]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/vmalloc.c
Merge tag 'linux-kselftest-kunit-5.10-rc1' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-jammy-kernel.git] / mm / vmalloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7 * Numa awareness, Christoph Lameter, SGI, June 2005
8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/rcupdate.h>
29 #include <linux/pfn.h>
30 #include <linux/kmemleak.h>
31 #include <linux/atomic.h>
32 #include <linux/compiler.h>
33 #include <linux/llist.h>
34 #include <linux/bitops.h>
35 #include <linux/rbtree_augmented.h>
36 #include <linux/overflow.h>
37
38 #include <linux/uaccess.h>
39 #include <asm/tlbflush.h>
40 #include <asm/shmparam.h>
41
42 #include "internal.h"
43 #include "pgalloc-track.h"
44
45 bool is_vmalloc_addr(const void *x)
46 {
47 unsigned long addr = (unsigned long)x;
48
49 return addr >= VMALLOC_START && addr < VMALLOC_END;
50 }
51 EXPORT_SYMBOL(is_vmalloc_addr);
52
53 struct vfree_deferred {
54 struct llist_head list;
55 struct work_struct wq;
56 };
57 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
58
59 static void __vunmap(const void *, int);
60
61 static void free_work(struct work_struct *w)
62 {
63 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
64 struct llist_node *t, *llnode;
65
66 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
67 __vunmap((void *)llnode, 1);
68 }
69
70 /*** Page table manipulation functions ***/
71
72 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
73 pgtbl_mod_mask *mask)
74 {
75 pte_t *pte;
76
77 pte = pte_offset_kernel(pmd, addr);
78 do {
79 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
80 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
81 } while (pte++, addr += PAGE_SIZE, addr != end);
82 *mask |= PGTBL_PTE_MODIFIED;
83 }
84
85 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
86 pgtbl_mod_mask *mask)
87 {
88 pmd_t *pmd;
89 unsigned long next;
90 int cleared;
91
92 pmd = pmd_offset(pud, addr);
93 do {
94 next = pmd_addr_end(addr, end);
95
96 cleared = pmd_clear_huge(pmd);
97 if (cleared || pmd_bad(*pmd))
98 *mask |= PGTBL_PMD_MODIFIED;
99
100 if (cleared)
101 continue;
102 if (pmd_none_or_clear_bad(pmd))
103 continue;
104 vunmap_pte_range(pmd, addr, next, mask);
105
106 cond_resched();
107 } while (pmd++, addr = next, addr != end);
108 }
109
110 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
111 pgtbl_mod_mask *mask)
112 {
113 pud_t *pud;
114 unsigned long next;
115 int cleared;
116
117 pud = pud_offset(p4d, addr);
118 do {
119 next = pud_addr_end(addr, end);
120
121 cleared = pud_clear_huge(pud);
122 if (cleared || pud_bad(*pud))
123 *mask |= PGTBL_PUD_MODIFIED;
124
125 if (cleared)
126 continue;
127 if (pud_none_or_clear_bad(pud))
128 continue;
129 vunmap_pmd_range(pud, addr, next, mask);
130 } while (pud++, addr = next, addr != end);
131 }
132
133 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
134 pgtbl_mod_mask *mask)
135 {
136 p4d_t *p4d;
137 unsigned long next;
138 int cleared;
139
140 p4d = p4d_offset(pgd, addr);
141 do {
142 next = p4d_addr_end(addr, end);
143
144 cleared = p4d_clear_huge(p4d);
145 if (cleared || p4d_bad(*p4d))
146 *mask |= PGTBL_P4D_MODIFIED;
147
148 if (cleared)
149 continue;
150 if (p4d_none_or_clear_bad(p4d))
151 continue;
152 vunmap_pud_range(p4d, addr, next, mask);
153 } while (p4d++, addr = next, addr != end);
154 }
155
156 /**
157 * unmap_kernel_range_noflush - unmap kernel VM area
158 * @start: start of the VM area to unmap
159 * @size: size of the VM area to unmap
160 *
161 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size specify
162 * should have been allocated using get_vm_area() and its friends.
163 *
164 * NOTE:
165 * This function does NOT do any cache flushing. The caller is responsible
166 * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
167 * function and flush_tlb_kernel_range() after.
168 */
169 void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
170 {
171 unsigned long end = start + size;
172 unsigned long next;
173 pgd_t *pgd;
174 unsigned long addr = start;
175 pgtbl_mod_mask mask = 0;
176
177 BUG_ON(addr >= end);
178 pgd = pgd_offset_k(addr);
179 do {
180 next = pgd_addr_end(addr, end);
181 if (pgd_bad(*pgd))
182 mask |= PGTBL_PGD_MODIFIED;
183 if (pgd_none_or_clear_bad(pgd))
184 continue;
185 vunmap_p4d_range(pgd, addr, next, &mask);
186 } while (pgd++, addr = next, addr != end);
187
188 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
189 arch_sync_kernel_mappings(start, end);
190 }
191
192 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
193 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
194 pgtbl_mod_mask *mask)
195 {
196 pte_t *pte;
197
198 /*
199 * nr is a running index into the array which helps higher level
200 * callers keep track of where we're up to.
201 */
202
203 pte = pte_alloc_kernel_track(pmd, addr, mask);
204 if (!pte)
205 return -ENOMEM;
206 do {
207 struct page *page = pages[*nr];
208
209 if (WARN_ON(!pte_none(*pte)))
210 return -EBUSY;
211 if (WARN_ON(!page))
212 return -ENOMEM;
213 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
214 (*nr)++;
215 } while (pte++, addr += PAGE_SIZE, addr != end);
216 *mask |= PGTBL_PTE_MODIFIED;
217 return 0;
218 }
219
220 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
221 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
222 pgtbl_mod_mask *mask)
223 {
224 pmd_t *pmd;
225 unsigned long next;
226
227 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
228 if (!pmd)
229 return -ENOMEM;
230 do {
231 next = pmd_addr_end(addr, end);
232 if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
233 return -ENOMEM;
234 } while (pmd++, addr = next, addr != end);
235 return 0;
236 }
237
238 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
239 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
240 pgtbl_mod_mask *mask)
241 {
242 pud_t *pud;
243 unsigned long next;
244
245 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
246 if (!pud)
247 return -ENOMEM;
248 do {
249 next = pud_addr_end(addr, end);
250 if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
251 return -ENOMEM;
252 } while (pud++, addr = next, addr != end);
253 return 0;
254 }
255
256 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
257 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
258 pgtbl_mod_mask *mask)
259 {
260 p4d_t *p4d;
261 unsigned long next;
262
263 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
264 if (!p4d)
265 return -ENOMEM;
266 do {
267 next = p4d_addr_end(addr, end);
268 if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
269 return -ENOMEM;
270 } while (p4d++, addr = next, addr != end);
271 return 0;
272 }
273
274 /**
275 * map_kernel_range_noflush - map kernel VM area with the specified pages
276 * @addr: start of the VM area to map
277 * @size: size of the VM area to map
278 * @prot: page protection flags to use
279 * @pages: pages to map
280 *
281 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size specify should
282 * have been allocated using get_vm_area() and its friends.
283 *
284 * NOTE:
285 * This function does NOT do any cache flushing. The caller is responsible for
286 * calling flush_cache_vmap() on to-be-mapped areas before calling this
287 * function.
288 *
289 * RETURNS:
290 * 0 on success, -errno on failure.
291 */
292 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
293 pgprot_t prot, struct page **pages)
294 {
295 unsigned long start = addr;
296 unsigned long end = addr + size;
297 unsigned long next;
298 pgd_t *pgd;
299 int err = 0;
300 int nr = 0;
301 pgtbl_mod_mask mask = 0;
302
303 BUG_ON(addr >= end);
304 pgd = pgd_offset_k(addr);
305 do {
306 next = pgd_addr_end(addr, end);
307 if (pgd_bad(*pgd))
308 mask |= PGTBL_PGD_MODIFIED;
309 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
310 if (err)
311 return err;
312 } while (pgd++, addr = next, addr != end);
313
314 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
315 arch_sync_kernel_mappings(start, end);
316
317 return 0;
318 }
319
320 int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
321 struct page **pages)
322 {
323 int ret;
324
325 ret = map_kernel_range_noflush(start, size, prot, pages);
326 flush_cache_vmap(start, start + size);
327 return ret;
328 }
329
330 int is_vmalloc_or_module_addr(const void *x)
331 {
332 /*
333 * ARM, x86-64 and sparc64 put modules in a special place,
334 * and fall back on vmalloc() if that fails. Others
335 * just put it in the vmalloc space.
336 */
337 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
338 unsigned long addr = (unsigned long)x;
339 if (addr >= MODULES_VADDR && addr < MODULES_END)
340 return 1;
341 #endif
342 return is_vmalloc_addr(x);
343 }
344
345 /*
346 * Walk a vmap address to the struct page it maps.
347 */
348 struct page *vmalloc_to_page(const void *vmalloc_addr)
349 {
350 unsigned long addr = (unsigned long) vmalloc_addr;
351 struct page *page = NULL;
352 pgd_t *pgd = pgd_offset_k(addr);
353 p4d_t *p4d;
354 pud_t *pud;
355 pmd_t *pmd;
356 pte_t *ptep, pte;
357
358 /*
359 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
360 * architectures that do not vmalloc module space
361 */
362 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
363
364 if (pgd_none(*pgd))
365 return NULL;
366 p4d = p4d_offset(pgd, addr);
367 if (p4d_none(*p4d))
368 return NULL;
369 pud = pud_offset(p4d, addr);
370
371 /*
372 * Don't dereference bad PUD or PMD (below) entries. This will also
373 * identify huge mappings, which we may encounter on architectures
374 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
375 * identified as vmalloc addresses by is_vmalloc_addr(), but are
376 * not [unambiguously] associated with a struct page, so there is
377 * no correct value to return for them.
378 */
379 WARN_ON_ONCE(pud_bad(*pud));
380 if (pud_none(*pud) || pud_bad(*pud))
381 return NULL;
382 pmd = pmd_offset(pud, addr);
383 WARN_ON_ONCE(pmd_bad(*pmd));
384 if (pmd_none(*pmd) || pmd_bad(*pmd))
385 return NULL;
386
387 ptep = pte_offset_map(pmd, addr);
388 pte = *ptep;
389 if (pte_present(pte))
390 page = pte_page(pte);
391 pte_unmap(ptep);
392 return page;
393 }
394 EXPORT_SYMBOL(vmalloc_to_page);
395
396 /*
397 * Map a vmalloc()-space virtual address to the physical page frame number.
398 */
399 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
400 {
401 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
402 }
403 EXPORT_SYMBOL(vmalloc_to_pfn);
404
405
406 /*** Global kva allocator ***/
407
408 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
409 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
410
411
412 static DEFINE_SPINLOCK(vmap_area_lock);
413 static DEFINE_SPINLOCK(free_vmap_area_lock);
414 /* Export for kexec only */
415 LIST_HEAD(vmap_area_list);
416 static LLIST_HEAD(vmap_purge_list);
417 static struct rb_root vmap_area_root = RB_ROOT;
418 static bool vmap_initialized __read_mostly;
419
420 /*
421 * This kmem_cache is used for vmap_area objects. Instead of
422 * allocating from slab we reuse an object from this cache to
423 * make things faster. Especially in "no edge" splitting of
424 * free block.
425 */
426 static struct kmem_cache *vmap_area_cachep;
427
428 /*
429 * This linked list is used in pair with free_vmap_area_root.
430 * It gives O(1) access to prev/next to perform fast coalescing.
431 */
432 static LIST_HEAD(free_vmap_area_list);
433
434 /*
435 * This augment red-black tree represents the free vmap space.
436 * All vmap_area objects in this tree are sorted by va->va_start
437 * address. It is used for allocation and merging when a vmap
438 * object is released.
439 *
440 * Each vmap_area node contains a maximum available free block
441 * of its sub-tree, right or left. Therefore it is possible to
442 * find a lowest match of free area.
443 */
444 static struct rb_root free_vmap_area_root = RB_ROOT;
445
446 /*
447 * Preload a CPU with one object for "no edge" split case. The
448 * aim is to get rid of allocations from the atomic context, thus
449 * to use more permissive allocation masks.
450 */
451 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
452
453 static __always_inline unsigned long
454 va_size(struct vmap_area *va)
455 {
456 return (va->va_end - va->va_start);
457 }
458
459 static __always_inline unsigned long
460 get_subtree_max_size(struct rb_node *node)
461 {
462 struct vmap_area *va;
463
464 va = rb_entry_safe(node, struct vmap_area, rb_node);
465 return va ? va->subtree_max_size : 0;
466 }
467
468 /*
469 * Gets called when remove the node and rotate.
