]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/vmalloc.c
bpf: Wrap aux data inside bpf_sanitize_info container
[mirror_ubuntu-hirsute-kernel.git] / mm / vmalloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7 * Numa awareness, Christoph Lameter, SGI, June 2005
8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/rcupdate.h>
29 #include <linux/pfn.h>
30 #include <linux/kmemleak.h>
31 #include <linux/atomic.h>
32 #include <linux/compiler.h>
33 #include <linux/llist.h>
34 #include <linux/bitops.h>
35 #include <linux/rbtree_augmented.h>
36 #include <linux/overflow.h>
37
38 #include <linux/uaccess.h>
39 #include <asm/tlbflush.h>
40 #include <asm/shmparam.h>
41
42 #include "internal.h"
43 #include "pgalloc-track.h"
44
45 bool is_vmalloc_addr(const void *x)
46 {
47 unsigned long addr = (unsigned long)x;
48
49 return addr >= VMALLOC_START && addr < VMALLOC_END;
50 }
51 EXPORT_SYMBOL(is_vmalloc_addr);
52
53 struct vfree_deferred {
54 struct llist_head list;
55 struct work_struct wq;
56 };
57 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
58
59 static void __vunmap(const void *, int);
60
61 static void free_work(struct work_struct *w)
62 {
63 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
64 struct llist_node *t, *llnode;
65
66 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
67 __vunmap((void *)llnode, 1);
68 }
69
70 /*** Page table manipulation functions ***/
71
72 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
73 pgtbl_mod_mask *mask)
74 {
75 pte_t *pte;
76
77 pte = pte_offset_kernel(pmd, addr);
78 do {
79 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
80 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
81 } while (pte++, addr += PAGE_SIZE, addr != end);
82 *mask |= PGTBL_PTE_MODIFIED;
83 }
84
85 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
86 pgtbl_mod_mask *mask)
87 {
88 pmd_t *pmd;
89 unsigned long next;
90 int cleared;
91
92 pmd = pmd_offset(pud, addr);
93 do {
94 next = pmd_addr_end(addr, end);
95
96 cleared = pmd_clear_huge(pmd);
97 if (cleared || pmd_bad(*pmd))
98 *mask |= PGTBL_PMD_MODIFIED;
99
100 if (cleared)
101 continue;
102 if (pmd_none_or_clear_bad(pmd))
103 continue;
104 vunmap_pte_range(pmd, addr, next, mask);
105
106 cond_resched();
107 } while (pmd++, addr = next, addr != end);
108 }
109
110 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
111 pgtbl_mod_mask *mask)
112 {
113 pud_t *pud;
114 unsigned long next;
115 int cleared;
116
117 pud = pud_offset(p4d, addr);
118 do {
119 next = pud_addr_end(addr, end);
120
121 cleared = pud_clear_huge(pud);
122 if (cleared || pud_bad(*pud))
123 *mask |= PGTBL_PUD_MODIFIED;
124
125 if (cleared)
126 continue;
127 if (pud_none_or_clear_bad(pud))
128 continue;
129 vunmap_pmd_range(pud, addr, next, mask);
130 } while (pud++, addr = next, addr != end);
131 }
132
133 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
134 pgtbl_mod_mask *mask)
135 {
136 p4d_t *p4d;
137 unsigned long next;
138 int cleared;
139
140 p4d = p4d_offset(pgd, addr);
141 do {
142 next = p4d_addr_end(addr, end);
143
144 cleared = p4d_clear_huge(p4d);
145 if (cleared || p4d_bad(*p4d))
146 *mask |= PGTBL_P4D_MODIFIED;
147
148 if (cleared)
149 continue;
150 if (p4d_none_or_clear_bad(p4d))
151 continue;
152 vunmap_pud_range(p4d, addr, next, mask);
153 } while (p4d++, addr = next, addr != end);
154 }
155
156 /**
157 * unmap_kernel_range_noflush - unmap kernel VM area
158 * @start: start of the VM area to unmap
159 * @size: size of the VM area to unmap
160 *
161 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size specify
162 * should have been allocated using get_vm_area() and its friends.
163 *
164 * NOTE:
165 * This function does NOT do any cache flushing. The caller is responsible
166 * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
167 * function and flush_tlb_kernel_range() after.
168 */
169 void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
170 {
171 unsigned long end = start + size;
172 unsigned long next;
173 pgd_t *pgd;
174 unsigned long addr = start;
175 pgtbl_mod_mask mask = 0;
176
177 BUG_ON(addr >= end);
178 pgd = pgd_offset_k(addr);
179 do {
180 next = pgd_addr_end(addr, end);
181 if (pgd_bad(*pgd))
182 mask |= PGTBL_PGD_MODIFIED;
183 if (pgd_none_or_clear_bad(pgd))
184 continue;
185 vunmap_p4d_range(pgd, addr, next, &mask);
186 } while (pgd++, addr = next, addr != end);
187
188 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
189 arch_sync_kernel_mappings(start, end);
190 }
191
192 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
193 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
194 pgtbl_mod_mask *mask)
195 {
196 pte_t *pte;
197
198 /*
199 * nr is a running index into the array which helps higher level
200 * callers keep track of where we're up to.
201 */
202
203 pte = pte_alloc_kernel_track(pmd, addr, mask);
204 if (!pte)
205 return -ENOMEM;
206 do {
207 struct page *page = pages[*nr];
208
209 if (WARN_ON(!pte_none(*pte)))
210 return -EBUSY;
211 if (WARN_ON(!page))
212 return -ENOMEM;
213 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
214 (*nr)++;
215 } while (pte++, addr += PAGE_SIZE, addr != end);
216 *mask |= PGTBL_PTE_MODIFIED;
217 return 0;
218 }
219
220 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
221 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
222 pgtbl_mod_mask *mask)
223 {
224 pmd_t *pmd;
225 unsigned long next;
226
227 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
228 if (!pmd)
229 return -ENOMEM;
230 do {
231 next = pmd_addr_end(addr, end);
232 if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
233 return -ENOMEM;
234 } while (pmd++, addr = next, addr != end);
235 return 0;
236 }
237
238 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
239 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
240 pgtbl_mod_mask *mask)
241 {
242 pud_t *pud;
243 unsigned long next;
244
245 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
246 if (!pud)
247 return -ENOMEM;
248 do {
249 next = pud_addr_end(addr, end);
250 if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
251 return -ENOMEM;
252 } while (pud++, addr = next, addr != end);
253 return 0;
254 }
255
256 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
257 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
258 pgtbl_mod_mask *mask)
259 {
260 p4d_t *p4d;
261 unsigned long next;
262
263 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
264 if (!p4d)
265 return -ENOMEM;
266 do {
267 next = p4d_addr_end(addr, end);
268 if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
269 return -ENOMEM;
270 } while (p4d++, addr = next, addr != end);
271 return 0;
272 }
273
274 /**
275 * map_kernel_range_noflush - map kernel VM area with the specified pages
276 * @addr: start of the VM area to map
277 * @size: size of the VM area to map
278 * @prot: page protection flags to use
279 * @pages: pages to map
280 *
281 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size specify should
282 * have been allocated using get_vm_area() and its friends.
283 *
284 * NOTE:
285 * This function does NOT do any cache flushing. The caller is responsible for
286 * calling flush_cache_vmap() on to-be-mapped areas before calling this
287 * function.
288 *
289 * RETURNS:
290 * 0 on success, -errno on failure.
291 */
292 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
293 pgprot_t prot, struct page **pages)
294 {
295 unsigned long start = addr;
296 unsigned long end = addr + size;
297 unsigned long next;
298 pgd_t *pgd;
299 int err = 0;
300 int nr = 0;
301 pgtbl_mod_mask mask = 0;
302
303 BUG_ON(addr >= end);
304 pgd = pgd_offset_k(addr);
305 do {
306 next = pgd_addr_end(addr, end);
307 if (pgd_bad(*pgd))
308 mask |= PGTBL_PGD_MODIFIED;
309 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
310 if (err)
311 return err;
312 } while (pgd++, addr = next, addr != end);
313
314 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
315 arch_sync_kernel_mappings(start, end);
316
317 return 0;
318 }
319 EXPORT_SYMBOL(map_kernel_range_noflush);
320
321 int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
322 struct page **pages)
323 {
324 int ret;
325
326 ret = map_kernel_range_noflush(start, size, prot, pages);
327 flush_cache_vmap(start, start + size);
328 return ret;
329 }
330
331 int is_vmalloc_or_module_addr(const void *x)
332 {
333 /*
334 * ARM, x86-64 and sparc64 put modules in a special place,
335 * and fall back on vmalloc() if that fails. Others
336 * just put it in the vmalloc space.
337 */
338 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
339 unsigned long addr = (unsigned long)x;
340 if (addr >= MODULES_VADDR && addr < MODULES_END)
341 return 1;
342 #endif
343 return is_vmalloc_addr(x);
344 }
345
346 /*
347 * Walk a vmap address to the struct page it maps.
348 */
349 struct page *vmalloc_to_page(const void *vmalloc_addr)
350 {
351 unsigned long addr = (unsigned long) vmalloc_addr;
352 struct page *page = NULL;
353 pgd_t *pgd = pgd_offset_k(addr);
354 p4d_t *p4d;
355 pud_t *pud;
356 pmd_t *pmd;
357 pte_t *ptep, pte;
358
359 /*
360 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
361 * architectures that do not vmalloc module space
362 */
363 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
364
365 if (pgd_none(*pgd))
366 return NULL;
367 p4d = p4d_offset(pgd, addr);
368 if (p4d_none(*p4d))
369 return NULL;
370 pud = pud_offset(p4d, addr);
371
372 /*
373 * Don't dereference bad PUD or PMD (below) entries. This will also
374 * identify huge mappings, which we may encounter on architectures
375 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
376 * identified as vmalloc addresses by is_vmalloc_addr(), but are
377 * not [unambiguously] associated with a struct page, so there is
378 * no correct value to return for them.
379 */
380 WARN_ON_ONCE(pud_bad(*pud));
381 if (pud_none(*pud) || pud_bad(*pud))
382 return NULL;
383 pmd = pmd_offset(pud, addr);
384 WARN_ON_ONCE(pmd_bad(*pmd));
385 if (pmd_none(*pmd) || pmd_bad(*pmd))
386 return NULL;
387
388 ptep = pte_offset_map(pmd, addr);
389 pte = *ptep;
390 if (pte_present(pte))
391 page = pte_page(pte);
392 pte_unmap(ptep);
393 return page;
394 }
395 EXPORT_SYMBOL(vmalloc_to_page);
396
397 /*
398 * Map a vmalloc()-space virtual address to the physical page frame number.
399 */
400 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
401 {
402 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
403 }
404 EXPORT_SYMBOL(vmalloc_to_pfn);
405
406
407 /*** Global kva allocator ***/
408
409 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
410 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
411
412
413 static DEFINE_SPINLOCK(vmap_area_lock);
414 static DEFINE_SPINLOCK(free_vmap_area_lock);
415 /* Export for kexec only */
416 LIST_HEAD(vmap_area_list);
417 static struct rb_root vmap_area_root = RB_ROOT;
418 static bool vmap_initialized __read_mostly;
419
420 static struct rb_root purge_vmap_area_root = RB_ROOT;
421 static LIST_HEAD(purge_vmap_area_list);
422 static DEFINE_SPINLOCK(purge_vmap_area_lock);
423
424 /*
425 * This kmem_cache is used for vmap_area objects. Instead of
426 * allocating from slab we reuse an object from this cache to
427 * make things faster. Especially in "no edge" splitting of
428 * free block.
429 */
430 static struct kmem_cache *vmap_area_cachep;
431
432 /*
433 * This linked list is used in pair with free_vmap_area_root.
434 * It gives O(1) access to prev/next to perform fast coalescing.
435 */
436 static LIST_HEAD(free_vmap_area_list);
437
438 /*
439 * This augment red-black tree represents the free vmap space.
440 * All vmap_area objects in this tree are sorted by va->va_start
441 * address. It is used for allocation and merging when a vmap
442 * object is released.
443 *
444 * Each vmap_area node contains a maximum available free block
445 * of its sub-tree, right or left. Therefore it is possible to
446 * find a lowest match of free area.
447 */
448 static struct rb_root free_vmap_area_root = RB_ROOT;
449
450 /*
451 * Preload a CPU with one object for "no edge" split case. The
452 * aim is to get rid of allocations from the atomic context, thus
453 * to use more permissive allocation masks.
454 */
455 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
456
457 static __always_inline unsigned long
458 va_size(struct vmap_area *va)
459 {
460 return (va->va_end - va->va_start);
461 }
462
463 static __always_inline unsigned long
464 get_subtree_max_size(struct rb_node *node)
465 {
466 struct vmap_area *va;
467
468 va = rb_entry_safe(node, struct vmap_area, rb_node);
469 return va ? va->subtree_max_size : 0;
470 }
471
472 /*
473 * Gets called when remove the node and rotate.
