number of
552 * global TLB flushes that must be performed. It would seem natural to scale
553 * this number up linearly with the number of CPUs (because vmapping activity
554 * could also scale linearly with the number of CPUs), however it is likely
555 * that in practice, workloads might be constrained in other ways that mean
556 * vmap activity will not scale linearly with CPUs. Also, I want to be
557 * conservative and not introduce a big latency on huge systems, so go with
558 * a less aggressive log scale. It will still be an improvement over the old
559 * code, and it will be simple to change the scale factor if we find that it
560 * becomes a problem on bigger systems.
561 */
562 static unsigned long lazy_max_pages(void)
563 {
564 unsigned int log;
565
566 log = fls(num_online_cpus());
567
568 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
569 }
570
571 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
572
573 /* for per-CPU blocks */
574 static void purge_fragmented_blocks_allcpus(void);
575
576 /*
577 * called before a call to iounmap() if the caller wants vm_area_struct's
578 * immediately freed.
579 */
580 void set_iounmap_nonlazy(void)
581 {
582 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
583 }
584
585 /*
586 * Purges all lazily-freed vmap areas.
587 *
588 * If sync is 0 then don't purge if there is already a purge in progress.
589 * If force_flush is 1, then flush kernel TLBs between *start and *end even
590 * if we found no lazy vmap areas to unmap (callers can use this to optimise
591 * their own TLB flushing).
592 * Returns with *start = min(*start, lowest purged address)
593 * *end = max(*end, highest purged address)
594 */
595 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
596 int sync, int force_flush)
597 {
598 static DEFINE_SPINLOCK(purge_lock);
599 LIST_HEAD(valist);
600 struct vmap_area *va;
601 struct vmap_area *n_va;
602 int nr = 0;
603
604 /*
605 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
606 * should not expect such behaviour. This just simplifies locking for
607 * the case that isn't actually used at the moment anyway.
608 */
609 if (!sync && !force_flush) {
610 if (!spin_trylock(&purge_lock))
611 return;
612 } else
613 spin_lock(&purge_lock);
614
615 if (sync)
616 purge_fragmented_blocks_allcpus();
617
618 rcu_read_lock();
619 list_for_each_entry_rcu(va, &vmap_area_list, list) {
620 if (va->flags & VM_LAZY_FREE) {
621 if (va->va_start < *start)
622 *start = va->va_start;
623 if (va->va_end > *end)
624 *end = va->va_end;
625 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
626 list_add_tail(&va->purge_list, &valist);
627 va->flags |= VM_LAZY_FREEING;
628 va->flags &= ~VM_LAZY_FREE;
629 }
630 }
631 rcu_read_unlock();
632
633 if (nr)
634 atomic_sub(nr, &vmap_lazy_nr);
635
636 if (nr || force_flush)
637 flush_tlb_kernel_range(*start, *end);
638
639 if (nr) {
640 spin_lock(&vmap_area_lock);
641 list_for_each_entry_safe(va, n_va, &valist, purge_list)
642 __free_vmap_area(va);
643 spin_unlock(&vmap_area_lock);
644 }
645 spin_unlock(&purge_lock);
646 }
647
648 /*
649 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
650 * is already purging.
651 */
652 static void try_purge_vmap_area_lazy(void)
653 {
654 unsigned long start = ULONG_MAX, end = 0;
655
656 __purge_vmap_area_lazy(&start, &end, 0, 0);
657 }
658
659 /*
660 * Kick off a purge of the outstanding lazy areas.
661 */
662 static void purge_vmap_area_lazy(void)
663 {
664 unsigned long start = ULONG_MAX, end = 0;
665
666 __purge_vmap_area_lazy(&start, &end, 1, 0);
667 }
668
669 /*
670 * Free a vmap area, caller ensuring that the area has been unmapped
671 * and flush_cache_vunmap had been called for the correct range
672 * previously.
673 */
674 static void free_vmap_area_noflush(struct vmap_area *va)
675 {
676 va->flags |= VM_LAZY_FREE;
677 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
678 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
679 try_purge_vmap_area_lazy();
680 }
681
682 /*
683 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
684 * called for the correct range previously.
685 */
686 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
687 {
688 unmap_vmap_area(va);
689 free_vmap_area_noflush(va);
690 }
691
692 /*
693 * Free and unmap a vmap area
694 */
695 static void free_unmap_vmap_area(struct vmap_area *va)
696 {
697 flush_cache_vunmap(va->va_start, va->va_end);
698 free_unmap_vmap_area_noflush(va);
699 }
700
701 static struct vmap_area *find_vmap_area(unsigned long addr)
702 {
703 struct vmap_area *va;
704
705 spin_lock(&vmap_area_lock);
706 va = __find_vmap_area(addr);
707 spin_unlock(&vmap_area_lock);
708
709 return va;
710 }
711
712 static void free_unmap_vmap_area_addr(unsigned long addr)
713 {
714 struct vmap_area *va;
715
716 va = find_vmap_area(addr);
717 BUG_ON(!va);
718 free_unmap_vmap_area(va);
719 }
720
721
722 /*** Per cpu kva allocator ***/
723
724 /*
725 * vmap space is limited especially on 32 bit architectures. Ensure there is
726 * room for at least 16 percpu vmap blocks per CPU.
727 */
728 /*
729 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
730 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
731 * instead (we just need a rough idea)
732 */
733 #if BITS_PER_LONG == 32
734 #define VMALLOC_SPACE (128UL*1024*1024)
735 #else
736 #define VMALLOC_SPACE (128UL*1024*1024*1024)
737 #endif
738
739 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
740 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
741 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
742 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
743 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
744 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
745 #define VMAP_BBMAP_BITS \
746 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
747 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
748 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
749
750 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
751
752 static bool vmap_initialized __read_mostly = false;
753
754 struct vmap_block_queue {
755 spinlock_t lock;
756 struct list_head free;
757 };
758
759 struct vmap_block {
760 spinlock_t lock;
761 struct vmap_area *va;
762 unsigned long free, dirty;
763 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
764 struct list_head free_list;
765 struct rcu_head rcu_head;
766 struct list_head purge;
767 };
768
769 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
770 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
771
772 /*
773 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
774 * in the free path. Could get rid of this if we change the API to return a
775 * "cookie" from alloc, to be passed to free. But no big deal yet.
776 */
777 static DEFINE_SPINLOCK(vmap_block_tree_lock);
778 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
779
780 /*
781 * We should probably have a fallback mechanism to allocate virtual memory
782 * out of partially filled vmap blocks. However vmap block sizing should be
783 * fairly reasonable according to the vmalloc size, so it shouldn't be a
784 * big problem.
