]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/vmalloc.c
zsmalloc: require GFP in zs_malloc()
[mirror_ubuntu-artful-kernel.git] / mm / vmalloc.c
1 /*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <linux/atomic.h>
30 #include <linux/compiler.h>
31 #include <linux/llist.h>
32 #include <linux/bitops.h>
33
34 #include <asm/uaccess.h>
35 #include <asm/tlbflush.h>
36 #include <asm/shmparam.h>
37
38 #include "internal.h"
39
40 struct vfree_deferred {
41 struct llist_head list;
42 struct work_struct wq;
43 };
44 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
45
46 static void __vunmap(const void *, int);
47
48 static void free_work(struct work_struct *w)
49 {
50 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
51 struct llist_node *llnode = llist_del_all(&p->list);
52 while (llnode) {
53 void *p = llnode;
54 llnode = llist_next(llnode);
55 __vunmap(p, 1);
56 }
57 }
58
59 /*** Page table manipulation functions ***/
60
61 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
62 {
63 pte_t *pte;
64
65 pte = pte_offset_kernel(pmd, addr);
66 do {
67 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
68 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
69 } while (pte++, addr += PAGE_SIZE, addr != end);
70 }
71
72 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
73 {
74 pmd_t *pmd;
75 unsigned long next;
76
77 pmd = pmd_offset(pud, addr);
78 do {
79 next = pmd_addr_end(addr, end);
80 if (pmd_clear_huge(pmd))
81 continue;
82 if (pmd_none_or_clear_bad(pmd))
83 continue;
84 vunmap_pte_range(pmd, addr, next);
85 } while (pmd++, addr = next, addr != end);
86 }
87
88 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
89 {
90 pud_t *pud;
91 unsigned long next;
92
93 pud = pud_offset(pgd, addr);
94 do {
95 next = pud_addr_end(addr, end);
96 if (pud_clear_huge(pud))
97 continue;
98 if (pud_none_or_clear_bad(pud))
99 continue;
100 vunmap_pmd_range(pud, addr, next);
101 } while (pud++, addr = next, addr != end);
102 }
103
104 static void vunmap_page_range(unsigned long addr, unsigned long end)
105 {
106 pgd_t *pgd;
107 unsigned long next;
108
109 BUG_ON(addr >= end);
110 pgd = pgd_offset_k(addr);
111 do {
112 next = pgd_addr_end(addr, end);
113 if (pgd_none_or_clear_bad(pgd))
114 continue;
115 vunmap_pud_range(pgd, addr, next);
116 } while (pgd++, addr = next, addr != end);
117 }
118
119 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
120 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
121 {
122 pte_t *pte;
123
124 /*
125 * nr is a running index into the array which helps higher level
126 * callers keep track of where we're up to.
127 */
128
129 pte = pte_alloc_kernel(pmd, addr);
130 if (!pte)
131 return -ENOMEM;
132 do {
133 struct page *page = pages[*nr];
134
135 if (WARN_ON(!pte_none(*pte)))
136 return -EBUSY;
137 if (WARN_ON(!page))
138 return -ENOMEM;
139 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
140 (*nr)++;
141 } while (pte++, addr += PAGE_SIZE, addr != end);
142 return 0;
143 }
144
145 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
146 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
147 {
148 pmd_t *pmd;
149 unsigned long next;
150
151 pmd = pmd_alloc(&init_mm, pud, addr);
152 if (!pmd)
153 return -ENOMEM;
154 do {
155 next = pmd_addr_end(addr, end);
156 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
157 return -ENOMEM;
158 } while (pmd++, addr = next, addr != end);
159 return 0;
160 }
161
162 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
163 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
164 {
165 pud_t *pud;
166 unsigned long next;
167
168 pud = pud_alloc(&init_mm, pgd, addr);
169 if (!pud)
170 return -ENOMEM;
171 do {
172 next = pud_addr_end(addr, end);
173 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
174 return -ENOMEM;
175 } while (pud++, addr = next, addr != end);
176 return 0;
177 }
178
179 /*
180 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
181 * will have pfns corresponding to the "pages" array.
182 *
183 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
184 */
185 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
186 pgprot_t prot, struct page **pages)
187 {
188 pgd_t *pgd;
189 unsigned long next;
190 unsigned long addr = start;
191 int err = 0;
192 int nr = 0;
193
194 BUG_ON(addr >= end);
195 pgd = pgd_offset_k(addr);
196 do {
197 next = pgd_addr_end(addr, end);
198 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
199 if (err)
200 return err;
201 } while (pgd++, addr = next, addr != end);
202
203 return nr;
204 }
205
206 static int vmap_page_range(unsigned long start, unsigned long end,
207 pgprot_t prot, struct page **pages)
208 {
209 int ret;
210
211 ret = vmap_page_range_noflush(start, end, prot, pages);
212 flush_cache_vmap(start, end);
213 return ret;
214 }
215
216 int is_vmalloc_or_module_addr(const void *x)
217 {
218 /*
219 * ARM, x86-64 and sparc64 put modules in a special place,
220 * and fall back on vmalloc() if that fails. Others
221 * just put it in the vmalloc space.
222 */
223 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
224 unsigned long addr = (unsigned long)x;
225 if (addr >= MODULES_VADDR && addr < MODULES_END)
226 return 1;
227 #endif
228 return is_vmalloc_addr(x);
229 }
230
231 /*
232 * Walk a vmap address to the struct page it maps.
233 */
234 struct page *vmalloc_to_page(const void *vmalloc_addr)
235 {
236 unsigned long addr = (unsigned long) vmalloc_addr;
237 struct page *page = NULL;
238 pgd_t *pgd = pgd_offset_k(addr);
239
240 /*
241 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
242 * architectures that do not vmalloc module space
243 */
244 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
245
246 if (!pgd_none(*pgd)) {
247 pud_t *pud = pud_offset(pgd, addr);
248 if (!pud_none(*pud)) {
249 pmd_t *pmd = pmd_offset(pud, addr);
250 if (!pmd_none(*pmd)) {
251 pte_t *ptep, pte;
252
253 ptep = pte_offset_map(pmd, addr);
254 pte = *ptep;
255 if (pte_present(pte))
256 page = pte_page(pte);
257 pte_unmap(ptep);
258 }
259 }
260 }
261 return page;
262 }
263 EXPORT_SYMBOL(vmalloc_to_page);
264
265 /*
266 * Map a vmalloc()-space virtual address to the physical page frame number.
267 */
268 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
269 {
270 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
271 }
272 EXPORT_SYMBOL(vmalloc_to_pfn);
273
274
275 /*** Global kva allocator ***/
276
277 #define VM_VM_AREA 0x04
278
279 static DEFINE_SPINLOCK(vmap_area_lock);
280 /* Export for kexec only */
281 LIST_HEAD(vmap_area_list);
282 static LLIST_HEAD(vmap_purge_list);
283 static struct rb_root vmap_area_root = RB_ROOT;
284
285 /* The vmap cache globals are protected by vmap_area_lock */
286 static struct rb_node *free_vmap_cache;
287 static unsigned long cached_hole_size;
288 static unsigned long cached_vstart;
289 static unsigned long cached_align;
290
291 static unsigned long vmap_area_pcpu_hole;
292
293 static struct vmap_area *__find_vmap_area(unsigned long addr)
294 {
295 struct rb_node *n = vmap_area_root.rb_node;
296
297 while (n) {
298 struct vmap_area *va;
299
300 va = rb_entry(n, struct vmap_area, rb_node);
301 if (addr < va->va_start)
302 n = n->rb_left;
303 else if (addr >= va->va_end)
304 n = n->rb_right;
305 else
306 return va;
307 }
308
309 return NULL;
310 }
311
312 static void __insert_vmap_area(struct vmap_area *va)
313 {
314 struct rb_node **p = &vmap_area_root.rb_node;
315 struct rb_node *parent = NULL;
316 struct rb_node *tmp;
317
318 while (*p) {
319 struct vmap_area *tmp_va;
320
321 parent = *p;
322 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
323 if (va->va_start < tmp_va->va_end)
324 p = &(*p)->rb_left;
325 else if (va->va_end > tmp_va->va_start)
326 p = &(*p)->rb_right;
327 else
328 BUG();
329 }
330
331 rb_link_node(&va->rb_node, parent, p);
332 rb_insert_color(&va->rb_node, &vmap_area_root);
333
334 /* address-sort this list */
335 tmp = rb_prev(&va->rb_node);
336 if (tmp) {
337 struct vmap_area *prev;
338 prev = rb_entry(tmp, struct vmap_area, rb_node);
339 list_add_rcu(&va->list, &prev->list);
340 } else
341 list_add_rcu(&va->list, &vmap_area_list);
342 }
343
344 static void purge_vmap_area_lazy(void);
345
346 /*
347 * Allocate a region of KVA of the specified size and alignment, within the
348 * vstart and vend.
349 */
350 static struct vmap_area *alloc_vmap_area(unsigned long size,
351 unsigned long align,
352 unsigned long vstart, unsigned long vend,
353 int node, gfp_t gfp_mask)
354 {
355 struct vmap_area *va;
356 struct rb_node *n;
357 unsigned long addr;
358 int purged = 0;
359 struct vmap_area *first;
360
361 BUG_ON(!size);
362 BUG_ON(offset_in_page(size));
363 BUG_ON(!is_power_of_2(align));
364
365 va = kmalloc_node(sizeof(struct vmap_area),
366 gfp_mask & GFP_RECLAIM_MASK, node);
367 if (unlikely(!va))
368 return ERR_PTR(-ENOMEM);
369
370 /*
371 * Only scan the relevant parts containing pointers to other objects
372 * to avoid false negatives.
373 */
374 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
375
376 retry:
377 spin_lock(&vmap_area_lock);
378 /*
379 * Invalidate cache if we have more permissive parameters.
