]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/vmalloc.c
mm/migrate.c: check pagelist in move_pages_and_store_status()
[mirror_ubuntu-jammy-kernel.git] / mm / vmalloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/vmalloc.c
4 *
5 * Copyright (C) 1993 Linus Torvalds
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
9 * Numa awareness, Christoph Lameter, SGI, June 2005
10 */
11
12 #include <linux/vmalloc.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/sched/signal.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/interrupt.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/set_memory.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/list.h>
26 #include <linux/notifier.h>
27 #include <linux/rbtree.h>
28 #include <linux/radix-tree.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/llist.h>
35 #include <linux/bitops.h>
36 #include <linux/rbtree_augmented.h>
37
38 #include <linux/uaccess.h>
39 #include <asm/tlbflush.h>
40 #include <asm/shmparam.h>
41
42 #include "internal.h"
43
44 bool is_vmalloc_addr(const void *x)
45 {
46 unsigned long addr = (unsigned long)x;
47
48 return addr >= VMALLOC_START && addr < VMALLOC_END;
49 }
50 EXPORT_SYMBOL(is_vmalloc_addr);
51
52 struct vfree_deferred {
53 struct llist_head list;
54 struct work_struct wq;
55 };
56 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
57
58 static void __vunmap(const void *, int);
59
60 static void free_work(struct work_struct *w)
61 {
62 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
63 struct llist_node *t, *llnode;
64
65 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
66 __vunmap((void *)llnode, 1);
67 }
68
69 /*** Page table manipulation functions ***/
70
71 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
72 {
73 pte_t *pte;
74
75 pte = pte_offset_kernel(pmd, addr);
76 do {
77 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
78 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
79 } while (pte++, addr += PAGE_SIZE, addr != end);
80 }
81
82 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
83 {
84 pmd_t *pmd;
85 unsigned long next;
86
87 pmd = pmd_offset(pud, addr);
88 do {
89 next = pmd_addr_end(addr, end);
90 if (pmd_clear_huge(pmd))
91 continue;
92 if (pmd_none_or_clear_bad(pmd))
93 continue;
94 vunmap_pte_range(pmd, addr, next);
95 } while (pmd++, addr = next, addr != end);
96 }
97
98 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
99 {
100 pud_t *pud;
101 unsigned long next;
102
103 pud = pud_offset(p4d, addr);
104 do {
105 next = pud_addr_end(addr, end);
106 if (pud_clear_huge(pud))
107 continue;
108 if (pud_none_or_clear_bad(pud))
109 continue;
110 vunmap_pmd_range(pud, addr, next);
111 } while (pud++, addr = next, addr != end);
112 }
113
114 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
115 {
116 p4d_t *p4d;
117 unsigned long next;
118
119 p4d = p4d_offset(pgd, addr);
120 do {
121 next = p4d_addr_end(addr, end);
122 if (p4d_clear_huge(p4d))
123 continue;
124 if (p4d_none_or_clear_bad(p4d))
125 continue;
126 vunmap_pud_range(p4d, addr, next);
127 } while (p4d++, addr = next, addr != end);
128 }
129
130 static void vunmap_page_range(unsigned long addr, unsigned long end)
131 {
132 pgd_t *pgd;
133 unsigned long next;
134
135 BUG_ON(addr >= end);
136 pgd = pgd_offset_k(addr);
137 do {
138 next = pgd_addr_end(addr, end);
139 if (pgd_none_or_clear_bad(pgd))
140 continue;
141 vunmap_p4d_range(pgd, addr, next);
142 } while (pgd++, addr = next, addr != end);
143 }
144
145 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
146 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
147 {
148 pte_t *pte;
149
150 /*
151 * nr is a running index into the array which helps higher level
152 * callers keep track of where we're up to.
153 */
154
155 pte = pte_alloc_kernel(pmd, addr);
156 if (!pte)
157 return -ENOMEM;
158 do {
159 struct page *page = pages[*nr];
160
161 if (WARN_ON(!pte_none(*pte)))
162 return -EBUSY;
163 if (WARN_ON(!page))
164 return -ENOMEM;
165 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
166 (*nr)++;
167 } while (pte++, addr += PAGE_SIZE, addr != end);
168 return 0;
169 }
170
171 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
172 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
173 {
174 pmd_t *pmd;
175 unsigned long next;
176
177 pmd = pmd_alloc(&init_mm, pud, addr);
178 if (!pmd)
179 return -ENOMEM;
180 do {
181 next = pmd_addr_end(addr, end);
182 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
183 return -ENOMEM;
184 } while (pmd++, addr = next, addr != end);
185 return 0;
186 }
187
188 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
189 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
190 {
191 pud_t *pud;
192 unsigned long next;
193
194 pud = pud_alloc(&init_mm, p4d, addr);
195 if (!pud)
196 return -ENOMEM;
197 do {
198 next = pud_addr_end(addr, end);
199 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
200 return -ENOMEM;
201 } while (pud++, addr = next, addr != end);
202 return 0;
203 }
204
205 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
206 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
207 {
208 p4d_t *p4d;
209 unsigned long next;
210
211 p4d = p4d_alloc(&init_mm, pgd, addr);
212 if (!p4d)
213 return -ENOMEM;
214 do {
215 next = p4d_addr_end(addr, end);
216 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
217 return -ENOMEM;
218 } while (p4d++, addr = next, addr != end);
219 return 0;
220 }
221
222 /*
223 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
224 * will have pfns corresponding to the "pages" array.
225 *
226 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
227 */
228 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
229 pgprot_t prot, struct page **pages)
230 {
231 pgd_t *pgd;
232 unsigned long next;
233 unsigned long addr = start;
234 int err = 0;
235 int nr = 0;
236
237 BUG_ON(addr >= end);
238 pgd = pgd_offset_k(addr);
239 do {
240 next = pgd_addr_end(addr, end);
241 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
242 if (err)
243 return err;
244 } while (pgd++, addr = next, addr != end);
245
246 return nr;
247 }
248
249 static int vmap_page_range(unsigned long start, unsigned long end,
250 pgprot_t prot, struct page **pages)
251 {
252 int ret;
253
254 ret = vmap_page_range_noflush(start, end, prot, pages);
255 flush_cache_vmap(start, end);
256 return ret;
257 }
258
259 int is_vmalloc_or_module_addr(const void *x)
260 {
261 /*
262 * ARM, x86-64 and sparc64 put modules in a special place,
263 * and fall back on vmalloc() if that fails. Others
264 * just put it in the vmalloc space.
265 */
266 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
267 unsigned long addr = (unsigned long)x;
268 if (addr >= MODULES_VADDR && addr < MODULES_END)
269 return 1;
270 #endif
271 return is_vmalloc_addr(x);
272 }
273
274 /*
275 * Walk a vmap address to the struct page it maps.
276 */
277 struct page *vmalloc_to_page(const void *vmalloc_addr)
278 {
279 unsigned long addr = (unsigned long) vmalloc_addr;
280 struct page *page = NULL;
281 pgd_t *pgd = pgd_offset_k(addr);
282 p4d_t *p4d;
283 pud_t *pud;
284 pmd_t *pmd;
285 pte_t *ptep, pte;
286
287 /*
288 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
289 * architectures that do not vmalloc module space
290 */
291 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
292
293 if (pgd_none(*pgd))
294 return NULL;
295 p4d = p4d_offset(pgd, addr);
296 if (p4d_none(*p4d))
297 return NULL;
298 pud = pud_offset(p4d, addr);
299
300 /*
301 * Don't dereference bad PUD or PMD (below) entries. This will also
302 * identify huge mappings, which we may encounter on architectures
303 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
304 * identified as vmalloc addresses by is_vmalloc_addr(), but are
305 * not [unambiguously] associated with a struct page, so there is
306 * no correct value to return for them.
307 */
308 WARN_ON_ONCE(pud_bad(*pud));
309 if (pud_none(*pud) || pud_bad(*pud))
310 return NULL;
311 pmd = pmd_offset(pud, addr);
312 WARN_ON_ONCE(pmd_bad(*pmd));
313 if (pmd_none(*pmd) || pmd_bad(*pmd))
314 return NULL;
315
316 ptep = pte_offset_map(pmd, addr);
317 pte = *ptep;
318 if (pte_present(pte))
319 page = pte_page(pte);
320 pte_unmap(ptep);
321 return page;
322 }
323 EXPORT_SYMBOL(vmalloc_to_page);
324
325 /*
326 * Map a vmalloc()-space virtual address to the physical page frame number.
327 */
328 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
329 {
330 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
331 }
332 EXPORT_SYMBOL(vmalloc_to_pfn);
333
334
335 /*** Global kva allocator ***/
336
337 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
338 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
339
340
341 static DEFINE_SPINLOCK(vmap_area_lock);
342 static DEFINE_SPINLOCK(free_vmap_area_lock);
343 /* Export for kexec only */
344 LIST_HEAD(vmap_area_list);
345 static LLIST_HEAD(vmap_purge_list);
346 static struct rb_root vmap_area_root = RB_ROOT;
347 static bool vmap_initialized __read_mostly;
348
349 /*
350 * This kmem_cache is used for vmap_area objects. Instead of
351 * allocating from slab we reuse an object from this cache to
352 * make things faster. Especially in "no edge" splitting of
353 * free block.
354 */
355 static struct kmem_cache *vmap_area_cachep;
356
357 /*
358 * This linked list is used in pair with free_vmap_area_root.
359 * It gives O(1) access to prev/next to perform fast coalescing.
360 */
361 static LIST_HEAD(free_vmap_area_list);
362
363 /*
364 * This augment red-black tree represents the free vmap space.
365 * All vmap_area objects in this tree are sorted by va->va_start
366 * address. It is used for allocation and merging when a vmap
367 * object is released.
368 *
369 * Each vmap_area node contains a maximum available free block
370 * of its sub-tree, right or left. Therefore it is possible to
371 * find a lowest match of free area.
372 */
373 static struct rb_root free_vmap_area_root = RB_ROOT;
374
375 /*
376 * Preload a CPU with one object for "no edge" split case. The
377 * aim is to get rid of allocations from the atomic context, thus
378 * to use more permissive allocation masks.
379 */
380 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
381
382 static __always_inline unsigned long
383 va_size(struct vmap_area *va)
384 {
385 return (va->va_end - va->va_start);
386 }
387
388 static __always_inline unsigned long
389 get_subtree_max_size(struct rb_node *node)
390 {
391 struct vmap_area *va;
392
393 va = rb_entry_safe(node, struct vmap_area, rb_node);
394 return va ? va->subtree_max_size : 0;
395 }
396
397 /*
398 * Gets called when remove the node and rotate.
399 */
400 static __always_inline unsigned long
401 compute_subtree_max_size(struct vmap_area *va)
402 {
403 return max3(va_size(va),
404 get_subtree_max_size(va->rb_node.rb_left),
405 get_subtree_max_size(va->rb_node.rb_right));
406 }
407
408 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
409 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
410
411 static void purge_vmap_area_lazy(void);
412 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
413 static unsigned long lazy_max_pages(void);
414
415 static atomic_long_t nr_vmalloc_pages;
416
417 unsigned long vmalloc_nr_pages(void)
418 {
419 return atomic_long_read(&nr_vmalloc_pages);
420 }
421
422 static struct vmap_area *__find_vmap_area(unsigned long addr)
423 {
424 struct rb_node *n = vmap_area_root.rb_node;
425
426 while (n) {
427 struct vmap_area *va;
428
429 va = rb_entry(n, struct vmap_area, rb_node);
430 if (addr < va->va_start)
431 n = n->rb_left;
432 else if (addr >= va->va_end)
433 n = n->rb_right;
434 else
435 return va;
436 }
437
438 return NULL;
439 }
440
441 /*
442 * This function returns back addresses of parent node
443 * and its left or right link for further processing.
444 */
445 static __always_inline struct rb_node **
446 find_va_links(struct vmap_area *va,
447 struct rb_root *root, struct rb_node *from,
448 struct rb_node **parent)
449 {
450 struct vmap_area *tmp_va;
451 struct rb_node **link;
452
453 if (root) {
454 link = &root->rb_node;
455 if (unlikely(!*link)) {
456 *parent = NULL;
457 return link;
458 }
459 } else {
460 link = &from;
461 }
462
463 /*
464 * Go to the bottom of the tree. When we hit the last point
465 * we end up with parent rb_node and correct direction, i name
466 * it link, where the new va->rb_node will be attached to.
467 */
468 do {
469 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
470
471 /*
472 * During the traversal we also do some sanity check.
473 * Trigger the BUG() if there are sides(left/right)
474 * or full overlaps.
475 */
476 if (va->va_start < tmp_va->va_end &&
477 va->va_end <= tmp_va->va_start)
478 link = &(*link)->rb_left;
479 else if (va->va_end > tmp_va->va_start &&
480 va->va_start >= tmp_va->va_end)
481 link = &(*link)->rb_right;
482 else
483 BUG();
484 } while (*link);
485
486 *parent = &tmp_va->rb_node;
487 return link;
488 }
489
490 static __always_inline struct list_head *
491 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
492 {
493 struct list_head *list;
494
495 if (unlikely(!parent))
496 /*
497 * The red-black tree where we try to find VA neighbors
498 * before merging or inserting is empty, i.e. it means
499 * there is no free vmap space. Normally it does not
500 * happen but we handle this case anyway.
501 */
502 return NULL;
503
504 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
505 return (&parent->rb_right == link ? list->next : list);
506 }
507
508 static __always_inline void
509 link_va(struct vmap_area *va, struct rb_root *root,
510 struct rb_node *parent, struct rb_node **link, struct list_head *head)
511 {
512 /*
513 * VA is still not in the list, but we can
514 * identify its future previous list_head node.