474 */
475 static __always_inline unsigned long
476 compute_subtree_max_size(struct vmap_area *va)
477 {
478 return max3(va_size(va),
479 get_subtree_max_size(va->rb_node.rb_left),
480 get_subtree_max_size(va->rb_node.rb_right));
481 }
482
483 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
484 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
485
486 static void purge_vmap_area_lazy(void);
487 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
488 static unsigned long lazy_max_pages(void);
489
490 static atomic_long_t nr_vmalloc_pages;
491
492 unsigned long vmalloc_nr_pages(void)
493 {
494 return atomic_long_read(&nr_vmalloc_pages);
495 }
496
497 static struct vmap_area *__find_vmap_area(unsigned long addr)
498 {
499 struct rb_node *n = vmap_area_root.rb_node;
500
501 while (n) {
502 struct vmap_area *va;
503
504 va = rb_entry(n, struct vmap_area, rb_node);
505 if (addr < va->va_start)
506 n = n->rb_left;
507 else if (addr >= va->va_end)
508 n = n->rb_right;
509 else
510 return va;
511 }
512
513 return NULL;
514 }
515
516 /*
517 * This function returns back addresses of parent node
518 * and its left or right link for further processing.
519 *
520 * Otherwise NULL is returned. In that case all further
521 * steps regarding inserting of conflicting overlap range
522 * have to be declined and actually considered as a bug.
523 */
524 static __always_inline struct rb_node **
525 find_va_links(struct vmap_area *va,
526 struct rb_root *root, struct rb_node *from,
527 struct rb_node **parent)
528 {
529 struct vmap_area *tmp_va;
530 struct rb_node **link;
531
532 if (root) {
533 link = &root->rb_node;
534 if (unlikely(!*link)) {
535 *parent = NULL;
536 return link;
537 }
538 } else {
539 link = &from;
540 }
541
542 /*
543 * Go to the bottom of the tree. When we hit the last point
544 * we end up with parent rb_node and correct direction, i name
545 * it link, where the new va->rb_node will be attached to.
546 */
547 do {
548 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
549
550 /*
551 * During the traversal we also do some sanity check.
552 * Trigger the BUG() if there are sides(left/right)
553 * or full overlaps.
554 */
555 if (va->va_start < tmp_va->va_end &&
556 va->va_end <= tmp_va->va_start)
557 link = &(*link)->rb_left;
558 else if (va->va_end > tmp_va->va_start &&
559 va->va_start >= tmp_va->va_end)
560 link = &(*link)->rb_right;
561 else {
562 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
563 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
564
565 return NULL;
566 }
567 } while (*link);
568
569 *parent = &tmp_va->rb_node;
570 return link;
571 }
572
573 static __always_inline struct list_head *
574 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
575 {
576 struct list_head *list;
577
578 if (unlikely(!parent))
579 /*
580 * The red-black tree where we try to find VA neighbors
581 * before merging or inserting is empty, i.e. it means
582 * there is no free vmap space. Normally it does not
583 * happen but we handle this case anyway.
584 */
585 return NULL;
586
587 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
588 return (&parent->rb_right == link ? list->next : list);
589 }
590
591 static __always_inline void
592 link_va(struct vmap_area *va, struct rb_root *root,
593 struct rb_node *parent, struct rb_node **link, struct list_head *head)
594 {
595 /*
596 * VA is still not in the list, but we can
597 * identify its future previous list_head node.
598 */
599 if (likely(parent)) {
600 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
601 if (&parent->rb_right != link)
602 head = head->prev;
603 }
604
605 /* Insert to the rb-tree */
606 rb_link_node(&va->rb_node, parent, link);
607 if (root == &free_vmap_area_root) {
608 /*
609 * Some explanation here. Just perform simple insertion
610 * to the tree. We do not set va->subtree_max_size to
611 * its current size before calling rb_insert_augmented().
612 * It is because of we populate the tree from the bottom
613 * to parent levels when the node _is_ in the tree.
614 *
615 * Therefore we set subtree_max_size to zero after insertion,
616 * to let __augment_tree_propagate_from() puts everything to
617 * the correct order later on.
618 */
619 rb_insert_augmented(&va->rb_node,
620 root, &free_vmap_area_rb_augment_cb);
621 va->subtree_max_size = 0;
622 } else {
623 rb_insert_color(&va->rb_node, root);
624 }
625
626 /* Address-sort this list */
627 list_add(&va->list, head);
628 }
629
630 static __always_inline void
631 unlink_va(struct vmap_area *va, struct rb_root *root)
632 {
633 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
634 return;
635
636 if (root == &free_vmap_area_root)
637 rb_erase_augmented(&va->rb_node,
638 root, &free_vmap_area_rb_augment_cb);
639 else
640 rb_erase(&va->rb_node, root);
641
642 list_del(&va->list);
643 RB_CLEAR_NODE(&va->rb_node);
644 }
645
646 #if DEBUG_AUGMENT_PROPAGATE_CHECK
647 static void
648 augment_tree_propagate_check(void)
649 {
650 struct vmap_area *va;
651 unsigned long computed_size;
652
653 list_for_each_entry(va, &free_vmap_area_list, list) {
654 computed_size = compute_subtree_max_size(va);
655 if (computed_size != va->subtree_max_size)
656 pr_emerg("tree is corrupted: %lu, %lu\n",
657 va_size(va), va->subtree_max_size);
658 }
659 }
660 #endif
661
662 /*
663 * This function populates subtree_max_size from bottom to upper
664 * levels starting from VA point. The propagation must be done
665 * when VA size is modified by changing its va_start/va_end. Or
666 * in case of newly inserting of VA to the tree.
667 *
668 * It means that __augment_tree_propagate_from() must be called:
669 * - After VA has been inserted to the tree(free path);
670 * - After VA has been shrunk(allocation path);
671 * - After VA has been increased(merging path).
672 *
673 * Please note that, it does not mean that upper parent nodes
674 * and their subtree_max_size are recalculated all the time up
675 * to the root node.
676 *
677 * 4--8
678 * /\
679 * / \
680 * / \
681 * 2--2 8--8
682 *
683 * For example if we modify the node 4, shrinking it to 2, then
684 * no any modification is required. If we shrink the node 2 to 1
685 * its subtree_max_size is updated only, and set to 1. If we shrink
686 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
687 * node becomes 4--6.
688 */
689 static __always_inline void
690 augment_tree_propagate_from(struct vmap_area *va)
691 {
692 /*
693 * Populate the tree from bottom towards the root until
694 * the calculated maximum available size of checked node
695 * is equal to its current one.
696 */
697 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
698
699 #if DEBUG_AUGMENT_PROPAGATE_CHECK
700 augment_tree_propagate_check();
701 #endif
702 }
703
704 static void
705 insert_vmap_area(struct vmap_area *va,
706 struct rb_root *root, struct list_head *head)
707 {
708 struct rb_node **link;
709 struct rb_node *parent;
710
711 link = find_va_links(va, root, NULL, &parent);
712 if (link)
713 link_va(va, root, parent, link, head);
714 }
715
716 static void
717 insert_vmap_area_augment(struct vmap_area *va,
718 struct rb_node *from, struct rb_root *root,
719 struct list_head *head)
720 {
721 struct rb_node **link;
722 struct rb_node *parent;
723
724 if (from)
725 link = find_va_links(va, NULL, from, &parent);
726 else
727 link = find_va_links(va, root, NULL, &parent);
728
729 if (link) {
730 link_va(va, root, parent, link, head);
731 augment_tree_propagate_from(va);
732 }
733 }
734
735 /*
736 * Merge de-allocated chunk of VA memory with previous
737 * and next free blocks. If coalesce is not done a new
738 * free area is inserted. If VA has been merged, it is
739 * freed.
740 *
741 * Please note, it can return NULL in case of overlap
742 * ranges, followed by WARN() report. Despite it is a
743 * buggy behaviour, a system can be alive and keep
744 * ongoing.
745 */
746 static __always_inline struct vmap_area *
747 merge_or_add_vmap_area(struct vmap_area *va,
748 struct rb_root *root, struct list_head *head)
749 {
750 struct vmap_area *sibling;
751 struct list_head *next;
752 struct rb_node **link;
753 struct rb_node *parent;
754 bool merged = false;
755
756 /*
757 * Find a place in the tree where VA potentially will be
758 * inserted, unless it is merged with its sibling/siblings.
759 */
760 link = find_va_links(va, root, NULL, &parent);
761 if (!link)
762 return NULL;
763
764 /*
765 * Get next node of VA to check if merging can be done.
766 */
767 next = get_va_next_sibling(parent, link);
768 if (unlikely(next == NULL))
769 goto insert;
770
771 /*
772 * start end
773 * | |
774 * |<------VA------>|<-----Next----->|
775 * | |
776 * start end
777 */
778 if (next != head) {
779 sibling = list_entry(next, struct vmap_area, list);
780 if (sibling->va_start == va->va_end) {
781 sibling->va_start = va->va_start;
782
783 /* Free vmap_area object. */
784 kmem_cache_free(vmap_area_cachep, va);
785
786 /* Point to the new merged area. */
787 va = sibling;
788 merged = true;
789 }
790 }
791
792 /*
793 * start end
794 * | |
795 * |<-----Prev----->|<------VA------>|
796 * | |
797 * start end
798 */
799 if (next->prev != head) {
800 sibling = list_entry(next->prev, struct vmap_area, list);
801 if (sibling->va_end == va->va_start) {
802 /*
803 * If both neighbors are coalesced, it is important
804 * to unlink the "next" node first, followed by merging
805 * with "previous" one. Otherwise the tree might not be
806 * fully populated if a sibling's augmented value is
807 * "normalized" because of rotation operations.
808 */
809 if (merged)
810 unlink_va(va, root);
811
812 sibling->va_end = va->va_end;
813
814 /* Free vmap_area object. */
815 kmem_cache_free(vmap_area_cachep, va);
816
817 /* Point to the new merged area. */
818 va = sibling;
819 merged = true;
820 }
821 }
822
823 insert:
824 if (!merged)
825 link_va(va, root, parent, link, head);
826
827 return va;
828 }
829
830 static __always_inline struct vmap_area *
831 merge_or_add_vmap_area_augment(struct vmap_area *va,
832 struct rb_root *root, struct list_head *head)
833 {
834 va = merge_or_add_vmap_area(va, root, head);
835 if (va)
836 augment_tree_propagate_from(va);
837
838 return va;
839 }
840
841 static __always_inline bool
842 is_within_this_va(struct vmap_area *va, unsigned long size,
843 unsigned long align, unsigned long vstart)
844 {
845 unsigned long nva_start_addr;
846
847 if (va->va_start > vstart)
848 nva_start_addr = ALIGN(va->va_start, align);
849 else
850 nva_start_addr = ALIGN(vstart, align);
851
852 /* Can be overflowed due to big size or alignment. */
853 if (nva_start_addr + size < nva_start_addr ||
854 nva_start_addr < vstart)
855 return false;
856
857 return (nva_start_addr + size <= va->va_end);
858 }
859
860 /*
861 * Find the first free block(lowest start address) in the tree,
862 * that will accomplish the request corresponding to passing
863 * parameters.
864 */
865 static __always_inline struct vmap_area *
866 find_vmap_lowest_match(unsigned long size,
867 unsigned long align, unsigned long vstart)
868 {
869 struct vmap_area *va;
870 struct rb_node *node;
871 unsigned long length;
872
873 /* Start from the root. */
874 node = free_vmap_area_root.rb_node;
875
876 /* Adjust the search size for alignment overhead. */
877 length = size + align - 1;
878
879 while (node) {
880 va = rb_entry(node, struct vmap_area, rb_node);
881
882 if (get_subtree_max_size(node->rb_left) >= length &&
883 vstart < va->va_start) {
884 node = node->rb_left;
885 } else {
886 if (is_within_this_va(va, size, align, vstart))
887 return va;
888
889 /*
890 * Does not make sense to go deeper towards the right
891 * sub-tree if it does not have a free block that is
892 * equal or bigger to the requested search length.
893 */
894 if (get_subtree_max_size(node->rb_right) >= length) {
895 node = node->rb_right;
896 continue;
897 }
898
899 /*
900 * OK. We roll back and find the first right sub-tree,
901 * that will satisfy the search criteria. It can happen
902 * only once due to "vstart" restriction.
