]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/vmalloc.c
mm/vmalloc.c: remove alloc_map from vmap_block
[mirror_ubuntu-zesty-kernel.git] / mm / vmalloc.c
1 /*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <linux/atomic.h>
30 #include <linux/llist.h>
31 #include <asm/uaccess.h>
32 #include <asm/tlbflush.h>
33 #include <asm/shmparam.h>
34
35 struct vfree_deferred {
36 struct llist_head list;
37 struct work_struct wq;
38 };
39 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
40
41 static void __vunmap(const void *, int);
42
43 static void free_work(struct work_struct *w)
44 {
45 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
46 struct llist_node *llnode = llist_del_all(&p->list);
47 while (llnode) {
48 void *p = llnode;
49 llnode = llist_next(llnode);
50 __vunmap(p, 1);
51 }
52 }
53
54 /*** Page table manipulation functions ***/
55
56 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
57 {
58 pte_t *pte;
59
60 pte = pte_offset_kernel(pmd, addr);
61 do {
62 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
63 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
64 } while (pte++, addr += PAGE_SIZE, addr != end);
65 }
66
67 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
68 {
69 pmd_t *pmd;
70 unsigned long next;
71
72 pmd = pmd_offset(pud, addr);
73 do {
74 next = pmd_addr_end(addr, end);
75 if (pmd_none_or_clear_bad(pmd))
76 continue;
77 vunmap_pte_range(pmd, addr, next);
78 } while (pmd++, addr = next, addr != end);
79 }
80
81 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
82 {
83 pud_t *pud;
84 unsigned long next;
85
86 pud = pud_offset(pgd, addr);
87 do {
88 next = pud_addr_end(addr, end);
89 if (pud_none_or_clear_bad(pud))
90 continue;
91 vunmap_pmd_range(pud, addr, next);
92 } while (pud++, addr = next, addr != end);
93 }
94
95 static void vunmap_page_range(unsigned long addr, unsigned long end)
96 {
97 pgd_t *pgd;
98 unsigned long next;
99
100 BUG_ON(addr >= end);
101 pgd = pgd_offset_k(addr);
102 do {
103 next = pgd_addr_end(addr, end);
104 if (pgd_none_or_clear_bad(pgd))
105 continue;
106 vunmap_pud_range(pgd, addr, next);
107 } while (pgd++, addr = next, addr != end);
108 }
109
110 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
111 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
112 {
113 pte_t *pte;
114
115 /*
116 * nr is a running index into the array which helps higher level
117 * callers keep track of where we're up to.
118 */
119
120 pte = pte_alloc_kernel(pmd, addr);
121 if (!pte)
122 return -ENOMEM;
123 do {
124 struct page *page = pages[*nr];
125
126 if (WARN_ON(!pte_none(*pte)))
127 return -EBUSY;
128 if (WARN_ON(!page))
129 return -ENOMEM;
130 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
131 (*nr)++;
132 } while (pte++, addr += PAGE_SIZE, addr != end);
133 return 0;
134 }
135
136 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
137 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
138 {
139 pmd_t *pmd;
140 unsigned long next;
141
142 pmd = pmd_alloc(&init_mm, pud, addr);
143 if (!pmd)
144 return -ENOMEM;
145 do {
146 next = pmd_addr_end(addr, end);
147 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
148 return -ENOMEM;
149 } while (pmd++, addr = next, addr != end);
150 return 0;
151 }
152
153 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
154 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
155 {
156 pud_t *pud;
157 unsigned long next;
158
159 pud = pud_alloc(&init_mm, pgd, addr);
160 if (!pud)
161 return -ENOMEM;
162 do {
163 next = pud_addr_end(addr, end);
164 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
165 return -ENOMEM;
166 } while (pud++, addr = next, addr != end);
167 return 0;
168 }
169
170 /*
171 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
172 * will have pfns corresponding to the "pages" array.
173 *
174 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
175 */
176 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
177 pgprot_t prot, struct page **pages)
178 {
179 pgd_t *pgd;
180 unsigned long next;
181 unsigned long addr = start;
182 int err = 0;
183 int nr = 0;
184
185 BUG_ON(addr >= end);
186 pgd = pgd_offset_k(addr);
187 do {
188 next = pgd_addr_end(addr, end);
189 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
190 if (err)
191 return err;
192 } while (pgd++, addr = next, addr != end);
193
194 return nr;
195 }
196
197 static int vmap_page_range(unsigned long start, unsigned long end,
198 pgprot_t prot, struct page **pages)
199 {
200 int ret;
201
202 ret = vmap_page_range_noflush(start, end, prot, pages);
203 flush_cache_vmap(start, end);
204 return ret;
205 }
206
207 int is_vmalloc_or_module_addr(const void *x)
208 {
209 /*
210 * ARM, x86-64 and sparc64 put modules in a special place,
211 * and fall back on vmalloc() if that fails. Others
212 * just put it in the vmalloc space.
213 */
214 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
215 unsigned long addr = (unsigned long)x;
216 if (addr >= MODULES_VADDR && addr < MODULES_END)
217 return 1;
218 #endif
219 return is_vmalloc_addr(x);
220 }
221
222 /*
223 * Walk a vmap address to the struct page it maps.
224 */
225 struct page *vmalloc_to_page(const void *vmalloc_addr)
226 {
227 unsigned long addr = (unsigned long) vmalloc_addr;
228 struct page *page = NULL;
229 pgd_t *pgd = pgd_offset_k(addr);
230
231 /*
232 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
233 * architectures that do not vmalloc module space
234 */
235 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
236
237 if (!pgd_none(*pgd)) {
238 pud_t *pud = pud_offset(pgd, addr);
239 if (!pud_none(*pud)) {
240 pmd_t *pmd = pmd_offset(pud, addr);
241 if (!pmd_none(*pmd)) {
242 pte_t *ptep, pte;
243
244 ptep = pte_offset_map(pmd, addr);
245 pte = *ptep;
246 if (pte_present(pte))
247 page = pte_page(pte);
248 pte_unmap(ptep);
249 }
250 }
251 }
252 return page;
253 }
254 EXPORT_SYMBOL(vmalloc_to_page);
255
256 /*
257 * Map a vmalloc()-space virtual address to the physical page frame number.
258 */
259 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
260 {
261 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
262 }
263 EXPORT_SYMBOL(vmalloc_to_pfn);
264
265
266 /*** Global kva allocator ***/
267
268 #define VM_LAZY_FREE 0x01
269 #define VM_LAZY_FREEING 0x02
270 #define VM_VM_AREA 0x04
271
272 static DEFINE_SPINLOCK(vmap_area_lock);
273 /* Export for kexec only */
274 LIST_HEAD(vmap_area_list);
275 static struct rb_root vmap_area_root = RB_ROOT;
276
277 /* The vmap cache globals are protected by vmap_area_lock */
278 static struct rb_node *free_vmap_cache;
279 static unsigned long cached_hole_size;
280 static unsigned long cached_vstart;
281 static unsigned long cached_align;
282
283 static unsigned long vmap_area_pcpu_hole;
284
285 static struct vmap_area *__find_vmap_area(unsigned long addr)
286 {
287 struct rb_node *n = vmap_area_root.rb_node;
288
289 while (n) {
290 struct vmap_area *va;
291
292 va = rb_entry(n, struct vmap_area, rb_node);
293 if (addr < va->va_start)
294 n = n->rb_left;
295 else if (addr >= va->va_end)
296 n = n->rb_right;
297 else
298 return va;
299 }
300
301 return NULL;
302 }
303
304 static void __insert_vmap_area(struct vmap_area *va)
305 {
306 struct rb_node **p = &vmap_area_root.rb_node;
307 struct rb_node *parent = NULL;
308 struct rb_node *tmp;
309
310 while (*p) {
311 struct vmap_area *tmp_va;
312
313 parent = *p;
314 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
315 if (va->va_start < tmp_va->va_end)
316 p = &(*p)->rb_left;
317 else if (va->va_end > tmp_va->va_start)
318 p = &(*p)->rb_right;
319 else
320 BUG();
321 }
322
323 rb_link_node(&va->rb_node, parent, p);
324 rb_insert_color(&va->rb_node, &vmap_area_root);
325
326 /* address-sort this list */
327 tmp = rb_prev(&va->rb_node);
328 if (tmp) {
329 struct vmap_area *prev;
330 prev = rb_entry(tmp, struct vmap_area, rb_node);
331 list_add_rcu(&va->list, &prev->list);
332 } else
333 list_add_rcu(&va->list, &vmap_area_list);
334 }
335
336 static void purge_vmap_area_lazy(void);
337
338 /*
339 * Allocate a region of KVA of the specified size and alignment, within the
340 * vstart and vend.
341 */
342 static struct vmap_area *alloc_vmap_area(unsigned long size,
343 unsigned long align,
344 unsigned long vstart, unsigned long vend,
345 int node, gfp_t gfp_mask)
346 {
347 struct vmap_area *va;
348 struct rb_node *n;
349 unsigned long addr;
350 int purged = 0;
351 struct vmap_area *first;
352
353 BUG_ON(!size);
354 BUG_ON(size & ~PAGE_MASK);
355 BUG_ON(!is_power_of_2(align));
356
357 va = kmalloc_node(sizeof(struct vmap_area),
358 gfp_mask & GFP_RECLAIM_MASK, node);
359 if (unlikely(!va))
360 return ERR_PTR(-ENOMEM);
361
362 retry:
363 spin_lock(&vmap_area_lock);
364 /*
365 * Invalidate cache if we have more permissive parameters.
366 * cached_hole_size notes the largest hole noticed _below_
367 * the vmap_area cached in free_vmap_cache: if size fits
368 * into that hole, we want to scan from vstart to reuse
369 * the hole instead of allocating above free_vmap_cache.
370 * Note that __free_vmap_area may update free_vmap_cache
371 * without updating cached_hole_size or cached_align.