380 * cached_hole_size notes the largest hole noticed _below_
381 * the vmap_area cached in free_vmap_cache: if size fits
382 * into that hole, we want to scan from vstart to reuse
383 * the hole instead of allocating above free_vmap_cache.
384 * Note that __free_vmap_area may update free_vmap_cache
385 * without updating cached_hole_size or cached_align.
386 */
387 if (!free_vmap_cache ||
388 size < cached_hole_size ||
389 vstart < cached_vstart ||
390 align < cached_align) {
391 nocache:
392 cached_hole_size = 0;
393 free_vmap_cache = NULL;
394 }
395 /* record if we encounter less permissive parameters */
396 cached_vstart = vstart;
397 cached_align = align;
398
399 /* find starting point for our search */
400 if (free_vmap_cache) {
401 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
402 addr = ALIGN(first->va_end, align);
403 if (addr < vstart)
404 goto nocache;
405 if (addr + size < addr)
406 goto overflow;
407
408 } else {
409 addr = ALIGN(vstart, align);
410 if (addr + size < addr)
411 goto overflow;
412
413 n = vmap_area_root.rb_node;
414 first = NULL;
415
416 while (n) {
417 struct vmap_area *tmp;
418 tmp = rb_entry(n, struct vmap_area, rb_node);
419 if (tmp->va_end >= addr) {
420 first = tmp;
421 if (tmp->va_start <= addr)
422 break;
423 n = n->rb_left;
424 } else
425 n = n->rb_right;
426 }
427
428 if (!first)
429 goto found;
430 }
431
432 /* from the starting point, walk areas until a suitable hole is found */
433 while (addr + size > first->va_start && addr + size <= vend) {
434 if (addr + cached_hole_size < first->va_start)
435 cached_hole_size = first->va_start - addr;
436 addr = ALIGN(first->va_end, align);
437 if (addr + size < addr)
438 goto overflow;
439
440 if (list_is_last(&first->list, &vmap_area_list))
441 goto found;
442
443 first = list_next_entry(first, list);
444 }
445
446 found:
447 if (addr + size > vend)
448 goto overflow;
449
450 va->va_start = addr;
451 va->va_end = addr + size;
452 va->flags = 0;
453 __insert_vmap_area(va);
454 free_vmap_cache = &va->rb_node;
455 spin_unlock(&vmap_area_lock);
456
457 BUG_ON(!IS_ALIGNED(va->va_start, align));
458 BUG_ON(va->va_start < vstart);
459 BUG_ON(va->va_end > vend);
460
461 return va;
462
463 overflow:
464 spin_unlock(&vmap_area_lock);
465 if (!purged) {
466 purge_vmap_area_lazy();
467 purged = 1;
468 goto retry;
469 }
470 if (printk_ratelimit())
471 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
472 size);
473 kfree(va);
474 return ERR_PTR(-EBUSY);
475 }
476
477 static void __free_vmap_area(struct vmap_area *va)
478 {
479 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
480
481 if (free_vmap_cache) {
482 if (va->va_end < cached_vstart) {
483 free_vmap_cache = NULL;
484 } else {
485 struct vmap_area *cache;
486 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
487 if (va->va_start <= cache->va_start) {
488 free_vmap_cache = rb_prev(&va->rb_node);
489 /*
490 * We don't try to update cached_hole_size or
491 * cached_align, but it won't go very wrong.
492 */
493 }
494 }
495 }
496 rb_erase(&va->rb_node, &vmap_area_root);
497 RB_CLEAR_NODE(&va->rb_node);
498 list_del_rcu(&va->list);
499
500 /*
501 * Track the highest possible candidate for pcpu area
502 * allocation. Areas outside of vmalloc area can be returned
503 * here too, consider only end addresses which fall inside
504 * vmalloc area proper.
505 */
506 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
507 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
508
509 kfree_rcu(va, rcu_head);
510 }
511
512 /*
513 * Free a region of KVA allocated by alloc_vmap_area
514 */
515 static void free_vmap_area(struct vmap_area *va)
516 {
517 spin_lock(&vmap_area_lock);
518 __free_vmap_area(va);
519 spin_unlock(&vmap_area_lock);
520 }
521
522 /*
523 * Clear the pagetable entries of a given vmap_area
524 */
525 static void unmap_vmap_area(struct vmap_area *va)
526 {
527 vunmap_page_range(va->va_start, va->va_end);
528 }
529
530 static void vmap_debug_free_range(unsigned long start, unsigned long end)
531 {
532 /*
533 * Unmap page tables and force a TLB flush immediately if pagealloc
534 * debugging is enabled. This catches use after free bugs similarly to
535 * those in linear kernel virtual address space after a page has been
536 * freed.
537 *
538 * All the lazy freeing logic is still retained, in order to minimise
539 * intrusiveness of this debugging feature.
540 *
541 * This is going to be *slow* (linear kernel virtual address debugging
542 * doesn't do a broadcast TLB flush so it is a lot faster).
543 */
544 if (debug_pagealloc_enabled()) {
545 vunmap_page_range(start, end);
546 flush_tlb_kernel_range(start, end);
547 }
548 }
549
550 /*
551 * lazy_max_pages is the maximum amount of virtual address space we gather up
552 * before attempting to purge with a TLB flush.
553 *
554 * There is a tradeoff here: a larger number will cover more kernel page tables
555 * and take slightly longer to purge, but it will linearly reduce the number of
556 * global TLB flushes that must be performed. It would seem natural to scale
557 * this number up linearly with the number of CPUs (because vmapping activity
558 * could also scale linearly with the number of CPUs), however it is likely
559 * that in practice, workloads might be constrained in other ways that mean
560 * vmap activity will not scale linearly with CPUs. Also, I want to be
561 * conservative and not introduce a big latency on huge systems, so go with
562 * a less aggressive log scale. It will still be an improvement over the old
563 * code, and it will be simple to change the scale factor if we find that it
564 * becomes a problem on bigger systems.
565 */
566 static unsigned long lazy_max_pages(void)
567 {
568 unsigned int log;
569
570 log = fls(num_online_cpus());
571
572 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
573 }
574
575 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
576
577 /* for per-CPU blocks */
578 static void purge_fragmented_blocks_allcpus(void);
579
580 /*
581 * called before a call to iounmap() if the caller wants vm_area_struct's
582 * immediately freed.
583 */
584 void set_iounmap_nonlazy(void)
585 {
586 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
587 }
588
589 /*
590 * Purges all lazily-freed vmap areas.
591 *
592 * If sync is 0 then don't purge if there is already a purge in progress.
593 * If force_flush is 1, then flush kernel TLBs between *start and *end even
594 * if we found no lazy vmap areas to unmap (callers can use this to optimise
595 * their own TLB flushing).
596 * Returns with *start = min(*start, lowest purged address)
597 * *end = max(*end, highest purged address)
598 */
599 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
600 int sync, int force_flush)
601 {
602 static DEFINE_SPINLOCK(purge_lock);
603 struct llist_node *valist;
604 struct vmap_area *va;
605 struct vmap_area *n_va;
606 int nr = 0;
607
608 /*
609 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
610 * should not expect such behaviour. This just simplifies locking for
611 * the case that isn't actually used at the moment anyway.
612 */
613 if (!sync && !force_flush) {
614 if (!spin_trylock(&purge_lock))
615 return;
616 } else
617 spin_lock(&purge_lock);
618
619 if (sync)
620 purge_fragmented_blocks_allcpus();
621
622 valist = llist_del_all(&vmap_purge_list);
623 llist_for_each_entry(va, valist, purge_list) {
624 if (va->va_start < *start)
625 *start = va->va_start;
626 if (va->va_end > *end)
627 *end = va->va_end;
628 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
629 }
630
631 if (nr)
632 atomic_sub(nr, &vmap_lazy_nr);
633
634 if (nr || force_flush)
635 flush_tlb_kernel_range(*start, *end);
636
637 if (nr) {
638 spin_lock(&vmap_area_lock);
639 llist_for_each_entry_safe(va, n_va, valist, purge_list)
640 __free_vmap_area(va);
641 spin_unlock(&vmap_area_lock);
642 }
643 spin_unlock(&purge_lock);
644 }
645
646 /*
647 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
648 * is already purging.
649 */
650 static void try_purge_vmap_area_lazy(void)
651 {
652 unsigned long start = ULONG_MAX, end = 0;
653
654 __purge_vmap_area_lazy(&start, &end, 0, 0);
655 }
656
657 /*
658 * Kick off a purge of the outstanding lazy areas.
659 */
660 static void purge_vmap_area_lazy(void)
661 {
662 unsigned long start = ULONG_MAX, end = 0;
663
664 __purge_vmap_area_lazy(&start, &end, 1, 0);
665 }
666
667 /*
668 * Free a vmap area, caller ensuring that the area has been unmapped
669 * and flush_cache_vunmap had been called for the correct range
670 * previously.
671 */
672 static void free_vmap_area_noflush(struct vmap_area *va)
673 {
674 int nr_lazy;
675
676 nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
677 &vmap_lazy_nr);
678
679 /* After this point, we may free va at any time */
680 llist_add(&va->purge_list, &vmap_purge_list);
681
682 if (unlikely(nr_lazy > lazy_max_pages()))
683 try_purge_vmap_area_lazy();
684 }
685
686 /*
687 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
688 * called for the correct range previously.
