]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/vmalloc.c
KVM: x86: Allow guests to see MSR_IA32_TSX_CTRL even if tsx=off
[mirror_ubuntu-jammy-kernel.git] / mm / vmalloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7 * Numa awareness, Christoph Lameter, SGI, June 2005
8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/rcupdate.h>
29 #include <linux/pfn.h>
30 #include <linux/kmemleak.h>
31 #include <linux/atomic.h>
32 #include <linux/compiler.h>
33 #include <linux/llist.h>
34 #include <linux/bitops.h>
35 #include <linux/rbtree_augmented.h>
36 #include <linux/overflow.h>
37
38 #include <linux/uaccess.h>
39 #include <asm/tlbflush.h>
40 #include <asm/shmparam.h>
41
42 #include "internal.h"
43 #include "pgalloc-track.h"
44
45 bool is_vmalloc_addr(const void *x)
46 {
47 unsigned long addr = (unsigned long)x;
48
49 return addr >= VMALLOC_START && addr < VMALLOC_END;
50 }
51 EXPORT_SYMBOL(is_vmalloc_addr);
52
53 struct vfree_deferred {
54 struct llist_head list;
55 struct work_struct wq;
56 };
57 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
58
59 static void __vunmap(const void *, int);
60
61 static void free_work(struct work_struct *w)
62 {
63 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
64 struct llist_node *t, *llnode;
65
66 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
67 __vunmap((void *)llnode, 1);
68 }
69
70 /*** Page table manipulation functions ***/
71
72 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
73 pgtbl_mod_mask *mask)
74 {
75 pte_t *pte;
76
77 pte = pte_offset_kernel(pmd, addr);
78 do {
79 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
80 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
81 } while (pte++, addr += PAGE_SIZE, addr != end);
82 *mask |= PGTBL_PTE_MODIFIED;
83 }
84
85 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
86 pgtbl_mod_mask *mask)
87 {
88 pmd_t *pmd;
89 unsigned long next;
90 int cleared;
91
92 pmd = pmd_offset(pud, addr);
93 do {
94 next = pmd_addr_end(addr, end);
95
96 cleared = pmd_clear_huge(pmd);
97 if (cleared || pmd_bad(*pmd))
98 *mask |= PGTBL_PMD_MODIFIED;
99
100 if (cleared)
101 continue;
102 if (pmd_none_or_clear_bad(pmd))
103 continue;
104 vunmap_pte_range(pmd, addr, next, mask);
105
106 cond_resched();
107 } while (pmd++, addr = next, addr != end);
108 }
109
110 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
111 pgtbl_mod_mask *mask)
112 {
113 pud_t *pud;
114 unsigned long next;
115 int cleared;
116
117 pud = pud_offset(p4d, addr);
118 do {
119 next = pud_addr_end(addr, end);
120
121 cleared = pud_clear_huge(pud);
122 if (cleared || pud_bad(*pud))
123 *mask |= PGTBL_PUD_MODIFIED;
124
125 if (cleared)
126 continue;
127 if (pud_none_or_clear_bad(pud))
128 continue;
129 vunmap_pmd_range(pud, addr, next, mask);
130 } while (pud++, addr = next, addr != end);
131 }
132
133 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
134 pgtbl_mod_mask *mask)
135 {
136 p4d_t *p4d;
137 unsigned long next;
138 int cleared;
139
140 p4d = p4d_offset(pgd, addr);
141 do {
142 next = p4d_addr_end(addr, end);
143
144 cleared = p4d_clear_huge(p4d);
145 if (cleared || p4d_bad(*p4d))
146 *mask |= PGTBL_P4D_MODIFIED;
147
148 if (cleared)
149 continue;
150 if (p4d_none_or_clear_bad(p4d))
151 continue;
152 vunmap_pud_range(p4d, addr, next, mask);
153 } while (p4d++, addr = next, addr != end);
154 }
155
156 /**
157 * unmap_kernel_range_noflush - unmap kernel VM area
158 * @start: start of the VM area to unmap
159 * @size: size of the VM area to unmap
160 *
161 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size specify
162 * should have been allocated using get_vm_area() and its friends.
163 *
164 * NOTE:
165 * This function does NOT do any cache flushing. The caller is responsible
166 * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
167 * function and flush_tlb_kernel_range() after.
168 */
169 void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
170 {
171 unsigned long end = start + size;
172 unsigned long next;
173 pgd_t *pgd;
174 unsigned long addr = start;
175 pgtbl_mod_mask mask = 0;
176
177 BUG_ON(addr >= end);
178 pgd = pgd_offset_k(addr);
179 do {
180 next = pgd_addr_end(addr, end);
181 if (pgd_bad(*pgd))
182 mask |= PGTBL_PGD_MODIFIED;
183 if (pgd_none_or_clear_bad(pgd))
184 continue;
185 vunmap_p4d_range(pgd, addr, next, &mask);
186 } while (pgd++, addr = next, addr != end);
187
188 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
189 arch_sync_kernel_mappings(start, end);
190 }
191
192 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
193 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
194 pgtbl_mod_mask *mask)
195 {
196 pte_t *pte;
197
198 /*
199 * nr is a running index into the array which helps higher level
200 * callers keep track of where we're up to.
201 */
202
203 pte = pte_alloc_kernel_track(pmd, addr, mask);
204 if (!pte)
205 return -ENOMEM;
206 do {
207 struct page *page = pages[*nr];
208
209 if (WARN_ON(!pte_none(*pte)))
210 return -EBUSY;
211 if (WARN_ON(!page))
212 return -ENOMEM;
213 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
214 (*nr)++;
215 } while (pte++, addr += PAGE_SIZE, addr != end);
216 *mask |= PGTBL_PTE_MODIFIED;
217 return 0;
218 }
219
220 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
221 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
222 pgtbl_mod_mask *mask)
223 {
224 pmd_t *pmd;
225 unsigned long next;
226
227 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
228 if (!pmd)
229 return -ENOMEM;
230 do {
231 next = pmd_addr_end(addr, end);
232 if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
233 return -ENOMEM;
234 } while (pmd++, addr = next, addr != end);
235 return 0;
236 }
237
238 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
239 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
240 pgtbl_mod_mask *mask)
241 {
242 pud_t *pud;
243 unsigned long next;
244
245 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
246 if (!pud)
247 return -ENOMEM;
248 do {
249 next = pud_addr_end(addr, end);
250 if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
251 return -ENOMEM;
252 } while (pud++, addr = next, addr != end);
253 return 0;
254 }
255
256 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
257 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
258 pgtbl_mod_mask *mask)
259 {
260 p4d_t *p4d;
261 unsigned long next;
262
263 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
264 if (!p4d)
265 return -ENOMEM;
266 do {
267 next = p4d_addr_end(addr, end);
268 if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
269 return -ENOMEM;
270 } while (p4d++, addr = next, addr != end);
271 return 0;
272 }
273
274 /**
275 * map_kernel_range_noflush - map kernel VM area with the specified pages
276 * @addr: start of the VM area to map
277 * @size: size of the VM area to map
278 * @prot: page protection flags to use
279 * @pages: pages to map
280 *
281 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size specify should
282 * have been allocated using get_vm_area() and its friends.
283 *
284 * NOTE:
285 * This function does NOT do any cache flushing. The caller is responsible for
286 * calling flush_cache_vmap() on to-be-mapped areas before calling this
287 * function.
288 *
289 * RETURNS:
290 * 0 on success, -errno on failure.
291 */
292 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
293 pgprot_t prot, struct page **pages)
294 {
295 unsigned long start = addr;
296 unsigned long end = addr + size;
297 unsigned long next;
298 pgd_t *pgd;
299 int err = 0;
300 int nr = 0;
301 pgtbl_mod_mask mask = 0;
302
303 BUG_ON(addr >= end);
304 pgd = pgd_offset_k(addr);
305 do {
306 next = pgd_addr_end(addr, end);
307 if (pgd_bad(*pgd))
308 mask |= PGTBL_PGD_MODIFIED;
309 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
310 if (err)
311 return err;
312 } while (pgd++, addr = next, addr != end);
313
314 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
315 arch_sync_kernel_mappings(start, end);
316
317 return 0;
318 }
319
320 int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
321 struct page **pages)
322 {
323 int ret;
324
325 ret = map_kernel_range_noflush(start, size, prot, pages);
326 flush_cache_vmap(start, start + size);
327 return ret;
328 }
329
330 int is_vmalloc_or_module_addr(const void *x)
331 {
332 /*
333 * ARM, x86-64 and sparc64 put modules in a special place,
334 * and fall back on vmalloc() if that fails. Others
335 * just put it in the vmalloc space.
336 */
337 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
338 unsigned long addr = (unsigned long)x;
339 if (addr >= MODULES_VADDR && addr < MODULES_END)
340 return 1;
341 #endif
342 return is_vmalloc_addr(x);
343 }
344
345 /*
346 * Walk a vmap address to the struct page it maps.
347 */
348 struct page *vmalloc_to_page(const void *vmalloc_addr)
349 {
350 unsigned long addr = (unsigned long) vmalloc_addr;
351 struct page *page = NULL;
352 pgd_t *pgd = pgd_offset_k(addr);
353 p4d_t *p4d;
354 pud_t *pud;
355 pmd_t *pmd;
356 pte_t *ptep, pte;
357
358 /*
359 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
360 * architectures that do not vmalloc module space
361 */
362 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
363
364 if (pgd_none(*pgd))
365 return NULL;
366 p4d = p4d_offset(pgd, addr);
367 if (p4d_none(*p4d))
368 return NULL;
369 pud = pud_offset(p4d, addr);
370
371 /*
372 * Don't dereference bad PUD or PMD (below) entries. This will also
373 * identify huge mappings, which we may encounter on architectures
374 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
375 * identified as vmalloc addresses by is_vmalloc_addr(), but are
376 * not [unambiguously] associated with a struct page, so there is
377 * no correct value to return for them.
378 */
379 WARN_ON_ONCE(pud_bad(*pud));
380 if (pud_none(*pud) || pud_bad(*pud))
381 return NULL;
382 pmd = pmd_offset(pud, addr);
383 WARN_ON_ONCE(pmd_bad(*pmd));
384 if (pmd_none(*pmd) || pmd_bad(*pmd))
385 return NULL;
386
387 ptep = pte_offset_map(pmd, addr);
388 pte = *ptep;
389 if (pte_present(pte))
390 page = pte_page(pte);
391 pte_unmap(ptep);
392 return page;
393 }
394 EXPORT_SYMBOL(vmalloc_to_page);
395
396 /*
397 * Map a vmalloc()-space virtual address to the physical page frame number.
398 */
399 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
400 {
401 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
402 }
403 EXPORT_SYMBOL(vmalloc_to_pfn);
404
405
406 /*** Global kva allocator ***/
407
408 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
409 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
410
411
412 static DEFINE_SPINLOCK(vmap_area_lock);
413 static DEFINE_SPINLOCK(free_vmap_area_lock);
414 /* Export for kexec only */
415 LIST_HEAD(vmap_area_list);
416 static struct rb_root vmap_area_root = RB_ROOT;
417 static bool vmap_initialized __read_mostly;
418
419 static struct rb_root purge_vmap_area_root = RB_ROOT;
420 static LIST_HEAD(purge_vmap_area_list);
421 static DEFINE_SPINLOCK(purge_vmap_area_lock);
422
423 /*
424 * This kmem_cache is used for vmap_area objects. Instead of
425 * allocating from slab we reuse an object from this cache to
426 * make things faster. Especially in "no edge" splitting of
427 * free block.
428 */
429 static struct kmem_cache *vmap_area_cachep;
430
431 /*
432 * This linked list is used in pair with free_vmap_area_root.
433 * It gives O(1) access to prev/next to perform fast coalescing.
434 */
435 static LIST_HEAD(free_vmap_area_list);
436
437 /*
438 * This augment red-black tree represents the free vmap space.
439 * All vmap_area objects in this tree are sorted by va->va_start
440 * address. It is used for allocation and merging when a vmap
441 * object is released.
442 *
443 * Each vmap_area node contains a maximum available free block
444 * of its sub-tree, right or left. Therefore it is possible to
445 * find a lowest match of free area.
446 */
447 static struct rb_root free_vmap_area_root = RB_ROOT;
448
449 /*
450 * Preload a CPU with one object for "no edge" split case. The
451 * aim is to get rid of allocations from the atomic context, thus
452 * to use more permissive allocation masks.
453 */
454 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
455
456 static __always_inline unsigned long
457 va_size(struct vmap_area *va)
458 {
459 return (va->va_end - va->va_start);
460 }
461
462 static __always_inline unsigned long
463 get_subtree_max_size(struct rb_node *node)
464 {
465 struct vmap_area *va;
466
467 va = rb_entry_safe(node, struct vmap_area, rb_node);
468 return va ? va->subtree_max_size : 0;
469 }
470
471 /*
472 * Gets called when remove the node and rotate.