785 */
786
787 static unsigned long addr_to_vb_idx(unsigned long addr)
788 {
789 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
790 addr /= VMAP_BLOCK_SIZE;
791 return addr;
792 }
793
794 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
795 {
796 struct vmap_block_queue *vbq;
797 struct vmap_block *vb;
798 struct vmap_area *va;
799 unsigned long vb_idx;
800 int node, err;
801
802 node = numa_node_id();
803
804 vb = kmalloc_node(sizeof(struct vmap_block),
805 gfp_mask & GFP_RECLAIM_MASK, node);
806 if (unlikely(!vb))
807 return ERR_PTR(-ENOMEM);
808
809 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
810 VMALLOC_START, VMALLOC_END,
811 node, gfp_mask);
812 if (IS_ERR(va)) {
813 kfree(vb);
814 return ERR_CAST(va);
815 }
816
817 err = radix_tree_preload(gfp_mask);
818 if (unlikely(err)) {
819 kfree(vb);
820 free_vmap_area(va);
821 return ERR_PTR(err);
822 }
823
824 spin_lock_init(&vb->lock);
825 vb->va = va;
826 vb->free = VMAP_BBMAP_BITS;
827 vb->dirty = 0;
828 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
829 INIT_LIST_HEAD(&vb->free_list);
830
831 vb_idx = addr_to_vb_idx(va->va_start);
832 spin_lock(&vmap_block_tree_lock);
833 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
834 spin_unlock(&vmap_block_tree_lock);
835 BUG_ON(err);
836 radix_tree_preload_end();
837
838 vbq = &get_cpu_var(vmap_block_queue);
839 spin_lock(&vbq->lock);
840 list_add_rcu(&vb->free_list, &vbq->free);
841 spin_unlock(&vbq->lock);
842 put_cpu_var(vmap_block_queue);
843
844 return vb;
845 }
846
847 static void free_vmap_block(struct vmap_block *vb)
848 {
849 struct vmap_block *tmp;
850 unsigned long vb_idx;
851
852 vb_idx = addr_to_vb_idx(vb->va->va_start);
853 spin_lock(&vmap_block_tree_lock);
854 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
855 spin_unlock(&vmap_block_tree_lock);
856 BUG_ON(tmp != vb);
857
858 free_vmap_area_noflush(vb->va);
859 kfree_rcu(vb, rcu_head);
860 }
861
862 static void purge_fragmented_blocks(int cpu)
863 {
864 LIST_HEAD(purge);
865 struct vmap_block *vb;
866 struct vmap_block *n_vb;
867 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
868
869 rcu_read_lock();
870 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
871
872 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
873 continue;
874
875 spin_lock(&vb->lock);
876 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
877 vb->free = 0; /* prevent further allocs after releasing lock */
878 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
879 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
880 spin_lock(&vbq->lock);
881 list_del_rcu(&vb->free_list);
882 spin_unlock(&vbq->lock);
883 spin_unlock(&vb->lock);
884 list_add_tail(&vb->purge, &purge);
885 } else
886 spin_unlock(&vb->lock);
887 }
888 rcu_read_unlock();
889
890 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
891 list_del(&vb->purge);
892 free_vmap_block(vb);
893 }
894 }
895
896 static void purge_fragmented_blocks_allcpus(void)
897 {
898 int cpu;
899
900 for_each_possible_cpu(cpu)
901 purge_fragmented_blocks(cpu);
902 }
903
904 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
905 {
906 struct vmap_block_queue *vbq;
907 struct vmap_block *vb;
908 unsigned long addr = 0;
909 unsigned int order;
910
911 BUG_ON(size & ~PAGE_MASK);
912 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
913 if (WARN_ON(size == 0)) {
914 /*
915 * Allocating 0 bytes isn't what caller wants since
916 * get_order(0) returns funny result. Just warn and terminate
917 * early.
918 */
919 return NULL;
920 }
921 order = get_order(size);
922
923 again:
924 rcu_read_lock();
925 vbq = &get_cpu_var(vmap_block_queue);
926 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
927 int i;
928
929 spin_lock(&vb->lock);
930 if (vb->free < 1UL << order)
931 goto next;
932
933 i = VMAP_BBMAP_BITS - vb->free;
934 addr = vb->va->va_start + (i << PAGE_SHIFT);
935 BUG_ON(addr_to_vb_idx(addr) !=
936 addr_to_vb_idx(vb->va->va_start));
937 vb->free -= 1UL << order;
938 if (vb->free == 0) {
939 spin_lock(&vbq->lock);
940 list_del_rcu(&vb->free_list);
941 spin_unlock(&vbq->lock);
942 }
943 spin_unlock(&vb->lock);
944 break;
945 next:
946 spin_unlock(&vb->lock);
947 }
948
949 put_cpu_var(vmap_block_queue);
950 rcu_read_unlock();
951
952 if (!addr) {
953 vb = new_vmap_block(gfp_mask);
954 if (IS_ERR(vb))
955 return vb;
956 goto again;
957 }
958
959 return (void *)addr;
960 }
961
962 static void vb_free(const void *addr, unsigned long size)
963 {
964 unsigned long offset;
965 unsigned long vb_idx;
966 unsigned int order;
967 struct vmap_block *vb;
968
969 BUG_ON(size & ~PAGE_MASK);
970 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
971
972 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
973
974 order = get_order(size);
975
976 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
977
978 vb_idx = addr_to_vb_idx((unsigned long)addr);
979 rcu_read_lock();
980 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
981 rcu_read_unlock();
982 BUG_ON(!vb);
983
984 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
985
986 spin_lock(&vb->lock);
987 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
988
989 vb->dirty += 1UL << order;
990 if (vb->dirty == VMAP_BBMAP_BITS) {
991 BUG_ON(vb->free);
992 spin_unlock(&vb->lock);
993 free_vmap_block(vb);
994 } else
995 spin_unlock(&vb->lock);
996 }
997
998 /**
999 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1000 *
1001 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1002 * to amortize TLB flushing overheads. What this means is that any page you
1003 * have now, may, in a former life, have been mapped into kernel virtual
1004 * address by the vmap layer and so there might be some CPUs with TLB entries
1005 * still referencing that page (additional to the regular 1:1 kernel mapping).
1006 *
1007 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1008 * be sure that none of the pages we have control over will have any aliases
1009 * from the vmap layer.
1010 */
1011 void vm_unmap_aliases(void)
1012 {
1013 unsigned long start = ULONG_MAX, end = 0;
1014 int cpu;
1015 int flush = 0;
1016
1017 if (unlikely(!vmap_initialized))
1018 return;
1019
1020 for_each_possible_cpu(cpu) {
1021 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1022 struct vmap_block *vb;
1023
1024 rcu_read_lock();
1025 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1026 int i, j;
1027
1028 spin_lock(&vb->lock);
1029 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1030 if (i < VMAP_BBMAP_BITS) {
1031 unsigned long s, e;
1032
1033 j = find_last_bit(vb->dirty_map,
1034 VMAP_BBMAP_BITS);
1035 j = j + 1; /* need exclusive index */
1036
1037 s = vb->va->va_start + (i << PAGE_SHIFT);
1038 e = vb->va->va_start + (j << PAGE_SHIFT);
1039 flush = 1;
1040
1041 if (s < start)
1042 start = s;
1043 if (e > end)
1044 end = e;
1045 }
1046 spin_unlock(&vb->lock);
1047 }
1048 rcu_read_unlock();
1049 }
1050
1051 __purge_vmap_area_lazy(&start, &end, 1, flush);
1052 }
1053 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1054
1055 /**
1056 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1057 * @mem: the pointer returned by vm_map_ram
1058 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1059 */
1060 void vm_unmap_ram(const void *mem, unsigned int count)
1061 {
1062 unsigned long size = count << PAGE_SHIFT;
1063 unsigned long addr = (unsigned long)mem;
1064
1065 BUG_ON(!addr);
1066 BUG_ON(addr < VMALLOC_START);
1067 BUG_ON(addr > VMALLOC_END);
1068 BUG_ON(addr & (PAGE_SIZE-1));
1069
1070 debug_check_no_locks_freed(mem, size);
1071 vmap_debug_free_range(addr, addr+size);
1072
1073 if (likely(count <= VMAP_MAX_ALLOC))
1074 vb_free(mem, size);
1075 else
1076 free_unmap_vmap_area_addr(addr);
1077 }
1078 EXPORT_SYMBOL(vm_unmap_ram);
1079
1080 /**
1081 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1082 * @pages: an array of pointers to the pages to be mapped
1083 * @count: number of pages
1084 * @node: prefer to allocate data structures on this node
1085 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1086 *
1087 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1088 * faster than vmap so it's good. But if you mix long-life and short-life
1089 * objects with vm_map_ram(), it could consume lots of address space through
1090 * fragmentation (especially on a 32bit machine). You could see failures in
1091 * the end. Please use this function for short-lived objects.