515 */
516 if (likely(parent)) {
517 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
518 if (&parent->rb_right != link)
519 head = head->prev;
520 }
521
522 /* Insert to the rb-tree */
523 rb_link_node(&va->rb_node, parent, link);
524 if (root == &free_vmap_area_root) {
525 /*
526 * Some explanation here. Just perform simple insertion
527 * to the tree. We do not set va->subtree_max_size to
528 * its current size before calling rb_insert_augmented().
529 * It is because of we populate the tree from the bottom
530 * to parent levels when the node _is_ in the tree.
531 *
532 * Therefore we set subtree_max_size to zero after insertion,
533 * to let __augment_tree_propagate_from() puts everything to
534 * the correct order later on.
535 */
536 rb_insert_augmented(&va->rb_node,
537 root, &free_vmap_area_rb_augment_cb);
538 va->subtree_max_size = 0;
539 } else {
540 rb_insert_color(&va->rb_node, root);
541 }
542
543 /* Address-sort this list */
544 list_add(&va->list, head);
545 }
546
547 static __always_inline void
548 unlink_va(struct vmap_area *va, struct rb_root *root)
549 {
550 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
551 return;
552
553 if (root == &free_vmap_area_root)
554 rb_erase_augmented(&va->rb_node,
555 root, &free_vmap_area_rb_augment_cb);
556 else
557 rb_erase(&va->rb_node, root);
558
559 list_del(&va->list);
560 RB_CLEAR_NODE(&va->rb_node);
561 }
562
563 #if DEBUG_AUGMENT_PROPAGATE_CHECK
564 static void
565 augment_tree_propagate_check(struct rb_node *n)
566 {
567 struct vmap_area *va;
568 struct rb_node *node;
569 unsigned long size;
570 bool found = false;
571
572 if (n == NULL)
573 return;
574
575 va = rb_entry(n, struct vmap_area, rb_node);
576 size = va->subtree_max_size;
577 node = n;
578
579 while (node) {
580 va = rb_entry(node, struct vmap_area, rb_node);
581
582 if (get_subtree_max_size(node->rb_left) == size) {
583 node = node->rb_left;
584 } else {
585 if (va_size(va) == size) {
586 found = true;
587 break;
588 }
589
590 node = node->rb_right;
591 }
592 }
593
594 if (!found) {
595 va = rb_entry(n, struct vmap_area, rb_node);
596 pr_emerg("tree is corrupted: %lu, %lu\n",
597 va_size(va), va->subtree_max_size);
598 }
599
600 augment_tree_propagate_check(n->rb_left);
601 augment_tree_propagate_check(n->rb_right);
602 }
603 #endif
604
605 /*
606 * This function populates subtree_max_size from bottom to upper
607 * levels starting from VA point. The propagation must be done
608 * when VA size is modified by changing its va_start/va_end. Or
609 * in case of newly inserting of VA to the tree.
610 *
611 * It means that __augment_tree_propagate_from() must be called:
612 * - After VA has been inserted to the tree(free path);
613 * - After VA has been shrunk(allocation path);
614 * - After VA has been increased(merging path).
615 *
616 * Please note that, it does not mean that upper parent nodes
617 * and their subtree_max_size are recalculated all the time up
618 * to the root node.
619 *
620 * 4--8
621 * /\
622 * / \
623 * / \
624 * 2--2 8--8
625 *
626 * For example if we modify the node 4, shrinking it to 2, then
627 * no any modification is required. If we shrink the node 2 to 1
628 * its subtree_max_size is updated only, and set to 1. If we shrink
629 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
630 * node becomes 4--6.
631 */
632 static __always_inline void
633 augment_tree_propagate_from(struct vmap_area *va)
634 {
635 struct rb_node *node = &va->rb_node;
636 unsigned long new_va_sub_max_size;
637
638 while (node) {
639 va = rb_entry(node, struct vmap_area, rb_node);
640 new_va_sub_max_size = compute_subtree_max_size(va);
641
642 /*
643 * If the newly calculated maximum available size of the
644 * subtree is equal to the current one, then it means that
645 * the tree is propagated correctly. So we have to stop at
646 * this point to save cycles.
647 */
648 if (va->subtree_max_size == new_va_sub_max_size)
649 break;
650
651 va->subtree_max_size = new_va_sub_max_size;
652 node = rb_parent(&va->rb_node);
653 }
654
655 #if DEBUG_AUGMENT_PROPAGATE_CHECK
656 augment_tree_propagate_check(free_vmap_area_root.rb_node);
657 #endif
658 }
659
660 static void
661 insert_vmap_area(struct vmap_area *va,
662 struct rb_root *root, struct list_head *head)
663 {
664 struct rb_node **link;
665 struct rb_node *parent;
666
667 link = find_va_links(va, root, NULL, &parent);
668 link_va(va, root, parent, link, head);
669 }
670
671 static void
672 insert_vmap_area_augment(struct vmap_area *va,
673 struct rb_node *from, struct rb_root *root,
674 struct list_head *head)
675 {
676 struct rb_node **link;
677 struct rb_node *parent;
678
679 if (from)
680 link = find_va_links(va, NULL, from, &parent);
681 else
682 link = find_va_links(va, root, NULL, &parent);
683
684 link_va(va, root, parent, link, head);
685 augment_tree_propagate_from(va);
686 }
687
688 /*
689 * Merge de-allocated chunk of VA memory with previous
690 * and next free blocks. If coalesce is not done a new
691 * free area is inserted. If VA has been merged, it is
692 * freed.
693 */
694 static __always_inline struct vmap_area *
695 merge_or_add_vmap_area(struct vmap_area *va,
696 struct rb_root *root, struct list_head *head)
697 {
698 struct vmap_area *sibling;
699 struct list_head *next;
700 struct rb_node **link;
701 struct rb_node *parent;
702 bool merged = false;
703
704 /*
705 * Find a place in the tree where VA potentially will be
706 * inserted, unless it is merged with its sibling/siblings.
707 */
708 link = find_va_links(va, root, NULL, &parent);
709
710 /*
711 * Get next node of VA to check if merging can be done.
712 */
713 next = get_va_next_sibling(parent, link);
714 if (unlikely(next == NULL))
715 goto insert;
716
717 /*
718 * start end
719 * | |
720 * |<------VA------>|<-----Next----->|
721 * | |
722 * start end
723 */
724 if (next != head) {
725 sibling = list_entry(next, struct vmap_area, list);
726 if (sibling->va_start == va->va_end) {
727 sibling->va_start = va->va_start;
728
729 /* Check and update the tree if needed. */
730 augment_tree_propagate_from(sibling);
731
732 /* Free vmap_area object. */
733 kmem_cache_free(vmap_area_cachep, va);
734
735 /* Point to the new merged area. */
736 va = sibling;
737 merged = true;
738 }
739 }
740
741 /*
742 * start end
743 * | |
744 * |<-----Prev----->|<------VA------>|
745 * | |
746 * start end
747 */
748 if (next->prev != head) {
749 sibling = list_entry(next->prev, struct vmap_area, list);
750 if (sibling->va_end == va->va_start) {
751 sibling->va_end = va->va_end;
752
753 /* Check and update the tree if needed. */
754 augment_tree_propagate_from(sibling);
755
756 if (merged)
757 unlink_va(va, root);
758
759 /* Free vmap_area object. */
760 kmem_cache_free(vmap_area_cachep, va);
761
762 /* Point to the new merged area. */
763 va = sibling;
764 merged = true;
765 }
766 }
767
768 insert:
769 if (!merged) {
770 link_va(va, root, parent, link, head);
771 augment_tree_propagate_from(va);
772 }
773
774 return va;
775 }
776
777 static __always_inline bool
778 is_within_this_va(struct vmap_area *va, unsigned long size,
779 unsigned long align, unsigned long vstart)
780 {
781 unsigned long nva_start_addr;
782
783 if (va->va_start > vstart)
784 nva_start_addr = ALIGN(va->va_start, align);
785 else
786 nva_start_addr = ALIGN(vstart, align);
787
788 /* Can be overflowed due to big size or alignment. */
789 if (nva_start_addr + size < nva_start_addr ||
790 nva_start_addr < vstart)
791 return false;
792
793 return (nva_start_addr + size <= va->va_end);
794 }
795
796 /*
797 * Find the first free block(lowest start address) in the tree,
798 * that will accomplish the request corresponding to passing
799 * parameters.
800 */
801 static __always_inline struct vmap_area *
802 find_vmap_lowest_match(unsigned long size,
803 unsigned long align, unsigned long vstart)
804 {
805 struct vmap_area *va;
806 struct rb_node *node;
807 unsigned long length;
808
809 /* Start from the root. */
810 node = free_vmap_area_root.rb_node;
811
812 /* Adjust the search size for alignment overhead. */
813 length = size + align - 1;
814
815 while (node) {
816 va = rb_entry(node, struct vmap_area, rb_node);
817
818 if (get_subtree_max_size(node->rb_left) >= length &&
819 vstart < va->va_start) {
820 node = node->rb_left;
821 } else {
822 if (is_within_this_va(va, size, align, vstart))
823 return va;
824
825 /*
826 * Does not make sense to go deeper towards the right
827 * sub-tree if it does not have a free block that is
828 * equal or bigger to the requested search length.
829 */
830 if (get_subtree_max_size(node->rb_right) >= length) {
831 node = node->rb_right;
832 continue;
833 }
834
835 /*
836 * OK. We roll back and find the first right sub-tree,
837 * that will satisfy the search criteria. It can happen
838 * only once due to "vstart" restriction.
839 */
840 while ((node = rb_parent(node))) {
841 va = rb_entry(node, struct vmap_area, rb_node);
842 if (is_within_this_va(va, size, align, vstart))
843 return va;
844
845 if (get_subtree_max_size(node->rb_right) >= length &&
846 vstart <= va->va_start) {
847 node = node->rb_right;
848 break;
849 }
850 }
851 }
852 }
853
854 return NULL;
855 }
856
857 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
858 #include <linux/random.h>
859
860 static struct vmap_area *
861 find_vmap_lowest_linear_match(unsigned long size,
862 unsigned long align, unsigned long vstart)
863 {
864 struct vmap_area *va;
865
866 list_for_each_entry(va, &free_vmap_area_list, list) {
867 if (!is_within_this_va(va, size, align, vstart))
868 continue;
869
870 return va;
871 }
872
873 return NULL;
874 }
875
876 static void
877 find_vmap_lowest_match_check(unsigned long size)
878 {
879 struct vmap_area *va_1, *va_2;
880 unsigned long vstart;
881 unsigned int rnd;
882
883 get_random_bytes(&rnd, sizeof(rnd));
884 vstart = VMALLOC_START + rnd;
885
886 va_1 = find_vmap_lowest_match(size, 1, vstart);
887 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
888
889 if (va_1 != va_2)
890 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
891 va_1, va_2, vstart);
892 }
893 #endif
894
895 enum fit_type {
896 NOTHING_FIT = 0,
897 FL_FIT_TYPE = 1, /* full fit */
898 LE_FIT_TYPE = 2, /* left edge fit */
899 RE_FIT_TYPE = 3, /* right edge fit */
900 NE_FIT_TYPE = 4 /* no edge fit */
901 };
902
903 static __always_inline enum fit_type
904 classify_va_fit_type(struct vmap_area *va,
905 unsigned long nva_start_addr, unsigned long size)
906 {
907 enum fit_type type;
908
909 /* Check if it is within VA. */
910 if (nva_start_addr < va->va_start ||
911 nva_start_addr + size > va->va_end)
912 return NOTHING_FIT;
913
914 /* Now classify. */
915 if (va->va_start == nva_start_addr) {
916 if (va->va_end == nva_start_addr + size)
917 type = FL_FIT_TYPE;
918 else
919 type = LE_FIT_TYPE;
920 } else if (va->va_end == nva_start_addr + size) {
921 type = RE_FIT_TYPE;
922 } else {
923 type = NE_FIT_TYPE;
924 }
925
926 return type;
927 }
928
929 static __always_inline int
930 adjust_va_to_fit_type(struct vmap_area *va,
931 unsigned long nva_start_addr, unsigned long size,
932 enum fit_type type)
933 {
934 struct vmap_area *lva = NULL;
935
936 if (type == FL_FIT_TYPE) {
937 /*
938 * No need to split VA, it fully fits.
939 *
940 * | |
941 * V NVA V
942 * |---------------|
943 */
944 unlink_va(va, &free_vmap_area_root);
945 kmem_cache_free(vmap_area_cachep, va);
946 } else if (type == LE_FIT_TYPE) {
947 /*
948 * Split left edge of fit VA.
949 *
950 * | |
951 * V NVA V R
952 * |-------|-------|
953 */
954 va->va_start += size;
955 } else if (type == RE_FIT_TYPE) {
956 /*
957 * Split right edge of fit VA.
958 *
959 * | |
960 * L V NVA V
961 * |-------|-------|
962 */
963 va->va_end = nva_start_addr;
964 } else if (type == NE_FIT_TYPE) {
965 /*
966 * Split no edge of fit VA.
967 *
968 * | |
969 * L V NVA V R
970 * |---|-------|---|
971 */
972 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
973 if (unlikely(!lva)) {
974 /*
975 * For percpu allocator we do not do any pre-allocation
976 * and leave it as it is. The reason is it most likely
977 * never ends up with NE_FIT_TYPE splitting. In case of
978 * percpu allocations offsets and sizes are aligned to
979 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
980 * are its main fitting cases.
981 *
982 * There are a few exceptions though, as an example it is
983 * a first allocation (early boot up) when we have "one"
984 * big free space that has to be split.