903 */
904 while ((node = rb_parent(node))) {
905 va = rb_entry(node, struct vmap_area, rb_node);
906 if (is_within_this_va(va, size, align, vstart))
907 return va;
908
909 if (get_subtree_max_size(node->rb_right) >= length &&
910 vstart <= va->va_start) {
911 node = node->rb_right;
912 break;
913 }
914 }
915 }
916 }
917
918 return NULL;
919 }
920
921 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
922 #include <linux/random.h>
923
924 static struct vmap_area *
925 find_vmap_lowest_linear_match(unsigned long size,
926 unsigned long align, unsigned long vstart)
927 {
928 struct vmap_area *va;
929
930 list_for_each_entry(va, &free_vmap_area_list, list) {
931 if (!is_within_this_va(va, size, align, vstart))
932 continue;
933
934 return va;
935 }
936
937 return NULL;
938 }
939
940 static void
941 find_vmap_lowest_match_check(unsigned long size)
942 {
943 struct vmap_area *va_1, *va_2;
944 unsigned long vstart;
945 unsigned int rnd;
946
947 get_random_bytes(&rnd, sizeof(rnd));
948 vstart = VMALLOC_START + rnd;
949
950 va_1 = find_vmap_lowest_match(size, 1, vstart);
951 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
952
953 if (va_1 != va_2)
954 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
955 va_1, va_2, vstart);
956 }
957 #endif
958
959 enum fit_type {
960 NOTHING_FIT = 0,
961 FL_FIT_TYPE = 1, /* full fit */
962 LE_FIT_TYPE = 2, /* left edge fit */
963 RE_FIT_TYPE = 3, /* right edge fit */
964 NE_FIT_TYPE = 4 /* no edge fit */
965 };
966
967 static __always_inline enum fit_type
968 classify_va_fit_type(struct vmap_area *va,
969 unsigned long nva_start_addr, unsigned long size)
970 {
971 enum fit_type type;
972
973 /* Check if it is within VA. */
974 if (nva_start_addr < va->va_start ||
975 nva_start_addr + size > va->va_end)
976 return NOTHING_FIT;
977
978 /* Now classify. */
979 if (va->va_start == nva_start_addr) {
980 if (va->va_end == nva_start_addr + size)
981 type = FL_FIT_TYPE;
982 else
983 type = LE_FIT_TYPE;
984 } else if (va->va_end == nva_start_addr + size) {
985 type = RE_FIT_TYPE;
986 } else {
987 type = NE_FIT_TYPE;
988 }
989
990 return type;
991 }
992
993 static __always_inline int
994 adjust_va_to_fit_type(struct vmap_area *va,
995 unsigned long nva_start_addr, unsigned long size,
996 enum fit_type type)
997 {
998 struct vmap_area *lva = NULL;
999
1000 if (type == FL_FIT_TYPE) {
1001 /*
1002 * No need to split VA, it fully fits.
1003 *
1004 * | |
1005 * V NVA V
1006 * |---------------|
1007 */
1008 unlink_va(va, &free_vmap_area_root);
1009 kmem_cache_free(vmap_area_cachep, va);
1010 } else if (type == LE_FIT_TYPE) {
1011 /*
1012 * Split left edge of fit VA.
1013 *
1014 * | |
1015 * V NVA V R
1016 * |-------|-------|
1017 */
1018 va->va_start += size;
1019 } else if (type == RE_FIT_TYPE) {
1020 /*
1021 * Split right edge of fit VA.
1022 *
1023 * | |
1024 * L V NVA V
1025 * |-------|-------|
1026 */
1027 va->va_end = nva_start_addr;
1028 } else if (type == NE_FIT_TYPE) {
1029 /*
1030 * Split no edge of fit VA.
1031 *
1032 * | |
1033 * L V NVA V R
1034 * |---|-------|---|
1035 */
1036 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1037 if (unlikely(!lva)) {
1038 /*
1039 * For percpu allocator we do not do any pre-allocation
1040 * and leave it as it is. The reason is it most likely
1041 * never ends up with NE_FIT_TYPE splitting. In case of
1042 * percpu allocations offsets and sizes are aligned to
1043 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1044 * are its main fitting cases.
1045 *
1046 * There are a few exceptions though, as an example it is
1047 * a first allocation (early boot up) when we have "one"
1048 * big free space that has to be split.
1049 *
1050 * Also we can hit this path in case of regular "vmap"
1051 * allocations, if "this" current CPU was not preloaded.
1052 * See the comment in alloc_vmap_area() why. If so, then
1053 * GFP_NOWAIT is used instead to get an extra object for
1054 * split purpose. That is rare and most time does not
1055 * occur.
1056 *
1057 * What happens if an allocation gets failed. Basically,
1058 * an "overflow" path is triggered to purge lazily freed
1059 * areas to free some memory, then, the "retry" path is
1060 * triggered to repeat one more time. See more details
1061 * in alloc_vmap_area() function.
1062 */
1063 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1064 if (!lva)
1065 return -1;
1066 }
1067
1068 /*
1069 * Build the remainder.
1070 */
1071 lva->va_start = va->va_start;
1072 lva->va_end = nva_start_addr;
1073
1074 /*
1075 * Shrink this VA to remaining size.
1076 */
1077 va->va_start = nva_start_addr + size;
1078 } else {
1079 return -1;
1080 }
1081
1082 if (type != FL_FIT_TYPE) {
1083 augment_tree_propagate_from(va);
1084
1085 if (lva) /* type == NE_FIT_TYPE */
1086 insert_vmap_area_augment(lva, &va->rb_node,
1087 &free_vmap_area_root, &free_vmap_area_list);
1088 }
1089
1090 return 0;
1091 }
1092
1093 /*
1094 * Returns a start address of the newly allocated area, if success.
1095 * Otherwise a vend is returned that indicates failure.
1096 */
1097 static __always_inline unsigned long
1098 __alloc_vmap_area(unsigned long size, unsigned long align,
1099 unsigned long vstart, unsigned long vend)
1100 {
1101 unsigned long nva_start_addr;
1102 struct vmap_area *va;
1103 enum fit_type type;
1104 int ret;
1105
1106 va = find_vmap_lowest_match(size, align, vstart);
1107 if (unlikely(!va))
1108 return vend;
1109
1110 if (va->va_start > vstart)
1111 nva_start_addr = ALIGN(va->va_start, align);
1112 else
1113 nva_start_addr = ALIGN(vstart, align);
1114
1115 /* Check the "vend" restriction. */
1116 if (nva_start_addr + size > vend)
1117 return vend;
1118
1119 /* Classify what we have found. */
1120 type = classify_va_fit_type(va, nva_start_addr, size);
1121 if (WARN_ON_ONCE(type == NOTHING_FIT))
1122 return vend;
1123
1124 /* Update the free vmap_area. */
1125 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1126 if (ret)
1127 return vend;
1128
1129 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1130 find_vmap_lowest_match_check(size);
1131 #endif
1132
1133 return nva_start_addr;
1134 }
1135
1136 /*
1137 * Free a region of KVA allocated by alloc_vmap_area
1138 */
1139 static void free_vmap_area(struct vmap_area *va)
1140 {
1141 /*
1142 * Remove from the busy tree/list.
1143 */
1144 spin_lock(&vmap_area_lock);
1145 unlink_va(va, &vmap_area_root);
1146 spin_unlock(&vmap_area_lock);
1147
1148 /*
1149 * Insert/Merge it back to the free tree/list.
1150 */
1151 spin_lock(&free_vmap_area_lock);
1152 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1153 spin_unlock(&free_vmap_area_lock);
1154 }
1155
1156 /*
1157 * Allocate a region of KVA of the specified size and alignment, within the
1158 * vstart and vend.
1159 */
1160 static struct vmap_area *alloc_vmap_area(unsigned long size,
1161 unsigned long align,
1162 unsigned long vstart, unsigned long vend,
1163 int node, gfp_t gfp_mask)
1164 {
1165 struct vmap_area *va, *pva;
1166 unsigned long addr;
1167 int purged = 0;
1168 int ret;
1169
1170 BUG_ON(!size);
1171 BUG_ON(offset_in_page(size));
1172 BUG_ON(!is_power_of_2(align));
1173
1174 if (unlikely(!vmap_initialized))
1175 return ERR_PTR(-EBUSY);
1176
1177 might_sleep();
1178 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1179
1180 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1181 if (unlikely(!va))
1182 return ERR_PTR(-ENOMEM);
1183
1184 /*
1185 * Only scan the relevant parts containing pointers to other objects
1186 * to avoid false negatives.
1187 */
1188 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1189
1190 retry:
1191 /*
1192 * Preload this CPU with one extra vmap_area object. It is used
1193 * when fit type of free area is NE_FIT_TYPE. Please note, it
1194 * does not guarantee that an allocation occurs on a CPU that
1195 * is preloaded, instead we minimize the case when it is not.
1196 * It can happen because of cpu migration, because there is a
1197 * race until the below spinlock is taken.
1198 *
1199 * The preload is done in non-atomic context, thus it allows us
1200 * to use more permissive allocation masks to be more stable under
1201 * low memory condition and high memory pressure. In rare case,
1202 * if not preloaded, GFP_NOWAIT is used.
1203 *
1204 * Set "pva" to NULL here, because of "retry" path.
1205 */
1206 pva = NULL;
1207
1208 if (!this_cpu_read(ne_fit_preload_node))
1209 /*
1210 * Even if it fails we do not really care about that.
1211 * Just proceed as it is. If needed "overflow" path
1212 * will refill the cache we allocate from.
1213 */
1214 pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1215
1216 spin_lock(&free_vmap_area_lock);
1217
1218 if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1219 kmem_cache_free(vmap_area_cachep, pva);
1220
1221 /*
1222 * If an allocation fails, the "vend" address is
1223 * returned. Therefore trigger the overflow path.
1224 */
1225 addr = __alloc_vmap_area(size, align, vstart, vend);
1226 spin_unlock(&free_vmap_area_lock);
1227
1228 if (unlikely(addr == vend))
1229 goto overflow;
1230
1231 va->va_start = addr;
1232 va->va_end = addr + size;
1233 va->vm = NULL;
1234
1235
1236 spin_lock(&vmap_area_lock);
1237 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1238 spin_unlock(&vmap_area_lock);
1239
1240 BUG_ON(!IS_ALIGNED(va->va_start, align));
1241 BUG_ON(va->va_start < vstart);
1242 BUG_ON(va->va_end > vend);
1243
1244 ret = kasan_populate_vmalloc(addr, size);
1245 if (ret) {
1246 free_vmap_area(va);
1247 return ERR_PTR(ret);
1248 }
1249
1250 return va;
1251
1252 overflow:
1253 if (!purged) {
1254 purge_vmap_area_lazy();
1255 purged = 1;
1256 goto retry;
1257 }
1258
1259 if (gfpflags_allow_blocking(gfp_mask)) {
1260 unsigned long freed = 0;
1261 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1262 if (freed > 0) {
1263 purged = 0;
1264 goto retry;
1265 }
1266 }
1267
1268 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1269 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1270 size);
1271
1272 kmem_cache_free(vmap_area_cachep, va);
1273 return ERR_PTR(-EBUSY);
1274 }
1275
1276 int register_vmap_purge_notifier(struct notifier_block *nb)
1277 {
1278 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1279 }
1280 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1281
1282 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1283 {
1284 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1285 }
1286 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1287
1288 /*
1289 * lazy_max_pages is the maximum amount of virtual address space we gather up
1290 * before attempting to purge with a TLB flush.
1291 *
1292 * There is a tradeoff here: a larger number will cover more kernel page tables
1293 * and take slightly longer to purge, but it will linearly reduce the number of
1294 * global TLB flushes that must be performed. It would seem natural to scale
1295 * this number up linearly with the number of CPUs (because vmapping activity
1296 * could also scale linearly with the number of CPUs), however it is likely
1297 * that in practice, workloads might be constrained in other ways that mean
1298 * vmap activity will not scale linearly with CPUs. Also, I want to be
1299 * conservative and not introduce a big latency on huge systems, so go with
1300 * a less aggressive log scale. It will still be an improvement over the old
1301 * code, and it will be simple to change the scale factor if we find that it
1302 * becomes a problem on bigger systems.
1303 */
1304 static unsigned long lazy_max_pages(void)
1305 {
1306 unsigned int log;
1307
1308 log = fls(num_online_cpus());
1309
1310 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1311 }
1312
1313 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1314
1315 /*
1316 * Serialize vmap purging. There is no actual criticial section protected
1317 * by this look, but we want to avoid concurrent calls for performance
1318 * reasons and to make the pcpu_get_vm_areas more deterministic.
1319 */
1320 static DEFINE_MUTEX(vmap_purge_lock);
1321
1322 /* for per-CPU blocks */
1323 static void purge_fragmented_blocks_allcpus(void);
1324
1325 /*
1326 * called before a call to iounmap() if the caller wants vm_area_struct's
1327 * immediately freed.
1328 */
1329 void set_iounmap_nonlazy(void)
1330 {
1331 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1332 }
1333
1334 /*
1335 * Purges all lazily-freed vmap areas.
1336 */
1337 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1338 {
1339 unsigned long resched_threshold;
1340 struct list_head local_pure_list;
1341 struct vmap_area *va, *n_va;
1342
1343 lockdep_assert_held(&vmap_purge_lock);
1344
1345 spin_lock(&purge_vmap_area_lock);
1346 purge_vmap_area_root = RB_ROOT;
1347 list_replace_init(&purge_vmap_area_list, &local_pure_list);
1348 spin_unlock(&purge_vmap_area_lock);
1349
1350 if (unlikely(list_empty(&local_pure_list)))
1351 return false;
1352
1353 start = min(start,
1354 list_first_entry(&local_pure_list,
1355 struct vmap_area, list)->va_start);
1356
1357 end = max(end,
1358 list_last_entry(&local_pure_list,
1359 struct vmap_area, list)->va_end);
1360
1361 flush_tlb_kernel_range(start, end);
1362 resched_threshold = lazy_max_pages() << 1;
1363
1364 spin_lock(&free_vmap_area_lock);
1365 list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
1366 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1367 unsigned long orig_start = va->va_start;
1368 unsigned long orig_end = va->va_end;
1369
1370 /*
1371 * Finally insert or merge lazily-freed area. It is
1372 * detached and there is no need to "unlink" it from
1373 * anything.
