]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/vmalloc.c
tuntap: add sanity checks about msg_controllen in sendmsg
[mirror_ubuntu-focal-kernel.git] / mm / vmalloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/vmalloc.c
4 *
5 * Copyright (C) 1993 Linus Torvalds
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
9 * Numa awareness, Christoph Lameter, SGI, June 2005
10 */
11
12 #include <linux/vmalloc.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/sched/signal.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/interrupt.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/set_memory.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/list.h>
26 #include <linux/notifier.h>
27 #include <linux/rbtree.h>
28 #include <linux/radix-tree.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/llist.h>
35 #include <linux/bitops.h>
36 #include <linux/rbtree_augmented.h>
37 #include <linux/overflow.h>
38
39 #include <linux/uaccess.h>
40 #include <asm/tlbflush.h>
41 #include <asm/shmparam.h>
42
43 #include "internal.h"
44
45 struct vfree_deferred {
46 struct llist_head list;
47 struct work_struct wq;
48 };
49 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
50
51 static void __vunmap(const void *, int);
52
53 static void free_work(struct work_struct *w)
54 {
55 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
56 struct llist_node *t, *llnode;
57
58 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
59 __vunmap((void *)llnode, 1);
60 }
61
62 /*** Page table manipulation functions ***/
63
64 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
65 {
66 pte_t *pte;
67
68 pte = pte_offset_kernel(pmd, addr);
69 do {
70 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
71 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
72 } while (pte++, addr += PAGE_SIZE, addr != end);
73 }
74
75 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
76 {
77 pmd_t *pmd;
78 unsigned long next;
79
80 pmd = pmd_offset(pud, addr);
81 do {
82 next = pmd_addr_end(addr, end);
83 if (pmd_clear_huge(pmd))
84 continue;
85 if (pmd_none_or_clear_bad(pmd))
86 continue;
87 vunmap_pte_range(pmd, addr, next);
88
89 cond_resched();
90 } while (pmd++, addr = next, addr != end);
91 }
92
93 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
94 {
95 pud_t *pud;
96 unsigned long next;
97
98 pud = pud_offset(p4d, addr);
99 do {
100 next = pud_addr_end(addr, end);
101 if (pud_clear_huge(pud))
102 continue;
103 if (pud_none_or_clear_bad(pud))
104 continue;
105 vunmap_pmd_range(pud, addr, next);
106 } while (pud++, addr = next, addr != end);
107 }
108
109 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
110 {
111 p4d_t *p4d;
112 unsigned long next;
113
114 p4d = p4d_offset(pgd, addr);
115 do {
116 next = p4d_addr_end(addr, end);
117 if (p4d_clear_huge(p4d))
118 continue;
119 if (p4d_none_or_clear_bad(p4d))
120 continue;
121 vunmap_pud_range(p4d, addr, next);
122 } while (p4d++, addr = next, addr != end);
123 }
124
125 static void vunmap_page_range(unsigned long addr, unsigned long end)
126 {
127 pgd_t *pgd;
128 unsigned long next;
129
130 BUG_ON(addr >= end);
131 pgd = pgd_offset_k(addr);
132 do {
133 next = pgd_addr_end(addr, end);
134 if (pgd_none_or_clear_bad(pgd))
135 continue;
136 vunmap_p4d_range(pgd, addr, next);
137 } while (pgd++, addr = next, addr != end);
138 }
139
140 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
141 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
142 {
143 pte_t *pte;
144
145 /*
146 * nr is a running index into the array which helps higher level
147 * callers keep track of where we're up to.
148 */
149
150 pte = pte_alloc_kernel(pmd, addr);
151 if (!pte)
152 return -ENOMEM;
153 do {
154 struct page *page = pages[*nr];
155
156 if (WARN_ON(!pte_none(*pte)))
157 return -EBUSY;
158 if (WARN_ON(!page))
159 return -ENOMEM;
160 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
161 (*nr)++;
162 } while (pte++, addr += PAGE_SIZE, addr != end);
163 return 0;
164 }
165
166 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
167 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
168 {
169 pmd_t *pmd;
170 unsigned long next;
171
172 pmd = pmd_alloc(&init_mm, pud, addr);
173 if (!pmd)
174 return -ENOMEM;
175 do {
176 next = pmd_addr_end(addr, end);
177 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
178 return -ENOMEM;
179 } while (pmd++, addr = next, addr != end);
180 return 0;
181 }
182
183 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
184 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
185 {
186 pud_t *pud;
187 unsigned long next;
188
189 pud = pud_alloc(&init_mm, p4d, addr);
190 if (!pud)
191 return -ENOMEM;
192 do {
193 next = pud_addr_end(addr, end);
194 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
195 return -ENOMEM;
196 } while (pud++, addr = next, addr != end);
197 return 0;
198 }
199
200 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
201 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
202 {
203 p4d_t *p4d;
204 unsigned long next;
205
206 p4d = p4d_alloc(&init_mm, pgd, addr);
207 if (!p4d)
208 return -ENOMEM;
209 do {
210 next = p4d_addr_end(addr, end);
211 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
212 return -ENOMEM;
213 } while (p4d++, addr = next, addr != end);
214 return 0;
215 }
216
217 /*
218 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
219 * will have pfns corresponding to the "pages" array.
220 *
221 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
222 */
223 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
224 pgprot_t prot, struct page **pages)
225 {
226 pgd_t *pgd;
227 unsigned long next;
228 unsigned long addr = start;
229 int err = 0;
230 int nr = 0;
231
232 BUG_ON(addr >= end);
233 pgd = pgd_offset_k(addr);
234 do {
235 next = pgd_addr_end(addr, end);
236 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
237 if (err)
238 return err;
239 } while (pgd++, addr = next, addr != end);
240
241 return nr;
242 }
243
244 static int vmap_page_range(unsigned long start, unsigned long end,
245 pgprot_t prot, struct page **pages)
246 {
247 int ret;
248
249 ret = vmap_page_range_noflush(start, end, prot, pages);
250 flush_cache_vmap(start, end);
251 return ret;
252 }
253
254 int is_vmalloc_or_module_addr(const void *x)
255 {
256 /*
257 * ARM, x86-64 and sparc64 put modules in a special place,
258 * and fall back on vmalloc() if that fails. Others
259 * just put it in the vmalloc space.
260 */
261 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
262 unsigned long addr = (unsigned long)x;
263 if (addr >= MODULES_VADDR && addr < MODULES_END)
264 return 1;
265 #endif
266 return is_vmalloc_addr(x);
267 }
268
269 /*
270 * Walk a vmap address to the struct page it maps.
271 */
272 struct page *vmalloc_to_page(const void *vmalloc_addr)
273 {
274 unsigned long addr = (unsigned long) vmalloc_addr;
275 struct page *page = NULL;
276 pgd_t *pgd = pgd_offset_k(addr);
277 p4d_t *p4d;
278 pud_t *pud;
279 pmd_t *pmd;
280 pte_t *ptep, pte;
281
282 /*
283 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
284 * architectures that do not vmalloc module space
285 */
286 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
287
288 if (pgd_none(*pgd))
289 return NULL;
290 p4d = p4d_offset(pgd, addr);
291 if (p4d_none(*p4d))
292 return NULL;
293 pud = pud_offset(p4d, addr);
294
295 /*
296 * Don't dereference bad PUD or PMD (below) entries. This will also
297 * identify huge mappings, which we may encounter on architectures
298 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
299 * identified as vmalloc addresses by is_vmalloc_addr(), but are
300 * not [unambiguously] associated with a struct page, so there is
301 * no correct value to return for them.
302 */
303 WARN_ON_ONCE(pud_bad(*pud));
304 if (pud_none(*pud) || pud_bad(*pud))
305 return NULL;
306 pmd = pmd_offset(pud, addr);
307 WARN_ON_ONCE(pmd_bad(*pmd));
308 if (pmd_none(*pmd) || pmd_bad(*pmd))
309 return NULL;
310
311 ptep = pte_offset_map(pmd, addr);
312 pte = *ptep;
313 if (pte_present(pte))
314 page = pte_page(pte);
315 pte_unmap(ptep);
316 return page;
317 }
318 EXPORT_SYMBOL(vmalloc_to_page);
319
320 /*
321 * Map a vmalloc()-space virtual address to the physical page frame number.
322 */
323 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
324 {
325 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
326 }
327 EXPORT_SYMBOL(vmalloc_to_pfn);
328
329
330 /*** Global kva allocator ***/
331
332 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
333 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
334
335
336 static DEFINE_SPINLOCK(vmap_area_lock);
337 /* Export for kexec only */
338 LIST_HEAD(vmap_area_list);
339 static LLIST_HEAD(vmap_purge_list);
340 static struct rb_root vmap_area_root = RB_ROOT;
341 static bool vmap_initialized __read_mostly;
342
343 /*
344 * This kmem_cache is used for vmap_area objects. Instead of
345 * allocating from slab we reuse an object from this cache to
346 * make things faster. Especially in "no edge" splitting of
347 * free block.
348 */
349 static struct kmem_cache *vmap_area_cachep;
350
351 /*
352 * This linked list is used in pair with free_vmap_area_root.
353 * It gives O(1) access to prev/next to perform fast coalescing.
354 */
355 static LIST_HEAD(free_vmap_area_list);
356
357 /*
358 * This augment red-black tree represents the free vmap space.
359 * All vmap_area objects in this tree are sorted by va->va_start
360 * address. It is used for allocation and merging when a vmap
361 * object is released.
362 *
363 * Each vmap_area node contains a maximum available free block
364 * of its sub-tree, right or left. Therefore it is possible to
365 * find a lowest match of free area.
366 */
367 static struct rb_root free_vmap_area_root = RB_ROOT;
368
369 /*
370 * Preload a CPU with one object for "no edge" split case. The
371 * aim is to get rid of allocations from the atomic context, thus
372 * to use more permissive allocation masks.
373 */
374 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
375
376 static __always_inline unsigned long
377 va_size(struct vmap_area *va)
378 {
379 return (va->va_end - va->va_start);
380 }
381
382 static __always_inline unsigned long
383 get_subtree_max_size(struct rb_node *node)
384 {
385 struct vmap_area *va;
386
387 va = rb_entry_safe(node, struct vmap_area, rb_node);
388 return va ? va->subtree_max_size : 0;
389 }
390
391 /*
392 * Gets called when remove the node and rotate.
393 */
394 static __always_inline unsigned long
395 compute_subtree_max_size(struct vmap_area *va)
396 {
397 return max3(va_size(va),
398 get_subtree_max_size(va->rb_node.rb_left),
399 get_subtree_max_size(va->rb_node.rb_right));
400 }
401
402 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
403 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
404
405 static void purge_vmap_area_lazy(void);
406 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
407 static unsigned long lazy_max_pages(void);
408
409 static atomic_long_t nr_vmalloc_pages;
410
411 unsigned long vmalloc_nr_pages(void)
412 {
413 return atomic_long_read(&nr_vmalloc_pages);
414 }
415
416 static struct vmap_area *__find_vmap_area(unsigned long addr)
417 {
418 struct rb_node *n = vmap_area_root.rb_node;
419
420 while (n) {
421 struct vmap_area *va;
422
423 va = rb_entry(n, struct vmap_area, rb_node);
424 if (addr < va->va_start)
425 n = n->rb_left;
426 else if (addr >= va->va_end)
427 n = n->rb_right;
428 else
429 return va;
430 }
431
432 return NULL;
433 }
434
435 /*
436 * This function returns back addresses of parent node
437 * and its left or right link for further processing.
438 */
439 static __always_inline struct rb_node **
440 find_va_links(struct vmap_area *va,
441 struct rb_root *root, struct rb_node *from,
442 struct rb_node **parent)
443 {
444 struct vmap_area *tmp_va;
445 struct rb_node **link;
446
447 if (root) {
448 link = &root->rb_node;
449 if (unlikely(!*link)) {
450 *parent = NULL;
451 return link;
452 }
453 } else {
454 link = &from;
455 }
456
457 /*
458 * Go to the bottom of the tree. When we hit the last point
459 * we end up with parent rb_node and correct direction, i name
460 * it link, where the new va->rb_node will be attached to.
461 */
462 do {
463 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
464
465 /*
466 * During the traversal we also do some sanity check.
467 * Trigger the BUG() if there are sides(left/right)
468 * or full overlaps.
469 */
470 if (va->va_start < tmp_va->va_end &&
471 va->va_end <= tmp_va->va_start)
472 link = &(*link)->rb_left;
473 else if (va->va_end > tmp_va->va_start &&
474 va->va_start >= tmp_va->va_end)
475 link = &(*link)->rb_right;
476 else
477 BUG();
478 } while (*link);
479
480 *parent = &tmp_va->rb_node;
481 return link;
482 }
483
484 static __always_inline struct list_head *
485 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
486 {
487 struct list_head *list;
488
489 if (unlikely(!parent))
490 /*
491 * The red-black tree where we try to find VA neighbors
492 * before merging or inserting is empty, i.e. it means
493 * there is no free vmap space. Normally it does not
494 * happen but we handle this case anyway.