985 *
986 * Also we can hit this path in case of regular "vmap"
987 * allocations, if "this" current CPU was not preloaded.
988 * See the comment in alloc_vmap_area() why. If so, then
989 * GFP_NOWAIT is used instead to get an extra object for
990 * split purpose. That is rare and most time does not
991 * occur.
992 *
993 * What happens if an allocation gets failed. Basically,
994 * an "overflow" path is triggered to purge lazily freed
995 * areas to free some memory, then, the "retry" path is
996 * triggered to repeat one more time. See more details
997 * in alloc_vmap_area() function.
998 */
999 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1000 if (!lva)
1001 return -1;
1002 }
1003
1004 /*
1005 * Build the remainder.
1006 */
1007 lva->va_start = va->va_start;
1008 lva->va_end = nva_start_addr;
1009
1010 /*
1011 * Shrink this VA to remaining size.
1012 */
1013 va->va_start = nva_start_addr + size;
1014 } else {
1015 return -1;
1016 }
1017
1018 if (type != FL_FIT_TYPE) {
1019 augment_tree_propagate_from(va);
1020
1021 if (lva) /* type == NE_FIT_TYPE */
1022 insert_vmap_area_augment(lva, &va->rb_node,
1023 &free_vmap_area_root, &free_vmap_area_list);
1024 }
1025
1026 return 0;
1027 }
1028
1029 /*
1030 * Returns a start address of the newly allocated area, if success.
1031 * Otherwise a vend is returned that indicates failure.
1032 */
1033 static __always_inline unsigned long
1034 __alloc_vmap_area(unsigned long size, unsigned long align,
1035 unsigned long vstart, unsigned long vend)
1036 {
1037 unsigned long nva_start_addr;
1038 struct vmap_area *va;
1039 enum fit_type type;
1040 int ret;
1041
1042 va = find_vmap_lowest_match(size, align, vstart);
1043 if (unlikely(!va))
1044 return vend;
1045
1046 if (va->va_start > vstart)
1047 nva_start_addr = ALIGN(va->va_start, align);
1048 else
1049 nva_start_addr = ALIGN(vstart, align);
1050
1051 /* Check the "vend" restriction. */
1052 if (nva_start_addr + size > vend)
1053 return vend;
1054
1055 /* Classify what we have found. */
1056 type = classify_va_fit_type(va, nva_start_addr, size);
1057 if (WARN_ON_ONCE(type == NOTHING_FIT))
1058 return vend;
1059
1060 /* Update the free vmap_area. */
1061 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1062 if (ret)
1063 return vend;
1064
1065 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1066 find_vmap_lowest_match_check(size);
1067 #endif
1068
1069 return nva_start_addr;
1070 }
1071
1072 /*
1073 * Free a region of KVA allocated by alloc_vmap_area
1074 */
1075 static void free_vmap_area(struct vmap_area *va)
1076 {
1077 /*
1078 * Remove from the busy tree/list.
1079 */
1080 spin_lock(&vmap_area_lock);
1081 unlink_va(va, &vmap_area_root);
1082 spin_unlock(&vmap_area_lock);
1083
1084 /*
1085 * Insert/Merge it back to the free tree/list.
1086 */
1087 spin_lock(&free_vmap_area_lock);
1088 merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
1089 spin_unlock(&free_vmap_area_lock);
1090 }
1091
1092 /*
1093 * Allocate a region of KVA of the specified size and alignment, within the
1094 * vstart and vend.
1095 */
1096 static struct vmap_area *alloc_vmap_area(unsigned long size,
1097 unsigned long align,
1098 unsigned long vstart, unsigned long vend,
1099 int node, gfp_t gfp_mask)
1100 {
1101 struct vmap_area *va, *pva;
1102 unsigned long addr;
1103 int purged = 0;
1104 int ret;
1105
1106 BUG_ON(!size);
1107 BUG_ON(offset_in_page(size));
1108 BUG_ON(!is_power_of_2(align));
1109
1110 if (unlikely(!vmap_initialized))
1111 return ERR_PTR(-EBUSY);
1112
1113 might_sleep();
1114 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1115
1116 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1117 if (unlikely(!va))
1118 return ERR_PTR(-ENOMEM);
1119
1120 /*
1121 * Only scan the relevant parts containing pointers to other objects
1122 * to avoid false negatives.
1123 */
1124 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1125
1126 retry:
1127 /*
1128 * Preload this CPU with one extra vmap_area object. It is used
1129 * when fit type of free area is NE_FIT_TYPE. Please note, it
1130 * does not guarantee that an allocation occurs on a CPU that
1131 * is preloaded, instead we minimize the case when it is not.
1132 * It can happen because of cpu migration, because there is a
1133 * race until the below spinlock is taken.
1134 *
1135 * The preload is done in non-atomic context, thus it allows us
1136 * to use more permissive allocation masks to be more stable under
1137 * low memory condition and high memory pressure. In rare case,
1138 * if not preloaded, GFP_NOWAIT is used.
1139 *
1140 * Set "pva" to NULL here, because of "retry" path.
1141 */
1142 pva = NULL;
1143
1144 if (!this_cpu_read(ne_fit_preload_node))
1145 /*
1146 * Even if it fails we do not really care about that.
1147 * Just proceed as it is. If needed "overflow" path
1148 * will refill the cache we allocate from.
1149 */
1150 pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1151
1152 spin_lock(&free_vmap_area_lock);
1153
1154 if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1155 kmem_cache_free(vmap_area_cachep, pva);
1156
1157 /*
1158 * If an allocation fails, the "vend" address is
1159 * returned. Therefore trigger the overflow path.
1160 */
1161 addr = __alloc_vmap_area(size, align, vstart, vend);
1162 spin_unlock(&free_vmap_area_lock);
1163
1164 if (unlikely(addr == vend))
1165 goto overflow;
1166
1167 va->va_start = addr;
1168 va->va_end = addr + size;
1169 va->vm = NULL;
1170
1171
1172 spin_lock(&vmap_area_lock);
1173 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1174 spin_unlock(&vmap_area_lock);
1175
1176 BUG_ON(!IS_ALIGNED(va->va_start, align));
1177 BUG_ON(va->va_start < vstart);
1178 BUG_ON(va->va_end > vend);
1179
1180 ret = kasan_populate_vmalloc(addr, size);
1181 if (ret) {
1182 free_vmap_area(va);
1183 return ERR_PTR(ret);
1184 }
1185
1186 return va;
1187
1188 overflow:
1189 if (!purged) {
1190 purge_vmap_area_lazy();
1191 purged = 1;
1192 goto retry;
1193 }
1194
1195 if (gfpflags_allow_blocking(gfp_mask)) {
1196 unsigned long freed = 0;
1197 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1198 if (freed > 0) {
1199 purged = 0;
1200 goto retry;
1201 }
1202 }
1203
1204 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1205 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1206 size);
1207
1208 kmem_cache_free(vmap_area_cachep, va);
1209 return ERR_PTR(-EBUSY);
1210 }
1211
1212 int register_vmap_purge_notifier(struct notifier_block *nb)
1213 {
1214 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1215 }
1216 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1217
1218 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1219 {
1220 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1221 }
1222 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1223
1224 /*
1225 * Clear the pagetable entries of a given vmap_area
1226 */
1227 static void unmap_vmap_area(struct vmap_area *va)
1228 {
1229 vunmap_page_range(va->va_start, va->va_end);
1230 }
1231
1232 /*
1233 * lazy_max_pages is the maximum amount of virtual address space we gather up
1234 * before attempting to purge with a TLB flush.
1235 *
1236 * There is a tradeoff here: a larger number will cover more kernel page tables
1237 * and take slightly longer to purge, but it will linearly reduce the number of
1238 * global TLB flushes that must be performed. It would seem natural to scale
1239 * this number up linearly with the number of CPUs (because vmapping activity
1240 * could also scale linearly with the number of CPUs), however it is likely
1241 * that in practice, workloads might be constrained in other ways that mean
1242 * vmap activity will not scale linearly with CPUs. Also, I want to be
1243 * conservative and not introduce a big latency on huge systems, so go with
1244 * a less aggressive log scale. It will still be an improvement over the old
1245 * code, and it will be simple to change the scale factor if we find that it
1246 * becomes a problem on bigger systems.
1247 */
1248 static unsigned long lazy_max_pages(void)
1249 {
1250 unsigned int log;
1251
1252 log = fls(num_online_cpus());
1253
1254 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1255 }
1256
1257 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1258
1259 /*
1260 * Serialize vmap purging. There is no actual criticial section protected
1261 * by this look, but we want to avoid concurrent calls for performance
1262 * reasons and to make the pcpu_get_vm_areas more deterministic.
1263 */
1264 static DEFINE_MUTEX(vmap_purge_lock);
1265
1266 /* for per-CPU blocks */
1267 static void purge_fragmented_blocks_allcpus(void);
1268
1269 /*
1270 * called before a call to iounmap() if the caller wants vm_area_struct's
1271 * immediately freed.
1272 */
1273 void set_iounmap_nonlazy(void)
1274 {
1275 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1276 }
1277
1278 /*
1279 * Purges all lazily-freed vmap areas.
1280 */
1281 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1282 {
1283 unsigned long resched_threshold;
1284 struct llist_node *valist;
1285 struct vmap_area *va;
1286 struct vmap_area *n_va;
1287
1288 lockdep_assert_held(&vmap_purge_lock);
1289
1290 valist = llist_del_all(&vmap_purge_list);
1291 if (unlikely(valist == NULL))
1292 return false;
1293
1294 /*
1295 * First make sure the mappings are removed from all page-tables
1296 * before they are freed.
1297 */
1298 vmalloc_sync_unmappings();
1299
1300 /*
1301 * TODO: to calculate a flush range without looping.
1302 * The list can be up to lazy_max_pages() elements.
1303 */
1304 llist_for_each_entry(va, valist, purge_list) {
1305 if (va->va_start < start)
1306 start = va->va_start;
1307 if (va->va_end > end)
1308 end = va->va_end;
1309 }
1310
1311 flush_tlb_kernel_range(start, end);
1312 resched_threshold = lazy_max_pages() << 1;
1313
1314 spin_lock(&free_vmap_area_lock);
1315 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1316 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1317 unsigned long orig_start = va->va_start;
1318 unsigned long orig_end = va->va_end;
1319
1320 /*
1321 * Finally insert or merge lazily-freed area. It is
1322 * detached and there is no need to "unlink" it from
1323 * anything.
1324 */
1325 va = merge_or_add_vmap_area(va, &free_vmap_area_root,
1326 &free_vmap_area_list);
1327
1328 if (is_vmalloc_or_module_addr((void *)orig_start))
1329 kasan_release_vmalloc(orig_start, orig_end,
1330 va->va_start, va->va_end);
1331
1332 atomic_long_sub(nr, &vmap_lazy_nr);
1333
1334 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1335 cond_resched_lock(&free_vmap_area_lock);
1336 }
1337 spin_unlock(&free_vmap_area_lock);
1338 return true;
1339 }
1340
1341 /*
1342 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1343 * is already purging.
1344 */
1345 static void try_purge_vmap_area_lazy(void)
1346 {
1347 if (mutex_trylock(&vmap_purge_lock)) {
1348 __purge_vmap_area_lazy(ULONG_MAX, 0);
1349 mutex_unlock(&vmap_purge_lock);
1350 }
1351 }
1352
1353 /*
1354 * Kick off a purge of the outstanding lazy areas.
1355 */
1356 static void purge_vmap_area_lazy(void)
1357 {
1358 mutex_lock(&vmap_purge_lock);
1359 purge_fragmented_blocks_allcpus();
1360 __purge_vmap_area_lazy(ULONG_MAX, 0);
1361 mutex_unlock(&vmap_purge_lock);
1362 }
1363
1364 /*
1365 * Free a vmap area, caller ensuring that the area has been unmapped
1366 * and flush_cache_vunmap had been called for the correct range
1367 * previously.
1368 */
1369 static void free_vmap_area_noflush(struct vmap_area *va)
1370 {
1371 unsigned long nr_lazy;
1372
1373 spin_lock(&vmap_area_lock);
1374 unlink_va(va, &vmap_area_root);
1375 spin_unlock(&vmap_area_lock);
1376
1377 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1378 PAGE_SHIFT, &vmap_lazy_nr);
1379
1380 /* After this point, we may free va at any time */
1381 llist_add(&va->purge_list, &vmap_purge_list);
1382
1383 if (unlikely(nr_lazy > lazy_max_pages()))
1384 try_purge_vmap_area_lazy();
1385 }
1386
1387 /*
1388 * Free and unmap a vmap area
1389 */
1390 static void free_unmap_vmap_area(struct vmap_area *va)
1391 {
1392 flush_cache_vunmap(va->va_start, va->va_end);
1393 unmap_vmap_area(va);
1394 if (debug_pagealloc_enabled_static())
1395 flush_tlb_kernel_range(va->va_start, va->va_end);
1396
1397 free_vmap_area_noflush(va);
1398 }
1399
1400 static struct vmap_area *find_vmap_area(unsigned long addr)
1401 {
1402 struct vmap_area *va;
1403
1404 spin_lock(&vmap_area_lock);
1405 va = __find_vmap_area(addr);
1406 spin_unlock(&vmap_area_lock);
1407
1408 return va;
1409 }
1410
1411 /*** Per cpu kva allocator ***/
1412
1413 /*
1414 * vmap space is limited especially on 32 bit architectures. Ensure there is
1415 * room for at least 16 percpu vmap blocks per CPU.