470 */
471 static __always_inline unsigned long
472 compute_subtree_max_size(struct vmap_area *va)
473 {
474 return max3(va_size(va),
475 get_subtree_max_size(va->rb_node.rb_left),
476 get_subtree_max_size(va->rb_node.rb_right));
477 }
478
479 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
480 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
481
482 static void purge_vmap_area_lazy(void);
483 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
484 static unsigned long lazy_max_pages(void);
485
486 static atomic_long_t nr_vmalloc_pages;
487
488 unsigned long vmalloc_nr_pages(void)
489 {
490 return atomic_long_read(&nr_vmalloc_pages);
491 }
492
493 static struct vmap_area *__find_vmap_area(unsigned long addr)
494 {
495 struct rb_node *n = vmap_area_root.rb_node;
496
497 while (n) {
498 struct vmap_area *va;
499
500 va = rb_entry(n, struct vmap_area, rb_node);
501 if (addr < va->va_start)
502 n = n->rb_left;
503 else if (addr >= va->va_end)
504 n = n->rb_right;
505 else
506 return va;
507 }
508
509 return NULL;
510 }
511
512 /*
513 * This function returns back addresses of parent node
514 * and its left or right link for further processing.
515 *
516 * Otherwise NULL is returned. In that case all further
517 * steps regarding inserting of conflicting overlap range
518 * have to be declined and actually considered as a bug.
519 */
520 static __always_inline struct rb_node **
521 find_va_links(struct vmap_area *va,
522 struct rb_root *root, struct rb_node *from,
523 struct rb_node **parent)
524 {
525 struct vmap_area *tmp_va;
526 struct rb_node **link;
527
528 if (root) {
529 link = &root->rb_node;
530 if (unlikely(!*link)) {
531 *parent = NULL;
532 return link;
533 }
534 } else {
535 link = &from;
536 }
537
538 /*
539 * Go to the bottom of the tree. When we hit the last point
540 * we end up with parent rb_node and correct direction, i name
541 * it link, where the new va->rb_node will be attached to.
542 */
543 do {
544 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
545
546 /*
547 * During the traversal we also do some sanity check.
548 * Trigger the BUG() if there are sides(left/right)
549 * or full overlaps.
550 */
551 if (va->va_start < tmp_va->va_end &&
552 va->va_end <= tmp_va->va_start)
553 link = &(*link)->rb_left;
554 else if (va->va_end > tmp_va->va_start &&
555 va->va_start >= tmp_va->va_end)
556 link = &(*link)->rb_right;
557 else {
558 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
559 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
560
561 return NULL;
562 }
563 } while (*link);
564
565 *parent = &tmp_va->rb_node;
566 return link;
567 }
568
569 static __always_inline struct list_head *
570 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
571 {
572 struct list_head *list;
573
574 if (unlikely(!parent))
575 /*
576 * The red-black tree where we try to find VA neighbors
577 * before merging or inserting is empty, i.e. it means
578 * there is no free vmap space. Normally it does not
579 * happen but we handle this case anyway.
580 */
581 return NULL;
582
583 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
584 return (&parent->rb_right == link ? list->next : list);
585 }
586
587 static __always_inline void
588 link_va(struct vmap_area *va, struct rb_root *root,
589 struct rb_node *parent, struct rb_node **link, struct list_head *head)
590 {
591 /*
592 * VA is still not in the list, but we can
593 * identify its future previous list_head node.
594 */
595 if (likely(parent)) {
596 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
597 if (&parent->rb_right != link)
598 head = head->prev;
599 }
600
601 /* Insert to the rb-tree */
602 rb_link_node(&va->rb_node, parent, link);
603 if (root == &free_vmap_area_root) {
604 /*
605 * Some explanation here. Just perform simple insertion
606 * to the tree. We do not set va->subtree_max_size to
607 * its current size before calling rb_insert_augmented().
608 * It is because of we populate the tree from the bottom
609 * to parent levels when the node _is_ in the tree.
610 *
611 * Therefore we set subtree_max_size to zero after insertion,
612 * to let __augment_tree_propagate_from() puts everything to
613 * the correct order later on.
614 */
615 rb_insert_augmented(&va->rb_node,
616 root, &free_vmap_area_rb_augment_cb);
617 va->subtree_max_size = 0;
618 } else {
619 rb_insert_color(&va->rb_node, root);
620 }
621
622 /* Address-sort this list */
623 list_add(&va->list, head);
624 }
625
626 static __always_inline void
627 unlink_va(struct vmap_area *va, struct rb_root *root)
628 {
629 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
630 return;
631
632 if (root == &free_vmap_area_root)
633 rb_erase_augmented(&va->rb_node,
634 root, &free_vmap_area_rb_augment_cb);
635 else
636 rb_erase(&va->rb_node, root);
637
638 list_del(&va->list);
639 RB_CLEAR_NODE(&va->rb_node);
640 }
641
642 #if DEBUG_AUGMENT_PROPAGATE_CHECK
643 static void
644 augment_tree_propagate_check(void)
645 {
646 struct vmap_area *va;
647 unsigned long computed_size;
648
649 list_for_each_entry(va, &free_vmap_area_list, list) {
650 computed_size = compute_subtree_max_size(va);
651 if (computed_size != va->subtree_max_size)
652 pr_emerg("tree is corrupted: %lu, %lu\n",
653 va_size(va), va->subtree_max_size);
654 }
655 }
656 #endif
657
658 /*
659 * This function populates subtree_max_size from bottom to upper
660 * levels starting from VA point. The propagation must be done
661 * when VA size is modified by changing its va_start/va_end. Or
662 * in case of newly inserting of VA to the tree.
663 *
664 * It means that __augment_tree_propagate_from() must be called:
665 * - After VA has been inserted to the tree(free path);
666 * - After VA has been shrunk(allocation path);
667 * - After VA has been increased(merging path).
668 *
669 * Please note that, it does not mean that upper parent nodes
670 * and their subtree_max_size are recalculated all the time up
671 * to the root node.
672 *
673 * 4--8
674 * /\
675 * / \
676 * / \
677 * 2--2 8--8
678 *
679 * For example if we modify the node 4, shrinking it to 2, then
680 * no any modification is required. If we shrink the node 2 to 1
681 * its subtree_max_size is updated only, and set to 1. If we shrink
682 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
683 * node becomes 4--6.
684 */
685 static __always_inline void
686 augment_tree_propagate_from(struct vmap_area *va)
687 {
688 /*
689 * Populate the tree from bottom towards the root until
690 * the calculated maximum available size of checked node
691 * is equal to its current one.
692 */
693 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
694
695 #if DEBUG_AUGMENT_PROPAGATE_CHECK
696 augment_tree_propagate_check();
697 #endif
698 }
699
700 static void
701 insert_vmap_area(struct vmap_area *va,
702 struct rb_root *root, struct list_head *head)
703 {
704 struct rb_node **link;
705 struct rb_node *parent;
706
707 link = find_va_links(va, root, NULL, &parent);
708 if (link)
709 link_va(va, root, parent, link, head);
710 }
711
712 static void
713 insert_vmap_area_augment(struct vmap_area *va,
714 struct rb_node *from, struct rb_root *root,
715 struct list_head *head)
716 {
717 struct rb_node **link;
718 struct rb_node *parent;
719
720 if (from)
721 link = find_va_links(va, NULL, from, &parent);
722 else
723 link = find_va_links(va, root, NULL, &parent);
724
725 if (link) {
726 link_va(va, root, parent, link, head);
727 augment_tree_propagate_from(va);
728 }
729 }
730
731 /*
732 * Merge de-allocated chunk of VA memory with previous
733 * and next free blocks. If coalesce is not done a new
734 * free area is inserted. If VA has been merged, it is
735 * freed.
736 *
737 * Please note, it can return NULL in case of overlap
738 * ranges, followed by WARN() report. Despite it is a
739 * buggy behaviour, a system can be alive and keep
740 * ongoing.
741 */
742 static __always_inline struct vmap_area *
743 merge_or_add_vmap_area(struct vmap_area *va,
744 struct rb_root *root, struct list_head *head)
745 {
746 struct vmap_area *sibling;
747 struct list_head *next;
748 struct rb_node **link;
749 struct rb_node *parent;
750 bool merged = false;
751
752 /*
753 * Find a place in the tree where VA potentially will be
754 * inserted, unless it is merged with its sibling/siblings.
755 */
756 link = find_va_links(va, root, NULL, &parent);
757 if (!link)
758 return NULL;
759
760 /*
761 * Get next node of VA to check if merging can be done.
762 */
763 next = get_va_next_sibling(parent, link);
764 if (unlikely(next == NULL))
765 goto insert;
766
767 /*
768 * start end
769 * | |
770 * |<------VA------>|<-----Next----->|
771 * | |
772 * start end
773 */
774 if (next != head) {
775 sibling = list_entry(next, struct vmap_area, list);
776 if (sibling->va_start == va->va_end) {
777 sibling->va_start = va->va_start;
778
779 /* Free vmap_area object. */
780 kmem_cache_free(vmap_area_cachep, va);
781
782 /* Point to the new merged area. */
783 va = sibling;
784 merged = true;
785 }
786 }
787
788 /*
789 * start end
790 * | |
791 * |<-----Prev----->|<------VA------>|
792 * | |
793 * start end
794 */
795 if (next->prev != head) {
796 sibling = list_entry(next->prev, struct vmap_area, list);
797 if (sibling->va_end == va->va_start) {
798 /*
799 * If both neighbors are coalesced, it is important
800 * to unlink the "next" node first, followed by merging
801 * with "previous" one. Otherwise the tree might not be
802 * fully populated if a sibling's augmented value is
803 * "normalized" because of rotation operations.
804 */
805 if (merged)
806 unlink_va(va, root);
807
808 sibling->va_end = va->va_end;
809
810 /* Free vmap_area object. */
811 kmem_cache_free(vmap_area_cachep, va);
812
813 /* Point to the new merged area. */
814 va = sibling;
815 merged = true;
816 }
817 }
818
819 insert:
820 if (!merged)
821 link_va(va, root, parent, link, head);
822
823 /*
824 * Last step is to check and update the tree.
825 */
826 augment_tree_propagate_from(va);
827 return va;
828 }
829
830 static __always_inline bool
831 is_within_this_va(struct vmap_area *va, unsigned long size,
832 unsigned long align, unsigned long vstart)
833 {
834 unsigned long nva_start_addr;
835
836 if (va->va_start > vstart)
837 nva_start_addr = ALIGN(va->va_start, align);
838 else
839 nva_start_addr = ALIGN(vstart, align);
840
841 /* Can be overflowed due to big size or alignment. */
842 if (nva_start_addr + size < nva_start_addr ||
843 nva_start_addr < vstart)
844 return false;
845
846 return (nva_start_addr + size <= va->va_end);
847 }
848
849 /*
850 * Find the first free block(lowest start address) in the tree,
851 * that will accomplish the request corresponding to passing
852 * parameters.
853 */
854 static __always_inline struct vmap_area *
855 find_vmap_lowest_match(unsigned long size,
856 unsigned long align, unsigned long vstart)
857 {
858 struct vmap_area *va;
859 struct rb_node *node;
860 unsigned long length;
861
862 /* Start from the root. */
863 node = free_vmap_area_root.rb_node;
864
865 /* Adjust the search size for alignment overhead. */
866 length = size + align - 1;
867
868 while (node) {
869 va = rb_entry(node, struct vmap_area, rb_node);
870
871 if (get_subtree_max_size(node->rb_left) >= length &&
872 vstart < va->va_start) {
873 node = node->rb_left;
874 } else {
875 if (is_within_this_va(va, size, align, vstart))
876 return va;
877
878 /*
879 * Does not make sense to go deeper towards the right
880 * sub-tree if it does not have a free block that is
881 * equal or bigger to the requested search length.
882 */
883 if (get_subtree_max_size(node->rb_right) >= length) {
884 node = node->rb_right;
885 continue;
886 }
887
888 /*
889 * OK. We roll back and find the first right sub-tree,
890 * that will satisfy the search criteria. It can happen
891 * only once due to "vstart" restriction.
892 */
893 while ((node = rb_parent(node))) {
894 va = rb_entry(node, struct vmap_area, rb_node);
895 if (is_within_this_va(va, size, align, vstart))
896 return va;
897
898 if (get_subtree_max_size(node->rb_right) >= length &&
899 vstart <= va->va_start) {
900 node = node->rb_right;
901 break;
902 }
903 }
904 }
905 }
906
907 return NULL;
908 }
909
910 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
911 #include <linux/random.h>
912
913 static struct vmap_area *
914 find_vmap_lowest_linear_match(unsigned long size,
915 unsigned long align, unsigned long vstart)
916 {
917 struct vmap_area *va;
918
919 list_for_each_entry(va, &free_vmap_area_list, list) {
920 if (!is_within_this_va(va, size, align, vstart))
921 continue;
922
923 return va;
924 }
925
926 return NULL;
927 }
928
929 static void
930 find_vmap_lowest_match_check(unsigned long size)
931 {
932 struct vmap_area *va_1, *va_2;
933 unsigned long vstart;
934 unsigned int rnd;
935
936 get_random_bytes(&rnd, sizeof(rnd));
937 vstart = VMALLOC_START + rnd;
938
939 va_1 = find_vmap_lowest_match(size, 1, vstart);
940 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
941
942 if (va_1 != va_2)
943 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
944 va_1, va_2, vstart);
945 }
946 #endif
947
948 enum fit_type {
949 NOTHING_FIT = 0,
950 FL_FIT_TYPE = 1, /* full fit */
951 LE_FIT_TYPE = 2, /* left edge fit */
952 RE_FIT_TYPE = 3, /* right edge fit */
953 NE_FIT_TYPE = 4 /* no edge fit */
954 };
955
956 static __always_inline enum fit_type
957 classify_va_fit_type(struct vmap_area *va,
958 unsigned long nva_start_addr, unsigned long size)
959 {
960 enum fit_type type;
961
962 /* Check if it is within VA. */
963 if (nva_start_addr < va->va_start ||
964 nva_start_addr + size > va->va_end)
965 return NOTHING_FIT;
966
967 /* Now classify. */
968 if (va->va_start == nva_start_addr) {
969 if (va->va_end == nva_start_addr + size)
970 type = FL_FIT_TYPE;
971 else
972 type = LE_FIT_TYPE;
973 } else if (va->va_end == nva_start_addr + size) {
974 type = RE_FIT_TYPE;
975 } else {
976 type = NE_FIT_TYPE;
977 }
978
979 return type;
980 }
981
982 static __always_inline int
983 adjust_va_to_fit_type(struct vmap_area *va,
984 unsigned long nva_start_addr, unsigned long size,
985 enum fit_type type)
986 {
987 struct vmap_area *lva = NULL;
988
989 if (type == FL_FIT_TYPE) {
990 /*
991 * No need to split VA, it fully fits.