473 */
474 static __always_inline unsigned long
475 compute_subtree_max_size(struct vmap_area *va)
476 {
477 return max3(va_size(va),
478 get_subtree_max_size(va->rb_node.rb_left),
479 get_subtree_max_size(va->rb_node.rb_right));
480 }
481
482 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
483 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
484
485 static void purge_vmap_area_lazy(void);
486 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
487 static unsigned long lazy_max_pages(void);
488
489 static atomic_long_t nr_vmalloc_pages;
490
491 unsigned long vmalloc_nr_pages(void)
492 {
493 return atomic_long_read(&nr_vmalloc_pages);
494 }
495
496 static struct vmap_area *__find_vmap_area(unsigned long addr)
497 {
498 struct rb_node *n = vmap_area_root.rb_node;
499
500 while (n) {
501 struct vmap_area *va;
502
503 va = rb_entry(n, struct vmap_area, rb_node);
504 if (addr < va->va_start)
505 n = n->rb_left;
506 else if (addr >= va->va_end)
507 n = n->rb_right;
508 else
509 return va;
510 }
511
512 return NULL;
513 }
514
515 /*
516 * This function returns back addresses of parent node
517 * and its left or right link for further processing.
518 *
519 * Otherwise NULL is returned. In that case all further
520 * steps regarding inserting of conflicting overlap range
521 * have to be declined and actually considered as a bug.
522 */
523 static __always_inline struct rb_node **
524 find_va_links(struct vmap_area *va,
525 struct rb_root *root, struct rb_node *from,
526 struct rb_node **parent)
527 {
528 struct vmap_area *tmp_va;
529 struct rb_node **link;
530
531 if (root) {
532 link = &root->rb_node;
533 if (unlikely(!*link)) {
534 *parent = NULL;
535 return link;
536 }
537 } else {
538 link = &from;
539 }
540
541 /*
542 * Go to the bottom of the tree. When we hit the last point
543 * we end up with parent rb_node and correct direction, i name
544 * it link, where the new va->rb_node will be attached to.
545 */
546 do {
547 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
548
549 /*
550 * During the traversal we also do some sanity check.
551 * Trigger the BUG() if there are sides(left/right)
552 * or full overlaps.
553 */
554 if (va->va_start < tmp_va->va_end &&
555 va->va_end <= tmp_va->va_start)
556 link = &(*link)->rb_left;
557 else if (va->va_end > tmp_va->va_start &&
558 va->va_start >= tmp_va->va_end)
559 link = &(*link)->rb_right;
560 else {
561 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
562 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
563
564 return NULL;
565 }
566 } while (*link);
567
568 *parent = &tmp_va->rb_node;
569 return link;
570 }
571
572 static __always_inline struct list_head *
573 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
574 {
575 struct list_head *list;
576
577 if (unlikely(!parent))
578 /*
579 * The red-black tree where we try to find VA neighbors
580 * before merging or inserting is empty, i.e. it means
581 * there is no free vmap space. Normally it does not
582 * happen but we handle this case anyway.
583 */
584 return NULL;
585
586 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
587 return (&parent->rb_right == link ? list->next : list);
588 }
589
590 static __always_inline void
591 link_va(struct vmap_area *va, struct rb_root *root,
592 struct rb_node *parent, struct rb_node **link, struct list_head *head)
593 {
594 /*
595 * VA is still not in the list, but we can
596 * identify its future previous list_head node.
597 */
598 if (likely(parent)) {
599 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
600 if (&parent->rb_right != link)
601 head = head->prev;
602 }
603
604 /* Insert to the rb-tree */
605 rb_link_node(&va->rb_node, parent, link);
606 if (root == &free_vmap_area_root) {
607 /*
608 * Some explanation here. Just perform simple insertion
609 * to the tree. We do not set va->subtree_max_size to
610 * its current size before calling rb_insert_augmented().
611 * It is because of we populate the tree from the bottom
612 * to parent levels when the node _is_ in the tree.
613 *
614 * Therefore we set subtree_max_size to zero after insertion,
615 * to let __augment_tree_propagate_from() puts everything to
616 * the correct order later on.
617 */
618 rb_insert_augmented(&va->rb_node,
619 root, &free_vmap_area_rb_augment_cb);
620 va->subtree_max_size = 0;
621 } else {
622 rb_insert_color(&va->rb_node, root);
623 }
624
625 /* Address-sort this list */
626 list_add(&va->list, head);
627 }
628
629 static __always_inline void
630 unlink_va(struct vmap_area *va, struct rb_root *root)
631 {
632 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
633 return;
634
635 if (root == &free_vmap_area_root)
636 rb_erase_augmented(&va->rb_node,
637 root, &free_vmap_area_rb_augment_cb);
638 else
639 rb_erase(&va->rb_node, root);
640
641 list_del(&va->list);
642 RB_CLEAR_NODE(&va->rb_node);
643 }
644
645 #if DEBUG_AUGMENT_PROPAGATE_CHECK
646 static void
647 augment_tree_propagate_check(void)
648 {
649 struct vmap_area *va;
650 unsigned long computed_size;
651
652 list_for_each_entry(va, &free_vmap_area_list, list) {
653 computed_size = compute_subtree_max_size(va);
654 if (computed_size != va->subtree_max_size)
655 pr_emerg("tree is corrupted: %lu, %lu\n",
656 va_size(va), va->subtree_max_size);
657 }
658 }
659 #endif
660
661 /*
662 * This function populates subtree_max_size from bottom to upper
663 * levels starting from VA point. The propagation must be done
664 * when VA size is modified by changing its va_start/va_end. Or
665 * in case of newly inserting of VA to the tree.
666 *
667 * It means that __augment_tree_propagate_from() must be called:
668 * - After VA has been inserted to the tree(free path);
669 * - After VA has been shrunk(allocation path);
670 * - After VA has been increased(merging path).
671 *
672 * Please note that, it does not mean that upper parent nodes
673 * and their subtree_max_size are recalculated all the time up
674 * to the root node.
675 *
676 * 4--8
677 * /\
678 * / \
679 * / \
680 * 2--2 8--8
681 *
682 * For example if we modify the node 4, shrinking it to 2, then
683 * no any modification is required. If we shrink the node 2 to 1
684 * its subtree_max_size is updated only, and set to 1. If we shrink
685 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
686 * node becomes 4--6.
687 */
688 static __always_inline void
689 augment_tree_propagate_from(struct vmap_area *va)
690 {
691 /*
692 * Populate the tree from bottom towards the root until
693 * the calculated maximum available size of checked node
694 * is equal to its current one.
695 */
696 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
697
698 #if DEBUG_AUGMENT_PROPAGATE_CHECK
699 augment_tree_propagate_check();
700 #endif
701 }
702
703 static void
704 insert_vmap_area(struct vmap_area *va,
705 struct rb_root *root, struct list_head *head)
706 {
707 struct rb_node **link;
708 struct rb_node *parent;
709
710 link = find_va_links(va, root, NULL, &parent);
711 if (link)
712 link_va(va, root, parent, link, head);
713 }
714
715 static void
716 insert_vmap_area_augment(struct vmap_area *va,
717 struct rb_node *from, struct rb_root *root,
718 struct list_head *head)
719 {
720 struct rb_node **link;
721 struct rb_node *parent;
722
723 if (from)
724 link = find_va_links(va, NULL, from, &parent);
725 else
726 link = find_va_links(va, root, NULL, &parent);
727
728 if (link) {
729 link_va(va, root, parent, link, head);
730 augment_tree_propagate_from(va);
731 }
732 }
733
734 /*
735 * Merge de-allocated chunk of VA memory with previous
736 * and next free blocks. If coalesce is not done a new
737 * free area is inserted. If VA has been merged, it is
738 * freed.
739 *
740 * Please note, it can return NULL in case of overlap
741 * ranges, followed by WARN() report. Despite it is a
742 * buggy behaviour, a system can be alive and keep
743 * ongoing.
744 */
745 static __always_inline struct vmap_area *
746 merge_or_add_vmap_area(struct vmap_area *va,
747 struct rb_root *root, struct list_head *head)
748 {
749 struct vmap_area *sibling;
750 struct list_head *next;
751 struct rb_node **link;
752 struct rb_node *parent;
753 bool merged = false;
754
755 /*
756 * Find a place in the tree where VA potentially will be
757 * inserted, unless it is merged with its sibling/siblings.
758 */
759 link = find_va_links(va, root, NULL, &parent);
760 if (!link)
761 return NULL;
762
763 /*
764 * Get next node of VA to check if merging can be done.
765 */
766 next = get_va_next_sibling(parent, link);
767 if (unlikely(next == NULL))
768 goto insert;
769
770 /*
771 * start end
772 * | |
773 * |<------VA------>|<-----Next----->|
774 * | |
775 * start end
776 */
777 if (next != head) {
778 sibling = list_entry(next, struct vmap_area, list);
779 if (sibling->va_start == va->va_end) {
780 sibling->va_start = va->va_start;
781
782 /* Free vmap_area object. */
783 kmem_cache_free(vmap_area_cachep, va);
784
785 /* Point to the new merged area. */
786 va = sibling;
787 merged = true;
788 }
789 }
790
791 /*
792 * start end
793 * | |
794 * |<-----Prev----->|<------VA------>|
795 * | |
796 * start end
797 */
798 if (next->prev != head) {
799 sibling = list_entry(next->prev, struct vmap_area, list);
800 if (sibling->va_end == va->va_start) {
801 /*
802 * If both neighbors are coalesced, it is important
803 * to unlink the "next" node first, followed by merging
804 * with "previous" one. Otherwise the tree might not be
805 * fully populated if a sibling's augmented value is
806 * "normalized" because of rotation operations.
807 */
808 if (merged)
809 unlink_va(va, root);
810
811 sibling->va_end = va->va_end;
812
813 /* Free vmap_area object. */
814 kmem_cache_free(vmap_area_cachep, va);
815
816 /* Point to the new merged area. */
817 va = sibling;
818 merged = true;
819 }
820 }
821
822 insert:
823 if (!merged)
824 link_va(va, root, parent, link, head);
825
826 return va;
827 }
828
829 static __always_inline struct vmap_area *
830 merge_or_add_vmap_area_augment(struct vmap_area *va,
831 struct rb_root *root, struct list_head *head)
832 {
833 va = merge_or_add_vmap_area(va, root, head);
834 if (va)
835 augment_tree_propagate_from(va);
836
837 return va;
838 }
839
840 static __always_inline bool
841 is_within_this_va(struct vmap_area *va, unsigned long size,
842 unsigned long align, unsigned long vstart)
843 {
844 unsigned long nva_start_addr;
845
846 if (va->va_start > vstart)
847 nva_start_addr = ALIGN(va->va_start, align);
848 else
849 nva_start_addr = ALIGN(vstart, align);
850
851 /* Can be overflowed due to big size or alignment. */
852 if (nva_start_addr + size < nva_start_addr ||
853 nva_start_addr < vstart)
854 return false;
855
856 return (nva_start_addr + size <= va->va_end);
857 }
858
859 /*
860 * Find the first free block(lowest start address) in the tree,
861 * that will accomplish the request corresponding to passing
862 * parameters.
863 */
864 static __always_inline struct vmap_area *
865 find_vmap_lowest_match(unsigned long size,
866 unsigned long align, unsigned long vstart)
867 {
868 struct vmap_area *va;
869 struct rb_node *node;
870 unsigned long length;
871
872 /* Start from the root. */
873 node = free_vmap_area_root.rb_node;
874
875 /* Adjust the search size for alignment overhead. */
876 length = size + align - 1;
877
878 while (node) {
879 va = rb_entry(node, struct vmap_area, rb_node);
880
881 if (get_subtree_max_size(node->rb_left) >= length &&
882 vstart < va->va_start) {
883 node = node->rb_left;
884 } else {
885 if (is_within_this_va(va, size, align, vstart))
886 return va;
887
888 /*
889 * Does not make sense to go deeper towards the right
890 * sub-tree if it does not have a free block that is
891 * equal or bigger to the requested search length.
892 */
893 if (get_subtree_max_size(node->rb_right) >= length) {
894 node = node->rb_right;
895 continue;
896 }
897
898 /*
899 * OK. We roll back and find the first right sub-tree,
900 * that will satisfy the search criteria. It can happen
901 * only once due to "vstart" restriction.