689 */
690 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
691 {
692 unmap_vmap_area(va);
693 free_vmap_area_noflush(va);
694 }
695
696 /*
697 * Free and unmap a vmap area
698 */
699 static void free_unmap_vmap_area(struct vmap_area *va)
700 {
701 flush_cache_vunmap(va->va_start, va->va_end);
702 free_unmap_vmap_area_noflush(va);
703 }
704
705 static struct vmap_area *find_vmap_area(unsigned long addr)
706 {
707 struct vmap_area *va;
708
709 spin_lock(&vmap_area_lock);
710 va = __find_vmap_area(addr);
711 spin_unlock(&vmap_area_lock);
712
713 return va;
714 }
715
716 static void free_unmap_vmap_area_addr(unsigned long addr)
717 {
718 struct vmap_area *va;
719
720 va = find_vmap_area(addr);
721 BUG_ON(!va);
722 free_unmap_vmap_area(va);
723 }
724
725
726 /*** Per cpu kva allocator ***/
727
728 /*
729 * vmap space is limited especially on 32 bit architectures. Ensure there is
730 * room for at least 16 percpu vmap blocks per CPU.
731 */
732 /*
733 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
734 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
735 * instead (we just need a rough idea)
736 */
737 #if BITS_PER_LONG == 32
738 #define VMALLOC_SPACE (128UL*1024*1024)
739 #else
740 #define VMALLOC_SPACE (128UL*1024*1024*1024)
741 #endif
742
743 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
744 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
745 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
746 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
747 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
748 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
749 #define VMAP_BBMAP_BITS \
750 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
751 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
752 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
753
754 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
755
756 static bool vmap_initialized __read_mostly = false;
757
758 struct vmap_block_queue {
759 spinlock_t lock;
760 struct list_head free;
761 };
762
763 struct vmap_block {
764 spinlock_t lock;
765 struct vmap_area *va;
766 unsigned long free, dirty;
767 unsigned long dirty_min, dirty_max; /*< dirty range */
768 struct list_head free_list;
769 struct rcu_head rcu_head;
770 struct list_head purge;
771 };
772
773 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
774 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
775
776 /*
777 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
778 * in the free path. Could get rid of this if we change the API to return a
779 * "cookie" from alloc, to be passed to free. But no big deal yet.
780 */
781 static DEFINE_SPINLOCK(vmap_block_tree_lock);
782 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
783
784 /*
785 * We should probably have a fallback mechanism to allocate virtual memory
786 * out of partially filled vmap blocks. However vmap block sizing should be
787 * fairly reasonable according to the vmalloc size, so it shouldn't be a
788 * big problem.
789 */
790
791 static unsigned long addr_to_vb_idx(unsigned long addr)
792 {
793 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
794 addr /= VMAP_BLOCK_SIZE;
795 return addr;
796 }
797
798 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
799 {
800 unsigned long addr;
801
802 addr = va_start + (pages_off << PAGE_SHIFT);
803 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
804 return (void *)addr;
805 }
806
807 /**
808 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
809 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
810 * @order: how many 2^order pages should be occupied in newly allocated block
811 * @gfp_mask: flags for the page level allocator
812 *
813 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
814 */
815 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
816 {
817 struct vmap_block_queue *vbq;
818 struct vmap_block *vb;
819 struct vmap_area *va;
820 unsigned long vb_idx;
821 int node, err;
822 void *vaddr;
823
824 node = numa_node_id();
825
826 vb = kmalloc_node(sizeof(struct vmap_block),
827 gfp_mask & GFP_RECLAIM_MASK, node);
828 if (unlikely(!vb))
829 return ERR_PTR(-ENOMEM);
830
831 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
832 VMALLOC_START, VMALLOC_END,
833 node, gfp_mask);
834 if (IS_ERR(va)) {
835 kfree(vb);
836 return ERR_CAST(va);
837 }
838
839 err = radix_tree_preload(gfp_mask);
840 if (unlikely(err)) {
841 kfree(vb);
842 free_vmap_area(va);
843 return ERR_PTR(err);
844 }
845
846 vaddr = vmap_block_vaddr(va->va_start, 0);
847 spin_lock_init(&vb->lock);
848 vb->va = va;
849 /* At least something should be left free */
850 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
851 vb->free = VMAP_BBMAP_BITS - (1UL << order);
852 vb->dirty = 0;
853 vb->dirty_min = VMAP_BBMAP_BITS;
854 vb->dirty_max = 0;
855 INIT_LIST_HEAD(&vb->free_list);
856
857 vb_idx = addr_to_vb_idx(va->va_start);
858 spin_lock(&vmap_block_tree_lock);
859 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
860 spin_unlock(&vmap_block_tree_lock);
861 BUG_ON(err);
862 radix_tree_preload_end();
863
864 vbq = &get_cpu_var(vmap_block_queue);
865 spin_lock(&vbq->lock);
866 list_add_tail_rcu(&vb->free_list, &vbq->free);
867 spin_unlock(&vbq->lock);
868 put_cpu_var(vmap_block_queue);
869
870 return vaddr;
871 }
872
873 static void free_vmap_block(struct vmap_block *vb)
874 {
875 struct vmap_block *tmp;
876 unsigned long vb_idx;
877
878 vb_idx = addr_to_vb_idx(vb->va->va_start);
879 spin_lock(&vmap_block_tree_lock);
880 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
881 spin_unlock(&vmap_block_tree_lock);
882 BUG_ON(tmp != vb);
883
884 free_vmap_area_noflush(vb->va);
885 kfree_rcu(vb, rcu_head);
886 }
887
888 static void purge_fragmented_blocks(int cpu)
889 {
890 LIST_HEAD(purge);
891 struct vmap_block *vb;
892 struct vmap_block *n_vb;
893 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
894
895 rcu_read_lock();
896 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
897
898 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
899 continue;
900
901 spin_lock(&vb->lock);
902 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
903 vb->free = 0; /* prevent further allocs after releasing lock */
904 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
905 vb->dirty_min = 0;
906 vb->dirty_max = VMAP_BBMAP_BITS;
907 spin_lock(&vbq->lock);
908 list_del_rcu(&vb->free_list);
909 spin_unlock(&vbq->lock);
910 spin_unlock(&vb->lock);
911 list_add_tail(&vb->purge, &purge);
912 } else
913 spin_unlock(&vb->lock);
914 }
915 rcu_read_unlock();
916
917 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
918 list_del(&vb->purge);
919 free_vmap_block(vb);
920 }
921 }
922
923 static void purge_fragmented_blocks_allcpus(void)
924 {
925 int cpu;
926
927 for_each_possible_cpu(cpu)
928 purge_fragmented_blocks(cpu);
929 }
930
931 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
932 {
933 struct vmap_block_queue *vbq;
934 struct vmap_block *vb;
935 void *vaddr = NULL;
936 unsigned int order;
937
938 BUG_ON(offset_in_page(size));
939 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
940 if (WARN_ON(size == 0)) {
941 /*
942 * Allocating 0 bytes isn't what caller wants since
943 * get_order(0) returns funny result. Just warn and terminate
944 * early.
945 */
946 return NULL;
947 }
948 order = get_order(size);
949
950 rcu_read_lock();
951 vbq = &get_cpu_var(vmap_block_queue);
952 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
953 unsigned long pages_off;
954
955 spin_lock(&vb->lock);
956 if (vb->free < (1UL << order)) {
957 spin_unlock(&vb->lock);
958 continue;
959 }
960
961 pages_off = VMAP_BBMAP_BITS - vb->free;
962 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
963 vb->free -= 1UL << order;
964 if (vb->free == 0) {
965 spin_lock(&vbq->lock);
966 list_del_rcu(&vb->free_list);
967 spin_unlock(&vbq->lock);
968 }
969
970 spin_unlock(&vb->lock);
971 break;
972 }
973
974 put_cpu_var(vmap_block_queue);
975 rcu_read_unlock();
976
977 /* Allocate new block if nothing was found */
978 if (!vaddr)
979 vaddr = new_vmap_block(order, gfp_mask);
980
981 return vaddr;
982 }
983
984 static void vb_free(const void *addr, unsigned long size)
985 {
986 unsigned long offset;
987 unsigned long vb_idx;
988 unsigned int order;
989 struct vmap_block *vb;
990
991 BUG_ON(offset_in_page(size));
992 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
993
994 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
995
996 order = get_order(size);
997
998 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
999 offset >>= PAGE_SHIFT;
1000
1001 vb_idx = addr_to_vb_idx((unsigned long)addr);
1002 rcu_read_lock();
1003 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1004 rcu_read_unlock();
1005 BUG_ON(!vb);
1006
1007 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1008
1009 spin_lock(&vb->lock);
1010
1011 /* Expand dirty range */
1012 vb->dirty_min = min(vb->dirty_min, offset);
1013 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1014
1015 vb->dirty += 1UL << order;
1016 if (vb->dirty == VMAP_BBMAP_BITS) {
1017 BUG_ON(vb->free);
1018 spin_unlock(&vb->lock);
1019 free_vmap_block(vb);
1020 } else
1021 spin_unlock(&vb->lock);
1022 }
1023
1024 /**
1025 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1026 *
1027 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1028 * to amortize TLB flushing overheads. What this means is that any page you
1029 * have now, may, in a former life, have been mapped into kernel virtual
1030 * address by the vmap layer and so there might be some CPUs with TLB entries
1031 * still referencing that page (additional to the regular 1:1 kernel mapping).
1032 *
1033 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1034 * be sure that none of the pages we have control over will have any aliases
1035 * from the vmap layer.