1092 *
1093 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1094 */
1095 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1096 {
1097 unsigned long size = count << PAGE_SHIFT;
1098 unsigned long addr;
1099 void *mem;
1100
1101 if (likely(count <= VMAP_MAX_ALLOC)) {
1102 mem = vb_alloc(size, GFP_KERNEL);
1103 if (IS_ERR(mem))
1104 return NULL;
1105 addr = (unsigned long)mem;
1106 } else {
1107 struct vmap_area *va;
1108 va = alloc_vmap_area(size, PAGE_SIZE,
1109 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1110 if (IS_ERR(va))
1111 return NULL;
1112
1113 addr = va->va_start;
1114 mem = (void *)addr;
1115 }
1116 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1117 vm_unmap_ram(mem, count);
1118 return NULL;
1119 }
1120 return mem;
1121 }
1122 EXPORT_SYMBOL(vm_map_ram);
1123
1124 static struct vm_struct *vmlist __initdata;
1125 /**
1126 * vm_area_add_early - add vmap area early during boot
1127 * @vm: vm_struct to add
1128 *
1129 * This function is used to add fixed kernel vm area to vmlist before
1130 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1131 * should contain proper values and the other fields should be zero.
1132 *
1133 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1134 */
1135 void __init vm_area_add_early(struct vm_struct *vm)
1136 {
1137 struct vm_struct *tmp, **p;
1138
1139 BUG_ON(vmap_initialized);
1140 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1141 if (tmp->addr >= vm->addr) {
1142 BUG_ON(tmp->addr < vm->addr + vm->size);
1143 break;
1144 } else
1145 BUG_ON(tmp->addr + tmp->size > vm->addr);
1146 }
1147 vm->next = *p;
1148 *p = vm;
1149 }
1150
1151 /**
1152 * vm_area_register_early - register vmap area early during boot
1153 * @vm: vm_struct to register
1154 * @align: requested alignment
1155 *
1156 * This function is used to register kernel vm area before
1157 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1158 * proper values on entry and other fields should be zero. On return,
1159 * vm->addr contains the allocated address.
1160 *
1161 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1162 */
1163 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1164 {
1165 static size_t vm_init_off __initdata;
1166 unsigned long addr;
1167
1168 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1169 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1170
1171 vm->addr = (void *)addr;
1172
1173 vm_area_add_early(vm);
1174 }
1175
1176 void __init vmalloc_init(void)
1177 {
1178 struct vmap_area *va;
1179 struct vm_struct *tmp;
1180 int i;
1181
1182 for_each_possible_cpu(i) {
1183 struct vmap_block_queue *vbq;
1184 struct vfree_deferred *p;
1185
1186 vbq = &per_cpu(vmap_block_queue, i);
1187 spin_lock_init(&vbq->lock);
1188 INIT_LIST_HEAD(&vbq->free);
1189 p = &per_cpu(vfree_deferred, i);
1190 init_llist_head(&p->list);
1191 INIT_WORK(&p->wq, free_work);
1192 }
1193
1194 /* Import existing vmlist entries. */
1195 for (tmp = vmlist; tmp; tmp = tmp->next) {
1196 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1197 va->flags = VM_VM_AREA;
1198 va->va_start = (unsigned long)tmp->addr;
1199 va->va_end = va->va_start + tmp->size;
1200 va->vm = tmp;
1201 __insert_vmap_area(va);
1202 }
1203
1204 vmap_area_pcpu_hole = VMALLOC_END;
1205
1206 vmap_initialized = true;
1207 }
1208
1209 /**
1210 * map_kernel_range_noflush - map kernel VM area with the specified pages
1211 * @addr: start of the VM area to map
1212 * @size: size of the VM area to map
1213 * @prot: page protection flags to use
1214 * @pages: pages to map
1215 *
1216 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1217 * specify should have been allocated using get_vm_area() and its
1218 * friends.
1219 *
1220 * NOTE:
1221 * This function does NOT do any cache flushing. The caller is
1222 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1223 * before calling this function.
1224 *
1225 * RETURNS:
1226 * The number of pages mapped on success, -errno on failure.
1227 */
1228 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1229 pgprot_t prot, struct page **pages)
1230 {
1231 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1232 }
1233
1234 /**
1235 * unmap_kernel_range_noflush - unmap kernel VM area
1236 * @addr: start of the VM area to unmap
1237 * @size: size of the VM area to unmap
1238 *
1239 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1240 * specify should have been allocated using get_vm_area() and its
1241 * friends.
1242 *
1243 * NOTE:
1244 * This function does NOT do any cache flushing. The caller is
1245 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1246 * before calling this function and flush_tlb_kernel_range() after.
1247 */
1248 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1249 {
1250 vunmap_page_range(addr, addr + size);
1251 }
1252 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1253
1254 /**
1255 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1256 * @addr: start of the VM area to unmap
1257 * @size: size of the VM area to unmap
1258 *
1259 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1260 * the unmapping and tlb after.
1261 */
1262 void unmap_kernel_range(unsigned long addr, unsigned long size)
1263 {
1264 unsigned long end = addr + size;
1265
1266 flush_cache_vunmap(addr, end);
1267 vunmap_page_range(addr, end);
1268 flush_tlb_kernel_range(addr, end);
1269 }
1270 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1271
1272 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1273 {
1274 unsigned long addr = (unsigned long)area->addr;
1275 unsigned long end = addr + get_vm_area_size(area);
1276 int err;
1277
1278 err = vmap_page_range(addr, end, prot, pages);
1279
1280 return err > 0 ? 0 : err;
1281 }
1282 EXPORT_SYMBOL_GPL(map_vm_area);
1283
1284 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1285 unsigned long flags, const void *caller)
1286 {
1287 spin_lock(&vmap_area_lock);
1288 vm->flags = flags;
1289 vm->addr = (void *)va->va_start;
1290 vm->size = va->va_end - va->va_start;
1291 vm->caller = caller;
1292 va->vm = vm;
1293 va->flags |= VM_VM_AREA;
1294 spin_unlock(&vmap_area_lock);
1295 }
1296
1297 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1298 {
1299 /*
1300 * Before removing VM_UNINITIALIZED,
1301 * we should make sure that vm has proper values.
1302 * Pair with smp_rmb() in show_numa_info().
1303 */
1304 smp_wmb();
1305 vm->flags &= ~VM_UNINITIALIZED;
1306 }
1307
1308 static struct vm_struct *__get_vm_area_node(unsigned long size,
1309 unsigned long align, unsigned long flags, unsigned long start,
1310 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1311 {
1312 struct vmap_area *va;
1313 struct vm_struct *area;
1314
1315 BUG_ON(in_interrupt());
1316 if (flags & VM_IOREMAP)
1317 align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER);
1318
1319 size = PAGE_ALIGN(size);
1320 if (unlikely(!size))
1321 return NULL;
1322
1323 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1324 if (unlikely(!area))
1325 return NULL;
1326
1327 if (!(flags & VM_NO_GUARD))
1328 size += PAGE_SIZE;
1329
1330 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1331 if (IS_ERR(va)) {
1332 kfree(area);
1333 return NULL;
1334 }
1335
1336 setup_vmalloc_vm(area, va, flags, caller);
1337
1338 return area;
1339 }
1340
1341 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1342 unsigned long start, unsigned long end)
1343 {
1344 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1345 GFP_KERNEL, __builtin_return_address(0));
1346 }
1347 EXPORT_SYMBOL_GPL(__get_vm_area);
1348
1349 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1350 unsigned long start, unsigned long end,
1351 const void *caller)
1352 {
1353 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1354 GFP_KERNEL, caller);
1355 }
1356
1357 /**
1358 * get_vm_area - reserve a contiguous kernel virtual area
1359 * @size: size of the area
1360 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1361 *
1362 * Search an area of @size in the kernel virtual mapping area,
1363 * and reserved it for out purposes. Returns the area descriptor
1364 * on success or %NULL on failure.
1365 */
1366 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1367 {
1368 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1369 NUMA_NO_NODE, GFP_KERNEL,
1370 __builtin_return_address(0));
1371 }
1372
1373 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1374 const void *caller)
1375 {
1376 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1377 NUMA_NO_NODE, GFP_KERNEL, caller);
1378 }
1379
1380 /**
1381 * find_vm_area - find a continuous kernel virtual area
1382 * @addr: base address
1383 *
1384 * Search for the kernel VM area starting at @addr, and return it.
1385 * It is up to the caller to do all required locking to keep the returned
1386 * pointer valid.