992 *
993 * | |
994 * V NVA V
995 * |---------------|
996 */
997 unlink_va(va, &free_vmap_area_root);
998 kmem_cache_free(vmap_area_cachep, va);
999 } else if (type == LE_FIT_TYPE) {
1000 /*
1001 * Split left edge of fit VA.
1002 *
1003 * | |
1004 * V NVA V R
1005 * |-------|-------|
1006 */
1007 va->va_start += size;
1008 } else if (type == RE_FIT_TYPE) {
1009 /*
1010 * Split right edge of fit VA.
1011 *
1012 * | |
1013 * L V NVA V
1014 * |-------|-------|
1015 */
1016 va->va_end = nva_start_addr;
1017 } else if (type == NE_FIT_TYPE) {
1018 /*
1019 * Split no edge of fit VA.
1020 *
1021 * | |
1022 * L V NVA V R
1023 * |---|-------|---|
1024 */
1025 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1026 if (unlikely(!lva)) {
1027 /*
1028 * For percpu allocator we do not do any pre-allocation
1029 * and leave it as it is. The reason is it most likely
1030 * never ends up with NE_FIT_TYPE splitting. In case of
1031 * percpu allocations offsets and sizes are aligned to
1032 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1033 * are its main fitting cases.
1034 *
1035 * There are a few exceptions though, as an example it is
1036 * a first allocation (early boot up) when we have "one"
1037 * big free space that has to be split.
1038 *
1039 * Also we can hit this path in case of regular "vmap"
1040 * allocations, if "this" current CPU was not preloaded.
1041 * See the comment in alloc_vmap_area() why. If so, then
1042 * GFP_NOWAIT is used instead to get an extra object for
1043 * split purpose. That is rare and most time does not
1044 * occur.
1045 *
1046 * What happens if an allocation gets failed. Basically,
1047 * an "overflow" path is triggered to purge lazily freed
1048 * areas to free some memory, then, the "retry" path is
1049 * triggered to repeat one more time. See more details
1050 * in alloc_vmap_area() function.
1051 */
1052 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1053 if (!lva)
1054 return -1;
1055 }
1056
1057 /*
1058 * Build the remainder.
1059 */
1060 lva->va_start = va->va_start;
1061 lva->va_end = nva_start_addr;
1062
1063 /*
1064 * Shrink this VA to remaining size.
1065 */
1066 va->va_start = nva_start_addr + size;
1067 } else {
1068 return -1;
1069 }
1070
1071 if (type != FL_FIT_TYPE) {
1072 augment_tree_propagate_from(va);
1073
1074 if (lva) /* type == NE_FIT_TYPE */
1075 insert_vmap_area_augment(lva, &va->rb_node,
1076 &free_vmap_area_root, &free_vmap_area_list);
1077 }
1078
1079 return 0;
1080 }
1081
1082 /*
1083 * Returns a start address of the newly allocated area, if success.
1084 * Otherwise a vend is returned that indicates failure.
1085 */
1086 static __always_inline unsigned long
1087 __alloc_vmap_area(unsigned long size, unsigned long align,
1088 unsigned long vstart, unsigned long vend)
1089 {
1090 unsigned long nva_start_addr;
1091 struct vmap_area *va;
1092 enum fit_type type;
1093 int ret;
1094
1095 va = find_vmap_lowest_match(size, align, vstart);
1096 if (unlikely(!va))
1097 return vend;
1098
1099 if (va->va_start > vstart)
1100 nva_start_addr = ALIGN(va->va_start, align);
1101 else
1102 nva_start_addr = ALIGN(vstart, align);
1103
1104 /* Check the "vend" restriction. */
1105 if (nva_start_addr + size > vend)
1106 return vend;
1107
1108 /* Classify what we have found. */
1109 type = classify_va_fit_type(va, nva_start_addr, size);
1110 if (WARN_ON_ONCE(type == NOTHING_FIT))
1111 return vend;
1112
1113 /* Update the free vmap_area. */
1114 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1115 if (ret)
1116 return vend;
1117
1118 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1119 find_vmap_lowest_match_check(size);
1120 #endif
1121
1122 return nva_start_addr;
1123 }
1124
1125 /*
1126 * Free a region of KVA allocated by alloc_vmap_area
1127 */
1128 static void free_vmap_area(struct vmap_area *va)
1129 {
1130 /*
1131 * Remove from the busy tree/list.
1132 */
1133 spin_lock(&vmap_area_lock);
1134 unlink_va(va, &vmap_area_root);
1135 spin_unlock(&vmap_area_lock);
1136
1137 /*
1138 * Insert/Merge it back to the free tree/list.
1139 */
1140 spin_lock(&free_vmap_area_lock);
1141 merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
1142 spin_unlock(&free_vmap_area_lock);
1143 }
1144
1145 /*
1146 * Allocate a region of KVA of the specified size and alignment, within the
1147 * vstart and vend.
1148 */
1149 static struct vmap_area *alloc_vmap_area(unsigned long size,
1150 unsigned long align,
1151 unsigned long vstart, unsigned long vend,
1152 int node, gfp_t gfp_mask)
1153 {
1154 struct vmap_area *va, *pva;
1155 unsigned long addr;
1156 int purged = 0;
1157 int ret;
1158
1159 BUG_ON(!size);
1160 BUG_ON(offset_in_page(size));
1161 BUG_ON(!is_power_of_2(align));
1162
1163 if (unlikely(!vmap_initialized))
1164 return ERR_PTR(-EBUSY);
1165
1166 might_sleep();
1167 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1168
1169 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1170 if (unlikely(!va))
1171 return ERR_PTR(-ENOMEM);
1172
1173 /*
1174 * Only scan the relevant parts containing pointers to other objects
1175 * to avoid false negatives.
1176 */
1177 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1178
1179 retry:
1180 /*
1181 * Preload this CPU with one extra vmap_area object. It is used
1182 * when fit type of free area is NE_FIT_TYPE. Please note, it
1183 * does not guarantee that an allocation occurs on a CPU that
1184 * is preloaded, instead we minimize the case when it is not.
1185 * It can happen because of cpu migration, because there is a
1186 * race until the below spinlock is taken.
1187 *
1188 * The preload is done in non-atomic context, thus it allows us
1189 * to use more permissive allocation masks to be more stable under
1190 * low memory condition and high memory pressure. In rare case,
1191 * if not preloaded, GFP_NOWAIT is used.
1192 *
1193 * Set "pva" to NULL here, because of "retry" path.
1194 */
1195 pva = NULL;
1196
1197 if (!this_cpu_read(ne_fit_preload_node))
1198 /*
1199 * Even if it fails we do not really care about that.
1200 * Just proceed as it is. If needed "overflow" path
1201 * will refill the cache we allocate from.
1202 */
1203 pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1204
1205 spin_lock(&free_vmap_area_lock);
1206
1207 if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1208 kmem_cache_free(vmap_area_cachep, pva);
1209
1210 /*
1211 * If an allocation fails, the "vend" address is
1212 * returned. Therefore trigger the overflow path.
1213 */
1214 addr = __alloc_vmap_area(size, align, vstart, vend);
1215 spin_unlock(&free_vmap_area_lock);
1216
1217 if (unlikely(addr == vend))
1218 goto overflow;
1219
1220 va->va_start = addr;
1221 va->va_end = addr + size;
1222 va->vm = NULL;
1223
1224
1225 spin_lock(&vmap_area_lock);
1226 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1227 spin_unlock(&vmap_area_lock);
1228
1229 BUG_ON(!IS_ALIGNED(va->va_start, align));
1230 BUG_ON(va->va_start < vstart);
1231 BUG_ON(va->va_end > vend);
1232
1233 ret = kasan_populate_vmalloc(addr, size);
1234 if (ret) {
1235 free_vmap_area(va);
1236 return ERR_PTR(ret);
1237 }
1238
1239 return va;
1240
1241 overflow:
1242 if (!purged) {
1243 purge_vmap_area_lazy();
1244 purged = 1;
1245 goto retry;
1246 }
1247
1248 if (gfpflags_allow_blocking(gfp_mask)) {
1249 unsigned long freed = 0;
1250 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1251 if (freed > 0) {
1252 purged = 0;
1253 goto retry;
1254 }
1255 }
1256
1257 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1258 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1259 size);
1260
1261 kmem_cache_free(vmap_area_cachep, va);
1262 return ERR_PTR(-EBUSY);
1263 }
1264
1265 int register_vmap_purge_notifier(struct notifier_block *nb)
1266 {
1267 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1268 }
1269 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1270
1271 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1272 {
1273 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1274 }
1275 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1276
1277 /*
1278 * lazy_max_pages is the maximum amount of virtual address space we gather up
1279 * before attempting to purge with a TLB flush.
1280 *
1281 * There is a tradeoff here: a larger number will cover more kernel page tables
1282 * and take slightly longer to purge, but it will linearly reduce the number of
1283 * global TLB flushes that must be performed. It would seem natural to scale
1284 * this number up linearly with the number of CPUs (because vmapping activity
1285 * could also scale linearly with the number of CPUs), however it is likely
1286 * that in practice, workloads might be constrained in other ways that mean
1287 * vmap activity will not scale linearly with CPUs. Also, I want to be
1288 * conservative and not introduce a big latency on huge systems, so go with
1289 * a less aggressive log scale. It will still be an improvement over the old
1290 * code, and it will be simple to change the scale factor if we find that it
1291 * becomes a problem on bigger systems.
1292 */
1293 static unsigned long lazy_max_pages(void)
1294 {
1295 unsigned int log;
1296
1297 log = fls(num_online_cpus());
1298
1299 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1300 }
1301
1302 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1303
1304 /*
1305 * Serialize vmap purging. There is no actual criticial section protected
1306 * by this look, but we want to avoid concurrent calls for performance
1307 * reasons and to make the pcpu_get_vm_areas more deterministic.
1308 */
1309 static DEFINE_MUTEX(vmap_purge_lock);
1310
1311 /* for per-CPU blocks */
1312 static void purge_fragmented_blocks_allcpus(void);
1313
1314 /*
1315 * called before a call to iounmap() if the caller wants vm_area_struct's
1316 * immediately freed.
1317 */
1318 void set_iounmap_nonlazy(void)
1319 {
1320 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1321 }
1322
1323 /*
1324 * Purges all lazily-freed vmap areas.
1325 */
1326 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1327 {
1328 unsigned long resched_threshold;
1329 struct llist_node *valist;
1330 struct vmap_area *va;
1331 struct vmap_area *n_va;
1332
1333 lockdep_assert_held(&vmap_purge_lock);
1334
1335 valist = llist_del_all(&vmap_purge_list);
1336 if (unlikely(valist == NULL))
1337 return false;
1338
1339 /*
1340 * TODO: to calculate a flush range without looping.
1341 * The list can be up to lazy_max_pages() elements.
1342 */
1343 llist_for_each_entry(va, valist, purge_list) {
1344 if (va->va_start < start)
1345 start = va->va_start;
1346 if (va->va_end > end)
1347 end = va->va_end;
1348 }
1349
1350 flush_tlb_kernel_range(start, end);
1351 resched_threshold = lazy_max_pages() << 1;
1352
1353 spin_lock(&free_vmap_area_lock);
1354 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1355 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1356 unsigned long orig_start = va->va_start;
1357 unsigned long orig_end = va->va_end;
1358
1359 /*
1360 * Finally insert or merge lazily-freed area. It is
1361 * detached and there is no need to "unlink" it from
1362 * anything.
1363 */
1364 va = merge_or_add_vmap_area(va, &free_vmap_area_root,
1365 &free_vmap_area_list);
1366
1367 if (!va)
1368 continue;
1369
1370 if (is_vmalloc_or_module_addr((void *)orig_start))
1371 kasan_release_vmalloc(orig_start, orig_end,
1372 va->va_start, va->va_end);
1373
1374 atomic_long_sub(nr, &vmap_lazy_nr);
1375
1376 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1377 cond_resched_lock(&free_vmap_area_lock);
1378 }
1379 spin_unlock(&free_vmap_area_lock);
1380 return true;
1381 }
1382
1383 /*
1384 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1385 * is already purging.