902 */
903 while ((node = rb_parent(node))) {
904 va = rb_entry(node, struct vmap_area, rb_node);
905 if (is_within_this_va(va, size, align, vstart))
906 return va;
907
908 if (get_subtree_max_size(node->rb_right) >= length &&
909 vstart <= va->va_start) {
910 node = node->rb_right;
911 break;
912 }
913 }
914 }
915 }
916
917 return NULL;
918 }
919
920 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
921 #include <linux/random.h>
922
923 static struct vmap_area *
924 find_vmap_lowest_linear_match(unsigned long size,
925 unsigned long align, unsigned long vstart)
926 {
927 struct vmap_area *va;
928
929 list_for_each_entry(va, &free_vmap_area_list, list) {
930 if (!is_within_this_va(va, size, align, vstart))
931 continue;
932
933 return va;
934 }
935
936 return NULL;
937 }
938
939 static void
940 find_vmap_lowest_match_check(unsigned long size)
941 {
942 struct vmap_area *va_1, *va_2;
943 unsigned long vstart;
944 unsigned int rnd;
945
946 get_random_bytes(&rnd, sizeof(rnd));
947 vstart = VMALLOC_START + rnd;
948
949 va_1 = find_vmap_lowest_match(size, 1, vstart);
950 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
951
952 if (va_1 != va_2)
953 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
954 va_1, va_2, vstart);
955 }
956 #endif
957
958 enum fit_type {
959 NOTHING_FIT = 0,
960 FL_FIT_TYPE = 1, /* full fit */
961 LE_FIT_TYPE = 2, /* left edge fit */
962 RE_FIT_TYPE = 3, /* right edge fit */
963 NE_FIT_TYPE = 4 /* no edge fit */
964 };
965
966 static __always_inline enum fit_type
967 classify_va_fit_type(struct vmap_area *va,
968 unsigned long nva_start_addr, unsigned long size)
969 {
970 enum fit_type type;
971
972 /* Check if it is within VA. */
973 if (nva_start_addr < va->va_start ||
974 nva_start_addr + size > va->va_end)
975 return NOTHING_FIT;
976
977 /* Now classify. */
978 if (va->va_start == nva_start_addr) {
979 if (va->va_end == nva_start_addr + size)
980 type = FL_FIT_TYPE;
981 else
982 type = LE_FIT_TYPE;
983 } else if (va->va_end == nva_start_addr + size) {
984 type = RE_FIT_TYPE;
985 } else {
986 type = NE_FIT_TYPE;
987 }
988
989 return type;
990 }
991
992 static __always_inline int
993 adjust_va_to_fit_type(struct vmap_area *va,
994 unsigned long nva_start_addr, unsigned long size,
995 enum fit_type type)
996 {
997 struct vmap_area *lva = NULL;
998
999 if (type == FL_FIT_TYPE) {
1000 /*
1001 * No need to split VA, it fully fits.
1002 *
1003 * | |
1004 * V NVA V
1005 * |---------------|
1006 */
1007 unlink_va(va, &free_vmap_area_root);
1008 kmem_cache_free(vmap_area_cachep, va);
1009 } else if (type == LE_FIT_TYPE) {
1010 /*
1011 * Split left edge of fit VA.
1012 *
1013 * | |
1014 * V NVA V R
1015 * |-------|-------|
1016 */
1017 va->va_start += size;
1018 } else if (type == RE_FIT_TYPE) {
1019 /*
1020 * Split right edge of fit VA.
1021 *
1022 * | |
1023 * L V NVA V
1024 * |-------|-------|
1025 */
1026 va->va_end = nva_start_addr;
1027 } else if (type == NE_FIT_TYPE) {
1028 /*
1029 * Split no edge of fit VA.
1030 *
1031 * | |
1032 * L V NVA V R
1033 * |---|-------|---|
1034 */
1035 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1036 if (unlikely(!lva)) {
1037 /*
1038 * For percpu allocator we do not do any pre-allocation
1039 * and leave it as it is. The reason is it most likely
1040 * never ends up with NE_FIT_TYPE splitting. In case of
1041 * percpu allocations offsets and sizes are aligned to
1042 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1043 * are its main fitting cases.
1044 *
1045 * There are a few exceptions though, as an example it is
1046 * a first allocation (early boot up) when we have "one"
1047 * big free space that has to be split.
1048 *
1049 * Also we can hit this path in case of regular "vmap"
1050 * allocations, if "this" current CPU was not preloaded.
1051 * See the comment in alloc_vmap_area() why. If so, then
1052 * GFP_NOWAIT is used instead to get an extra object for
1053 * split purpose. That is rare and most time does not
1054 * occur.
1055 *
1056 * What happens if an allocation gets failed. Basically,
1057 * an "overflow" path is triggered to purge lazily freed
1058 * areas to free some memory, then, the "retry" path is
1059 * triggered to repeat one more time. See more details
1060 * in alloc_vmap_area() function.
1061 */
1062 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1063 if (!lva)
1064 return -1;
1065 }
1066
1067 /*
1068 * Build the remainder.
1069 */
1070 lva->va_start = va->va_start;
1071 lva->va_end = nva_start_addr;
1072
1073 /*
1074 * Shrink this VA to remaining size.
1075 */
1076 va->va_start = nva_start_addr + size;
1077 } else {
1078 return -1;
1079 }
1080
1081 if (type != FL_FIT_TYPE) {
1082 augment_tree_propagate_from(va);
1083
1084 if (lva) /* type == NE_FIT_TYPE */
1085 insert_vmap_area_augment(lva, &va->rb_node,
1086 &free_vmap_area_root, &free_vmap_area_list);
1087 }
1088
1089 return 0;
1090 }
1091
1092 /*
1093 * Returns a start address of the newly allocated area, if success.
1094 * Otherwise a vend is returned that indicates failure.
1095 */
1096 static __always_inline unsigned long
1097 __alloc_vmap_area(unsigned long size, unsigned long align,
1098 unsigned long vstart, unsigned long vend)
1099 {
1100 unsigned long nva_start_addr;
1101 struct vmap_area *va;
1102 enum fit_type type;
1103 int ret;
1104
1105 va = find_vmap_lowest_match(size, align, vstart);
1106 if (unlikely(!va))
1107 return vend;
1108
1109 if (va->va_start > vstart)
1110 nva_start_addr = ALIGN(va->va_start, align);
1111 else
1112 nva_start_addr = ALIGN(vstart, align);
1113
1114 /* Check the "vend" restriction. */
1115 if (nva_start_addr + size > vend)
1116 return vend;
1117
1118 /* Classify what we have found. */
1119 type = classify_va_fit_type(va, nva_start_addr, size);
1120 if (WARN_ON_ONCE(type == NOTHING_FIT))
1121 return vend;
1122
1123 /* Update the free vmap_area. */
1124 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1125 if (ret)
1126 return vend;
1127
1128 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1129 find_vmap_lowest_match_check(size);
1130 #endif
1131
1132 return nva_start_addr;
1133 }
1134
1135 /*
1136 * Free a region of KVA allocated by alloc_vmap_area
1137 */
1138 static void free_vmap_area(struct vmap_area *va)
1139 {
1140 /*
1141 * Remove from the busy tree/list.
1142 */
1143 spin_lock(&vmap_area_lock);
1144 unlink_va(va, &vmap_area_root);
1145 spin_unlock(&vmap_area_lock);
1146
1147 /*
1148 * Insert/Merge it back to the free tree/list.
1149 */
1150 spin_lock(&free_vmap_area_lock);
1151 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1152 spin_unlock(&free_vmap_area_lock);
1153 }
1154
1155 /*
1156 * Allocate a region of KVA of the specified size and alignment, within the
1157 * vstart and vend.
1158 */
1159 static struct vmap_area *alloc_vmap_area(unsigned long size,
1160 unsigned long align,
1161 unsigned long vstart, unsigned long vend,
1162 int node, gfp_t gfp_mask)
1163 {
1164 struct vmap_area *va, *pva;
1165 unsigned long addr;
1166 int purged = 0;
1167 int ret;
1168
1169 BUG_ON(!size);
1170 BUG_ON(offset_in_page(size));
1171 BUG_ON(!is_power_of_2(align));
1172
1173 if (unlikely(!vmap_initialized))
1174 return ERR_PTR(-EBUSY);
1175
1176 might_sleep();
1177 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1178
1179 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1180 if (unlikely(!va))
1181 return ERR_PTR(-ENOMEM);
1182
1183 /*
1184 * Only scan the relevant parts containing pointers to other objects
1185 * to avoid false negatives.
1186 */
1187 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1188
1189 retry:
1190 /*
1191 * Preload this CPU with one extra vmap_area object. It is used
1192 * when fit type of free area is NE_FIT_TYPE. Please note, it
1193 * does not guarantee that an allocation occurs on a CPU that
1194 * is preloaded, instead we minimize the case when it is not.
1195 * It can happen because of cpu migration, because there is a
1196 * race until the below spinlock is taken.
1197 *
1198 * The preload is done in non-atomic context, thus it allows us
1199 * to use more permissive allocation masks to be more stable under
1200 * low memory condition and high memory pressure. In rare case,
1201 * if not preloaded, GFP_NOWAIT is used.
1202 *
1203 * Set "pva" to NULL here, because of "retry" path.
1204 */
1205 pva = NULL;
1206
1207 if (!this_cpu_read(ne_fit_preload_node))
1208 /*
1209 * Even if it fails we do not really care about that.
1210 * Just proceed as it is. If needed "overflow" path
1211 * will refill the cache we allocate from.
1212 */
1213 pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1214
1215 spin_lock(&free_vmap_area_lock);
1216
1217 if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1218 kmem_cache_free(vmap_area_cachep, pva);
1219
1220 /*
1221 * If an allocation fails, the "vend" address is
1222 * returned. Therefore trigger the overflow path.
1223 */
1224 addr = __alloc_vmap_area(size, align, vstart, vend);
1225 spin_unlock(&free_vmap_area_lock);
1226
1227 if (unlikely(addr == vend))
1228 goto overflow;
1229
1230 va->va_start = addr;
1231 va->va_end = addr + size;
1232 va->vm = NULL;
1233
1234
1235 spin_lock(&vmap_area_lock);
1236 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1237 spin_unlock(&vmap_area_lock);
1238
1239 BUG_ON(!IS_ALIGNED(va->va_start, align));
1240 BUG_ON(va->va_start < vstart);
1241 BUG_ON(va->va_end > vend);
1242
1243 ret = kasan_populate_vmalloc(addr, size);
1244 if (ret) {
1245 free_vmap_area(va);
1246 return ERR_PTR(ret);
1247 }
1248
1249 return va;
1250
1251 overflow:
1252 if (!purged) {
1253 purge_vmap_area_lazy();
1254 purged = 1;
1255 goto retry;
1256 }
1257
1258 if (gfpflags_allow_blocking(gfp_mask)) {
1259 unsigned long freed = 0;
1260 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1261 if (freed > 0) {
1262 purged = 0;
1263 goto retry;
1264 }
1265 }
1266
1267 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1268 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1269 size);
1270
1271 kmem_cache_free(vmap_area_cachep, va);
1272 return ERR_PTR(-EBUSY);
1273 }
1274
1275 int register_vmap_purge_notifier(struct notifier_block *nb)
1276 {
1277 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1278 }
1279 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1280
1281 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1282 {
1283 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1284 }
1285 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1286
1287 /*
1288 * lazy_max_pages is the maximum amount of virtual address space we gather up
1289 * before attempting to purge with a TLB flush.
1290 *
1291 * There is a tradeoff here: a larger number will cover more kernel page tables
1292 * and take slightly longer to purge, but it will linearly reduce the number of
1293 * global TLB flushes that must be performed. It would seem natural to scale
1294 * this number up linearly with the number of CPUs (because vmapping activity
1295 * could also scale linearly with the number of CPUs), however it is likely
1296 * that in practice, workloads might be constrained in other ways that mean
1297 * vmap activity will not scale linearly with CPUs. Also, I want to be
1298 * conservative and not introduce a big latency on huge systems, so go with
1299 * a less aggressive log scale. It will still be an improvement over the old
1300 * code, and it will be simple to change the scale factor if we find that it
1301 * becomes a problem on bigger systems.
1302 */
1303 static unsigned long lazy_max_pages(void)
1304 {
1305 unsigned int log;
1306
1307 log = fls(num_online_cpus());
1308
1309 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1310 }
1311
1312 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1313
1314 /*
1315 * Serialize vmap purging. There is no actual criticial section protected
1316 * by this look, but we want to avoid concurrent calls for performance
1317 * reasons and to make the pcpu_get_vm_areas more deterministic.
1318 */
1319 static DEFINE_MUTEX(vmap_purge_lock);
1320
1321 /* for per-CPU blocks */
1322 static void purge_fragmented_blocks_allcpus(void);
1323
1324 /*
1325 * called before a call to iounmap() if the caller wants vm_area_struct's
1326 * immediately freed.
1327 */
1328 void set_iounmap_nonlazy(void)
1329 {
1330 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1331 }
1332
1333 /*
1334 * Purges all lazily-freed vmap areas.
1335 */
1336 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1337 {
1338 unsigned long resched_threshold;
1339 struct list_head local_pure_list;
1340 struct vmap_area *va, *n_va;
1341
1342 lockdep_assert_held(&vmap_purge_lock);
1343
1344 spin_lock(&purge_vmap_area_lock);
1345 purge_vmap_area_root = RB_ROOT;
1346 list_replace_init(&purge_vmap_area_list, &local_pure_list);
1347 spin_unlock(&purge_vmap_area_lock);
1348
1349 if (unlikely(list_empty(&local_pure_list)))
1350 return false;
1351
1352 start = min(start,
1353 list_first_entry(&local_pure_list,
1354 struct vmap_area, list)->va_start);
1355
1356 end = max(end,
1357 list_last_entry(&local_pure_list,
1358 struct vmap_area, list)->va_end);
1359
1360 flush_tlb_kernel_range(start, end);
1361 resched_threshold = lazy_max_pages() << 1;
1362
1363 spin_lock(&free_vmap_area_lock);
1364 list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
1365 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1366 unsigned long orig_start = va->va_start;
1367 unsigned long orig_end = va->va_end;
1368
1369 /*
1370 * Finally insert or merge lazily-freed area. It is
1371 * detached and there is no need to "unlink" it from
1372 * anything.