1036 */
1037 void vm_unmap_aliases(void)
1038 {
1039 unsigned long start = ULONG_MAX, end = 0;
1040 int cpu;
1041 int flush = 0;
1042
1043 if (unlikely(!vmap_initialized))
1044 return;
1045
1046 for_each_possible_cpu(cpu) {
1047 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1048 struct vmap_block *vb;
1049
1050 rcu_read_lock();
1051 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1052 spin_lock(&vb->lock);
1053 if (vb->dirty) {
1054 unsigned long va_start = vb->va->va_start;
1055 unsigned long s, e;
1056
1057 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1058 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1059
1060 start = min(s, start);
1061 end = max(e, end);
1062
1063 flush = 1;
1064 }
1065 spin_unlock(&vb->lock);
1066 }
1067 rcu_read_unlock();
1068 }
1069
1070 __purge_vmap_area_lazy(&start, &end, 1, flush);
1071 }
1072 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1073
1074 /**
1075 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1076 * @mem: the pointer returned by vm_map_ram
1077 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1078 */
1079 void vm_unmap_ram(const void *mem, unsigned int count)
1080 {
1081 unsigned long size = count << PAGE_SHIFT;
1082 unsigned long addr = (unsigned long)mem;
1083
1084 BUG_ON(!addr);
1085 BUG_ON(addr < VMALLOC_START);
1086 BUG_ON(addr > VMALLOC_END);
1087 BUG_ON(!PAGE_ALIGNED(addr));
1088
1089 debug_check_no_locks_freed(mem, size);
1090 vmap_debug_free_range(addr, addr+size);
1091
1092 if (likely(count <= VMAP_MAX_ALLOC))
1093 vb_free(mem, size);
1094 else
1095 free_unmap_vmap_area_addr(addr);
1096 }
1097 EXPORT_SYMBOL(vm_unmap_ram);
1098
1099 /**
1100 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1101 * @pages: an array of pointers to the pages to be mapped
1102 * @count: number of pages
1103 * @node: prefer to allocate data structures on this node
1104 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1105 *
1106 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1107 * faster than vmap so it's good. But if you mix long-life and short-life
1108 * objects with vm_map_ram(), it could consume lots of address space through
1109 * fragmentation (especially on a 32bit machine). You could see failures in
1110 * the end. Please use this function for short-lived objects.
1111 *
1112 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1113 */
1114 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1115 {
1116 unsigned long size = count << PAGE_SHIFT;
1117 unsigned long addr;
1118 void *mem;
1119
1120 if (likely(count <= VMAP_MAX_ALLOC)) {
1121 mem = vb_alloc(size, GFP_KERNEL);
1122 if (IS_ERR(mem))
1123 return NULL;
1124 addr = (unsigned long)mem;
1125 } else {
1126 struct vmap_area *va;
1127 va = alloc_vmap_area(size, PAGE_SIZE,
1128 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1129 if (IS_ERR(va))
1130 return NULL;
1131
1132 addr = va->va_start;
1133 mem = (void *)addr;
1134 }
1135 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1136 vm_unmap_ram(mem, count);
1137 return NULL;
1138 }
1139 return mem;
1140 }
1141 EXPORT_SYMBOL(vm_map_ram);
1142
1143 static struct vm_struct *vmlist __initdata;
1144 /**
1145 * vm_area_add_early - add vmap area early during boot
1146 * @vm: vm_struct to add
1147 *
1148 * This function is used to add fixed kernel vm area to vmlist before
1149 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1150 * should contain proper values and the other fields should be zero.
1151 *
1152 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1153 */
1154 void __init vm_area_add_early(struct vm_struct *vm)
1155 {
1156 struct vm_struct *tmp, **p;
1157
1158 BUG_ON(vmap_initialized);
1159 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1160 if (tmp->addr >= vm->addr) {
1161 BUG_ON(tmp->addr < vm->addr + vm->size);
1162 break;
1163 } else
1164 BUG_ON(tmp->addr + tmp->size > vm->addr);
1165 }
1166 vm->next = *p;
1167 *p = vm;
1168 }
1169
1170 /**
1171 * vm_area_register_early - register vmap area early during boot
1172 * @vm: vm_struct to register
1173 * @align: requested alignment
1174 *
1175 * This function is used to register kernel vm area before
1176 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1177 * proper values on entry and other fields should be zero. On return,
1178 * vm->addr contains the allocated address.
1179 *
1180 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1181 */
1182 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1183 {
1184 static size_t vm_init_off __initdata;
1185 unsigned long addr;
1186
1187 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1188 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1189
1190 vm->addr = (void *)addr;
1191
1192 vm_area_add_early(vm);
1193 }
1194
1195 void __init vmalloc_init(void)
1196 {
1197 struct vmap_area *va;
1198 struct vm_struct *tmp;
1199 int i;
1200
1201 for_each_possible_cpu(i) {
1202 struct vmap_block_queue *vbq;
1203 struct vfree_deferred *p;
1204
1205 vbq = &per_cpu(vmap_block_queue, i);
1206 spin_lock_init(&vbq->lock);
1207 INIT_LIST_HEAD(&vbq->free);
1208 p = &per_cpu(vfree_deferred, i);
1209 init_llist_head(&p->list);
1210 INIT_WORK(&p->wq, free_work);
1211 }
1212
1213 /* Import existing vmlist entries. */
1214 for (tmp = vmlist; tmp; tmp = tmp->next) {
1215 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1216 va->flags = VM_VM_AREA;
1217 va->va_start = (unsigned long)tmp->addr;
1218 va->va_end = va->va_start + tmp->size;
1219 va->vm = tmp;
1220 __insert_vmap_area(va);
1221 }
1222
1223 vmap_area_pcpu_hole = VMALLOC_END;
1224
1225 vmap_initialized = true;
1226 }
1227
1228 /**
1229 * map_kernel_range_noflush - map kernel VM area with the specified pages
1230 * @addr: start of the VM area to map
1231 * @size: size of the VM area to map
1232 * @prot: page protection flags to use
1233 * @pages: pages to map
1234 *
1235 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1236 * specify should have been allocated using get_vm_area() and its
1237 * friends.
1238 *
1239 * NOTE:
1240 * This function does NOT do any cache flushing. The caller is
1241 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1242 * before calling this function.
1243 *
1244 * RETURNS:
1245 * The number of pages mapped on success, -errno on failure.
1246 */
1247 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1248 pgprot_t prot, struct page **pages)
1249 {
1250 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1251 }
1252
1253 /**
1254 * unmap_kernel_range_noflush - unmap kernel VM area
1255 * @addr: start of the VM area to unmap
1256 * @size: size of the VM area to unmap
1257 *
1258 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1259 * specify should have been allocated using get_vm_area() and its
1260 * friends.
1261 *
1262 * NOTE:
1263 * This function does NOT do any cache flushing. The caller is
1264 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1265 * before calling this function and flush_tlb_kernel_range() after.
1266 */
1267 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1268 {
1269 vunmap_page_range(addr, addr + size);
1270 }
1271 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1272
1273 /**
1274 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1275 * @addr: start of the VM area to unmap
1276 * @size: size of the VM area to unmap
1277 *
1278 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1279 * the unmapping and tlb after.
1280 */
1281 void unmap_kernel_range(unsigned long addr, unsigned long size)
1282 {
1283 unsigned long end = addr + size;
1284
1285 flush_cache_vunmap(addr, end);
1286 vunmap_page_range(addr, end);
1287 flush_tlb_kernel_range(addr, end);
1288 }
1289 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1290
1291 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1292 {
1293 unsigned long addr = (unsigned long)area->addr;
1294 unsigned long end = addr + get_vm_area_size(area);
1295 int err;
1296
1297 err = vmap_page_range(addr, end, prot, pages);
1298
1299 return err > 0 ? 0 : err;
1300 }
1301 EXPORT_SYMBOL_GPL(map_vm_area);
1302
1303 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1304 unsigned long flags, const void *caller)
1305 {
1306 spin_lock(&vmap_area_lock);
1307 vm->flags = flags;
1308 vm->addr = (void *)va->va_start;
1309 vm->size = va->va_end - va->va_start;
1310 vm->caller = caller;
1311 va->vm = vm;
1312 va->flags |= VM_VM_AREA;
1313 spin_unlock(&vmap_area_lock);
1314 }
1315
1316 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1317 {
1318 /*
1319 * Before removing VM_UNINITIALIZED,
1320 * we should make sure that vm has proper values.
1321 * Pair with smp_rmb() in show_numa_info().
1322 */
1323 smp_wmb();
1324 vm->flags &= ~VM_UNINITIALIZED;
1325 }
1326
1327 static struct vm_struct *__get_vm_area_node(unsigned long size,
1328 unsigned long align, unsigned long flags, unsigned long start,
1329 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1330 {
1331 struct vmap_area *va;
1332 struct vm_struct *area;
1333
1334 BUG_ON(in_interrupt());
1335 if (flags & VM_IOREMAP)
1336 align = 1ul << clamp_t(int, fls_long(size),
1337 PAGE_SHIFT, IOREMAP_MAX_ORDER);
1338
1339 size = PAGE_ALIGN(size);
1340 if (unlikely(!size))
1341 return NULL;
1342
1343 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1344 if (unlikely(!area))
1345 return NULL;
1346
1347 if (!(flags & VM_NO_GUARD))
1348 size += PAGE_SIZE;
1349
1350 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1351 if (IS_ERR(va)) {
1352 kfree(area);
1353 return NULL;
1354 }
1355
1356 setup_vmalloc_vm(area, va, flags, caller);
1357
1358 return area;
1359 }
1360
1361 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1362 unsigned long start, unsigned long end)
1363 {
1364 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1365 GFP_KERNEL, __builtin_return_address(0));
1366 }
1367 EXPORT_SYMBOL_GPL(__get_vm_area);
1368
1369 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1370 unsigned long start, unsigned long end,
1371 const void *caller)
1372 {
1373 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1374 GFP_KERNEL, caller);
1375 }
1376
1377 /**
1378 * get_vm_area - reserve a contiguous kernel virtual area
1379 * @size: size of the area
1380 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1381 *
1382 * Search an area of @size in the kernel virtual mapping area,
1383 * and reserved it for out purposes. Returns the area descriptor
1384 * on success or %NULL on failure.