372 */
373 if (!free_vmap_cache ||
374 size < cached_hole_size ||
375 vstart < cached_vstart ||
376 align < cached_align) {
377 nocache:
378 cached_hole_size = 0;
379 free_vmap_cache = NULL;
380 }
381 /* record if we encounter less permissive parameters */
382 cached_vstart = vstart;
383 cached_align = align;
384
385 /* find starting point for our search */
386 if (free_vmap_cache) {
387 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
388 addr = ALIGN(first->va_end, align);
389 if (addr < vstart)
390 goto nocache;
391 if (addr + size - 1 < addr)
392 goto overflow;
393
394 } else {
395 addr = ALIGN(vstart, align);
396 if (addr + size - 1 < addr)
397 goto overflow;
398
399 n = vmap_area_root.rb_node;
400 first = NULL;
401
402 while (n) {
403 struct vmap_area *tmp;
404 tmp = rb_entry(n, struct vmap_area, rb_node);
405 if (tmp->va_end >= addr) {
406 first = tmp;
407 if (tmp->va_start <= addr)
408 break;
409 n = n->rb_left;
410 } else
411 n = n->rb_right;
412 }
413
414 if (!first)
415 goto found;
416 }
417
418 /* from the starting point, walk areas until a suitable hole is found */
419 while (addr + size > first->va_start && addr + size <= vend) {
420 if (addr + cached_hole_size < first->va_start)
421 cached_hole_size = first->va_start - addr;
422 addr = ALIGN(first->va_end, align);
423 if (addr + size - 1 < addr)
424 goto overflow;
425
426 if (list_is_last(&first->list, &vmap_area_list))
427 goto found;
428
429 first = list_entry(first->list.next,
430 struct vmap_area, list);
431 }
432
433 found:
434 if (addr + size > vend)
435 goto overflow;
436
437 va->va_start = addr;
438 va->va_end = addr + size;
439 va->flags = 0;
440 __insert_vmap_area(va);
441 free_vmap_cache = &va->rb_node;
442 spin_unlock(&vmap_area_lock);
443
444 BUG_ON(va->va_start & (align-1));
445 BUG_ON(va->va_start < vstart);
446 BUG_ON(va->va_end > vend);
447
448 return va;
449
450 overflow:
451 spin_unlock(&vmap_area_lock);
452 if (!purged) {
453 purge_vmap_area_lazy();
454 purged = 1;
455 goto retry;
456 }
457 if (printk_ratelimit())
458 printk(KERN_WARNING
459 "vmap allocation for size %lu failed: "
460 "use vmalloc=<size> to increase size.\n", size);
461 kfree(va);
462 return ERR_PTR(-EBUSY);
463 }
464
465 static void __free_vmap_area(struct vmap_area *va)
466 {
467 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
468
469 if (free_vmap_cache) {
470 if (va->va_end < cached_vstart) {
471 free_vmap_cache = NULL;
472 } else {
473 struct vmap_area *cache;
474 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
475 if (va->va_start <= cache->va_start) {
476 free_vmap_cache = rb_prev(&va->rb_node);
477 /*
478 * We don't try to update cached_hole_size or
479 * cached_align, but it won't go very wrong.
480 */
481 }
482 }
483 }
484 rb_erase(&va->rb_node, &vmap_area_root);
485 RB_CLEAR_NODE(&va->rb_node);
486 list_del_rcu(&va->list);
487
488 /*
489 * Track the highest possible candidate for pcpu area
490 * allocation. Areas outside of vmalloc area can be returned
491 * here too, consider only end addresses which fall inside
492 * vmalloc area proper.
493 */
494 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
495 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
496
497 kfree_rcu(va, rcu_head);
498 }
499
500 /*
501 * Free a region of KVA allocated by alloc_vmap_area
502 */
503 static void free_vmap_area(struct vmap_area *va)
504 {
505 spin_lock(&vmap_area_lock);
506 __free_vmap_area(va);
507 spin_unlock(&vmap_area_lock);
508 }
509
510 /*
511 * Clear the pagetable entries of a given vmap_area
512 */
513 static void unmap_vmap_area(struct vmap_area *va)
514 {
515 vunmap_page_range(va->va_start, va->va_end);
516 }
517
518 static void vmap_debug_free_range(unsigned long start, unsigned long end)
519 {
520 /*
521 * Unmap page tables and force a TLB flush immediately if
522 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
523 * bugs similarly to those in linear kernel virtual address
524 * space after a page has been freed.
525 *
526 * All the lazy freeing logic is still retained, in order to
527 * minimise intrusiveness of this debugging feature.
528 *
529 * This is going to be *slow* (linear kernel virtual address
530 * debugging doesn't do a broadcast TLB flush so it is a lot
531 * faster).
532 */
533 #ifdef CONFIG_DEBUG_PAGEALLOC
534 vunmap_page_range(start, end);
535 flush_tlb_kernel_range(start, end);
536 #endif
537 }
538
539 /*
540 * lazy_max_pages is the maximum amount of virtual address space we gather up
541 * before attempting to purge with a TLB flush.
542 *
543 * There is a tradeoff here: a larger number will cover more kernel page tables
544 * and take slightly longer to purge, but it will linearly reduce the number of
545 * global TLB flushes that must be performed. It would seem natural to scale
546 * this number up linearly with the number of CPUs (because vmapping activity
547 * could also scale linearly with the number of CPUs), however it is likely
548 * that in practice, workloads might be constrained in other ways that mean
549 * vmap activity will not scale linearly with CPUs. Also, I want to be
550 * conservative and not introduce a big latency on huge systems, so go with
551 * a less aggressive log scale. It will still be an improvement over the old
552 * code, and it will be simple to change the scale factor if we find that it
553 * becomes a problem on bigger systems.
554 */
555 static unsigned long lazy_max_pages(void)
556 {
557 unsigned int log;
558
559 log = fls(num_online_cpus());
560
561 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
562 }
563
564 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
565
566 /* for per-CPU blocks */
567 static void purge_fragmented_blocks_allcpus(void);
568
569 /*
570 * called before a call to iounmap() if the caller wants vm_area_struct's
571 * immediately freed.
572 */
573 void set_iounmap_nonlazy(void)
574 {
575 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
576 }
577
578 /*
579 * Purges all lazily-freed vmap areas.
580 *
581 * If sync is 0 then don't purge if there is already a purge in progress.
582 * If force_flush is 1, then flush kernel TLBs between *start and *end even
583 * if we found no lazy vmap areas to unmap (callers can use this to optimise
584 * their own TLB flushing).
585 * Returns with *start = min(*start, lowest purged address)
586 * *end = max(*end, highest purged address)
587 */
588 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
589 int sync, int force_flush)
590 {
591 static DEFINE_SPINLOCK(purge_lock);
592 LIST_HEAD(valist);
593 struct vmap_area *va;
594 struct vmap_area *n_va;
595 int nr = 0;
596
597 /*
598 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
599 * should not expect such behaviour. This just simplifies locking for
600 * the case that isn't actually used at the moment anyway.
601 */
602 if (!sync && !force_flush) {
603 if (!spin_trylock(&purge_lock))
604 return;
605 } else
606 spin_lock(&purge_lock);
607
608 if (sync)
609 purge_fragmented_blocks_allcpus();
610
611 rcu_read_lock();
612 list_for_each_entry_rcu(va, &vmap_area_list, list) {
613 if (va->flags & VM_LAZY_FREE) {
614 if (va->va_start < *start)
615 *start = va->va_start;
616 if (va->va_end > *end)
617 *end = va->va_end;
618 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
619 list_add_tail(&va->purge_list, &valist);
620 va->flags |= VM_LAZY_FREEING;
621 va->flags &= ~VM_LAZY_FREE;
622 }
623 }
624 rcu_read_unlock();
625
626 if (nr)
627 atomic_sub(nr, &vmap_lazy_nr);
628
629 if (nr || force_flush)
630 flush_tlb_kernel_range(*start, *end);
631
632 if (nr) {
633 spin_lock(&vmap_area_lock);
634 list_for_each_entry_safe(va, n_va, &valist, purge_list)
635 __free_vmap_area(va);
636 spin_unlock(&vmap_area_lock);
637 }
638 spin_unlock(&purge_lock);
639 }
640
641 /*
642 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
643 * is already purging.
644 */
645 static void try_purge_vmap_area_lazy(void)
646 {
647 unsigned long start = ULONG_MAX, end = 0;
648
649 __purge_vmap_area_lazy(&start, &end, 0, 0);
650 }
651
652 /*
653 * Kick off a purge of the outstanding lazy areas.
654 */
655 static void purge_vmap_area_lazy(void)
656 {
657 unsigned long start = ULONG_MAX, end = 0;
658
659 __purge_vmap_area_lazy(&start, &end, 1, 0);
660 }
661
662 /*
663 * Free a vmap area, caller ensuring that the area has been unmapped
664 * and flush_cache_vunmap had been called for the correct range
665 * previously.
666 */
667 static void free_vmap_area_noflush(struct vmap_area *va)
668 {
669 va->flags |= VM_LAZY_FREE;
670 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
671 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
672 try_purge_vmap_area_lazy();
673 }
674
675 /*
676 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
677 * called for the correct range previously.
678 */
679 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
680 {
681 unmap_vmap_area(va);
682 free_vmap_area_noflush(va);
683 }
684
685 /*
686 * Free and unmap a vmap area
687 */
688 static void free_unmap_vmap_area(struct vmap_area *va)
689 {
690 flush_cache_vunmap(va->va_start, va->va_end);
691 free_unmap_vmap_area_noflush(va);
692 }
693
694 static struct vmap_area *find_vmap_area(unsigned long addr)
695 {
696 struct vmap_area *va;
697
698 spin_lock(&vmap_area_lock);
699 va = __find_vmap_area(addr);
700 spin_unlock(&vmap_area_lock);
701
702 return va;
703 }
704
705 static void free_unmap_vmap_area_addr(unsigned long addr)
706 {
707 struct vmap_area *va;
708
709 va = find_vmap_area(addr);
710 BUG_ON(!va);
711 free_unmap_vmap_area(va);
712 }
713
714
715 /*** Per cpu kva allocator ***/
716
717 /*
718 * vmap space is limited especially on 32 bit architectures. Ensure there is
719 * room for at least 16 percpu vmap blocks per CPU.