495 */
496 return NULL;
497
498 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
499 return (&parent->rb_right == link ? list->next : list);
500 }
501
502 static __always_inline void
503 link_va(struct vmap_area *va, struct rb_root *root,
504 struct rb_node *parent, struct rb_node **link, struct list_head *head)
505 {
506 /*
507 * VA is still not in the list, but we can
508 * identify its future previous list_head node.
509 */
510 if (likely(parent)) {
511 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
512 if (&parent->rb_right != link)
513 head = head->prev;
514 }
515
516 /* Insert to the rb-tree */
517 rb_link_node(&va->rb_node, parent, link);
518 if (root == &free_vmap_area_root) {
519 /*
520 * Some explanation here. Just perform simple insertion
521 * to the tree. We do not set va->subtree_max_size to
522 * its current size before calling rb_insert_augmented().
523 * It is because of we populate the tree from the bottom
524 * to parent levels when the node _is_ in the tree.
525 *
526 * Therefore we set subtree_max_size to zero after insertion,
527 * to let __augment_tree_propagate_from() puts everything to
528 * the correct order later on.
529 */
530 rb_insert_augmented(&va->rb_node,
531 root, &free_vmap_area_rb_augment_cb);
532 va->subtree_max_size = 0;
533 } else {
534 rb_insert_color(&va->rb_node, root);
535 }
536
537 /* Address-sort this list */
538 list_add(&va->list, head);
539 }
540
541 static __always_inline void
542 unlink_va(struct vmap_area *va, struct rb_root *root)
543 {
544 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
545 return;
546
547 if (root == &free_vmap_area_root)
548 rb_erase_augmented(&va->rb_node,
549 root, &free_vmap_area_rb_augment_cb);
550 else
551 rb_erase(&va->rb_node, root);
552
553 list_del(&va->list);
554 RB_CLEAR_NODE(&va->rb_node);
555 }
556
557 #if DEBUG_AUGMENT_PROPAGATE_CHECK
558 static void
559 augment_tree_propagate_check(struct rb_node *n)
560 {
561 struct vmap_area *va;
562 struct rb_node *node;
563 unsigned long size;
564 bool found = false;
565
566 if (n == NULL)
567 return;
568
569 va = rb_entry(n, struct vmap_area, rb_node);
570 size = va->subtree_max_size;
571 node = n;
572
573 while (node) {
574 va = rb_entry(node, struct vmap_area, rb_node);
575
576 if (get_subtree_max_size(node->rb_left) == size) {
577 node = node->rb_left;
578 } else {
579 if (va_size(va) == size) {
580 found = true;
581 break;
582 }
583
584 node = node->rb_right;
585 }
586 }
587
588 if (!found) {
589 va = rb_entry(n, struct vmap_area, rb_node);
590 pr_emerg("tree is corrupted: %lu, %lu\n",
591 va_size(va), va->subtree_max_size);
592 }
593
594 augment_tree_propagate_check(n->rb_left);
595 augment_tree_propagate_check(n->rb_right);
596 }
597 #endif
598
599 /*
600 * This function populates subtree_max_size from bottom to upper
601 * levels starting from VA point. The propagation must be done
602 * when VA size is modified by changing its va_start/va_end. Or
603 * in case of newly inserting of VA to the tree.
604 *
605 * It means that __augment_tree_propagate_from() must be called:
606 * - After VA has been inserted to the tree(free path);
607 * - After VA has been shrunk(allocation path);
608 * - After VA has been increased(merging path).
609 *
610 * Please note that, it does not mean that upper parent nodes
611 * and their subtree_max_size are recalculated all the time up
612 * to the root node.
613 *
614 * 4--8
615 * /\
616 * / \
617 * / \
618 * 2--2 8--8
619 *
620 * For example if we modify the node 4, shrinking it to 2, then
621 * no any modification is required. If we shrink the node 2 to 1
622 * its subtree_max_size is updated only, and set to 1. If we shrink
623 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
624 * node becomes 4--6.
625 */
626 static __always_inline void
627 augment_tree_propagate_from(struct vmap_area *va)
628 {
629 struct rb_node *node = &va->rb_node;
630 unsigned long new_va_sub_max_size;
631
632 while (node) {
633 va = rb_entry(node, struct vmap_area, rb_node);
634 new_va_sub_max_size = compute_subtree_max_size(va);
635
636 /*
637 * If the newly calculated maximum available size of the
638 * subtree is equal to the current one, then it means that
639 * the tree is propagated correctly. So we have to stop at
640 * this point to save cycles.
641 */
642 if (va->subtree_max_size == new_va_sub_max_size)
643 break;
644
645 va->subtree_max_size = new_va_sub_max_size;
646 node = rb_parent(&va->rb_node);
647 }
648
649 #if DEBUG_AUGMENT_PROPAGATE_CHECK
650 augment_tree_propagate_check(free_vmap_area_root.rb_node);
651 #endif
652 }
653
654 static void
655 insert_vmap_area(struct vmap_area *va,
656 struct rb_root *root, struct list_head *head)
657 {
658 struct rb_node **link;
659 struct rb_node *parent;
660
661 link = find_va_links(va, root, NULL, &parent);
662 link_va(va, root, parent, link, head);
663 }
664
665 static void
666 insert_vmap_area_augment(struct vmap_area *va,
667 struct rb_node *from, struct rb_root *root,
668 struct list_head *head)
669 {
670 struct rb_node **link;
671 struct rb_node *parent;
672
673 if (from)
674 link = find_va_links(va, NULL, from, &parent);
675 else
676 link = find_va_links(va, root, NULL, &parent);
677
678 link_va(va, root, parent, link, head);
679 augment_tree_propagate_from(va);
680 }
681
682 /*
683 * Merge de-allocated chunk of VA memory with previous
684 * and next free blocks. If coalesce is not done a new
685 * free area is inserted. If VA has been merged, it is
686 * freed.
687 */
688 static __always_inline void
689 merge_or_add_vmap_area(struct vmap_area *va,
690 struct rb_root *root, struct list_head *head)
691 {
692 struct vmap_area *sibling;
693 struct list_head *next;
694 struct rb_node **link;
695 struct rb_node *parent;
696 bool merged = false;
697
698 /*
699 * Find a place in the tree where VA potentially will be
700 * inserted, unless it is merged with its sibling/siblings.
701 */
702 link = find_va_links(va, root, NULL, &parent);
703
704 /*
705 * Get next node of VA to check if merging can be done.
706 */
707 next = get_va_next_sibling(parent, link);
708 if (unlikely(next == NULL))
709 goto insert;
710
711 /*
712 * start end
713 * | |
714 * |<------VA------>|<-----Next----->|
715 * | |
716 * start end
717 */
718 if (next != head) {
719 sibling = list_entry(next, struct vmap_area, list);
720 if (sibling->va_start == va->va_end) {
721 sibling->va_start = va->va_start;
722
723 /* Check and update the tree if needed. */
724 augment_tree_propagate_from(sibling);
725
726 /* Free vmap_area object. */
727 kmem_cache_free(vmap_area_cachep, va);
728
729 /* Point to the new merged area. */
730 va = sibling;
731 merged = true;
732 }
733 }
734
735 /*
736 * start end
737 * | |
738 * |<-----Prev----->|<------VA------>|
739 * | |
740 * start end
741 */
742 if (next->prev != head) {
743 sibling = list_entry(next->prev, struct vmap_area, list);
744 if (sibling->va_end == va->va_start) {
745 sibling->va_end = va->va_end;
746
747 /* Check and update the tree if needed. */
748 augment_tree_propagate_from(sibling);
749
750 if (merged)
751 unlink_va(va, root);
752
753 /* Free vmap_area object. */
754 kmem_cache_free(vmap_area_cachep, va);
755 return;
756 }
757 }
758
759 insert:
760 if (!merged) {
761 link_va(va, root, parent, link, head);
762 augment_tree_propagate_from(va);
763 }
764 }
765
766 static __always_inline bool
767 is_within_this_va(struct vmap_area *va, unsigned long size,
768 unsigned long align, unsigned long vstart)
769 {
770 unsigned long nva_start_addr;
771
772 if (va->va_start > vstart)
773 nva_start_addr = ALIGN(va->va_start, align);
774 else
775 nva_start_addr = ALIGN(vstart, align);
776
777 /* Can be overflowed due to big size or alignment. */
778 if (nva_start_addr + size < nva_start_addr ||
779 nva_start_addr < vstart)
780 return false;
781
782 return (nva_start_addr + size <= va->va_end);
783 }
784
785 /*
786 * Find the first free block(lowest start address) in the tree,
787 * that will accomplish the request corresponding to passing
788 * parameters.
789 */
790 static __always_inline struct vmap_area *
791 find_vmap_lowest_match(unsigned long size,
792 unsigned long align, unsigned long vstart)
793 {
794 struct vmap_area *va;
795 struct rb_node *node;
796 unsigned long length;
797
798 /* Start from the root. */
799 node = free_vmap_area_root.rb_node;
800
801 /* Adjust the search size for alignment overhead. */
802 length = size + align - 1;
803
804 while (node) {
805 va = rb_entry(node, struct vmap_area, rb_node);
806
807 if (get_subtree_max_size(node->rb_left) >= length &&
808 vstart < va->va_start) {
809 node = node->rb_left;
810 } else {
811 if (is_within_this_va(va, size, align, vstart))
812 return va;
813
814 /*
815 * Does not make sense to go deeper towards the right
816 * sub-tree if it does not have a free block that is
817 * equal or bigger to the requested search length.
818 */
819 if (get_subtree_max_size(node->rb_right) >= length) {
820 node = node->rb_right;
821 continue;
822 }
823
824 /*
825 * OK. We roll back and find the first right sub-tree,
826 * that will satisfy the search criteria. It can happen
827 * only once due to "vstart" restriction.
828 */
829 while ((node = rb_parent(node))) {
830 va = rb_entry(node, struct vmap_area, rb_node);
831 if (is_within_this_va(va, size, align, vstart))
832 return va;
833
834 if (get_subtree_max_size(node->rb_right) >= length &&
835 vstart <= va->va_start) {
836 node = node->rb_right;
837 break;
838 }
839 }
840 }
841 }
842
843 return NULL;
844 }
845
846 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
847 #include <linux/random.h>
848
849 static struct vmap_area *
850 find_vmap_lowest_linear_match(unsigned long size,
851 unsigned long align, unsigned long vstart)
852 {
853 struct vmap_area *va;
854
855 list_for_each_entry(va, &free_vmap_area_list, list) {
856 if (!is_within_this_va(va, size, align, vstart))
857 continue;
858
859 return va;
860 }
861
862 return NULL;
863 }
864
865 static void
866 find_vmap_lowest_match_check(unsigned long size)
867 {
868 struct vmap_area *va_1, *va_2;
869 unsigned long vstart;
870 unsigned int rnd;
871
872 get_random_bytes(&rnd, sizeof(rnd));
873 vstart = VMALLOC_START + rnd;
874
875 va_1 = find_vmap_lowest_match(size, 1, vstart);
876 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
877
878 if (va_1 != va_2)
879 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
880 va_1, va_2, vstart);
881 }
882 #endif
883
884 enum fit_type {
885 NOTHING_FIT = 0,
886 FL_FIT_TYPE = 1, /* full fit */
887 LE_FIT_TYPE = 2, /* left edge fit */
888 RE_FIT_TYPE = 3, /* right edge fit */
889 NE_FIT_TYPE = 4 /* no edge fit */
890 };
891
892 static __always_inline enum fit_type
893 classify_va_fit_type(struct vmap_area *va,
894 unsigned long nva_start_addr, unsigned long size)
895 {
896 enum fit_type type;
897
898 /* Check if it is within VA. */
899 if (nva_start_addr < va->va_start ||
900 nva_start_addr + size > va->va_end)
901 return NOTHING_FIT;
902
903 /* Now classify. */
904 if (va->va_start == nva_start_addr) {
905 if (va->va_end == nva_start_addr + size)
906 type = FL_FIT_TYPE;
907 else
908 type = LE_FIT_TYPE;
909 } else if (va->va_end == nva_start_addr + size) {
910 type = RE_FIT_TYPE;
911 } else {
912 type = NE_FIT_TYPE;
913 }
914
915 return type;
916 }
917
918 static __always_inline int
919 adjust_va_to_fit_type(struct vmap_area *va,
920 unsigned long nva_start_addr, unsigned long size,
921 enum fit_type type)
922 {
923 struct vmap_area *lva = NULL;
924
925 if (type == FL_FIT_TYPE) {
926 /*
927 * No need to split VA, it fully fits.
928 *
929 * | |
930 * V NVA V
931 * |---------------|
932 */
933 unlink_va(va, &free_vmap_area_root);
934 kmem_cache_free(vmap_area_cachep, va);
935 } else if (type == LE_FIT_TYPE) {
936 /*
937 * Split left edge of fit VA.
938 *
939 * | |
940 * V NVA V R
941 * |-------|-------|
942 */
943 va->va_start += size;
944 } else if (type == RE_FIT_TYPE) {
945 /*
946 * Split right edge of fit VA.