1373 */
1374 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1375 &free_vmap_area_list);
1376
1377 if (!va)
1378 continue;
1379
1380 if (is_vmalloc_or_module_addr((void *)orig_start))
1381 kasan_release_vmalloc(orig_start, orig_end,
1382 va->va_start, va->va_end);
1383
1384 atomic_long_sub(nr, &vmap_lazy_nr);
1385
1386 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1387 cond_resched_lock(&free_vmap_area_lock);
1388 }
1389 spin_unlock(&free_vmap_area_lock);
1390 return true;
1391 }
1392
1393 /*
1394 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1395 * is already purging.
1396 */
1397 static void try_purge_vmap_area_lazy(void)
1398 {
1399 if (mutex_trylock(&vmap_purge_lock)) {
1400 __purge_vmap_area_lazy(ULONG_MAX, 0);
1401 mutex_unlock(&vmap_purge_lock);
1402 }
1403 }
1404
1405 /*
1406 * Kick off a purge of the outstanding lazy areas.
1407 */
1408 static void purge_vmap_area_lazy(void)
1409 {
1410 mutex_lock(&vmap_purge_lock);
1411 purge_fragmented_blocks_allcpus();
1412 __purge_vmap_area_lazy(ULONG_MAX, 0);
1413 mutex_unlock(&vmap_purge_lock);
1414 }
1415
1416 /*
1417 * Free a vmap area, caller ensuring that the area has been unmapped
1418 * and flush_cache_vunmap had been called for the correct range
1419 * previously.
1420 */
1421 static void free_vmap_area_noflush(struct vmap_area *va)
1422 {
1423 unsigned long nr_lazy;
1424
1425 spin_lock(&vmap_area_lock);
1426 unlink_va(va, &vmap_area_root);
1427 spin_unlock(&vmap_area_lock);
1428
1429 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1430 PAGE_SHIFT, &vmap_lazy_nr);
1431
1432 /*
1433 * Merge or place it to the purge tree/list.
1434 */
1435 spin_lock(&purge_vmap_area_lock);
1436 merge_or_add_vmap_area(va,
1437 &purge_vmap_area_root, &purge_vmap_area_list);
1438 spin_unlock(&purge_vmap_area_lock);
1439
1440 /* After this point, we may free va at any time */
1441 if (unlikely(nr_lazy > lazy_max_pages()))
1442 try_purge_vmap_area_lazy();
1443 }
1444
1445 /*
1446 * Free and unmap a vmap area
1447 */
1448 static void free_unmap_vmap_area(struct vmap_area *va)
1449 {
1450 flush_cache_vunmap(va->va_start, va->va_end);
1451 unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
1452 if (debug_pagealloc_enabled_static())
1453 flush_tlb_kernel_range(va->va_start, va->va_end);
1454
1455 free_vmap_area_noflush(va);
1456 }
1457
1458 static struct vmap_area *find_vmap_area(unsigned long addr)
1459 {
1460 struct vmap_area *va;
1461
1462 spin_lock(&vmap_area_lock);
1463 va = __find_vmap_area(addr);
1464 spin_unlock(&vmap_area_lock);
1465
1466 return va;
1467 }
1468
1469 /*** Per cpu kva allocator ***/
1470
1471 /*
1472 * vmap space is limited especially on 32 bit architectures. Ensure there is
1473 * room for at least 16 percpu vmap blocks per CPU.
1474 */
1475 /*
1476 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1477 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1478 * instead (we just need a rough idea)
1479 */
1480 #if BITS_PER_LONG == 32
1481 #define VMALLOC_SPACE (128UL*1024*1024)
1482 #else
1483 #define VMALLOC_SPACE (128UL*1024*1024*1024)
1484 #endif
1485
1486 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1487 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1488 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1489 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1490 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1491 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1492 #define VMAP_BBMAP_BITS \
1493 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1494 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1495 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1496
1497 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1498
1499 struct vmap_block_queue {
1500 spinlock_t lock;
1501 struct list_head free;
1502 };
1503
1504 struct vmap_block {
1505 spinlock_t lock;
1506 struct vmap_area *va;
1507 unsigned long free, dirty;
1508 unsigned long dirty_min, dirty_max; /*< dirty range */
1509 struct list_head free_list;
1510 struct rcu_head rcu_head;
1511 struct list_head purge;
1512 };
1513
1514 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1515 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1516
1517 /*
1518 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1519 * in the free path. Could get rid of this if we change the API to return a
1520 * "cookie" from alloc, to be passed to free. But no big deal yet.
1521 */
1522 static DEFINE_XARRAY(vmap_blocks);
1523
1524 /*
1525 * We should probably have a fallback mechanism to allocate virtual memory
1526 * out of partially filled vmap blocks. However vmap block sizing should be
1527 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1528 * big problem.
1529 */
1530
1531 static unsigned long addr_to_vb_idx(unsigned long addr)
1532 {
1533 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1534 addr /= VMAP_BLOCK_SIZE;
1535 return addr;
1536 }
1537
1538 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1539 {
1540 unsigned long addr;
1541
1542 addr = va_start + (pages_off << PAGE_SHIFT);
1543 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1544 return (void *)addr;
1545 }
1546
1547 /**
1548 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1549 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1550 * @order: how many 2^order pages should be occupied in newly allocated block
1551 * @gfp_mask: flags for the page level allocator
1552 *
1553 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1554 */
1555 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1556 {
1557 struct vmap_block_queue *vbq;
1558 struct vmap_block *vb;
1559 struct vmap_area *va;
1560 unsigned long vb_idx;
1561 int node, err;
1562 void *vaddr;
1563
1564 node = numa_node_id();
1565
1566 vb = kmalloc_node(sizeof(struct vmap_block),
1567 gfp_mask & GFP_RECLAIM_MASK, node);
1568 if (unlikely(!vb))
1569 return ERR_PTR(-ENOMEM);
1570
1571 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1572 VMALLOC_START, VMALLOC_END,
1573 node, gfp_mask);
1574 if (IS_ERR(va)) {
1575 kfree(vb);
1576 return ERR_CAST(va);
1577 }
1578
1579 vaddr = vmap_block_vaddr(va->va_start, 0);
1580 spin_lock_init(&vb->lock);
1581 vb->va = va;
1582 /* At least something should be left free */
1583 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1584 vb->free = VMAP_BBMAP_BITS - (1UL << order);
1585 vb->dirty = 0;
1586 vb->dirty_min = VMAP_BBMAP_BITS;
1587 vb->dirty_max = 0;
1588 INIT_LIST_HEAD(&vb->free_list);
1589
1590 vb_idx = addr_to_vb_idx(va->va_start);
1591 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1592 if (err) {
1593 kfree(vb);
1594 free_vmap_area(va);
1595 return ERR_PTR(err);
1596 }
1597
1598 vbq = &get_cpu_var(vmap_block_queue);
1599 spin_lock(&vbq->lock);
1600 list_add_tail_rcu(&vb->free_list, &vbq->free);
1601 spin_unlock(&vbq->lock);
1602 put_cpu_var(vmap_block_queue);
1603
1604 return vaddr;
1605 }
1606
1607 static void free_vmap_block(struct vmap_block *vb)
1608 {
1609 struct vmap_block *tmp;
1610
1611 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
1612 BUG_ON(tmp != vb);
1613
1614 free_vmap_area_noflush(vb->va);
1615 kfree_rcu(vb, rcu_head);
1616 }
1617
1618 static void purge_fragmented_blocks(int cpu)
1619 {
1620 LIST_HEAD(purge);
1621 struct vmap_block *vb;
1622 struct vmap_block *n_vb;
1623 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1624
1625 rcu_read_lock();
1626 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1627
1628 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1629 continue;
1630
1631 spin_lock(&vb->lock);
1632 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1633 vb->free = 0; /* prevent further allocs after releasing lock */
1634 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1635 vb->dirty_min = 0;
1636 vb->dirty_max = VMAP_BBMAP_BITS;
1637 spin_lock(&vbq->lock);
1638 list_del_rcu(&vb->free_list);
1639 spin_unlock(&vbq->lock);
1640 spin_unlock(&vb->lock);
1641 list_add_tail(&vb->purge, &purge);
1642 } else
1643 spin_unlock(&vb->lock);
1644 }
1645 rcu_read_unlock();
1646
1647 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1648 list_del(&vb->purge);
1649 free_vmap_block(vb);
1650 }
1651 }
1652
1653 static void purge_fragmented_blocks_allcpus(void)
1654 {
1655 int cpu;
1656
1657 for_each_possible_cpu(cpu)
1658 purge_fragmented_blocks(cpu);
1659 }
1660
1661 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1662 {
1663 struct vmap_block_queue *vbq;
1664 struct vmap_block *vb;
1665 void *vaddr = NULL;
1666 unsigned int order;
1667
1668 BUG_ON(offset_in_page(size));
1669 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1670 if (WARN_ON(size == 0)) {
1671 /*
1672 * Allocating 0 bytes isn't what caller wants since
1673 * get_order(0) returns funny result. Just warn and terminate
1674 * early.
1675 */
1676 return NULL;
1677 }
1678 order = get_order(size);
1679
1680 rcu_read_lock();
1681 vbq = &get_cpu_var(vmap_block_queue);
1682 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1683 unsigned long pages_off;
1684
1685 spin_lock(&vb->lock);
1686 if (vb->free < (1UL << order)) {
1687 spin_unlock(&vb->lock);
1688 continue;
1689 }
1690
1691 pages_off = VMAP_BBMAP_BITS - vb->free;
1692 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1693 vb->free -= 1UL << order;
1694 if (vb->free == 0) {
1695 spin_lock(&vbq->lock);
1696 list_del_rcu(&vb->free_list);
1697 spin_unlock(&vbq->lock);
1698 }
1699
1700 spin_unlock(&vb->lock);
1701 break;
1702 }
1703
1704 put_cpu_var(vmap_block_queue);
1705 rcu_read_unlock();
1706
1707 /* Allocate new block if nothing was found */
1708 if (!vaddr)
1709 vaddr = new_vmap_block(order, gfp_mask);
1710
1711 return vaddr;
1712 }
1713
1714 static void vb_free(unsigned long addr, unsigned long size)
1715 {
1716 unsigned long offset;
1717 unsigned int order;
1718 struct vmap_block *vb;
1719
1720 BUG_ON(offset_in_page(size));
1721 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1722
1723 flush_cache_vunmap(addr, addr + size);
1724
1725 order = get_order(size);
1726 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
1727 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
1728
1729 unmap_kernel_range_noflush(addr, size);
1730
1731 if (debug_pagealloc_enabled_static())
1732 flush_tlb_kernel_range(addr, addr + size);
1733
1734 spin_lock(&vb->lock);
1735
1736 /* Expand dirty range */
1737 vb->dirty_min = min(vb->dirty_min, offset);
1738 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1739
1740 vb->dirty += 1UL << order;
1741 if (vb->dirty == VMAP_BBMAP_BITS) {
1742 BUG_ON(vb->free);
1743 spin_unlock(&vb->lock);
1744 free_vmap_block(vb);
1745 } else
1746 spin_unlock(&vb->lock);
1747 }
1748
1749 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1750 {
1751 int cpu;
1752
1753 if (unlikely(!vmap_initialized))
1754 return;
1755
1756 might_sleep();
1757
1758 for_each_possible_cpu(cpu) {
1759 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1760 struct vmap_block *vb;
1761
1762 rcu_read_lock();
1763 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1764 spin_lock(&vb->lock);
1765 if (vb->dirty) {
1766 unsigned long va_start = vb->va->va_start;
1767 unsigned long s, e;
1768
1769 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1770 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1771
1772 start = min(s, start);
1773 end = max(e, end);
1774
1775 flush = 1;
1776 }
1777 spin_unlock(&vb->lock);
1778 }
1779 rcu_read_unlock();
1780 }
1781
1782 mutex_lock(&vmap_purge_lock);
1783 purge_fragmented_blocks_allcpus();
1784 if (!__purge_vmap_area_lazy(start, end) && flush)
1785 flush_tlb_kernel_range(start, end);
1786 mutex_unlock(&vmap_purge_lock);
1787 }
1788
1789 /**
1790 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1791 *
1792 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1793 * to amortize TLB flushing overheads. What this means is that any page you
1794 * have now, may, in a former life, have been mapped into kernel virtual
1795 * address by the vmap layer and so there might be some CPUs with TLB entries
1796 * still referencing that page (additional to the regular 1:1 kernel mapping).
1797 *
1798 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1799 * be sure that none of the pages we have control over will have any aliases
1800 * from the vmap layer.
1801 */
1802 void vm_unmap_aliases(void)
1803 {
1804 unsigned long start = ULONG_MAX, end = 0;
1805 int flush = 0;
1806
1807 _vm_unmap_aliases(start, end, flush);
1808 }
1809 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1810
1811 /**
1812 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1813 * @mem: the pointer returned by vm_map_ram
1814 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1815 */
1816 void vm_unmap_ram(const void *mem, unsigned int count)
1817 {
1818 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1819 unsigned long addr = (unsigned long)mem;
1820 struct vmap_area *va;
1821
1822 might_sleep();
1823 BUG_ON(!addr);
1824 BUG_ON(addr < VMALLOC_START);
1825 BUG_ON(addr > VMALLOC_END);
1826 BUG_ON(!PAGE_ALIGNED(addr));
1827
1828 kasan_poison_vmalloc(mem, size);
1829
1830 if (likely(count <= VMAP_MAX_ALLOC)) {
1831 debug_check_no_locks_freed(mem, size);
1832 vb_free(addr, size);
1833 return;
1834 }
1835
1836 va = find_vmap_area(addr);
1837 BUG_ON(!va);
1838 debug_check_no_locks_freed((void *)va->va_start,
1839 (va->va_end - va->va_start));
1840 free_unmap_vmap_area(va);
1841 }
1842 EXPORT_SYMBOL(vm_unmap_ram);
1843
1844 /**
1845 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1846 * @pages: an array of pointers to the pages to be mapped
1847 * @count: number of pages
1848 * @node: prefer to allocate data structures on this node
1849 *
1850 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1851 * faster than vmap so it's good. But if you mix long-life and short-life
1852 * objects with vm_map_ram(), it could consume lots of address space through
1853 * fragmentation (especially on a 32bit machine). You could see failures in
1854 * the end. Please use this function for short-lived objects.