1416 */
1417 /*
1418 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1419 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1420 * instead (we just need a rough idea)
1421 */
1422 #if BITS_PER_LONG == 32
1423 #define VMALLOC_SPACE (128UL*1024*1024)
1424 #else
1425 #define VMALLOC_SPACE (128UL*1024*1024*1024)
1426 #endif
1427
1428 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1429 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1430 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1431 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1432 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1433 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1434 #define VMAP_BBMAP_BITS \
1435 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1436 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1437 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1438
1439 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1440
1441 struct vmap_block_queue {
1442 spinlock_t lock;
1443 struct list_head free;
1444 };
1445
1446 struct vmap_block {
1447 spinlock_t lock;
1448 struct vmap_area *va;
1449 unsigned long free, dirty;
1450 unsigned long dirty_min, dirty_max; /*< dirty range */
1451 struct list_head free_list;
1452 struct rcu_head rcu_head;
1453 struct list_head purge;
1454 };
1455
1456 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1457 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1458
1459 /*
1460 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1461 * in the free path. Could get rid of this if we change the API to return a
1462 * "cookie" from alloc, to be passed to free. But no big deal yet.
1463 */
1464 static DEFINE_SPINLOCK(vmap_block_tree_lock);
1465 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1466
1467 /*
1468 * We should probably have a fallback mechanism to allocate virtual memory
1469 * out of partially filled vmap blocks. However vmap block sizing should be
1470 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1471 * big problem.
1472 */
1473
1474 static unsigned long addr_to_vb_idx(unsigned long addr)
1475 {
1476 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1477 addr /= VMAP_BLOCK_SIZE;
1478 return addr;
1479 }
1480
1481 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1482 {
1483 unsigned long addr;
1484
1485 addr = va_start + (pages_off << PAGE_SHIFT);
1486 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1487 return (void *)addr;
1488 }
1489
1490 /**
1491 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1492 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1493 * @order: how many 2^order pages should be occupied in newly allocated block
1494 * @gfp_mask: flags for the page level allocator
1495 *
1496 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1497 */
1498 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1499 {
1500 struct vmap_block_queue *vbq;
1501 struct vmap_block *vb;
1502 struct vmap_area *va;
1503 unsigned long vb_idx;
1504 int node, err;
1505 void *vaddr;
1506
1507 node = numa_node_id();
1508
1509 vb = kmalloc_node(sizeof(struct vmap_block),
1510 gfp_mask & GFP_RECLAIM_MASK, node);
1511 if (unlikely(!vb))
1512 return ERR_PTR(-ENOMEM);
1513
1514 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1515 VMALLOC_START, VMALLOC_END,
1516 node, gfp_mask);
1517 if (IS_ERR(va)) {
1518 kfree(vb);
1519 return ERR_CAST(va);
1520 }
1521
1522 err = radix_tree_preload(gfp_mask);
1523 if (unlikely(err)) {
1524 kfree(vb);
1525 free_vmap_area(va);
1526 return ERR_PTR(err);
1527 }
1528
1529 vaddr = vmap_block_vaddr(va->va_start, 0);
1530 spin_lock_init(&vb->lock);
1531 vb->va = va;
1532 /* At least something should be left free */
1533 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1534 vb->free = VMAP_BBMAP_BITS - (1UL << order);
1535 vb->dirty = 0;
1536 vb->dirty_min = VMAP_BBMAP_BITS;
1537 vb->dirty_max = 0;
1538 INIT_LIST_HEAD(&vb->free_list);
1539
1540 vb_idx = addr_to_vb_idx(va->va_start);
1541 spin_lock(&vmap_block_tree_lock);
1542 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1543 spin_unlock(&vmap_block_tree_lock);
1544 BUG_ON(err);
1545 radix_tree_preload_end();
1546
1547 vbq = &get_cpu_var(vmap_block_queue);
1548 spin_lock(&vbq->lock);
1549 list_add_tail_rcu(&vb->free_list, &vbq->free);
1550 spin_unlock(&vbq->lock);
1551 put_cpu_var(vmap_block_queue);
1552
1553 return vaddr;
1554 }
1555
1556 static void free_vmap_block(struct vmap_block *vb)
1557 {
1558 struct vmap_block *tmp;
1559 unsigned long vb_idx;
1560
1561 vb_idx = addr_to_vb_idx(vb->va->va_start);
1562 spin_lock(&vmap_block_tree_lock);
1563 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1564 spin_unlock(&vmap_block_tree_lock);
1565 BUG_ON(tmp != vb);
1566
1567 free_vmap_area_noflush(vb->va);
1568 kfree_rcu(vb, rcu_head);
1569 }
1570
1571 static void purge_fragmented_blocks(int cpu)
1572 {
1573 LIST_HEAD(purge);
1574 struct vmap_block *vb;
1575 struct vmap_block *n_vb;
1576 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1577
1578 rcu_read_lock();
1579 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1580
1581 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1582 continue;
1583
1584 spin_lock(&vb->lock);
1585 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1586 vb->free = 0; /* prevent further allocs after releasing lock */
1587 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1588 vb->dirty_min = 0;
1589 vb->dirty_max = VMAP_BBMAP_BITS;
1590 spin_lock(&vbq->lock);
1591 list_del_rcu(&vb->free_list);
1592 spin_unlock(&vbq->lock);
1593 spin_unlock(&vb->lock);
1594 list_add_tail(&vb->purge, &purge);
1595 } else
1596 spin_unlock(&vb->lock);
1597 }
1598 rcu_read_unlock();
1599
1600 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1601 list_del(&vb->purge);
1602 free_vmap_block(vb);
1603 }
1604 }
1605
1606 static void purge_fragmented_blocks_allcpus(void)
1607 {
1608 int cpu;
1609
1610 for_each_possible_cpu(cpu)
1611 purge_fragmented_blocks(cpu);
1612 }
1613
1614 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1615 {
1616 struct vmap_block_queue *vbq;
1617 struct vmap_block *vb;
1618 void *vaddr = NULL;
1619 unsigned int order;
1620
1621 BUG_ON(offset_in_page(size));
1622 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1623 if (WARN_ON(size == 0)) {
1624 /*
1625 * Allocating 0 bytes isn't what caller wants since
1626 * get_order(0) returns funny result. Just warn and terminate
1627 * early.
1628 */
1629 return NULL;
1630 }
1631 order = get_order(size);
1632
1633 rcu_read_lock();
1634 vbq = &get_cpu_var(vmap_block_queue);
1635 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1636 unsigned long pages_off;
1637
1638 spin_lock(&vb->lock);
1639 if (vb->free < (1UL << order)) {
1640 spin_unlock(&vb->lock);
1641 continue;
1642 }
1643
1644 pages_off = VMAP_BBMAP_BITS - vb->free;
1645 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1646 vb->free -= 1UL << order;
1647 if (vb->free == 0) {
1648 spin_lock(&vbq->lock);
1649 list_del_rcu(&vb->free_list);
1650 spin_unlock(&vbq->lock);
1651 }
1652
1653 spin_unlock(&vb->lock);
1654 break;
1655 }
1656
1657 put_cpu_var(vmap_block_queue);
1658 rcu_read_unlock();
1659
1660 /* Allocate new block if nothing was found */
1661 if (!vaddr)
1662 vaddr = new_vmap_block(order, gfp_mask);
1663
1664 return vaddr;
1665 }
1666
1667 static void vb_free(const void *addr, unsigned long size)
1668 {
1669 unsigned long offset;
1670 unsigned long vb_idx;
1671 unsigned int order;
1672 struct vmap_block *vb;
1673
1674 BUG_ON(offset_in_page(size));
1675 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1676
1677 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1678
1679 order = get_order(size);
1680
1681 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1682 offset >>= PAGE_SHIFT;
1683
1684 vb_idx = addr_to_vb_idx((unsigned long)addr);
1685 rcu_read_lock();
1686 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1687 rcu_read_unlock();
1688 BUG_ON(!vb);
1689
1690 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1691
1692 if (debug_pagealloc_enabled_static())
1693 flush_tlb_kernel_range((unsigned long)addr,
1694 (unsigned long)addr + size);
1695
1696 spin_lock(&vb->lock);
1697
1698 /* Expand dirty range */
1699 vb->dirty_min = min(vb->dirty_min, offset);
1700 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1701
1702 vb->dirty += 1UL << order;
1703 if (vb->dirty == VMAP_BBMAP_BITS) {
1704 BUG_ON(vb->free);
1705 spin_unlock(&vb->lock);
1706 free_vmap_block(vb);
1707 } else
1708 spin_unlock(&vb->lock);
1709 }
1710
1711 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1712 {
1713 int cpu;
1714
1715 if (unlikely(!vmap_initialized))
1716 return;
1717
1718 might_sleep();
1719
1720 for_each_possible_cpu(cpu) {
1721 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1722 struct vmap_block *vb;
1723
1724 rcu_read_lock();
1725 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1726 spin_lock(&vb->lock);
1727 if (vb->dirty) {
1728 unsigned long va_start = vb->va->va_start;
1729 unsigned long s, e;
1730
1731 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1732 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1733
1734 start = min(s, start);
1735 end = max(e, end);
1736
1737 flush = 1;
1738 }
1739 spin_unlock(&vb->lock);
1740 }
1741 rcu_read_unlock();
1742 }
1743
1744 mutex_lock(&vmap_purge_lock);
1745 purge_fragmented_blocks_allcpus();
1746 if (!__purge_vmap_area_lazy(start, end) && flush)
1747 flush_tlb_kernel_range(start, end);
1748 mutex_unlock(&vmap_purge_lock);
1749 }
1750
1751 /**
1752 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1753 *
1754 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1755 * to amortize TLB flushing overheads. What this means is that any page you
1756 * have now, may, in a former life, have been mapped into kernel virtual
1757 * address by the vmap layer and so there might be some CPUs with TLB entries
1758 * still referencing that page (additional to the regular 1:1 kernel mapping).
1759 *
1760 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1761 * be sure that none of the pages we have control over will have any aliases
1762 * from the vmap layer.
1763 */
1764 void vm_unmap_aliases(void)
1765 {
1766 unsigned long start = ULONG_MAX, end = 0;
1767 int flush = 0;
1768
1769 _vm_unmap_aliases(start, end, flush);
1770 }
1771 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1772
1773 /**
1774 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1775 * @mem: the pointer returned by vm_map_ram
1776 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1777 */
1778 void vm_unmap_ram(const void *mem, unsigned int count)
1779 {
1780 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1781 unsigned long addr = (unsigned long)mem;
1782 struct vmap_area *va;
1783
1784 might_sleep();
1785 BUG_ON(!addr);
1786 BUG_ON(addr < VMALLOC_START);
1787 BUG_ON(addr > VMALLOC_END);
1788 BUG_ON(!PAGE_ALIGNED(addr));
1789
1790 kasan_poison_vmalloc(mem, size);
1791
1792 if (likely(count <= VMAP_MAX_ALLOC)) {
1793 debug_check_no_locks_freed(mem, size);
1794 vb_free(mem, size);
1795 return;
1796 }
1797
1798 va = find_vmap_area(addr);
1799 BUG_ON(!va);
1800 debug_check_no_locks_freed((void *)va->va_start,
1801 (va->va_end - va->va_start));
1802 free_unmap_vmap_area(va);
1803 }
1804 EXPORT_SYMBOL(vm_unmap_ram);
1805
1806 /**
1807 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1808 * @pages: an array of pointers to the pages to be mapped
1809 * @count: number of pages
1810 * @node: prefer to allocate data structures on this node
1811 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1812 *
1813 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1814 * faster than vmap so it's good. But if you mix long-life and short-life
1815 * objects with vm_map_ram(), it could consume lots of address space through
1816 * fragmentation (especially on a 32bit machine). You could see failures in
1817 * the end. Please use this function for short-lived objects.
1818 *
1819 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1820 */
1821 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1822 {
1823 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1824 unsigned long addr;
1825 void *mem;
1826
1827 if (likely(count <= VMAP_MAX_ALLOC)) {
1828 mem = vb_alloc(size, GFP_KERNEL);
1829 if (IS_ERR(mem))
1830 return NULL;
1831 addr = (unsigned long)mem;
1832 } else {
1833 struct vmap_area *va;
1834 va = alloc_vmap_area(size, PAGE_SIZE,
1835 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1836 if (IS_ERR(va))
1837 return NULL;
1838
1839 addr = va->va_start;
1840 mem = (void *)addr;
1841 }
1842
1843 kasan_unpoison_vmalloc(mem, size);
1844
1845 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1846 vm_unmap_ram(mem, count);
1847 return NULL;
1848 }
1849 return mem;
1850 }
1851 EXPORT_SYMBOL(vm_map_ram);
1852
1853 static struct vm_struct *vmlist __initdata;
1854
1855 /**
1856 * vm_area_add_early - add vmap area early during boot
1857 * @vm: vm_struct to add
1858 *
1859 * This function is used to add fixed kernel vm area to vmlist before
1860 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1861 * should contain proper values and the other fields should be zero.
1862 *
1863 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1864 */
1865 void __init vm_area_add_early(struct vm_struct *vm)
1866 {
1867 struct vm_struct *tmp, **p;
1868
1869 BUG_ON(vmap_initialized);
1870 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1871 if (tmp->addr >= vm->addr) {
1872 BUG_ON(tmp->addr < vm->addr + vm->size);
1873 break;
1874 } else
1875 BUG_ON(tmp->addr + tmp->size > vm->addr);
1876 }
1877 vm->next = *p;
1878 *p = vm;
1879 }
1880
1881 /**
1882 * vm_area_register_early - register vmap area early during boot
1883 * @vm: vm_struct to register
1884 * @align: requested alignment
1885 *
1886 * This function is used to register kernel vm area before
1887 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1888 * proper values on entry and other fields should be zero. On return,
1889 * vm->addr contains the allocated address.