720 */
721 /*
722 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
723 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
724 * instead (we just need a rough idea)
725 */
726 #if BITS_PER_LONG == 32
727 #define VMALLOC_SPACE (128UL*1024*1024)
728 #else
729 #define VMALLOC_SPACE (128UL*1024*1024*1024)
730 #endif
731
732 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
733 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
734 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
735 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
736 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
737 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
738 #define VMAP_BBMAP_BITS \
739 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
740 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
741 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
742
743 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
744
745 static bool vmap_initialized __read_mostly = false;
746
747 struct vmap_block_queue {
748 spinlock_t lock;
749 struct list_head free;
750 };
751
752 struct vmap_block {
753 spinlock_t lock;
754 struct vmap_area *va;
755 struct vmap_block_queue *vbq;
756 unsigned long free, dirty;
757 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
758 struct list_head free_list;
759 struct rcu_head rcu_head;
760 struct list_head purge;
761 };
762
763 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
764 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
765
766 /*
767 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
768 * in the free path. Could get rid of this if we change the API to return a
769 * "cookie" from alloc, to be passed to free. But no big deal yet.
770 */
771 static DEFINE_SPINLOCK(vmap_block_tree_lock);
772 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
773
774 /*
775 * We should probably have a fallback mechanism to allocate virtual memory
776 * out of partially filled vmap blocks. However vmap block sizing should be
777 * fairly reasonable according to the vmalloc size, so it shouldn't be a
778 * big problem.
779 */
780
781 static unsigned long addr_to_vb_idx(unsigned long addr)
782 {
783 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
784 addr /= VMAP_BLOCK_SIZE;
785 return addr;
786 }
787
788 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
789 {
790 struct vmap_block_queue *vbq;
791 struct vmap_block *vb;
792 struct vmap_area *va;
793 unsigned long vb_idx;
794 int node, err;
795
796 node = numa_node_id();
797
798 vb = kmalloc_node(sizeof(struct vmap_block),
799 gfp_mask & GFP_RECLAIM_MASK, node);
800 if (unlikely(!vb))
801 return ERR_PTR(-ENOMEM);
802
803 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
804 VMALLOC_START, VMALLOC_END,
805 node, gfp_mask);
806 if (IS_ERR(va)) {
807 kfree(vb);
808 return ERR_CAST(va);
809 }
810
811 err = radix_tree_preload(gfp_mask);
812 if (unlikely(err)) {
813 kfree(vb);
814 free_vmap_area(va);
815 return ERR_PTR(err);
816 }
817
818 spin_lock_init(&vb->lock);
819 vb->va = va;
820 vb->free = VMAP_BBMAP_BITS;
821 vb->dirty = 0;
822 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
823 INIT_LIST_HEAD(&vb->free_list);
824
825 vb_idx = addr_to_vb_idx(va->va_start);
826 spin_lock(&vmap_block_tree_lock);
827 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
828 spin_unlock(&vmap_block_tree_lock);
829 BUG_ON(err);
830 radix_tree_preload_end();
831
832 vbq = &get_cpu_var(vmap_block_queue);
833 vb->vbq = vbq;
834 spin_lock(&vbq->lock);
835 list_add_rcu(&vb->free_list, &vbq->free);
836 spin_unlock(&vbq->lock);
837 put_cpu_var(vmap_block_queue);
838
839 return vb;
840 }
841
842 static void free_vmap_block(struct vmap_block *vb)
843 {
844 struct vmap_block *tmp;
845 unsigned long vb_idx;
846
847 vb_idx = addr_to_vb_idx(vb->va->va_start);
848 spin_lock(&vmap_block_tree_lock);
849 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
850 spin_unlock(&vmap_block_tree_lock);
851 BUG_ON(tmp != vb);
852
853 free_vmap_area_noflush(vb->va);
854 kfree_rcu(vb, rcu_head);
855 }
856
857 static void purge_fragmented_blocks(int cpu)
858 {
859 LIST_HEAD(purge);
860 struct vmap_block *vb;
861 struct vmap_block *n_vb;
862 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
863
864 rcu_read_lock();
865 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
866
867 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
868 continue;
869
870 spin_lock(&vb->lock);
871 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
872 vb->free = 0; /* prevent further allocs after releasing lock */
873 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
874 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
875 spin_lock(&vbq->lock);
876 list_del_rcu(&vb->free_list);
877 spin_unlock(&vbq->lock);
878 spin_unlock(&vb->lock);
879 list_add_tail(&vb->purge, &purge);
880 } else
881 spin_unlock(&vb->lock);
882 }
883 rcu_read_unlock();
884
885 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
886 list_del(&vb->purge);
887 free_vmap_block(vb);
888 }
889 }
890
891 static void purge_fragmented_blocks_allcpus(void)
892 {
893 int cpu;
894
895 for_each_possible_cpu(cpu)
896 purge_fragmented_blocks(cpu);
897 }
898
899 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
900 {
901 struct vmap_block_queue *vbq;
902 struct vmap_block *vb;
903 unsigned long addr = 0;
904 unsigned int order;
905
906 BUG_ON(size & ~PAGE_MASK);
907 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
908 if (WARN_ON(size == 0)) {
909 /*
910 * Allocating 0 bytes isn't what caller wants since
911 * get_order(0) returns funny result. Just warn and terminate
912 * early.
913 */
914 return NULL;
915 }
916 order = get_order(size);
917
918 again:
919 rcu_read_lock();
920 vbq = &get_cpu_var(vmap_block_queue);
921 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
922 int i;
923
924 spin_lock(&vb->lock);
925 if (vb->free < 1UL << order)
926 goto next;
927
928 i = VMAP_BBMAP_BITS - vb->free;
929 addr = vb->va->va_start + (i << PAGE_SHIFT);
930 BUG_ON(addr_to_vb_idx(addr) !=
931 addr_to_vb_idx(vb->va->va_start));
932 vb->free -= 1UL << order;
933 if (vb->free == 0) {
934 spin_lock(&vbq->lock);
935 list_del_rcu(&vb->free_list);
936 spin_unlock(&vbq->lock);
937 }
938 spin_unlock(&vb->lock);
939 break;
940 next:
941 spin_unlock(&vb->lock);
942 }
943
944 put_cpu_var(vmap_block_queue);
945 rcu_read_unlock();
946
947 if (!addr) {
948 vb = new_vmap_block(gfp_mask);
949 if (IS_ERR(vb))
950 return vb;
951 goto again;
952 }
953
954 return (void *)addr;
955 }
956
957 static void vb_free(const void *addr, unsigned long size)
958 {
959 unsigned long offset;
960 unsigned long vb_idx;
961 unsigned int order;
962 struct vmap_block *vb;
963
964 BUG_ON(size & ~PAGE_MASK);
965 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
966
967 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
968
969 order = get_order(size);
970
971 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
972
973 vb_idx = addr_to_vb_idx((unsigned long)addr);
974 rcu_read_lock();
975 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
976 rcu_read_unlock();
977 BUG_ON(!vb);
978
979 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
980
981 spin_lock(&vb->lock);
982 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
983
984 vb->dirty += 1UL << order;
985 if (vb->dirty == VMAP_BBMAP_BITS) {
986 BUG_ON(vb->free);
987 spin_unlock(&vb->lock);
988 free_vmap_block(vb);
989 } else
990 spin_unlock(&vb->lock);
991 }
992
993 /**
994 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
995 *
996 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
997 * to amortize TLB flushing overheads. What this means is that any page you
998 * have now, may, in a former life, have been mapped into kernel virtual
999 * address by the vmap layer and so there might be some CPUs with TLB entries
1000 * still referencing that page (additional to the regular 1:1 kernel mapping).
1001 *
1002 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1003 * be sure that none of the pages we have control over will have any aliases
1004 * from the vmap layer.
1005 */
1006 void vm_unmap_aliases(void)
1007 {
1008 unsigned long start = ULONG_MAX, end = 0;
1009 int cpu;
1010 int flush = 0;
1011
1012 if (unlikely(!vmap_initialized))
1013 return;
1014
1015 for_each_possible_cpu(cpu) {
1016 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1017 struct vmap_block *vb;
1018
1019 rcu_read_lock();
1020 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1021 int i;
1022
1023 spin_lock(&vb->lock);
1024 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1025 while (i < VMAP_BBMAP_BITS) {
1026 unsigned long s, e;
1027 int j;
1028 j = find_next_zero_bit(vb->dirty_map,
1029 VMAP_BBMAP_BITS, i);
1030
1031 s = vb->va->va_start + (i << PAGE_SHIFT);
1032 e = vb->va->va_start + (j << PAGE_SHIFT);
1033 flush = 1;
1034
1035 if (s < start)
1036 start = s;
1037 if (e > end)
1038 end = e;
1039
1040 i = j;
1041 i = find_next_bit(vb->dirty_map,
1042 VMAP_BBMAP_BITS, i);
1043 }
1044 spin_unlock(&vb->lock);
1045 }
1046 rcu_read_unlock();
1047 }
1048
1049 __purge_vmap_area_lazy(&start, &end, 1, flush);
1050 }
1051 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1052
1053 /**
1054 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1055 * @mem: the pointer returned by vm_map_ram
1056 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1057 */
1058 void vm_unmap_ram(const void *mem, unsigned int count)
1059 {
1060 unsigned long size = count << PAGE_SHIFT;
1061 unsigned long addr = (unsigned long)mem;
1062
1063 BUG_ON(!addr);
1064 BUG_ON(addr < VMALLOC_START);
1065 BUG_ON(addr > VMALLOC_END);
1066 BUG_ON(addr & (PAGE_SIZE-1));
1067
1068 debug_check_no_locks_freed(mem, size);
1069 vmap_debug_free_range(addr, addr+size);
1070
1071 if (likely(count <= VMAP_MAX_ALLOC))
1072 vb_free(mem, size);
1073 else
1074 free_unmap_vmap_area_addr(addr);
1075 }
1076 EXPORT_SYMBOL(vm_unmap_ram);
1077
1078 /**
1079 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1080 * @pages: an array of pointers to the pages to be mapped
1081 * @count: number of pages
1082 * @node: prefer to allocate data structures on this node
1083 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1084 *
1085 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1086 */
1087 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1088 {
1089 unsigned long size = count << PAGE_SHIFT;
1090 unsigned long addr;
1091 void *mem;
1092
1093 if (likely(count <= VMAP_MAX_ALLOC)) {
1094 mem = vb_alloc(size, GFP_KERNEL);
1095 if (IS_ERR(mem))
1096 return NULL;
1097 addr = (unsigned long)mem;
1098 } else {
1099 struct vmap_area *va;
1100 va = alloc_vmap_area(size, PAGE_SIZE,
1101 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1102 if (IS_ERR(va))
1103 return NULL;
1104
1105 addr = va->va_start;
1106 mem = (void *)addr;
1107 }
1108 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1109 vm_unmap_ram(mem, count);
1110 return NULL;
1111 }
1112 return mem;
1113 }
1114 EXPORT_SYMBOL(vm_map_ram);
1115
1116 static struct vm_struct *vmlist __initdata;
1117 /**
1118 * vm_area_add_early - add vmap area early during boot
1119 * @vm: vm_struct to add
1120 *
1121 * This function is used to add fixed kernel vm area to vmlist before
1122 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1123 * should contain proper values and the other fields should be zero.