1374 */
1375 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1376 &free_vmap_area_list);
1377
1378 if (!va)
1379 continue;
1380
1381 if (is_vmalloc_or_module_addr((void *)orig_start))
1382 kasan_release_vmalloc(orig_start, orig_end,
1383 va->va_start, va->va_end);
1384
1385 atomic_long_sub(nr, &vmap_lazy_nr);
1386
1387 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1388 cond_resched_lock(&free_vmap_area_lock);
1389 }
1390 spin_unlock(&free_vmap_area_lock);
1391 return true;
1392 }
1393
1394 /*
1395 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1396 * is already purging.
1397 */
1398 static void try_purge_vmap_area_lazy(void)
1399 {
1400 if (mutex_trylock(&vmap_purge_lock)) {
1401 __purge_vmap_area_lazy(ULONG_MAX, 0);
1402 mutex_unlock(&vmap_purge_lock);
1403 }
1404 }
1405
1406 /*
1407 * Kick off a purge of the outstanding lazy areas.
1408 */
1409 static void purge_vmap_area_lazy(void)
1410 {
1411 mutex_lock(&vmap_purge_lock);
1412 purge_fragmented_blocks_allcpus();
1413 __purge_vmap_area_lazy(ULONG_MAX, 0);
1414 mutex_unlock(&vmap_purge_lock);
1415 }
1416
1417 /*
1418 * Free a vmap area, caller ensuring that the area has been unmapped
1419 * and flush_cache_vunmap had been called for the correct range
1420 * previously.
1421 */
1422 static void free_vmap_area_noflush(struct vmap_area *va)
1423 {
1424 unsigned long nr_lazy;
1425
1426 spin_lock(&vmap_area_lock);
1427 unlink_va(va, &vmap_area_root);
1428 spin_unlock(&vmap_area_lock);
1429
1430 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1431 PAGE_SHIFT, &vmap_lazy_nr);
1432
1433 /*
1434 * Merge or place it to the purge tree/list.
1435 */
1436 spin_lock(&purge_vmap_area_lock);
1437 merge_or_add_vmap_area(va,
1438 &purge_vmap_area_root, &purge_vmap_area_list);
1439 spin_unlock(&purge_vmap_area_lock);
1440
1441 /* After this point, we may free va at any time */
1442 if (unlikely(nr_lazy > lazy_max_pages()))
1443 try_purge_vmap_area_lazy();
1444 }
1445
1446 /*
1447 * Free and unmap a vmap area
1448 */
1449 static void free_unmap_vmap_area(struct vmap_area *va)
1450 {
1451 flush_cache_vunmap(va->va_start, va->va_end);
1452 unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
1453 if (debug_pagealloc_enabled_static())
1454 flush_tlb_kernel_range(va->va_start, va->va_end);
1455
1456 free_vmap_area_noflush(va);
1457 }
1458
1459 static struct vmap_area *find_vmap_area(unsigned long addr)
1460 {
1461 struct vmap_area *va;
1462
1463 spin_lock(&vmap_area_lock);
1464 va = __find_vmap_area(addr);
1465 spin_unlock(&vmap_area_lock);
1466
1467 return va;
1468 }
1469
1470 /*** Per cpu kva allocator ***/
1471
1472 /*
1473 * vmap space is limited especially on 32 bit architectures. Ensure there is
1474 * room for at least 16 percpu vmap blocks per CPU.
1475 */
1476 /*
1477 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1478 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1479 * instead (we just need a rough idea)
1480 */
1481 #if BITS_PER_LONG == 32
1482 #define VMALLOC_SPACE (128UL*1024*1024)
1483 #else
1484 #define VMALLOC_SPACE (128UL*1024*1024*1024)
1485 #endif
1486
1487 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1488 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1489 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1490 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1491 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1492 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1493 #define VMAP_BBMAP_BITS \
1494 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1495 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1496 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1497
1498 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1499
1500 struct vmap_block_queue {
1501 spinlock_t lock;
1502 struct list_head free;
1503 };
1504
1505 struct vmap_block {
1506 spinlock_t lock;
1507 struct vmap_area *va;
1508 unsigned long free, dirty;
1509 unsigned long dirty_min, dirty_max; /*< dirty range */
1510 struct list_head free_list;
1511 struct rcu_head rcu_head;
1512 struct list_head purge;
1513 };
1514
1515 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1516 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1517
1518 /*
1519 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1520 * in the free path. Could get rid of this if we change the API to return a
1521 * "cookie" from alloc, to be passed to free. But no big deal yet.
1522 */
1523 static DEFINE_XARRAY(vmap_blocks);
1524
1525 /*
1526 * We should probably have a fallback mechanism to allocate virtual memory
1527 * out of partially filled vmap blocks. However vmap block sizing should be
1528 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1529 * big problem.
1530 */
1531
1532 static unsigned long addr_to_vb_idx(unsigned long addr)
1533 {
1534 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1535 addr /= VMAP_BLOCK_SIZE;
1536 return addr;
1537 }
1538
1539 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1540 {
1541 unsigned long addr;
1542
1543 addr = va_start + (pages_off << PAGE_SHIFT);
1544 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1545 return (void *)addr;
1546 }
1547
1548 /**
1549 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1550 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1551 * @order: how many 2^order pages should be occupied in newly allocated block
1552 * @gfp_mask: flags for the page level allocator
1553 *
1554 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1555 */
1556 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1557 {
1558 struct vmap_block_queue *vbq;
1559 struct vmap_block *vb;
1560 struct vmap_area *va;
1561 unsigned long vb_idx;
1562 int node, err;
1563 void *vaddr;
1564
1565 node = numa_node_id();
1566
1567 vb = kmalloc_node(sizeof(struct vmap_block),
1568 gfp_mask & GFP_RECLAIM_MASK, node);
1569 if (unlikely(!vb))
1570 return ERR_PTR(-ENOMEM);
1571
1572 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1573 VMALLOC_START, VMALLOC_END,
1574 node, gfp_mask);
1575 if (IS_ERR(va)) {
1576 kfree(vb);
1577 return ERR_CAST(va);
1578 }
1579
1580 vaddr = vmap_block_vaddr(va->va_start, 0);
1581 spin_lock_init(&vb->lock);
1582 vb->va = va;
1583 /* At least something should be left free */
1584 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1585 vb->free = VMAP_BBMAP_BITS - (1UL << order);
1586 vb->dirty = 0;
1587 vb->dirty_min = VMAP_BBMAP_BITS;
1588 vb->dirty_max = 0;
1589 INIT_LIST_HEAD(&vb->free_list);
1590
1591 vb_idx = addr_to_vb_idx(va->va_start);
1592 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1593 if (err) {
1594 kfree(vb);
1595 free_vmap_area(va);
1596 return ERR_PTR(err);
1597 }
1598
1599 vbq = &get_cpu_var(vmap_block_queue);
1600 spin_lock(&vbq->lock);
1601 list_add_tail_rcu(&vb->free_list, &vbq->free);
1602 spin_unlock(&vbq->lock);
1603 put_cpu_var(vmap_block_queue);
1604
1605 return vaddr;
1606 }
1607
1608 static void free_vmap_block(struct vmap_block *vb)
1609 {
1610 struct vmap_block *tmp;
1611
1612 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
1613 BUG_ON(tmp != vb);
1614
1615 free_vmap_area_noflush(vb->va);
1616 kfree_rcu(vb, rcu_head);
1617 }
1618
1619 static void purge_fragmented_blocks(int cpu)
1620 {
1621 LIST_HEAD(purge);
1622 struct vmap_block *vb;
1623 struct vmap_block *n_vb;
1624 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1625
1626 rcu_read_lock();
1627 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1628
1629 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1630 continue;
1631
1632 spin_lock(&vb->lock);
1633 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1634 vb->free = 0; /* prevent further allocs after releasing lock */
1635 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1636 vb->dirty_min = 0;
1637 vb->dirty_max = VMAP_BBMAP_BITS;
1638 spin_lock(&vbq->lock);
1639 list_del_rcu(&vb->free_list);
1640 spin_unlock(&vbq->lock);
1641 spin_unlock(&vb->lock);
1642 list_add_tail(&vb->purge, &purge);
1643 } else
1644 spin_unlock(&vb->lock);
1645 }
1646 rcu_read_unlock();
1647
1648 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1649 list_del(&vb->purge);
1650 free_vmap_block(vb);
1651 }
1652 }
1653
1654 static void purge_fragmented_blocks_allcpus(void)
1655 {
1656 int cpu;
1657
1658 for_each_possible_cpu(cpu)
1659 purge_fragmented_blocks(cpu);
1660 }
1661
1662 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1663 {
1664 struct vmap_block_queue *vbq;
1665 struct vmap_block *vb;
1666 void *vaddr = NULL;
1667 unsigned int order;
1668
1669 BUG_ON(offset_in_page(size));
1670 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1671 if (WARN_ON(size == 0)) {
1672 /*
1673 * Allocating 0 bytes isn't what caller wants since
1674 * get_order(0) returns funny result. Just warn and terminate
1675 * early.
1676 */
1677 return NULL;
1678 }
1679 order = get_order(size);
1680
1681 rcu_read_lock();
1682 vbq = &get_cpu_var(vmap_block_queue);
1683 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1684 unsigned long pages_off;
1685
1686 spin_lock(&vb->lock);
1687 if (vb->free < (1UL << order)) {
1688 spin_unlock(&vb->lock);
1689 continue;
1690 }
1691
1692 pages_off = VMAP_BBMAP_BITS - vb->free;
1693 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1694 vb->free -= 1UL << order;
1695 if (vb->free == 0) {
1696 spin_lock(&vbq->lock);
1697 list_del_rcu(&vb->free_list);
1698 spin_unlock(&vbq->lock);
1699 }
1700
1701 spin_unlock(&vb->lock);
1702 break;
1703 }
1704
1705 put_cpu_var(vmap_block_queue);
1706 rcu_read_unlock();
1707
1708 /* Allocate new block if nothing was found */
1709 if (!vaddr)
1710 vaddr = new_vmap_block(order, gfp_mask);
1711
1712 return vaddr;
1713 }
1714
1715 static void vb_free(unsigned long addr, unsigned long size)
1716 {
1717 unsigned long offset;
1718 unsigned int order;
1719 struct vmap_block *vb;
1720
1721 BUG_ON(offset_in_page(size));
1722 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1723
1724 flush_cache_vunmap(addr, addr + size);
1725
1726 order = get_order(size);
1727 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
1728 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
1729
1730 unmap_kernel_range_noflush(addr, size);
1731
1732 if (debug_pagealloc_enabled_static())
1733 flush_tlb_kernel_range(addr, addr + size);
1734
1735 spin_lock(&vb->lock);
1736
1737 /* Expand dirty range */
1738 vb->dirty_min = min(vb->dirty_min, offset);
1739 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1740
1741 vb->dirty += 1UL << order;
1742 if (vb->dirty == VMAP_BBMAP_BITS) {
1743 BUG_ON(vb->free);
1744 spin_unlock(&vb->lock);
1745 free_vmap_block(vb);
1746 } else
1747 spin_unlock(&vb->lock);
1748 }
1749
1750 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1751 {
1752 int cpu;
1753
1754 if (unlikely(!vmap_initialized))
1755 return;
1756
1757 might_sleep();
1758
1759 for_each_possible_cpu(cpu) {
1760 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1761 struct vmap_block *vb;
1762
1763 rcu_read_lock();
1764 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1765 spin_lock(&vb->lock);
1766 if (vb->dirty) {
1767 unsigned long va_start = vb->va->va_start;
1768 unsigned long s, e;
1769
1770 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1771 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1772
1773 start = min(s, start);
1774 end = max(e, end);
1775
1776 flush = 1;
1777 }
1778 spin_unlock(&vb->lock);
1779 }
1780 rcu_read_unlock();
1781 }
1782
1783 mutex_lock(&vmap_purge_lock);
1784 purge_fragmented_blocks_allcpus();
1785 if (!__purge_vmap_area_lazy(start, end) && flush)
1786 flush_tlb_kernel_range(start, end);
1787 mutex_unlock(&vmap_purge_lock);
1788 }
1789
1790 /**
1791 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1792 *
1793 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1794 * to amortize TLB flushing overheads. What this means is that any page you
1795 * have now, may, in a former life, have been mapped into kernel virtual
1796 * address by the vmap layer and so there might be some CPUs with TLB entries
1797 * still referencing that page (additional to the regular 1:1 kernel mapping).
1798 *
1799 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1800 * be sure that none of the pages we have control over will have any aliases
1801 * from the vmap layer.
1802 */
1803 void vm_unmap_aliases(void)
1804 {
1805 unsigned long start = ULONG_MAX, end = 0;
1806 int flush = 0;
1807
1808 _vm_unmap_aliases(start, end, flush);
1809 }
1810 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1811
1812 /**
1813 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1814 * @mem: the pointer returned by vm_map_ram
1815 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1816 */
1817 void vm_unmap_ram(const void *mem, unsigned int count)
1818 {
1819 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1820 unsigned long addr = (unsigned long)mem;
1821 struct vmap_area *va;
1822
1823 might_sleep();
1824 BUG_ON(!addr);
1825 BUG_ON(addr < VMALLOC_START);
1826 BUG_ON(addr > VMALLOC_END);
1827 BUG_ON(!PAGE_ALIGNED(addr));
1828
1829 kasan_poison_vmalloc(mem, size);
1830
1831 if (likely(count <= VMAP_MAX_ALLOC)) {
1832 debug_check_no_locks_freed(mem, size);
1833 vb_free(addr, size);
1834 return;
1835 }
1836
1837 va = find_vmap_area(addr);
1838 BUG_ON(!va);
1839 debug_check_no_locks_freed((void *)va->va_start,
1840 (va->va_end - va->va_start));
1841 free_unmap_vmap_area(va);
1842 }
1843 EXPORT_SYMBOL(vm_unmap_ram);
1844
1845 /**
1846 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1847 * @pages: an array of pointers to the pages to be mapped
1848 * @count: number of pages
1849 * @node: prefer to allocate data structures on this node
1850 *
1851 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1852 * faster than vmap so it's good. But if you mix long-life and short-life
1853 * objects with vm_map_ram(), it could consume lots of address space through
1854 * fragmentation (especially on a 32bit machine). You could see failures in
1855 * the end. Please use this function for short-lived objects.