1855 *
1856 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1857 */
1858 void *vm_map_ram(struct page **pages, unsigned int count, int node)
1859 {
1860 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1861 unsigned long addr;
1862 void *mem;
1863
1864 if (likely(count <= VMAP_MAX_ALLOC)) {
1865 mem = vb_alloc(size, GFP_KERNEL);
1866 if (IS_ERR(mem))
1867 return NULL;
1868 addr = (unsigned long)mem;
1869 } else {
1870 struct vmap_area *va;
1871 va = alloc_vmap_area(size, PAGE_SIZE,
1872 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1873 if (IS_ERR(va))
1874 return NULL;
1875
1876 addr = va->va_start;
1877 mem = (void *)addr;
1878 }
1879
1880 kasan_unpoison_vmalloc(mem, size);
1881
1882 if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
1883 vm_unmap_ram(mem, count);
1884 return NULL;
1885 }
1886 return mem;
1887 }
1888 EXPORT_SYMBOL(vm_map_ram);
1889
1890 static struct vm_struct *vmlist __initdata;
1891
1892 /**
1893 * vm_area_add_early - add vmap area early during boot
1894 * @vm: vm_struct to add
1895 *
1896 * This function is used to add fixed kernel vm area to vmlist before
1897 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1898 * should contain proper values and the other fields should be zero.
1899 *
1900 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1901 */
1902 void __init vm_area_add_early(struct vm_struct *vm)
1903 {
1904 struct vm_struct *tmp, **p;
1905
1906 BUG_ON(vmap_initialized);
1907 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1908 if (tmp->addr >= vm->addr) {
1909 BUG_ON(tmp->addr < vm->addr + vm->size);
1910 break;
1911 } else
1912 BUG_ON(tmp->addr + tmp->size > vm->addr);
1913 }
1914 vm->next = *p;
1915 *p = vm;
1916 }
1917
1918 /**
1919 * vm_area_register_early - register vmap area early during boot
1920 * @vm: vm_struct to register
1921 * @align: requested alignment
1922 *
1923 * This function is used to register kernel vm area before
1924 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1925 * proper values on entry and other fields should be zero. On return,
1926 * vm->addr contains the allocated address.
1927 *
1928 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1929 */
1930 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1931 {
1932 static size_t vm_init_off __initdata;
1933 unsigned long addr;
1934
1935 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1936 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1937
1938 vm->addr = (void *)addr;
1939
1940 vm_area_add_early(vm);
1941 }
1942
1943 static void vmap_init_free_space(void)
1944 {
1945 unsigned long vmap_start = 1;
1946 const unsigned long vmap_end = ULONG_MAX;
1947 struct vmap_area *busy, *free;
1948
1949 /*
1950 * B F B B B F
1951 * -|-----|.....|-----|-----|-----|.....|-
1952 * | The KVA space |
1953 * |<--------------------------------->|
1954 */
1955 list_for_each_entry(busy, &vmap_area_list, list) {
1956 if (busy->va_start - vmap_start > 0) {
1957 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1958 if (!WARN_ON_ONCE(!free)) {
1959 free->va_start = vmap_start;
1960 free->va_end = busy->va_start;
1961
1962 insert_vmap_area_augment(free, NULL,
1963 &free_vmap_area_root,
1964 &free_vmap_area_list);
1965 }
1966 }
1967
1968 vmap_start = busy->va_end;
1969 }
1970
1971 if (vmap_end - vmap_start > 0) {
1972 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1973 if (!WARN_ON_ONCE(!free)) {
1974 free->va_start = vmap_start;
1975 free->va_end = vmap_end;
1976
1977 insert_vmap_area_augment(free, NULL,
1978 &free_vmap_area_root,
1979 &free_vmap_area_list);
1980 }
1981 }
1982 }
1983
1984 void __init vmalloc_init(void)
1985 {
1986 struct vmap_area *va;
1987 struct vm_struct *tmp;
1988 int i;
1989
1990 /*
1991 * Create the cache for vmap_area objects.
1992 */
1993 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1994
1995 for_each_possible_cpu(i) {
1996 struct vmap_block_queue *vbq;
1997 struct vfree_deferred *p;
1998
1999 vbq = &per_cpu(vmap_block_queue, i);
2000 spin_lock_init(&vbq->lock);
2001 INIT_LIST_HEAD(&vbq->free);
2002 p = &per_cpu(vfree_deferred, i);
2003 init_llist_head(&p->list);
2004 INIT_WORK(&p->wq, free_work);
2005 }
2006
2007 /* Import existing vmlist entries. */
2008 for (tmp = vmlist; tmp; tmp = tmp->next) {
2009 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2010 if (WARN_ON_ONCE(!va))
2011 continue;
2012
2013 va->va_start = (unsigned long)tmp->addr;
2014 va->va_end = va->va_start + tmp->size;
2015 va->vm = tmp;
2016 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2017 }
2018
2019 /*
2020 * Now we can initialize a free vmap space.
2021 */
2022 vmap_init_free_space();
2023 vmap_initialized = true;
2024 }
2025
2026 /**
2027 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2028 * @addr: start of the VM area to unmap
2029 * @size: size of the VM area to unmap
2030 *
2031 * Similar to unmap_kernel_range_noflush() but flushes vcache before
2032 * the unmapping and tlb after.
2033 */
2034 void unmap_kernel_range(unsigned long addr, unsigned long size)
2035 {
2036 unsigned long end = addr + size;
2037
2038 flush_cache_vunmap(addr, end);
2039 unmap_kernel_range_noflush(addr, size);
2040 flush_tlb_kernel_range(addr, end);
2041 }
2042
2043 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2044 struct vmap_area *va, unsigned long flags, const void *caller)
2045 {
2046 vm->flags = flags;
2047 vm->addr = (void *)va->va_start;
2048 vm->size = va->va_end - va->va_start;
2049 vm->caller = caller;
2050 va->vm = vm;
2051 }
2052
2053 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2054 unsigned long flags, const void *caller)
2055 {
2056 spin_lock(&vmap_area_lock);
2057 setup_vmalloc_vm_locked(vm, va, flags, caller);
2058 spin_unlock(&vmap_area_lock);
2059 }
2060
2061 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2062 {
2063 /*
2064 * Before removing VM_UNINITIALIZED,
2065 * we should make sure that vm has proper values.
2066 * Pair with smp_rmb() in show_numa_info().
2067 */
2068 smp_wmb();
2069 vm->flags &= ~VM_UNINITIALIZED;
2070 }
2071
2072 static struct vm_struct *__get_vm_area_node(unsigned long size,
2073 unsigned long align, unsigned long flags, unsigned long start,
2074 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2075 {
2076 struct vmap_area *va;
2077 struct vm_struct *area;
2078 unsigned long requested_size = size;
2079
2080 BUG_ON(in_interrupt());
2081 size = PAGE_ALIGN(size);
2082 if (unlikely(!size))
2083 return NULL;
2084
2085 if (flags & VM_IOREMAP)
2086 align = 1ul << clamp_t(int, get_count_order_long(size),
2087 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2088
2089 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2090 if (unlikely(!area))
2091 return NULL;
2092
2093 if (!(flags & VM_NO_GUARD))
2094 size += PAGE_SIZE;
2095
2096 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2097 if (IS_ERR(va)) {
2098 kfree(area);
2099 return NULL;
2100 }
2101
2102 kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2103
2104 setup_vmalloc_vm(area, va, flags, caller);
2105
2106 return area;
2107 }
2108
2109 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2110 unsigned long start, unsigned long end,
2111 const void *caller)
2112 {
2113 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2114 GFP_KERNEL, caller);
2115 }
2116
2117 /**
2118 * get_vm_area - reserve a contiguous kernel virtual area
2119 * @size: size of the area
2120 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2121 *
2122 * Search an area of @size in the kernel virtual mapping area,
2123 * and reserved it for out purposes. Returns the area descriptor
2124 * on success or %NULL on failure.
2125 *
2126 * Return: the area descriptor on success or %NULL on failure.
2127 */
2128 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2129 {
2130 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2131 NUMA_NO_NODE, GFP_KERNEL,
2132 __builtin_return_address(0));
2133 }
2134
2135 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2136 const void *caller)
2137 {
2138 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2139 NUMA_NO_NODE, GFP_KERNEL, caller);
2140 }
2141
2142 /**
2143 * find_vm_area - find a continuous kernel virtual area
2144 * @addr: base address
2145 *
2146 * Search for the kernel VM area starting at @addr, and return it.
2147 * It is up to the caller to do all required locking to keep the returned
2148 * pointer valid.
2149 *
2150 * Return: the area descriptor on success or %NULL on failure.
2151 */
2152 struct vm_struct *find_vm_area(const void *addr)
2153 {
2154 struct vmap_area *va;
2155
2156 va = find_vmap_area((unsigned long)addr);
2157 if (!va)
2158 return NULL;
2159
2160 return va->vm;
2161 }
2162
2163 /**
2164 * remove_vm_area - find and remove a continuous kernel virtual area
2165 * @addr: base address
2166 *
2167 * Search for the kernel VM area starting at @addr, and remove it.
2168 * This function returns the found VM area, but using it is NOT safe
2169 * on SMP machines, except for its size or flags.
2170 *
2171 * Return: the area descriptor on success or %NULL on failure.
2172 */
2173 struct vm_struct *remove_vm_area(const void *addr)
2174 {
2175 struct vmap_area *va;
2176
2177 might_sleep();
2178
2179 spin_lock(&vmap_area_lock);
2180 va = __find_vmap_area((unsigned long)addr);
2181 if (va && va->vm) {
2182 struct vm_struct *vm = va->vm;
2183
2184 va->vm = NULL;
2185 spin_unlock(&vmap_area_lock);
2186
2187 kasan_free_shadow(vm);
2188 free_unmap_vmap_area(va);
2189
2190 return vm;
2191 }
2192
2193 spin_unlock(&vmap_area_lock);
2194 return NULL;
2195 }
2196
2197 static inline void set_area_direct_map(const struct vm_struct *area,
2198 int (*set_direct_map)(struct page *page))
2199 {
2200 int i;
2201
2202 for (i = 0; i < area->nr_pages; i++)
2203 if (page_address(area->pages[i]))
2204 set_direct_map(area->pages[i]);
2205 }
2206
2207 /* Handle removing and resetting vm mappings related to the vm_struct. */
2208 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2209 {
2210 unsigned long start = ULONG_MAX, end = 0;
2211 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2212 int flush_dmap = 0;
2213 int i;
2214
2215 remove_vm_area(area->addr);
2216
2217 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2218 if (!flush_reset)
2219 return;
2220
2221 /*
2222 * If not deallocating pages, just do the flush of the VM area and
2223 * return.
2224 */
2225 if (!deallocate_pages) {
2226 vm_unmap_aliases();
2227 return;
2228 }
2229
2230 /*
2231 * If execution gets here, flush the vm mapping and reset the direct
2232 * map. Find the start and end range of the direct mappings to make sure
2233 * the vm_unmap_aliases() flush includes the direct map.
2234 */
2235 for (i = 0; i < area->nr_pages; i++) {
2236 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2237 if (addr) {
2238 start = min(addr, start);
2239 end = max(addr + PAGE_SIZE, end);
2240 flush_dmap = 1;
2241 }
2242 }
2243
2244 /*
2245 * Set direct map to something invalid so that it won't be cached if
2246 * there are any accesses after the TLB flush, then flush the TLB and
2247 * reset the direct map permissions to the default.
2248 */
2249 set_area_direct_map(area, set_direct_map_invalid_noflush);
2250 _vm_unmap_aliases(start, end, flush_dmap);
2251 set_area_direct_map(area, set_direct_map_default_noflush);
2252 }
2253
2254 static void __vunmap(const void *addr, int deallocate_pages)
2255 {
2256 struct vm_struct *area;
2257
2258 if (!addr)
2259 return;
2260
2261 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2262 addr))
2263 return;
2264
2265 area = find_vm_area(addr);
2266 if (unlikely(!area)) {
2267 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2268 addr);
2269 return;
2270 }
2271
2272 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2273 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2274
2275 kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2276
2277 vm_remove_mappings(area, deallocate_pages);
2278
2279 if (deallocate_pages) {
2280 int i;
2281
2282 for (i = 0; i < area->nr_pages; i++) {
2283 struct page *page = area->pages[i];
2284
2285 BUG_ON(!page);
2286 __free_pages(page, 0);
2287 }
2288 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2289
2290 kvfree(area->pages);
2291 }
2292
2293 kfree(area);
2294 }
2295
2296 static inline void __vfree_deferred(const void *addr)
2297 {
2298 /*
2299 * Use raw_cpu_ptr() because this can be called from preemptible
2300 * context. Preemption is absolutely fine here, because the llist_add()
2301 * implementation is lockless, so it works even if we are adding to
2302 * another cpu's list. schedule_work() should be fine with this too.