1386 */
1387 static void try_purge_vmap_area_lazy(void)
1388 {
1389 if (mutex_trylock(&vmap_purge_lock)) {
1390 __purge_vmap_area_lazy(ULONG_MAX, 0);
1391 mutex_unlock(&vmap_purge_lock);
1392 }
1393 }
1394
1395 /*
1396 * Kick off a purge of the outstanding lazy areas.
1397 */
1398 static void purge_vmap_area_lazy(void)
1399 {
1400 mutex_lock(&vmap_purge_lock);
1401 purge_fragmented_blocks_allcpus();
1402 __purge_vmap_area_lazy(ULONG_MAX, 0);
1403 mutex_unlock(&vmap_purge_lock);
1404 }
1405
1406 /*
1407 * Free a vmap area, caller ensuring that the area has been unmapped
1408 * and flush_cache_vunmap had been called for the correct range
1409 * previously.
1410 */
1411 static void free_vmap_area_noflush(struct vmap_area *va)
1412 {
1413 unsigned long nr_lazy;
1414
1415 spin_lock(&vmap_area_lock);
1416 unlink_va(va, &vmap_area_root);
1417 spin_unlock(&vmap_area_lock);
1418
1419 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1420 PAGE_SHIFT, &vmap_lazy_nr);
1421
1422 /* After this point, we may free va at any time */
1423 llist_add(&va->purge_list, &vmap_purge_list);
1424
1425 if (unlikely(nr_lazy > lazy_max_pages()))
1426 try_purge_vmap_area_lazy();
1427 }
1428
1429 /*
1430 * Free and unmap a vmap area
1431 */
1432 static void free_unmap_vmap_area(struct vmap_area *va)
1433 {
1434 flush_cache_vunmap(va->va_start, va->va_end);
1435 unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
1436 if (debug_pagealloc_enabled_static())
1437 flush_tlb_kernel_range(va->va_start, va->va_end);
1438
1439 free_vmap_area_noflush(va);
1440 }
1441
1442 static struct vmap_area *find_vmap_area(unsigned long addr)
1443 {
1444 struct vmap_area *va;
1445
1446 spin_lock(&vmap_area_lock);
1447 va = __find_vmap_area(addr);
1448 spin_unlock(&vmap_area_lock);
1449
1450 return va;
1451 }
1452
1453 /*** Per cpu kva allocator ***/
1454
1455 /*
1456 * vmap space is limited especially on 32 bit architectures. Ensure there is
1457 * room for at least 16 percpu vmap blocks per CPU.
1458 */
1459 /*
1460 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1461 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1462 * instead (we just need a rough idea)
1463 */
1464 #if BITS_PER_LONG == 32
1465 #define VMALLOC_SPACE (128UL*1024*1024)
1466 #else
1467 #define VMALLOC_SPACE (128UL*1024*1024*1024)
1468 #endif
1469
1470 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1471 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1472 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1473 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1474 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1475 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1476 #define VMAP_BBMAP_BITS \
1477 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1478 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1479 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1480
1481 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1482
1483 struct vmap_block_queue {
1484 spinlock_t lock;
1485 struct list_head free;
1486 };
1487
1488 struct vmap_block {
1489 spinlock_t lock;
1490 struct vmap_area *va;
1491 unsigned long free, dirty;
1492 unsigned long dirty_min, dirty_max; /*< dirty range */
1493 struct list_head free_list;
1494 struct rcu_head rcu_head;
1495 struct list_head purge;
1496 };
1497
1498 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1499 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1500
1501 /*
1502 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1503 * in the free path. Could get rid of this if we change the API to return a
1504 * "cookie" from alloc, to be passed to free. But no big deal yet.
1505 */
1506 static DEFINE_XARRAY(vmap_blocks);
1507
1508 /*
1509 * We should probably have a fallback mechanism to allocate virtual memory
1510 * out of partially filled vmap blocks. However vmap block sizing should be
1511 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1512 * big problem.
1513 */
1514
1515 static unsigned long addr_to_vb_idx(unsigned long addr)
1516 {
1517 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1518 addr /= VMAP_BLOCK_SIZE;
1519 return addr;
1520 }
1521
1522 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1523 {
1524 unsigned long addr;
1525
1526 addr = va_start + (pages_off << PAGE_SHIFT);
1527 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1528 return (void *)addr;
1529 }
1530
1531 /**
1532 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1533 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1534 * @order: how many 2^order pages should be occupied in newly allocated block
1535 * @gfp_mask: flags for the page level allocator
1536 *
1537 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1538 */
1539 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1540 {
1541 struct vmap_block_queue *vbq;
1542 struct vmap_block *vb;
1543 struct vmap_area *va;
1544 unsigned long vb_idx;
1545 int node, err;
1546 void *vaddr;
1547
1548 node = numa_node_id();
1549
1550 vb = kmalloc_node(sizeof(struct vmap_block),
1551 gfp_mask & GFP_RECLAIM_MASK, node);
1552 if (unlikely(!vb))
1553 return ERR_PTR(-ENOMEM);
1554
1555 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1556 VMALLOC_START, VMALLOC_END,
1557 node, gfp_mask);
1558 if (IS_ERR(va)) {
1559 kfree(vb);
1560 return ERR_CAST(va);
1561 }
1562
1563 vaddr = vmap_block_vaddr(va->va_start, 0);
1564 spin_lock_init(&vb->lock);
1565 vb->va = va;
1566 /* At least something should be left free */
1567 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1568 vb->free = VMAP_BBMAP_BITS - (1UL << order);
1569 vb->dirty = 0;
1570 vb->dirty_min = VMAP_BBMAP_BITS;
1571 vb->dirty_max = 0;
1572 INIT_LIST_HEAD(&vb->free_list);
1573
1574 vb_idx = addr_to_vb_idx(va->va_start);
1575 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1576 if (err) {
1577 kfree(vb);
1578 free_vmap_area(va);
1579 return ERR_PTR(err);
1580 }
1581
1582 vbq = &get_cpu_var(vmap_block_queue);
1583 spin_lock(&vbq->lock);
1584 list_add_tail_rcu(&vb->free_list, &vbq->free);
1585 spin_unlock(&vbq->lock);
1586 put_cpu_var(vmap_block_queue);
1587
1588 return vaddr;
1589 }
1590
1591 static void free_vmap_block(struct vmap_block *vb)
1592 {
1593 struct vmap_block *tmp;
1594
1595 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
1596 BUG_ON(tmp != vb);
1597
1598 free_vmap_area_noflush(vb->va);
1599 kfree_rcu(vb, rcu_head);
1600 }
1601
1602 static void purge_fragmented_blocks(int cpu)
1603 {
1604 LIST_HEAD(purge);
1605 struct vmap_block *vb;
1606 struct vmap_block *n_vb;
1607 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1608
1609 rcu_read_lock();
1610 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1611
1612 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1613 continue;
1614
1615 spin_lock(&vb->lock);
1616 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1617 vb->free = 0; /* prevent further allocs after releasing lock */
1618 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1619 vb->dirty_min = 0;
1620 vb->dirty_max = VMAP_BBMAP_BITS;
1621 spin_lock(&vbq->lock);
1622 list_del_rcu(&vb->free_list);
1623 spin_unlock(&vbq->lock);
1624 spin_unlock(&vb->lock);
1625 list_add_tail(&vb->purge, &purge);
1626 } else
1627 spin_unlock(&vb->lock);
1628 }
1629 rcu_read_unlock();
1630
1631 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1632 list_del(&vb->purge);
1633 free_vmap_block(vb);
1634 }
1635 }
1636
1637 static void purge_fragmented_blocks_allcpus(void)
1638 {
1639 int cpu;
1640
1641 for_each_possible_cpu(cpu)
1642 purge_fragmented_blocks(cpu);
1643 }
1644
1645 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1646 {
1647 struct vmap_block_queue *vbq;
1648 struct vmap_block *vb;
1649 void *vaddr = NULL;
1650 unsigned int order;
1651
1652 BUG_ON(offset_in_page(size));
1653 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1654 if (WARN_ON(size == 0)) {
1655 /*
1656 * Allocating 0 bytes isn't what caller wants since
1657 * get_order(0) returns funny result. Just warn and terminate
1658 * early.
1659 */
1660 return NULL;
1661 }
1662 order = get_order(size);
1663
1664 rcu_read_lock();
1665 vbq = &get_cpu_var(vmap_block_queue);
1666 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1667 unsigned long pages_off;
1668
1669 spin_lock(&vb->lock);
1670 if (vb->free < (1UL << order)) {
1671 spin_unlock(&vb->lock);
1672 continue;
1673 }
1674
1675 pages_off = VMAP_BBMAP_BITS - vb->free;
1676 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1677 vb->free -= 1UL << order;
1678 if (vb->free == 0) {
1679 spin_lock(&vbq->lock);
1680 list_del_rcu(&vb->free_list);
1681 spin_unlock(&vbq->lock);
1682 }
1683
1684 spin_unlock(&vb->lock);
1685 break;
1686 }
1687
1688 put_cpu_var(vmap_block_queue);
1689 rcu_read_unlock();
1690
1691 /* Allocate new block if nothing was found */
1692 if (!vaddr)
1693 vaddr = new_vmap_block(order, gfp_mask);
1694
1695 return vaddr;
1696 }
1697
1698 static void vb_free(unsigned long addr, unsigned long size)
1699 {
1700 unsigned long offset;
1701 unsigned int order;
1702 struct vmap_block *vb;
1703
1704 BUG_ON(offset_in_page(size));
1705 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1706
1707 flush_cache_vunmap(addr, addr + size);
1708
1709 order = get_order(size);
1710 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
1711 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
1712
1713 unmap_kernel_range_noflush(addr, size);
1714
1715 if (debug_pagealloc_enabled_static())
1716 flush_tlb_kernel_range(addr, addr + size);
1717
1718 spin_lock(&vb->lock);
1719
1720 /* Expand dirty range */
1721 vb->dirty_min = min(vb->dirty_min, offset);
1722 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1723
1724 vb->dirty += 1UL << order;
1725 if (vb->dirty == VMAP_BBMAP_BITS) {
1726 BUG_ON(vb->free);
1727 spin_unlock(&vb->lock);
1728 free_vmap_block(vb);
1729 } else
1730 spin_unlock(&vb->lock);
1731 }
1732
1733 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1734 {
1735 int cpu;
1736
1737 if (unlikely(!vmap_initialized))
1738 return;
1739
1740 might_sleep();
1741
1742 for_each_possible_cpu(cpu) {
1743 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1744 struct vmap_block *vb;
1745
1746 rcu_read_lock();
1747 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1748 spin_lock(&vb->lock);
1749 if (vb->dirty) {
1750 unsigned long va_start = vb->va->va_start;
1751 unsigned long s, e;
1752
1753 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1754 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1755
1756 start = min(s, start);
1757 end = max(e, end);
1758
1759 flush = 1;
1760 }
1761 spin_unlock(&vb->lock);
1762 }
1763 rcu_read_unlock();
1764 }
1765
1766 mutex_lock(&vmap_purge_lock);
1767 purge_fragmented_blocks_allcpus();
1768 if (!__purge_vmap_area_lazy(start, end) && flush)
1769 flush_tlb_kernel_range(start, end);
1770 mutex_unlock(&vmap_purge_lock);
1771 }
1772
1773 /**
1774 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1775 *
1776 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1777 * to amortize TLB flushing overheads. What this means is that any page you
1778 * have now, may, in a former life, have been mapped into kernel virtual
1779 * address by the vmap layer and so there might be some CPUs with TLB entries
1780 * still referencing that page (additional to the regular 1:1 kernel mapping).
1781 *
1782 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1783 * be sure that none of the pages we have control over will have any aliases
1784 * from the vmap layer.
1785 */
1786 void vm_unmap_aliases(void)
1787 {
1788 unsigned long start = ULONG_MAX, end = 0;
1789 int flush = 0;
1790
1791 _vm_unmap_aliases(start, end, flush);
1792 }
1793 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1794
1795 /**
1796 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1797 * @mem: the pointer returned by vm_map_ram
1798 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1799 */
1800 void vm_unmap_ram(const void *mem, unsigned int count)
1801 {
1802 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1803 unsigned long addr = (unsigned long)mem;
1804 struct vmap_area *va;
1805
1806 might_sleep();
1807 BUG_ON(!addr);
1808 BUG_ON(addr < VMALLOC_START);
1809 BUG_ON(addr > VMALLOC_END);
1810 BUG_ON(!PAGE_ALIGNED(addr));
1811
1812 kasan_poison_vmalloc(mem, size);
1813
1814 if (likely(count <= VMAP_MAX_ALLOC)) {
1815 debug_check_no_locks_freed(mem, size);
1816 vb_free(addr, size);
1817 return;
1818 }
1819
1820 va = find_vmap_area(addr);
1821 BUG_ON(!va);
1822 debug_check_no_locks_freed((void *)va->va_start,
1823 (va->va_end - va->va_start));
1824 free_unmap_vmap_area(va);
1825 }
1826 EXPORT_SYMBOL(vm_unmap_ram);
1827
1828 /**
1829 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1830 * @pages: an array of pointers to the pages to be mapped
1831 * @count: number of pages
1832 * @node: prefer to allocate data structures on this node
1833 *
1834 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1835 * faster than vmap so it's good. But if you mix long-life and short-life
1836 * objects with vm_map_ram(), it could consume lots of address space through
1837 * fragmentation (especially on a 32bit machine). You could see failures in
1838 * the end. Please use this function for short-lived objects.