947 *
948 * | |
949 * L V NVA V
950 * |-------|-------|
951 */
952 va->va_end = nva_start_addr;
953 } else if (type == NE_FIT_TYPE) {
954 /*
955 * Split no edge of fit VA.
956 *
957 * | |
958 * L V NVA V R
959 * |---|-------|---|
960 */
961 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
962 if (unlikely(!lva)) {
963 /*
964 * For percpu allocator we do not do any pre-allocation
965 * and leave it as it is. The reason is it most likely
966 * never ends up with NE_FIT_TYPE splitting. In case of
967 * percpu allocations offsets and sizes are aligned to
968 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
969 * are its main fitting cases.
970 *
971 * There are a few exceptions though, as an example it is
972 * a first allocation (early boot up) when we have "one"
973 * big free space that has to be split.
974 */
975 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
976 if (!lva)
977 return -1;
978 }
979
980 /*
981 * Build the remainder.
982 */
983 lva->va_start = va->va_start;
984 lva->va_end = nva_start_addr;
985
986 /*
987 * Shrink this VA to remaining size.
988 */
989 va->va_start = nva_start_addr + size;
990 } else {
991 return -1;
992 }
993
994 if (type != FL_FIT_TYPE) {
995 augment_tree_propagate_from(va);
996
997 if (lva) /* type == NE_FIT_TYPE */
998 insert_vmap_area_augment(lva, &va->rb_node,
999 &free_vmap_area_root, &free_vmap_area_list);
1000 }
1001
1002 return 0;
1003 }
1004
1005 /*
1006 * Returns a start address of the newly allocated area, if success.
1007 * Otherwise a vend is returned that indicates failure.
1008 */
1009 static __always_inline unsigned long
1010 __alloc_vmap_area(unsigned long size, unsigned long align,
1011 unsigned long vstart, unsigned long vend)
1012 {
1013 unsigned long nva_start_addr;
1014 struct vmap_area *va;
1015 enum fit_type type;
1016 int ret;
1017
1018 va = find_vmap_lowest_match(size, align, vstart);
1019 if (unlikely(!va))
1020 return vend;
1021
1022 if (va->va_start > vstart)
1023 nva_start_addr = ALIGN(va->va_start, align);
1024 else
1025 nva_start_addr = ALIGN(vstart, align);
1026
1027 /* Check the "vend" restriction. */
1028 if (nva_start_addr + size > vend)
1029 return vend;
1030
1031 /* Classify what we have found. */
1032 type = classify_va_fit_type(va, nva_start_addr, size);
1033 if (WARN_ON_ONCE(type == NOTHING_FIT))
1034 return vend;
1035
1036 /* Update the free vmap_area. */
1037 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1038 if (ret)
1039 return vend;
1040
1041 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1042 find_vmap_lowest_match_check(size);
1043 #endif
1044
1045 return nva_start_addr;
1046 }
1047
1048 /*
1049 * Allocate a region of KVA of the specified size and alignment, within the
1050 * vstart and vend.
1051 */
1052 static struct vmap_area *alloc_vmap_area(unsigned long size,
1053 unsigned long align,
1054 unsigned long vstart, unsigned long vend,
1055 int node, gfp_t gfp_mask)
1056 {
1057 struct vmap_area *va, *pva;
1058 unsigned long addr;
1059 int purged = 0;
1060
1061 BUG_ON(!size);
1062 BUG_ON(offset_in_page(size));
1063 BUG_ON(!is_power_of_2(align));
1064
1065 if (unlikely(!vmap_initialized))
1066 return ERR_PTR(-EBUSY);
1067
1068 might_sleep();
1069
1070 va = kmem_cache_alloc_node(vmap_area_cachep,
1071 gfp_mask & GFP_RECLAIM_MASK, node);
1072 if (unlikely(!va))
1073 return ERR_PTR(-ENOMEM);
1074
1075 /*
1076 * Only scan the relevant parts containing pointers to other objects
1077 * to avoid false negatives.
1078 */
1079 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
1080
1081 retry:
1082 /*
1083 * Preload this CPU with one extra vmap_area object to ensure
1084 * that we have it available when fit type of free area is
1085 * NE_FIT_TYPE.
1086 *
1087 * The preload is done in non-atomic context, thus it allows us
1088 * to use more permissive allocation masks to be more stable under
1089 * low memory condition and high memory pressure.
1090 *
1091 * Even if it fails we do not really care about that. Just proceed
1092 * as it is. "overflow" path will refill the cache we allocate from.
1093 */
1094 preempt_disable();
1095 if (!__this_cpu_read(ne_fit_preload_node)) {
1096 preempt_enable();
1097 pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node);
1098 preempt_disable();
1099
1100 if (__this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) {
1101 if (pva)
1102 kmem_cache_free(vmap_area_cachep, pva);
1103 }
1104 }
1105
1106 spin_lock(&vmap_area_lock);
1107 preempt_enable();
1108
1109 /*
1110 * If an allocation fails, the "vend" address is
1111 * returned. Therefore trigger the overflow path.
1112 */
1113 addr = __alloc_vmap_area(size, align, vstart, vend);
1114 if (unlikely(addr == vend))
1115 goto overflow;
1116
1117 va->va_start = addr;
1118 va->va_end = addr + size;
1119 va->vm = NULL;
1120 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1121
1122 spin_unlock(&vmap_area_lock);
1123
1124 BUG_ON(!IS_ALIGNED(va->va_start, align));
1125 BUG_ON(va->va_start < vstart);
1126 BUG_ON(va->va_end > vend);
1127
1128 return va;
1129
1130 overflow:
1131 spin_unlock(&vmap_area_lock);
1132 if (!purged) {
1133 purge_vmap_area_lazy();
1134 purged = 1;
1135 goto retry;
1136 }
1137
1138 if (gfpflags_allow_blocking(gfp_mask)) {
1139 unsigned long freed = 0;
1140 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1141 if (freed > 0) {
1142 purged = 0;
1143 goto retry;
1144 }
1145 }
1146
1147 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1148 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1149 size);
1150
1151 kmem_cache_free(vmap_area_cachep, va);
1152 return ERR_PTR(-EBUSY);
1153 }
1154
1155 int register_vmap_purge_notifier(struct notifier_block *nb)
1156 {
1157 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1158 }
1159 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1160
1161 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1162 {
1163 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1164 }
1165 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1166
1167 static void __free_vmap_area(struct vmap_area *va)
1168 {
1169 /*
1170 * Remove from the busy tree/list.
1171 */
1172 unlink_va(va, &vmap_area_root);
1173
1174 /*
1175 * Merge VA with its neighbors, otherwise just add it.
1176 */
1177 merge_or_add_vmap_area(va,
1178 &free_vmap_area_root, &free_vmap_area_list);
1179 }
1180
1181 /*
1182 * Free a region of KVA allocated by alloc_vmap_area
1183 */
1184 static void free_vmap_area(struct vmap_area *va)
1185 {
1186 spin_lock(&vmap_area_lock);
1187 __free_vmap_area(va);
1188 spin_unlock(&vmap_area_lock);
1189 }
1190
1191 /*
1192 * Clear the pagetable entries of a given vmap_area
1193 */
1194 static void unmap_vmap_area(struct vmap_area *va)
1195 {
1196 vunmap_page_range(va->va_start, va->va_end);
1197 }
1198
1199 /*
1200 * lazy_max_pages is the maximum amount of virtual address space we gather up
1201 * before attempting to purge with a TLB flush.
1202 *
1203 * There is a tradeoff here: a larger number will cover more kernel page tables
1204 * and take slightly longer to purge, but it will linearly reduce the number of
1205 * global TLB flushes that must be performed. It would seem natural to scale
1206 * this number up linearly with the number of CPUs (because vmapping activity
1207 * could also scale linearly with the number of CPUs), however it is likely
1208 * that in practice, workloads might be constrained in other ways that mean
1209 * vmap activity will not scale linearly with CPUs. Also, I want to be
1210 * conservative and not introduce a big latency on huge systems, so go with
1211 * a less aggressive log scale. It will still be an improvement over the old
1212 * code, and it will be simple to change the scale factor if we find that it
1213 * becomes a problem on bigger systems.
1214 */
1215 static unsigned long lazy_max_pages(void)
1216 {
1217 unsigned int log;
1218
1219 log = fls(num_online_cpus());
1220
1221 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1222 }
1223
1224 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1225
1226 /*
1227 * Serialize vmap purging. There is no actual criticial section protected
1228 * by this look, but we want to avoid concurrent calls for performance
1229 * reasons and to make the pcpu_get_vm_areas more deterministic.
1230 */
1231 static DEFINE_MUTEX(vmap_purge_lock);
1232
1233 /* for per-CPU blocks */
1234 static void purge_fragmented_blocks_allcpus(void);
1235
1236 /*
1237 * called before a call to iounmap() if the caller wants vm_area_struct's
1238 * immediately freed.
1239 */
1240 void set_iounmap_nonlazy(void)
1241 {
1242 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1243 }
1244
1245 /*
1246 * Purges all lazily-freed vmap areas.
1247 */
1248 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1249 {
1250 unsigned long resched_threshold;
1251 struct llist_node *valist;
1252 struct vmap_area *va;
1253 struct vmap_area *n_va;
1254
1255 lockdep_assert_held(&vmap_purge_lock);
1256
1257 valist = llist_del_all(&vmap_purge_list);
1258 if (unlikely(valist == NULL))
1259 return false;
1260
1261 /*
1262 * First make sure the mappings are removed from all page-tables
1263 * before they are freed.
1264 */
1265 vmalloc_sync_unmappings();
1266
1267 /*
1268 * TODO: to calculate a flush range without looping.
1269 * The list can be up to lazy_max_pages() elements.
1270 */
1271 llist_for_each_entry(va, valist, purge_list) {
1272 if (va->va_start < start)
1273 start = va->va_start;
1274 if (va->va_end > end)
1275 end = va->va_end;
1276 }
1277
1278 flush_tlb_kernel_range(start, end);
1279 resched_threshold = lazy_max_pages() << 1;
1280
1281 spin_lock(&vmap_area_lock);
1282 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1283 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1284
1285 /*
1286 * Finally insert or merge lazily-freed area. It is
1287 * detached and there is no need to "unlink" it from
1288 * anything.
1289 */
1290 merge_or_add_vmap_area(va,
1291 &free_vmap_area_root, &free_vmap_area_list);
1292
1293 atomic_long_sub(nr, &vmap_lazy_nr);
1294
1295 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1296 cond_resched_lock(&vmap_area_lock);
1297 }
1298 spin_unlock(&vmap_area_lock);
1299 return true;
1300 }
1301
1302 /*
1303 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1304 * is already purging.
1305 */
1306 static void try_purge_vmap_area_lazy(void)
1307 {
1308 if (mutex_trylock(&vmap_purge_lock)) {
1309 __purge_vmap_area_lazy(ULONG_MAX, 0);
1310 mutex_unlock(&vmap_purge_lock);
1311 }
1312 }
1313
1314 /*
1315 * Kick off a purge of the outstanding lazy areas.
1316 */
1317 static void purge_vmap_area_lazy(void)
1318 {
1319 mutex_lock(&vmap_purge_lock);
1320 purge_fragmented_blocks_allcpus();
1321 __purge_vmap_area_lazy(ULONG_MAX, 0);
1322 mutex_unlock(&vmap_purge_lock);
1323 }
1324
1325 /*
1326 * Free a vmap area, caller ensuring that the area has been unmapped
1327 * and flush_cache_vunmap had been called for the correct range
1328 * previously.
1329 */
1330 static void free_vmap_area_noflush(struct vmap_area *va)
1331 {
1332 unsigned long nr_lazy;
1333
1334 spin_lock(&vmap_area_lock);
1335 unlink_va(va, &vmap_area_root);
1336 spin_unlock(&vmap_area_lock);
1337
1338 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1339 PAGE_SHIFT, &vmap_lazy_nr);
1340
1341 /* After this point, we may free va at any time */
1342 llist_add(&va->purge_list, &vmap_purge_list);
1343
1344 if (unlikely(nr_lazy > lazy_max_pages()))
1345 try_purge_vmap_area_lazy();
1346 }
1347
1348 /*
1349 * Free and unmap a vmap area
1350 */
1351 static void free_unmap_vmap_area(struct vmap_area *va)
1352 {
1353 flush_cache_vunmap(va->va_start, va->va_end);
1354 unmap_vmap_area(va);
1355 if (debug_pagealloc_enabled_static())
1356 flush_tlb_kernel_range(va->va_start, va->va_end);
1357
1358 free_vmap_area_noflush(va);
1359 }
1360
1361 static struct vmap_area *find_vmap_area(unsigned long addr)
1362 {
1363 struct vmap_area *va;
1364
1365 spin_lock(&vmap_area_lock);
1366 va = __find_vmap_area(addr);
1367 spin_unlock(&vmap_area_lock);
1368
1369 return va;
1370 }
1371
1372 /*** Per cpu kva allocator ***/
1373
1374 /*
1375 * vmap space is limited especially on 32 bit architectures. Ensure there is
1376 * room for at least 16 percpu vmap blocks per CPU.