1124 *
1125 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1126 */
1127 void __init vm_area_add_early(struct vm_struct *vm)
1128 {
1129 struct vm_struct *tmp, **p;
1130
1131 BUG_ON(vmap_initialized);
1132 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1133 if (tmp->addr >= vm->addr) {
1134 BUG_ON(tmp->addr < vm->addr + vm->size);
1135 break;
1136 } else
1137 BUG_ON(tmp->addr + tmp->size > vm->addr);
1138 }
1139 vm->next = *p;
1140 *p = vm;
1141 }
1142
1143 /**
1144 * vm_area_register_early - register vmap area early during boot
1145 * @vm: vm_struct to register
1146 * @align: requested alignment
1147 *
1148 * This function is used to register kernel vm area before
1149 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1150 * proper values on entry and other fields should be zero. On return,
1151 * vm->addr contains the allocated address.
1152 *
1153 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1154 */
1155 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1156 {
1157 static size_t vm_init_off __initdata;
1158 unsigned long addr;
1159
1160 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1161 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1162
1163 vm->addr = (void *)addr;
1164
1165 vm_area_add_early(vm);
1166 }
1167
1168 void __init vmalloc_init(void)
1169 {
1170 struct vmap_area *va;
1171 struct vm_struct *tmp;
1172 int i;
1173
1174 for_each_possible_cpu(i) {
1175 struct vmap_block_queue *vbq;
1176 struct vfree_deferred *p;
1177
1178 vbq = &per_cpu(vmap_block_queue, i);
1179 spin_lock_init(&vbq->lock);
1180 INIT_LIST_HEAD(&vbq->free);
1181 p = &per_cpu(vfree_deferred, i);
1182 init_llist_head(&p->list);
1183 INIT_WORK(&p->wq, free_work);
1184 }
1185
1186 /* Import existing vmlist entries. */
1187 for (tmp = vmlist; tmp; tmp = tmp->next) {
1188 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1189 va->flags = VM_VM_AREA;
1190 va->va_start = (unsigned long)tmp->addr;
1191 va->va_end = va->va_start + tmp->size;
1192 va->vm = tmp;
1193 __insert_vmap_area(va);
1194 }
1195
1196 vmap_area_pcpu_hole = VMALLOC_END;
1197
1198 vmap_initialized = true;
1199 }
1200
1201 /**
1202 * map_kernel_range_noflush - map kernel VM area with the specified pages
1203 * @addr: start of the VM area to map
1204 * @size: size of the VM area to map
1205 * @prot: page protection flags to use
1206 * @pages: pages to map
1207 *
1208 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1209 * specify should have been allocated using get_vm_area() and its
1210 * friends.
1211 *
1212 * NOTE:
1213 * This function does NOT do any cache flushing. The caller is
1214 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1215 * before calling this function.
1216 *
1217 * RETURNS:
1218 * The number of pages mapped on success, -errno on failure.
1219 */
1220 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1221 pgprot_t prot, struct page **pages)
1222 {
1223 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1224 }
1225
1226 /**
1227 * unmap_kernel_range_noflush - unmap kernel VM area
1228 * @addr: start of the VM area to unmap
1229 * @size: size of the VM area to unmap
1230 *
1231 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1232 * specify should have been allocated using get_vm_area() and its
1233 * friends.
1234 *
1235 * NOTE:
1236 * This function does NOT do any cache flushing. The caller is
1237 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1238 * before calling this function and flush_tlb_kernel_range() after.
1239 */
1240 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1241 {
1242 vunmap_page_range(addr, addr + size);
1243 }
1244 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1245
1246 /**
1247 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1248 * @addr: start of the VM area to unmap
1249 * @size: size of the VM area to unmap
1250 *
1251 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1252 * the unmapping and tlb after.
1253 */
1254 void unmap_kernel_range(unsigned long addr, unsigned long size)
1255 {
1256 unsigned long end = addr + size;
1257
1258 flush_cache_vunmap(addr, end);
1259 vunmap_page_range(addr, end);
1260 flush_tlb_kernel_range(addr, end);
1261 }
1262
1263 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1264 {
1265 unsigned long addr = (unsigned long)area->addr;
1266 unsigned long end = addr + area->size - PAGE_SIZE;
1267 int err;
1268
1269 err = vmap_page_range(addr, end, prot, *pages);
1270 if (err > 0) {
1271 *pages += err;
1272 err = 0;
1273 }
1274
1275 return err;
1276 }
1277 EXPORT_SYMBOL_GPL(map_vm_area);
1278
1279 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1280 unsigned long flags, const void *caller)
1281 {
1282 spin_lock(&vmap_area_lock);
1283 vm->flags = flags;
1284 vm->addr = (void *)va->va_start;
1285 vm->size = va->va_end - va->va_start;
1286 vm->caller = caller;
1287 va->vm = vm;
1288 va->flags |= VM_VM_AREA;
1289 spin_unlock(&vmap_area_lock);
1290 }
1291
1292 static void clear_vm_unlist(struct vm_struct *vm)
1293 {
1294 /*
1295 * Before removing VM_UNLIST,
1296 * we should make sure that vm has proper values.
1297 * Pair with smp_rmb() in show_numa_info().
1298 */
1299 smp_wmb();
1300 vm->flags &= ~VM_UNLIST;
1301 }
1302
1303 static struct vm_struct *__get_vm_area_node(unsigned long size,
1304 unsigned long align, unsigned long flags, unsigned long start,
1305 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1306 {
1307 struct vmap_area *va;
1308 struct vm_struct *area;
1309
1310 BUG_ON(in_interrupt());
1311 if (flags & VM_IOREMAP)
1312 align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER);
1313
1314 size = PAGE_ALIGN(size);
1315 if (unlikely(!size))
1316 return NULL;
1317
1318 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1319 if (unlikely(!area))
1320 return NULL;
1321
1322 /*
1323 * We always allocate a guard page.
1324 */
1325 size += PAGE_SIZE;
1326
1327 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1328 if (IS_ERR(va)) {
1329 kfree(area);
1330 return NULL;
1331 }
1332
1333 setup_vmalloc_vm(area, va, flags, caller);
1334
1335 return area;
1336 }
1337
1338 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1339 unsigned long start, unsigned long end)
1340 {
1341 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1342 GFP_KERNEL, __builtin_return_address(0));
1343 }
1344 EXPORT_SYMBOL_GPL(__get_vm_area);
1345
1346 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1347 unsigned long start, unsigned long end,
1348 const void *caller)
1349 {
1350 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1351 GFP_KERNEL, caller);
1352 }
1353
1354 /**
1355 * get_vm_area - reserve a contiguous kernel virtual area
1356 * @size: size of the area
1357 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1358 *
1359 * Search an area of @size in the kernel virtual mapping area,
1360 * and reserved it for out purposes. Returns the area descriptor
1361 * on success or %NULL on failure.
1362 */
1363 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1364 {
1365 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1366 NUMA_NO_NODE, GFP_KERNEL,
1367 __builtin_return_address(0));
1368 }
1369
1370 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1371 const void *caller)
1372 {
1373 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1374 NUMA_NO_NODE, GFP_KERNEL, caller);
1375 }
1376
1377 /**
1378 * find_vm_area - find a continuous kernel virtual area
1379 * @addr: base address
1380 *
1381 * Search for the kernel VM area starting at @addr, and return it.
1382 * It is up to the caller to do all required locking to keep the returned
1383 * pointer valid.
1384 */
1385 struct vm_struct *find_vm_area(const void *addr)
1386 {
1387 struct vmap_area *va;
1388
1389 va = find_vmap_area((unsigned long)addr);
1390 if (va && va->flags & VM_VM_AREA)
1391 return va->vm;
1392
1393 return NULL;
1394 }
1395
1396 /**
1397 * remove_vm_area - find and remove a continuous kernel virtual area
1398 * @addr: base address
1399 *
1400 * Search for the kernel VM area starting at @addr, and remove it.
1401 * This function returns the found VM area, but using it is NOT safe
1402 * on SMP machines, except for its size or flags.