1839 *
1840 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1841 */
1842 void *vm_map_ram(struct page **pages, unsigned int count, int node)
1843 {
1844 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1845 unsigned long addr;
1846 void *mem;
1847
1848 if (likely(count <= VMAP_MAX_ALLOC)) {
1849 mem = vb_alloc(size, GFP_KERNEL);
1850 if (IS_ERR(mem))
1851 return NULL;
1852 addr = (unsigned long)mem;
1853 } else {
1854 struct vmap_area *va;
1855 va = alloc_vmap_area(size, PAGE_SIZE,
1856 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1857 if (IS_ERR(va))
1858 return NULL;
1859
1860 addr = va->va_start;
1861 mem = (void *)addr;
1862 }
1863
1864 kasan_unpoison_vmalloc(mem, size);
1865
1866 if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
1867 vm_unmap_ram(mem, count);
1868 return NULL;
1869 }
1870 return mem;
1871 }
1872 EXPORT_SYMBOL(vm_map_ram);
1873
1874 static struct vm_struct *vmlist __initdata;
1875
1876 /**
1877 * vm_area_add_early - add vmap area early during boot
1878 * @vm: vm_struct to add
1879 *
1880 * This function is used to add fixed kernel vm area to vmlist before
1881 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1882 * should contain proper values and the other fields should be zero.
1883 *
1884 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1885 */
1886 void __init vm_area_add_early(struct vm_struct *vm)
1887 {
1888 struct vm_struct *tmp, **p;
1889
1890 BUG_ON(vmap_initialized);
1891 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1892 if (tmp->addr >= vm->addr) {
1893 BUG_ON(tmp->addr < vm->addr + vm->size);
1894 break;
1895 } else
1896 BUG_ON(tmp->addr + tmp->size > vm->addr);
1897 }
1898 vm->next = *p;
1899 *p = vm;
1900 }
1901
1902 /**
1903 * vm_area_register_early - register vmap area early during boot
1904 * @vm: vm_struct to register
1905 * @align: requested alignment
1906 *
1907 * This function is used to register kernel vm area before
1908 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1909 * proper values on entry and other fields should be zero. On return,
1910 * vm->addr contains the allocated address.
1911 *
1912 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1913 */
1914 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1915 {
1916 static size_t vm_init_off __initdata;
1917 unsigned long addr;
1918
1919 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1920 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1921
1922 vm->addr = (void *)addr;
1923
1924 vm_area_add_early(vm);
1925 }
1926
1927 static void vmap_init_free_space(void)
1928 {
1929 unsigned long vmap_start = 1;
1930 const unsigned long vmap_end = ULONG_MAX;
1931 struct vmap_area *busy, *free;
1932
1933 /*
1934 * B F B B B F
1935 * -|-----|.....|-----|-----|-----|.....|-
1936 * | The KVA space |
1937 * |<--------------------------------->|
1938 */
1939 list_for_each_entry(busy, &vmap_area_list, list) {
1940 if (busy->va_start - vmap_start > 0) {
1941 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1942 if (!WARN_ON_ONCE(!free)) {
1943 free->va_start = vmap_start;
1944 free->va_end = busy->va_start;
1945
1946 insert_vmap_area_augment(free, NULL,
1947 &free_vmap_area_root,
1948 &free_vmap_area_list);
1949 }
1950 }
1951
1952 vmap_start = busy->va_end;
1953 }
1954
1955 if (vmap_end - vmap_start > 0) {
1956 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1957 if (!WARN_ON_ONCE(!free)) {
1958 free->va_start = vmap_start;
1959 free->va_end = vmap_end;
1960
1961 insert_vmap_area_augment(free, NULL,
1962 &free_vmap_area_root,
1963 &free_vmap_area_list);
1964 }
1965 }
1966 }
1967
1968 void __init vmalloc_init(void)
1969 {
1970 struct vmap_area *va;
1971 struct vm_struct *tmp;
1972 int i;
1973
1974 /*
1975 * Create the cache for vmap_area objects.
1976 */
1977 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1978
1979 for_each_possible_cpu(i) {
1980 struct vmap_block_queue *vbq;
1981 struct vfree_deferred *p;
1982
1983 vbq = &per_cpu(vmap_block_queue, i);
1984 spin_lock_init(&vbq->lock);
1985 INIT_LIST_HEAD(&vbq->free);
1986 p = &per_cpu(vfree_deferred, i);
1987 init_llist_head(&p->list);
1988 INIT_WORK(&p->wq, free_work);
1989 }
1990
1991 /* Import existing vmlist entries. */
1992 for (tmp = vmlist; tmp; tmp = tmp->next) {
1993 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1994 if (WARN_ON_ONCE(!va))
1995 continue;
1996
1997 va->va_start = (unsigned long)tmp->addr;
1998 va->va_end = va->va_start + tmp->size;
1999 va->vm = tmp;
2000 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2001 }
2002
2003 /*
2004 * Now we can initialize a free vmap space.
2005 */
2006 vmap_init_free_space();
2007 vmap_initialized = true;
2008 }
2009
2010 /**
2011 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2012 * @addr: start of the VM area to unmap
2013 * @size: size of the VM area to unmap
2014 *
2015 * Similar to unmap_kernel_range_noflush() but flushes vcache before
2016 * the unmapping and tlb after.
2017 */
2018 void unmap_kernel_range(unsigned long addr, unsigned long size)
2019 {
2020 unsigned long end = addr + size;
2021
2022 flush_cache_vunmap(addr, end);
2023 unmap_kernel_range_noflush(addr, size);
2024 flush_tlb_kernel_range(addr, end);
2025 }
2026
2027 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2028 struct vmap_area *va, unsigned long flags, const void *caller)
2029 {
2030 vm->flags = flags;
2031 vm->addr = (void *)va->va_start;
2032 vm->size = va->va_end - va->va_start;
2033 vm->caller = caller;
2034 va->vm = vm;
2035 }
2036
2037 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2038 unsigned long flags, const void *caller)
2039 {
2040 spin_lock(&vmap_area_lock);
2041 setup_vmalloc_vm_locked(vm, va, flags, caller);
2042 spin_unlock(&vmap_area_lock);
2043 }
2044
2045 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2046 {
2047 /*
2048 * Before removing VM_UNINITIALIZED,
2049 * we should make sure that vm has proper values.
2050 * Pair with smp_rmb() in show_numa_info().
2051 */
2052 smp_wmb();
2053 vm->flags &= ~VM_UNINITIALIZED;
2054 }
2055
2056 static struct vm_struct *__get_vm_area_node(unsigned long size,
2057 unsigned long align, unsigned long flags, unsigned long start,
2058 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2059 {
2060 struct vmap_area *va;
2061 struct vm_struct *area;
2062 unsigned long requested_size = size;
2063
2064 BUG_ON(in_interrupt());
2065 size = PAGE_ALIGN(size);
2066 if (unlikely(!size))
2067 return NULL;
2068
2069 if (flags & VM_IOREMAP)
2070 align = 1ul << clamp_t(int, get_count_order_long(size),
2071 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2072
2073 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2074 if (unlikely(!area))
2075 return NULL;
2076
2077 if (!(flags & VM_NO_GUARD))
2078 size += PAGE_SIZE;
2079
2080 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2081 if (IS_ERR(va)) {
2082 kfree(area);
2083 return NULL;
2084 }
2085
2086 kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2087
2088 setup_vmalloc_vm(area, va, flags, caller);
2089
2090 return area;
2091 }
2092
2093 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2094 unsigned long start, unsigned long end,
2095 const void *caller)
2096 {
2097 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2098 GFP_KERNEL, caller);
2099 }
2100
2101 /**
2102 * get_vm_area - reserve a contiguous kernel virtual area
2103 * @size: size of the area
2104 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2105 *
2106 * Search an area of @size in the kernel virtual mapping area,
2107 * and reserved it for out purposes. Returns the area descriptor
2108 * on success or %NULL on failure.
2109 *
2110 * Return: the area descriptor on success or %NULL on failure.
2111 */
2112 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2113 {
2114 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2115 NUMA_NO_NODE, GFP_KERNEL,
2116 __builtin_return_address(0));
2117 }
2118
2119 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2120 const void *caller)
2121 {
2122 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2123 NUMA_NO_NODE, GFP_KERNEL, caller);
2124 }
2125
2126 /**
2127 * find_vm_area - find a continuous kernel virtual area
2128 * @addr: base address
2129 *
2130 * Search for the kernel VM area starting at @addr, and return it.
2131 * It is up to the caller to do all required locking to keep the returned
2132 * pointer valid.
2133 *
2134 * Return: the area descriptor on success or %NULL on failure.
2135 */
2136 struct vm_struct *find_vm_area(const void *addr)
2137 {
2138 struct vmap_area *va;
2139
2140 va = find_vmap_area((unsigned long)addr);
2141 if (!va)
2142 return NULL;
2143
2144 return va->vm;
2145 }
2146
2147 /**
2148 * remove_vm_area - find and remove a continuous kernel virtual area
2149 * @addr: base address
2150 *
2151 * Search for the kernel VM area starting at @addr, and remove it.
2152 * This function returns the found VM area, but using it is NOT safe
2153 * on SMP machines, except for its size or flags.
2154 *
2155 * Return: the area descriptor on success or %NULL on failure.
2156 */
2157 struct vm_struct *remove_vm_area(const void *addr)
2158 {
2159 struct vmap_area *va;
2160
2161 might_sleep();
2162
2163 spin_lock(&vmap_area_lock);
2164 va = __find_vmap_area((unsigned long)addr);
2165 if (va && va->vm) {
2166 struct vm_struct *vm = va->vm;
2167
2168 va->vm = NULL;
2169 spin_unlock(&vmap_area_lock);
2170
2171 kasan_free_shadow(vm);
2172 free_unmap_vmap_area(va);
2173
2174 return vm;
2175 }
2176
2177 spin_unlock(&vmap_area_lock);
2178 return NULL;
2179 }
2180
2181 static inline void set_area_direct_map(const struct vm_struct *area,
2182 int (*set_direct_map)(struct page *page))
2183 {
2184 int i;
2185
2186 for (i = 0; i < area->nr_pages; i++)
2187 if (page_address(area->pages[i]))
2188 set_direct_map(area->pages[i]);
2189 }
2190
2191 /* Handle removing and resetting vm mappings related to the vm_struct. */
2192 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2193 {
2194 unsigned long start = ULONG_MAX, end = 0;
2195 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2196 int flush_dmap = 0;
2197 int i;
2198
2199 remove_vm_area(area->addr);
2200
2201 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2202 if (!flush_reset)
2203 return;
2204
2205 /*
2206 * If not deallocating pages, just do the flush of the VM area and
2207 * return.
2208 */
2209 if (!deallocate_pages) {
2210 vm_unmap_aliases();
2211 return;
2212 }
2213
2214 /*
2215 * If execution gets here, flush the vm mapping and reset the direct
2216 * map. Find the start and end range of the direct mappings to make sure
2217 * the vm_unmap_aliases() flush includes the direct map.
2218 */
2219 for (i = 0; i < area->nr_pages; i++) {
2220 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2221 if (addr) {
2222 start = min(addr, start);
2223 end = max(addr + PAGE_SIZE, end);
2224 flush_dmap = 1;
2225 }
2226 }
2227
2228 /*
2229 * Set direct map to something invalid so that it won't be cached if
2230 * there are any accesses after the TLB flush, then flush the TLB and
2231 * reset the direct map permissions to the default.
2232 */
2233 set_area_direct_map(area, set_direct_map_invalid_noflush);
2234 _vm_unmap_aliases(start, end, flush_dmap);
2235 set_area_direct_map(area, set_direct_map_default_noflush);
2236 }
2237
2238 static void __vunmap(const void *addr, int deallocate_pages)
2239 {
2240 struct vm_struct *area;
2241
2242 if (!addr)
2243 return;
2244
2245 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2246 addr))
2247 return;
2248
2249 area = find_vm_area(addr);
2250 if (unlikely(!area)) {
2251 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2252 addr);
2253 return;
2254 }
2255
2256 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2257 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2258
2259 kasan_poison_vmalloc(area->addr, area->size);
2260
2261 vm_remove_mappings(area, deallocate_pages);
2262
2263 if (deallocate_pages) {
2264 int i;
2265
2266 for (i = 0; i < area->nr_pages; i++) {
2267 struct page *page = area->pages[i];
2268
2269 BUG_ON(!page);
2270 __free_pages(page, 0);
2271 }
2272 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2273
2274 kvfree(area->pages);
2275 }
2276
2277 kfree(area);
2278 return;
2279 }
2280
2281 static inline void __vfree_deferred(const void *addr)
2282 {
2283 /*
2284 * Use raw_cpu_ptr() because this can be called from preemptible
2285 * context. Preemption is absolutely fine here, because the llist_add()
2286 * implementation is lockless, so it works even if we are adding to
2287 * another cpu's list. schedule_work() should be fine with this too.