1856 *
1857 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1858 */
1859 void *vm_map_ram(struct page **pages, unsigned int count, int node)
1860 {
1861 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1862 unsigned long addr;
1863 void *mem;
1864
1865 if (likely(count <= VMAP_MAX_ALLOC)) {
1866 mem = vb_alloc(size, GFP_KERNEL);
1867 if (IS_ERR(mem))
1868 return NULL;
1869 addr = (unsigned long)mem;
1870 } else {
1871 struct vmap_area *va;
1872 va = alloc_vmap_area(size, PAGE_SIZE,
1873 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1874 if (IS_ERR(va))
1875 return NULL;
1876
1877 addr = va->va_start;
1878 mem = (void *)addr;
1879 }
1880
1881 kasan_unpoison_vmalloc(mem, size);
1882
1883 if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
1884 vm_unmap_ram(mem, count);
1885 return NULL;
1886 }
1887 return mem;
1888 }
1889 EXPORT_SYMBOL(vm_map_ram);
1890
1891 static struct vm_struct *vmlist __initdata;
1892
1893 /**
1894 * vm_area_add_early - add vmap area early during boot
1895 * @vm: vm_struct to add
1896 *
1897 * This function is used to add fixed kernel vm area to vmlist before
1898 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1899 * should contain proper values and the other fields should be zero.
1900 *
1901 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1902 */
1903 void __init vm_area_add_early(struct vm_struct *vm)
1904 {
1905 struct vm_struct *tmp, **p;
1906
1907 BUG_ON(vmap_initialized);
1908 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1909 if (tmp->addr >= vm->addr) {
1910 BUG_ON(tmp->addr < vm->addr + vm->size);
1911 break;
1912 } else
1913 BUG_ON(tmp->addr + tmp->size > vm->addr);
1914 }
1915 vm->next = *p;
1916 *p = vm;
1917 }
1918
1919 /**
1920 * vm_area_register_early - register vmap area early during boot
1921 * @vm: vm_struct to register
1922 * @align: requested alignment
1923 *
1924 * This function is used to register kernel vm area before
1925 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1926 * proper values on entry and other fields should be zero. On return,
1927 * vm->addr contains the allocated address.
1928 *
1929 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1930 */
1931 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1932 {
1933 static size_t vm_init_off __initdata;
1934 unsigned long addr;
1935
1936 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1937 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1938
1939 vm->addr = (void *)addr;
1940
1941 vm_area_add_early(vm);
1942 }
1943
1944 static void vmap_init_free_space(void)
1945 {
1946 unsigned long vmap_start = 1;
1947 const unsigned long vmap_end = ULONG_MAX;
1948 struct vmap_area *busy, *free;
1949
1950 /*
1951 * B F B B B F
1952 * -|-----|.....|-----|-----|-----|.....|-
1953 * | The KVA space |
1954 * |<--------------------------------->|
1955 */
1956 list_for_each_entry(busy, &vmap_area_list, list) {
1957 if (busy->va_start - vmap_start > 0) {
1958 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1959 if (!WARN_ON_ONCE(!free)) {
1960 free->va_start = vmap_start;
1961 free->va_end = busy->va_start;
1962
1963 insert_vmap_area_augment(free, NULL,
1964 &free_vmap_area_root,
1965 &free_vmap_area_list);
1966 }
1967 }
1968
1969 vmap_start = busy->va_end;
1970 }
1971
1972 if (vmap_end - vmap_start > 0) {
1973 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1974 if (!WARN_ON_ONCE(!free)) {
1975 free->va_start = vmap_start;
1976 free->va_end = vmap_end;
1977
1978 insert_vmap_area_augment(free, NULL,
1979 &free_vmap_area_root,
1980 &free_vmap_area_list);
1981 }
1982 }
1983 }
1984
1985 void __init vmalloc_init(void)
1986 {
1987 struct vmap_area *va;
1988 struct vm_struct *tmp;
1989 int i;
1990
1991 /*
1992 * Create the cache for vmap_area objects.
1993 */
1994 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1995
1996 for_each_possible_cpu(i) {
1997 struct vmap_block_queue *vbq;
1998 struct vfree_deferred *p;
1999
2000 vbq = &per_cpu(vmap_block_queue, i);
2001 spin_lock_init(&vbq->lock);
2002 INIT_LIST_HEAD(&vbq->free);
2003 p = &per_cpu(vfree_deferred, i);
2004 init_llist_head(&p->list);
2005 INIT_WORK(&p->wq, free_work);
2006 }
2007
2008 /* Import existing vmlist entries. */
2009 for (tmp = vmlist; tmp; tmp = tmp->next) {
2010 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2011 if (WARN_ON_ONCE(!va))
2012 continue;
2013
2014 va->va_start = (unsigned long)tmp->addr;
2015 va->va_end = va->va_start + tmp->size;
2016 va->vm = tmp;
2017 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2018 }
2019
2020 /*
2021 * Now we can initialize a free vmap space.
2022 */
2023 vmap_init_free_space();
2024 vmap_initialized = true;
2025 }
2026
2027 /**
2028 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2029 * @addr: start of the VM area to unmap
2030 * @size: size of the VM area to unmap
2031 *
2032 * Similar to unmap_kernel_range_noflush() but flushes vcache before
2033 * the unmapping and tlb after.
2034 */
2035 void unmap_kernel_range(unsigned long addr, unsigned long size)
2036 {
2037 unsigned long end = addr + size;
2038
2039 flush_cache_vunmap(addr, end);
2040 unmap_kernel_range_noflush(addr, size);
2041 flush_tlb_kernel_range(addr, end);
2042 }
2043
2044 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2045 struct vmap_area *va, unsigned long flags, const void *caller)
2046 {
2047 vm->flags = flags;
2048 vm->addr = (void *)va->va_start;
2049 vm->size = va->va_end - va->va_start;
2050 vm->caller = caller;
2051 va->vm = vm;
2052 }
2053
2054 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2055 unsigned long flags, const void *caller)
2056 {
2057 spin_lock(&vmap_area_lock);
2058 setup_vmalloc_vm_locked(vm, va, flags, caller);
2059 spin_unlock(&vmap_area_lock);
2060 }
2061
2062 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2063 {
2064 /*
2065 * Before removing VM_UNINITIALIZED,
2066 * we should make sure that vm has proper values.
2067 * Pair with smp_rmb() in show_numa_info().
2068 */
2069 smp_wmb();
2070 vm->flags &= ~VM_UNINITIALIZED;
2071 }
2072
2073 static struct vm_struct *__get_vm_area_node(unsigned long size,
2074 unsigned long align, unsigned long flags, unsigned long start,
2075 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2076 {
2077 struct vmap_area *va;
2078 struct vm_struct *area;
2079 unsigned long requested_size = size;
2080
2081 BUG_ON(in_interrupt());
2082 size = PAGE_ALIGN(size);
2083 if (unlikely(!size))
2084 return NULL;
2085
2086 if (flags & VM_IOREMAP)
2087 align = 1ul << clamp_t(int, get_count_order_long(size),
2088 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2089
2090 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2091 if (unlikely(!area))
2092 return NULL;
2093
2094 if (!(flags & VM_NO_GUARD))
2095 size += PAGE_SIZE;
2096
2097 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2098 if (IS_ERR(va)) {
2099 kfree(area);
2100 return NULL;
2101 }
2102
2103 kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2104
2105 setup_vmalloc_vm(area, va, flags, caller);
2106
2107 return area;
2108 }
2109
2110 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2111 unsigned long start, unsigned long end,
2112 const void *caller)
2113 {
2114 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2115 GFP_KERNEL, caller);
2116 }
2117
2118 /**
2119 * get_vm_area - reserve a contiguous kernel virtual area
2120 * @size: size of the area
2121 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2122 *
2123 * Search an area of @size in the kernel virtual mapping area,
2124 * and reserved it for out purposes. Returns the area descriptor
2125 * on success or %NULL on failure.
2126 *
2127 * Return: the area descriptor on success or %NULL on failure.
2128 */
2129 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2130 {
2131 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2132 NUMA_NO_NODE, GFP_KERNEL,
2133 __builtin_return_address(0));
2134 }
2135 EXPORT_SYMBOL(get_vm_area);
2136
2137 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2138 const void *caller)
2139 {
2140 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2141 NUMA_NO_NODE, GFP_KERNEL, caller);
2142 }
2143
2144 /**
2145 * find_vm_area - find a continuous kernel virtual area
2146 * @addr: base address
2147 *
2148 * Search for the kernel VM area starting at @addr, and return it.
2149 * It is up to the caller to do all required locking to keep the returned
2150 * pointer valid.
2151 *
2152 * Return: the area descriptor on success or %NULL on failure.
2153 */
2154 struct vm_struct *find_vm_area(const void *addr)
2155 {
2156 struct vmap_area *va;
2157
2158 va = find_vmap_area((unsigned long)addr);
2159 if (!va)
2160 return NULL;
2161
2162 return va->vm;
2163 }
2164
2165 /**
2166 * remove_vm_area - find and remove a continuous kernel virtual area
2167 * @addr: base address
2168 *
2169 * Search for the kernel VM area starting at @addr, and remove it.
2170 * This function returns the found VM area, but using it is NOT safe
2171 * on SMP machines, except for its size or flags.
2172 *
2173 * Return: the area descriptor on success or %NULL on failure.
2174 */
2175 struct vm_struct *remove_vm_area(const void *addr)
2176 {
2177 struct vmap_area *va;
2178
2179 might_sleep();
2180
2181 spin_lock(&vmap_area_lock);
2182 va = __find_vmap_area((unsigned long)addr);
2183 if (va && va->vm) {
2184 struct vm_struct *vm = va->vm;
2185
2186 va->vm = NULL;
2187 spin_unlock(&vmap_area_lock);
2188
2189 kasan_free_shadow(vm);
2190 free_unmap_vmap_area(va);
2191
2192 return vm;
2193 }
2194
2195 spin_unlock(&vmap_area_lock);
2196 return NULL;
2197 }
2198
2199 static inline void set_area_direct_map(const struct vm_struct *area,
2200 int (*set_direct_map)(struct page *page))
2201 {
2202 int i;
2203
2204 for (i = 0; i < area->nr_pages; i++)
2205 if (page_address(area->pages[i]))
2206 set_direct_map(area->pages[i]);
2207 }
2208
2209 /* Handle removing and resetting vm mappings related to the vm_struct. */
2210 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2211 {
2212 unsigned long start = ULONG_MAX, end = 0;
2213 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2214 int flush_dmap = 0;
2215 int i;
2216
2217 remove_vm_area(area->addr);
2218
2219 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2220 if (!flush_reset)
2221 return;
2222
2223 /*
2224 * If not deallocating pages, just do the flush of the VM area and
2225 * return.
2226 */
2227 if (!deallocate_pages) {
2228 vm_unmap_aliases();
2229 return;
2230 }
2231
2232 /*
2233 * If execution gets here, flush the vm mapping and reset the direct
2234 * map. Find the start and end range of the direct mappings to make sure
2235 * the vm_unmap_aliases() flush includes the direct map.
2236 */
2237 for (i = 0; i < area->nr_pages; i++) {
2238 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2239 if (addr) {
2240 start = min(addr, start);
2241 end = max(addr + PAGE_SIZE, end);
2242 flush_dmap = 1;
2243 }
2244 }
2245
2246 /*
2247 * Set direct map to something invalid so that it won't be cached if
2248 * there are any accesses after the TLB flush, then flush the TLB and
2249 * reset the direct map permissions to the default.
2250 */
2251 set_area_direct_map(area, set_direct_map_invalid_noflush);
2252 _vm_unmap_aliases(start, end, flush_dmap);
2253 set_area_direct_map(area, set_direct_map_default_noflush);
2254 }
2255
2256 static void __vunmap(const void *addr, int deallocate_pages)
2257 {
2258 struct vm_struct *area;
2259
2260 if (!addr)
2261 return;
2262
2263 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2264 addr))
2265 return;
2266
2267 area = find_vm_area(addr);
2268 if (unlikely(!area)) {
2269 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2270 addr);
2271 return;
2272 }
2273
2274 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2275 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2276
2277 kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2278
2279 vm_remove_mappings(area, deallocate_pages);
2280
2281 if (deallocate_pages) {
2282 int i;
2283
2284 for (i = 0; i < area->nr_pages; i++) {
2285 struct page *page = area->pages[i];
2286
2287 BUG_ON(!page);
2288 __free_pages(page, 0);
2289 }
2290 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2291
2292 kvfree(area->pages);
2293 }
2294
2295 kfree(area);
2296 }
2297
2298 static inline void __vfree_deferred(const void *addr)
2299 {
2300 /*
2301 * Use raw_cpu_ptr() because this can be called from preemptible
2302 * context. Preemption is absolutely fine here, because the llist_add()
2303 * implementation is lockless, so it works even if we are adding to
2304 * another cpu's list. schedule_work() should be fine with this too.