2303 */
2304 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2305
2306 if (llist_add((struct llist_node *)addr, &p->list))
2307 schedule_work(&p->wq);
2308 }
2309
2310 /**
2311 * vfree_atomic - release memory allocated by vmalloc()
2312 * @addr: memory base address
2313 *
2314 * This one is just like vfree() but can be called in any atomic context
2315 * except NMIs.
2316 */
2317 void vfree_atomic(const void *addr)
2318 {
2319 BUG_ON(in_nmi());
2320
2321 kmemleak_free(addr);
2322
2323 if (!addr)
2324 return;
2325 __vfree_deferred(addr);
2326 }
2327
2328 static void __vfree(const void *addr)
2329 {
2330 if (unlikely(in_interrupt()))
2331 __vfree_deferred(addr);
2332 else
2333 __vunmap(addr, 1);
2334 }
2335
2336 /**
2337 * vfree - Release memory allocated by vmalloc()
2338 * @addr: Memory base address
2339 *
2340 * Free the virtually continuous memory area starting at @addr, as obtained
2341 * from one of the vmalloc() family of APIs. This will usually also free the
2342 * physical memory underlying the virtual allocation, but that memory is
2343 * reference counted, so it will not be freed until the last user goes away.
2344 *
2345 * If @addr is NULL, no operation is performed.
2346 *
2347 * Context:
2348 * May sleep if called *not* from interrupt context.
2349 * Must not be called in NMI context (strictly speaking, it could be
2350 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2351 * conventions for vfree() arch-depenedent would be a really bad idea).
2352 */
2353 void vfree(const void *addr)
2354 {
2355 BUG_ON(in_nmi());
2356
2357 kmemleak_free(addr);
2358
2359 might_sleep_if(!in_interrupt());
2360
2361 if (!addr)
2362 return;
2363
2364 __vfree(addr);
2365 }
2366 EXPORT_SYMBOL(vfree);
2367
2368 /**
2369 * vunmap - release virtual mapping obtained by vmap()
2370 * @addr: memory base address
2371 *
2372 * Free the virtually contiguous memory area starting at @addr,
2373 * which was created from the page array passed to vmap().
2374 *
2375 * Must not be called in interrupt context.
2376 */
2377 void vunmap(const void *addr)
2378 {
2379 BUG_ON(in_interrupt());
2380 might_sleep();
2381 if (addr)
2382 __vunmap(addr, 0);
2383 }
2384 EXPORT_SYMBOL(vunmap);
2385
2386 /**
2387 * vmap - map an array of pages into virtually contiguous space
2388 * @pages: array of page pointers
2389 * @count: number of pages to map
2390 * @flags: vm_area->flags
2391 * @prot: page protection for the mapping
2392 *
2393 * Maps @count pages from @pages into contiguous kernel virtual space.
2394 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2395 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2396 * are transferred from the caller to vmap(), and will be freed / dropped when
2397 * vfree() is called on the return value.
2398 *
2399 * Return: the address of the area or %NULL on failure
2400 */
2401 void *vmap(struct page **pages, unsigned int count,
2402 unsigned long flags, pgprot_t prot)
2403 {
2404 struct vm_struct *area;
2405 unsigned long size; /* In bytes */
2406
2407 might_sleep();
2408
2409 if (count > totalram_pages())
2410 return NULL;
2411
2412 size = (unsigned long)count << PAGE_SHIFT;
2413 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2414 if (!area)
2415 return NULL;
2416
2417 if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
2418 pages) < 0) {
2419 vunmap(area->addr);
2420 return NULL;
2421 }
2422
2423 if (flags & VM_MAP_PUT_PAGES)
2424 area->pages = pages;
2425 return area->addr;
2426 }
2427 EXPORT_SYMBOL(vmap);
2428
2429 #ifdef CONFIG_VMAP_PFN
2430 struct vmap_pfn_data {
2431 unsigned long *pfns;
2432 pgprot_t prot;
2433 unsigned int idx;
2434 };
2435
2436 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2437 {
2438 struct vmap_pfn_data *data = private;
2439
2440 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2441 return -EINVAL;
2442 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2443 return 0;
2444 }
2445
2446 /**
2447 * vmap_pfn - map an array of PFNs into virtually contiguous space
2448 * @pfns: array of PFNs
2449 * @count: number of pages to map
2450 * @prot: page protection for the mapping
2451 *
2452 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2453 * the start address of the mapping.
2454 */
2455 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2456 {
2457 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2458 struct vm_struct *area;
2459
2460 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2461 __builtin_return_address(0));
2462 if (!area)
2463 return NULL;
2464 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2465 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2466 free_vm_area(area);
2467 return NULL;
2468 }
2469 return area->addr;
2470 }
2471 EXPORT_SYMBOL_GPL(vmap_pfn);
2472 #endif /* CONFIG_VMAP_PFN */
2473
2474 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2475 pgprot_t prot, int node)
2476 {
2477 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2478 unsigned int nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2479 unsigned long array_size;
2480 unsigned int i;
2481 struct page **pages;
2482
2483 array_size = (unsigned long)nr_pages * sizeof(struct page *);
2484 gfp_mask |= __GFP_NOWARN;
2485 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2486 gfp_mask |= __GFP_HIGHMEM;
2487
2488 /* Please note that the recursion is strictly bounded. */
2489 if (array_size > PAGE_SIZE) {
2490 pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2491 area->caller);
2492 } else {
2493 pages = kmalloc_node(array_size, nested_gfp, node);
2494 }
2495
2496 if (!pages) {
2497 free_vm_area(area);
2498 return NULL;
2499 }
2500
2501 area->pages = pages;
2502 area->nr_pages = nr_pages;
2503
2504 for (i = 0; i < area->nr_pages; i++) {
2505 struct page *page;
2506
2507 if (node == NUMA_NO_NODE)
2508 page = alloc_page(gfp_mask);
2509 else
2510 page = alloc_pages_node(node, gfp_mask, 0);
2511
2512 if (unlikely(!page)) {
2513 /* Successfully allocated i pages, free them in __vfree() */
2514 area->nr_pages = i;
2515 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2516 goto fail;
2517 }
2518 area->pages[i] = page;
2519 if (gfpflags_allow_blocking(gfp_mask))
2520 cond_resched();
2521 }
2522 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2523
2524 if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
2525 prot, pages) < 0)
2526 goto fail;
2527
2528 return area->addr;
2529
2530 fail:
2531 warn_alloc(gfp_mask, NULL,
2532 "vmalloc: allocation failure, allocated %ld of %ld bytes",
2533 (area->nr_pages*PAGE_SIZE), area->size);
2534 __vfree(area->addr);
2535 return NULL;
2536 }
2537
2538 /**
2539 * __vmalloc_node_range - allocate virtually contiguous memory
2540 * @size: allocation size
2541 * @align: desired alignment
2542 * @start: vm area range start
2543 * @end: vm area range end
2544 * @gfp_mask: flags for the page level allocator
2545 * @prot: protection mask for the allocated pages
2546 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2547 * @node: node to use for allocation or NUMA_NO_NODE
2548 * @caller: caller's return address
2549 *
2550 * Allocate enough pages to cover @size from the page level
2551 * allocator with @gfp_mask flags. Map them into contiguous
2552 * kernel virtual space, using a pagetable protection of @prot.
2553 *
2554 * Return: the address of the area or %NULL on failure
2555 */
2556 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2557 unsigned long start, unsigned long end, gfp_t gfp_mask,
2558 pgprot_t prot, unsigned long vm_flags, int node,
2559 const void *caller)
2560 {
2561 struct vm_struct *area;
2562 void *addr;
2563 unsigned long real_size = size;
2564
2565 size = PAGE_ALIGN(size);
2566 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2567 goto fail;
2568
2569 area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2570 vm_flags, start, end, node, gfp_mask, caller);
2571 if (!area)
2572 goto fail;
2573
2574 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2575 if (!addr)
2576 return NULL;
2577
2578 /*
2579 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2580 * flag. It means that vm_struct is not fully initialized.
2581 * Now, it is fully initialized, so remove this flag here.
2582 */
2583 clear_vm_uninitialized_flag(area);
2584
2585 kmemleak_vmalloc(area, size, gfp_mask);
2586
2587 return addr;
2588
2589 fail:
2590 warn_alloc(gfp_mask, NULL,
2591 "vmalloc: allocation failure: %lu bytes", real_size);
2592 return NULL;
2593 }
2594
2595 /**
2596 * __vmalloc_node - allocate virtually contiguous memory
2597 * @size: allocation size
2598 * @align: desired alignment
2599 * @gfp_mask: flags for the page level allocator
2600 * @node: node to use for allocation or NUMA_NO_NODE
2601 * @caller: caller's return address
2602 *
2603 * Allocate enough pages to cover @size from the page level allocator with
2604 * @gfp_mask flags. Map them into contiguous kernel virtual space.
2605 *
2606 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2607 * and __GFP_NOFAIL are not supported
2608 *
2609 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2610 * with mm people.
2611 *
2612 * Return: pointer to the allocated memory or %NULL on error
2613 */
2614 void *__vmalloc_node(unsigned long size, unsigned long align,
2615 gfp_t gfp_mask, int node, const void *caller)
2616 {
2617 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2618 gfp_mask, PAGE_KERNEL, 0, node, caller);
2619 }
2620 /*
2621 * This is only for performance analysis of vmalloc and stress purpose.
2622 * It is required by vmalloc test module, therefore do not use it other
2623 * than that.
2624 */
2625 #ifdef CONFIG_TEST_VMALLOC_MODULE
2626 EXPORT_SYMBOL_GPL(__vmalloc_node);
2627 #endif
2628
2629 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
2630 {
2631 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
2632 __builtin_return_address(0));
2633 }
2634 EXPORT_SYMBOL(__vmalloc);
2635
2636 /**
2637 * vmalloc - allocate virtually contiguous memory
2638 * @size: allocation size
2639 *
2640 * Allocate enough pages to cover @size from the page level
2641 * allocator and map them into contiguous kernel virtual space.
2642 *
2643 * For tight control over page level allocator and protection flags
2644 * use __vmalloc() instead.
2645 *
2646 * Return: pointer to the allocated memory or %NULL on error
2647 */
2648 void *vmalloc(unsigned long size)
2649 {
2650 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
2651 __builtin_return_address(0));
2652 }
2653 EXPORT_SYMBOL(vmalloc);
2654
2655 /**
2656 * vzalloc - allocate virtually contiguous memory with zero fill
2657 * @size: allocation size
2658 *
2659 * Allocate enough pages to cover @size from the page level
2660 * allocator and map them into contiguous kernel virtual space.
2661 * The memory allocated is set to zero.
2662 *
2663 * For tight control over page level allocator and protection flags
2664 * use __vmalloc() instead.
2665 *
2666 * Return: pointer to the allocated memory or %NULL on error
2667 */
2668 void *vzalloc(unsigned long size)
2669 {
2670 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
2671 __builtin_return_address(0));
2672 }
2673 EXPORT_SYMBOL(vzalloc);
2674
2675 /**
2676 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2677 * @size: allocation size
2678 *
2679 * The resulting memory area is zeroed so it can be mapped to userspace
2680 * without leaking data.
2681 *
2682 * Return: pointer to the allocated memory or %NULL on error
2683 */
2684 void *vmalloc_user(unsigned long size)
2685 {
2686 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2687 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2688 VM_USERMAP, NUMA_NO_NODE,
2689 __builtin_return_address(0));
2690 }
2691 EXPORT_SYMBOL(vmalloc_user);
2692
2693 /**
2694 * vmalloc_node - allocate memory on a specific node
2695 * @size: allocation size
2696 * @node: numa node
2697 *
2698 * Allocate enough pages to cover @size from the page level
2699 * allocator and map them into contiguous kernel virtual space.
2700 *
2701 * For tight control over page level allocator and protection flags
2702 * use __vmalloc() instead.
2703 *
2704 * Return: pointer to the allocated memory or %NULL on error
2705 */
2706 void *vmalloc_node(unsigned long size, int node)
2707 {
2708 return __vmalloc_node(size, 1, GFP_KERNEL, node,
2709 __builtin_return_address(0));
2710 }
2711 EXPORT_SYMBOL(vmalloc_node);
2712
2713 /**
2714 * vzalloc_node - allocate memory on a specific node with zero fill
2715 * @size: allocation size
2716 * @node: numa node
2717 *
2718 * Allocate enough pages to cover @size from the page level
2719 * allocator and map them into contiguous kernel virtual space.
2720 * The memory allocated is set to zero.
2721 *
2722 * Return: pointer to the allocated memory or %NULL on error
2723 */
2724 void *vzalloc_node(unsigned long size, int node)
2725 {
2726 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
2727 __builtin_return_address(0));
2728 }
2729 EXPORT_SYMBOL(vzalloc_node);
2730
2731 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2732 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2733 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2734 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2735 #else
2736 /*
2737 * 64b systems should always have either DMA or DMA32 zones. For others
2738 * GFP_DMA32 should do the right thing and use the normal zone.