1403 */
1404 struct vm_struct *remove_vm_area(const void *addr)
1405 {
1406 struct vmap_area *va;
1407
1408 va = find_vmap_area((unsigned long)addr);
1409 if (va && va->flags & VM_VM_AREA) {
1410 struct vm_struct *vm = va->vm;
1411
1412 spin_lock(&vmap_area_lock);
1413 va->vm = NULL;
1414 va->flags &= ~VM_VM_AREA;
1415 spin_unlock(&vmap_area_lock);
1416
1417 vmap_debug_free_range(va->va_start, va->va_end);
1418 free_unmap_vmap_area(va);
1419 vm->size -= PAGE_SIZE;
1420
1421 return vm;
1422 }
1423 return NULL;
1424 }
1425
1426 static void __vunmap(const void *addr, int deallocate_pages)
1427 {
1428 struct vm_struct *area;
1429
1430 if (!addr)
1431 return;
1432
1433 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1434 addr))
1435 return;
1436
1437 area = remove_vm_area(addr);
1438 if (unlikely(!area)) {
1439 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1440 addr);
1441 return;
1442 }
1443
1444 debug_check_no_locks_freed(addr, area->size);
1445 debug_check_no_obj_freed(addr, area->size);
1446
1447 if (deallocate_pages) {
1448 int i;
1449
1450 for (i = 0; i < area->nr_pages; i++) {
1451 struct page *page = area->pages[i];
1452
1453 BUG_ON(!page);
1454 __free_page(page);
1455 }
1456
1457 if (area->flags & VM_VPAGES)
1458 vfree(area->pages);
1459 else
1460 kfree(area->pages);
1461 }
1462
1463 kfree(area);
1464 return;
1465 }
1466
1467 /**
1468 * vfree - release memory allocated by vmalloc()
1469 * @addr: memory base address
1470 *
1471 * Free the virtually continuous memory area starting at @addr, as
1472 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1473 * NULL, no operation is performed.
1474 *
1475 * Must not be called in NMI context (strictly speaking, only if we don't
1476 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1477 * conventions for vfree() arch-depenedent would be a really bad idea)
1478 *
1479 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1480 *
1481 */
1482 void vfree(const void *addr)
1483 {
1484 BUG_ON(in_nmi());
1485
1486 kmemleak_free(addr);
1487
1488 if (!addr)
1489 return;
1490 if (unlikely(in_interrupt())) {
1491 struct vfree_deferred *p = &__get_cpu_var(vfree_deferred);
1492 llist_add((struct llist_node *)addr, &p->list);
1493 schedule_work(&p->wq);
1494 } else
1495 __vunmap(addr, 1);
1496 }
1497 EXPORT_SYMBOL(vfree);
1498
1499 /**
1500 * vunmap - release virtual mapping obtained by vmap()
1501 * @addr: memory base address
1502 *
1503 * Free the virtually contiguous memory area starting at @addr,
1504 * which was created from the page array passed to vmap().
1505 *
1506 * Must not be called in interrupt context.
1507 */
1508 void vunmap(const void *addr)
1509 {
1510 BUG_ON(in_interrupt());
1511 might_sleep();
1512 if (addr)
1513 __vunmap(addr, 0);
1514 }
1515 EXPORT_SYMBOL(vunmap);
1516
1517 /**
1518 * vmap - map an array of pages into virtually contiguous space
1519 * @pages: array of page pointers
1520 * @count: number of pages to map
1521 * @flags: vm_area->flags
1522 * @prot: page protection for the mapping
1523 *
1524 * Maps @count pages from @pages into contiguous kernel virtual
1525 * space.
1526 */
1527 void *vmap(struct page **pages, unsigned int count,
1528 unsigned long flags, pgprot_t prot)
1529 {
1530 struct vm_struct *area;
1531
1532 might_sleep();
1533
1534 if (count > totalram_pages)
1535 return NULL;
1536
1537 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1538 __builtin_return_address(0));
1539 if (!area)
1540 return NULL;
1541
1542 if (map_vm_area(area, prot, &pages)) {
1543 vunmap(area->addr);
1544 return NULL;
1545 }
1546
1547 return area->addr;
1548 }
1549 EXPORT_SYMBOL(vmap);
1550
1551 static void *__vmalloc_node(unsigned long size, unsigned long align,
1552 gfp_t gfp_mask, pgprot_t prot,
1553 int node, const void *caller);
1554 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1555 pgprot_t prot, int node, const void *caller)
1556 {
1557 const int order = 0;
1558 struct page **pages;
1559 unsigned int nr_pages, array_size, i;
1560 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1561
1562 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1563 array_size = (nr_pages * sizeof(struct page *));
1564
1565 area->nr_pages = nr_pages;
1566 /* Please note that the recursion is strictly bounded. */
1567 if (array_size > PAGE_SIZE) {
1568 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1569 PAGE_KERNEL, node, caller);
1570 area->flags |= VM_VPAGES;
1571 } else {
1572 pages = kmalloc_node(array_size, nested_gfp, node);
1573 }
1574 area->pages = pages;
1575 area->caller = caller;
1576 if (!area->pages) {
1577 remove_vm_area(area->addr);
1578 kfree(area);
1579 return NULL;
1580 }
1581
1582 for (i = 0; i < area->nr_pages; i++) {
1583 struct page *page;
1584 gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
1585
1586 if (node < 0)
1587 page = alloc_page(tmp_mask);
1588 else
1589 page = alloc_pages_node(node, tmp_mask, order);
1590
1591 if (unlikely(!page)) {
1592 /* Successfully allocated i pages, free them in __vunmap() */
1593 area->nr_pages = i;
1594 goto fail;
1595 }
1596 area->pages[i] = page;
1597 }
1598
1599 if (map_vm_area(area, prot, &pages))
1600 goto fail;
1601 return area->addr;
1602
1603 fail:
1604 warn_alloc_failed(gfp_mask, order,
1605 "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1606 (area->nr_pages*PAGE_SIZE), area->size);
1607 vfree(area->addr);
1608 return NULL;
1609 }
1610
1611 /**
1612 * __vmalloc_node_range - allocate virtually contiguous memory
1613 * @size: allocation size
1614 * @align: desired alignment
1615 * @start: vm area range start
1616 * @end: vm area range end
1617 * @gfp_mask: flags for the page level allocator
1618 * @prot: protection mask for the allocated pages
1619 * @node: node to use for allocation or NUMA_NO_NODE
1620 * @caller: caller's return address
1621 *
1622 * Allocate enough pages to cover @size from the page level
1623 * allocator with @gfp_mask flags. Map them into contiguous
1624 * kernel virtual space, using a pagetable protection of @prot.
1625 */
1626 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1627 unsigned long start, unsigned long end, gfp_t gfp_mask,
1628 pgprot_t prot, int node, const void *caller)
1629 {
1630 struct vm_struct *area;
1631 void *addr;
1632 unsigned long real_size = size;
1633
1634 size = PAGE_ALIGN(size);
1635 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1636 goto fail;
1637
1638 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNLIST,
1639 start, end, node, gfp_mask, caller);
1640 if (!area)
1641 goto fail;
1642
1643 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1644 if (!addr)
1645 return NULL;
1646
1647 /*
1648 * In this function, newly allocated vm_struct has VM_UNLIST flag.
1649 * It means that vm_struct is not fully initialized.
1650 * Now, it is fully initialized, so remove this flag here.
1651 */
1652 clear_vm_unlist(area);
1653
1654 /*
1655 * A ref_count = 3 is needed because the vm_struct and vmap_area
1656 * structures allocated in the __get_vm_area_node() function contain
1657 * references to the virtual address of the vmalloc'ed block.
1658 */
1659 kmemleak_alloc(addr, real_size, 3, gfp_mask);
1660
1661 return addr;
1662
1663 fail:
1664 warn_alloc_failed(gfp_mask, 0,
1665 "vmalloc: allocation failure: %lu bytes\n",
1666 real_size);
1667 return NULL;
1668 }
1669
1670 /**
1671 * __vmalloc_node - allocate virtually contiguous memory
1672 * @size: allocation size
1673 * @align: desired alignment
1674 * @gfp_mask: flags for the page level allocator
1675 * @prot: protection mask for the allocated pages
1676 * @node: node to use for allocation or NUMA_NO_NODE
1677 * @caller: caller's return address
1678 *
1679 * Allocate enough pages to cover @size from the page level
1680 * allocator with @gfp_mask flags. Map them into contiguous
1681 * kernel virtual space, using a pagetable protection of @prot.
1682 */
1683 static void *__vmalloc_node(unsigned long size, unsigned long align,
1684 gfp_t gfp_mask, pgprot_t prot,
1685 int node, const void *caller)
1686 {
1687 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1688 gfp_mask, prot, node, caller);
1689 }
1690
1691 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1692 {
1693 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1694 __builtin_return_address(0));
1695 }
1696 EXPORT_SYMBOL(__vmalloc);
1697
1698 static inline void *__vmalloc_node_flags(unsigned long size,
1699 int node, gfp_t flags)
1700 {
1701 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1702 node, __builtin_return_address(0));
1703 }
1704
1705 /**
1706 * vmalloc - allocate virtually contiguous memory
1707 * @size: allocation size
1708 * Allocate enough pages to cover @size from the page level
1709 * allocator and map them into contiguous kernel virtual space.
1710 *
1711 * For tight control over page level allocator and protection flags
1712 * use __vmalloc() instead.
1713 */
1714 void *vmalloc(unsigned long size)
1715 {
1716 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1717 GFP_KERNEL | __GFP_HIGHMEM);
1718 }
1719 EXPORT_SYMBOL(vmalloc);
1720
1721 /**
1722 * vzalloc - allocate virtually contiguous memory with zero fill
1723 * @size: allocation size
1724 * Allocate enough pages to cover @size from the page level
1725 * allocator and map them into contiguous kernel virtual space.
1726 * The memory allocated is set to zero.
1727 *
1728 * For tight control over page level allocator and protection flags
1729 * use __vmalloc() instead.
1730 */
1731 void *vzalloc(unsigned long size)
1732 {
1733 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1734 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1735 }
1736 EXPORT_SYMBOL(vzalloc);
1737
1738 /**
1739 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1740 * @size: allocation size
1741 *
1742 * The resulting memory area is zeroed so it can be mapped to userspace
1743 * without leaking data.