1387 */
1388 struct vm_struct *find_vm_area(const void *addr)
1389 {
1390 struct vmap_area *va;
1391
1392 va = find_vmap_area((unsigned long)addr);
1393 if (va && va->flags & VM_VM_AREA)
1394 return va->vm;
1395
1396 return NULL;
1397 }
1398
1399 /**
1400 * remove_vm_area - find and remove a continuous kernel virtual area
1401 * @addr: base address
1402 *
1403 * Search for the kernel VM area starting at @addr, and remove it.
1404 * This function returns the found VM area, but using it is NOT safe
1405 * on SMP machines, except for its size or flags.
1406 */
1407 struct vm_struct *remove_vm_area(const void *addr)
1408 {
1409 struct vmap_area *va;
1410
1411 va = find_vmap_area((unsigned long)addr);
1412 if (va && va->flags & VM_VM_AREA) {
1413 struct vm_struct *vm = va->vm;
1414
1415 spin_lock(&vmap_area_lock);
1416 va->vm = NULL;
1417 va->flags &= ~VM_VM_AREA;
1418 spin_unlock(&vmap_area_lock);
1419
1420 vmap_debug_free_range(va->va_start, va->va_end);
1421 free_unmap_vmap_area(va);
1422 vm->size -= PAGE_SIZE;
1423
1424 return vm;
1425 }
1426 return NULL;
1427 }
1428
1429 static void __vunmap(const void *addr, int deallocate_pages)
1430 {
1431 struct vm_struct *area;
1432
1433 if (!addr)
1434 return;
1435
1436 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1437 addr))
1438 return;
1439
1440 area = remove_vm_area(addr);
1441 if (unlikely(!area)) {
1442 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1443 addr);
1444 return;
1445 }
1446
1447 debug_check_no_locks_freed(addr, area->size);
1448 debug_check_no_obj_freed(addr, area->size);
1449
1450 if (deallocate_pages) {
1451 int i;
1452
1453 for (i = 0; i < area->nr_pages; i++) {
1454 struct page *page = area->pages[i];
1455
1456 BUG_ON(!page);
1457 __free_page(page);
1458 }
1459
1460 if (area->flags & VM_VPAGES)
1461 vfree(area->pages);
1462 else
1463 kfree(area->pages);
1464 }
1465
1466 kfree(area);
1467 return;
1468 }
1469
1470 /**
1471 * vfree - release memory allocated by vmalloc()
1472 * @addr: memory base address
1473 *
1474 * Free the virtually continuous memory area starting at @addr, as
1475 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1476 * NULL, no operation is performed.
1477 *
1478 * Must not be called in NMI context (strictly speaking, only if we don't
1479 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1480 * conventions for vfree() arch-depenedent would be a really bad idea)
1481 *
1482 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1483 */
1484 void vfree(const void *addr)
1485 {
1486 BUG_ON(in_nmi());
1487
1488 kmemleak_free(addr);
1489
1490 if (!addr)
1491 return;
1492 if (unlikely(in_interrupt())) {
1493 struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
1494 if (llist_add((struct llist_node *)addr, &p->list))
1495 schedule_work(&p->wq);
1496 } else
1497 __vunmap(addr, 1);
1498 }
1499 EXPORT_SYMBOL(vfree);
1500
1501 /**
1502 * vunmap - release virtual mapping obtained by vmap()
1503 * @addr: memory base address
1504 *
1505 * Free the virtually contiguous memory area starting at @addr,
1506 * which was created from the page array passed to vmap().
1507 *
1508 * Must not be called in interrupt context.
1509 */
1510 void vunmap(const void *addr)
1511 {
1512 BUG_ON(in_interrupt());
1513 might_sleep();
1514 if (addr)
1515 __vunmap(addr, 0);
1516 }
1517 EXPORT_SYMBOL(vunmap);
1518
1519 /**
1520 * vmap - map an array of pages into virtually contiguous space
1521 * @pages: array of page pointers
1522 * @count: number of pages to map
1523 * @flags: vm_area->flags
1524 * @prot: page protection for the mapping
1525 *
1526 * Maps @count pages from @pages into contiguous kernel virtual
1527 * space.
1528 */
1529 void *vmap(struct page **pages, unsigned int count,
1530 unsigned long flags, pgprot_t prot)
1531 {
1532 struct vm_struct *area;
1533
1534 might_sleep();
1535
1536 if (count > totalram_pages)
1537 return NULL;
1538
1539 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1540 __builtin_return_address(0));
1541 if (!area)
1542 return NULL;
1543
1544 if (map_vm_area(area, prot, pages)) {
1545 vunmap(area->addr);
1546 return NULL;
1547 }
1548
1549 return area->addr;
1550 }
1551 EXPORT_SYMBOL(vmap);
1552
1553 static void *__vmalloc_node(unsigned long size, unsigned long align,
1554 gfp_t gfp_mask, pgprot_t prot,
1555 int node, const void *caller);
1556 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1557 pgprot_t prot, int node)
1558 {
1559 const int order = 0;
1560 struct page **pages;
1561 unsigned int nr_pages, array_size, i;
1562 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1563 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1564
1565 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1566 array_size = (nr_pages * sizeof(struct page *));
1567
1568 area->nr_pages = nr_pages;
1569 /* Please note that the recursion is strictly bounded. */
1570 if (array_size > PAGE_SIZE) {
1571 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1572 PAGE_KERNEL, node, area->caller);
1573 area->flags |= VM_VPAGES;
1574 } else {
1575 pages = kmalloc_node(array_size, nested_gfp, node);
1576 }
1577 area->pages = pages;
1578 if (!area->pages) {
1579 remove_vm_area(area->addr);
1580 kfree(area);
1581 return NULL;
1582 }
1583
1584 for (i = 0; i < area->nr_pages; i++) {
1585 struct page *page;
1586
1587 if (node == NUMA_NO_NODE)
1588 page = alloc_page(alloc_mask);
1589 else
1590 page = alloc_pages_node(node, alloc_mask, order);
1591
1592 if (unlikely(!page)) {
1593 /* Successfully allocated i pages, free them in __vunmap() */
1594 area->nr_pages = i;
1595 goto fail;
1596 }
1597 area->pages[i] = page;
1598 if (gfp_mask & __GFP_WAIT)
1599 cond_resched();
1600 }
1601
1602 if (map_vm_area(area, prot, pages))
1603 goto fail;
1604 return area->addr;
1605
1606 fail:
1607 warn_alloc_failed(gfp_mask, order,
1608 "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1609 (area->nr_pages*PAGE_SIZE), area->size);
1610 vfree(area->addr);
1611 return NULL;
1612 }
1613
1614 /**
1615 * __vmalloc_node_range - allocate virtually contiguous memory
1616 * @size: allocation size
1617 * @align: desired alignment
1618 * @start: vm area range start
1619 * @end: vm area range end
1620 * @gfp_mask: flags for the page level allocator
1621 * @prot: protection mask for the allocated pages
1622 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
1623 * @node: node to use for allocation or NUMA_NO_NODE
1624 * @caller: caller's return address
1625 *
1626 * Allocate enough pages to cover @size from the page level
1627 * allocator with @gfp_mask flags. Map them into contiguous
1628 * kernel virtual space, using a pagetable protection of @prot.
1629 */
1630 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1631 unsigned long start, unsigned long end, gfp_t gfp_mask,
1632 pgprot_t prot, unsigned long vm_flags, int node,
1633 const void *caller)
1634 {
1635 struct vm_struct *area;
1636 void *addr;
1637 unsigned long real_size = size;
1638
1639 size = PAGE_ALIGN(size);
1640 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1641 goto fail;
1642
1643 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1644 vm_flags, start, end, node, gfp_mask, caller);
1645 if (!area)
1646 goto fail;
1647
1648 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1649 if (!addr)
1650 return NULL;
1651
1652 /*
1653 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1654 * flag. It means that vm_struct is not fully initialized.
1655 * Now, it is fully initialized, so remove this flag here.
1656 */
1657 clear_vm_uninitialized_flag(area);
1658
1659 /*
1660 * A ref_count = 2 is needed because vm_struct allocated in
1661 * __get_vm_area_node() contains a reference to the virtual address of
1662 * the vmalloc'ed block.