1377 */
1378 /*
1379 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1380 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1381 * instead (we just need a rough idea)
1382 */
1383 #if BITS_PER_LONG == 32
1384 #define VMALLOC_SPACE (128UL*1024*1024)
1385 #else
1386 #define VMALLOC_SPACE (128UL*1024*1024*1024)
1387 #endif
1388
1389 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1390 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1391 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1392 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1393 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1394 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1395 #define VMAP_BBMAP_BITS \
1396 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1397 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1398 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1399
1400 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1401
1402 struct vmap_block_queue {
1403 spinlock_t lock;
1404 struct list_head free;
1405 };
1406
1407 struct vmap_block {
1408 spinlock_t lock;
1409 struct vmap_area *va;
1410 unsigned long free, dirty;
1411 unsigned long dirty_min, dirty_max; /*< dirty range */
1412 struct list_head free_list;
1413 struct rcu_head rcu_head;
1414 struct list_head purge;
1415 };
1416
1417 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1418 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1419
1420 /*
1421 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1422 * in the free path. Could get rid of this if we change the API to return a
1423 * "cookie" from alloc, to be passed to free. But no big deal yet.
1424 */
1425 static DEFINE_SPINLOCK(vmap_block_tree_lock);
1426 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1427
1428 /*
1429 * We should probably have a fallback mechanism to allocate virtual memory
1430 * out of partially filled vmap blocks. However vmap block sizing should be
1431 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1432 * big problem.
1433 */
1434
1435 static unsigned long addr_to_vb_idx(unsigned long addr)
1436 {
1437 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1438 addr /= VMAP_BLOCK_SIZE;
1439 return addr;
1440 }
1441
1442 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1443 {
1444 unsigned long addr;
1445
1446 addr = va_start + (pages_off << PAGE_SHIFT);
1447 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1448 return (void *)addr;
1449 }
1450
1451 /**
1452 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1453 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1454 * @order: how many 2^order pages should be occupied in newly allocated block
1455 * @gfp_mask: flags for the page level allocator
1456 *
1457 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1458 */
1459 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1460 {
1461 struct vmap_block_queue *vbq;
1462 struct vmap_block *vb;
1463 struct vmap_area *va;
1464 unsigned long vb_idx;
1465 int node, err;
1466 void *vaddr;
1467
1468 node = numa_node_id();
1469
1470 vb = kmalloc_node(sizeof(struct vmap_block),
1471 gfp_mask & GFP_RECLAIM_MASK, node);
1472 if (unlikely(!vb))
1473 return ERR_PTR(-ENOMEM);
1474
1475 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1476 VMALLOC_START, VMALLOC_END,
1477 node, gfp_mask);
1478 if (IS_ERR(va)) {
1479 kfree(vb);
1480 return ERR_CAST(va);
1481 }
1482
1483 err = radix_tree_preload(gfp_mask);
1484 if (unlikely(err)) {
1485 kfree(vb);
1486 free_vmap_area(va);
1487 return ERR_PTR(err);
1488 }
1489
1490 vaddr = vmap_block_vaddr(va->va_start, 0);
1491 spin_lock_init(&vb->lock);
1492 vb->va = va;
1493 /* At least something should be left free */
1494 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1495 vb->free = VMAP_BBMAP_BITS - (1UL << order);
1496 vb->dirty = 0;
1497 vb->dirty_min = VMAP_BBMAP_BITS;
1498 vb->dirty_max = 0;
1499 INIT_LIST_HEAD(&vb->free_list);
1500
1501 vb_idx = addr_to_vb_idx(va->va_start);
1502 spin_lock(&vmap_block_tree_lock);
1503 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1504 spin_unlock(&vmap_block_tree_lock);
1505 BUG_ON(err);
1506 radix_tree_preload_end();
1507
1508 vbq = &get_cpu_var(vmap_block_queue);
1509 spin_lock(&vbq->lock);
1510 list_add_tail_rcu(&vb->free_list, &vbq->free);
1511 spin_unlock(&vbq->lock);
1512 put_cpu_var(vmap_block_queue);
1513
1514 return vaddr;
1515 }
1516
1517 static void free_vmap_block(struct vmap_block *vb)
1518 {
1519 struct vmap_block *tmp;
1520 unsigned long vb_idx;
1521
1522 vb_idx = addr_to_vb_idx(vb->va->va_start);
1523 spin_lock(&vmap_block_tree_lock);
1524 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1525 spin_unlock(&vmap_block_tree_lock);
1526 BUG_ON(tmp != vb);
1527
1528 free_vmap_area_noflush(vb->va);
1529 kfree_rcu(vb, rcu_head);
1530 }
1531
1532 static void purge_fragmented_blocks(int cpu)
1533 {
1534 LIST_HEAD(purge);
1535 struct vmap_block *vb;
1536 struct vmap_block *n_vb;
1537 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1538
1539 rcu_read_lock();
1540 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1541
1542 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1543 continue;
1544
1545 spin_lock(&vb->lock);
1546 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1547 vb->free = 0; /* prevent further allocs after releasing lock */
1548 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1549 vb->dirty_min = 0;
1550 vb->dirty_max = VMAP_BBMAP_BITS;
1551 spin_lock(&vbq->lock);
1552 list_del_rcu(&vb->free_list);
1553 spin_unlock(&vbq->lock);
1554 spin_unlock(&vb->lock);
1555 list_add_tail(&vb->purge, &purge);
1556 } else
1557 spin_unlock(&vb->lock);
1558 }
1559 rcu_read_unlock();
1560
1561 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1562 list_del(&vb->purge);
1563 free_vmap_block(vb);
1564 }
1565 }
1566
1567 static void purge_fragmented_blocks_allcpus(void)
1568 {
1569 int cpu;
1570
1571 for_each_possible_cpu(cpu)
1572 purge_fragmented_blocks(cpu);
1573 }
1574
1575 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1576 {
1577 struct vmap_block_queue *vbq;
1578 struct vmap_block *vb;
1579 void *vaddr = NULL;
1580 unsigned int order;
1581
1582 BUG_ON(offset_in_page(size));
1583 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1584 if (WARN_ON(size == 0)) {
1585 /*
1586 * Allocating 0 bytes isn't what caller wants since
1587 * get_order(0) returns funny result. Just warn and terminate
1588 * early.
1589 */
1590 return NULL;
1591 }
1592 order = get_order(size);
1593
1594 rcu_read_lock();
1595 vbq = &get_cpu_var(vmap_block_queue);
1596 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1597 unsigned long pages_off;
1598
1599 spin_lock(&vb->lock);
1600 if (vb->free < (1UL << order)) {
1601 spin_unlock(&vb->lock);
1602 continue;
1603 }
1604
1605 pages_off = VMAP_BBMAP_BITS - vb->free;
1606 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1607 vb->free -= 1UL << order;
1608 if (vb->free == 0) {
1609 spin_lock(&vbq->lock);
1610 list_del_rcu(&vb->free_list);
1611 spin_unlock(&vbq->lock);
1612 }
1613
1614 spin_unlock(&vb->lock);
1615 break;
1616 }
1617
1618 put_cpu_var(vmap_block_queue);
1619 rcu_read_unlock();
1620
1621 /* Allocate new block if nothing was found */
1622 if (!vaddr)
1623 vaddr = new_vmap_block(order, gfp_mask);
1624
1625 return vaddr;
1626 }
1627
1628 static void vb_free(const void *addr, unsigned long size)
1629 {
1630 unsigned long offset;
1631 unsigned long vb_idx;
1632 unsigned int order;
1633 struct vmap_block *vb;
1634
1635 BUG_ON(offset_in_page(size));
1636 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1637
1638 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1639
1640 order = get_order(size);
1641
1642 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1643 offset >>= PAGE_SHIFT;
1644
1645 vb_idx = addr_to_vb_idx((unsigned long)addr);
1646 rcu_read_lock();
1647 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1648 rcu_read_unlock();
1649 BUG_ON(!vb);
1650
1651 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1652
1653 if (debug_pagealloc_enabled_static())
1654 flush_tlb_kernel_range((unsigned long)addr,
1655 (unsigned long)addr + size);
1656
1657 spin_lock(&vb->lock);
1658
1659 /* Expand dirty range */
1660 vb->dirty_min = min(vb->dirty_min, offset);
1661 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1662
1663 vb->dirty += 1UL << order;
1664 if (vb->dirty == VMAP_BBMAP_BITS) {
1665 BUG_ON(vb->free);
1666 spin_unlock(&vb->lock);
1667 free_vmap_block(vb);
1668 } else
1669 spin_unlock(&vb->lock);
1670 }
1671
1672 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1673 {
1674 int cpu;
1675
1676 if (unlikely(!vmap_initialized))
1677 return;
1678
1679 might_sleep();
1680
1681 for_each_possible_cpu(cpu) {
1682 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1683 struct vmap_block *vb;
1684
1685 rcu_read_lock();
1686 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1687 spin_lock(&vb->lock);
1688 if (vb->dirty) {
1689 unsigned long va_start = vb->va->va_start;
1690 unsigned long s, e;
1691
1692 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1693 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1694
1695 start = min(s, start);
1696 end = max(e, end);
1697
1698 flush = 1;
1699 }
1700 spin_unlock(&vb->lock);
1701 }
1702 rcu_read_unlock();
1703 }
1704
1705 mutex_lock(&vmap_purge_lock);
1706 purge_fragmented_blocks_allcpus();
1707 if (!__purge_vmap_area_lazy(start, end) && flush)
1708 flush_tlb_kernel_range(start, end);
1709 mutex_unlock(&vmap_purge_lock);
1710 }
1711
1712 /**
1713 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1714 *
1715 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1716 * to amortize TLB flushing overheads. What this means is that any page you
1717 * have now, may, in a former life, have been mapped into kernel virtual
1718 * address by the vmap layer and so there might be some CPUs with TLB entries
1719 * still referencing that page (additional to the regular 1:1 kernel mapping).
1720 *
1721 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1722 * be sure that none of the pages we have control over will have any aliases
1723 * from the vmap layer.
1724 */
1725 void vm_unmap_aliases(void)
1726 {
1727 unsigned long start = ULONG_MAX, end = 0;
1728 int flush = 0;
1729
1730 _vm_unmap_aliases(start, end, flush);
1731 }
1732 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1733
1734 /**
1735 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1736 * @mem: the pointer returned by vm_map_ram
1737 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1738 */
1739 void vm_unmap_ram(const void *mem, unsigned int count)
1740 {
1741 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1742 unsigned long addr = (unsigned long)mem;
1743 struct vmap_area *va;
1744
1745 might_sleep();
1746 BUG_ON(!addr);
1747 BUG_ON(addr < VMALLOC_START);
1748 BUG_ON(addr > VMALLOC_END);
1749 BUG_ON(!PAGE_ALIGNED(addr));
1750
1751 if (likely(count <= VMAP_MAX_ALLOC)) {
1752 debug_check_no_locks_freed(mem, size);
1753 vb_free(mem, size);
1754 return;
1755 }
1756
1757 va = find_vmap_area(addr);
1758 BUG_ON(!va);
1759 debug_check_no_locks_freed((void *)va->va_start,
1760 (va->va_end - va->va_start));
1761 free_unmap_vmap_area(va);
1762 }
1763 EXPORT_SYMBOL(vm_unmap_ram);
1764
1765 /**
1766 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1767 * @pages: an array of pointers to the pages to be mapped
1768 * @count: number of pages
1769 * @node: prefer to allocate data structures on this node
1770 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1771 *
1772 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1773 * faster than vmap so it's good. But if you mix long-life and short-life
1774 * objects with vm_map_ram(), it could consume lots of address space through
1775 * fragmentation (especially on a 32bit machine). You could see failures in
1776 * the end. Please use this function for short-lived objects.
1777 *
1778 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1779 */
1780 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1781 {
1782 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1783 unsigned long addr;
1784 void *mem;
1785
1786 if (likely(count <= VMAP_MAX_ALLOC)) {
1787 mem = vb_alloc(size, GFP_KERNEL);
1788 if (IS_ERR(mem))
1789 return NULL;
1790 addr = (unsigned long)mem;
1791 } else {
1792 struct vmap_area *va;
1793 va = alloc_vmap_area(size, PAGE_SIZE,
1794 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1795 if (IS_ERR(va))
1796 return NULL;
1797
1798 addr = va->va_start;
1799 mem = (void *)addr;
1800 }
1801 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1802 vm_unmap_ram(mem, count);
1803 return NULL;
1804 }
1805 return mem;
1806 }
1807 EXPORT_SYMBOL(vm_map_ram);
1808
1809 static struct vm_struct *vmlist __initdata;
1810
1811 /**
1812 * vm_area_add_early - add vmap area early during boot
1813 * @vm: vm_struct to add
1814 *
1815 * This function is used to add fixed kernel vm area to vmlist before
1816 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1817 * should contain proper values and the other fields should be zero.