2305 */
2306 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2307
2308 if (llist_add((struct llist_node *)addr, &p->list))
2309 schedule_work(&p->wq);
2310 }
2311
2312 /**
2313 * vfree_atomic - release memory allocated by vmalloc()
2314 * @addr: memory base address
2315 *
2316 * This one is just like vfree() but can be called in any atomic context
2317 * except NMIs.
2318 */
2319 void vfree_atomic(const void *addr)
2320 {
2321 BUG_ON(in_nmi());
2322
2323 kmemleak_free(addr);
2324
2325 if (!addr)
2326 return;
2327 __vfree_deferred(addr);
2328 }
2329
2330 static void __vfree(const void *addr)
2331 {
2332 if (unlikely(in_interrupt()))
2333 __vfree_deferred(addr);
2334 else
2335 __vunmap(addr, 1);
2336 }
2337
2338 /**
2339 * vfree - Release memory allocated by vmalloc()
2340 * @addr: Memory base address
2341 *
2342 * Free the virtually continuous memory area starting at @addr, as obtained
2343 * from one of the vmalloc() family of APIs. This will usually also free the
2344 * physical memory underlying the virtual allocation, but that memory is
2345 * reference counted, so it will not be freed until the last user goes away.
2346 *
2347 * If @addr is NULL, no operation is performed.
2348 *
2349 * Context:
2350 * May sleep if called *not* from interrupt context.
2351 * Must not be called in NMI context (strictly speaking, it could be
2352 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2353 * conventions for vfree() arch-depenedent would be a really bad idea).
2354 */
2355 void vfree(const void *addr)
2356 {
2357 BUG_ON(in_nmi());
2358
2359 kmemleak_free(addr);
2360
2361 might_sleep_if(!in_interrupt());
2362
2363 if (!addr)
2364 return;
2365
2366 __vfree(addr);
2367 }
2368 EXPORT_SYMBOL(vfree);
2369
2370 /**
2371 * vunmap - release virtual mapping obtained by vmap()
2372 * @addr: memory base address
2373 *
2374 * Free the virtually contiguous memory area starting at @addr,
2375 * which was created from the page array passed to vmap().
2376 *
2377 * Must not be called in interrupt context.
2378 */
2379 void vunmap(const void *addr)
2380 {
2381 BUG_ON(in_interrupt());
2382 might_sleep();
2383 if (addr)
2384 __vunmap(addr, 0);
2385 }
2386 EXPORT_SYMBOL(vunmap);
2387
2388 /**
2389 * vmap - map an array of pages into virtually contiguous space
2390 * @pages: array of page pointers
2391 * @count: number of pages to map
2392 * @flags: vm_area->flags
2393 * @prot: page protection for the mapping
2394 *
2395 * Maps @count pages from @pages into contiguous kernel virtual space.
2396 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2397 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2398 * are transferred from the caller to vmap(), and will be freed / dropped when
2399 * vfree() is called on the return value.
2400 *
2401 * Return: the address of the area or %NULL on failure
2402 */
2403 void *vmap(struct page **pages, unsigned int count,
2404 unsigned long flags, pgprot_t prot)
2405 {
2406 struct vm_struct *area;
2407 unsigned long size; /* In bytes */
2408
2409 might_sleep();
2410
2411 if (count > totalram_pages())
2412 return NULL;
2413
2414 size = (unsigned long)count << PAGE_SHIFT;
2415 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2416 if (!area)
2417 return NULL;
2418
2419 if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
2420 pages) < 0) {
2421 vunmap(area->addr);
2422 return NULL;
2423 }
2424
2425 if (flags & VM_MAP_PUT_PAGES) {
2426 area->pages = pages;
2427 area->nr_pages = count;
2428 }
2429 return area->addr;
2430 }
2431 EXPORT_SYMBOL(vmap);
2432
2433 #ifdef CONFIG_VMAP_PFN
2434 struct vmap_pfn_data {
2435 unsigned long *pfns;
2436 pgprot_t prot;
2437 unsigned int idx;
2438 };
2439
2440 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2441 {
2442 struct vmap_pfn_data *data = private;
2443
2444 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2445 return -EINVAL;
2446 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2447 return 0;
2448 }
2449
2450 /**
2451 * vmap_pfn - map an array of PFNs into virtually contiguous space
2452 * @pfns: array of PFNs
2453 * @count: number of pages to map
2454 * @prot: page protection for the mapping
2455 *
2456 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2457 * the start address of the mapping.
2458 */
2459 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2460 {
2461 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2462 struct vm_struct *area;
2463
2464 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2465 __builtin_return_address(0));
2466 if (!area)
2467 return NULL;
2468 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2469 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2470 free_vm_area(area);
2471 return NULL;
2472 }
2473 return area->addr;
2474 }
2475 EXPORT_SYMBOL_GPL(vmap_pfn);
2476 #endif /* CONFIG_VMAP_PFN */
2477
2478 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2479 pgprot_t prot, int node)
2480 {
2481 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2482 unsigned int nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2483 unsigned long array_size;
2484 unsigned int i;
2485 struct page **pages;
2486
2487 array_size = (unsigned long)nr_pages * sizeof(struct page *);
2488 gfp_mask |= __GFP_NOWARN;
2489 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2490 gfp_mask |= __GFP_HIGHMEM;
2491
2492 /* Please note that the recursion is strictly bounded. */
2493 if (array_size > PAGE_SIZE) {
2494 pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2495 area->caller);
2496 } else {
2497 pages = kmalloc_node(array_size, nested_gfp, node);
2498 }
2499
2500 if (!pages) {
2501 free_vm_area(area);
2502 return NULL;
2503 }
2504
2505 area->pages = pages;
2506 area->nr_pages = nr_pages;
2507
2508 for (i = 0; i < area->nr_pages; i++) {
2509 struct page *page;
2510
2511 if (node == NUMA_NO_NODE)
2512 page = alloc_page(gfp_mask);
2513 else
2514 page = alloc_pages_node(node, gfp_mask, 0);
2515
2516 if (unlikely(!page)) {
2517 /* Successfully allocated i pages, free them in __vfree() */
2518 area->nr_pages = i;
2519 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2520 goto fail;
2521 }
2522 area->pages[i] = page;
2523 if (gfpflags_allow_blocking(gfp_mask))
2524 cond_resched();
2525 }
2526 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2527
2528 if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
2529 prot, pages) < 0)
2530 goto fail;
2531
2532 return area->addr;
2533
2534 fail:
2535 warn_alloc(gfp_mask, NULL,
2536 "vmalloc: allocation failure, allocated %ld of %ld bytes",
2537 (area->nr_pages*PAGE_SIZE), area->size);
2538 __vfree(area->addr);
2539 return NULL;
2540 }
2541
2542 /**
2543 * __vmalloc_node_range - allocate virtually contiguous memory
2544 * @size: allocation size
2545 * @align: desired alignment
2546 * @start: vm area range start
2547 * @end: vm area range end
2548 * @gfp_mask: flags for the page level allocator
2549 * @prot: protection mask for the allocated pages
2550 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2551 * @node: node to use for allocation or NUMA_NO_NODE
2552 * @caller: caller's return address
2553 *
2554 * Allocate enough pages to cover @size from the page level
2555 * allocator with @gfp_mask flags. Map them into contiguous
2556 * kernel virtual space, using a pagetable protection of @prot.
2557 *
2558 * Return: the address of the area or %NULL on failure
2559 */
2560 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2561 unsigned long start, unsigned long end, gfp_t gfp_mask,
2562 pgprot_t prot, unsigned long vm_flags, int node,
2563 const void *caller)
2564 {
2565 struct vm_struct *area;
2566 void *addr;
2567 unsigned long real_size = size;
2568
2569 size = PAGE_ALIGN(size);
2570 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2571 goto fail;
2572
2573 area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2574 vm_flags, start, end, node, gfp_mask, caller);
2575 if (!area)
2576 goto fail;
2577
2578 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2579 if (!addr)
2580 return NULL;
2581
2582 /*
2583 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2584 * flag. It means that vm_struct is not fully initialized.
2585 * Now, it is fully initialized, so remove this flag here.
2586 */
2587 clear_vm_uninitialized_flag(area);
2588
2589 kmemleak_vmalloc(area, size, gfp_mask);
2590
2591 return addr;
2592
2593 fail:
2594 warn_alloc(gfp_mask, NULL,
2595 "vmalloc: allocation failure: %lu bytes", real_size);
2596 return NULL;
2597 }
2598
2599 /**
2600 * __vmalloc_node - allocate virtually contiguous memory
2601 * @size: allocation size
2602 * @align: desired alignment
2603 * @gfp_mask: flags for the page level allocator
2604 * @node: node to use for allocation or NUMA_NO_NODE
2605 * @caller: caller's return address
2606 *
2607 * Allocate enough pages to cover @size from the page level allocator with
2608 * @gfp_mask flags. Map them into contiguous kernel virtual space.
2609 *
2610 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2611 * and __GFP_NOFAIL are not supported
2612 *
2613 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2614 * with mm people.
2615 *
2616 * Return: pointer to the allocated memory or %NULL on error
2617 */
2618 void *__vmalloc_node(unsigned long size, unsigned long align,
2619 gfp_t gfp_mask, int node, const void *caller)
2620 {
2621 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2622 gfp_mask, PAGE_KERNEL, 0, node, caller);
2623 }
2624 /*
2625 * This is only for performance analysis of vmalloc and stress purpose.
2626 * It is required by vmalloc test module, therefore do not use it other
2627 * than that.
2628 */
2629 #ifdef CONFIG_TEST_VMALLOC_MODULE
2630 EXPORT_SYMBOL_GPL(__vmalloc_node);
2631 #endif
2632
2633 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
2634 {
2635 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
2636 __builtin_return_address(0));
2637 }
2638 EXPORT_SYMBOL(__vmalloc);
2639
2640 /**
2641 * vmalloc - allocate virtually contiguous memory
2642 * @size: allocation size
2643 *
2644 * Allocate enough pages to cover @size from the page level
2645 * allocator and map them into contiguous kernel virtual space.
2646 *
2647 * For tight control over page level allocator and protection flags
2648 * use __vmalloc() instead.
2649 *
2650 * Return: pointer to the allocated memory or %NULL on error
2651 */
2652 void *vmalloc(unsigned long size)
2653 {
2654 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
2655 __builtin_return_address(0));
2656 }
2657 EXPORT_SYMBOL(vmalloc);
2658
2659 /**
2660 * vzalloc - allocate virtually contiguous memory with zero fill
2661 * @size: allocation size
2662 *
2663 * Allocate enough pages to cover @size from the page level
2664 * allocator and map them into contiguous kernel virtual space.
2665 * The memory allocated is set to zero.
2666 *
2667 * For tight control over page level allocator and protection flags
2668 * use __vmalloc() instead.
2669 *
2670 * Return: pointer to the allocated memory or %NULL on error
2671 */
2672 void *vzalloc(unsigned long size)
2673 {
2674 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
2675 __builtin_return_address(0));
2676 }
2677 EXPORT_SYMBOL(vzalloc);
2678
2679 /**
2680 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2681 * @size: allocation size
2682 *
2683 * The resulting memory area is zeroed so it can be mapped to userspace
2684 * without leaking data.
2685 *
2686 * Return: pointer to the allocated memory or %NULL on error
2687 */
2688 void *vmalloc_user(unsigned long size)
2689 {
2690 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2691 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2692 VM_USERMAP, NUMA_NO_NODE,
2693 __builtin_return_address(0));
2694 }
2695 EXPORT_SYMBOL(vmalloc_user);
2696
2697 /**
2698 * vmalloc_node - allocate memory on a specific node
2699 * @size: allocation size
2700 * @node: numa node
2701 *
2702 * Allocate enough pages to cover @size from the page level
2703 * allocator and map them into contiguous kernel virtual space.
2704 *
2705 * For tight control over page level allocator and protection flags
2706 * use __vmalloc() instead.
2707 *
2708 * Return: pointer to the allocated memory or %NULL on error
2709 */
2710 void *vmalloc_node(unsigned long size, int node)
2711 {
2712 return __vmalloc_node(size, 1, GFP_KERNEL, node,
2713 __builtin_return_address(0));
2714 }
2715 EXPORT_SYMBOL(vmalloc_node);
2716
2717 /**
2718 * vzalloc_node - allocate memory on a specific node with zero fill
2719 * @size: allocation size
2720 * @node: numa node
2721 *
2722 * Allocate enough pages to cover @size from the page level
2723 * allocator and map them into contiguous kernel virtual space.
2724 * The memory allocated is set to zero.
2725 *
2726 * Return: pointer to the allocated memory or %NULL on error
2727 */
2728 void *vzalloc_node(unsigned long size, int node)
2729 {
2730 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
2731 __builtin_return_address(0));
2732 }
2733 EXPORT_SYMBOL(vzalloc_node);
2734
2735 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2736 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2737 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2738 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2739 #else
2740 /*
2741 * 64b systems should always have either DMA or DMA32 zones. For others
2742 * GFP_DMA32 should do the right thing and use the normal zone.