2288 */
2289 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2290
2291 if (llist_add((struct llist_node *)addr, &p->list))
2292 schedule_work(&p->wq);
2293 }
2294
2295 /**
2296 * vfree_atomic - release memory allocated by vmalloc()
2297 * @addr: memory base address
2298 *
2299 * This one is just like vfree() but can be called in any atomic context
2300 * except NMIs.
2301 */
2302 void vfree_atomic(const void *addr)
2303 {
2304 BUG_ON(in_nmi());
2305
2306 kmemleak_free(addr);
2307
2308 if (!addr)
2309 return;
2310 __vfree_deferred(addr);
2311 }
2312
2313 static void __vfree(const void *addr)
2314 {
2315 if (unlikely(in_interrupt()))
2316 __vfree_deferred(addr);
2317 else
2318 __vunmap(addr, 1);
2319 }
2320
2321 /**
2322 * vfree - Release memory allocated by vmalloc()
2323 * @addr: Memory base address
2324 *
2325 * Free the virtually continuous memory area starting at @addr, as obtained
2326 * from one of the vmalloc() family of APIs. This will usually also free the
2327 * physical memory underlying the virtual allocation, but that memory is
2328 * reference counted, so it will not be freed until the last user goes away.
2329 *
2330 * If @addr is NULL, no operation is performed.
2331 *
2332 * Context:
2333 * May sleep if called *not* from interrupt context.
2334 * Must not be called in NMI context (strictly speaking, it could be
2335 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2336 * conventions for vfree() arch-depenedent would be a really bad idea).
2337 */
2338 void vfree(const void *addr)
2339 {
2340 BUG_ON(in_nmi());
2341
2342 kmemleak_free(addr);
2343
2344 might_sleep_if(!in_interrupt());
2345
2346 if (!addr)
2347 return;
2348
2349 __vfree(addr);
2350 }
2351 EXPORT_SYMBOL(vfree);
2352
2353 /**
2354 * vunmap - release virtual mapping obtained by vmap()
2355 * @addr: memory base address
2356 *
2357 * Free the virtually contiguous memory area starting at @addr,
2358 * which was created from the page array passed to vmap().
2359 *
2360 * Must not be called in interrupt context.
2361 */
2362 void vunmap(const void *addr)
2363 {
2364 BUG_ON(in_interrupt());
2365 might_sleep();
2366 if (addr)
2367 __vunmap(addr, 0);
2368 }
2369 EXPORT_SYMBOL(vunmap);
2370
2371 /**
2372 * vmap - map an array of pages into virtually contiguous space
2373 * @pages: array of page pointers
2374 * @count: number of pages to map
2375 * @flags: vm_area->flags
2376 * @prot: page protection for the mapping
2377 *
2378 * Maps @count pages from @pages into contiguous kernel virtual space.
2379 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2380 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2381 * are transferred from the caller to vmap(), and will be freed / dropped when
2382 * vfree() is called on the return value.
2383 *
2384 * Return: the address of the area or %NULL on failure
2385 */
2386 void *vmap(struct page **pages, unsigned int count,
2387 unsigned long flags, pgprot_t prot)
2388 {
2389 struct vm_struct *area;
2390 unsigned long size; /* In bytes */
2391
2392 might_sleep();
2393
2394 if (count > totalram_pages())
2395 return NULL;
2396
2397 size = (unsigned long)count << PAGE_SHIFT;
2398 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2399 if (!area)
2400 return NULL;
2401
2402 if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
2403 pages) < 0) {
2404 vunmap(area->addr);
2405 return NULL;
2406 }
2407
2408 if (flags & VM_MAP_PUT_PAGES)
2409 area->pages = pages;
2410 return area->addr;
2411 }
2412 EXPORT_SYMBOL(vmap);
2413
2414 #ifdef CONFIG_VMAP_PFN
2415 struct vmap_pfn_data {
2416 unsigned long *pfns;
2417 pgprot_t prot;
2418 unsigned int idx;
2419 };
2420
2421 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2422 {
2423 struct vmap_pfn_data *data = private;
2424
2425 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2426 return -EINVAL;
2427 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2428 return 0;
2429 }
2430
2431 /**
2432 * vmap_pfn - map an array of PFNs into virtually contiguous space
2433 * @pfns: array of PFNs
2434 * @count: number of pages to map
2435 * @prot: page protection for the mapping
2436 *
2437 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2438 * the start address of the mapping.
2439 */
2440 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2441 {
2442 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2443 struct vm_struct *area;
2444
2445 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2446 __builtin_return_address(0));
2447 if (!area)
2448 return NULL;
2449 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2450 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2451 free_vm_area(area);
2452 return NULL;
2453 }
2454 return area->addr;
2455 }
2456 EXPORT_SYMBOL_GPL(vmap_pfn);
2457 #endif /* CONFIG_VMAP_PFN */
2458
2459 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2460 pgprot_t prot, int node)
2461 {
2462 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2463 unsigned int nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2464 unsigned int array_size = nr_pages * sizeof(struct page *), i;
2465 struct page **pages;
2466
2467 gfp_mask |= __GFP_NOWARN;
2468 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2469 gfp_mask |= __GFP_HIGHMEM;
2470
2471 /* Please note that the recursion is strictly bounded. */
2472 if (array_size > PAGE_SIZE) {
2473 pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2474 area->caller);
2475 } else {
2476 pages = kmalloc_node(array_size, nested_gfp, node);
2477 }
2478
2479 if (!pages) {
2480 remove_vm_area(area->addr);
2481 kfree(area);
2482 return NULL;
2483 }
2484
2485 area->pages = pages;
2486 area->nr_pages = nr_pages;
2487
2488 for (i = 0; i < area->nr_pages; i++) {
2489 struct page *page;
2490
2491 if (node == NUMA_NO_NODE)
2492 page = alloc_page(gfp_mask);
2493 else
2494 page = alloc_pages_node(node, gfp_mask, 0);
2495
2496 if (unlikely(!page)) {
2497 /* Successfully allocated i pages, free them in __vfree() */
2498 area->nr_pages = i;
2499 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2500 goto fail;
2501 }
2502 area->pages[i] = page;
2503 if (gfpflags_allow_blocking(gfp_mask))
2504 cond_resched();
2505 }
2506 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2507
2508 if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
2509 prot, pages) < 0)
2510 goto fail;
2511
2512 return area->addr;
2513
2514 fail:
2515 warn_alloc(gfp_mask, NULL,
2516 "vmalloc: allocation failure, allocated %ld of %ld bytes",
2517 (area->nr_pages*PAGE_SIZE), area->size);
2518 __vfree(area->addr);
2519 return NULL;
2520 }
2521
2522 /**
2523 * __vmalloc_node_range - allocate virtually contiguous memory
2524 * @size: allocation size
2525 * @align: desired alignment
2526 * @start: vm area range start
2527 * @end: vm area range end
2528 * @gfp_mask: flags for the page level allocator
2529 * @prot: protection mask for the allocated pages
2530 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2531 * @node: node to use for allocation or NUMA_NO_NODE
2532 * @caller: caller's return address
2533 *
2534 * Allocate enough pages to cover @size from the page level
2535 * allocator with @gfp_mask flags. Map them into contiguous
2536 * kernel virtual space, using a pagetable protection of @prot.
2537 *
2538 * Return: the address of the area or %NULL on failure
2539 */
2540 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2541 unsigned long start, unsigned long end, gfp_t gfp_mask,
2542 pgprot_t prot, unsigned long vm_flags, int node,
2543 const void *caller)
2544 {
2545 struct vm_struct *area;
2546 void *addr;
2547 unsigned long real_size = size;
2548
2549 size = PAGE_ALIGN(size);
2550 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2551 goto fail;
2552
2553 area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2554 vm_flags, start, end, node, gfp_mask, caller);
2555 if (!area)
2556 goto fail;
2557
2558 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2559 if (!addr)
2560 return NULL;
2561
2562 /*
2563 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2564 * flag. It means that vm_struct is not fully initialized.
2565 * Now, it is fully initialized, so remove this flag here.
2566 */
2567 clear_vm_uninitialized_flag(area);
2568
2569 kmemleak_vmalloc(area, size, gfp_mask);
2570
2571 return addr;
2572
2573 fail:
2574 warn_alloc(gfp_mask, NULL,
2575 "vmalloc: allocation failure: %lu bytes", real_size);
2576 return NULL;
2577 }
2578
2579 /**
2580 * __vmalloc_node - allocate virtually contiguous memory
2581 * @size: allocation size
2582 * @align: desired alignment
2583 * @gfp_mask: flags for the page level allocator
2584 * @node: node to use for allocation or NUMA_NO_NODE
2585 * @caller: caller's return address
2586 *
2587 * Allocate enough pages to cover @size from the page level allocator with
2588 * @gfp_mask flags. Map them into contiguous kernel virtual space.
2589 *
2590 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2591 * and __GFP_NOFAIL are not supported
2592 *
2593 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2594 * with mm people.
2595 *
2596 * Return: pointer to the allocated memory or %NULL on error
2597 */
2598 void *__vmalloc_node(unsigned long size, unsigned long align,
2599 gfp_t gfp_mask, int node, const void *caller)
2600 {
2601 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2602 gfp_mask, PAGE_KERNEL, 0, node, caller);
2603 }
2604 /*
2605 * This is only for performance analysis of vmalloc and stress purpose.
2606 * It is required by vmalloc test module, therefore do not use it other
2607 * than that.
2608 */
2609 #ifdef CONFIG_TEST_VMALLOC_MODULE
2610 EXPORT_SYMBOL_GPL(__vmalloc_node);
2611 #endif
2612
2613 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
2614 {
2615 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
2616 __builtin_return_address(0));
2617 }
2618 EXPORT_SYMBOL(__vmalloc);
2619
2620 /**
2621 * vmalloc - allocate virtually contiguous memory
2622 * @size: allocation size
2623 *
2624 * Allocate enough pages to cover @size from the page level
2625 * allocator and map them into contiguous kernel virtual space.
2626 *
2627 * For tight control over page level allocator and protection flags
2628 * use __vmalloc() instead.
2629 *
2630 * Return: pointer to the allocated memory or %NULL on error
2631 */
2632 void *vmalloc(unsigned long size)
2633 {
2634 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
2635 __builtin_return_address(0));
2636 }
2637 EXPORT_SYMBOL(vmalloc);
2638
2639 /**
2640 * vzalloc - allocate virtually contiguous memory with zero fill
2641 * @size: allocation size
2642 *
2643 * Allocate enough pages to cover @size from the page level
2644 * allocator and map them into contiguous kernel virtual space.
2645 * The memory allocated is set to zero.
2646 *
2647 * For tight control over page level allocator and protection flags
2648 * use __vmalloc() instead.
2649 *
2650 * Return: pointer to the allocated memory or %NULL on error
2651 */
2652 void *vzalloc(unsigned long size)
2653 {
2654 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
2655 __builtin_return_address(0));
2656 }
2657 EXPORT_SYMBOL(vzalloc);
2658
2659 /**
2660 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2661 * @size: allocation size
2662 *
2663 * The resulting memory area is zeroed so it can be mapped to userspace
2664 * without leaking data.
2665 *
2666 * Return: pointer to the allocated memory or %NULL on error
2667 */
2668 void *vmalloc_user(unsigned long size)
2669 {
2670 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2671 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2672 VM_USERMAP, NUMA_NO_NODE,
2673 __builtin_return_address(0));
2674 }
2675 EXPORT_SYMBOL(vmalloc_user);
2676
2677 /**
2678 * vmalloc_node - allocate memory on a specific node
2679 * @size: allocation size
2680 * @node: numa node
2681 *
2682 * Allocate enough pages to cover @size from the page level
2683 * allocator and map them into contiguous kernel virtual space.
2684 *
2685 * For tight control over page level allocator and protection flags
2686 * use __vmalloc() instead.
2687 *
2688 * Return: pointer to the allocated memory or %NULL on error
2689 */
2690 void *vmalloc_node(unsigned long size, int node)
2691 {
2692 return __vmalloc_node(size, 1, GFP_KERNEL, node,
2693 __builtin_return_address(0));
2694 }
2695 EXPORT_SYMBOL(vmalloc_node);
2696
2697 /**
2698 * vzalloc_node - allocate memory on a specific node with zero fill
2699 * @size: allocation size
2700 * @node: numa node
2701 *
2702 * Allocate enough pages to cover @size from the page level
2703 * allocator and map them into contiguous kernel virtual space.
2704 * The memory allocated is set to zero.
2705 *
2706 * Return: pointer to the allocated memory or %NULL on error
2707 */
2708 void *vzalloc_node(unsigned long size, int node)
2709 {
2710 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
2711 __builtin_return_address(0));
2712 }
2713 EXPORT_SYMBOL(vzalloc_node);
2714
2715 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2716 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2717 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2718 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2719 #else
2720 /*
2721 * 64b systems should always have either DMA or DMA32 zones. For others
2722 * GFP_DMA32 should do the right thing and use the normal zone.
2723 */
2724 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2725 #endif
2726
2727 /**
2728 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2729 * @size: allocation size
2730 *
2731 * Allocate enough 32bit PA addressable pages to cover @size from the
2732 * page level allocator and map them into contiguous kernel virtual space.