1818 *
1819 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1820 */
1821 void __init vm_area_add_early(struct vm_struct *vm)
1822 {
1823 struct vm_struct *tmp, **p;
1824
1825 BUG_ON(vmap_initialized);
1826 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1827 if (tmp->addr >= vm->addr) {
1828 BUG_ON(tmp->addr < vm->addr + vm->size);
1829 break;
1830 } else
1831 BUG_ON(tmp->addr + tmp->size > vm->addr);
1832 }
1833 vm->next = *p;
1834 *p = vm;
1835 }
1836
1837 /**
1838 * vm_area_register_early - register vmap area early during boot
1839 * @vm: vm_struct to register
1840 * @align: requested alignment
1841 *
1842 * This function is used to register kernel vm area before
1843 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1844 * proper values on entry and other fields should be zero. On return,
1845 * vm->addr contains the allocated address.
1846 *
1847 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1848 */
1849 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1850 {
1851 static size_t vm_init_off __initdata;
1852 unsigned long addr;
1853
1854 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1855 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1856
1857 vm->addr = (void *)addr;
1858
1859 vm_area_add_early(vm);
1860 }
1861
1862 static void vmap_init_free_space(void)
1863 {
1864 unsigned long vmap_start = 1;
1865 const unsigned long vmap_end = ULONG_MAX;
1866 struct vmap_area *busy, *free;
1867
1868 /*
1869 * B F B B B F
1870 * -|-----|.....|-----|-----|-----|.....|-
1871 * | The KVA space |
1872 * |<--------------------------------->|
1873 */
1874 list_for_each_entry(busy, &vmap_area_list, list) {
1875 if (busy->va_start - vmap_start > 0) {
1876 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1877 if (!WARN_ON_ONCE(!free)) {
1878 free->va_start = vmap_start;
1879 free->va_end = busy->va_start;
1880
1881 insert_vmap_area_augment(free, NULL,
1882 &free_vmap_area_root,
1883 &free_vmap_area_list);
1884 }
1885 }
1886
1887 vmap_start = busy->va_end;
1888 }
1889
1890 if (vmap_end - vmap_start > 0) {
1891 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1892 if (!WARN_ON_ONCE(!free)) {
1893 free->va_start = vmap_start;
1894 free->va_end = vmap_end;
1895
1896 insert_vmap_area_augment(free, NULL,
1897 &free_vmap_area_root,
1898 &free_vmap_area_list);
1899 }
1900 }
1901 }
1902
1903 void __init vmalloc_init(void)
1904 {
1905 struct vmap_area *va;
1906 struct vm_struct *tmp;
1907 int i;
1908
1909 /*
1910 * Create the cache for vmap_area objects.
1911 */
1912 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1913
1914 for_each_possible_cpu(i) {
1915 struct vmap_block_queue *vbq;
1916 struct vfree_deferred *p;
1917
1918 vbq = &per_cpu(vmap_block_queue, i);
1919 spin_lock_init(&vbq->lock);
1920 INIT_LIST_HEAD(&vbq->free);
1921 p = &per_cpu(vfree_deferred, i);
1922 init_llist_head(&p->list);
1923 INIT_WORK(&p->wq, free_work);
1924 }
1925
1926 /* Import existing vmlist entries. */
1927 for (tmp = vmlist; tmp; tmp = tmp->next) {
1928 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1929 if (WARN_ON_ONCE(!va))
1930 continue;
1931
1932 va->va_start = (unsigned long)tmp->addr;
1933 va->va_end = va->va_start + tmp->size;
1934 va->vm = tmp;
1935 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1936 }
1937
1938 /*
1939 * Now we can initialize a free vmap space.
1940 */
1941 vmap_init_free_space();
1942 vmap_initialized = true;
1943 }
1944
1945 /**
1946 * map_kernel_range_noflush - map kernel VM area with the specified pages
1947 * @addr: start of the VM area to map
1948 * @size: size of the VM area to map
1949 * @prot: page protection flags to use
1950 * @pages: pages to map
1951 *
1952 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1953 * specify should have been allocated using get_vm_area() and its
1954 * friends.
1955 *
1956 * NOTE:
1957 * This function does NOT do any cache flushing. The caller is
1958 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1959 * before calling this function.
1960 *
1961 * RETURNS:
1962 * The number of pages mapped on success, -errno on failure.
1963 */
1964 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1965 pgprot_t prot, struct page **pages)
1966 {
1967 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1968 }
1969 EXPORT_SYMBOL(map_kernel_range_noflush);
1970
1971 /**
1972 * unmap_kernel_range_noflush - unmap kernel VM area
1973 * @addr: start of the VM area to unmap
1974 * @size: size of the VM area to unmap
1975 *
1976 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1977 * specify should have been allocated using get_vm_area() and its
1978 * friends.
1979 *
1980 * NOTE:
1981 * This function does NOT do any cache flushing. The caller is
1982 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1983 * before calling this function and flush_tlb_kernel_range() after.
1984 */
1985 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1986 {
1987 vunmap_page_range(addr, addr + size);
1988 }
1989 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1990
1991 /**
1992 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1993 * @addr: start of the VM area to unmap
1994 * @size: size of the VM area to unmap
1995 *
1996 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1997 * the unmapping and tlb after.
1998 */
1999 void unmap_kernel_range(unsigned long addr, unsigned long size)
2000 {
2001 unsigned long end = addr + size;
2002
2003 flush_cache_vunmap(addr, end);
2004 vunmap_page_range(addr, end);
2005 flush_tlb_kernel_range(addr, end);
2006 }
2007 EXPORT_SYMBOL_GPL(unmap_kernel_range);
2008
2009 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
2010 {
2011 unsigned long addr = (unsigned long)area->addr;
2012 unsigned long end = addr + get_vm_area_size(area);
2013 int err;
2014
2015 err = vmap_page_range(addr, end, prot, pages);
2016
2017 return err > 0 ? 0 : err;
2018 }
2019 EXPORT_SYMBOL_GPL(map_vm_area);
2020
2021 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2022 unsigned long flags, const void *caller)
2023 {
2024 spin_lock(&vmap_area_lock);
2025 vm->flags = flags;
2026 vm->addr = (void *)va->va_start;
2027 vm->size = va->va_end - va->va_start;
2028 vm->caller = caller;
2029 va->vm = vm;
2030 spin_unlock(&vmap_area_lock);
2031 }
2032
2033 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2034 {
2035 /*
2036 * Before removing VM_UNINITIALIZED,
2037 * we should make sure that vm has proper values.
2038 * Pair with smp_rmb() in show_numa_info().
2039 */
2040 smp_wmb();
2041 vm->flags &= ~VM_UNINITIALIZED;
2042 }
2043
2044 static struct vm_struct *__get_vm_area_node(unsigned long size,
2045 unsigned long align, unsigned long flags, unsigned long start,
2046 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2047 {
2048 struct vmap_area *va;
2049 struct vm_struct *area;
2050
2051 BUG_ON(in_interrupt());
2052 size = PAGE_ALIGN(size);
2053 if (unlikely(!size))
2054 return NULL;
2055
2056 if (flags & VM_IOREMAP)
2057 align = 1ul << clamp_t(int, get_count_order_long(size),
2058 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2059
2060 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2061 if (unlikely(!area))
2062 return NULL;
2063
2064 if (!(flags & VM_NO_GUARD))
2065 size += PAGE_SIZE;
2066
2067 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2068 if (IS_ERR(va)) {
2069 kfree(area);
2070 return NULL;
2071 }
2072
2073 setup_vmalloc_vm(area, va, flags, caller);
2074
2075 return area;
2076 }
2077
2078 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2079 unsigned long start, unsigned long end)
2080 {
2081 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2082 GFP_KERNEL, __builtin_return_address(0));
2083 }
2084 EXPORT_SYMBOL_GPL(__get_vm_area);
2085
2086 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2087 unsigned long start, unsigned long end,
2088 const void *caller)
2089 {
2090 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2091 GFP_KERNEL, caller);
2092 }
2093
2094 /**
2095 * get_vm_area - reserve a contiguous kernel virtual area
2096 * @size: size of the area
2097 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2098 *
2099 * Search an area of @size in the kernel virtual mapping area,
2100 * and reserved it for out purposes. Returns the area descriptor
2101 * on success or %NULL on failure.
2102 *
2103 * Return: the area descriptor on success or %NULL on failure.
2104 */
2105 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2106 {
2107 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2108 NUMA_NO_NODE, GFP_KERNEL,
2109 __builtin_return_address(0));
2110 }
2111 EXPORT_SYMBOL(get_vm_area);
2112
2113 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2114 const void *caller)
2115 {
2116 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2117 NUMA_NO_NODE, GFP_KERNEL, caller);
2118 }
2119
2120 /**
2121 * find_vm_area - find a continuous kernel virtual area
2122 * @addr: base address
2123 *
2124 * Search for the kernel VM area starting at @addr, and return it.
2125 * It is up to the caller to do all required locking to keep the returned
2126 * pointer valid.
2127 *
2128 * Return: pointer to the found area or %NULL on faulure
2129 */
2130 struct vm_struct *find_vm_area(const void *addr)
2131 {
2132 struct vmap_area *va;
2133
2134 va = find_vmap_area((unsigned long)addr);
2135 if (!va)
2136 return NULL;
2137
2138 return va->vm;
2139 }
2140
2141 /**
2142 * remove_vm_area - find and remove a continuous kernel virtual area
2143 * @addr: base address
2144 *
2145 * Search for the kernel VM area starting at @addr, and remove it.
2146 * This function returns the found VM area, but using it is NOT safe
2147 * on SMP machines, except for its size or flags.
2148 *
2149 * Return: pointer to the found area or %NULL on faulure
2150 */
2151 struct vm_struct *remove_vm_area(const void *addr)
2152 {
2153 struct vmap_area *va;
2154
2155 might_sleep();
2156
2157 spin_lock(&vmap_area_lock);
2158 va = __find_vmap_area((unsigned long)addr);
2159 if (va && va->vm) {
2160 struct vm_struct *vm = va->vm;
2161
2162 va->vm = NULL;
2163 spin_unlock(&vmap_area_lock);
2164
2165 kasan_free_shadow(vm);
2166 free_unmap_vmap_area(va);
2167
2168 return vm;
2169 }
2170
2171 spin_unlock(&vmap_area_lock);
2172 return NULL;
2173 }
2174
2175 static inline void set_area_direct_map(const struct vm_struct *area,
2176 int (*set_direct_map)(struct page *page))
2177 {
2178 int i;
2179
2180 for (i = 0; i < area->nr_pages; i++)
2181 if (page_address(area->pages[i]))
2182 set_direct_map(area->pages[i]);
2183 }
2184
2185 /* Handle removing and resetting vm mappings related to the vm_struct. */
2186 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2187 {
2188 unsigned long start = ULONG_MAX, end = 0;
2189 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2190 int flush_dmap = 0;
2191 int i;
2192
2193 remove_vm_area(area->addr);
2194
2195 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2196 if (!flush_reset)
2197 return;
2198
2199 /*
2200 * If not deallocating pages, just do the flush of the VM area and
2201 * return.
2202 */
2203 if (!deallocate_pages) {
2204 vm_unmap_aliases();
2205 return;
2206 }
2207
2208 /*
2209 * If execution gets here, flush the vm mapping and reset the direct
2210 * map. Find the start and end range of the direct mappings to make sure
2211 * the vm_unmap_aliases() flush includes the direct map.
2212 */
2213 for (i = 0; i < area->nr_pages; i++) {
2214 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2215 if (addr) {
2216 start = min(addr, start);
2217 end = max(addr + PAGE_SIZE, end);
2218 flush_dmap = 1;
2219 }
2220 }
2221
2222 /*
2223 * Set direct map to something invalid so that it won't be cached if
2224 * there are any accesses after the TLB flush, then flush the TLB and
2225 * reset the direct map permissions to the default.
2226 */
2227 set_area_direct_map(area, set_direct_map_invalid_noflush);
2228 _vm_unmap_aliases(start, end, flush_dmap);
2229 set_area_direct_map(area, set_direct_map_default_noflush);
2230 }
2231
2232 static void __vunmap(const void *addr, int deallocate_pages)
2233 {
2234 struct vm_struct *area;
2235
2236 if (!addr)
2237 return;
2238
2239 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2240 addr))
2241 return;
2242
2243 area = find_vm_area(addr);
2244 if (unlikely(!area)) {
2245 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2246 addr);
2247 return;
2248 }
2249
2250 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2251 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2252
2253 vm_remove_mappings(area, deallocate_pages);
2254
2255 if (deallocate_pages) {
2256 int i;
2257
2258 for (i = 0; i < area->nr_pages; i++) {
2259 struct page *page = area->pages[i];
2260
2261 BUG_ON(!page);
2262 __free_pages(page, 0);
2263 }
2264 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2265
2266 kvfree(area->pages);
2267 }
2268
2269 kfree(area);
2270 return;
2271 }
2272
2273 static inline void __vfree_deferred(const void *addr)
2274 {
2275 /*
2276 * Use raw_cpu_ptr() because this can be called from preemptible
2277 * context. Preemption is absolutely fine here, because the llist_add()
2278 * implementation is lockless, so it works even if we are adding to
2279 * nother cpu's list. schedule_work() should be fine with this too.