1663 */
1664 kmemleak_alloc(addr, real_size, 2, gfp_mask);
1665
1666 return addr;
1667
1668 fail:
1669 warn_alloc_failed(gfp_mask, 0,
1670 "vmalloc: allocation failure: %lu bytes\n",
1671 real_size);
1672 return NULL;
1673 }
1674
1675 /**
1676 * __vmalloc_node - allocate virtually contiguous memory
1677 * @size: allocation size
1678 * @align: desired alignment
1679 * @gfp_mask: flags for the page level allocator
1680 * @prot: protection mask for the allocated pages
1681 * @node: node to use for allocation or NUMA_NO_NODE
1682 * @caller: caller's return address
1683 *
1684 * Allocate enough pages to cover @size from the page level
1685 * allocator with @gfp_mask flags. Map them into contiguous
1686 * kernel virtual space, using a pagetable protection of @prot.
1687 */
1688 static void *__vmalloc_node(unsigned long size, unsigned long align,
1689 gfp_t gfp_mask, pgprot_t prot,
1690 int node, const void *caller)
1691 {
1692 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1693 gfp_mask, prot, 0, node, caller);
1694 }
1695
1696 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1697 {
1698 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1699 __builtin_return_address(0));
1700 }
1701 EXPORT_SYMBOL(__vmalloc);
1702
1703 static inline void *__vmalloc_node_flags(unsigned long size,
1704 int node, gfp_t flags)
1705 {
1706 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1707 node, __builtin_return_address(0));
1708 }
1709
1710 /**
1711 * vmalloc - allocate virtually contiguous memory
1712 * @size: allocation size
1713 * Allocate enough pages to cover @size from the page level
1714 * allocator and map them into contiguous kernel virtual space.
1715 *
1716 * For tight control over page level allocator and protection flags
1717 * use __vmalloc() instead.
1718 */
1719 void *vmalloc(unsigned long size)
1720 {
1721 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1722 GFP_KERNEL | __GFP_HIGHMEM);
1723 }
1724 EXPORT_SYMBOL(vmalloc);
1725
1726 /**
1727 * vzalloc - allocate virtually contiguous memory with zero fill
1728 * @size: allocation size
1729 * Allocate enough pages to cover @size from the page level
1730 * allocator and map them into contiguous kernel virtual space.
1731 * The memory allocated is set to zero.
1732 *
1733 * For tight control over page level allocator and protection flags
1734 * use __vmalloc() instead.
1735 */
1736 void *vzalloc(unsigned long size)
1737 {
1738 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1739 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1740 }
1741 EXPORT_SYMBOL(vzalloc);
1742
1743 /**
1744 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1745 * @size: allocation size
1746 *
1747 * The resulting memory area is zeroed so it can be mapped to userspace
1748 * without leaking data.
1749 */
1750 void *vmalloc_user(unsigned long size)
1751 {
1752 struct vm_struct *area;
1753 void *ret;
1754
1755 ret = __vmalloc_node(size, SHMLBA,
1756 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1757 PAGE_KERNEL, NUMA_NO_NODE,
1758 __builtin_return_address(0));
1759 if (ret) {
1760 area = find_vm_area(ret);
1761 area->flags |= VM_USERMAP;
1762 }
1763 return ret;
1764 }
1765 EXPORT_SYMBOL(vmalloc_user);
1766
1767 /**
1768 * vmalloc_node - allocate memory on a specific node
1769 * @size: allocation size
1770 * @node: numa node
1771 *
1772 * Allocate enough pages to cover @size from the page level
1773 * allocator and map them into contiguous kernel virtual space.
1774 *
1775 * For tight control over page level allocator and protection flags
1776 * use __vmalloc() instead.
1777 */
1778 void *vmalloc_node(unsigned long size, int node)
1779 {
1780 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1781 node, __builtin_return_address(0));
1782 }
1783 EXPORT_SYMBOL(vmalloc_node);
1784
1785 /**
1786 * vzalloc_node - allocate memory on a specific node with zero fill
1787 * @size: allocation size
1788 * @node: numa node
1789 *
1790 * Allocate enough pages to cover @size from the page level
1791 * allocator and map them into contiguous kernel virtual space.
1792 * The memory allocated is set to zero.
1793 *
1794 * For tight control over page level allocator and protection flags
1795 * use __vmalloc_node() instead.
1796 */
1797 void *vzalloc_node(unsigned long size, int node)
1798 {
1799 return __vmalloc_node_flags(size, node,
1800 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1801 }
1802 EXPORT_SYMBOL(vzalloc_node);
1803
1804 #ifndef PAGE_KERNEL_EXEC
1805 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1806 #endif
1807
1808 /**
1809 * vmalloc_exec - allocate virtually contiguous, executable memory
1810 * @size: allocation size
1811 *
1812 * Kernel-internal function to allocate enough pages to cover @size
1813 * the page level allocator and map them into contiguous and
1814 * executable kernel virtual space.
1815 *
1816 * For tight control over page level allocator and protection flags
1817 * use __vmalloc() instead.
1818 */
1819
1820 void *vmalloc_exec(unsigned long size)
1821 {
1822 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1823 NUMA_NO_NODE, __builtin_return_address(0));
1824 }
1825
1826 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1827 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1828 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1829 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1830 #else
1831 #define GFP_VMALLOC32 GFP_KERNEL
1832 #endif
1833
1834 /**
1835 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1836 * @size: allocation size
1837 *
1838 * Allocate enough 32bit PA addressable pages to cover @size from the
1839 * page level allocator and map them into contiguous kernel virtual space.
1840 */
1841 void *vmalloc_32(unsigned long size)
1842 {
1843 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1844 NUMA_NO_NODE, __builtin_return_address(0));
1845 }
1846 EXPORT_SYMBOL(vmalloc_32);
1847
1848 /**
1849 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1850 * @size: allocation size
1851 *
1852 * The resulting memory area is 32bit addressable and zeroed so it can be
1853 * mapped to userspace without leaking data.
1854 */
1855 void *vmalloc_32_user(unsigned long size)
1856 {
1857 struct vm_struct *area;
1858 void *ret;
1859
1860 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1861 NUMA_NO_NODE, __builtin_return_address(0));
1862 if (ret) {
1863 area = find_vm_area(ret);
1864 area->flags |= VM_USERMAP;
1865 }
1866 return ret;
1867 }
1868 EXPORT_SYMBOL(vmalloc_32_user);
1869
1870 /*
1871 * small helper routine , copy contents to buf from addr.
1872 * If the page is not present, fill zero.
1873 */
1874
1875 static int aligned_vread(char *buf, char *addr, unsigned long count)
1876 {
1877 struct page *p;
1878 int copied = 0;
1879
1880 while (count) {
1881 unsigned long offset, length;
1882
1883 offset = (unsigned long)addr & ~PAGE_MASK;
1884 length = PAGE_SIZE - offset;
1885 if (length > count)
1886 length = count;
1887 p = vmalloc_to_page(addr);
1888 /*
1889 * To do safe access to this _mapped_ area, we need
1890 * lock. But adding lock here means that we need to add
1891 * overhead of vmalloc()/vfree() calles for this _debug_
1892 * interface, rarely used. Instead of that, we'll use
1893 * kmap() and get small overhead in this access function.
1894 */
1895 if (p) {
1896 /*
1897 * we can expect USER0 is not used (see vread/vwrite's
1898 * function description)
1899 */
1900 void *map = kmap_atomic(p);
1901 memcpy(buf, map + offset, length);
1902 kunmap_atomic(map);
1903 } else
1904 memset(buf, 0, length);
1905
1906 addr += length;
1907 buf += length;
1908 copied += length;
1909 count -= length;
1910 }
1911 return copied;
1912 }
1913
1914 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1915 {
1916 struct page *p;
1917 int copied = 0;
1918
1919 while (count) {
1920 unsigned long offset, length;
1921
1922 offset = (unsigned long)addr & ~PAGE_MASK;
1923 length = PAGE_SIZE - offset;
1924 if (length > count)
1925 length = count;
1926 p = vmalloc_to_page(addr);
1927 /*
1928 * To do safe access to this _mapped_ area, we need
1929 * lock. But adding lock here means that we need to add
1930 * overhead of vmalloc()/vfree() calles for this _debug_
1931 * interface, rarely used. Instead of that, we'll use
1932 * kmap() and get small overhead in this access function.