2743 */
2744 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2745 #endif
2746
2747 /**
2748 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2749 * @size: allocation size
2750 *
2751 * Allocate enough 32bit PA addressable pages to cover @size from the
2752 * page level allocator and map them into contiguous kernel virtual space.
2753 *
2754 * Return: pointer to the allocated memory or %NULL on error
2755 */
2756 void *vmalloc_32(unsigned long size)
2757 {
2758 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
2759 __builtin_return_address(0));
2760 }
2761 EXPORT_SYMBOL(vmalloc_32);
2762
2763 /**
2764 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2765 * @size: allocation size
2766 *
2767 * The resulting memory area is 32bit addressable and zeroed so it can be
2768 * mapped to userspace without leaking data.
2769 *
2770 * Return: pointer to the allocated memory or %NULL on error
2771 */
2772 void *vmalloc_32_user(unsigned long size)
2773 {
2774 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2775 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2776 VM_USERMAP, NUMA_NO_NODE,
2777 __builtin_return_address(0));
2778 }
2779 EXPORT_SYMBOL(vmalloc_32_user);
2780
2781 /*
2782 * small helper routine , copy contents to buf from addr.
2783 * If the page is not present, fill zero.
2784 */
2785
2786 static int aligned_vread(char *buf, char *addr, unsigned long count)
2787 {
2788 struct page *p;
2789 int copied = 0;
2790
2791 while (count) {
2792 unsigned long offset, length;
2793
2794 offset = offset_in_page(addr);
2795 length = PAGE_SIZE - offset;
2796 if (length > count)
2797 length = count;
2798 p = vmalloc_to_page(addr);
2799 /*
2800 * To do safe access to this _mapped_ area, we need
2801 * lock. But adding lock here means that we need to add
2802 * overhead of vmalloc()/vfree() calles for this _debug_
2803 * interface, rarely used. Instead of that, we'll use
2804 * kmap() and get small overhead in this access function.
2805 */
2806 if (p) {
2807 /*
2808 * we can expect USER0 is not used (see vread/vwrite's
2809 * function description)
2810 */
2811 void *map = kmap_atomic(p);
2812 memcpy(buf, map + offset, length);
2813 kunmap_atomic(map);
2814 } else
2815 memset(buf, 0, length);
2816
2817 addr += length;
2818 buf += length;
2819 copied += length;
2820 count -= length;
2821 }
2822 return copied;
2823 }
2824
2825 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2826 {
2827 struct page *p;
2828 int copied = 0;
2829
2830 while (count) {
2831 unsigned long offset, length;
2832
2833 offset = offset_in_page(addr);
2834 length = PAGE_SIZE - offset;
2835 if (length > count)
2836 length = count;
2837 p = vmalloc_to_page(addr);
2838 /*
2839 * To do safe access to this _mapped_ area, we need
2840 * lock. But adding lock here means that we need to add
2841 * overhead of vmalloc()/vfree() calles for this _debug_
2842 * interface, rarely used. Instead of that, we'll use
2843 * kmap() and get small overhead in this access function.
2844 */
2845 if (p) {
2846 /*
2847 * we can expect USER0 is not used (see vread/vwrite's
2848 * function description)
2849 */
2850 void *map = kmap_atomic(p);
2851 memcpy(map + offset, buf, length);
2852 kunmap_atomic(map);
2853 }
2854 addr += length;
2855 buf += length;
2856 copied += length;
2857 count -= length;
2858 }
2859 return copied;
2860 }
2861
2862 /**
2863 * vread() - read vmalloc area in a safe way.
2864 * @buf: buffer for reading data
2865 * @addr: vm address.
2866 * @count: number of bytes to be read.
2867 *
2868 * This function checks that addr is a valid vmalloc'ed area, and
2869 * copy data from that area to a given buffer. If the given memory range
2870 * of [addr...addr+count) includes some valid address, data is copied to
2871 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2872 * IOREMAP area is treated as memory hole and no copy is done.
2873 *
2874 * If [addr...addr+count) doesn't includes any intersects with alive
2875 * vm_struct area, returns 0. @buf should be kernel's buffer.
2876 *
2877 * Note: In usual ops, vread() is never necessary because the caller
2878 * should know vmalloc() area is valid and can use memcpy().
2879 * This is for routines which have to access vmalloc area without
2880 * any information, as /dev/kmem.
2881 *
2882 * Return: number of bytes for which addr and buf should be increased
2883 * (same number as @count) or %0 if [addr...addr+count) doesn't
2884 * include any intersection with valid vmalloc area
2885 */
2886 long vread(char *buf, char *addr, unsigned long count)
2887 {
2888 struct vmap_area *va;
2889 struct vm_struct *vm;
2890 char *vaddr, *buf_start = buf;
2891 unsigned long buflen = count;
2892 unsigned long n;
2893
2894 /* Don't allow overflow */
2895 if ((unsigned long) addr + count < count)
2896 count = -(unsigned long) addr;
2897
2898 spin_lock(&vmap_area_lock);
2899 list_for_each_entry(va, &vmap_area_list, list) {
2900 if (!count)
2901 break;
2902
2903 if (!va->vm)
2904 continue;
2905
2906 vm = va->vm;
2907 vaddr = (char *) vm->addr;
2908 if (addr >= vaddr + get_vm_area_size(vm))
2909 continue;
2910 while (addr < vaddr) {
2911 if (count == 0)
2912 goto finished;
2913 *buf = '\0';
2914 buf++;
2915 addr++;
2916 count--;
2917 }
2918 n = vaddr + get_vm_area_size(vm) - addr;
2919 if (n > count)
2920 n = count;
2921 if (!(vm->flags & VM_IOREMAP))
2922 aligned_vread(buf, addr, n);
2923 else /* IOREMAP area is treated as memory hole */
2924 memset(buf, 0, n);
2925 buf += n;
2926 addr += n;
2927 count -= n;
2928 }
2929 finished:
2930 spin_unlock(&vmap_area_lock);
2931
2932 if (buf == buf_start)
2933 return 0;
2934 /* zero-fill memory holes */
2935 if (buf != buf_start + buflen)
2936 memset(buf, 0, buflen - (buf - buf_start));
2937
2938 return buflen;
2939 }
2940
2941 /**
2942 * vwrite() - write vmalloc area in a safe way.
2943 * @buf: buffer for source data
2944 * @addr: vm address.
2945 * @count: number of bytes to be read.
2946 *
2947 * This function checks that addr is a valid vmalloc'ed area, and
2948 * copy data from a buffer to the given addr. If specified range of
2949 * [addr...addr+count) includes some valid address, data is copied from
2950 * proper area of @buf. If there are memory holes, no copy to hole.
2951 * IOREMAP area is treated as memory hole and no copy is done.
2952 *
2953 * If [addr...addr+count) doesn't includes any intersects with alive
2954 * vm_struct area, returns 0. @buf should be kernel's buffer.
2955 *
2956 * Note: In usual ops, vwrite() is never necessary because the caller
2957 * should know vmalloc() area is valid and can use memcpy().
2958 * This is for routines which have to access vmalloc area without
2959 * any information, as /dev/kmem.
2960 *
2961 * Return: number of bytes for which addr and buf should be
2962 * increased (same number as @count) or %0 if [addr...addr+count)
2963 * doesn't include any intersection with valid vmalloc area
2964 */
2965 long vwrite(char *buf, char *addr, unsigned long count)
2966 {
2967 struct vmap_area *va;
2968 struct vm_struct *vm;
2969 char *vaddr;
2970 unsigned long n, buflen;
2971 int copied = 0;
2972
2973 /* Don't allow overflow */
2974 if ((unsigned long) addr + count < count)
2975 count = -(unsigned long) addr;
2976 buflen = count;
2977
2978 spin_lock(&vmap_area_lock);
2979 list_for_each_entry(va, &vmap_area_list, list) {
2980 if (!count)
2981 break;
2982
2983 if (!va->vm)
2984 continue;
2985
2986 vm = va->vm;
2987 vaddr = (char *) vm->addr;
2988 if (addr >= vaddr + get_vm_area_size(vm))
2989 continue;
2990 while (addr < vaddr) {
2991 if (count == 0)
2992 goto finished;
2993 buf++;
2994 addr++;
2995 count--;
2996 }
2997 n = vaddr + get_vm_area_size(vm) - addr;
2998 if (n > count)
2999 n = count;
3000 if (!(vm->flags & VM_IOREMAP)) {
3001 aligned_vwrite(buf, addr, n);
3002 copied++;
3003 }
3004 buf += n;
3005 addr += n;
3006 count -= n;
3007 }
3008 finished:
3009 spin_unlock(&vmap_area_lock);
3010 if (!copied)
3011 return 0;
3012 return buflen;
3013 }
3014
3015 /**
3016 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3017 * @vma: vma to cover
3018 * @uaddr: target user address to start at
3019 * @kaddr: virtual address of vmalloc kernel memory
3020 * @pgoff: offset from @kaddr to start at
3021 * @size: size of map area
3022 *
3023 * Returns: 0 for success, -Exxx on failure
3024 *
3025 * This function checks that @kaddr is a valid vmalloc'ed area,
3026 * and that it is big enough to cover the range starting at
3027 * @uaddr in @vma. Will return failure if that criteria isn't
3028 * met.
3029 *
3030 * Similar to remap_pfn_range() (see mm/memory.c)
3031 */
3032 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3033 void *kaddr, unsigned long pgoff,
3034 unsigned long size)
3035 {
3036 struct vm_struct *area;
3037 unsigned long off;
3038 unsigned long end_index;
3039
3040 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3041 return -EINVAL;
3042
3043 size = PAGE_ALIGN(size);
3044
3045 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3046 return -EINVAL;
3047
3048 area = find_vm_area(kaddr);
3049 if (!area)
3050 return -EINVAL;
3051
3052 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3053 return -EINVAL;
3054
3055 if (check_add_overflow(size, off, &end_index) ||
3056 end_index > get_vm_area_size(area))
3057 return -EINVAL;
3058 kaddr += off;
3059
3060 do {
3061 struct page *page = vmalloc_to_page(kaddr);
3062 int ret;
3063
3064 ret = vm_insert_page(vma, uaddr, page);
3065 if (ret)
3066 return ret;
3067
3068 uaddr += PAGE_SIZE;
3069 kaddr += PAGE_SIZE;
3070 size -= PAGE_SIZE;
3071 } while (size > 0);
3072
3073 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3074
3075 return 0;
3076 }
3077 EXPORT_SYMBOL(remap_vmalloc_range_partial);
3078
3079 /**
3080 * remap_vmalloc_range - map vmalloc pages to userspace
3081 * @vma: vma to cover (map full range of vma)
3082 * @addr: vmalloc memory
3083 * @pgoff: number of pages into addr before first page to map
3084 *
3085 * Returns: 0 for success, -Exxx on failure
3086 *
3087 * This function checks that addr is a valid vmalloc'ed area, and
3088 * that it is big enough to cover the vma. Will return failure if
3089 * that criteria isn't met.
3090 *
3091 * Similar to remap_pfn_range() (see mm/memory.c)
3092 */
3093 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3094 unsigned long pgoff)
3095 {
3096 return remap_vmalloc_range_partial(vma, vma->vm_start,
3097 addr, pgoff,
3098 vma->vm_end - vma->vm_start);
3099 }
3100 EXPORT_SYMBOL(remap_vmalloc_range);
3101
3102 void free_vm_area(struct vm_struct *area)
3103 {
3104 struct vm_struct *ret;
3105 ret = remove_vm_area(area->addr);
3106 BUG_ON(ret != area);
3107 kfree(area);
3108 }
3109 EXPORT_SYMBOL_GPL(free_vm_area);
3110
3111 #ifdef CONFIG_SMP
3112 static struct vmap_area *node_to_va(struct rb_node *n)
3113 {
3114 return rb_entry_safe(n, struct vmap_area, rb_node);
3115 }
3116
3117 /**
3118 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3119 * @addr: target address
3120 *
3121 * Returns: vmap_area if it is found. If there is no such area
3122 * the first highest(reverse order) vmap_area is returned
3123 * i.e. va->va_start < addr && va->va_end < addr or NULL
3124 * if there are no any areas before @addr.
3125 */
3126 static struct vmap_area *
3127 pvm_find_va_enclose_addr(unsigned long addr)
3128 {
3129 struct vmap_area *va, *tmp;
3130 struct rb_node *n;
3131
3132 n = free_vmap_area_root.rb_node;
3133 va = NULL;
3134
3135 while (n) {
3136 tmp = rb_entry(n, struct vmap_area, rb_node);
3137 if (tmp->va_start <= addr) {
3138 va = tmp;
3139 if (tmp->va_end >= addr)
3140 break;
3141
3142 n = n->rb_right;
3143 } else {
3144 n = n->rb_left;
3145 }
3146 }
3147
3148 return va;
3149 }
3150
3151 /**
3152 * pvm_determine_end_from_reverse - find the highest aligned address
3153 * of free block below VMALLOC_END
3154 * @va:
3155 * in - the VA we start the search(reverse order);
3156 * out - the VA with the highest aligned end address.