1890 *
1891 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1892 */
1893 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1894 {
1895 static size_t vm_init_off __initdata;
1896 unsigned long addr;
1897
1898 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1899 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1900
1901 vm->addr = (void *)addr;
1902
1903 vm_area_add_early(vm);
1904 }
1905
1906 static void vmap_init_free_space(void)
1907 {
1908 unsigned long vmap_start = 1;
1909 const unsigned long vmap_end = ULONG_MAX;
1910 struct vmap_area *busy, *free;
1911
1912 /*
1913 * B F B B B F
1914 * -|-----|.....|-----|-----|-----|.....|-
1915 * | The KVA space |
1916 * |<--------------------------------->|
1917 */
1918 list_for_each_entry(busy, &vmap_area_list, list) {
1919 if (busy->va_start - vmap_start > 0) {
1920 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1921 if (!WARN_ON_ONCE(!free)) {
1922 free->va_start = vmap_start;
1923 free->va_end = busy->va_start;
1924
1925 insert_vmap_area_augment(free, NULL,
1926 &free_vmap_area_root,
1927 &free_vmap_area_list);
1928 }
1929 }
1930
1931 vmap_start = busy->va_end;
1932 }
1933
1934 if (vmap_end - vmap_start > 0) {
1935 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1936 if (!WARN_ON_ONCE(!free)) {
1937 free->va_start = vmap_start;
1938 free->va_end = vmap_end;
1939
1940 insert_vmap_area_augment(free, NULL,
1941 &free_vmap_area_root,
1942 &free_vmap_area_list);
1943 }
1944 }
1945 }
1946
1947 void __init vmalloc_init(void)
1948 {
1949 struct vmap_area *va;
1950 struct vm_struct *tmp;
1951 int i;
1952
1953 /*
1954 * Create the cache for vmap_area objects.
1955 */
1956 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1957
1958 for_each_possible_cpu(i) {
1959 struct vmap_block_queue *vbq;
1960 struct vfree_deferred *p;
1961
1962 vbq = &per_cpu(vmap_block_queue, i);
1963 spin_lock_init(&vbq->lock);
1964 INIT_LIST_HEAD(&vbq->free);
1965 p = &per_cpu(vfree_deferred, i);
1966 init_llist_head(&p->list);
1967 INIT_WORK(&p->wq, free_work);
1968 }
1969
1970 /* Import existing vmlist entries. */
1971 for (tmp = vmlist; tmp; tmp = tmp->next) {
1972 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1973 if (WARN_ON_ONCE(!va))
1974 continue;
1975
1976 va->va_start = (unsigned long)tmp->addr;
1977 va->va_end = va->va_start + tmp->size;
1978 va->vm = tmp;
1979 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1980 }
1981
1982 /*
1983 * Now we can initialize a free vmap space.
1984 */
1985 vmap_init_free_space();
1986 vmap_initialized = true;
1987 }
1988
1989 /**
1990 * map_kernel_range_noflush - map kernel VM area with the specified pages
1991 * @addr: start of the VM area to map
1992 * @size: size of the VM area to map
1993 * @prot: page protection flags to use
1994 * @pages: pages to map
1995 *
1996 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1997 * specify should have been allocated using get_vm_area() and its
1998 * friends.
1999 *
2000 * NOTE:
2001 * This function does NOT do any cache flushing. The caller is
2002 * responsible for calling flush_cache_vmap() on to-be-mapped areas
2003 * before calling this function.
2004 *
2005 * RETURNS:
2006 * The number of pages mapped on success, -errno on failure.
2007 */
2008 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
2009 pgprot_t prot, struct page **pages)
2010 {
2011 return vmap_page_range_noflush(addr, addr + size, prot, pages);
2012 }
2013
2014 /**
2015 * unmap_kernel_range_noflush - unmap kernel VM area
2016 * @addr: start of the VM area to unmap
2017 * @size: size of the VM area to unmap
2018 *
2019 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
2020 * specify should have been allocated using get_vm_area() and its
2021 * friends.
2022 *
2023 * NOTE:
2024 * This function does NOT do any cache flushing. The caller is
2025 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
2026 * before calling this function and flush_tlb_kernel_range() after.
2027 */
2028 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
2029 {
2030 vunmap_page_range(addr, addr + size);
2031 }
2032 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
2033
2034 /**
2035 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2036 * @addr: start of the VM area to unmap
2037 * @size: size of the VM area to unmap
2038 *
2039 * Similar to unmap_kernel_range_noflush() but flushes vcache before
2040 * the unmapping and tlb after.
2041 */
2042 void unmap_kernel_range(unsigned long addr, unsigned long size)
2043 {
2044 unsigned long end = addr + size;
2045
2046 flush_cache_vunmap(addr, end);
2047 vunmap_page_range(addr, end);
2048 flush_tlb_kernel_range(addr, end);
2049 }
2050 EXPORT_SYMBOL_GPL(unmap_kernel_range);
2051
2052 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
2053 {
2054 unsigned long addr = (unsigned long)area->addr;
2055 unsigned long end = addr + get_vm_area_size(area);
2056 int err;
2057
2058 err = vmap_page_range(addr, end, prot, pages);
2059
2060 return err > 0 ? 0 : err;
2061 }
2062 EXPORT_SYMBOL_GPL(map_vm_area);
2063
2064 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2065 struct vmap_area *va, unsigned long flags, const void *caller)
2066 {
2067 vm->flags = flags;
2068 vm->addr = (void *)va->va_start;
2069 vm->size = va->va_end - va->va_start;
2070 vm->caller = caller;
2071 va->vm = vm;
2072 }
2073
2074 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2075 unsigned long flags, const void *caller)
2076 {
2077 spin_lock(&vmap_area_lock);
2078 setup_vmalloc_vm_locked(vm, va, flags, caller);
2079 spin_unlock(&vmap_area_lock);
2080 }
2081
2082 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2083 {
2084 /*
2085 * Before removing VM_UNINITIALIZED,
2086 * we should make sure that vm has proper values.
2087 * Pair with smp_rmb() in show_numa_info().
2088 */
2089 smp_wmb();
2090 vm->flags &= ~VM_UNINITIALIZED;
2091 }
2092
2093 static struct vm_struct *__get_vm_area_node(unsigned long size,
2094 unsigned long align, unsigned long flags, unsigned long start,
2095 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2096 {
2097 struct vmap_area *va;
2098 struct vm_struct *area;
2099 unsigned long requested_size = size;
2100
2101 BUG_ON(in_interrupt());
2102 size = PAGE_ALIGN(size);
2103 if (unlikely(!size))
2104 return NULL;
2105
2106 if (flags & VM_IOREMAP)
2107 align = 1ul << clamp_t(int, get_count_order_long(size),
2108 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2109
2110 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2111 if (unlikely(!area))
2112 return NULL;
2113
2114 if (!(flags & VM_NO_GUARD))
2115 size += PAGE_SIZE;
2116
2117 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2118 if (IS_ERR(va)) {
2119 kfree(area);
2120 return NULL;
2121 }
2122
2123 kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2124
2125 setup_vmalloc_vm(area, va, flags, caller);
2126
2127 return area;
2128 }
2129
2130 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2131 unsigned long start, unsigned long end)
2132 {
2133 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2134 GFP_KERNEL, __builtin_return_address(0));
2135 }
2136 EXPORT_SYMBOL_GPL(__get_vm_area);
2137
2138 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2139 unsigned long start, unsigned long end,
2140 const void *caller)
2141 {
2142 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2143 GFP_KERNEL, caller);
2144 }
2145
2146 /**
2147 * get_vm_area - reserve a contiguous kernel virtual area
2148 * @size: size of the area
2149 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2150 *
2151 * Search an area of @size in the kernel virtual mapping area,
2152 * and reserved it for out purposes. Returns the area descriptor
2153 * on success or %NULL on failure.
2154 *
2155 * Return: the area descriptor on success or %NULL on failure.
2156 */
2157 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2158 {
2159 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2160 NUMA_NO_NODE, GFP_KERNEL,
2161 __builtin_return_address(0));
2162 }
2163
2164 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2165 const void *caller)
2166 {
2167 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2168 NUMA_NO_NODE, GFP_KERNEL, caller);
2169 }
2170
2171 /**
2172 * find_vm_area - find a continuous kernel virtual area
2173 * @addr: base address
2174 *
2175 * Search for the kernel VM area starting at @addr, and return it.
2176 * It is up to the caller to do all required locking to keep the returned
2177 * pointer valid.
2178 *
2179 * Return: pointer to the found area or %NULL on faulure
2180 */
2181 struct vm_struct *find_vm_area(const void *addr)
2182 {
2183 struct vmap_area *va;
2184
2185 va = find_vmap_area((unsigned long)addr);
2186 if (!va)
2187 return NULL;
2188
2189 return va->vm;
2190 }
2191
2192 /**
2193 * remove_vm_area - find and remove a continuous kernel virtual area
2194 * @addr: base address
2195 *
2196 * Search for the kernel VM area starting at @addr, and remove it.
2197 * This function returns the found VM area, but using it is NOT safe
2198 * on SMP machines, except for its size or flags.
2199 *
2200 * Return: pointer to the found area or %NULL on faulure
2201 */
2202 struct vm_struct *remove_vm_area(const void *addr)
2203 {
2204 struct vmap_area *va;
2205
2206 might_sleep();
2207
2208 spin_lock(&vmap_area_lock);
2209 va = __find_vmap_area((unsigned long)addr);
2210 if (va && va->vm) {
2211 struct vm_struct *vm = va->vm;
2212
2213 va->vm = NULL;
2214 spin_unlock(&vmap_area_lock);
2215
2216 kasan_free_shadow(vm);
2217 free_unmap_vmap_area(va);
2218
2219 return vm;
2220 }
2221
2222 spin_unlock(&vmap_area_lock);
2223 return NULL;
2224 }
2225
2226 static inline void set_area_direct_map(const struct vm_struct *area,
2227 int (*set_direct_map)(struct page *page))
2228 {
2229 int i;
2230
2231 for (i = 0; i < area->nr_pages; i++)
2232 if (page_address(area->pages[i]))
2233 set_direct_map(area->pages[i]);
2234 }
2235
2236 /* Handle removing and resetting vm mappings related to the vm_struct. */
2237 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2238 {
2239 unsigned long start = ULONG_MAX, end = 0;
2240 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2241 int flush_dmap = 0;
2242 int i;
2243
2244 remove_vm_area(area->addr);
2245
2246 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2247 if (!flush_reset)
2248 return;
2249
2250 /*
2251 * If not deallocating pages, just do the flush of the VM area and
2252 * return.
2253 */
2254 if (!deallocate_pages) {
2255 vm_unmap_aliases();
2256 return;
2257 }
2258
2259 /*
2260 * If execution gets here, flush the vm mapping and reset the direct
2261 * map. Find the start and end range of the direct mappings to make sure
2262 * the vm_unmap_aliases() flush includes the direct map.
2263 */
2264 for (i = 0; i < area->nr_pages; i++) {
2265 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2266 if (addr) {
2267 start = min(addr, start);
2268 end = max(addr + PAGE_SIZE, end);
2269 flush_dmap = 1;
2270 }
2271 }
2272
2273 /*
2274 * Set direct map to something invalid so that it won't be cached if
2275 * there are any accesses after the TLB flush, then flush the TLB and
2276 * reset the direct map permissions to the default.
2277 */
2278 set_area_direct_map(area, set_direct_map_invalid_noflush);
2279 _vm_unmap_aliases(start, end, flush_dmap);
2280 set_area_direct_map(area, set_direct_map_default_noflush);
2281 }
2282
2283 static void __vunmap(const void *addr, int deallocate_pages)
2284 {
2285 struct vm_struct *area;
2286
2287 if (!addr)
2288 return;
2289
2290 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2291 addr))
2292 return;
2293
2294 area = find_vm_area(addr);
2295 if (unlikely(!area)) {
2296 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2297 addr);
2298 return;
2299 }
2300
2301 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2302 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2303
2304 kasan_poison_vmalloc(area->addr, area->size);
2305
2306 vm_remove_mappings(area, deallocate_pages);
2307
2308 if (deallocate_pages) {
2309 int i;
2310
2311 for (i = 0; i < area->nr_pages; i++) {
2312 struct page *page = area->pages[i];
2313
2314 BUG_ON(!page);
2315 __free_pages(page, 0);
2316 }
2317 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2318
2319 kvfree(area->pages);
2320 }
2321
2322 kfree(area);
2323 return;
2324 }
2325
2326 static inline void __vfree_deferred(const void *addr)
2327 {
2328 /*
2329 * Use raw_cpu_ptr() because this can be called from preemptible
2330 * context. Preemption is absolutely fine here, because the llist_add()
2331 * implementation is lockless, so it works even if we are adding to
2332 * nother cpu's list. schedule_work() should be fine with this too.
2333 */
2334 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2335
2336 if (llist_add((struct llist_node *)addr, &p->list))
2337 schedule_work(&p->wq);
2338 }
2339
2340 /**
2341 * vfree_atomic - release memory allocated by vmalloc()
2342 * @addr: memory base address
2343 *
2344 * This one is just like vfree() but can be called in any atomic context
2345 * except NMIs.