1385 */
1386 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1387 {
1388 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1389 NUMA_NO_NODE, GFP_KERNEL,
1390 __builtin_return_address(0));
1391 }
1392
1393 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1394 const void *caller)
1395 {
1396 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1397 NUMA_NO_NODE, GFP_KERNEL, caller);
1398 }
1399
1400 /**
1401 * find_vm_area - find a continuous kernel virtual area
1402 * @addr: base address
1403 *
1404 * Search for the kernel VM area starting at @addr, and return it.
1405 * It is up to the caller to do all required locking to keep the returned
1406 * pointer valid.
1407 */
1408 struct vm_struct *find_vm_area(const void *addr)
1409 {
1410 struct vmap_area *va;
1411
1412 va = find_vmap_area((unsigned long)addr);
1413 if (va && va->flags & VM_VM_AREA)
1414 return va->vm;
1415
1416 return NULL;
1417 }
1418
1419 /**
1420 * remove_vm_area - find and remove a continuous kernel virtual area
1421 * @addr: base address
1422 *
1423 * Search for the kernel VM area starting at @addr, and remove it.
1424 * This function returns the found VM area, but using it is NOT safe
1425 * on SMP machines, except for its size or flags.
1426 */
1427 struct vm_struct *remove_vm_area(const void *addr)
1428 {
1429 struct vmap_area *va;
1430
1431 va = find_vmap_area((unsigned long)addr);
1432 if (va && va->flags & VM_VM_AREA) {
1433 struct vm_struct *vm = va->vm;
1434
1435 spin_lock(&vmap_area_lock);
1436 va->vm = NULL;
1437 va->flags &= ~VM_VM_AREA;
1438 spin_unlock(&vmap_area_lock);
1439
1440 vmap_debug_free_range(va->va_start, va->va_end);
1441 kasan_free_shadow(vm);
1442 free_unmap_vmap_area(va);
1443
1444 return vm;
1445 }
1446 return NULL;
1447 }
1448
1449 static void __vunmap(const void *addr, int deallocate_pages)
1450 {
1451 struct vm_struct *area;
1452
1453 if (!addr)
1454 return;
1455
1456 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1457 addr))
1458 return;
1459
1460 area = remove_vm_area(addr);
1461 if (unlikely(!area)) {
1462 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1463 addr);
1464 return;
1465 }
1466
1467 debug_check_no_locks_freed(addr, get_vm_area_size(area));
1468 debug_check_no_obj_freed(addr, get_vm_area_size(area));
1469
1470 if (deallocate_pages) {
1471 int i;
1472
1473 for (i = 0; i < area->nr_pages; i++) {
1474 struct page *page = area->pages[i];
1475
1476 BUG_ON(!page);
1477 __free_kmem_pages(page, 0);
1478 }
1479
1480 kvfree(area->pages);
1481 }
1482
1483 kfree(area);
1484 return;
1485 }
1486
1487 /**
1488 * vfree - release memory allocated by vmalloc()
1489 * @addr: memory base address
1490 *
1491 * Free the virtually continuous memory area starting at @addr, as
1492 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1493 * NULL, no operation is performed.
1494 *
1495 * Must not be called in NMI context (strictly speaking, only if we don't
1496 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1497 * conventions for vfree() arch-depenedent would be a really bad idea)
1498 *
1499 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1500 */
1501 void vfree(const void *addr)
1502 {
1503 BUG_ON(in_nmi());
1504
1505 kmemleak_free(addr);
1506
1507 if (!addr)
1508 return;
1509 if (unlikely(in_interrupt())) {
1510 struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
1511 if (llist_add((struct llist_node *)addr, &p->list))
1512 schedule_work(&p->wq);
1513 } else
1514 __vunmap(addr, 1);
1515 }
1516 EXPORT_SYMBOL(vfree);
1517
1518 /**
1519 * vunmap - release virtual mapping obtained by vmap()
1520 * @addr: memory base address
1521 *
1522 * Free the virtually contiguous memory area starting at @addr,
1523 * which was created from the page array passed to vmap().
1524 *
1525 * Must not be called in interrupt context.
1526 */
1527 void vunmap(const void *addr)
1528 {
1529 BUG_ON(in_interrupt());
1530 might_sleep();
1531 if (addr)
1532 __vunmap(addr, 0);
1533 }
1534 EXPORT_SYMBOL(vunmap);
1535
1536 /**
1537 * vmap - map an array of pages into virtually contiguous space
1538 * @pages: array of page pointers
1539 * @count: number of pages to map
1540 * @flags: vm_area->flags
1541 * @prot: page protection for the mapping
1542 *
1543 * Maps @count pages from @pages into contiguous kernel virtual
1544 * space.
1545 */
1546 void *vmap(struct page **pages, unsigned int count,
1547 unsigned long flags, pgprot_t prot)
1548 {
1549 struct vm_struct *area;
1550
1551 might_sleep();
1552
1553 if (count > totalram_pages)
1554 return NULL;
1555
1556 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1557 __builtin_return_address(0));
1558 if (!area)
1559 return NULL;
1560
1561 if (map_vm_area(area, prot, pages)) {
1562 vunmap(area->addr);
1563 return NULL;
1564 }
1565
1566 return area->addr;
1567 }
1568 EXPORT_SYMBOL(vmap);
1569
1570 static void *__vmalloc_node(unsigned long size, unsigned long align,
1571 gfp_t gfp_mask, pgprot_t prot,
1572 int node, const void *caller);
1573 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1574 pgprot_t prot, int node)
1575 {
1576 const int order = 0;
1577 struct page **pages;
1578 unsigned int nr_pages, array_size, i;
1579 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1580 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1581
1582 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1583 array_size = (nr_pages * sizeof(struct page *));
1584
1585 area->nr_pages = nr_pages;
1586 /* Please note that the recursion is strictly bounded. */
1587 if (array_size > PAGE_SIZE) {
1588 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1589 PAGE_KERNEL, node, area->caller);
1590 } else {
1591 pages = kmalloc_node(array_size, nested_gfp, node);
1592 }
1593 area->pages = pages;
1594 if (!area->pages) {
1595 remove_vm_area(area->addr);
1596 kfree(area);
1597 return NULL;
1598 }
1599
1600 for (i = 0; i < area->nr_pages; i++) {
1601 struct page *page;
1602
1603 if (node == NUMA_NO_NODE)
1604 page = alloc_kmem_pages(alloc_mask, order);
1605 else
1606 page = alloc_kmem_pages_node(node, alloc_mask, order);
1607
1608 if (unlikely(!page)) {
1609 /* Successfully allocated i pages, free them in __vunmap() */
1610 area->nr_pages = i;
1611 goto fail;
1612 }
1613 area->pages[i] = page;
1614 if (gfpflags_allow_blocking(gfp_mask))
1615 cond_resched();
1616 }
1617
1618 if (map_vm_area(area, prot, pages))
1619 goto fail;
1620 return area->addr;
1621
1622 fail:
1623 warn_alloc_failed(gfp_mask, order,
1624 "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1625 (area->nr_pages*PAGE_SIZE), area->size);
1626 vfree(area->addr);
1627 return NULL;
1628 }
1629
1630 /**
1631 * __vmalloc_node_range - allocate virtually contiguous memory
1632 * @size: allocation size
1633 * @align: desired alignment
1634 * @start: vm area range start
1635 * @end: vm area range end
1636 * @gfp_mask: flags for the page level allocator
1637 * @prot: protection mask for the allocated pages
1638 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
1639 * @node: node to use for allocation or NUMA_NO_NODE
1640 * @caller: caller's return address
1641 *
1642 * Allocate enough pages to cover @size from the page level
1643 * allocator with @gfp_mask flags. Map them into contiguous
1644 * kernel virtual space, using a pagetable protection of @prot.
1645 */
1646 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1647 unsigned long start, unsigned long end, gfp_t gfp_mask,
1648 pgprot_t prot, unsigned long vm_flags, int node,
1649 const void *caller)
1650 {
1651 struct vm_struct *area;
1652 void *addr;
1653 unsigned long real_size = size;
1654
1655 size = PAGE_ALIGN(size);
1656 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1657 goto fail;
1658
1659 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1660 vm_flags, start, end, node, gfp_mask, caller);
1661 if (!area)
1662 goto fail;
1663
1664 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1665 if (!addr)
1666 return NULL;
1667
1668 /*
1669 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1670 * flag. It means that vm_struct is not fully initialized.
1671 * Now, it is fully initialized, so remove this flag here.
1672 */
1673 clear_vm_uninitialized_flag(area);
1674
1675 /*
1676 * A ref_count = 2 is needed because vm_struct allocated in
1677 * __get_vm_area_node() contains a reference to the virtual address of
1678 * the vmalloc'ed block.
1679 */
1680 kmemleak_alloc(addr, real_size, 2, gfp_mask);
1681
1682 return addr;
1683
1684 fail:
1685 warn_alloc_failed(gfp_mask, 0,
1686 "vmalloc: allocation failure: %lu bytes\n",
1687 real_size);
1688 return NULL;
1689 }
1690
1691 /**
1692 * __vmalloc_node - allocate virtually contiguous memory
1693 * @size: allocation size
1694 * @align: desired alignment
1695 * @gfp_mask: flags for the page level allocator
1696 * @prot: protection mask for the allocated pages
1697 * @node: node to use for allocation or NUMA_NO_NODE
1698 * @caller: caller's return address
1699 *
1700 * Allocate enough pages to cover @size from the page level
1701 * allocator with @gfp_mask flags. Map them into contiguous
1702 * kernel virtual space, using a pagetable protection of @prot.