2733 *
2734 * Return: pointer to the allocated memory or %NULL on error
2735 */
2736 void *vmalloc_32(unsigned long size)
2737 {
2738 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
2739 __builtin_return_address(0));
2740 }
2741 EXPORT_SYMBOL(vmalloc_32);
2742
2743 /**
2744 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2745 * @size: allocation size
2746 *
2747 * The resulting memory area is 32bit addressable and zeroed so it can be
2748 * mapped to userspace without leaking data.
2749 *
2750 * Return: pointer to the allocated memory or %NULL on error
2751 */
2752 void *vmalloc_32_user(unsigned long size)
2753 {
2754 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2755 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2756 VM_USERMAP, NUMA_NO_NODE,
2757 __builtin_return_address(0));
2758 }
2759 EXPORT_SYMBOL(vmalloc_32_user);
2760
2761 /*
2762 * small helper routine , copy contents to buf from addr.
2763 * If the page is not present, fill zero.
2764 */
2765
2766 static int aligned_vread(char *buf, char *addr, unsigned long count)
2767 {
2768 struct page *p;
2769 int copied = 0;
2770
2771 while (count) {
2772 unsigned long offset, length;
2773
2774 offset = offset_in_page(addr);
2775 length = PAGE_SIZE - offset;
2776 if (length > count)
2777 length = count;
2778 p = vmalloc_to_page(addr);
2779 /*
2780 * To do safe access to this _mapped_ area, we need
2781 * lock. But adding lock here means that we need to add
2782 * overhead of vmalloc()/vfree() calles for this _debug_
2783 * interface, rarely used. Instead of that, we'll use
2784 * kmap() and get small overhead in this access function.
2785 */
2786 if (p) {
2787 /*
2788 * we can expect USER0 is not used (see vread/vwrite's
2789 * function description)
2790 */
2791 void *map = kmap_atomic(p);
2792 memcpy(buf, map + offset, length);
2793 kunmap_atomic(map);
2794 } else
2795 memset(buf, 0, length);
2796
2797 addr += length;
2798 buf += length;
2799 copied += length;
2800 count -= length;
2801 }
2802 return copied;
2803 }
2804
2805 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2806 {
2807 struct page *p;
2808 int copied = 0;
2809
2810 while (count) {
2811 unsigned long offset, length;
2812
2813 offset = offset_in_page(addr);
2814 length = PAGE_SIZE - offset;
2815 if (length > count)
2816 length = count;
2817 p = vmalloc_to_page(addr);
2818 /*
2819 * To do safe access to this _mapped_ area, we need
2820 * lock. But adding lock here means that we need to add
2821 * overhead of vmalloc()/vfree() calles for this _debug_
2822 * interface, rarely used. Instead of that, we'll use
2823 * kmap() and get small overhead in this access function.
2824 */
2825 if (p) {
2826 /*
2827 * we can expect USER0 is not used (see vread/vwrite's
2828 * function description)
2829 */
2830 void *map = kmap_atomic(p);
2831 memcpy(map + offset, buf, length);
2832 kunmap_atomic(map);
2833 }
2834 addr += length;
2835 buf += length;
2836 copied += length;
2837 count -= length;
2838 }
2839 return copied;
2840 }
2841
2842 /**
2843 * vread() - read vmalloc area in a safe way.
2844 * @buf: buffer for reading data
2845 * @addr: vm address.
2846 * @count: number of bytes to be read.
2847 *
2848 * This function checks that addr is a valid vmalloc'ed area, and
2849 * copy data from that area to a given buffer. If the given memory range
2850 * of [addr...addr+count) includes some valid address, data is copied to
2851 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2852 * IOREMAP area is treated as memory hole and no copy is done.
2853 *
2854 * If [addr...addr+count) doesn't includes any intersects with alive
2855 * vm_struct area, returns 0. @buf should be kernel's buffer.
2856 *
2857 * Note: In usual ops, vread() is never necessary because the caller
2858 * should know vmalloc() area is valid and can use memcpy().
2859 * This is for routines which have to access vmalloc area without
2860 * any information, as /dev/kmem.
2861 *
2862 * Return: number of bytes for which addr and buf should be increased
2863 * (same number as @count) or %0 if [addr...addr+count) doesn't
2864 * include any intersection with valid vmalloc area
2865 */
2866 long vread(char *buf, char *addr, unsigned long count)
2867 {
2868 struct vmap_area *va;
2869 struct vm_struct *vm;
2870 char *vaddr, *buf_start = buf;
2871 unsigned long buflen = count;
2872 unsigned long n;
2873
2874 /* Don't allow overflow */
2875 if ((unsigned long) addr + count < count)
2876 count = -(unsigned long) addr;
2877
2878 spin_lock(&vmap_area_lock);
2879 list_for_each_entry(va, &vmap_area_list, list) {
2880 if (!count)
2881 break;
2882
2883 if (!va->vm)
2884 continue;
2885
2886 vm = va->vm;
2887 vaddr = (char *) vm->addr;
2888 if (addr >= vaddr + get_vm_area_size(vm))
2889 continue;
2890 while (addr < vaddr) {
2891 if (count == 0)
2892 goto finished;
2893 *buf = '\0';
2894 buf++;
2895 addr++;
2896 count--;
2897 }
2898 n = vaddr + get_vm_area_size(vm) - addr;
2899 if (n > count)
2900 n = count;
2901 if (!(vm->flags & VM_IOREMAP))
2902 aligned_vread(buf, addr, n);
2903 else /* IOREMAP area is treated as memory hole */
2904 memset(buf, 0, n);
2905 buf += n;
2906 addr += n;
2907 count -= n;
2908 }
2909 finished:
2910 spin_unlock(&vmap_area_lock);
2911
2912 if (buf == buf_start)
2913 return 0;
2914 /* zero-fill memory holes */
2915 if (buf != buf_start + buflen)
2916 memset(buf, 0, buflen - (buf - buf_start));
2917
2918 return buflen;
2919 }
2920
2921 /**
2922 * vwrite() - write vmalloc area in a safe way.
2923 * @buf: buffer for source data
2924 * @addr: vm address.
2925 * @count: number of bytes to be read.
2926 *
2927 * This function checks that addr is a valid vmalloc'ed area, and
2928 * copy data from a buffer to the given addr. If specified range of
2929 * [addr...addr+count) includes some valid address, data is copied from
2930 * proper area of @buf. If there are memory holes, no copy to hole.
2931 * IOREMAP area is treated as memory hole and no copy is done.
2932 *
2933 * If [addr...addr+count) doesn't includes any intersects with alive
2934 * vm_struct area, returns 0. @buf should be kernel's buffer.
2935 *
2936 * Note: In usual ops, vwrite() is never necessary because the caller
2937 * should know vmalloc() area is valid and can use memcpy().
2938 * This is for routines which have to access vmalloc area without
2939 * any information, as /dev/kmem.
2940 *
2941 * Return: number of bytes for which addr and buf should be
2942 * increased (same number as @count) or %0 if [addr...addr+count)
2943 * doesn't include any intersection with valid vmalloc area
2944 */
2945 long vwrite(char *buf, char *addr, unsigned long count)
2946 {
2947 struct vmap_area *va;
2948 struct vm_struct *vm;
2949 char *vaddr;
2950 unsigned long n, buflen;
2951 int copied = 0;
2952
2953 /* Don't allow overflow */
2954 if ((unsigned long) addr + count < count)
2955 count = -(unsigned long) addr;
2956 buflen = count;
2957
2958 spin_lock(&vmap_area_lock);
2959 list_for_each_entry(va, &vmap_area_list, list) {
2960 if (!count)
2961 break;
2962
2963 if (!va->vm)
2964 continue;
2965
2966 vm = va->vm;
2967 vaddr = (char *) vm->addr;
2968 if (addr >= vaddr + get_vm_area_size(vm))
2969 continue;
2970 while (addr < vaddr) {
2971 if (count == 0)
2972 goto finished;
2973 buf++;
2974 addr++;
2975 count--;
2976 }
2977 n = vaddr + get_vm_area_size(vm) - addr;
2978 if (n > count)
2979 n = count;
2980 if (!(vm->flags & VM_IOREMAP)) {
2981 aligned_vwrite(buf, addr, n);
2982 copied++;
2983 }
2984 buf += n;
2985 addr += n;
2986 count -= n;
2987 }
2988 finished:
2989 spin_unlock(&vmap_area_lock);
2990 if (!copied)
2991 return 0;
2992 return buflen;
2993 }
2994
2995 /**
2996 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2997 * @vma: vma to cover
2998 * @uaddr: target user address to start at
2999 * @kaddr: virtual address of vmalloc kernel memory
3000 * @pgoff: offset from @kaddr to start at
3001 * @size: size of map area
3002 *
3003 * Returns: 0 for success, -Exxx on failure
3004 *
3005 * This function checks that @kaddr is a valid vmalloc'ed area,
3006 * and that it is big enough to cover the range starting at
3007 * @uaddr in @vma. Will return failure if that criteria isn't
3008 * met.
3009 *
3010 * Similar to remap_pfn_range() (see mm/memory.c)
3011 */
3012 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3013 void *kaddr, unsigned long pgoff,
3014 unsigned long size)
3015 {
3016 struct vm_struct *area;
3017 unsigned long off;
3018 unsigned long end_index;
3019
3020 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3021 return -EINVAL;
3022
3023 size = PAGE_ALIGN(size);
3024
3025 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3026 return -EINVAL;
3027
3028 area = find_vm_area(kaddr);
3029 if (!area)
3030 return -EINVAL;
3031
3032 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3033 return -EINVAL;
3034
3035 if (check_add_overflow(size, off, &end_index) ||
3036 end_index > get_vm_area_size(area))
3037 return -EINVAL;
3038 kaddr += off;
3039
3040 do {
3041 struct page *page = vmalloc_to_page(kaddr);
3042 int ret;
3043
3044 ret = vm_insert_page(vma, uaddr, page);
3045 if (ret)
3046 return ret;
3047
3048 uaddr += PAGE_SIZE;
3049 kaddr += PAGE_SIZE;
3050 size -= PAGE_SIZE;
3051 } while (size > 0);
3052
3053 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3054
3055 return 0;
3056 }
3057 EXPORT_SYMBOL(remap_vmalloc_range_partial);
3058
3059 /**
3060 * remap_vmalloc_range - map vmalloc pages to userspace
3061 * @vma: vma to cover (map full range of vma)
3062 * @addr: vmalloc memory
3063 * @pgoff: number of pages into addr before first page to map
3064 *
3065 * Returns: 0 for success, -Exxx on failure
3066 *
3067 * This function checks that addr is a valid vmalloc'ed area, and
3068 * that it is big enough to cover the vma. Will return failure if
3069 * that criteria isn't met.
3070 *
3071 * Similar to remap_pfn_range() (see mm/memory.c)
3072 */
3073 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3074 unsigned long pgoff)
3075 {
3076 return remap_vmalloc_range_partial(vma, vma->vm_start,
3077 addr, pgoff,
3078 vma->vm_end - vma->vm_start);
3079 }
3080 EXPORT_SYMBOL(remap_vmalloc_range);
3081
3082 void free_vm_area(struct vm_struct *area)
3083 {
3084 struct vm_struct *ret;
3085 ret = remove_vm_area(area->addr);
3086 BUG_ON(ret != area);
3087 kfree(area);
3088 }
3089 EXPORT_SYMBOL_GPL(free_vm_area);
3090
3091 #ifdef CONFIG_SMP
3092 static struct vmap_area *node_to_va(struct rb_node *n)
3093 {
3094 return rb_entry_safe(n, struct vmap_area, rb_node);
3095 }
3096
3097 /**
3098 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3099 * @addr: target address
3100 *
3101 * Returns: vmap_area if it is found. If there is no such area
3102 * the first highest(reverse order) vmap_area is returned
3103 * i.e. va->va_start < addr && va->va_end < addr or NULL
3104 * if there are no any areas before @addr.
3105 */
3106 static struct vmap_area *
3107 pvm_find_va_enclose_addr(unsigned long addr)
3108 {
3109 struct vmap_area *va, *tmp;
3110 struct rb_node *n;
3111
3112 n = free_vmap_area_root.rb_node;
3113 va = NULL;
3114
3115 while (n) {
3116 tmp = rb_entry(n, struct vmap_area, rb_node);
3117 if (tmp->va_start <= addr) {
3118 va = tmp;
3119 if (tmp->va_end >= addr)
3120 break;
3121
3122 n = n->rb_right;
3123 } else {
3124 n = n->rb_left;
3125 }
3126 }
3127
3128 return va;
3129 }
3130
3131 /**
3132 * pvm_determine_end_from_reverse - find the highest aligned address
3133 * of free block below VMALLOC_END
3134 * @va:
3135 * in - the VA we start the search(reverse order);
3136 * out - the VA with the highest aligned end address.