1933 */
1934 if (p) {
1935 /*
1936 * we can expect USER0 is not used (see vread/vwrite's
1937 * function description)
1938 */
1939 void *map = kmap_atomic(p);
1940 memcpy(map + offset, buf, length);
1941 kunmap_atomic(map);
1942 }
1943 addr += length;
1944 buf += length;
1945 copied += length;
1946 count -= length;
1947 }
1948 return copied;
1949 }
1950
1951 /**
1952 * vread() - read vmalloc area in a safe way.
1953 * @buf: buffer for reading data
1954 * @addr: vm address.
1955 * @count: number of bytes to be read.
1956 *
1957 * Returns # of bytes which addr and buf should be increased.
1958 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1959 * includes any intersect with alive vmalloc area.
1960 *
1961 * This function checks that addr is a valid vmalloc'ed area, and
1962 * copy data from that area to a given buffer. If the given memory range
1963 * of [addr...addr+count) includes some valid address, data is copied to
1964 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1965 * IOREMAP area is treated as memory hole and no copy is done.
1966 *
1967 * If [addr...addr+count) doesn't includes any intersects with alive
1968 * vm_struct area, returns 0. @buf should be kernel's buffer.
1969 *
1970 * Note: In usual ops, vread() is never necessary because the caller
1971 * should know vmalloc() area is valid and can use memcpy().
1972 * This is for routines which have to access vmalloc area without
1973 * any informaion, as /dev/kmem.
1974 *
1975 */
1976
1977 long vread(char *buf, char *addr, unsigned long count)
1978 {
1979 struct vmap_area *va;
1980 struct vm_struct *vm;
1981 char *vaddr, *buf_start = buf;
1982 unsigned long buflen = count;
1983 unsigned long n;
1984
1985 /* Don't allow overflow */
1986 if ((unsigned long) addr + count < count)
1987 count = -(unsigned long) addr;
1988
1989 spin_lock(&vmap_area_lock);
1990 list_for_each_entry(va, &vmap_area_list, list) {
1991 if (!count)
1992 break;
1993
1994 if (!(va->flags & VM_VM_AREA))
1995 continue;
1996
1997 vm = va->vm;
1998 vaddr = (char *) vm->addr;
1999 if (addr >= vaddr + get_vm_area_size(vm))
2000 continue;
2001 while (addr < vaddr) {
2002 if (count == 0)
2003 goto finished;
2004 *buf = '\0';
2005 buf++;
2006 addr++;
2007 count--;
2008 }
2009 n = vaddr + get_vm_area_size(vm) - addr;
2010 if (n > count)
2011 n = count;
2012 if (!(vm->flags & VM_IOREMAP))
2013 aligned_vread(buf, addr, n);
2014 else /* IOREMAP area is treated as memory hole */
2015 memset(buf, 0, n);
2016 buf += n;
2017 addr += n;
2018 count -= n;
2019 }
2020 finished:
2021 spin_unlock(&vmap_area_lock);
2022
2023 if (buf == buf_start)
2024 return 0;
2025 /* zero-fill memory holes */
2026 if (buf != buf_start + buflen)
2027 memset(buf, 0, buflen - (buf - buf_start));
2028
2029 return buflen;
2030 }
2031
2032 /**
2033 * vwrite() - write vmalloc area in a safe way.
2034 * @buf: buffer for source data
2035 * @addr: vm address.
2036 * @count: number of bytes to be read.
2037 *
2038 * Returns # of bytes which addr and buf should be incresed.
2039 * (same number to @count).
2040 * If [addr...addr+count) doesn't includes any intersect with valid
2041 * vmalloc area, returns 0.
2042 *
2043 * This function checks that addr is a valid vmalloc'ed area, and
2044 * copy data from a buffer to the given addr. If specified range of
2045 * [addr...addr+count) includes some valid address, data is copied from
2046 * proper area of @buf. If there are memory holes, no copy to hole.
2047 * IOREMAP area is treated as memory hole and no copy is done.
2048 *
2049 * If [addr...addr+count) doesn't includes any intersects with alive
2050 * vm_struct area, returns 0. @buf should be kernel's buffer.
2051 *
2052 * Note: In usual ops, vwrite() is never necessary because the caller
2053 * should know vmalloc() area is valid and can use memcpy().
2054 * This is for routines which have to access vmalloc area without
2055 * any informaion, as /dev/kmem.
2056 */
2057
2058 long vwrite(char *buf, char *addr, unsigned long count)
2059 {
2060 struct vmap_area *va;
2061 struct vm_struct *vm;
2062 char *vaddr;
2063 unsigned long n, buflen;
2064 int copied = 0;
2065
2066 /* Don't allow overflow */
2067 if ((unsigned long) addr + count < count)
2068 count = -(unsigned long) addr;
2069 buflen = count;
2070
2071 spin_lock(&vmap_area_lock);
2072 list_for_each_entry(va, &vmap_area_list, list) {
2073 if (!count)
2074 break;
2075
2076 if (!(va->flags & VM_VM_AREA))
2077 continue;
2078
2079 vm = va->vm;
2080 vaddr = (char *) vm->addr;
2081 if (addr >= vaddr + get_vm_area_size(vm))
2082 continue;
2083 while (addr < vaddr) {
2084 if (count == 0)
2085 goto finished;
2086 buf++;
2087 addr++;
2088 count--;
2089 }
2090 n = vaddr + get_vm_area_size(vm) - addr;
2091 if (n > count)
2092 n = count;
2093 if (!(vm->flags & VM_IOREMAP)) {
2094 aligned_vwrite(buf, addr, n);
2095 copied++;
2096 }
2097 buf += n;
2098 addr += n;
2099 count -= n;
2100 }
2101 finished:
2102 spin_unlock(&vmap_area_lock);
2103 if (!copied)
2104 return 0;
2105 return buflen;
2106 }
2107
2108 /**
2109 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2110 * @vma: vma to cover
2111 * @uaddr: target user address to start at
2112 * @kaddr: virtual address of vmalloc kernel memory
2113 * @size: size of map area
2114 *
2115 * Returns: 0 for success, -Exxx on failure
2116 *
2117 * This function checks that @kaddr is a valid vmalloc'ed area,
2118 * and that it is big enough to cover the range starting at
2119 * @uaddr in @vma. Will return failure if that criteria isn't
2120 * met.
2121 *
2122 * Similar to remap_pfn_range() (see mm/memory.c)
2123 */
2124 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2125 void *kaddr, unsigned long size)
2126 {
2127 struct vm_struct *area;
2128
2129 size = PAGE_ALIGN(size);
2130
2131 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2132 return -EINVAL;
2133
2134 area = find_vm_area(kaddr);
2135 if (!area)
2136 return -EINVAL;
2137
2138 if (!(area->flags & VM_USERMAP))
2139 return -EINVAL;
2140
2141 if (kaddr + size > area->addr + area->size)
2142 return -EINVAL;
2143
2144 do {
2145 struct page *page = vmalloc_to_page(kaddr);
2146 int ret;
2147
2148 ret = vm_insert_page(vma, uaddr, page);
2149 if (ret)
2150 return ret;
2151
2152 uaddr += PAGE_SIZE;
2153 kaddr += PAGE_SIZE;
2154 size -= PAGE_SIZE;
2155 } while (size > 0);
2156
2157 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2158
2159 return 0;
2160 }
2161 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2162
2163 /**
2164 * remap_vmalloc_range - map vmalloc pages to userspace
2165 * @vma: vma to cover (map full range of vma)
2166 * @addr: vmalloc memory
2167 * @pgoff: number of pages into addr before first page to map
2168 *
2169 * Returns: 0 for success, -Exxx on failure
2170 *
2171 * This function checks that addr is a valid vmalloc'ed area, and
2172 * that it is big enough to cover the vma. Will return failure if
2173 * that criteria isn't met.