1744 */
1745 void *vmalloc_user(unsigned long size)
1746 {
1747 struct vm_struct *area;
1748 void *ret;
1749
1750 ret = __vmalloc_node(size, SHMLBA,
1751 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1752 PAGE_KERNEL, NUMA_NO_NODE,
1753 __builtin_return_address(0));
1754 if (ret) {
1755 area = find_vm_area(ret);
1756 area->flags |= VM_USERMAP;
1757 }
1758 return ret;
1759 }
1760 EXPORT_SYMBOL(vmalloc_user);
1761
1762 /**
1763 * vmalloc_node - allocate memory on a specific node
1764 * @size: allocation size
1765 * @node: numa node
1766 *
1767 * Allocate enough pages to cover @size from the page level
1768 * allocator and map them into contiguous kernel virtual space.
1769 *
1770 * For tight control over page level allocator and protection flags
1771 * use __vmalloc() instead.
1772 */
1773 void *vmalloc_node(unsigned long size, int node)
1774 {
1775 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1776 node, __builtin_return_address(0));
1777 }
1778 EXPORT_SYMBOL(vmalloc_node);
1779
1780 /**
1781 * vzalloc_node - allocate memory on a specific node with zero fill
1782 * @size: allocation size
1783 * @node: numa node
1784 *
1785 * Allocate enough pages to cover @size from the page level
1786 * allocator and map them into contiguous kernel virtual space.
1787 * The memory allocated is set to zero.
1788 *
1789 * For tight control over page level allocator and protection flags
1790 * use __vmalloc_node() instead.
1791 */
1792 void *vzalloc_node(unsigned long size, int node)
1793 {
1794 return __vmalloc_node_flags(size, node,
1795 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1796 }
1797 EXPORT_SYMBOL(vzalloc_node);
1798
1799 #ifndef PAGE_KERNEL_EXEC
1800 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1801 #endif
1802
1803 /**
1804 * vmalloc_exec - allocate virtually contiguous, executable memory
1805 * @size: allocation size
1806 *
1807 * Kernel-internal function to allocate enough pages to cover @size
1808 * the page level allocator and map them into contiguous and
1809 * executable kernel virtual space.
1810 *
1811 * For tight control over page level allocator and protection flags
1812 * use __vmalloc() instead.
1813 */
1814
1815 void *vmalloc_exec(unsigned long size)
1816 {
1817 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1818 NUMA_NO_NODE, __builtin_return_address(0));
1819 }
1820
1821 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1822 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1823 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1824 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1825 #else
1826 #define GFP_VMALLOC32 GFP_KERNEL
1827 #endif
1828
1829 /**
1830 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1831 * @size: allocation size
1832 *
1833 * Allocate enough 32bit PA addressable pages to cover @size from the
1834 * page level allocator and map them into contiguous kernel virtual space.
1835 */
1836 void *vmalloc_32(unsigned long size)
1837 {
1838 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1839 NUMA_NO_NODE, __builtin_return_address(0));
1840 }
1841 EXPORT_SYMBOL(vmalloc_32);
1842
1843 /**
1844 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1845 * @size: allocation size
1846 *
1847 * The resulting memory area is 32bit addressable and zeroed so it can be
1848 * mapped to userspace without leaking data.
1849 */
1850 void *vmalloc_32_user(unsigned long size)
1851 {
1852 struct vm_struct *area;
1853 void *ret;
1854
1855 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1856 NUMA_NO_NODE, __builtin_return_address(0));
1857 if (ret) {
1858 area = find_vm_area(ret);
1859 area->flags |= VM_USERMAP;
1860 }
1861 return ret;
1862 }
1863 EXPORT_SYMBOL(vmalloc_32_user);
1864
1865 /*
1866 * small helper routine , copy contents to buf from addr.
1867 * If the page is not present, fill zero.
1868 */
1869
1870 static int aligned_vread(char *buf, char *addr, unsigned long count)
1871 {
1872 struct page *p;
1873 int copied = 0;
1874
1875 while (count) {
1876 unsigned long offset, length;
1877
1878 offset = (unsigned long)addr & ~PAGE_MASK;
1879 length = PAGE_SIZE - offset;
1880 if (length > count)
1881 length = count;
1882 p = vmalloc_to_page(addr);
1883 /*
1884 * To do safe access to this _mapped_ area, we need
1885 * lock. But adding lock here means that we need to add
1886 * overhead of vmalloc()/vfree() calles for this _debug_
1887 * interface, rarely used. Instead of that, we'll use
1888 * kmap() and get small overhead in this access function.
1889 */
1890 if (p) {
1891 /*
1892 * we can expect USER0 is not used (see vread/vwrite's
1893 * function description)
1894 */
1895 void *map = kmap_atomic(p);
1896 memcpy(buf, map + offset, length);
1897 kunmap_atomic(map);
1898 } else
1899 memset(buf, 0, length);
1900
1901 addr += length;
1902 buf += length;
1903 copied += length;
1904 count -= length;
1905 }
1906 return copied;
1907 }
1908
1909 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1910 {
1911 struct page *p;
1912 int copied = 0;
1913
1914 while (count) {
1915 unsigned long offset, length;
1916
1917 offset = (unsigned long)addr & ~PAGE_MASK;
1918 length = PAGE_SIZE - offset;
1919 if (length > count)
1920 length = count;
1921 p = vmalloc_to_page(addr);
1922 /*
1923 * To do safe access to this _mapped_ area, we need
1924 * lock. But adding lock here means that we need to add
1925 * overhead of vmalloc()/vfree() calles for this _debug_
1926 * interface, rarely used. Instead of that, we'll use
1927 * kmap() and get small overhead in this access function.
1928 */
1929 if (p) {
1930 /*
1931 * we can expect USER0 is not used (see vread/vwrite's
1932 * function description)
1933 */
1934 void *map = kmap_atomic(p);
1935 memcpy(map + offset, buf, length);
1936 kunmap_atomic(map);
1937 }
1938 addr += length;
1939 buf += length;
1940 copied += length;
1941 count -= length;
1942 }
1943 return copied;
1944 }
1945
1946 /**
1947 * vread() - read vmalloc area in a safe way.
1948 * @buf: buffer for reading data
1949 * @addr: vm address.
1950 * @count: number of bytes to be read.
1951 *
1952 * Returns # of bytes which addr and buf should be increased.
1953 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1954 * includes any intersect with alive vmalloc area.
1955 *
1956 * This function checks that addr is a valid vmalloc'ed area, and
1957 * copy data from that area to a given buffer. If the given memory range
1958 * of [addr...addr+count) includes some valid address, data is copied to
1959 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1960 * IOREMAP area is treated as memory hole and no copy is done.
1961 *
1962 * If [addr...addr+count) doesn't includes any intersects with alive
1963 * vm_struct area, returns 0. @buf should be kernel's buffer.
1964 *
1965 * Note: In usual ops, vread() is never necessary because the caller
1966 * should know vmalloc() area is valid and can use memcpy().
1967 * This is for routines which have to access vmalloc area without
1968 * any informaion, as /dev/kmem.
1969 *
1970 */
1971
1972 long vread(char *buf, char *addr, unsigned long count)
1973 {
1974 struct vmap_area *va;
1975 struct vm_struct *vm;
1976 char *vaddr, *buf_start = buf;
1977 unsigned long buflen = count;
1978 unsigned long n;
1979
1980 /* Don't allow overflow */
1981 if ((unsigned long) addr + count < count)
1982 count = -(unsigned long) addr;
1983
1984 spin_lock(&vmap_area_lock);
1985 list_for_each_entry(va, &vmap_area_list, list) {
1986 if (!count)
1987 break;
1988
1989 if (!(va->flags & VM_VM_AREA))
1990 continue;
1991
1992 vm = va->vm;
1993 vaddr = (char *) vm->addr;
1994 if (addr >= vaddr + vm->size - PAGE_SIZE)
1995 continue;
1996 while (addr < vaddr) {
1997 if (count == 0)
1998 goto finished;
1999 *buf = '\0';
2000 buf++;
2001 addr++;
2002 count--;
2003 }
2004 n = vaddr + vm->size - PAGE_SIZE - addr;
2005 if (n > count)
2006 n = count;
2007 if (!(vm->flags & VM_IOREMAP))
2008 aligned_vread(buf, addr, n);
2009 else /* IOREMAP area is treated as memory hole */
2010 memset(buf, 0, n);
2011 buf += n;
2012 addr += n;
2013 count -= n;
2014 }
2015 finished:
2016 spin_unlock(&vmap_area_lock);
2017
2018 if (buf == buf_start)
2019 return 0;
2020 /* zero-fill memory holes */
2021 if (buf != buf_start + buflen)
2022 memset(buf, 0, buflen - (buf - buf_start));
2023
2024 return buflen;
2025 }
2026
2027 /**
2028 * vwrite() - write vmalloc area in a safe way.
2029 * @buf: buffer for source data
2030 * @addr: vm address.
2031 * @count: number of bytes to be read.
2032 *
2033 * Returns # of bytes which addr and buf should be incresed.
2034 * (same number to @count).
2035 * If [addr...addr+count) doesn't includes any intersect with valid
2036 * vmalloc area, returns 0.
2037 *
2038 * This function checks that addr is a valid vmalloc'ed area, and
2039 * copy data from a buffer to the given addr. If specified range of
2040 * [addr...addr+count) includes some valid address, data is copied from
2041 * proper area of @buf. If there are memory holes, no copy to hole.
2042 * IOREMAP area is treated as memory hole and no copy is done.
2043 *
2044 * If [addr...addr+count) doesn't includes any intersects with alive
2045 * vm_struct area, returns 0. @buf should be kernel's buffer.
2046 *
2047 * Note: In usual ops, vwrite() is never necessary because the caller
2048 * should know vmalloc() area is valid and can use memcpy().