2739 */
2740 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2741 #endif
2742
2743 /**
2744 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2745 * @size: allocation size
2746 *
2747 * Allocate enough 32bit PA addressable pages to cover @size from the
2748 * page level allocator and map them into contiguous kernel virtual space.
2749 *
2750 * Return: pointer to the allocated memory or %NULL on error
2751 */
2752 void *vmalloc_32(unsigned long size)
2753 {
2754 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
2755 __builtin_return_address(0));
2756 }
2757 EXPORT_SYMBOL(vmalloc_32);
2758
2759 /**
2760 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2761 * @size: allocation size
2762 *
2763 * The resulting memory area is 32bit addressable and zeroed so it can be
2764 * mapped to userspace without leaking data.
2765 *
2766 * Return: pointer to the allocated memory or %NULL on error
2767 */
2768 void *vmalloc_32_user(unsigned long size)
2769 {
2770 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2771 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2772 VM_USERMAP, NUMA_NO_NODE,
2773 __builtin_return_address(0));
2774 }
2775 EXPORT_SYMBOL(vmalloc_32_user);
2776
2777 /*
2778 * small helper routine , copy contents to buf from addr.
2779 * If the page is not present, fill zero.
2780 */
2781
2782 static int aligned_vread(char *buf, char *addr, unsigned long count)
2783 {
2784 struct page *p;
2785 int copied = 0;
2786
2787 while (count) {
2788 unsigned long offset, length;
2789
2790 offset = offset_in_page(addr);
2791 length = PAGE_SIZE - offset;
2792 if (length > count)
2793 length = count;
2794 p = vmalloc_to_page(addr);
2795 /*
2796 * To do safe access to this _mapped_ area, we need
2797 * lock. But adding lock here means that we need to add
2798 * overhead of vmalloc()/vfree() calles for this _debug_
2799 * interface, rarely used. Instead of that, we'll use
2800 * kmap() and get small overhead in this access function.
2801 */
2802 if (p) {
2803 /*
2804 * we can expect USER0 is not used (see vread/vwrite's
2805 * function description)
2806 */
2807 void *map = kmap_atomic(p);
2808 memcpy(buf, map + offset, length);
2809 kunmap_atomic(map);
2810 } else
2811 memset(buf, 0, length);
2812
2813 addr += length;
2814 buf += length;
2815 copied += length;
2816 count -= length;
2817 }
2818 return copied;
2819 }
2820
2821 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2822 {
2823 struct page *p;
2824 int copied = 0;
2825
2826 while (count) {
2827 unsigned long offset, length;
2828
2829 offset = offset_in_page(addr);
2830 length = PAGE_SIZE - offset;
2831 if (length > count)
2832 length = count;
2833 p = vmalloc_to_page(addr);
2834 /*
2835 * To do safe access to this _mapped_ area, we need
2836 * lock. But adding lock here means that we need to add
2837 * overhead of vmalloc()/vfree() calles for this _debug_
2838 * interface, rarely used. Instead of that, we'll use
2839 * kmap() and get small overhead in this access function.
2840 */
2841 if (p) {
2842 /*
2843 * we can expect USER0 is not used (see vread/vwrite's
2844 * function description)
2845 */
2846 void *map = kmap_atomic(p);
2847 memcpy(map + offset, buf, length);
2848 kunmap_atomic(map);
2849 }
2850 addr += length;
2851 buf += length;
2852 copied += length;
2853 count -= length;
2854 }
2855 return copied;
2856 }
2857
2858 /**
2859 * vread() - read vmalloc area in a safe way.
2860 * @buf: buffer for reading data
2861 * @addr: vm address.
2862 * @count: number of bytes to be read.
2863 *
2864 * This function checks that addr is a valid vmalloc'ed area, and
2865 * copy data from that area to a given buffer. If the given memory range
2866 * of [addr...addr+count) includes some valid address, data is copied to
2867 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2868 * IOREMAP area is treated as memory hole and no copy is done.
2869 *
2870 * If [addr...addr+count) doesn't includes any intersects with alive
2871 * vm_struct area, returns 0. @buf should be kernel's buffer.
2872 *
2873 * Note: In usual ops, vread() is never necessary because the caller
2874 * should know vmalloc() area is valid and can use memcpy().
2875 * This is for routines which have to access vmalloc area without
2876 * any information, as /dev/kmem.
2877 *
2878 * Return: number of bytes for which addr and buf should be increased
2879 * (same number as @count) or %0 if [addr...addr+count) doesn't
2880 * include any intersection with valid vmalloc area
2881 */
2882 long vread(char *buf, char *addr, unsigned long count)
2883 {
2884 struct vmap_area *va;
2885 struct vm_struct *vm;
2886 char *vaddr, *buf_start = buf;
2887 unsigned long buflen = count;
2888 unsigned long n;
2889
2890 /* Don't allow overflow */
2891 if ((unsigned long) addr + count < count)
2892 count = -(unsigned long) addr;
2893
2894 spin_lock(&vmap_area_lock);
2895 list_for_each_entry(va, &vmap_area_list, list) {
2896 if (!count)
2897 break;
2898
2899 if (!va->vm)
2900 continue;
2901
2902 vm = va->vm;
2903 vaddr = (char *) vm->addr;
2904 if (addr >= vaddr + get_vm_area_size(vm))
2905 continue;
2906 while (addr < vaddr) {
2907 if (count == 0)
2908 goto finished;
2909 *buf = '\0';
2910 buf++;
2911 addr++;
2912 count--;
2913 }
2914 n = vaddr + get_vm_area_size(vm) - addr;
2915 if (n > count)
2916 n = count;
2917 if (!(vm->flags & VM_IOREMAP))
2918 aligned_vread(buf, addr, n);
2919 else /* IOREMAP area is treated as memory hole */
2920 memset(buf, 0, n);
2921 buf += n;
2922 addr += n;
2923 count -= n;
2924 }
2925 finished:
2926 spin_unlock(&vmap_area_lock);
2927
2928 if (buf == buf_start)
2929 return 0;
2930 /* zero-fill memory holes */
2931 if (buf != buf_start + buflen)
2932 memset(buf, 0, buflen - (buf - buf_start));
2933
2934 return buflen;
2935 }
2936
2937 /**
2938 * vwrite() - write vmalloc area in a safe way.
2939 * @buf: buffer for source data
2940 * @addr: vm address.
2941 * @count: number of bytes to be read.
2942 *
2943 * This function checks that addr is a valid vmalloc'ed area, and
2944 * copy data from a buffer to the given addr. If specified range of
2945 * [addr...addr+count) includes some valid address, data is copied from
2946 * proper area of @buf. If there are memory holes, no copy to hole.
2947 * IOREMAP area is treated as memory hole and no copy is done.
2948 *
2949 * If [addr...addr+count) doesn't includes any intersects with alive
2950 * vm_struct area, returns 0. @buf should be kernel's buffer.
2951 *
2952 * Note: In usual ops, vwrite() is never necessary because the caller
2953 * should know vmalloc() area is valid and can use memcpy().
2954 * This is for routines which have to access vmalloc area without
2955 * any information, as /dev/kmem.
2956 *
2957 * Return: number of bytes for which addr and buf should be
2958 * increased (same number as @count) or %0 if [addr...addr+count)
2959 * doesn't include any intersection with valid vmalloc area
2960 */
2961 long vwrite(char *buf, char *addr, unsigned long count)
2962 {
2963 struct vmap_area *va;
2964 struct vm_struct *vm;
2965 char *vaddr;
2966 unsigned long n, buflen;
2967 int copied = 0;
2968
2969 /* Don't allow overflow */
2970 if ((unsigned long) addr + count < count)
2971 count = -(unsigned long) addr;
2972 buflen = count;
2973
2974 spin_lock(&vmap_area_lock);
2975 list_for_each_entry(va, &vmap_area_list, list) {
2976 if (!count)
2977 break;
2978
2979 if (!va->vm)
2980 continue;
2981
2982 vm = va->vm;
2983 vaddr = (char *) vm->addr;
2984 if (addr >= vaddr + get_vm_area_size(vm))
2985 continue;
2986 while (addr < vaddr) {
2987 if (count == 0)
2988 goto finished;
2989 buf++;
2990 addr++;
2991 count--;
2992 }
2993 n = vaddr + get_vm_area_size(vm) - addr;
2994 if (n > count)
2995 n = count;
2996 if (!(vm->flags & VM_IOREMAP)) {
2997 aligned_vwrite(buf, addr, n);
2998 copied++;
2999 }
3000 buf += n;
3001 addr += n;
3002 count -= n;
3003 }
3004 finished:
3005 spin_unlock(&vmap_area_lock);
3006 if (!copied)
3007 return 0;
3008 return buflen;
3009 }
3010
3011 /**
3012 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3013 * @vma: vma to cover
3014 * @uaddr: target user address to start at
3015 * @kaddr: virtual address of vmalloc kernel memory
3016 * @pgoff: offset from @kaddr to start at
3017 * @size: size of map area
3018 *
3019 * Returns: 0 for success, -Exxx on failure
3020 *
3021 * This function checks that @kaddr is a valid vmalloc'ed area,
3022 * and that it is big enough to cover the range starting at
3023 * @uaddr in @vma. Will return failure if that criteria isn't
3024 * met.
3025 *
3026 * Similar to remap_pfn_range() (see mm/memory.c)
3027 */
3028 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3029 void *kaddr, unsigned long pgoff,
3030 unsigned long size)
3031 {
3032 struct vm_struct *area;
3033 unsigned long off;
3034 unsigned long end_index;
3035
3036 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3037 return -EINVAL;
3038
3039 size = PAGE_ALIGN(size);
3040
3041 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3042 return -EINVAL;
3043
3044 area = find_vm_area(kaddr);
3045 if (!area)
3046 return -EINVAL;
3047
3048 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3049 return -EINVAL;
3050
3051 if (check_add_overflow(size, off, &end_index) ||
3052 end_index > get_vm_area_size(area))
3053 return -EINVAL;
3054 kaddr += off;
3055
3056 do {
3057 struct page *page = vmalloc_to_page(kaddr);
3058 int ret;
3059
3060 ret = vm_insert_page(vma, uaddr, page);
3061 if (ret)
3062 return ret;
3063
3064 uaddr += PAGE_SIZE;
3065 kaddr += PAGE_SIZE;
3066 size -= PAGE_SIZE;
3067 } while (size > 0);
3068
3069 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3070
3071 return 0;
3072 }
3073 EXPORT_SYMBOL(remap_vmalloc_range_partial);
3074
3075 /**
3076 * remap_vmalloc_range - map vmalloc pages to userspace
3077 * @vma: vma to cover (map full range of vma)
3078 * @addr: vmalloc memory
3079 * @pgoff: number of pages into addr before first page to map
3080 *
3081 * Returns: 0 for success, -Exxx on failure
3082 *
3083 * This function checks that addr is a valid vmalloc'ed area, and
3084 * that it is big enough to cover the vma. Will return failure if
3085 * that criteria isn't met.
3086 *
3087 * Similar to remap_pfn_range() (see mm/memory.c)
3088 */
3089 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3090 unsigned long pgoff)
3091 {
3092 return remap_vmalloc_range_partial(vma, vma->vm_start,
3093 addr, pgoff,
3094 vma->vm_end - vma->vm_start);
3095 }
3096 EXPORT_SYMBOL(remap_vmalloc_range);
3097
3098 void free_vm_area(struct vm_struct *area)
3099 {
3100 struct vm_struct *ret;
3101 ret = remove_vm_area(area->addr);
3102 BUG_ON(ret != area);
3103 kfree(area);
3104 }
3105 EXPORT_SYMBOL_GPL(free_vm_area);
3106
3107 #ifdef CONFIG_SMP
3108 static struct vmap_area *node_to_va(struct rb_node *n)
3109 {
3110 return rb_entry_safe(n, struct vmap_area, rb_node);
3111 }
3112
3113 /**
3114 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3115 * @addr: target address
3116 *
3117 * Returns: vmap_area if it is found. If there is no such area
3118 * the first highest(reverse order) vmap_area is returned
3119 * i.e. va->va_start < addr && va->va_end < addr or NULL
3120 * if there are no any areas before @addr.
3121 */
3122 static struct vmap_area *
3123 pvm_find_va_enclose_addr(unsigned long addr)
3124 {
3125 struct vmap_area *va, *tmp;
3126 struct rb_node *n;
3127
3128 n = free_vmap_area_root.rb_node;
3129 va = NULL;
3130
3131 while (n) {
3132 tmp = rb_entry(n, struct vmap_area, rb_node);
3133 if (tmp->va_start <= addr) {
3134 va = tmp;
3135 if (tmp->va_end >= addr)
3136 break;
3137
3138 n = n->rb_right;
3139 } else {
3140 n = n->rb_left;
3141 }
3142 }
3143
3144 return va;
3145 }
3146
3147 /**
3148 * pvm_determine_end_from_reverse - find the highest aligned address
3149 * of free block below VMALLOC_END
3150 * @va:
3151 * in - the VA we start the search(reverse order);
3152 * out - the VA with the highest aligned end address.