2174 *
2175 * Similar to remap_pfn_range() (see mm/memory.c)
2176 */
2177 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2178 unsigned long pgoff)
2179 {
2180 return remap_vmalloc_range_partial(vma, vma->vm_start,
2181 addr + (pgoff << PAGE_SHIFT),
2182 vma->vm_end - vma->vm_start);
2183 }
2184 EXPORT_SYMBOL(remap_vmalloc_range);
2185
2186 /*
2187 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2188 * have one.
2189 */
2190 void __weak vmalloc_sync_all(void)
2191 {
2192 }
2193
2194
2195 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2196 {
2197 pte_t ***p = data;
2198
2199 if (p) {
2200 *(*p) = pte;
2201 (*p)++;
2202 }
2203 return 0;
2204 }
2205
2206 /**
2207 * alloc_vm_area - allocate a range of kernel address space
2208 * @size: size of the area
2209 * @ptes: returns the PTEs for the address space
2210 *
2211 * Returns: NULL on failure, vm_struct on success
2212 *
2213 * This function reserves a range of kernel address space, and
2214 * allocates pagetables to map that range. No actual mappings
2215 * are created.
2216 *
2217 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2218 * allocated for the VM area are returned.
2219 */
2220 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2221 {
2222 struct vm_struct *area;
2223
2224 area = get_vm_area_caller(size, VM_IOREMAP,
2225 __builtin_return_address(0));
2226 if (area == NULL)
2227 return NULL;
2228
2229 /*
2230 * This ensures that page tables are constructed for this region
2231 * of kernel virtual address space and mapped into init_mm.
2232 */
2233 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2234 size, f, ptes ? &ptes : NULL)) {
2235 free_vm_area(area);
2236 return NULL;
2237 }
2238
2239 return area;
2240 }
2241 EXPORT_SYMBOL_GPL(alloc_vm_area);
2242
2243 void free_vm_area(struct vm_struct *area)
2244 {
2245 struct vm_struct *ret;
2246 ret = remove_vm_area(area->addr);
2247 BUG_ON(ret != area);
2248 kfree(area);
2249 }
2250 EXPORT_SYMBOL_GPL(free_vm_area);
2251
2252 #ifdef CONFIG_SMP
2253 static struct vmap_area *node_to_va(struct rb_node *n)
2254 {
2255 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2256 }
2257
2258 /**
2259 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2260 * @end: target address
2261 * @pnext: out arg for the next vmap_area
2262 * @pprev: out arg for the previous vmap_area
2263 *
2264 * Returns: %true if either or both of next and prev are found,
2265 * %false if no vmap_area exists
2266 *
2267 * Find vmap_areas end addresses of which enclose @end. ie. if not
2268 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2269 */
2270 static bool pvm_find_next_prev(unsigned long end,
2271 struct vmap_area **pnext,
2272 struct vmap_area **pprev)
2273 {
2274 struct rb_node *n = vmap_area_root.rb_node;
2275 struct vmap_area *va = NULL;
2276
2277 while (n) {
2278 va = rb_entry(n, struct vmap_area, rb_node);
2279 if (end < va->va_end)
2280 n = n->rb_left;
2281 else if (end > va->va_end)
2282 n = n->rb_right;
2283 else
2284 break;
2285 }
2286
2287 if (!va)
2288 return false;
2289
2290 if (va->va_end > end) {
2291 *pnext = va;
2292 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2293 } else {
2294 *pprev = va;
2295 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2296 }
2297 return true;
2298 }
2299
2300 /**
2301 * pvm_determine_end - find the highest aligned address between two vmap_areas
2302 * @pnext: in/out arg for the next vmap_area
2303 * @pprev: in/out arg for the previous vmap_area
2304 * @align: alignment
2305 *
2306 * Returns: determined end address
2307 *
2308 * Find the highest aligned address between *@pnext and *@pprev below
2309 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2310 * down address is between the end addresses of the two vmap_areas.
2311 *
2312 * Please note that the address returned by this function may fall
2313 * inside *@pnext vmap_area. The caller is responsible for checking
2314 * that.
2315 */
2316 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2317 struct vmap_area **pprev,
2318 unsigned long align)
2319 {
2320 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2321 unsigned long addr;
2322
2323 if (*pnext)
2324 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2325 else
2326 addr = vmalloc_end;
2327
2328 while (*pprev && (*pprev)->va_end > addr) {
2329 *pnext = *pprev;
2330 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2331 }
2332
2333 return addr;
2334 }
2335
2336 /**
2337 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2338 * @offsets: array containing offset of each area
2339 * @sizes: array containing size of each area
2340 * @nr_vms: the number of areas to allocate
2341 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2342 *
2343 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2344 * vm_structs on success, %NULL on failure
2345 *
2346 * Percpu allocator wants to use congruent vm areas so that it can
2347 * maintain the offsets among percpu areas. This function allocates
2348 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2349 * be scattered pretty far, distance between two areas easily going up
2350 * to gigabytes. To avoid interacting with regular vmallocs, these
2351 * areas are allocated from top.
2352 *
2353 * Despite its complicated look, this allocator is rather simple. It
2354 * does everything top-down and scans areas from the end looking for
2355 * matching slot. While scanning, if any of the areas overlaps with
2356 * existing vmap_area, the base address is pulled down to fit the
2357 * area. Scanning is repeated till all the areas fit and then all
2358 * necessary data structres are inserted and the result is returned.
2359 */
2360 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2361 const size_t *sizes, int nr_vms,
2362 size_t align)
2363 {
2364 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2365 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2366 struct vmap_area **vas, *prev, *next;
2367 struct vm_struct **vms;
2368 int area, area2, last_area, term_area;
2369 unsigned long base, start, end, last_end;
2370 bool purged = false;
2371
2372 /* verify parameters and allocate data structures */
2373 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2374 for (last_area = 0, area = 0; area < nr_vms; area++) {
2375 start = offsets[area];
2376 end = start + sizes[area];
2377
2378 /* is everything aligned properly? */
2379 BUG_ON(!IS_ALIGNED(offsets[area], align));
2380 BUG_ON(!IS_ALIGNED(sizes[area], align));
2381
2382 /* detect the area with the highest address */
2383 if (start > offsets[last_area])
2384 last_area = area;
2385
2386 for (area2 = 0; area2 < nr_vms; area2++) {
2387 unsigned long start2 = offsets[area2];
2388 unsigned long end2 = start2 + sizes[area2];
2389
2390 if (area2 == area)
2391 continue;
2392
2393 BUG_ON(start2 >= start && start2 < end);
2394 BUG_ON(end2 <= end && end2 > start);
2395 }
2396 }
2397 last_end = offsets[last_area] + sizes[last_area];
2398
2399 if (vmalloc_end - vmalloc_start < last_end) {
2400 WARN_ON(true);
2401 return NULL;
2402 }
2403
2404 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2405 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2406 if (!vas || !vms)
2407 goto err_free2;
2408
2409 for (area = 0; area < nr_vms; area++) {
2410 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2411 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2412 if (!vas[area] || !vms[area])
2413 goto err_free;
2414 }
2415 retry:
2416 spin_lock(&vmap_area_lock);
2417
2418 /* start scanning - we scan from the top, begin with the last area */
2419 area = term_area = last_area;
2420 start = offsets[area];
2421 end = start + sizes[area];
2422
2423 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2424 base = vmalloc_end - last_end;
2425 goto found;
2426 }
2427 base = pvm_determine_end(&next, &prev, align) - end;
2428
2429 while (true) {
2430 BUG_ON(next && next->va_end <= base + end);
2431 BUG_ON(prev && prev->va_end > base + end);
2432
2433 /*
2434 * base might have underflowed, add last_end before
2435 * comparing.
2436 */
2437 if (base + last_end < vmalloc_start + last_end) {
2438 spin_unlock(&vmap_area_lock);
2439 if (!purged) {
2440 purge_vmap_area_lazy();
2441 purged = true;
2442 goto retry;
2443 }
2444 goto err_free;
2445 }
2446
2447 /*
2448 * If next overlaps, move base downwards so that it's
2449 * right below next and then recheck.