2049 * This is for routines which have to access vmalloc area without
2050 * any informaion, as /dev/kmem.
2051 */
2052
2053 long vwrite(char *buf, char *addr, unsigned long count)
2054 {
2055 struct vmap_area *va;
2056 struct vm_struct *vm;
2057 char *vaddr;
2058 unsigned long n, buflen;
2059 int copied = 0;
2060
2061 /* Don't allow overflow */
2062 if ((unsigned long) addr + count < count)
2063 count = -(unsigned long) addr;
2064 buflen = count;
2065
2066 spin_lock(&vmap_area_lock);
2067 list_for_each_entry(va, &vmap_area_list, list) {
2068 if (!count)
2069 break;
2070
2071 if (!(va->flags & VM_VM_AREA))
2072 continue;
2073
2074 vm = va->vm;
2075 vaddr = (char *) vm->addr;
2076 if (addr >= vaddr + vm->size - PAGE_SIZE)
2077 continue;
2078 while (addr < vaddr) {
2079 if (count == 0)
2080 goto finished;
2081 buf++;
2082 addr++;
2083 count--;
2084 }
2085 n = vaddr + vm->size - PAGE_SIZE - addr;
2086 if (n > count)
2087 n = count;
2088 if (!(vm->flags & VM_IOREMAP)) {
2089 aligned_vwrite(buf, addr, n);
2090 copied++;
2091 }
2092 buf += n;
2093 addr += n;
2094 count -= n;
2095 }
2096 finished:
2097 spin_unlock(&vmap_area_lock);
2098 if (!copied)
2099 return 0;
2100 return buflen;
2101 }
2102
2103 /**
2104 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2105 * @vma: vma to cover
2106 * @uaddr: target user address to start at
2107 * @kaddr: virtual address of vmalloc kernel memory
2108 * @size: size of map area
2109 *
2110 * Returns: 0 for success, -Exxx on failure
2111 *
2112 * This function checks that @kaddr is a valid vmalloc'ed area,
2113 * and that it is big enough to cover the range starting at
2114 * @uaddr in @vma. Will return failure if that criteria isn't
2115 * met.
2116 *
2117 * Similar to remap_pfn_range() (see mm/memory.c)
2118 */
2119 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2120 void *kaddr, unsigned long size)
2121 {
2122 struct vm_struct *area;
2123
2124 size = PAGE_ALIGN(size);
2125
2126 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2127 return -EINVAL;
2128
2129 area = find_vm_area(kaddr);
2130 if (!area)
2131 return -EINVAL;
2132
2133 if (!(area->flags & VM_USERMAP))
2134 return -EINVAL;
2135
2136 if (kaddr + size > area->addr + area->size)
2137 return -EINVAL;
2138
2139 do {
2140 struct page *page = vmalloc_to_page(kaddr);
2141 int ret;
2142
2143 ret = vm_insert_page(vma, uaddr, page);
2144 if (ret)
2145 return ret;
2146
2147 uaddr += PAGE_SIZE;
2148 kaddr += PAGE_SIZE;
2149 size -= PAGE_SIZE;
2150 } while (size > 0);
2151
2152 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2153
2154 return 0;
2155 }
2156 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2157
2158 /**
2159 * remap_vmalloc_range - map vmalloc pages to userspace
2160 * @vma: vma to cover (map full range of vma)
2161 * @addr: vmalloc memory
2162 * @pgoff: number of pages into addr before first page to map
2163 *
2164 * Returns: 0 for success, -Exxx on failure
2165 *
2166 * This function checks that addr is a valid vmalloc'ed area, and
2167 * that it is big enough to cover the vma. Will return failure if
2168 * that criteria isn't met.
2169 *
2170 * Similar to remap_pfn_range() (see mm/memory.c)
2171 */
2172 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2173 unsigned long pgoff)
2174 {
2175 return remap_vmalloc_range_partial(vma, vma->vm_start,
2176 addr + (pgoff << PAGE_SHIFT),
2177 vma->vm_end - vma->vm_start);
2178 }
2179 EXPORT_SYMBOL(remap_vmalloc_range);
2180
2181 /*
2182 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2183 * have one.
2184 */
2185 void __attribute__((weak)) vmalloc_sync_all(void)
2186 {
2187 }
2188
2189
2190 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2191 {
2192 pte_t ***p = data;
2193
2194 if (p) {
2195 *(*p) = pte;
2196 (*p)++;
2197 }
2198 return 0;
2199 }
2200
2201 /**
2202 * alloc_vm_area - allocate a range of kernel address space
2203 * @size: size of the area
2204 * @ptes: returns the PTEs for the address space
2205 *
2206 * Returns: NULL on failure, vm_struct on success
2207 *
2208 * This function reserves a range of kernel address space, and
2209 * allocates pagetables to map that range. No actual mappings
2210 * are created.
2211 *
2212 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2213 * allocated for the VM area are returned.
2214 */
2215 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2216 {
2217 struct vm_struct *area;
2218
2219 area = get_vm_area_caller(size, VM_IOREMAP,
2220 __builtin_return_address(0));
2221 if (area == NULL)
2222 return NULL;
2223
2224 /*
2225 * This ensures that page tables are constructed for this region
2226 * of kernel virtual address space and mapped into init_mm.
2227 */
2228 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2229 size, f, ptes ? &ptes : NULL)) {
2230 free_vm_area(area);
2231 return NULL;
2232 }
2233
2234 return area;
2235 }
2236 EXPORT_SYMBOL_GPL(alloc_vm_area);
2237
2238 void free_vm_area(struct vm_struct *area)
2239 {
2240 struct vm_struct *ret;
2241 ret = remove_vm_area(area->addr);
2242 BUG_ON(ret != area);
2243 kfree(area);
2244 }
2245 EXPORT_SYMBOL_GPL(free_vm_area);
2246
2247 #ifdef CONFIG_SMP
2248 static struct vmap_area *node_to_va(struct rb_node *n)
2249 {
2250 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2251 }
2252
2253 /**
2254 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2255 * @end: target address
2256 * @pnext: out arg for the next vmap_area
2257 * @pprev: out arg for the previous vmap_area
2258 *
2259 * Returns: %true if either or both of next and prev are found,
2260 * %false if no vmap_area exists
2261 *
2262 * Find vmap_areas end addresses of which enclose @end. ie. if not
2263 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2264 */
2265 static bool pvm_find_next_prev(unsigned long end,
2266 struct vmap_area **pnext,
2267 struct vmap_area **pprev)
2268 {
2269 struct rb_node *n = vmap_area_root.rb_node;
2270 struct vmap_area *va = NULL;
2271
2272 while (n) {
2273 va = rb_entry(n, struct vmap_area, rb_node);
2274 if (end < va->va_end)
2275 n = n->rb_left;
2276 else if (end > va->va_end)
2277 n = n->rb_right;
2278 else
2279 break;
2280 }
2281
2282 if (!va)
2283 return false;
2284
2285 if (va->va_end > end) {
2286 *pnext = va;
2287 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2288 } else {
2289 *pprev = va;
2290 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2291 }
2292 return true;
2293 }
2294
2295 /**
2296 * pvm_determine_end - find the highest aligned address between two vmap_areas
2297 * @pnext: in/out arg for the next vmap_area
2298 * @pprev: in/out arg for the previous vmap_area
2299 * @align: alignment
2300 *
2301 * Returns: determined end address
2302 *
2303 * Find the highest aligned address between *@pnext and *@pprev below
2304 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2305 * down address is between the end addresses of the two vmap_areas.
2306 *
2307 * Please note that the address returned by this function may fall
2308 * inside *@pnext vmap_area. The caller is responsible for checking
2309 * that.
2310 */
2311 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2312 struct vmap_area **pprev,
2313 unsigned long align)
2314 {
2315 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2316 unsigned long addr;
2317
2318 if (*pnext)
2319 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2320 else
2321 addr = vmalloc_end;
2322
2323 while (*pprev && (*pprev)->va_end > addr) {
2324 *pnext = *pprev;
2325 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2326 }
2327
2328 return addr;
2329 }
2330
2331 /**
2332 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2333 * @offsets: array containing offset of each area
2334 * @sizes: array containing size of each area
2335 * @nr_vms: the number of areas to allocate
2336 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2337 *
2338 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2339 * vm_structs on success, %NULL on failure
2340 *
2341 * Percpu allocator wants to use congruent vm areas so that it can
2342 * maintain the offsets among percpu areas. This function allocates
2343 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2344 * be scattered pretty far, distance between two areas easily going up
2345 * to gigabytes. To avoid interacting with regular vmallocs, these
2346 * areas are allocated from top.
2347 *
2348 * Despite its complicated look, this allocator is rather simple. It
2349 * does everything top-down and scans areas from the end looking for
2350 * matching slot. While scanning, if any of the areas overlaps with
2351 * existing vmap_area, the base address is pulled down to fit the
2352 * area. Scanning is repeated till all the areas fit and then all
2353 * necessary data structres are inserted and the result is returned.