3153 * @align: alignment for required highest address
3154 *
3155 * Returns: determined end address within vmap_area
3156 */
3157 static unsigned long
3158 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3159 {
3160 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3161 unsigned long addr;
3162
3163 if (likely(*va)) {
3164 list_for_each_entry_from_reverse((*va),
3165 &free_vmap_area_list, list) {
3166 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3167 if ((*va)->va_start < addr)
3168 return addr;
3169 }
3170 }
3171
3172 return 0;
3173 }
3174
3175 /**
3176 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3177 * @offsets: array containing offset of each area
3178 * @sizes: array containing size of each area
3179 * @nr_vms: the number of areas to allocate
3180 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3181 *
3182 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3183 * vm_structs on success, %NULL on failure
3184 *
3185 * Percpu allocator wants to use congruent vm areas so that it can
3186 * maintain the offsets among percpu areas. This function allocates
3187 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3188 * be scattered pretty far, distance between two areas easily going up
3189 * to gigabytes. To avoid interacting with regular vmallocs, these
3190 * areas are allocated from top.
3191 *
3192 * Despite its complicated look, this allocator is rather simple. It
3193 * does everything top-down and scans free blocks from the end looking
3194 * for matching base. While scanning, if any of the areas do not fit the
3195 * base address is pulled down to fit the area. Scanning is repeated till
3196 * all the areas fit and then all necessary data structures are inserted
3197 * and the result is returned.
3198 */
3199 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3200 const size_t *sizes, int nr_vms,
3201 size_t align)
3202 {
3203 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3204 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3205 struct vmap_area **vas, *va;
3206 struct vm_struct **vms;
3207 int area, area2, last_area, term_area;
3208 unsigned long base, start, size, end, last_end, orig_start, orig_end;
3209 bool purged = false;
3210 enum fit_type type;
3211
3212 /* verify parameters and allocate data structures */
3213 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3214 for (last_area = 0, area = 0; area < nr_vms; area++) {
3215 start = offsets[area];
3216 end = start + sizes[area];
3217
3218 /* is everything aligned properly? */
3219 BUG_ON(!IS_ALIGNED(offsets[area], align));
3220 BUG_ON(!IS_ALIGNED(sizes[area], align));
3221
3222 /* detect the area with the highest address */
3223 if (start > offsets[last_area])
3224 last_area = area;
3225
3226 for (area2 = area + 1; area2 < nr_vms; area2++) {
3227 unsigned long start2 = offsets[area2];
3228 unsigned long end2 = start2 + sizes[area2];
3229
3230 BUG_ON(start2 < end && start < end2);
3231 }
3232 }
3233 last_end = offsets[last_area] + sizes[last_area];
3234
3235 if (vmalloc_end - vmalloc_start < last_end) {
3236 WARN_ON(true);
3237 return NULL;
3238 }
3239
3240 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3241 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3242 if (!vas || !vms)
3243 goto err_free2;
3244
3245 for (area = 0; area < nr_vms; area++) {
3246 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3247 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3248 if (!vas[area] || !vms[area])
3249 goto err_free;
3250 }
3251 retry:
3252 spin_lock(&free_vmap_area_lock);
3253
3254 /* start scanning - we scan from the top, begin with the last area */
3255 area = term_area = last_area;
3256 start = offsets[area];
3257 end = start + sizes[area];
3258
3259 va = pvm_find_va_enclose_addr(vmalloc_end);
3260 base = pvm_determine_end_from_reverse(&va, align) - end;
3261
3262 while (true) {
3263 /*
3264 * base might have underflowed, add last_end before
3265 * comparing.
3266 */
3267 if (base + last_end < vmalloc_start + last_end)
3268 goto overflow;
3269
3270 /*
3271 * Fitting base has not been found.
3272 */
3273 if (va == NULL)
3274 goto overflow;
3275
3276 /*
3277 * If required width exceeds current VA block, move
3278 * base downwards and then recheck.
3279 */
3280 if (base + end > va->va_end) {
3281 base = pvm_determine_end_from_reverse(&va, align) - end;
3282 term_area = area;
3283 continue;
3284 }
3285
3286 /*
3287 * If this VA does not fit, move base downwards and recheck.
3288 */
3289 if (base + start < va->va_start) {
3290 va = node_to_va(rb_prev(&va->rb_node));
3291 base = pvm_determine_end_from_reverse(&va, align) - end;
3292 term_area = area;
3293 continue;
3294 }
3295
3296 /*
3297 * This area fits, move on to the previous one. If
3298 * the previous one is the terminal one, we're done.
3299 */
3300 area = (area + nr_vms - 1) % nr_vms;
3301 if (area == term_area)
3302 break;
3303
3304 start = offsets[area];
3305 end = start + sizes[area];
3306 va = pvm_find_va_enclose_addr(base + end);
3307 }
3308
3309 /* we've found a fitting base, insert all va's */
3310 for (area = 0; area < nr_vms; area++) {
3311 int ret;
3312
3313 start = base + offsets[area];
3314 size = sizes[area];
3315
3316 va = pvm_find_va_enclose_addr(start);
3317 if (WARN_ON_ONCE(va == NULL))
3318 /* It is a BUG(), but trigger recovery instead. */
3319 goto recovery;
3320
3321 type = classify_va_fit_type(va, start, size);
3322 if (WARN_ON_ONCE(type == NOTHING_FIT))
3323 /* It is a BUG(), but trigger recovery instead. */
3324 goto recovery;
3325
3326 ret = adjust_va_to_fit_type(va, start, size, type);
3327 if (unlikely(ret))
3328 goto recovery;
3329
3330 /* Allocated area. */
3331 va = vas[area];
3332 va->va_start = start;
3333 va->va_end = start + size;
3334 }
3335
3336 spin_unlock(&free_vmap_area_lock);
3337
3338 /* populate the kasan shadow space */
3339 for (area = 0; area < nr_vms; area++) {
3340 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3341 goto err_free_shadow;
3342
3343 kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3344 sizes[area]);
3345 }
3346
3347 /* insert all vm's */
3348 spin_lock(&vmap_area_lock);
3349 for (area = 0; area < nr_vms; area++) {
3350 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3351
3352 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3353 pcpu_get_vm_areas);
3354 }
3355 spin_unlock(&vmap_area_lock);
3356
3357 kfree(vas);
3358 return vms;
3359
3360 recovery:
3361 /*
3362 * Remove previously allocated areas. There is no
3363 * need in removing these areas from the busy tree,
3364 * because they are inserted only on the final step
3365 * and when pcpu_get_vm_areas() is success.
3366 */
3367 while (area--) {
3368 orig_start = vas[area]->va_start;
3369 orig_end = vas[area]->va_end;
3370 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3371 &free_vmap_area_list);
3372 if (va)
3373 kasan_release_vmalloc(orig_start, orig_end,
3374 va->va_start, va->va_end);
3375 vas[area] = NULL;
3376 }
3377
3378 overflow:
3379 spin_unlock(&free_vmap_area_lock);
3380 if (!purged) {
3381 purge_vmap_area_lazy();
3382 purged = true;
3383
3384 /* Before "retry", check if we recover. */
3385 for (area = 0; area < nr_vms; area++) {
3386 if (vas[area])
3387 continue;
3388
3389 vas[area] = kmem_cache_zalloc(
3390 vmap_area_cachep, GFP_KERNEL);
3391 if (!vas[area])
3392 goto err_free;
3393 }
3394
3395 goto retry;
3396 }
3397
3398 err_free:
3399 for (area = 0; area < nr_vms; area++) {
3400 if (vas[area])
3401 kmem_cache_free(vmap_area_cachep, vas[area]);
3402
3403 kfree(vms[area]);
3404 }
3405 err_free2:
3406 kfree(vas);
3407 kfree(vms);
3408 return NULL;
3409
3410 err_free_shadow:
3411 spin_lock(&free_vmap_area_lock);
3412 /*
3413 * We release all the vmalloc shadows, even the ones for regions that
3414 * hadn't been successfully added. This relies on kasan_release_vmalloc
3415 * being able to tolerate this case.
3416 */
3417 for (area = 0; area < nr_vms; area++) {
3418 orig_start = vas[area]->va_start;
3419 orig_end = vas[area]->va_end;
3420 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3421 &free_vmap_area_list);
3422 if (va)
3423 kasan_release_vmalloc(orig_start, orig_end,
3424 va->va_start, va->va_end);
3425 vas[area] = NULL;
3426 kfree(vms[area]);
3427 }
3428 spin_unlock(&free_vmap_area_lock);
3429 kfree(vas);
3430 kfree(vms);
3431 return NULL;
3432 }
3433
3434 /**
3435 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3436 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3437 * @nr_vms: the number of allocated areas
3438 *
3439 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3440 */
3441 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3442 {
3443 int i;
3444
3445 for (i = 0; i < nr_vms; i++)
3446 free_vm_area(vms[i]);
3447 kfree(vms);
3448 }
3449 #endif /* CONFIG_SMP */
3450
3451 #ifdef CONFIG_PROC_FS
3452 static void *s_start(struct seq_file *m, loff_t *pos)
3453 __acquires(&vmap_purge_lock)
3454 __acquires(&vmap_area_lock)
3455 {
3456 mutex_lock(&vmap_purge_lock);
3457 spin_lock(&vmap_area_lock);
3458
3459 return seq_list_start(&vmap_area_list, *pos);
3460 }
3461
3462 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3463 {
3464 return seq_list_next(p, &vmap_area_list, pos);
3465 }
3466
3467 static void s_stop(struct seq_file *m, void *p)
3468 __releases(&vmap_area_lock)
3469 __releases(&vmap_purge_lock)
3470 {
3471 spin_unlock(&vmap_area_lock);
3472 mutex_unlock(&vmap_purge_lock);
3473 }
3474
3475 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3476 {
3477 if (IS_ENABLED(CONFIG_NUMA)) {
3478 unsigned int nr, *counters = m->private;
3479
3480 if (!counters)
3481 return;
3482
3483 if (v->flags & VM_UNINITIALIZED)
3484 return;
3485 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3486 smp_rmb();
3487
3488 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3489
3490 for (nr = 0; nr < v->nr_pages; nr++)
3491 counters[page_to_nid(v->pages[nr])]++;
3492
3493 for_each_node_state(nr, N_HIGH_MEMORY)
3494 if (counters[nr])
3495 seq_printf(m, " N%u=%u", nr, counters[nr]);
3496 }
3497 }
3498
3499 static void show_purge_info(struct seq_file *m)
3500 {
3501 struct vmap_area *va;
3502
3503 spin_lock(&purge_vmap_area_lock);
3504 list_for_each_entry(va, &purge_vmap_area_list, list) {
3505 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3506 (void *)va->va_start, (void *)va->va_end,
3507 va->va_end - va->va_start);
3508 }
3509 spin_unlock(&purge_vmap_area_lock);
3510 }
3511
3512 static int s_show(struct seq_file *m, void *p)
3513 {
3514 struct vmap_area *va;
3515 struct vm_struct *v;
3516
3517 va = list_entry(p, struct vmap_area, list);
3518
3519 /*
3520 * s_show can encounter race with remove_vm_area, !vm on behalf
3521 * of vmap area is being tear down or vm_map_ram allocation.
3522 */
3523 if (!va->vm) {
3524 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3525 (void *)va->va_start, (void *)va->va_end,
3526 va->va_end - va->va_start);
3527
3528 return 0;
3529 }
3530
3531 v = va->vm;
3532
3533 seq_printf(m, "0x%pK-0x%pK %7ld",
3534 v->addr, v->addr + v->size, v->size);
3535
3536 if (v->caller)
3537 seq_printf(m, " %pS", v->caller);
3538
3539 if (v->nr_pages)
3540 seq_printf(m, " pages=%d", v->nr_pages);
3541
3542 if (v->phys_addr)
3543 seq_printf(m, " phys=%pa", &v->phys_addr);
3544
3545 if (v->flags & VM_IOREMAP)
3546 seq_puts(m, " ioremap");
3547
3548 if (v->flags & VM_ALLOC)
3549 seq_puts(m, " vmalloc");
3550
3551 if (v->flags & VM_MAP)
3552 seq_puts(m, " vmap");
3553
3554 if (v->flags & VM_USERMAP)
3555 seq_puts(m, " user");
3556
3557 if (v->flags & VM_DMA_COHERENT)
3558 seq_puts(m, " dma-coherent");
3559
3560 if (is_vmalloc_addr(v->pages))
3561 seq_puts(m, " vpages");
3562
3563 show_numa_info(m, v);
3564 seq_putc(m, '\n');
3565
3566 /*
3567 * As a final step, dump "unpurged" areas.
3568 */
3569 if (list_is_last(&va->list, &vmap_area_list))
3570 show_purge_info(m);
3571
3572 return 0;
3573 }
3574
3575 static const struct seq_operations vmalloc_op = {
3576 .start = s_start,
3577 .next = s_next,
3578 .stop = s_stop,
3579 .show = s_show,
3580 };
3581
3582 static int __init proc_vmalloc_init(void)
3583 {
3584 if (IS_ENABLED(CONFIG_NUMA))
3585 proc_create_seq_private("vmallocinfo", 0400, NULL,
3586 &vmalloc_op,
3587 nr_node_ids * sizeof(unsigned int), NULL);
3588 else
3589 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3590 return 0;
3591 }
3592 module_init(proc_vmalloc_init);
3593
3594 #endif