2346 */
2347 void vfree_atomic(const void *addr)
2348 {
2349 BUG_ON(in_nmi());
2350
2351 kmemleak_free(addr);
2352
2353 if (!addr)
2354 return;
2355 __vfree_deferred(addr);
2356 }
2357
2358 static void __vfree(const void *addr)
2359 {
2360 if (unlikely(in_interrupt()))
2361 __vfree_deferred(addr);
2362 else
2363 __vunmap(addr, 1);
2364 }
2365
2366 /**
2367 * vfree - release memory allocated by vmalloc()
2368 * @addr: memory base address
2369 *
2370 * Free the virtually continuous memory area starting at @addr, as
2371 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2372 * NULL, no operation is performed.
2373 *
2374 * Must not be called in NMI context (strictly speaking, only if we don't
2375 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2376 * conventions for vfree() arch-depenedent would be a really bad idea)
2377 *
2378 * May sleep if called *not* from interrupt context.
2379 *
2380 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
2381 */
2382 void vfree(const void *addr)
2383 {
2384 BUG_ON(in_nmi());
2385
2386 kmemleak_free(addr);
2387
2388 might_sleep_if(!in_interrupt());
2389
2390 if (!addr)
2391 return;
2392
2393 __vfree(addr);
2394 }
2395 EXPORT_SYMBOL(vfree);
2396
2397 /**
2398 * vunmap - release virtual mapping obtained by vmap()
2399 * @addr: memory base address
2400 *
2401 * Free the virtually contiguous memory area starting at @addr,
2402 * which was created from the page array passed to vmap().
2403 *
2404 * Must not be called in interrupt context.
2405 */
2406 void vunmap(const void *addr)
2407 {
2408 BUG_ON(in_interrupt());
2409 might_sleep();
2410 if (addr)
2411 __vunmap(addr, 0);
2412 }
2413 EXPORT_SYMBOL(vunmap);
2414
2415 /**
2416 * vmap - map an array of pages into virtually contiguous space
2417 * @pages: array of page pointers
2418 * @count: number of pages to map
2419 * @flags: vm_area->flags
2420 * @prot: page protection for the mapping
2421 *
2422 * Maps @count pages from @pages into contiguous kernel virtual
2423 * space.
2424 *
2425 * Return: the address of the area or %NULL on failure
2426 */
2427 void *vmap(struct page **pages, unsigned int count,
2428 unsigned long flags, pgprot_t prot)
2429 {
2430 struct vm_struct *area;
2431 unsigned long size; /* In bytes */
2432
2433 might_sleep();
2434
2435 if (count > totalram_pages())
2436 return NULL;
2437
2438 size = (unsigned long)count << PAGE_SHIFT;
2439 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2440 if (!area)
2441 return NULL;
2442
2443 if (map_vm_area(area, prot, pages)) {
2444 vunmap(area->addr);
2445 return NULL;
2446 }
2447
2448 return area->addr;
2449 }
2450 EXPORT_SYMBOL(vmap);
2451
2452 static void *__vmalloc_node(unsigned long size, unsigned long align,
2453 gfp_t gfp_mask, pgprot_t prot,
2454 int node, const void *caller);
2455 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2456 pgprot_t prot, int node)
2457 {
2458 struct page **pages;
2459 unsigned int nr_pages, array_size, i;
2460 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2461 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2462 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2463 0 :
2464 __GFP_HIGHMEM;
2465
2466 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2467 array_size = (nr_pages * sizeof(struct page *));
2468
2469 /* Please note that the recursion is strictly bounded. */
2470 if (array_size > PAGE_SIZE) {
2471 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2472 PAGE_KERNEL, node, area->caller);
2473 } else {
2474 pages = kmalloc_node(array_size, nested_gfp, node);
2475 }
2476
2477 if (!pages) {
2478 remove_vm_area(area->addr);
2479 kfree(area);
2480 return NULL;
2481 }
2482
2483 area->pages = pages;
2484 area->nr_pages = nr_pages;
2485
2486 for (i = 0; i < area->nr_pages; i++) {
2487 struct page *page;
2488
2489 if (node == NUMA_NO_NODE)
2490 page = alloc_page(alloc_mask|highmem_mask);
2491 else
2492 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2493
2494 if (unlikely(!page)) {
2495 /* Successfully allocated i pages, free them in __vunmap() */
2496 area->nr_pages = i;
2497 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2498 goto fail;
2499 }
2500 area->pages[i] = page;
2501 if (gfpflags_allow_blocking(gfp_mask))
2502 cond_resched();
2503 }
2504 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2505
2506 if (map_vm_area(area, prot, pages))
2507 goto fail;
2508 return area->addr;
2509
2510 fail:
2511 warn_alloc(gfp_mask, NULL,
2512 "vmalloc: allocation failure, allocated %ld of %ld bytes",
2513 (area->nr_pages*PAGE_SIZE), area->size);
2514 __vfree(area->addr);
2515 return NULL;
2516 }
2517
2518 /**
2519 * __vmalloc_node_range - allocate virtually contiguous memory
2520 * @size: allocation size
2521 * @align: desired alignment
2522 * @start: vm area range start
2523 * @end: vm area range end
2524 * @gfp_mask: flags for the page level allocator
2525 * @prot: protection mask for the allocated pages
2526 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2527 * @node: node to use for allocation or NUMA_NO_NODE
2528 * @caller: caller's return address
2529 *
2530 * Allocate enough pages to cover @size from the page level
2531 * allocator with @gfp_mask flags. Map them into contiguous
2532 * kernel virtual space, using a pagetable protection of @prot.
2533 *
2534 * Return: the address of the area or %NULL on failure
2535 */
2536 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2537 unsigned long start, unsigned long end, gfp_t gfp_mask,
2538 pgprot_t prot, unsigned long vm_flags, int node,
2539 const void *caller)
2540 {
2541 struct vm_struct *area;
2542 void *addr;
2543 unsigned long real_size = size;
2544
2545 size = PAGE_ALIGN(size);
2546 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2547 goto fail;
2548
2549 area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2550 vm_flags, start, end, node, gfp_mask, caller);
2551 if (!area)
2552 goto fail;
2553
2554 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2555 if (!addr)
2556 return NULL;
2557
2558 /*
2559 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2560 * flag. It means that vm_struct is not fully initialized.
2561 * Now, it is fully initialized, so remove this flag here.
2562 */
2563 clear_vm_uninitialized_flag(area);
2564
2565 kmemleak_vmalloc(area, size, gfp_mask);
2566
2567 return addr;
2568
2569 fail:
2570 warn_alloc(gfp_mask, NULL,
2571 "vmalloc: allocation failure: %lu bytes", real_size);
2572 return NULL;
2573 }
2574
2575 /*
2576 * This is only for performance analysis of vmalloc and stress purpose.
2577 * It is required by vmalloc test module, therefore do not use it other
2578 * than that.
2579 */
2580 #ifdef CONFIG_TEST_VMALLOC_MODULE
2581 EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2582 #endif
2583
2584 /**
2585 * __vmalloc_node - allocate virtually contiguous memory
2586 * @size: allocation size
2587 * @align: desired alignment
2588 * @gfp_mask: flags for the page level allocator
2589 * @prot: protection mask for the allocated pages
2590 * @node: node to use for allocation or NUMA_NO_NODE
2591 * @caller: caller's return address
2592 *
2593 * Allocate enough pages to cover @size from the page level
2594 * allocator with @gfp_mask flags. Map them into contiguous
2595 * kernel virtual space, using a pagetable protection of @prot.
2596 *
2597 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2598 * and __GFP_NOFAIL are not supported
2599 *
2600 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2601 * with mm people.
2602 *
2603 * Return: pointer to the allocated memory or %NULL on error
2604 */
2605 static void *__vmalloc_node(unsigned long size, unsigned long align,
2606 gfp_t gfp_mask, pgprot_t prot,
2607 int node, const void *caller)
2608 {
2609 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2610 gfp_mask, prot, 0, node, caller);
2611 }
2612
2613 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2614 {
2615 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2616 __builtin_return_address(0));
2617 }
2618 EXPORT_SYMBOL(__vmalloc);
2619
2620 static inline void *__vmalloc_node_flags(unsigned long size,
2621 int node, gfp_t flags)
2622 {
2623 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2624 node, __builtin_return_address(0));
2625 }
2626
2627
2628 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2629 void *caller)
2630 {
2631 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2632 }
2633
2634 /**
2635 * vmalloc - allocate virtually contiguous memory
2636 * @size: allocation size
2637 *
2638 * Allocate enough pages to cover @size from the page level
2639 * allocator and map them into contiguous kernel virtual space.
2640 *
2641 * For tight control over page level allocator and protection flags
2642 * use __vmalloc() instead.
2643 *
2644 * Return: pointer to the allocated memory or %NULL on error
2645 */
2646 void *vmalloc(unsigned long size)
2647 {
2648 return __vmalloc_node_flags(size, NUMA_NO_NODE,
2649 GFP_KERNEL);
2650 }
2651 EXPORT_SYMBOL(vmalloc);
2652
2653 /**
2654 * vzalloc - allocate virtually contiguous memory with zero fill
2655 * @size: allocation size
2656 *
2657 * Allocate enough pages to cover @size from the page level
2658 * allocator and map them into contiguous kernel virtual space.
2659 * The memory allocated is set to zero.
2660 *
2661 * For tight control over page level allocator and protection flags
2662 * use __vmalloc() instead.
2663 *
2664 * Return: pointer to the allocated memory or %NULL on error
2665 */
2666 void *vzalloc(unsigned long size)
2667 {
2668 return __vmalloc_node_flags(size, NUMA_NO_NODE,
2669 GFP_KERNEL | __GFP_ZERO);
2670 }
2671 EXPORT_SYMBOL(vzalloc);
2672
2673 /**
2674 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2675 * @size: allocation size
2676 *
2677 * The resulting memory area is zeroed so it can be mapped to userspace
2678 * without leaking data.
2679 *
2680 * Return: pointer to the allocated memory or %NULL on error
2681 */
2682 void *vmalloc_user(unsigned long size)
2683 {
2684 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2685 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2686 VM_USERMAP, NUMA_NO_NODE,
2687 __builtin_return_address(0));
2688 }
2689 EXPORT_SYMBOL(vmalloc_user);
2690
2691 /**
2692 * vmalloc_node - allocate memory on a specific node
2693 * @size: allocation size
2694 * @node: numa node
2695 *
2696 * Allocate enough pages to cover @size from the page level
2697 * allocator and map them into contiguous kernel virtual space.
2698 *
2699 * For tight control over page level allocator and protection flags
2700 * use __vmalloc() instead.
2701 *
2702 * Return: pointer to the allocated memory or %NULL on error
2703 */
2704 void *vmalloc_node(unsigned long size, int node)
2705 {
2706 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2707 node, __builtin_return_address(0));
2708 }
2709 EXPORT_SYMBOL(vmalloc_node);
2710
2711 /**
2712 * vzalloc_node - allocate memory on a specific node with zero fill
2713 * @size: allocation size
2714 * @node: numa node
2715 *
2716 * Allocate enough pages to cover @size from the page level
2717 * allocator and map them into contiguous kernel virtual space.
2718 * The memory allocated is set to zero.
2719 *
2720 * For tight control over page level allocator and protection flags
2721 * use __vmalloc_node() instead.
2722 *
2723 * Return: pointer to the allocated memory or %NULL on error
2724 */
2725 void *vzalloc_node(unsigned long size, int node)
2726 {
2727 return __vmalloc_node_flags(size, node,
2728 GFP_KERNEL | __GFP_ZERO);
2729 }
2730 EXPORT_SYMBOL(vzalloc_node);
2731
2732 /**
2733 * vmalloc_user_node_flags - allocate memory for userspace on a specific node
2734 * @size: allocation size
2735 * @node: numa node
2736 * @flags: flags for the page level allocator
2737 *
2738 * The resulting memory area is zeroed so it can be mapped to userspace
2739 * without leaking data.
2740 *
2741 * Return: pointer to the allocated memory or %NULL on error
2742 */
2743 void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
2744 {
2745 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2746 flags | __GFP_ZERO, PAGE_KERNEL,
2747 VM_USERMAP, node,
2748 __builtin_return_address(0));
2749 }
2750 EXPORT_SYMBOL(vmalloc_user_node_flags);
2751
2752 /**
2753 * vmalloc_exec - allocate virtually contiguous, executable memory
2754 * @size: allocation size
2755 *
2756 * Kernel-internal function to allocate enough pages to cover @size
2757 * the page level allocator and map them into contiguous and
2758 * executable kernel virtual space.
2759 *
2760 * For tight control over page level allocator and protection flags
2761 * use __vmalloc() instead.
2762 *
2763 * Return: pointer to the allocated memory or %NULL on error
2764 */
2765 void *vmalloc_exec(unsigned long size)
2766 {
2767 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2768 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2769 NUMA_NO_NODE, __builtin_return_address(0));
2770 }
2771
2772 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2773 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2774 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2775 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2776 #else
2777 /*
2778 * 64b systems should always have either DMA or DMA32 zones. For others
2779 * GFP_DMA32 should do the right thing and use the normal zone.
2780 */
2781 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2782 #endif
2783
2784 /**
2785 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2786 * @size: allocation size
2787 *
2788 * Allocate enough 32bit PA addressable pages to cover @size from the
2789 * page level allocator and map them into contiguous kernel virtual space.
2790 *
2791 * Return: pointer to the allocated memory or %NULL on error
2792 */
2793 void *vmalloc_32(unsigned long size)
2794 {
2795 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
2796 NUMA_NO_NODE, __builtin_return_address(0));
2797 }
2798 EXPORT_SYMBOL(vmalloc_32);
2799
2800 /**
2801 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2802 * @size: allocation size
2803 *
2804 * The resulting memory area is 32bit addressable and zeroed so it can be
2805 * mapped to userspace without leaking data.