2450 */
2451 if (next && next->va_start < base + end) {
2452 base = pvm_determine_end(&next, &prev, align) - end;
2453 term_area = area;
2454 continue;
2455 }
2456
2457 /*
2458 * If prev overlaps, shift down next and prev and move
2459 * base so that it's right below new next and then
2460 * recheck.
2461 */
2462 if (prev && prev->va_end > base + start) {
2463 next = prev;
2464 prev = node_to_va(rb_prev(&next->rb_node));
2465 base = pvm_determine_end(&next, &prev, align) - end;
2466 term_area = area;
2467 continue;
2468 }
2469
2470 /*
2471 * This area fits, move on to the previous one. If
2472 * the previous one is the terminal one, we're done.
2473 */
2474 area = (area + nr_vms - 1) % nr_vms;
2475 if (area == term_area)
2476 break;
2477 start = offsets[area];
2478 end = start + sizes[area];
2479 pvm_find_next_prev(base + end, &next, &prev);
2480 }
2481 found:
2482 /* we've found a fitting base, insert all va's */
2483 for (area = 0; area < nr_vms; area++) {
2484 struct vmap_area *va = vas[area];
2485
2486 va->va_start = base + offsets[area];
2487 va->va_end = va->va_start + sizes[area];
2488 __insert_vmap_area(va);
2489 }
2490
2491 vmap_area_pcpu_hole = base + offsets[last_area];
2492
2493 spin_unlock(&vmap_area_lock);
2494
2495 /* insert all vm's */
2496 for (area = 0; area < nr_vms; area++)
2497 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2498 pcpu_get_vm_areas);
2499
2500 kfree(vas);
2501 return vms;
2502
2503 err_free:
2504 for (area = 0; area < nr_vms; area++) {
2505 kfree(vas[area]);
2506 kfree(vms[area]);
2507 }
2508 err_free2:
2509 kfree(vas);
2510 kfree(vms);
2511 return NULL;
2512 }
2513
2514 /**
2515 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2516 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2517 * @nr_vms: the number of allocated areas
2518 *
2519 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2520 */
2521 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2522 {
2523 int i;
2524
2525 for (i = 0; i < nr_vms; i++)
2526 free_vm_area(vms[i]);
2527 kfree(vms);
2528 }
2529 #endif /* CONFIG_SMP */
2530
2531 #ifdef CONFIG_PROC_FS
2532 static void *s_start(struct seq_file *m, loff_t *pos)
2533 __acquires(&vmap_area_lock)
2534 {
2535 loff_t n = *pos;
2536 struct vmap_area *va;
2537
2538 spin_lock(&vmap_area_lock);
2539 va = list_entry((&vmap_area_list)->next, typeof(*va), list);
2540 while (n > 0 && &va->list != &vmap_area_list) {
2541 n--;
2542 va = list_entry(va->list.next, typeof(*va), list);
2543 }
2544 if (!n && &va->list != &vmap_area_list)
2545 return va;
2546
2547 return NULL;
2548
2549 }
2550
2551 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2552 {
2553 struct vmap_area *va = p, *next;
2554
2555 ++*pos;
2556 next = list_entry(va->list.next, typeof(*va), list);
2557 if (&next->list != &vmap_area_list)
2558 return next;
2559
2560 return NULL;
2561 }
2562
2563 static void s_stop(struct seq_file *m, void *p)
2564 __releases(&vmap_area_lock)
2565 {
2566 spin_unlock(&vmap_area_lock);
2567 }
2568
2569 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2570 {
2571 if (IS_ENABLED(CONFIG_NUMA)) {
2572 unsigned int nr, *counters = m->private;
2573
2574 if (!counters)
2575 return;
2576
2577 if (v->flags & VM_UNINITIALIZED)
2578 return;
2579 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2580 smp_rmb();
2581
2582 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2583
2584 for (nr = 0; nr < v->nr_pages; nr++)
2585 counters[page_to_nid(v->pages[nr])]++;
2586
2587 for_each_node_state(nr, N_HIGH_MEMORY)
2588 if (counters[nr])
2589 seq_printf(m, " N%u=%u", nr, counters[nr]);
2590 }
2591 }
2592
2593 static int s_show(struct seq_file *m, void *p)
2594 {
2595 struct vmap_area *va = p;
2596 struct vm_struct *v;
2597
2598 /*
2599 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2600 * behalf of vmap area is being tear down or vm_map_ram allocation.
2601 */
2602 if (!(va->flags & VM_VM_AREA))
2603 return 0;
2604
2605 v = va->vm;
2606
2607 seq_printf(m, "0x%pK-0x%pK %7ld",
2608 v->addr, v->addr + v->size, v->size);
2609
2610 if (v->caller)
2611 seq_printf(m, " %pS", v->caller);
2612
2613 if (v->nr_pages)
2614 seq_printf(m, " pages=%d", v->nr_pages);
2615
2616 if (v->phys_addr)
2617 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2618
2619 if (v->flags & VM_IOREMAP)
2620 seq_puts(m, " ioremap");
2621
2622 if (v->flags & VM_ALLOC)
2623 seq_puts(m, " vmalloc");
2624
2625 if (v->flags & VM_MAP)
2626 seq_puts(m, " vmap");
2627
2628 if (v->flags & VM_USERMAP)
2629 seq_puts(m, " user");
2630
2631 if (v->flags & VM_VPAGES)
2632 seq_puts(m, " vpages");
2633
2634 show_numa_info(m, v);
2635 seq_putc(m, '\n');
2636 return 0;
2637 }
2638
2639 static const struct seq_operations vmalloc_op = {
2640 .start = s_start,
2641 .next = s_next,
2642 .stop = s_stop,
2643 .show = s_show,
2644 };
2645
2646 static int vmalloc_open(struct inode *inode, struct file *file)
2647 {
2648 if (IS_ENABLED(CONFIG_NUMA))
2649 return seq_open_private(file, &vmalloc_op,
2650 nr_node_ids * sizeof(unsigned int));
2651 else
2652 return seq_open(file, &vmalloc_op);
2653 }
2654
2655 static const struct file_operations proc_vmalloc_operations = {
2656 .open = vmalloc_open,
2657 .read = seq_read,
2658 .llseek = seq_lseek,
2659 .release = seq_release_private,
2660 };
2661
2662 static int __init proc_vmalloc_init(void)
2663 {
2664 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2665 return 0;
2666 }
2667 module_init(proc_vmalloc_init);
2668
2669 void get_vmalloc_info(struct vmalloc_info *vmi)
2670 {
2671 struct vmap_area *va;
2672 unsigned long free_area_size;
2673 unsigned long prev_end;
2674
2675 vmi->used = 0;
2676 vmi->largest_chunk = 0;
2677
2678 prev_end = VMALLOC_START;
2679
2680 rcu_read_lock();
2681
2682 if (list_empty(&vmap_area_list)) {
2683 vmi->largest_chunk = VMALLOC_TOTAL;
2684 goto out;
2685 }
2686
2687 list_for_each_entry_rcu(va, &vmap_area_list, list) {
2688 unsigned long addr = va->va_start;
2689
2690 /*
2691 * Some archs keep another range for modules in vmalloc space
2692 */
2693 if (addr < VMALLOC_START)
2694 continue;
2695 if (addr >= VMALLOC_END)
2696 break;
2697
2698 if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2699 continue;
2700
2701 vmi->used += (va->va_end - va->va_start);
2702
2703 free_area_size = addr - prev_end;
2704 if (vmi->largest_chunk < free_area_size)
2705 vmi->largest_chunk = free_area_size;
2706
2707 prev_end = va->va_end;
2708 }
2709
2710 if (VMALLOC_END - prev_end > vmi->largest_chunk)
2711 vmi->largest_chunk = VMALLOC_END - prev_end;
2712
2713 out:
2714 rcu_read_unlock();
2715 }
2716 #endif
2717