2280 */
2281 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2282
2283 if (llist_add((struct llist_node *)addr, &p->list))
2284 schedule_work(&p->wq);
2285 }
2286
2287 /**
2288 * vfree_atomic - release memory allocated by vmalloc()
2289 * @addr: memory base address
2290 *
2291 * This one is just like vfree() but can be called in any atomic context
2292 * except NMIs.
2293 */
2294 void vfree_atomic(const void *addr)
2295 {
2296 BUG_ON(in_nmi());
2297
2298 kmemleak_free(addr);
2299
2300 if (!addr)
2301 return;
2302 __vfree_deferred(addr);
2303 }
2304
2305 static void __vfree(const void *addr)
2306 {
2307 if (unlikely(in_interrupt()))
2308 __vfree_deferred(addr);
2309 else
2310 __vunmap(addr, 1);
2311 }
2312
2313 /**
2314 * vfree - release memory allocated by vmalloc()
2315 * @addr: memory base address
2316 *
2317 * Free the virtually continuous memory area starting at @addr, as
2318 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2319 * NULL, no operation is performed.
2320 *
2321 * Must not be called in NMI context (strictly speaking, only if we don't
2322 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2323 * conventions for vfree() arch-depenedent would be a really bad idea)
2324 *
2325 * May sleep if called *not* from interrupt context.
2326 *
2327 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
2328 */
2329 void vfree(const void *addr)
2330 {
2331 BUG_ON(in_nmi());
2332
2333 kmemleak_free(addr);
2334
2335 might_sleep_if(!in_interrupt());
2336
2337 if (!addr)
2338 return;
2339
2340 __vfree(addr);
2341 }
2342 EXPORT_SYMBOL(vfree);
2343
2344 /**
2345 * vunmap - release virtual mapping obtained by vmap()
2346 * @addr: memory base address
2347 *
2348 * Free the virtually contiguous memory area starting at @addr,
2349 * which was created from the page array passed to vmap().
2350 *
2351 * Must not be called in interrupt context.
2352 */
2353 void vunmap(const void *addr)
2354 {
2355 BUG_ON(in_interrupt());
2356 might_sleep();
2357 if (addr)
2358 __vunmap(addr, 0);
2359 }
2360 EXPORT_SYMBOL(vunmap);
2361
2362 /**
2363 * vmap - map an array of pages into virtually contiguous space
2364 * @pages: array of page pointers
2365 * @count: number of pages to map
2366 * @flags: vm_area->flags
2367 * @prot: page protection for the mapping
2368 *
2369 * Maps @count pages from @pages into contiguous kernel virtual
2370 * space.
2371 *
2372 * Return: the address of the area or %NULL on failure
2373 */
2374 void *vmap(struct page **pages, unsigned int count,
2375 unsigned long flags, pgprot_t prot)
2376 {
2377 struct vm_struct *area;
2378 unsigned long size; /* In bytes */
2379
2380 might_sleep();
2381
2382 if (count > totalram_pages())
2383 return NULL;
2384
2385 size = (unsigned long)count << PAGE_SHIFT;
2386 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2387 if (!area)
2388 return NULL;
2389
2390 if (map_vm_area(area, prot, pages)) {
2391 vunmap(area->addr);
2392 return NULL;
2393 }
2394
2395 return area->addr;
2396 }
2397 EXPORT_SYMBOL(vmap);
2398
2399 static void *__vmalloc_node(unsigned long size, unsigned long align,
2400 gfp_t gfp_mask, pgprot_t prot,
2401 int node, const void *caller);
2402 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2403 pgprot_t prot, int node)
2404 {
2405 struct page **pages;
2406 unsigned int nr_pages, array_size, i;
2407 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2408 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2409 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2410 0 :
2411 __GFP_HIGHMEM;
2412
2413 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2414 array_size = (nr_pages * sizeof(struct page *));
2415
2416 /* Please note that the recursion is strictly bounded. */
2417 if (array_size > PAGE_SIZE) {
2418 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2419 PAGE_KERNEL, node, area->caller);
2420 } else {
2421 pages = kmalloc_node(array_size, nested_gfp, node);
2422 }
2423
2424 if (!pages) {
2425 remove_vm_area(area->addr);
2426 kfree(area);
2427 return NULL;
2428 }
2429
2430 area->pages = pages;
2431 area->nr_pages = nr_pages;
2432
2433 for (i = 0; i < area->nr_pages; i++) {
2434 struct page *page;
2435
2436 if (node == NUMA_NO_NODE)
2437 page = alloc_page(alloc_mask|highmem_mask);
2438 else
2439 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2440
2441 if (unlikely(!page)) {
2442 /* Successfully allocated i pages, free them in __vunmap() */
2443 area->nr_pages = i;
2444 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2445 goto fail;
2446 }
2447 area->pages[i] = page;
2448 if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
2449 cond_resched();
2450 }
2451 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2452
2453 if (map_vm_area(area, prot, pages))
2454 goto fail;
2455 return area->addr;
2456
2457 fail:
2458 warn_alloc(gfp_mask, NULL,
2459 "vmalloc: allocation failure, allocated %ld of %ld bytes",
2460 (area->nr_pages*PAGE_SIZE), area->size);
2461 __vfree(area->addr);
2462 return NULL;
2463 }
2464
2465 /**
2466 * __vmalloc_node_range - allocate virtually contiguous memory
2467 * @size: allocation size
2468 * @align: desired alignment
2469 * @start: vm area range start
2470 * @end: vm area range end
2471 * @gfp_mask: flags for the page level allocator
2472 * @prot: protection mask for the allocated pages
2473 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2474 * @node: node to use for allocation or NUMA_NO_NODE
2475 * @caller: caller's return address
2476 *
2477 * Allocate enough pages to cover @size from the page level
2478 * allocator with @gfp_mask flags. Map them into contiguous
2479 * kernel virtual space, using a pagetable protection of @prot.
2480 *
2481 * Return: the address of the area or %NULL on failure
2482 */
2483 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2484 unsigned long start, unsigned long end, gfp_t gfp_mask,
2485 pgprot_t prot, unsigned long vm_flags, int node,
2486 const void *caller)
2487 {
2488 struct vm_struct *area;
2489 void *addr;
2490 unsigned long real_size = size;
2491
2492 size = PAGE_ALIGN(size);
2493 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2494 goto fail;
2495
2496 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2497 vm_flags, start, end, node, gfp_mask, caller);
2498 if (!area)
2499 goto fail;
2500
2501 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2502 if (!addr)
2503 return NULL;
2504
2505 /*
2506 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2507 * flag. It means that vm_struct is not fully initialized.
2508 * Now, it is fully initialized, so remove this flag here.
2509 */
2510 clear_vm_uninitialized_flag(area);
2511
2512 kmemleak_vmalloc(area, size, gfp_mask);
2513
2514 return addr;
2515
2516 fail:
2517 warn_alloc(gfp_mask, NULL,
2518 "vmalloc: allocation failure: %lu bytes", real_size);
2519 return NULL;
2520 }
2521
2522 /*
2523 * This is only for performance analysis of vmalloc and stress purpose.
2524 * It is required by vmalloc test module, therefore do not use it other
2525 * than that.
2526 */
2527 #ifdef CONFIG_TEST_VMALLOC_MODULE
2528 EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2529 #endif
2530
2531 /**
2532 * __vmalloc_node - allocate virtually contiguous memory
2533 * @size: allocation size
2534 * @align: desired alignment
2535 * @gfp_mask: flags for the page level allocator
2536 * @prot: protection mask for the allocated pages
2537 * @node: node to use for allocation or NUMA_NO_NODE
2538 * @caller: caller's return address
2539 *
2540 * Allocate enough pages to cover @size from the page level
2541 * allocator with @gfp_mask flags. Map them into contiguous
2542 * kernel virtual space, using a pagetable protection of @prot.
2543 *
2544 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2545 * and __GFP_NOFAIL are not supported
2546 *
2547 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2548 * with mm people.
2549 *
2550 * Return: pointer to the allocated memory or %NULL on error
2551 */
2552 static void *__vmalloc_node(unsigned long size, unsigned long align,
2553 gfp_t gfp_mask, pgprot_t prot,
2554 int node, const void *caller)
2555 {
2556 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2557 gfp_mask, prot, 0, node, caller);
2558 }
2559
2560 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2561 {
2562 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2563 __builtin_return_address(0));
2564 }
2565 EXPORT_SYMBOL(__vmalloc);
2566
2567 static inline void *__vmalloc_node_flags(unsigned long size,
2568 int node, gfp_t flags)
2569 {
2570 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2571 node, __builtin_return_address(0));
2572 }
2573
2574
2575 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2576 void *caller)
2577 {
2578 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2579 }
2580
2581 /**
2582 * vmalloc - allocate virtually contiguous memory
2583 * @size: allocation size
2584 *
2585 * Allocate enough pages to cover @size from the page level
2586 * allocator and map them into contiguous kernel virtual space.
2587 *
2588 * For tight control over page level allocator and protection flags
2589 * use __vmalloc() instead.
2590 *
2591 * Return: pointer to the allocated memory or %NULL on error
2592 */
2593 void *vmalloc(unsigned long size)
2594 {
2595 return __vmalloc_node_flags(size, NUMA_NO_NODE,
2596 GFP_KERNEL);
2597 }
2598 EXPORT_SYMBOL(vmalloc);
2599
2600 /**
2601 * vzalloc - allocate virtually contiguous memory with zero fill
2602 * @size: allocation size
2603 *
2604 * Allocate enough pages to cover @size from the page level
2605 * allocator and map them into contiguous kernel virtual space.
2606 * The memory allocated is set to zero.
2607 *
2608 * For tight control over page level allocator and protection flags
2609 * use __vmalloc() instead.
2610 *
2611 * Return: pointer to the allocated memory or %NULL on error
2612 */
2613 void *vzalloc(unsigned long size)
2614 {
2615 return __vmalloc_node_flags(size, NUMA_NO_NODE,
2616 GFP_KERNEL | __GFP_ZERO);
2617 }
2618 EXPORT_SYMBOL(vzalloc);
2619
2620 /**
2621 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2622 * @size: allocation size
2623 *
2624 * The resulting memory area is zeroed so it can be mapped to userspace
2625 * without leaking data.
2626 *
2627 * Return: pointer to the allocated memory or %NULL on error
2628 */
2629 void *vmalloc_user(unsigned long size)
2630 {
2631 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2632 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2633 VM_USERMAP, NUMA_NO_NODE,
2634 __builtin_return_address(0));
2635 }
2636 EXPORT_SYMBOL(vmalloc_user);
2637
2638 /**
2639 * vmalloc_node - allocate memory on a specific node
2640 * @size: allocation size
2641 * @node: numa node
2642 *
2643 * Allocate enough pages to cover @size from the page level
2644 * allocator and map them into contiguous kernel virtual space.
2645 *
2646 * For tight control over page level allocator and protection flags
2647 * use __vmalloc() instead.
2648 *
2649 * Return: pointer to the allocated memory or %NULL on error
2650 */
2651 void *vmalloc_node(unsigned long size, int node)
2652 {
2653 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2654 node, __builtin_return_address(0));
2655 }
2656 EXPORT_SYMBOL(vmalloc_node);
2657
2658 /**
2659 * vzalloc_node - allocate memory on a specific node with zero fill
2660 * @size: allocation size
2661 * @node: numa node
2662 *
2663 * Allocate enough pages to cover @size from the page level
2664 * allocator and map them into contiguous kernel virtual space.
2665 * The memory allocated is set to zero.
2666 *
2667 * For tight control over page level allocator and protection flags
2668 * use __vmalloc_node() instead.
2669 *
2670 * Return: pointer to the allocated memory or %NULL on error
2671 */
2672 void *vzalloc_node(unsigned long size, int node)
2673 {
2674 return __vmalloc_node_flags(size, node,
2675 GFP_KERNEL | __GFP_ZERO);
2676 }
2677 EXPORT_SYMBOL(vzalloc_node);
2678
2679 /**
2680 * vmalloc_exec - allocate virtually contiguous, executable memory
2681 * @size: allocation size
2682 *
2683 * Kernel-internal function to allocate enough pages to cover @size
2684 * the page level allocator and map them into contiguous and
2685 * executable kernel virtual space.
2686 *
2687 * For tight control over page level allocator and protection flags
2688 * use __vmalloc() instead.
2689 *
2690 * Return: pointer to the allocated memory or %NULL on error
2691 */
2692 void *vmalloc_exec(unsigned long size)
2693 {
2694 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2695 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2696 NUMA_NO_NODE, __builtin_return_address(0));
2697 }
2698
2699 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2700 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2701 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2702 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2703 #else
2704 /*
2705 * 64b systems should always have either DMA or DMA32 zones. For others
2706 * GFP_DMA32 should do the right thing and use the normal zone.
2707 */
2708 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2709 #endif
2710
2711 /**
2712 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2713 * @size: allocation size
2714 *
2715 * Allocate enough 32bit PA addressable pages to cover @size from the
2716 * page level allocator and map them into contiguous kernel virtual space.