2806 *
2807 * Return: pointer to the allocated memory or %NULL on error
2808 */
2809 void *vmalloc_32_user(unsigned long size)
2810 {
2811 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2812 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2813 VM_USERMAP, NUMA_NO_NODE,
2814 __builtin_return_address(0));
2815 }
2816 EXPORT_SYMBOL(vmalloc_32_user);
2817
2818 /*
2819 * small helper routine , copy contents to buf from addr.
2820 * If the page is not present, fill zero.
2821 */
2822
2823 static int aligned_vread(char *buf, char *addr, unsigned long count)
2824 {
2825 struct page *p;
2826 int copied = 0;
2827
2828 while (count) {
2829 unsigned long offset, length;
2830
2831 offset = offset_in_page(addr);
2832 length = PAGE_SIZE - offset;
2833 if (length > count)
2834 length = count;
2835 p = vmalloc_to_page(addr);
2836 /*
2837 * To do safe access to this _mapped_ area, we need
2838 * lock. But adding lock here means that we need to add
2839 * overhead of vmalloc()/vfree() calles for this _debug_
2840 * interface, rarely used. Instead of that, we'll use
2841 * kmap() and get small overhead in this access function.
2842 */
2843 if (p) {
2844 /*
2845 * we can expect USER0 is not used (see vread/vwrite's
2846 * function description)
2847 */
2848 void *map = kmap_atomic(p);
2849 memcpy(buf, map + offset, length);
2850 kunmap_atomic(map);
2851 } else
2852 memset(buf, 0, length);
2853
2854 addr += length;
2855 buf += length;
2856 copied += length;
2857 count -= length;
2858 }
2859 return copied;
2860 }
2861
2862 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2863 {
2864 struct page *p;
2865 int copied = 0;
2866
2867 while (count) {
2868 unsigned long offset, length;
2869
2870 offset = offset_in_page(addr);
2871 length = PAGE_SIZE - offset;
2872 if (length > count)
2873 length = count;
2874 p = vmalloc_to_page(addr);
2875 /*
2876 * To do safe access to this _mapped_ area, we need
2877 * lock. But adding lock here means that we need to add
2878 * overhead of vmalloc()/vfree() calles for this _debug_
2879 * interface, rarely used. Instead of that, we'll use
2880 * kmap() and get small overhead in this access function.
2881 */
2882 if (p) {
2883 /*
2884 * we can expect USER0 is not used (see vread/vwrite's
2885 * function description)
2886 */
2887 void *map = kmap_atomic(p);
2888 memcpy(map + offset, buf, length);
2889 kunmap_atomic(map);
2890 }
2891 addr += length;
2892 buf += length;
2893 copied += length;
2894 count -= length;
2895 }
2896 return copied;
2897 }
2898
2899 /**
2900 * vread() - read vmalloc area in a safe way.
2901 * @buf: buffer for reading data
2902 * @addr: vm address.
2903 * @count: number of bytes to be read.
2904 *
2905 * This function checks that addr is a valid vmalloc'ed area, and
2906 * copy data from that area to a given buffer. If the given memory range
2907 * of [addr...addr+count) includes some valid address, data is copied to
2908 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2909 * IOREMAP area is treated as memory hole and no copy is done.
2910 *
2911 * If [addr...addr+count) doesn't includes any intersects with alive
2912 * vm_struct area, returns 0. @buf should be kernel's buffer.
2913 *
2914 * Note: In usual ops, vread() is never necessary because the caller
2915 * should know vmalloc() area is valid and can use memcpy().
2916 * This is for routines which have to access vmalloc area without
2917 * any information, as /dev/kmem.
2918 *
2919 * Return: number of bytes for which addr and buf should be increased
2920 * (same number as @count) or %0 if [addr...addr+count) doesn't
2921 * include any intersection with valid vmalloc area
2922 */
2923 long vread(char *buf, char *addr, unsigned long count)
2924 {
2925 struct vmap_area *va;
2926 struct vm_struct *vm;
2927 char *vaddr, *buf_start = buf;
2928 unsigned long buflen = count;
2929 unsigned long n;
2930
2931 /* Don't allow overflow */
2932 if ((unsigned long) addr + count < count)
2933 count = -(unsigned long) addr;
2934
2935 spin_lock(&vmap_area_lock);
2936 list_for_each_entry(va, &vmap_area_list, list) {
2937 if (!count)
2938 break;
2939
2940 if (!va->vm)
2941 continue;
2942
2943 vm = va->vm;
2944 vaddr = (char *) vm->addr;
2945 if (addr >= vaddr + get_vm_area_size(vm))
2946 continue;
2947 while (addr < vaddr) {
2948 if (count == 0)
2949 goto finished;
2950 *buf = '\0';
2951 buf++;
2952 addr++;
2953 count--;
2954 }
2955 n = vaddr + get_vm_area_size(vm) - addr;
2956 if (n > count)
2957 n = count;
2958 if (!(vm->flags & VM_IOREMAP))
2959 aligned_vread(buf, addr, n);
2960 else /* IOREMAP area is treated as memory hole */
2961 memset(buf, 0, n);
2962 buf += n;
2963 addr += n;
2964 count -= n;
2965 }
2966 finished:
2967 spin_unlock(&vmap_area_lock);
2968
2969 if (buf == buf_start)
2970 return 0;
2971 /* zero-fill memory holes */
2972 if (buf != buf_start + buflen)
2973 memset(buf, 0, buflen - (buf - buf_start));
2974
2975 return buflen;
2976 }
2977
2978 /**
2979 * vwrite() - write vmalloc area in a safe way.
2980 * @buf: buffer for source data
2981 * @addr: vm address.
2982 * @count: number of bytes to be read.
2983 *
2984 * This function checks that addr is a valid vmalloc'ed area, and
2985 * copy data from a buffer to the given addr. If specified range of
2986 * [addr...addr+count) includes some valid address, data is copied from
2987 * proper area of @buf. If there are memory holes, no copy to hole.
2988 * IOREMAP area is treated as memory hole and no copy is done.
2989 *
2990 * If [addr...addr+count) doesn't includes any intersects with alive
2991 * vm_struct area, returns 0. @buf should be kernel's buffer.
2992 *
2993 * Note: In usual ops, vwrite() is never necessary because the caller
2994 * should know vmalloc() area is valid and can use memcpy().
2995 * This is for routines which have to access vmalloc area without
2996 * any information, as /dev/kmem.
2997 *
2998 * Return: number of bytes for which addr and buf should be
2999 * increased (same number as @count) or %0 if [addr...addr+count)
3000 * doesn't include any intersection with valid vmalloc area
3001 */
3002 long vwrite(char *buf, char *addr, unsigned long count)
3003 {
3004 struct vmap_area *va;
3005 struct vm_struct *vm;
3006 char *vaddr;
3007 unsigned long n, buflen;
3008 int copied = 0;
3009
3010 /* Don't allow overflow */
3011 if ((unsigned long) addr + count < count)
3012 count = -(unsigned long) addr;
3013 buflen = count;
3014
3015 spin_lock(&vmap_area_lock);
3016 list_for_each_entry(va, &vmap_area_list, list) {
3017 if (!count)
3018 break;
3019
3020 if (!va->vm)
3021 continue;
3022
3023 vm = va->vm;
3024 vaddr = (char *) vm->addr;
3025 if (addr >= vaddr + get_vm_area_size(vm))
3026 continue;
3027 while (addr < vaddr) {
3028 if (count == 0)
3029 goto finished;
3030 buf++;
3031 addr++;
3032 count--;
3033 }
3034 n = vaddr + get_vm_area_size(vm) - addr;
3035 if (n > count)
3036 n = count;
3037 if (!(vm->flags & VM_IOREMAP)) {
3038 aligned_vwrite(buf, addr, n);
3039 copied++;
3040 }
3041 buf += n;
3042 addr += n;
3043 count -= n;
3044 }
3045 finished:
3046 spin_unlock(&vmap_area_lock);
3047 if (!copied)
3048 return 0;
3049 return buflen;
3050 }
3051
3052 /**
3053 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3054 * @vma: vma to cover
3055 * @uaddr: target user address to start at
3056 * @kaddr: virtual address of vmalloc kernel memory
3057 * @size: size of map area
3058 *
3059 * Returns: 0 for success, -Exxx on failure
3060 *
3061 * This function checks that @kaddr is a valid vmalloc'ed area,
3062 * and that it is big enough to cover the range starting at
3063 * @uaddr in @vma. Will return failure if that criteria isn't
3064 * met.
3065 *
3066 * Similar to remap_pfn_range() (see mm/memory.c)
3067 */
3068 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3069 void *kaddr, unsigned long size)
3070 {
3071 struct vm_struct *area;
3072
3073 size = PAGE_ALIGN(size);
3074
3075 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3076 return -EINVAL;
3077
3078 area = find_vm_area(kaddr);
3079 if (!area)
3080 return -EINVAL;
3081
3082 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3083 return -EINVAL;
3084
3085 if (kaddr + size > area->addr + get_vm_area_size(area))
3086 return -EINVAL;
3087
3088 do {
3089 struct page *page = vmalloc_to_page(kaddr);
3090 int ret;
3091
3092 ret = vm_insert_page(vma, uaddr, page);
3093 if (ret)
3094 return ret;
3095
3096 uaddr += PAGE_SIZE;
3097 kaddr += PAGE_SIZE;
3098 size -= PAGE_SIZE;
3099 } while (size > 0);
3100
3101 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3102
3103 return 0;
3104 }
3105 EXPORT_SYMBOL(remap_vmalloc_range_partial);
3106
3107 /**
3108 * remap_vmalloc_range - map vmalloc pages to userspace
3109 * @vma: vma to cover (map full range of vma)
3110 * @addr: vmalloc memory
3111 * @pgoff: number of pages into addr before first page to map
3112 *
3113 * Returns: 0 for success, -Exxx on failure
3114 *
3115 * This function checks that addr is a valid vmalloc'ed area, and
3116 * that it is big enough to cover the vma. Will return failure if
3117 * that criteria isn't met.
3118 *
3119 * Similar to remap_pfn_range() (see mm/memory.c)
3120 */
3121 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3122 unsigned long pgoff)
3123 {
3124 return remap_vmalloc_range_partial(vma, vma->vm_start,
3125 addr + (pgoff << PAGE_SHIFT),
3126 vma->vm_end - vma->vm_start);
3127 }
3128 EXPORT_SYMBOL(remap_vmalloc_range);
3129
3130 /*
3131 * Implement stubs for vmalloc_sync_[un]mappings () if the architecture chose
3132 * not to have one.
3133 *
3134 * The purpose of this function is to make sure the vmalloc area
3135 * mappings are identical in all page-tables in the system.
3136 */
3137 void __weak vmalloc_sync_mappings(void)
3138 {
3139 }
3140
3141 void __weak vmalloc_sync_unmappings(void)
3142 {
3143 }
3144
3145 static int f(pte_t *pte, unsigned long addr, void *data)
3146 {
3147 pte_t ***p = data;
3148
3149 if (p) {
3150 *(*p) = pte;
3151 (*p)++;
3152 }
3153 return 0;
3154 }
3155
3156 /**
3157 * alloc_vm_area - allocate a range of kernel address space
3158 * @size: size of the area
3159 * @ptes: returns the PTEs for the address space
3160 *
3161 * Returns: NULL on failure, vm_struct on success
3162 *
3163 * This function reserves a range of kernel address space, and
3164 * allocates pagetables to map that range. No actual mappings
3165 * are created.
3166 *
3167 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3168 * allocated for the VM area are returned.
3169 */
3170 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3171 {
3172 struct vm_struct *area;
3173
3174 area = get_vm_area_caller(size, VM_IOREMAP,
3175 __builtin_return_address(0));
3176 if (area == NULL)
3177 return NULL;
3178
3179 /*
3180 * This ensures that page tables are constructed for this region
3181 * of kernel virtual address space and mapped into init_mm.
3182 */
3183 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3184 size, f, ptes ? &ptes : NULL)) {
3185 free_vm_area(area);
3186 return NULL;
3187 }
3188
3189 return area;
3190 }
3191 EXPORT_SYMBOL_GPL(alloc_vm_area);
3192
3193 void free_vm_area(struct vm_struct *area)
3194 {
3195 struct vm_struct *ret;
3196 ret = remove_vm_area(area->addr);
3197 BUG_ON(ret != area);
3198 kfree(area);
3199 }
3200 EXPORT_SYMBOL_GPL(free_vm_area);
3201
3202 #ifdef CONFIG_SMP
3203 static struct vmap_area *node_to_va(struct rb_node *n)
3204 {
3205 return rb_entry_safe(n, struct vmap_area, rb_node);
3206 }
3207
3208 /**
3209 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3210 * @addr: target address
3211 *
3212 * Returns: vmap_area if it is found. If there is no such area
3213 * the first highest(reverse order) vmap_area is returned
3214 * i.e. va->va_start < addr && va->va_end < addr or NULL
3215 * if there are no any areas before @addr.
3216 */
3217 static struct vmap_area *
3218 pvm_find_va_enclose_addr(unsigned long addr)
3219 {
3220 struct vmap_area *va, *tmp;
3221 struct rb_node *n;
3222
3223 n = free_vmap_area_root.rb_node;
3224 va = NULL;
3225
3226 while (n) {
3227 tmp = rb_entry(n, struct vmap_area, rb_node);
3228 if (tmp->va_start <= addr) {
3229 va = tmp;
3230 if (tmp->va_end >= addr)
3231 break;
3232
3233 n = n->rb_right;
3234 } else {
3235 n = n->rb_left;
3236 }
3237 }
3238
3239 return va;
3240 }
3241
3242 /**
3243 * pvm_determine_end_from_reverse - find the highest aligned address
3244 * of free block below VMALLOC_END
3245 * @va:
3246 * in - the VA we start the search(reverse order);
3247 * out - the VA with the highest aligned end address.