1703 */
1704 static void *__vmalloc_node(unsigned long size, unsigned long align,
1705 gfp_t gfp_mask, pgprot_t prot,
1706 int node, const void *caller)
1707 {
1708 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1709 gfp_mask, prot, 0, node, caller);
1710 }
1711
1712 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1713 {
1714 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1715 __builtin_return_address(0));
1716 }
1717 EXPORT_SYMBOL(__vmalloc);
1718
1719 static inline void *__vmalloc_node_flags(unsigned long size,
1720 int node, gfp_t flags)
1721 {
1722 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1723 node, __builtin_return_address(0));
1724 }
1725
1726 /**
1727 * vmalloc - allocate virtually contiguous memory
1728 * @size: allocation size
1729 * Allocate enough pages to cover @size from the page level
1730 * allocator and map them into contiguous kernel virtual space.
1731 *
1732 * For tight control over page level allocator and protection flags
1733 * use __vmalloc() instead.
1734 */
1735 void *vmalloc(unsigned long size)
1736 {
1737 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1738 GFP_KERNEL | __GFP_HIGHMEM);
1739 }
1740 EXPORT_SYMBOL(vmalloc);
1741
1742 /**
1743 * vzalloc - allocate virtually contiguous memory with zero fill
1744 * @size: allocation size
1745 * Allocate enough pages to cover @size from the page level
1746 * allocator and map them into contiguous kernel virtual space.
1747 * The memory allocated is set to zero.
1748 *
1749 * For tight control over page level allocator and protection flags
1750 * use __vmalloc() instead.
1751 */
1752 void *vzalloc(unsigned long size)
1753 {
1754 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1755 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1756 }
1757 EXPORT_SYMBOL(vzalloc);
1758
1759 /**
1760 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1761 * @size: allocation size
1762 *
1763 * The resulting memory area is zeroed so it can be mapped to userspace
1764 * without leaking data.
1765 */
1766 void *vmalloc_user(unsigned long size)
1767 {
1768 struct vm_struct *area;
1769 void *ret;
1770
1771 ret = __vmalloc_node(size, SHMLBA,
1772 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1773 PAGE_KERNEL, NUMA_NO_NODE,
1774 __builtin_return_address(0));
1775 if (ret) {
1776 area = find_vm_area(ret);
1777 area->flags |= VM_USERMAP;
1778 }
1779 return ret;
1780 }
1781 EXPORT_SYMBOL(vmalloc_user);
1782
1783 /**
1784 * vmalloc_node - allocate memory on a specific node
1785 * @size: allocation size
1786 * @node: numa node
1787 *
1788 * Allocate enough pages to cover @size from the page level
1789 * allocator and map them into contiguous kernel virtual space.
1790 *
1791 * For tight control over page level allocator and protection flags
1792 * use __vmalloc() instead.
1793 */
1794 void *vmalloc_node(unsigned long size, int node)
1795 {
1796 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1797 node, __builtin_return_address(0));
1798 }
1799 EXPORT_SYMBOL(vmalloc_node);
1800
1801 /**
1802 * vzalloc_node - allocate memory on a specific node with zero fill
1803 * @size: allocation size
1804 * @node: numa node
1805 *
1806 * Allocate enough pages to cover @size from the page level
1807 * allocator and map them into contiguous kernel virtual space.
1808 * The memory allocated is set to zero.
1809 *
1810 * For tight control over page level allocator and protection flags
1811 * use __vmalloc_node() instead.
1812 */
1813 void *vzalloc_node(unsigned long size, int node)
1814 {
1815 return __vmalloc_node_flags(size, node,
1816 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1817 }
1818 EXPORT_SYMBOL(vzalloc_node);
1819
1820 #ifndef PAGE_KERNEL_EXEC
1821 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1822 #endif
1823
1824 /**
1825 * vmalloc_exec - allocate virtually contiguous, executable memory
1826 * @size: allocation size
1827 *
1828 * Kernel-internal function to allocate enough pages to cover @size
1829 * the page level allocator and map them into contiguous and
1830 * executable kernel virtual space.
1831 *
1832 * For tight control over page level allocator and protection flags
1833 * use __vmalloc() instead.
1834 */
1835
1836 void *vmalloc_exec(unsigned long size)
1837 {
1838 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1839 NUMA_NO_NODE, __builtin_return_address(0));
1840 }
1841
1842 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1843 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1844 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1845 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1846 #else
1847 #define GFP_VMALLOC32 GFP_KERNEL
1848 #endif
1849
1850 /**
1851 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1852 * @size: allocation size
1853 *
1854 * Allocate enough 32bit PA addressable pages to cover @size from the
1855 * page level allocator and map them into contiguous kernel virtual space.
1856 */
1857 void *vmalloc_32(unsigned long size)
1858 {
1859 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1860 NUMA_NO_NODE, __builtin_return_address(0));
1861 }
1862 EXPORT_SYMBOL(vmalloc_32);
1863
1864 /**
1865 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1866 * @size: allocation size
1867 *
1868 * The resulting memory area is 32bit addressable and zeroed so it can be
1869 * mapped to userspace without leaking data.
1870 */
1871 void *vmalloc_32_user(unsigned long size)
1872 {
1873 struct vm_struct *area;
1874 void *ret;
1875
1876 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1877 NUMA_NO_NODE, __builtin_return_address(0));
1878 if (ret) {
1879 area = find_vm_area(ret);
1880 area->flags |= VM_USERMAP;
1881 }
1882 return ret;
1883 }
1884 EXPORT_SYMBOL(vmalloc_32_user);
1885
1886 /*
1887 * small helper routine , copy contents to buf from addr.
1888 * If the page is not present, fill zero.
1889 */
1890
1891 static int aligned_vread(char *buf, char *addr, unsigned long count)
1892 {
1893 struct page *p;
1894 int copied = 0;
1895
1896 while (count) {
1897 unsigned long offset, length;
1898
1899 offset = offset_in_page(addr);
1900 length = PAGE_SIZE - offset;
1901 if (length > count)
1902 length = count;
1903 p = vmalloc_to_page(addr);
1904 /*
1905 * To do safe access to this _mapped_ area, we need
1906 * lock. But adding lock here means that we need to add
1907 * overhead of vmalloc()/vfree() calles for this _debug_
1908 * interface, rarely used. Instead of that, we'll use
1909 * kmap() and get small overhead in this access function.
1910 */
1911 if (p) {
1912 /*
1913 * we can expect USER0 is not used (see vread/vwrite's
1914 * function description)
1915 */
1916 void *map = kmap_atomic(p);
1917 memcpy(buf, map + offset, length);
1918 kunmap_atomic(map);
1919 } else
1920 memset(buf, 0, length);
1921
1922 addr += length;
1923 buf += length;
1924 copied += length;
1925 count -= length;
1926 }
1927 return copied;
1928 }
1929
1930 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1931 {
1932 struct page *p;
1933 int copied = 0;
1934
1935 while (count) {
1936 unsigned long offset, length;
1937
1938 offset = offset_in_page(addr);
1939 length = PAGE_SIZE - offset;
1940 if (length > count)
1941 length = count;
1942 p = vmalloc_to_page(addr);
1943 /*
1944 * To do safe access to this _mapped_ area, we need
1945 * lock. But adding lock here means that we need to add
1946 * overhead of vmalloc()/vfree() calles for this _debug_
1947 * interface, rarely used. Instead of that, we'll use
1948 * kmap() and get small overhead in this access function.
1949 */
1950 if (p) {
1951 /*
1952 * we can expect USER0 is not used (see vread/vwrite's
1953 * function description)
1954 */
1955 void *map = kmap_atomic(p);
1956 memcpy(map + offset, buf, length);
1957 kunmap_atomic(map);
1958 }
1959 addr += length;
1960 buf += length;
1961 copied += length;
1962 count -= length;
1963 }
1964 return copied;
1965 }
1966
1967 /**
1968 * vread() - read vmalloc area in a safe way.
1969 * @buf: buffer for reading data
1970 * @addr: vm address.
1971 * @count: number of bytes to be read.
1972 *
1973 * Returns # of bytes which addr and buf should be increased.
1974 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1975 * includes any intersect with alive vmalloc area.
1976 *
1977 * This function checks that addr is a valid vmalloc'ed area, and
1978 * copy data from that area to a given buffer. If the given memory range
1979 * of [addr...addr+count) includes some valid address, data is copied to
1980 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1981 * IOREMAP area is treated as memory hole and no copy is done.
1982 *
1983 * If [addr...addr+count) doesn't includes any intersects with alive
1984 * vm_struct area, returns 0. @buf should be kernel's buffer.
1985 *
1986 * Note: In usual ops, vread() is never necessary because the caller
1987 * should know vmalloc() area is valid and can use memcpy().
1988 * This is for routines which have to access vmalloc area without
1989 * any informaion, as /dev/kmem.
1990 *
1991 */
1992
1993 long vread(char *buf, char *addr, unsigned long count)
1994 {
1995 struct vmap_area *va;
1996 struct vm_struct *vm;
1997 char *vaddr, *buf_start = buf;
1998 unsigned long buflen = count;
1999 unsigned long n;
2000
2001 /* Don't allow overflow */
2002 if ((unsigned long) addr + count < count)
2003 count = -(unsigned long) addr;
2004
2005 spin_lock(&vmap_area_lock);
2006 list_for_each_entry(va, &vmap_area_list, list) {
2007 if (!count)
2008 break;
2009
2010 if (!(va->flags & VM_VM_AREA))
2011 continue;
2012
2013 vm = va->vm;
2014 vaddr = (char *) vm->addr;
2015 if (addr >= vaddr + get_vm_area_size(vm))
2016 continue;
2017 while (addr < vaddr) {
2018 if (count == 0)
2019 goto finished;
2020 *buf = '\0';
2021 buf++;
2022 addr++;
2023 count--;
2024 }
2025 n = vaddr + get_vm_area_size(vm) - addr;
2026 if (n > count)
2027 n = count;
2028 if (!(vm->flags & VM_IOREMAP))
2029 aligned_vread(buf, addr, n);
2030 else /* IOREMAP area is treated as memory hole */
2031 memset(buf, 0, n);
2032 buf += n;
2033 addr += n;
2034 count -= n;
2035 }
2036 finished:
2037 spin_unlock(&vmap_area_lock);
2038
2039 if (buf == buf_start)
2040 return 0;
2041 /* zero-fill memory holes */
2042 if (buf != buf_start + buflen)
2043 memset(buf, 0, buflen - (buf - buf_start));
2044
2045 return buflen;
2046 }
2047
2048 /**
2049 * vwrite() - write vmalloc area in a safe way.