3157 * @align: alignment for required highest address
3158 *
3159 * Returns: determined end address within vmap_area
3160 */
3161 static unsigned long
3162 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3163 {
3164 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3165 unsigned long addr;
3166
3167 if (likely(*va)) {
3168 list_for_each_entry_from_reverse((*va),
3169 &free_vmap_area_list, list) {
3170 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3171 if ((*va)->va_start < addr)
3172 return addr;
3173 }
3174 }
3175
3176 return 0;
3177 }
3178
3179 /**
3180 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3181 * @offsets: array containing offset of each area
3182 * @sizes: array containing size of each area
3183 * @nr_vms: the number of areas to allocate
3184 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3185 *
3186 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3187 * vm_structs on success, %NULL on failure
3188 *
3189 * Percpu allocator wants to use congruent vm areas so that it can
3190 * maintain the offsets among percpu areas. This function allocates
3191 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3192 * be scattered pretty far, distance between two areas easily going up
3193 * to gigabytes. To avoid interacting with regular vmallocs, these
3194 * areas are allocated from top.
3195 *
3196 * Despite its complicated look, this allocator is rather simple. It
3197 * does everything top-down and scans free blocks from the end looking
3198 * for matching base. While scanning, if any of the areas do not fit the
3199 * base address is pulled down to fit the area. Scanning is repeated till
3200 * all the areas fit and then all necessary data structures are inserted
3201 * and the result is returned.
3202 */
3203 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3204 const size_t *sizes, int nr_vms,
3205 size_t align)
3206 {
3207 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3208 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3209 struct vmap_area **vas, *va;
3210 struct vm_struct **vms;
3211 int area, area2, last_area, term_area;
3212 unsigned long base, start, size, end, last_end, orig_start, orig_end;
3213 bool purged = false;
3214 enum fit_type type;
3215
3216 /* verify parameters and allocate data structures */
3217 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3218 for (last_area = 0, area = 0; area < nr_vms; area++) {
3219 start = offsets[area];
3220 end = start + sizes[area];
3221
3222 /* is everything aligned properly? */
3223 BUG_ON(!IS_ALIGNED(offsets[area], align));
3224 BUG_ON(!IS_ALIGNED(sizes[area], align));
3225
3226 /* detect the area with the highest address */
3227 if (start > offsets[last_area])
3228 last_area = area;
3229
3230 for (area2 = area + 1; area2 < nr_vms; area2++) {
3231 unsigned long start2 = offsets[area2];
3232 unsigned long end2 = start2 + sizes[area2];
3233
3234 BUG_ON(start2 < end && start < end2);
3235 }
3236 }
3237 last_end = offsets[last_area] + sizes[last_area];
3238
3239 if (vmalloc_end - vmalloc_start < last_end) {
3240 WARN_ON(true);
3241 return NULL;
3242 }
3243
3244 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3245 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3246 if (!vas || !vms)
3247 goto err_free2;
3248
3249 for (area = 0; area < nr_vms; area++) {
3250 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3251 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3252 if (!vas[area] || !vms[area])
3253 goto err_free;
3254 }
3255 retry:
3256 spin_lock(&free_vmap_area_lock);
3257
3258 /* start scanning - we scan from the top, begin with the last area */
3259 area = term_area = last_area;
3260 start = offsets[area];
3261 end = start + sizes[area];
3262
3263 va = pvm_find_va_enclose_addr(vmalloc_end);
3264 base = pvm_determine_end_from_reverse(&va, align) - end;
3265
3266 while (true) {
3267 /*
3268 * base might have underflowed, add last_end before
3269 * comparing.
3270 */
3271 if (base + last_end < vmalloc_start + last_end)
3272 goto overflow;
3273
3274 /*
3275 * Fitting base has not been found.
3276 */
3277 if (va == NULL)
3278 goto overflow;
3279
3280 /*
3281 * If required width exceeds current VA block, move
3282 * base downwards and then recheck.
3283 */
3284 if (base + end > va->va_end) {
3285 base = pvm_determine_end_from_reverse(&va, align) - end;
3286 term_area = area;
3287 continue;
3288 }
3289
3290 /*
3291 * If this VA does not fit, move base downwards and recheck.
3292 */
3293 if (base + start < va->va_start) {
3294 va = node_to_va(rb_prev(&va->rb_node));
3295 base = pvm_determine_end_from_reverse(&va, align) - end;
3296 term_area = area;
3297 continue;
3298 }
3299
3300 /*
3301 * This area fits, move on to the previous one. If
3302 * the previous one is the terminal one, we're done.
3303 */
3304 area = (area + nr_vms - 1) % nr_vms;
3305 if (area == term_area)
3306 break;
3307
3308 start = offsets[area];
3309 end = start + sizes[area];
3310 va = pvm_find_va_enclose_addr(base + end);
3311 }
3312
3313 /* we've found a fitting base, insert all va's */
3314 for (area = 0; area < nr_vms; area++) {
3315 int ret;
3316
3317 start = base + offsets[area];
3318 size = sizes[area];
3319
3320 va = pvm_find_va_enclose_addr(start);
3321 if (WARN_ON_ONCE(va == NULL))
3322 /* It is a BUG(), but trigger recovery instead. */
3323 goto recovery;
3324
3325 type = classify_va_fit_type(va, start, size);
3326 if (WARN_ON_ONCE(type == NOTHING_FIT))
3327 /* It is a BUG(), but trigger recovery instead. */
3328 goto recovery;
3329
3330 ret = adjust_va_to_fit_type(va, start, size, type);
3331 if (unlikely(ret))
3332 goto recovery;
3333
3334 /* Allocated area. */
3335 va = vas[area];
3336 va->va_start = start;
3337 va->va_end = start + size;
3338 }
3339
3340 spin_unlock(&free_vmap_area_lock);
3341
3342 /* populate the kasan shadow space */
3343 for (area = 0; area < nr_vms; area++) {
3344 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3345 goto err_free_shadow;
3346
3347 kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3348 sizes[area]);
3349 }
3350
3351 /* insert all vm's */
3352 spin_lock(&vmap_area_lock);
3353 for (area = 0; area < nr_vms; area++) {
3354 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3355
3356 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3357 pcpu_get_vm_areas);
3358 }
3359 spin_unlock(&vmap_area_lock);
3360
3361 kfree(vas);
3362 return vms;
3363
3364 recovery:
3365 /*
3366 * Remove previously allocated areas. There is no
3367 * need in removing these areas from the busy tree,
3368 * because they are inserted only on the final step
3369 * and when pcpu_get_vm_areas() is success.
3370 */
3371 while (area--) {
3372 orig_start = vas[area]->va_start;
3373 orig_end = vas[area]->va_end;
3374 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3375 &free_vmap_area_list);
3376 if (va)
3377 kasan_release_vmalloc(orig_start, orig_end,
3378 va->va_start, va->va_end);
3379 vas[area] = NULL;
3380 }
3381
3382 overflow:
3383 spin_unlock(&free_vmap_area_lock);
3384 if (!purged) {
3385 purge_vmap_area_lazy();
3386 purged = true;
3387
3388 /* Before "retry", check if we recover. */
3389 for (area = 0; area < nr_vms; area++) {
3390 if (vas[area])
3391 continue;
3392
3393 vas[area] = kmem_cache_zalloc(
3394 vmap_area_cachep, GFP_KERNEL);
3395 if (!vas[area])
3396 goto err_free;
3397 }
3398
3399 goto retry;
3400 }
3401
3402 err_free:
3403 for (area = 0; area < nr_vms; area++) {
3404 if (vas[area])
3405 kmem_cache_free(vmap_area_cachep, vas[area]);
3406
3407 kfree(vms[area]);
3408 }
3409 err_free2:
3410 kfree(vas);
3411 kfree(vms);
3412 return NULL;
3413
3414 err_free_shadow:
3415 spin_lock(&free_vmap_area_lock);
3416 /*
3417 * We release all the vmalloc shadows, even the ones for regions that
3418 * hadn't been successfully added. This relies on kasan_release_vmalloc
3419 * being able to tolerate this case.
3420 */
3421 for (area = 0; area < nr_vms; area++) {
3422 orig_start = vas[area]->va_start;
3423 orig_end = vas[area]->va_end;
3424 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3425 &free_vmap_area_list);
3426 if (va)
3427 kasan_release_vmalloc(orig_start, orig_end,
3428 va->va_start, va->va_end);
3429 vas[area] = NULL;
3430 kfree(vms[area]);
3431 }
3432 spin_unlock(&free_vmap_area_lock);
3433 kfree(vas);
3434 kfree(vms);
3435 return NULL;
3436 }
3437
3438 /**
3439 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3440 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3441 * @nr_vms: the number of allocated areas
3442 *
3443 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3444 */
3445 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3446 {
3447 int i;
3448
3449 for (i = 0; i < nr_vms; i++)
3450 free_vm_area(vms[i]);
3451 kfree(vms);
3452 }
3453 #endif /* CONFIG_SMP */
3454
3455 #ifdef CONFIG_PROC_FS
3456 static void *s_start(struct seq_file *m, loff_t *pos)
3457 __acquires(&vmap_purge_lock)
3458 __acquires(&vmap_area_lock)
3459 {
3460 mutex_lock(&vmap_purge_lock);
3461 spin_lock(&vmap_area_lock);
3462
3463 return seq_list_start(&vmap_area_list, *pos);
3464 }
3465
3466 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3467 {
3468 return seq_list_next(p, &vmap_area_list, pos);
3469 }
3470
3471 static void s_stop(struct seq_file *m, void *p)
3472 __releases(&vmap_area_lock)
3473 __releases(&vmap_purge_lock)
3474 {
3475 spin_unlock(&vmap_area_lock);
3476 mutex_unlock(&vmap_purge_lock);
3477 }
3478
3479 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3480 {
3481 if (IS_ENABLED(CONFIG_NUMA)) {
3482 unsigned int nr, *counters = m->private;
3483
3484 if (!counters)
3485 return;
3486
3487 if (v->flags & VM_UNINITIALIZED)
3488 return;
3489 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3490 smp_rmb();
3491
3492 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3493
3494 for (nr = 0; nr < v->nr_pages; nr++)
3495 counters[page_to_nid(v->pages[nr])]++;
3496
3497 for_each_node_state(nr, N_HIGH_MEMORY)
3498 if (counters[nr])
3499 seq_printf(m, " N%u=%u", nr, counters[nr]);
3500 }
3501 }
3502
3503 static void show_purge_info(struct seq_file *m)
3504 {
3505 struct vmap_area *va;
3506
3507 spin_lock(&purge_vmap_area_lock);
3508 list_for_each_entry(va, &purge_vmap_area_list, list) {
3509 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3510 (void *)va->va_start, (void *)va->va_end,
3511 va->va_end - va->va_start);
3512 }
3513 spin_unlock(&purge_vmap_area_lock);
3514 }
3515
3516 static int s_show(struct seq_file *m, void *p)
3517 {
3518 struct vmap_area *va;
3519 struct vm_struct *v;
3520
3521 va = list_entry(p, struct vmap_area, list);
3522
3523 /*
3524 * s_show can encounter race with remove_vm_area, !vm on behalf
3525 * of vmap area is being tear down or vm_map_ram allocation.
3526 */
3527 if (!va->vm) {
3528 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3529 (void *)va->va_start, (void *)va->va_end,
3530 va->va_end - va->va_start);
3531
3532 return 0;
3533 }
3534
3535 v = va->vm;
3536
3537 seq_printf(m, "0x%pK-0x%pK %7ld",
3538 v->addr, v->addr + v->size, v->size);
3539
3540 if (v->caller)
3541 seq_printf(m, " %pS", v->caller);
3542
3543 if (v->nr_pages)
3544 seq_printf(m, " pages=%d", v->nr_pages);
3545
3546 if (v->phys_addr)
3547 seq_printf(m, " phys=%pa", &v->phys_addr);
3548
3549 if (v->flags & VM_IOREMAP)
3550 seq_puts(m, " ioremap");
3551
3552 if (v->flags & VM_ALLOC)
3553 seq_puts(m, " vmalloc");
3554
3555 if (v->flags & VM_MAP)
3556 seq_puts(m, " vmap");
3557
3558 if (v->flags & VM_USERMAP)
3559 seq_puts(m, " user");
3560
3561 if (v->flags & VM_DMA_COHERENT)
3562 seq_puts(m, " dma-coherent");
3563
3564 if (is_vmalloc_addr(v->pages))
3565 seq_puts(m, " vpages");
3566
3567 show_numa_info(m, v);
3568 seq_putc(m, '\n');
3569
3570 /*
3571 * As a final step, dump "unpurged" areas.
3572 */
3573 if (list_is_last(&va->list, &vmap_area_list))
3574 show_purge_info(m);
3575
3576 return 0;
3577 }
3578
3579 static const struct seq_operations vmalloc_op = {
3580 .start = s_start,
3581 .next = s_next,
3582 .stop = s_stop,
3583 .show = s_show,
3584 };
3585
3586 static int __init proc_vmalloc_init(void)
3587 {
3588 if (IS_ENABLED(CONFIG_NUMA))
3589 proc_create_seq_private("vmallocinfo", 0400, NULL,
3590 &vmalloc_op,
3591 nr_node_ids * sizeof(unsigned int), NULL);
3592 else
3593 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3594 return 0;
3595 }
3596 module_init(proc_vmalloc_init);
3597
3598 #endif