3248 *
3249 * Returns: determined end address within vmap_area
3250 */
3251 static unsigned long
3252 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3253 {
3254 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3255 unsigned long addr;
3256
3257 if (likely(*va)) {
3258 list_for_each_entry_from_reverse((*va),
3259 &free_vmap_area_list, list) {
3260 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3261 if ((*va)->va_start < addr)
3262 return addr;
3263 }
3264 }
3265
3266 return 0;
3267 }
3268
3269 /**
3270 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3271 * @offsets: array containing offset of each area
3272 * @sizes: array containing size of each area
3273 * @nr_vms: the number of areas to allocate
3274 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3275 *
3276 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3277 * vm_structs on success, %NULL on failure
3278 *
3279 * Percpu allocator wants to use congruent vm areas so that it can
3280 * maintain the offsets among percpu areas. This function allocates
3281 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3282 * be scattered pretty far, distance between two areas easily going up
3283 * to gigabytes. To avoid interacting with regular vmallocs, these
3284 * areas are allocated from top.
3285 *
3286 * Despite its complicated look, this allocator is rather simple. It
3287 * does everything top-down and scans free blocks from the end looking
3288 * for matching base. While scanning, if any of the areas do not fit the
3289 * base address is pulled down to fit the area. Scanning is repeated till
3290 * all the areas fit and then all necessary data structures are inserted
3291 * and the result is returned.
3292 */
3293 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3294 const size_t *sizes, int nr_vms,
3295 size_t align)
3296 {
3297 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3298 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3299 struct vmap_area **vas, *va;
3300 struct vm_struct **vms;
3301 int area, area2, last_area, term_area;
3302 unsigned long base, start, size, end, last_end, orig_start, orig_end;
3303 bool purged = false;
3304 enum fit_type type;
3305
3306 /* verify parameters and allocate data structures */
3307 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3308 for (last_area = 0, area = 0; area < nr_vms; area++) {
3309 start = offsets[area];
3310 end = start + sizes[area];
3311
3312 /* is everything aligned properly? */
3313 BUG_ON(!IS_ALIGNED(offsets[area], align));
3314 BUG_ON(!IS_ALIGNED(sizes[area], align));
3315
3316 /* detect the area with the highest address */
3317 if (start > offsets[last_area])
3318 last_area = area;
3319
3320 for (area2 = area + 1; area2 < nr_vms; area2++) {
3321 unsigned long start2 = offsets[area2];
3322 unsigned long end2 = start2 + sizes[area2];
3323
3324 BUG_ON(start2 < end && start < end2);
3325 }
3326 }
3327 last_end = offsets[last_area] + sizes[last_area];
3328
3329 if (vmalloc_end - vmalloc_start < last_end) {
3330 WARN_ON(true);
3331 return NULL;
3332 }
3333
3334 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3335 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3336 if (!vas || !vms)
3337 goto err_free2;
3338
3339 for (area = 0; area < nr_vms; area++) {
3340 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3341 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3342 if (!vas[area] || !vms[area])
3343 goto err_free;
3344 }
3345 retry:
3346 spin_lock(&free_vmap_area_lock);
3347
3348 /* start scanning - we scan from the top, begin with the last area */
3349 area = term_area = last_area;
3350 start = offsets[area];
3351 end = start + sizes[area];
3352
3353 va = pvm_find_va_enclose_addr(vmalloc_end);
3354 base = pvm_determine_end_from_reverse(&va, align) - end;
3355
3356 while (true) {
3357 /*
3358 * base might have underflowed, add last_end before
3359 * comparing.
3360 */
3361 if (base + last_end < vmalloc_start + last_end)
3362 goto overflow;
3363
3364 /*
3365 * Fitting base has not been found.
3366 */
3367 if (va == NULL)
3368 goto overflow;
3369
3370 /*
3371 * If required width exceeds current VA block, move
3372 * base downwards and then recheck.
3373 */
3374 if (base + end > va->va_end) {
3375 base = pvm_determine_end_from_reverse(&va, align) - end;
3376 term_area = area;
3377 continue;
3378 }
3379
3380 /*
3381 * If this VA does not fit, move base downwards and recheck.
3382 */
3383 if (base + start < va->va_start) {
3384 va = node_to_va(rb_prev(&va->rb_node));
3385 base = pvm_determine_end_from_reverse(&va, align) - end;
3386 term_area = area;
3387 continue;
3388 }
3389
3390 /*
3391 * This area fits, move on to the previous one. If
3392 * the previous one is the terminal one, we're done.
3393 */
3394 area = (area + nr_vms - 1) % nr_vms;
3395 if (area == term_area)
3396 break;
3397
3398 start = offsets[area];
3399 end = start + sizes[area];
3400 va = pvm_find_va_enclose_addr(base + end);
3401 }
3402
3403 /* we've found a fitting base, insert all va's */
3404 for (area = 0; area < nr_vms; area++) {
3405 int ret;
3406
3407 start = base + offsets[area];
3408 size = sizes[area];
3409
3410 va = pvm_find_va_enclose_addr(start);
3411 if (WARN_ON_ONCE(va == NULL))
3412 /* It is a BUG(), but trigger recovery instead. */
3413 goto recovery;
3414
3415 type = classify_va_fit_type(va, start, size);
3416 if (WARN_ON_ONCE(type == NOTHING_FIT))
3417 /* It is a BUG(), but trigger recovery instead. */
3418 goto recovery;
3419
3420 ret = adjust_va_to_fit_type(va, start, size, type);
3421 if (unlikely(ret))
3422 goto recovery;
3423
3424 /* Allocated area. */
3425 va = vas[area];
3426 va->va_start = start;
3427 va->va_end = start + size;
3428 }
3429
3430 spin_unlock(&free_vmap_area_lock);
3431
3432 /* populate the kasan shadow space */
3433 for (area = 0; area < nr_vms; area++) {
3434 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3435 goto err_free_shadow;
3436
3437 kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3438 sizes[area]);
3439 }
3440
3441 /* insert all vm's */
3442 spin_lock(&vmap_area_lock);
3443 for (area = 0; area < nr_vms; area++) {
3444 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3445
3446 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3447 pcpu_get_vm_areas);
3448 }
3449 spin_unlock(&vmap_area_lock);
3450
3451 kfree(vas);
3452 return vms;
3453
3454 recovery:
3455 /*
3456 * Remove previously allocated areas. There is no
3457 * need in removing these areas from the busy tree,
3458 * because they are inserted only on the final step
3459 * and when pcpu_get_vm_areas() is success.
3460 */
3461 while (area--) {
3462 orig_start = vas[area]->va_start;
3463 orig_end = vas[area]->va_end;
3464 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3465 &free_vmap_area_list);
3466 kasan_release_vmalloc(orig_start, orig_end,
3467 va->va_start, va->va_end);
3468 vas[area] = NULL;
3469 }
3470
3471 overflow:
3472 spin_unlock(&free_vmap_area_lock);
3473 if (!purged) {
3474 purge_vmap_area_lazy();
3475 purged = true;
3476
3477 /* Before "retry", check if we recover. */
3478 for (area = 0; area < nr_vms; area++) {
3479 if (vas[area])
3480 continue;
3481
3482 vas[area] = kmem_cache_zalloc(
3483 vmap_area_cachep, GFP_KERNEL);
3484 if (!vas[area])
3485 goto err_free;
3486 }
3487
3488 goto retry;
3489 }
3490
3491 err_free:
3492 for (area = 0; area < nr_vms; area++) {
3493 if (vas[area])
3494 kmem_cache_free(vmap_area_cachep, vas[area]);
3495
3496 kfree(vms[area]);
3497 }
3498 err_free2:
3499 kfree(vas);
3500 kfree(vms);
3501 return NULL;
3502
3503 err_free_shadow:
3504 spin_lock(&free_vmap_area_lock);
3505 /*
3506 * We release all the vmalloc shadows, even the ones for regions that
3507 * hadn't been successfully added. This relies on kasan_release_vmalloc
3508 * being able to tolerate this case.
3509 */
3510 for (area = 0; area < nr_vms; area++) {
3511 orig_start = vas[area]->va_start;
3512 orig_end = vas[area]->va_end;
3513 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3514 &free_vmap_area_list);
3515 kasan_release_vmalloc(orig_start, orig_end,
3516 va->va_start, va->va_end);
3517 vas[area] = NULL;
3518 kfree(vms[area]);
3519 }
3520 spin_unlock(&free_vmap_area_lock);
3521 kfree(vas);
3522 kfree(vms);
3523 return NULL;
3524 }
3525
3526 /**
3527 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3528 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3529 * @nr_vms: the number of allocated areas
3530 *
3531 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3532 */
3533 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3534 {
3535 int i;
3536
3537 for (i = 0; i < nr_vms; i++)
3538 free_vm_area(vms[i]);
3539 kfree(vms);
3540 }
3541 #endif /* CONFIG_SMP */
3542
3543 #ifdef CONFIG_PROC_FS
3544 static void *s_start(struct seq_file *m, loff_t *pos)
3545 __acquires(&vmap_purge_lock)
3546 __acquires(&vmap_area_lock)
3547 {
3548 mutex_lock(&vmap_purge_lock);
3549 spin_lock(&vmap_area_lock);
3550
3551 return seq_list_start(&vmap_area_list, *pos);
3552 }
3553
3554 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3555 {
3556 return seq_list_next(p, &vmap_area_list, pos);
3557 }
3558
3559 static void s_stop(struct seq_file *m, void *p)
3560 __releases(&vmap_purge_lock)
3561 __releases(&vmap_area_lock)
3562 {
3563 mutex_unlock(&vmap_purge_lock);
3564 spin_unlock(&vmap_area_lock);
3565 }
3566
3567 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3568 {
3569 if (IS_ENABLED(CONFIG_NUMA)) {
3570 unsigned int nr, *counters = m->private;
3571
3572 if (!counters)
3573 return;
3574
3575 if (v->flags & VM_UNINITIALIZED)
3576 return;
3577 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3578 smp_rmb();
3579
3580 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3581
3582 for (nr = 0; nr < v->nr_pages; nr++)
3583 counters[page_to_nid(v->pages[nr])]++;
3584
3585 for_each_node_state(nr, N_HIGH_MEMORY)
3586 if (counters[nr])
3587 seq_printf(m, " N%u=%u", nr, counters[nr]);
3588 }
3589 }
3590
3591 static void show_purge_info(struct seq_file *m)
3592 {
3593 struct llist_node *head;
3594 struct vmap_area *va;
3595
3596 head = READ_ONCE(vmap_purge_list.first);
3597 if (head == NULL)
3598 return;
3599
3600 llist_for_each_entry(va, head, purge_list) {
3601 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3602 (void *)va->va_start, (void *)va->va_end,
3603 va->va_end - va->va_start);
3604 }
3605 }
3606
3607 static int s_show(struct seq_file *m, void *p)
3608 {
3609 struct vmap_area *va;
3610 struct vm_struct *v;
3611
3612 va = list_entry(p, struct vmap_area, list);
3613
3614 /*
3615 * s_show can encounter race with remove_vm_area, !vm on behalf
3616 * of vmap area is being tear down or vm_map_ram allocation.
3617 */
3618 if (!va->vm) {
3619 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3620 (void *)va->va_start, (void *)va->va_end,
3621 va->va_end - va->va_start);
3622
3623 return 0;
3624 }
3625
3626 v = va->vm;
3627
3628 seq_printf(m, "0x%pK-0x%pK %7ld",
3629 v->addr, v->addr + v->size, v->size);
3630
3631 if (v->caller)
3632 seq_printf(m, " %pS", v->caller);
3633
3634 if (v->nr_pages)
3635 seq_printf(m, " pages=%d", v->nr_pages);
3636
3637 if (v->phys_addr)
3638 seq_printf(m, " phys=%pa", &v->phys_addr);
3639
3640 if (v->flags & VM_IOREMAP)
3641 seq_puts(m, " ioremap");
3642
3643 if (v->flags & VM_ALLOC)
3644 seq_puts(m, " vmalloc");
3645
3646 if (v->flags & VM_MAP)
3647 seq_puts(m, " vmap");
3648
3649 if (v->flags & VM_USERMAP)
3650 seq_puts(m, " user");
3651
3652 if (v->flags & VM_DMA_COHERENT)
3653 seq_puts(m, " dma-coherent");
3654
3655 if (is_vmalloc_addr(v->pages))
3656 seq_puts(m, " vpages");
3657
3658 show_numa_info(m, v);
3659 seq_putc(m, '\n');
3660
3661 /*
3662 * As a final step, dump "unpurged" areas. Note,
3663 * that entire "/proc/vmallocinfo" output will not
3664 * be address sorted, because the purge list is not
3665 * sorted.
3666 */
3667 if (list_is_last(&va->list, &vmap_area_list))
3668 show_purge_info(m);
3669
3670 return 0;
3671 }
3672
3673 static const struct seq_operations vmalloc_op = {
3674 .start = s_start,
3675 .next = s_next,
3676 .stop = s_stop,
3677 .show = s_show,
3678 };
3679
3680 static int __init proc_vmalloc_init(void)
3681 {
3682 if (IS_ENABLED(CONFIG_NUMA))
3683 proc_create_seq_private("vmallocinfo", 0400, NULL,
3684 &vmalloc_op,
3685 nr_node_ids * sizeof(unsigned int), NULL);
3686 else
3687 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3688 return 0;
3689 }
3690 module_init(proc_vmalloc_init);
3691
3692 #endif