2354 */
2355 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2356 const size_t *sizes, int nr_vms,
2357 size_t align)
2358 {
2359 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2360 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2361 struct vmap_area **vas, *prev, *next;
2362 struct vm_struct **vms;
2363 int area, area2, last_area, term_area;
2364 unsigned long base, start, end, last_end;
2365 bool purged = false;
2366
2367 /* verify parameters and allocate data structures */
2368 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2369 for (last_area = 0, area = 0; area < nr_vms; area++) {
2370 start = offsets[area];
2371 end = start + sizes[area];
2372
2373 /* is everything aligned properly? */
2374 BUG_ON(!IS_ALIGNED(offsets[area], align));
2375 BUG_ON(!IS_ALIGNED(sizes[area], align));
2376
2377 /* detect the area with the highest address */
2378 if (start > offsets[last_area])
2379 last_area = area;
2380
2381 for (area2 = 0; area2 < nr_vms; area2++) {
2382 unsigned long start2 = offsets[area2];
2383 unsigned long end2 = start2 + sizes[area2];
2384
2385 if (area2 == area)
2386 continue;
2387
2388 BUG_ON(start2 >= start && start2 < end);
2389 BUG_ON(end2 <= end && end2 > start);
2390 }
2391 }
2392 last_end = offsets[last_area] + sizes[last_area];
2393
2394 if (vmalloc_end - vmalloc_start < last_end) {
2395 WARN_ON(true);
2396 return NULL;
2397 }
2398
2399 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2400 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2401 if (!vas || !vms)
2402 goto err_free2;
2403
2404 for (area = 0; area < nr_vms; area++) {
2405 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2406 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2407 if (!vas[area] || !vms[area])
2408 goto err_free;
2409 }
2410 retry:
2411 spin_lock(&vmap_area_lock);
2412
2413 /* start scanning - we scan from the top, begin with the last area */
2414 area = term_area = last_area;
2415 start = offsets[area];
2416 end = start + sizes[area];
2417
2418 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2419 base = vmalloc_end - last_end;
2420 goto found;
2421 }
2422 base = pvm_determine_end(&next, &prev, align) - end;
2423
2424 while (true) {
2425 BUG_ON(next && next->va_end <= base + end);
2426 BUG_ON(prev && prev->va_end > base + end);
2427
2428 /*
2429 * base might have underflowed, add last_end before
2430 * comparing.
2431 */
2432 if (base + last_end < vmalloc_start + last_end) {
2433 spin_unlock(&vmap_area_lock);
2434 if (!purged) {
2435 purge_vmap_area_lazy();
2436 purged = true;
2437 goto retry;
2438 }
2439 goto err_free;
2440 }
2441
2442 /*
2443 * If next overlaps, move base downwards so that it's
2444 * right below next and then recheck.
2445 */
2446 if (next && next->va_start < base + end) {
2447 base = pvm_determine_end(&next, &prev, align) - end;
2448 term_area = area;
2449 continue;
2450 }
2451
2452 /*
2453 * If prev overlaps, shift down next and prev and move
2454 * base so that it's right below new next and then
2455 * recheck.
2456 */
2457 if (prev && prev->va_end > base + start) {
2458 next = prev;
2459 prev = node_to_va(rb_prev(&next->rb_node));
2460 base = pvm_determine_end(&next, &prev, align) - end;
2461 term_area = area;
2462 continue;
2463 }
2464
2465 /*
2466 * This area fits, move on to the previous one. If
2467 * the previous one is the terminal one, we're done.
2468 */
2469 area = (area + nr_vms - 1) % nr_vms;
2470 if (area == term_area)
2471 break;
2472 start = offsets[area];
2473 end = start + sizes[area];
2474 pvm_find_next_prev(base + end, &next, &prev);
2475 }
2476 found:
2477 /* we've found a fitting base, insert all va's */
2478 for (area = 0; area < nr_vms; area++) {
2479 struct vmap_area *va = vas[area];
2480
2481 va->va_start = base + offsets[area];
2482 va->va_end = va->va_start + sizes[area];
2483 __insert_vmap_area(va);
2484 }
2485
2486 vmap_area_pcpu_hole = base + offsets[last_area];
2487
2488 spin_unlock(&vmap_area_lock);
2489
2490 /* insert all vm's */
2491 for (area = 0; area < nr_vms; area++)
2492 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2493 pcpu_get_vm_areas);
2494
2495 kfree(vas);
2496 return vms;
2497
2498 err_free:
2499 for (area = 0; area < nr_vms; area++) {
2500 kfree(vas[area]);
2501 kfree(vms[area]);
2502 }
2503 err_free2:
2504 kfree(vas);
2505 kfree(vms);
2506 return NULL;
2507 }
2508
2509 /**
2510 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2511 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2512 * @nr_vms: the number of allocated areas
2513 *
2514 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2515 */
2516 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2517 {
2518 int i;
2519
2520 for (i = 0; i < nr_vms; i++)
2521 free_vm_area(vms[i]);
2522 kfree(vms);
2523 }
2524 #endif /* CONFIG_SMP */
2525
2526 #ifdef CONFIG_PROC_FS
2527 static void *s_start(struct seq_file *m, loff_t *pos)
2528 __acquires(&vmap_area_lock)
2529 {
2530 loff_t n = *pos;
2531 struct vmap_area *va;
2532
2533 spin_lock(&vmap_area_lock);
2534 va = list_entry((&vmap_area_list)->next, typeof(*va), list);
2535 while (n > 0 && &va->list != &vmap_area_list) {
2536 n--;
2537 va = list_entry(va->list.next, typeof(*va), list);
2538 }
2539 if (!n && &va->list != &vmap_area_list)
2540 return va;
2541
2542 return NULL;
2543
2544 }
2545
2546 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2547 {
2548 struct vmap_area *va = p, *next;
2549
2550 ++*pos;
2551 next = list_entry(va->list.next, typeof(*va), list);
2552 if (&next->list != &vmap_area_list)
2553 return next;
2554
2555 return NULL;
2556 }
2557
2558 static void s_stop(struct seq_file *m, void *p)
2559 __releases(&vmap_area_lock)
2560 {
2561 spin_unlock(&vmap_area_lock);
2562 }
2563
2564 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2565 {
2566 if (IS_ENABLED(CONFIG_NUMA)) {
2567 unsigned int nr, *counters = m->private;
2568
2569 if (!counters)
2570 return;
2571
2572 /* Pair with smp_wmb() in clear_vm_unlist() */
2573 smp_rmb();
2574 if (v->flags & VM_UNLIST)
2575 return;
2576
2577 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2578
2579 for (nr = 0; nr < v->nr_pages; nr++)
2580 counters[page_to_nid(v->pages[nr])]++;
2581
2582 for_each_node_state(nr, N_HIGH_MEMORY)
2583 if (counters[nr])
2584 seq_printf(m, " N%u=%u", nr, counters[nr]);
2585 }
2586 }
2587
2588 static int s_show(struct seq_file *m, void *p)
2589 {
2590 struct vmap_area *va = p;
2591 struct vm_struct *v;
2592
2593 if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2594 return 0;
2595
2596 if (!(va->flags & VM_VM_AREA)) {
2597 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
2598 (void *)va->va_start, (void *)va->va_end,
2599 va->va_end - va->va_start);
2600 return 0;
2601 }
2602
2603 v = va->vm;
2604
2605 seq_printf(m, "0x%pK-0x%pK %7ld",
2606 v->addr, v->addr + v->size, v->size);
2607
2608 if (v->caller)
2609 seq_printf(m, " %pS", v->caller);
2610
2611 if (v->nr_pages)
2612 seq_printf(m, " pages=%d", v->nr_pages);
2613
2614 if (v->phys_addr)
2615 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2616
2617 if (v->flags & VM_IOREMAP)
2618 seq_printf(m, " ioremap");
2619
2620 if (v->flags & VM_ALLOC)
2621 seq_printf(m, " vmalloc");
2622
2623 if (v->flags & VM_MAP)
2624 seq_printf(m, " vmap");
2625
2626 if (v->flags & VM_USERMAP)
2627 seq_printf(m, " user");
2628
2629 if (v->flags & VM_VPAGES)
2630 seq_printf(m, " vpages");
2631
2632 show_numa_info(m, v);
2633 seq_putc(m, '\n');
2634 return 0;
2635 }
2636
2637 static const struct seq_operations vmalloc_op = {
2638 .start = s_start,
2639 .next = s_next,
2640 .stop = s_stop,
2641 .show = s_show,
2642 };
2643
2644 static int vmalloc_open(struct inode *inode, struct file *file)
2645 {
2646 unsigned int *ptr = NULL;
2647 int ret;
2648
2649 if (IS_ENABLED(CONFIG_NUMA)) {
2650 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2651 if (ptr == NULL)
2652 return -ENOMEM;
2653 }
2654 ret = seq_open(file, &vmalloc_op);
2655 if (!ret) {
2656 struct seq_file *m = file->private_data;
2657 m->private = ptr;
2658 } else
2659 kfree(ptr);
2660 return ret;
2661 }
2662
2663 static const struct file_operations proc_vmalloc_operations = {
2664 .open = vmalloc_open,
2665 .read = seq_read,
2666 .llseek = seq_lseek,
2667 .release = seq_release_private,
2668 };
2669
2670 static int __init proc_vmalloc_init(void)
2671 {
2672 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2673 return 0;
2674 }
2675 module_init(proc_vmalloc_init);
2676
2677 void get_vmalloc_info(struct vmalloc_info *vmi)
2678 {
2679 struct vmap_area *va;
2680 unsigned long free_area_size;
2681 unsigned long prev_end;
2682
2683 vmi->used = 0;
2684 vmi->largest_chunk = 0;
2685
2686 prev_end = VMALLOC_START;
2687
2688 spin_lock(&vmap_area_lock);
2689
2690 if (list_empty(&vmap_area_list)) {
2691 vmi->largest_chunk = VMALLOC_TOTAL;
2692 goto out;
2693 }
2694
2695 list_for_each_entry(va, &vmap_area_list, list) {
2696 unsigned long addr = va->va_start;
2697
2698 /*
2699 * Some archs keep another range for modules in vmalloc space
2700 */
2701 if (addr < VMALLOC_START)
2702 continue;
2703 if (addr >= VMALLOC_END)
2704 break;
2705
2706 if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2707 continue;
2708
2709 vmi->used += (va->va_end - va->va_start);
2710
2711 free_area_size = addr - prev_end;
2712 if (vmi->largest_chunk < free_area_size)
2713 vmi->largest_chunk = free_area_size;
2714
2715 prev_end = va->va_end;
2716 }
2717
2718 if (VMALLOC_END - prev_end > vmi->largest_chunk)
2719 vmi->largest_chunk = VMALLOC_END - prev_end;
2720
2721 out:
2722 spin_unlock(&vmap_area_lock);
2723 }
2724 #endif
2725