2717 *
2718 * Return: pointer to the allocated memory or %NULL on error
2719 */
2720 void *vmalloc_32(unsigned long size)
2721 {
2722 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
2723 NUMA_NO_NODE, __builtin_return_address(0));
2724 }
2725 EXPORT_SYMBOL(vmalloc_32);
2726
2727 /**
2728 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2729 * @size: allocation size
2730 *
2731 * The resulting memory area is 32bit addressable and zeroed so it can be
2732 * mapped to userspace without leaking data.
2733 *
2734 * Return: pointer to the allocated memory or %NULL on error
2735 */
2736 void *vmalloc_32_user(unsigned long size)
2737 {
2738 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2739 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2740 VM_USERMAP, NUMA_NO_NODE,
2741 __builtin_return_address(0));
2742 }
2743 EXPORT_SYMBOL(vmalloc_32_user);
2744
2745 /*
2746 * small helper routine , copy contents to buf from addr.
2747 * If the page is not present, fill zero.
2748 */
2749
2750 static int aligned_vread(char *buf, char *addr, unsigned long count)
2751 {
2752 struct page *p;
2753 int copied = 0;
2754
2755 while (count) {
2756 unsigned long offset, length;
2757
2758 offset = offset_in_page(addr);
2759 length = PAGE_SIZE - offset;
2760 if (length > count)
2761 length = count;
2762 p = vmalloc_to_page(addr);
2763 /*
2764 * To do safe access to this _mapped_ area, we need
2765 * lock. But adding lock here means that we need to add
2766 * overhead of vmalloc()/vfree() calles for this _debug_
2767 * interface, rarely used. Instead of that, we'll use
2768 * kmap() and get small overhead in this access function.
2769 */
2770 if (p) {
2771 /*
2772 * we can expect USER0 is not used (see vread/vwrite's
2773 * function description)
2774 */
2775 void *map = kmap_atomic(p);
2776 memcpy(buf, map + offset, length);
2777 kunmap_atomic(map);
2778 } else
2779 memset(buf, 0, length);
2780
2781 addr += length;
2782 buf += length;
2783 copied += length;
2784 count -= length;
2785 }
2786 return copied;
2787 }
2788
2789 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2790 {
2791 struct page *p;
2792 int copied = 0;
2793
2794 while (count) {
2795 unsigned long offset, length;
2796
2797 offset = offset_in_page(addr);
2798 length = PAGE_SIZE - offset;
2799 if (length > count)
2800 length = count;
2801 p = vmalloc_to_page(addr);
2802 /*
2803 * To do safe access to this _mapped_ area, we need
2804 * lock. But adding lock here means that we need to add
2805 * overhead of vmalloc()/vfree() calles for this _debug_
2806 * interface, rarely used. Instead of that, we'll use
2807 * kmap() and get small overhead in this access function.
2808 */
2809 if (p) {
2810 /*
2811 * we can expect USER0 is not used (see vread/vwrite's
2812 * function description)
2813 */
2814 void *map = kmap_atomic(p);
2815 memcpy(map + offset, buf, length);
2816 kunmap_atomic(map);
2817 }
2818 addr += length;
2819 buf += length;
2820 copied += length;
2821 count -= length;
2822 }
2823 return copied;
2824 }
2825
2826 /**
2827 * vread() - read vmalloc area in a safe way.
2828 * @buf: buffer for reading data
2829 * @addr: vm address.
2830 * @count: number of bytes to be read.
2831 *
2832 * This function checks that addr is a valid vmalloc'ed area, and
2833 * copy data from that area to a given buffer. If the given memory range
2834 * of [addr...addr+count) includes some valid address, data is copied to
2835 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2836 * IOREMAP area is treated as memory hole and no copy is done.
2837 *
2838 * If [addr...addr+count) doesn't includes any intersects with alive
2839 * vm_struct area, returns 0. @buf should be kernel's buffer.
2840 *
2841 * Note: In usual ops, vread() is never necessary because the caller
2842 * should know vmalloc() area is valid and can use memcpy().
2843 * This is for routines which have to access vmalloc area without
2844 * any information, as /dev/kmem.
2845 *
2846 * Return: number of bytes for which addr and buf should be increased
2847 * (same number as @count) or %0 if [addr...addr+count) doesn't
2848 * include any intersection with valid vmalloc area
2849 */
2850 long vread(char *buf, char *addr, unsigned long count)
2851 {
2852 struct vmap_area *va;
2853 struct vm_struct *vm;
2854 char *vaddr, *buf_start = buf;
2855 unsigned long buflen = count;
2856 unsigned long n;
2857
2858 /* Don't allow overflow */
2859 if ((unsigned long) addr + count < count)
2860 count = -(unsigned long) addr;
2861
2862 spin_lock(&vmap_area_lock);
2863 list_for_each_entry(va, &vmap_area_list, list) {
2864 if (!count)
2865 break;
2866
2867 if (!va->vm)
2868 continue;
2869
2870 vm = va->vm;
2871 vaddr = (char *) vm->addr;
2872 if (addr >= vaddr + get_vm_area_size(vm))
2873 continue;
2874 while (addr < vaddr) {
2875 if (count == 0)
2876 goto finished;
2877 *buf = '\0';
2878 buf++;
2879 addr++;
2880 count--;
2881 }
2882 n = vaddr + get_vm_area_size(vm) - addr;
2883 if (n > count)
2884 n = count;
2885 if (!(vm->flags & VM_IOREMAP))
2886 aligned_vread(buf, addr, n);
2887 else /* IOREMAP area is treated as memory hole */
2888 memset(buf, 0, n);
2889 buf += n;
2890 addr += n;
2891 count -= n;
2892 }
2893 finished:
2894 spin_unlock(&vmap_area_lock);
2895
2896 if (buf == buf_start)
2897 return 0;
2898 /* zero-fill memory holes */
2899 if (buf != buf_start + buflen)
2900 memset(buf, 0, buflen - (buf - buf_start));
2901
2902 return buflen;
2903 }
2904
2905 /**
2906 * vwrite() - write vmalloc area in a safe way.
2907 * @buf: buffer for source data
2908 * @addr: vm address.
2909 * @count: number of bytes to be read.
2910 *
2911 * This function checks that addr is a valid vmalloc'ed area, and
2912 * copy data from a buffer to the given addr. If specified range of
2913 * [addr...addr+count) includes some valid address, data is copied from
2914 * proper area of @buf. If there are memory holes, no copy to hole.
2915 * IOREMAP area is treated as memory hole and no copy is done.
2916 *
2917 * If [addr...addr+count) doesn't includes any intersects with alive
2918 * vm_struct area, returns 0. @buf should be kernel's buffer.
2919 *
2920 * Note: In usual ops, vwrite() is never necessary because the caller
2921 * should know vmalloc() area is valid and can use memcpy().
2922 * This is for routines which have to access vmalloc area without
2923 * any information, as /dev/kmem.
2924 *
2925 * Return: number of bytes for which addr and buf should be
2926 * increased (same number as @count) or %0 if [addr...addr+count)
2927 * doesn't include any intersection with valid vmalloc area
2928 */
2929 long vwrite(char *buf, char *addr, unsigned long count)
2930 {
2931 struct vmap_area *va;
2932 struct vm_struct *vm;
2933 char *vaddr;
2934 unsigned long n, buflen;
2935 int copied = 0;
2936
2937 /* Don't allow overflow */
2938 if ((unsigned long) addr + count < count)
2939 count = -(unsigned long) addr;
2940 buflen = count;
2941
2942 spin_lock(&vmap_area_lock);
2943 list_for_each_entry(va, &vmap_area_list, list) {
2944 if (!count)
2945 break;
2946
2947 if (!va->vm)
2948 continue;
2949
2950 vm = va->vm;
2951 vaddr = (char *) vm->addr;
2952 if (addr >= vaddr + get_vm_area_size(vm))
2953 continue;
2954 while (addr < vaddr) {
2955 if (count == 0)
2956 goto finished;
2957 buf++;
2958 addr++;
2959 count--;
2960 }
2961 n = vaddr + get_vm_area_size(vm) - addr;
2962 if (n > count)
2963 n = count;
2964 if (!(vm->flags & VM_IOREMAP)) {
2965 aligned_vwrite(buf, addr, n);
2966 copied++;
2967 }
2968 buf += n;
2969 addr += n;
2970 count -= n;
2971 }
2972 finished:
2973 spin_unlock(&vmap_area_lock);
2974 if (!copied)
2975 return 0;
2976 return buflen;
2977 }
2978
2979 /**
2980 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2981 * @vma: vma to cover
2982 * @uaddr: target user address to start at
2983 * @kaddr: virtual address of vmalloc kernel memory
2984 * @pgoff: offset from @kaddr to start at
2985 * @size: size of map area
2986 *
2987 * Returns: 0 for success, -Exxx on failure
2988 *
2989 * This function checks that @kaddr is a valid vmalloc'ed area,
2990 * and that it is big enough to cover the range starting at
2991 * @uaddr in @vma. Will return failure if that criteria isn't
2992 * met.
2993 *
2994 * Similar to remap_pfn_range() (see mm/memory.c)
2995 */
2996 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2997 void *kaddr, unsigned long pgoff,
2998 unsigned long size)
2999 {
3000 struct vm_struct *area;
3001 unsigned long off;
3002 unsigned long end_index;
3003
3004 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3005 return -EINVAL;
3006
3007 size = PAGE_ALIGN(size);
3008
3009 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3010 return -EINVAL;
3011
3012 area = find_vm_area(kaddr);
3013 if (!area)
3014 return -EINVAL;
3015
3016 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3017 return -EINVAL;
3018
3019 if (check_add_overflow(size, off, &end_index) ||
3020 end_index > get_vm_area_size(area))
3021 return -EINVAL;
3022 kaddr += off;
3023
3024 do {
3025 struct page *page = vmalloc_to_page(kaddr);
3026 int ret;
3027
3028 ret = vm_insert_page(vma, uaddr, page);
3029 if (ret)
3030 return ret;
3031
3032 uaddr += PAGE_SIZE;
3033 kaddr += PAGE_SIZE;
3034 size -= PAGE_SIZE;
3035 } while (size > 0);
3036
3037 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3038
3039 return 0;
3040 }
3041 EXPORT_SYMBOL(remap_vmalloc_range_partial);
3042
3043 /**
3044 * remap_vmalloc_range - map vmalloc pages to userspace
3045 * @vma: vma to cover (map full range of vma)
3046 * @addr: vmalloc memory
3047 * @pgoff: number of pages into addr before first page to map
3048 *
3049 * Returns: 0 for success, -Exxx on failure
3050 *
3051 * This function checks that addr is a valid vmalloc'ed area, and
3052 * that it is big enough to cover the vma. Will return failure if
3053 * that criteria isn't met.
3054 *
3055 * Similar to remap_pfn_range() (see mm/memory.c)
3056 */
3057 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3058 unsigned long pgoff)
3059 {
3060 return remap_vmalloc_range_partial(vma, vma->vm_start,
3061 addr, pgoff,
3062 vma->vm_end - vma->vm_start);
3063 }
3064 EXPORT_SYMBOL(remap_vmalloc_range);
3065
3066 /*
3067 * Implement stubs for vmalloc_sync_[un]mappings () if the architecture chose
3068 * not to have one.
3069 *
3070 * The purpose of this function is to make sure the vmalloc area
3071 * mappings are identical in all page-tables in the system.
3072 */
3073 void __weak vmalloc_sync_mappings(void)
3074 {
3075 }
3076
3077 void __weak vmalloc_sync_unmappings(void)
3078 {
3079 }
3080
3081 static int f(pte_t *pte, unsigned long addr, void *data)
3082 {
3083 pte_t ***p = data;
3084
3085 if (p) {
3086 *(*p) = pte;
3087 (*p)++;
3088 }
3089 return 0;
3090 }
3091
3092 /**
3093 * alloc_vm_area - allocate a range of kernel address space
3094 * @size: size of the area
3095 * @ptes: returns the PTEs for the address space
3096 *
3097 * Returns: NULL on failure, vm_struct on success
3098 *
3099 * This function reserves a range of kernel address space, and
3100 * allocates pagetables to map that range. No actual mappings
3101 * are created.
3102 *
3103 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3104 * allocated for the VM area are returned.
3105 */
3106 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3107 {
3108 struct vm_struct *area;
3109
3110 area = get_vm_area_caller(size, VM_IOREMAP,
3111 __builtin_return_address(0));
3112 if (area == NULL)
3113 return NULL;
3114
3115 /*
3116 * This ensures that page tables are constructed for this region
3117 * of kernel virtual address space and mapped into init_mm.
3118 */
3119 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3120 size, f, ptes ? &ptes : NULL)) {
3121 free_vm_area(area);
3122 return NULL;
3123 }
3124
3125 return area;
3126 }
3127 EXPORT_SYMBOL_GPL(alloc_vm_area);
3128
3129 void free_vm_area(struct vm_struct *area)
3130 {
3131 struct vm_struct *ret;
3132 ret = remove_vm_area(area->addr);
3133 BUG_ON(ret != area);
3134 kfree(area);
3135 }
3136 EXPORT_SYMBOL_GPL(free_vm_area);
3137
3138 #ifdef CONFIG_SMP
3139 static struct vmap_area *node_to_va(struct rb_node *n)
3140 {
3141 return rb_entry_safe(n, struct vmap_area, rb_node);
3142 }
3143
3144 /**
3145 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3146 * @addr: target address
3147 *
3148 * Returns: vmap_area if it is found. If there is no such area
3149 * the first highest(reverse order) vmap_area is returned
3150 * i.e. va->va_start < addr && va->va_end < addr or NULL
3151 * if there are no any areas before @addr.