3137 *
3138 * Returns: determined end address within vmap_area
3139 */
3140 static unsigned long
3141 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3142 {
3143 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3144 unsigned long addr;
3145
3146 if (likely(*va)) {
3147 list_for_each_entry_from_reverse((*va),
3148 &free_vmap_area_list, list) {
3149 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3150 if ((*va)->va_start < addr)
3151 return addr;
3152 }
3153 }
3154
3155 return 0;
3156 }
3157
3158 /**
3159 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3160 * @offsets: array containing offset of each area
3161 * @sizes: array containing size of each area
3162 * @nr_vms: the number of areas to allocate
3163 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3164 *
3165 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3166 * vm_structs on success, %NULL on failure
3167 *
3168 * Percpu allocator wants to use congruent vm areas so that it can
3169 * maintain the offsets among percpu areas. This function allocates
3170 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3171 * be scattered pretty far, distance between two areas easily going up
3172 * to gigabytes. To avoid interacting with regular vmallocs, these
3173 * areas are allocated from top.
3174 *
3175 * Despite its complicated look, this allocator is rather simple. It
3176 * does everything top-down and scans free blocks from the end looking
3177 * for matching base. While scanning, if any of the areas do not fit the
3178 * base address is pulled down to fit the area. Scanning is repeated till
3179 * all the areas fit and then all necessary data structures are inserted
3180 * and the result is returned.
3181 */
3182 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3183 const size_t *sizes, int nr_vms,
3184 size_t align)
3185 {
3186 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3187 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3188 struct vmap_area **vas, *va;
3189 struct vm_struct **vms;
3190 int area, area2, last_area, term_area;
3191 unsigned long base, start, size, end, last_end, orig_start, orig_end;
3192 bool purged = false;
3193 enum fit_type type;
3194
3195 /* verify parameters and allocate data structures */
3196 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3197 for (last_area = 0, area = 0; area < nr_vms; area++) {
3198 start = offsets[area];
3199 end = start + sizes[area];
3200
3201 /* is everything aligned properly? */
3202 BUG_ON(!IS_ALIGNED(offsets[area], align));
3203 BUG_ON(!IS_ALIGNED(sizes[area], align));
3204
3205 /* detect the area with the highest address */
3206 if (start > offsets[last_area])
3207 last_area = area;
3208
3209 for (area2 = area + 1; area2 < nr_vms; area2++) {
3210 unsigned long start2 = offsets[area2];
3211 unsigned long end2 = start2 + sizes[area2];
3212
3213 BUG_ON(start2 < end && start < end2);
3214 }
3215 }
3216 last_end = offsets[last_area] + sizes[last_area];
3217
3218 if (vmalloc_end - vmalloc_start < last_end) {
3219 WARN_ON(true);
3220 return NULL;
3221 }
3222
3223 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3224 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3225 if (!vas || !vms)
3226 goto err_free2;
3227
3228 for (area = 0; area < nr_vms; area++) {
3229 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3230 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3231 if (!vas[area] || !vms[area])
3232 goto err_free;
3233 }
3234 retry:
3235 spin_lock(&free_vmap_area_lock);
3236
3237 /* start scanning - we scan from the top, begin with the last area */
3238 area = term_area = last_area;
3239 start = offsets[area];
3240 end = start + sizes[area];
3241
3242 va = pvm_find_va_enclose_addr(vmalloc_end);
3243 base = pvm_determine_end_from_reverse(&va, align) - end;
3244
3245 while (true) {
3246 /*
3247 * base might have underflowed, add last_end before
3248 * comparing.
3249 */
3250 if (base + last_end < vmalloc_start + last_end)
3251 goto overflow;
3252
3253 /*
3254 * Fitting base has not been found.
3255 */
3256 if (va == NULL)
3257 goto overflow;
3258
3259 /*
3260 * If required width exceeds current VA block, move
3261 * base downwards and then recheck.
3262 */
3263 if (base + end > va->va_end) {
3264 base = pvm_determine_end_from_reverse(&va, align) - end;
3265 term_area = area;
3266 continue;
3267 }
3268
3269 /*
3270 * If this VA does not fit, move base downwards and recheck.
3271 */
3272 if (base + start < va->va_start) {
3273 va = node_to_va(rb_prev(&va->rb_node));
3274 base = pvm_determine_end_from_reverse(&va, align) - end;
3275 term_area = area;
3276 continue;
3277 }
3278
3279 /*
3280 * This area fits, move on to the previous one. If
3281 * the previous one is the terminal one, we're done.
3282 */
3283 area = (area + nr_vms - 1) % nr_vms;
3284 if (area == term_area)
3285 break;
3286
3287 start = offsets[area];
3288 end = start + sizes[area];
3289 va = pvm_find_va_enclose_addr(base + end);
3290 }
3291
3292 /* we've found a fitting base, insert all va's */
3293 for (area = 0; area < nr_vms; area++) {
3294 int ret;
3295
3296 start = base + offsets[area];
3297 size = sizes[area];
3298
3299 va = pvm_find_va_enclose_addr(start);
3300 if (WARN_ON_ONCE(va == NULL))
3301 /* It is a BUG(), but trigger recovery instead. */
3302 goto recovery;
3303
3304 type = classify_va_fit_type(va, start, size);
3305 if (WARN_ON_ONCE(type == NOTHING_FIT))
3306 /* It is a BUG(), but trigger recovery instead. */
3307 goto recovery;
3308
3309 ret = adjust_va_to_fit_type(va, start, size, type);
3310 if (unlikely(ret))
3311 goto recovery;
3312
3313 /* Allocated area. */
3314 va = vas[area];
3315 va->va_start = start;
3316 va->va_end = start + size;
3317 }
3318
3319 spin_unlock(&free_vmap_area_lock);
3320
3321 /* populate the kasan shadow space */
3322 for (area = 0; area < nr_vms; area++) {
3323 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3324 goto err_free_shadow;
3325
3326 kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3327 sizes[area]);
3328 }
3329
3330 /* insert all vm's */
3331 spin_lock(&vmap_area_lock);
3332 for (area = 0; area < nr_vms; area++) {
3333 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3334
3335 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3336 pcpu_get_vm_areas);
3337 }
3338 spin_unlock(&vmap_area_lock);
3339
3340 kfree(vas);
3341 return vms;
3342
3343 recovery:
3344 /*
3345 * Remove previously allocated areas. There is no
3346 * need in removing these areas from the busy tree,
3347 * because they are inserted only on the final step
3348 * and when pcpu_get_vm_areas() is success.
3349 */
3350 while (area--) {
3351 orig_start = vas[area]->va_start;
3352 orig_end = vas[area]->va_end;
3353 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3354 &free_vmap_area_list);
3355 if (va)
3356 kasan_release_vmalloc(orig_start, orig_end,
3357 va->va_start, va->va_end);
3358 vas[area] = NULL;
3359 }
3360
3361 overflow:
3362 spin_unlock(&free_vmap_area_lock);
3363 if (!purged) {
3364 purge_vmap_area_lazy();
3365 purged = true;
3366
3367 /* Before "retry", check if we recover. */
3368 for (area = 0; area < nr_vms; area++) {
3369 if (vas[area])
3370 continue;
3371
3372 vas[area] = kmem_cache_zalloc(
3373 vmap_area_cachep, GFP_KERNEL);
3374 if (!vas[area])
3375 goto err_free;
3376 }
3377
3378 goto retry;
3379 }
3380
3381 err_free:
3382 for (area = 0; area < nr_vms; area++) {
3383 if (vas[area])
3384 kmem_cache_free(vmap_area_cachep, vas[area]);
3385
3386 kfree(vms[area]);
3387 }
3388 err_free2:
3389 kfree(vas);
3390 kfree(vms);
3391 return NULL;
3392
3393 err_free_shadow:
3394 spin_lock(&free_vmap_area_lock);
3395 /*
3396 * We release all the vmalloc shadows, even the ones for regions that
3397 * hadn't been successfully added. This relies on kasan_release_vmalloc
3398 * being able to tolerate this case.
3399 */
3400 for (area = 0; area < nr_vms; area++) {
3401 orig_start = vas[area]->va_start;
3402 orig_end = vas[area]->va_end;
3403 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3404 &free_vmap_area_list);
3405 if (va)
3406 kasan_release_vmalloc(orig_start, orig_end,
3407 va->va_start, va->va_end);
3408 vas[area] = NULL;
3409 kfree(vms[area]);
3410 }
3411 spin_unlock(&free_vmap_area_lock);
3412 kfree(vas);
3413 kfree(vms);
3414 return NULL;
3415 }
3416
3417 /**
3418 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3419 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3420 * @nr_vms: the number of allocated areas
3421 *
3422 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3423 */
3424 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3425 {
3426 int i;
3427
3428 for (i = 0; i < nr_vms; i++)
3429 free_vm_area(vms[i]);
3430 kfree(vms);
3431 }
3432 #endif /* CONFIG_SMP */
3433
3434 #ifdef CONFIG_PROC_FS
3435 static void *s_start(struct seq_file *m, loff_t *pos)
3436 __acquires(&vmap_purge_lock)
3437 __acquires(&vmap_area_lock)
3438 {
3439 mutex_lock(&vmap_purge_lock);
3440 spin_lock(&vmap_area_lock);
3441
3442 return seq_list_start(&vmap_area_list, *pos);
3443 }
3444
3445 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3446 {
3447 return seq_list_next(p, &vmap_area_list, pos);
3448 }
3449
3450 static void s_stop(struct seq_file *m, void *p)
3451 __releases(&vmap_purge_lock)
3452 __releases(&vmap_area_lock)
3453 {
3454 mutex_unlock(&vmap_purge_lock);
3455 spin_unlock(&vmap_area_lock);
3456 }
3457
3458 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3459 {
3460 if (IS_ENABLED(CONFIG_NUMA)) {
3461 unsigned int nr, *counters = m->private;
3462
3463 if (!counters)
3464 return;
3465
3466 if (v->flags & VM_UNINITIALIZED)
3467 return;
3468 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3469 smp_rmb();
3470
3471 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3472
3473 for (nr = 0; nr < v->nr_pages; nr++)
3474 counters[page_to_nid(v->pages[nr])]++;
3475
3476 for_each_node_state(nr, N_HIGH_MEMORY)
3477 if (counters[nr])
3478 seq_printf(m, " N%u=%u", nr, counters[nr]);
3479 }
3480 }
3481
3482 static void show_purge_info(struct seq_file *m)
3483 {
3484 struct llist_node *head;
3485 struct vmap_area *va;
3486
3487 head = READ_ONCE(vmap_purge_list.first);
3488 if (head == NULL)
3489 return;
3490
3491 llist_for_each_entry(va, head, purge_list) {
3492 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3493 (void *)va->va_start, (void *)va->va_end,
3494 va->va_end - va->va_start);
3495 }
3496 }
3497
3498 static int s_show(struct seq_file *m, void *p)
3499 {
3500 struct vmap_area *va;
3501 struct vm_struct *v;
3502
3503 va = list_entry(p, struct vmap_area, list);
3504
3505 /*
3506 * s_show can encounter race with remove_vm_area, !vm on behalf
3507 * of vmap area is being tear down or vm_map_ram allocation.
3508 */
3509 if (!va->vm) {
3510 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3511 (void *)va->va_start, (void *)va->va_end,
3512 va->va_end - va->va_start);
3513
3514 return 0;
3515 }
3516
3517 v = va->vm;
3518
3519 seq_printf(m, "0x%pK-0x%pK %7ld",
3520 v->addr, v->addr + v->size, v->size);
3521
3522 if (v->caller)
3523 seq_printf(m, " %pS", v->caller);
3524
3525 if (v->nr_pages)
3526 seq_printf(m, " pages=%d", v->nr_pages);
3527
3528 if (v->phys_addr)
3529 seq_printf(m, " phys=%pa", &v->phys_addr);
3530
3531 if (v->flags & VM_IOREMAP)
3532 seq_puts(m, " ioremap");
3533
3534 if (v->flags & VM_ALLOC)
3535 seq_puts(m, " vmalloc");
3536
3537 if (v->flags & VM_MAP)
3538 seq_puts(m, " vmap");
3539
3540 if (v->flags & VM_USERMAP)
3541 seq_puts(m, " user");
3542
3543 if (v->flags & VM_DMA_COHERENT)
3544 seq_puts(m, " dma-coherent");
3545
3546 if (is_vmalloc_addr(v->pages))
3547 seq_puts(m, " vpages");
3548
3549 show_numa_info(m, v);
3550 seq_putc(m, '\n');
3551
3552 /*
3553 * As a final step, dump "unpurged" areas. Note,
3554 * that entire "/proc/vmallocinfo" output will not
3555 * be address sorted, because the purge list is not
3556 * sorted.
3557 */
3558 if (list_is_last(&va->list, &vmap_area_list))
3559 show_purge_info(m);
3560
3561 return 0;
3562 }
3563
3564 static const struct seq_operations vmalloc_op = {
3565 .start = s_start,
3566 .next = s_next,
3567 .stop = s_stop,
3568 .show = s_show,
3569 };
3570
3571 static int __init proc_vmalloc_init(void)
3572 {
3573 if (IS_ENABLED(CONFIG_NUMA))
3574 proc_create_seq_private("vmallocinfo", 0400, NULL,
3575 &vmalloc_op,
3576 nr_node_ids * sizeof(unsigned int), NULL);
3577 else
3578 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3579 return 0;
3580 }
3581 module_init(proc_vmalloc_init);
3582
3583 #endif