2050 * @buf: buffer for source data
2051 * @addr: vm address.
2052 * @count: number of bytes to be read.
2053 *
2054 * Returns # of bytes which addr and buf should be incresed.
2055 * (same number to @count).
2056 * If [addr...addr+count) doesn't includes any intersect with valid
2057 * vmalloc area, returns 0.
2058 *
2059 * This function checks that addr is a valid vmalloc'ed area, and
2060 * copy data from a buffer to the given addr. If specified range of
2061 * [addr...addr+count) includes some valid address, data is copied from
2062 * proper area of @buf. If there are memory holes, no copy to hole.
2063 * IOREMAP area is treated as memory hole and no copy is done.
2064 *
2065 * If [addr...addr+count) doesn't includes any intersects with alive
2066 * vm_struct area, returns 0. @buf should be kernel's buffer.
2067 *
2068 * Note: In usual ops, vwrite() is never necessary because the caller
2069 * should know vmalloc() area is valid and can use memcpy().
2070 * This is for routines which have to access vmalloc area without
2071 * any informaion, as /dev/kmem.
2072 */
2073
2074 long vwrite(char *buf, char *addr, unsigned long count)
2075 {
2076 struct vmap_area *va;
2077 struct vm_struct *vm;
2078 char *vaddr;
2079 unsigned long n, buflen;
2080 int copied = 0;
2081
2082 /* Don't allow overflow */
2083 if ((unsigned long) addr + count < count)
2084 count = -(unsigned long) addr;
2085 buflen = count;
2086
2087 spin_lock(&vmap_area_lock);
2088 list_for_each_entry(va, &vmap_area_list, list) {
2089 if (!count)
2090 break;
2091
2092 if (!(va->flags & VM_VM_AREA))
2093 continue;
2094
2095 vm = va->vm;
2096 vaddr = (char *) vm->addr;
2097 if (addr >= vaddr + get_vm_area_size(vm))
2098 continue;
2099 while (addr < vaddr) {
2100 if (count == 0)
2101 goto finished;
2102 buf++;
2103 addr++;
2104 count--;
2105 }
2106 n = vaddr + get_vm_area_size(vm) - addr;
2107 if (n > count)
2108 n = count;
2109 if (!(vm->flags & VM_IOREMAP)) {
2110 aligned_vwrite(buf, addr, n);
2111 copied++;
2112 }
2113 buf += n;
2114 addr += n;
2115 count -= n;
2116 }
2117 finished:
2118 spin_unlock(&vmap_area_lock);
2119 if (!copied)
2120 return 0;
2121 return buflen;
2122 }
2123
2124 /**
2125 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2126 * @vma: vma to cover
2127 * @uaddr: target user address to start at
2128 * @kaddr: virtual address of vmalloc kernel memory
2129 * @size: size of map area
2130 *
2131 * Returns: 0 for success, -Exxx on failure
2132 *
2133 * This function checks that @kaddr is a valid vmalloc'ed area,
2134 * and that it is big enough to cover the range starting at
2135 * @uaddr in @vma. Will return failure if that criteria isn't
2136 * met.
2137 *
2138 * Similar to remap_pfn_range() (see mm/memory.c)
2139 */
2140 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2141 void *kaddr, unsigned long size)
2142 {
2143 struct vm_struct *area;
2144
2145 size = PAGE_ALIGN(size);
2146
2147 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2148 return -EINVAL;
2149
2150 area = find_vm_area(kaddr);
2151 if (!area)
2152 return -EINVAL;
2153
2154 if (!(area->flags & VM_USERMAP))
2155 return -EINVAL;
2156
2157 if (kaddr + size > area->addr + area->size)
2158 return -EINVAL;
2159
2160 do {
2161 struct page *page = vmalloc_to_page(kaddr);
2162 int ret;
2163
2164 ret = vm_insert_page(vma, uaddr, page);
2165 if (ret)
2166 return ret;
2167
2168 uaddr += PAGE_SIZE;
2169 kaddr += PAGE_SIZE;
2170 size -= PAGE_SIZE;
2171 } while (size > 0);
2172
2173 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2174
2175 return 0;
2176 }
2177 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2178
2179 /**
2180 * remap_vmalloc_range - map vmalloc pages to userspace
2181 * @vma: vma to cover (map full range of vma)
2182 * @addr: vmalloc memory
2183 * @pgoff: number of pages into addr before first page to map
2184 *
2185 * Returns: 0 for success, -Exxx on failure
2186 *
2187 * This function checks that addr is a valid vmalloc'ed area, and
2188 * that it is big enough to cover the vma. Will return failure if
2189 * that criteria isn't met.
2190 *
2191 * Similar to remap_pfn_range() (see mm/memory.c)
2192 */
2193 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2194 unsigned long pgoff)
2195 {
2196 return remap_vmalloc_range_partial(vma, vma->vm_start,
2197 addr + (pgoff << PAGE_SHIFT),
2198 vma->vm_end - vma->vm_start);
2199 }
2200 EXPORT_SYMBOL(remap_vmalloc_range);
2201
2202 /*
2203 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2204 * have one.
2205 */
2206 void __weak vmalloc_sync_all(void)
2207 {
2208 }
2209
2210
2211 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2212 {
2213 pte_t ***p = data;
2214
2215 if (p) {
2216 *(*p) = pte;
2217 (*p)++;
2218 }
2219 return 0;
2220 }
2221
2222 /**
2223 * alloc_vm_area - allocate a range of kernel address space
2224 * @size: size of the area
2225 * @ptes: returns the PTEs for the address space
2226 *
2227 * Returns: NULL on failure, vm_struct on success
2228 *
2229 * This function reserves a range of kernel address space, and
2230 * allocates pagetables to map that range. No actual mappings
2231 * are created.
2232 *
2233 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2234 * allocated for the VM area are returned.
2235 */
2236 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2237 {
2238 struct vm_struct *area;
2239
2240 area = get_vm_area_caller(size, VM_IOREMAP,
2241 __builtin_return_address(0));
2242 if (area == NULL)
2243 return NULL;
2244
2245 /*
2246 * This ensures that page tables are constructed for this region
2247 * of kernel virtual address space and mapped into init_mm.
2248 */
2249 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2250 size, f, ptes ? &ptes : NULL)) {
2251 free_vm_area(area);
2252 return NULL;
2253 }
2254
2255 return area;
2256 }
2257 EXPORT_SYMBOL_GPL(alloc_vm_area);
2258
2259 void free_vm_area(struct vm_struct *area)
2260 {
2261 struct vm_struct *ret;
2262 ret = remove_vm_area(area->addr);
2263 BUG_ON(ret != area);
2264 kfree(area);
2265 }
2266 EXPORT_SYMBOL_GPL(free_vm_area);
2267
2268 #ifdef CONFIG_SMP
2269 static struct vmap_area *node_to_va(struct rb_node *n)
2270 {
2271 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2272 }
2273
2274 /**
2275 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2276 * @end: target address
2277 * @pnext: out arg for the next vmap_area
2278 * @pprev: out arg for the previous vmap_area
2279 *
2280 * Returns: %true if either or both of next and prev are found,
2281 * %false if no vmap_area exists
2282 *
2283 * Find vmap_areas end addresses of which enclose @end. ie. if not
2284 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2285 */
2286 static bool pvm_find_next_prev(unsigned long end,
2287 struct vmap_area **pnext,
2288 struct vmap_area **pprev)
2289 {
2290 struct rb_node *n = vmap_area_root.rb_node;
2291 struct vmap_area *va = NULL;
2292
2293 while (n) {
2294 va = rb_entry(n, struct vmap_area, rb_node);
2295 if (end < va->va_end)
2296 n = n->rb_left;
2297 else if (end > va->va_end)
2298 n = n->rb_right;
2299 else
2300 break;
2301 }
2302
2303 if (!va)
2304 return false;
2305
2306 if (va->va_end > end) {
2307 *pnext = va;
2308 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2309 } else {
2310 *pprev = va;
2311 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2312 }
2313 return true;
2314 }
2315
2316 /**
2317 * pvm_determine_end - find the highest aligned address between two vmap_areas
2318 * @pnext: in/out arg for the next vmap_area
2319 * @pprev: in/out arg for the previous vmap_area
2320 * @align: alignment
2321 *
2322 * Returns: determined end address
2323 *
2324 * Find the highest aligned address between *@pnext and *@pprev below
2325 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2326 * down address is between the end addresses of the two vmap_areas.
2327 *
2328 * Please note that the address returned by this function may fall
2329 * inside *@pnext vmap_area. The caller is responsible for checking
2330 * that.
2331 */
2332 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2333 struct vmap_area **pprev,
2334 unsigned long align)
2335 {
2336 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2337 unsigned long addr;
2338
2339 if (*pnext)
2340 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2341 else
2342 addr = vmalloc_end;
2343
2344 while (*pprev && (*pprev)->va_end > addr) {
2345 *pnext = *pprev;
2346 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2347 }
2348
2349 return addr;
2350 }
2351
2352 /**
2353 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2354 * @offsets: array containing offset of each area
2355 * @sizes: array containing size of each area
2356 * @nr_vms: the number of areas to allocate
2357 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2358 *
2359 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2360 * vm_structs on success, %NULL on failure
2361 *
2362 * Percpu allocator wants to use congruent vm areas so that it can
2363 * maintain the offsets among percpu areas. This function allocates
2364 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2365 * be scattered pretty far, distance between two areas easily going up
2366 * to gigabytes. To avoid interacting with regular vmallocs, these
2367 * areas are allocated from top.