3152 */
3153 static struct vmap_area *
3154 pvm_find_va_enclose_addr(unsigned long addr)
3155 {
3156 struct vmap_area *va, *tmp;
3157 struct rb_node *n;
3158
3159 n = free_vmap_area_root.rb_node;
3160 va = NULL;
3161
3162 while (n) {
3163 tmp = rb_entry(n, struct vmap_area, rb_node);
3164 if (tmp->va_start <= addr) {
3165 va = tmp;
3166 if (tmp->va_end >= addr)
3167 break;
3168
3169 n = n->rb_right;
3170 } else {
3171 n = n->rb_left;
3172 }
3173 }
3174
3175 return va;
3176 }
3177
3178 /**
3179 * pvm_determine_end_from_reverse - find the highest aligned address
3180 * of free block below VMALLOC_END
3181 * @va:
3182 * in - the VA we start the search(reverse order);
3183 * out - the VA with the highest aligned end address.
3184 *
3185 * Returns: determined end address within vmap_area
3186 */
3187 static unsigned long
3188 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3189 {
3190 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3191 unsigned long addr;
3192
3193 if (likely(*va)) {
3194 list_for_each_entry_from_reverse((*va),
3195 &free_vmap_area_list, list) {
3196 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3197 if ((*va)->va_start < addr)
3198 return addr;
3199 }
3200 }
3201
3202 return 0;
3203 }
3204
3205 /**
3206 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3207 * @offsets: array containing offset of each area
3208 * @sizes: array containing size of each area
3209 * @nr_vms: the number of areas to allocate
3210 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3211 *
3212 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3213 * vm_structs on success, %NULL on failure
3214 *
3215 * Percpu allocator wants to use congruent vm areas so that it can
3216 * maintain the offsets among percpu areas. This function allocates
3217 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3218 * be scattered pretty far, distance between two areas easily going up
3219 * to gigabytes. To avoid interacting with regular vmallocs, these
3220 * areas are allocated from top.
3221 *
3222 * Despite its complicated look, this allocator is rather simple. It
3223 * does everything top-down and scans free blocks from the end looking
3224 * for matching base. While scanning, if any of the areas do not fit the
3225 * base address is pulled down to fit the area. Scanning is repeated till
3226 * all the areas fit and then all necessary data structures are inserted
3227 * and the result is returned.
3228 */
3229 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3230 const size_t *sizes, int nr_vms,
3231 size_t align)
3232 {
3233 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3234 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3235 struct vmap_area **vas, *va;
3236 struct vm_struct **vms;
3237 int area, area2, last_area, term_area;
3238 unsigned long base, start, size, end, last_end;
3239 bool purged = false;
3240 enum fit_type type;
3241
3242 /* verify parameters and allocate data structures */
3243 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3244 for (last_area = 0, area = 0; area < nr_vms; area++) {
3245 start = offsets[area];
3246 end = start + sizes[area];
3247
3248 /* is everything aligned properly? */
3249 BUG_ON(!IS_ALIGNED(offsets[area], align));
3250 BUG_ON(!IS_ALIGNED(sizes[area], align));
3251
3252 /* detect the area with the highest address */
3253 if (start > offsets[last_area])
3254 last_area = area;
3255
3256 for (area2 = area + 1; area2 < nr_vms; area2++) {
3257 unsigned long start2 = offsets[area2];
3258 unsigned long end2 = start2 + sizes[area2];
3259
3260 BUG_ON(start2 < end && start < end2);
3261 }
3262 }
3263 last_end = offsets[last_area] + sizes[last_area];
3264
3265 if (vmalloc_end - vmalloc_start < last_end) {
3266 WARN_ON(true);
3267 return NULL;
3268 }
3269
3270 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3271 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3272 if (!vas || !vms)
3273 goto err_free2;
3274
3275 for (area = 0; area < nr_vms; area++) {
3276 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3277 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3278 if (!vas[area] || !vms[area])
3279 goto err_free;
3280 }
3281 retry:
3282 spin_lock(&vmap_area_lock);
3283
3284 /* start scanning - we scan from the top, begin with the last area */
3285 area = term_area = last_area;
3286 start = offsets[area];
3287 end = start + sizes[area];
3288
3289 va = pvm_find_va_enclose_addr(vmalloc_end);
3290 base = pvm_determine_end_from_reverse(&va, align) - end;
3291
3292 while (true) {
3293 /*
3294 * base might have underflowed, add last_end before
3295 * comparing.
3296 */
3297 if (base + last_end < vmalloc_start + last_end)
3298 goto overflow;
3299
3300 /*
3301 * Fitting base has not been found.
3302 */
3303 if (va == NULL)
3304 goto overflow;
3305
3306 /*
3307 * If required width exeeds current VA block, move
3308 * base downwards and then recheck.
3309 */
3310 if (base + end > va->va_end) {
3311 base = pvm_determine_end_from_reverse(&va, align) - end;
3312 term_area = area;
3313 continue;
3314 }
3315
3316 /*
3317 * If this VA does not fit, move base downwards and recheck.
3318 */
3319 if (base + start < va->va_start) {
3320 va = node_to_va(rb_prev(&va->rb_node));
3321 base = pvm_determine_end_from_reverse(&va, align) - end;
3322 term_area = area;
3323 continue;
3324 }
3325
3326 /*
3327 * This area fits, move on to the previous one. If
3328 * the previous one is the terminal one, we're done.
3329 */
3330 area = (area + nr_vms - 1) % nr_vms;
3331 if (area == term_area)
3332 break;
3333
3334 start = offsets[area];
3335 end = start + sizes[area];
3336 va = pvm_find_va_enclose_addr(base + end);
3337 }
3338
3339 /* we've found a fitting base, insert all va's */
3340 for (area = 0; area < nr_vms; area++) {
3341 int ret;
3342
3343 start = base + offsets[area];
3344 size = sizes[area];
3345
3346 va = pvm_find_va_enclose_addr(start);
3347 if (WARN_ON_ONCE(va == NULL))
3348 /* It is a BUG(), but trigger recovery instead. */
3349 goto recovery;
3350
3351 type = classify_va_fit_type(va, start, size);
3352 if (WARN_ON_ONCE(type == NOTHING_FIT))
3353 /* It is a BUG(), but trigger recovery instead. */
3354 goto recovery;
3355
3356 ret = adjust_va_to_fit_type(va, start, size, type);
3357 if (unlikely(ret))
3358 goto recovery;
3359
3360 /* Allocated area. */
3361 va = vas[area];
3362 va->va_start = start;
3363 va->va_end = start + size;
3364
3365 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
3366 }
3367
3368 spin_unlock(&vmap_area_lock);
3369
3370 /* insert all vm's */
3371 for (area = 0; area < nr_vms; area++)
3372 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
3373 pcpu_get_vm_areas);
3374
3375 kfree(vas);
3376 return vms;
3377
3378 recovery:
3379 /* Remove previously inserted areas. */
3380 while (area--) {
3381 __free_vmap_area(vas[area]);
3382 vas[area] = NULL;
3383 }
3384
3385 overflow:
3386 spin_unlock(&vmap_area_lock);
3387 if (!purged) {
3388 purge_vmap_area_lazy();
3389 purged = true;
3390
3391 /* Before "retry", check if we recover. */
3392 for (area = 0; area < nr_vms; area++) {
3393 if (vas[area])
3394 continue;
3395
3396 vas[area] = kmem_cache_zalloc(
3397 vmap_area_cachep, GFP_KERNEL);
3398 if (!vas[area])
3399 goto err_free;
3400 }
3401
3402 goto retry;
3403 }
3404
3405 err_free:
3406 for (area = 0; area < nr_vms; area++) {
3407 if (vas[area])
3408 kmem_cache_free(vmap_area_cachep, vas[area]);
3409
3410 kfree(vms[area]);
3411 }
3412 err_free2:
3413 kfree(vas);
3414 kfree(vms);
3415 return NULL;
3416 }
3417
3418 /**
3419 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3420 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3421 * @nr_vms: the number of allocated areas
3422 *
3423 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3424 */
3425 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3426 {
3427 int i;
3428
3429 for (i = 0; i < nr_vms; i++)
3430 free_vm_area(vms[i]);
3431 kfree(vms);
3432 }
3433 #endif /* CONFIG_SMP */
3434
3435 #ifdef CONFIG_PROC_FS
3436 static void *s_start(struct seq_file *m, loff_t *pos)
3437 __acquires(&vmap_area_lock)
3438 {
3439 spin_lock(&vmap_area_lock);
3440 return seq_list_start(&vmap_area_list, *pos);
3441 }
3442
3443 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3444 {
3445 return seq_list_next(p, &vmap_area_list, pos);
3446 }
3447
3448 static void s_stop(struct seq_file *m, void *p)
3449 __releases(&vmap_area_lock)
3450 {
3451 spin_unlock(&vmap_area_lock);
3452 }
3453
3454 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3455 {
3456 if (IS_ENABLED(CONFIG_NUMA)) {
3457 unsigned int nr, *counters = m->private;
3458
3459 if (!counters)
3460 return;
3461
3462 if (v->flags & VM_UNINITIALIZED)
3463 return;
3464 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3465 smp_rmb();
3466
3467 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3468
3469 for (nr = 0; nr < v->nr_pages; nr++)
3470 counters[page_to_nid(v->pages[nr])]++;
3471
3472 for_each_node_state(nr, N_HIGH_MEMORY)
3473 if (counters[nr])
3474 seq_printf(m, " N%u=%u", nr, counters[nr]);
3475 }
3476 }
3477
3478 static void show_purge_info(struct seq_file *m)
3479 {
3480 struct llist_node *head;
3481 struct vmap_area *va;
3482
3483 head = READ_ONCE(vmap_purge_list.first);
3484 if (head == NULL)
3485 return;
3486
3487 llist_for_each_entry(va, head, purge_list) {
3488 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3489 (void *)va->va_start, (void *)va->va_end,
3490 va->va_end - va->va_start);
3491 }
3492 }
3493
3494 static int s_show(struct seq_file *m, void *p)
3495 {
3496 struct vmap_area *va;
3497 struct vm_struct *v;
3498
3499 va = list_entry(p, struct vmap_area, list);
3500
3501 /*
3502 * s_show can encounter race with remove_vm_area, !vm on behalf
3503 * of vmap area is being tear down or vm_map_ram allocation.
3504 */
3505 if (!va->vm) {
3506 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3507 (void *)va->va_start, (void *)va->va_end,
3508 va->va_end - va->va_start);
3509
3510 return 0;
3511 }
3512
3513 v = va->vm;
3514
3515 seq_printf(m, "0x%pK-0x%pK %7ld",
3516 v->addr, v->addr + v->size, v->size);
3517
3518 if (v->caller)
3519 seq_printf(m, " %pS", v->caller);
3520
3521 if (v->nr_pages)
3522 seq_printf(m, " pages=%d", v->nr_pages);
3523
3524 if (v->phys_addr)
3525 seq_printf(m, " phys=%pa", &v->phys_addr);
3526
3527 if (v->flags & VM_IOREMAP)
3528 seq_puts(m, " ioremap");
3529
3530 if (v->flags & VM_ALLOC)
3531 seq_puts(m, " vmalloc");
3532
3533 if (v->flags & VM_MAP)
3534 seq_puts(m, " vmap");
3535
3536 if (v->flags & VM_USERMAP)
3537 seq_puts(m, " user");
3538
3539 if (v->flags & VM_DMA_COHERENT)
3540 seq_puts(m, " dma-coherent");
3541
3542 if (is_vmalloc_addr(v->pages))
3543 seq_puts(m, " vpages");
3544
3545 show_numa_info(m, v);
3546 seq_putc(m, '\n');
3547
3548 /*
3549 * As a final step, dump "unpurged" areas. Note,
3550 * that entire "/proc/vmallocinfo" output will not
3551 * be address sorted, because the purge list is not
3552 * sorted.
3553 */
3554 if (list_is_last(&va->list, &vmap_area_list))
3555 show_purge_info(m);
3556
3557 return 0;
3558 }
3559
3560 static const struct seq_operations vmalloc_op = {
3561 .start = s_start,
3562 .next = s_next,
3563 .stop = s_stop,
3564 .show = s_show,
3565 };
3566
3567 static int __init proc_vmalloc_init(void)
3568 {
3569 if (IS_ENABLED(CONFIG_NUMA))
3570 proc_create_seq_private("vmallocinfo", 0400, NULL,
3571 &vmalloc_op,
3572 nr_node_ids * sizeof(unsigned int), NULL);
3573 else
3574 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3575 return 0;
3576 }
3577 module_init(proc_vmalloc_init);
3578
3579 #endif