2368 *
2369 * Despite its complicated look, this allocator is rather simple. It
2370 * does everything top-down and scans areas from the end looking for
2371 * matching slot. While scanning, if any of the areas overlaps with
2372 * existing vmap_area, the base address is pulled down to fit the
2373 * area. Scanning is repeated till all the areas fit and then all
2374 * necessary data structres are inserted and the result is returned.
2375 */
2376 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2377 const size_t *sizes, int nr_vms,
2378 size_t align)
2379 {
2380 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2381 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2382 struct vmap_area **vas, *prev, *next;
2383 struct vm_struct **vms;
2384 int area, area2, last_area, term_area;
2385 unsigned long base, start, end, last_end;
2386 bool purged = false;
2387
2388 /* verify parameters and allocate data structures */
2389 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2390 for (last_area = 0, area = 0; area < nr_vms; area++) {
2391 start = offsets[area];
2392 end = start + sizes[area];
2393
2394 /* is everything aligned properly? */
2395 BUG_ON(!IS_ALIGNED(offsets[area], align));
2396 BUG_ON(!IS_ALIGNED(sizes[area], align));
2397
2398 /* detect the area with the highest address */
2399 if (start > offsets[last_area])
2400 last_area = area;
2401
2402 for (area2 = 0; area2 < nr_vms; area2++) {
2403 unsigned long start2 = offsets[area2];
2404 unsigned long end2 = start2 + sizes[area2];
2405
2406 if (area2 == area)
2407 continue;
2408
2409 BUG_ON(start2 >= start && start2 < end);
2410 BUG_ON(end2 <= end && end2 > start);
2411 }
2412 }
2413 last_end = offsets[last_area] + sizes[last_area];
2414
2415 if (vmalloc_end - vmalloc_start < last_end) {
2416 WARN_ON(true);
2417 return NULL;
2418 }
2419
2420 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2421 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2422 if (!vas || !vms)
2423 goto err_free2;
2424
2425 for (area = 0; area < nr_vms; area++) {
2426 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2427 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2428 if (!vas[area] || !vms[area])
2429 goto err_free;
2430 }
2431 retry:
2432 spin_lock(&vmap_area_lock);
2433
2434 /* start scanning - we scan from the top, begin with the last area */
2435 area = term_area = last_area;
2436 start = offsets[area];
2437 end = start + sizes[area];
2438
2439 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2440 base = vmalloc_end - last_end;
2441 goto found;
2442 }
2443 base = pvm_determine_end(&next, &prev, align) - end;
2444
2445 while (true) {
2446 BUG_ON(next && next->va_end <= base + end);
2447 BUG_ON(prev && prev->va_end > base + end);
2448
2449 /*
2450 * base might have underflowed, add last_end before
2451 * comparing.
2452 */
2453 if (base + last_end < vmalloc_start + last_end) {
2454 spin_unlock(&vmap_area_lock);
2455 if (!purged) {
2456 purge_vmap_area_lazy();
2457 purged = true;
2458 goto retry;
2459 }
2460 goto err_free;
2461 }
2462
2463 /*
2464 * If next overlaps, move base downwards so that it's
2465 * right below next and then recheck.
2466 */
2467 if (next && next->va_start < base + end) {
2468 base = pvm_determine_end(&next, &prev, align) - end;
2469 term_area = area;
2470 continue;
2471 }
2472
2473 /*
2474 * If prev overlaps, shift down next and prev and move
2475 * base so that it's right below new next and then
2476 * recheck.
2477 */
2478 if (prev && prev->va_end > base + start) {
2479 next = prev;
2480 prev = node_to_va(rb_prev(&next->rb_node));
2481 base = pvm_determine_end(&next, &prev, align) - end;
2482 term_area = area;
2483 continue;
2484 }
2485
2486 /*
2487 * This area fits, move on to the previous one. If
2488 * the previous one is the terminal one, we're done.
2489 */
2490 area = (area + nr_vms - 1) % nr_vms;
2491 if (area == term_area)
2492 break;
2493 start = offsets[area];
2494 end = start + sizes[area];
2495 pvm_find_next_prev(base + end, &next, &prev);
2496 }
2497 found:
2498 /* we've found a fitting base, insert all va's */
2499 for (area = 0; area < nr_vms; area++) {
2500 struct vmap_area *va = vas[area];
2501
2502 va->va_start = base + offsets[area];
2503 va->va_end = va->va_start + sizes[area];
2504 __insert_vmap_area(va);
2505 }
2506
2507 vmap_area_pcpu_hole = base + offsets[last_area];
2508
2509 spin_unlock(&vmap_area_lock);
2510
2511 /* insert all vm's */
2512 for (area = 0; area < nr_vms; area++)
2513 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2514 pcpu_get_vm_areas);
2515
2516 kfree(vas);
2517 return vms;
2518
2519 err_free:
2520 for (area = 0; area < nr_vms; area++) {
2521 kfree(vas[area]);
2522 kfree(vms[area]);
2523 }
2524 err_free2:
2525 kfree(vas);
2526 kfree(vms);
2527 return NULL;
2528 }
2529
2530 /**
2531 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2532 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2533 * @nr_vms: the number of allocated areas
2534 *
2535 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2536 */
2537 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2538 {
2539 int i;
2540
2541 for (i = 0; i < nr_vms; i++)
2542 free_vm_area(vms[i]);
2543 kfree(vms);
2544 }
2545 #endif /* CONFIG_SMP */
2546
2547 #ifdef CONFIG_PROC_FS
2548 static void *s_start(struct seq_file *m, loff_t *pos)
2549 __acquires(&vmap_area_lock)
2550 {
2551 loff_t n = *pos;
2552 struct vmap_area *va;
2553
2554 spin_lock(&vmap_area_lock);
2555 va = list_first_entry(&vmap_area_list, typeof(*va), list);
2556 while (n > 0 && &va->list != &vmap_area_list) {
2557 n--;
2558 va = list_next_entry(va, list);
2559 }
2560 if (!n && &va->list != &vmap_area_list)
2561 return va;
2562
2563 return NULL;
2564
2565 }
2566
2567 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2568 {
2569 struct vmap_area *va = p, *next;
2570
2571 ++*pos;
2572 next = list_next_entry(va, list);
2573 if (&next->list != &vmap_area_list)
2574 return next;
2575
2576 return NULL;
2577 }
2578
2579 static void s_stop(struct seq_file *m, void *p)
2580 __releases(&vmap_area_lock)
2581 {
2582 spin_unlock(&vmap_area_lock);
2583 }
2584
2585 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2586 {
2587 if (IS_ENABLED(CONFIG_NUMA)) {
2588 unsigned int nr, *counters = m->private;
2589
2590 if (!counters)
2591 return;
2592
2593 if (v->flags & VM_UNINITIALIZED)
2594 return;
2595 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2596 smp_rmb();
2597
2598 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2599
2600 for (nr = 0; nr < v->nr_pages; nr++)
2601 counters[page_to_nid(v->pages[nr])]++;
2602
2603 for_each_node_state(nr, N_HIGH_MEMORY)
2604 if (counters[nr])
2605 seq_printf(m, " N%u=%u", nr, counters[nr]);
2606 }
2607 }
2608
2609 static int s_show(struct seq_file *m, void *p)
2610 {
2611 struct vmap_area *va = p;
2612 struct vm_struct *v;
2613
2614 /*
2615 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2616 * behalf of vmap area is being tear down or vm_map_ram allocation.
2617 */
2618 if (!(va->flags & VM_VM_AREA))
2619 return 0;
2620
2621 v = va->vm;
2622
2623 seq_printf(m, "0x%pK-0x%pK %7ld",
2624 v->addr, v->addr + v->size, v->size);
2625
2626 if (v->caller)
2627 seq_printf(m, " %pS", v->caller);
2628
2629 if (v->nr_pages)
2630 seq_printf(m, " pages=%d", v->nr_pages);
2631
2632 if (v->phys_addr)
2633 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2634
2635 if (v->flags & VM_IOREMAP)
2636 seq_puts(m, " ioremap");
2637
2638 if (v->flags & VM_ALLOC)
2639 seq_puts(m, " vmalloc");
2640
2641 if (v->flags & VM_MAP)
2642 seq_puts(m, " vmap");
2643
2644 if (v->flags & VM_USERMAP)
2645 seq_puts(m, " user");
2646
2647 if (is_vmalloc_addr(v->pages))
2648 seq_puts(m, " vpages");
2649
2650 show_numa_info(m, v);
2651 seq_putc(m, '\n');
2652 return 0;
2653 }
2654
2655 static const struct seq_operations vmalloc_op = {
2656 .start = s_start,
2657 .next = s_next,
2658 .stop = s_stop,
2659 .show = s_show,
2660 };
2661
2662 static int vmalloc_open(struct inode *inode, struct file *file)
2663 {
2664 if (IS_ENABLED(CONFIG_NUMA))
2665 return seq_open_private(file, &vmalloc_op,
2666 nr_node_ids * sizeof(unsigned int));
2667 else
2668 return seq_open(file, &vmalloc_op);
2669 }
2670
2671 static const struct file_operations proc_vmalloc_operations = {
2672 .open = vmalloc_open,
2673 .read = seq_read,
2674 .llseek = seq_lseek,
2675 .release = seq_release_private,
2676 };
2677
2678 static int __init proc_vmalloc_init(void)
2679 {
2680 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2681 return 0;
2682 }
2683 module_init(proc_vmalloc_init);
2684
2685 #endif
2686