]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/vmalloc.c
spi-imx: Implements handling of the SPI_READY mode flag.
[mirror_ubuntu-bionic-kernel.git] / mm / vmalloc.c
1 /*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/notifier.h>
25 #include <linux/rbtree.h>
26 #include <linux/radix-tree.h>
27 #include <linux/rcupdate.h>
28 #include <linux/pfn.h>
29 #include <linux/kmemleak.h>
30 #include <linux/atomic.h>
31 #include <linux/compiler.h>
32 #include <linux/llist.h>
33 #include <linux/bitops.h>
34
35 #include <linux/uaccess.h>
36 #include <asm/tlbflush.h>
37 #include <asm/shmparam.h>
38
39 #include "internal.h"
40
41 struct vfree_deferred {
42 struct llist_head list;
43 struct work_struct wq;
44 };
45 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
46
47 static void __vunmap(const void *, int);
48
49 static void free_work(struct work_struct *w)
50 {
51 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
52 struct llist_node *llnode = llist_del_all(&p->list);
53 while (llnode) {
54 void *p = llnode;
55 llnode = llist_next(llnode);
56 __vunmap(p, 1);
57 }
58 }
59
60 /*** Page table manipulation functions ***/
61
62 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
63 {
64 pte_t *pte;
65
66 pte = pte_offset_kernel(pmd, addr);
67 do {
68 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
69 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
70 } while (pte++, addr += PAGE_SIZE, addr != end);
71 }
72
73 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
74 {
75 pmd_t *pmd;
76 unsigned long next;
77
78 pmd = pmd_offset(pud, addr);
79 do {
80 next = pmd_addr_end(addr, end);
81 if (pmd_clear_huge(pmd))
82 continue;
83 if (pmd_none_or_clear_bad(pmd))
84 continue;
85 vunmap_pte_range(pmd, addr, next);
86 } while (pmd++, addr = next, addr != end);
87 }
88
89 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
90 {
91 pud_t *pud;
92 unsigned long next;
93
94 pud = pud_offset(pgd, addr);
95 do {
96 next = pud_addr_end(addr, end);
97 if (pud_clear_huge(pud))
98 continue;
99 if (pud_none_or_clear_bad(pud))
100 continue;
101 vunmap_pmd_range(pud, addr, next);
102 } while (pud++, addr = next, addr != end);
103 }
104
105 static void vunmap_page_range(unsigned long addr, unsigned long end)
106 {
107 pgd_t *pgd;
108 unsigned long next;
109
110 BUG_ON(addr >= end);
111 pgd = pgd_offset_k(addr);
112 do {
113 next = pgd_addr_end(addr, end);
114 if (pgd_none_or_clear_bad(pgd))
115 continue;
116 vunmap_pud_range(pgd, addr, next);
117 } while (pgd++, addr = next, addr != end);
118 }
119
120 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
121 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
122 {
123 pte_t *pte;
124
125 /*
126 * nr is a running index into the array which helps higher level
127 * callers keep track of where we're up to.
128 */
129
130 pte = pte_alloc_kernel(pmd, addr);
131 if (!pte)
132 return -ENOMEM;
133 do {
134 struct page *page = pages[*nr];
135
136 if (WARN_ON(!pte_none(*pte)))
137 return -EBUSY;
138 if (WARN_ON(!page))
139 return -ENOMEM;
140 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
141 (*nr)++;
142 } while (pte++, addr += PAGE_SIZE, addr != end);
143 return 0;
144 }
145
146 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
147 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
148 {
149 pmd_t *pmd;
150 unsigned long next;
151
152 pmd = pmd_alloc(&init_mm, pud, addr);
153 if (!pmd)
154 return -ENOMEM;
155 do {
156 next = pmd_addr_end(addr, end);
157 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
158 return -ENOMEM;
159 } while (pmd++, addr = next, addr != end);
160 return 0;
161 }
162
163 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
164 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
165 {
166 pud_t *pud;
167 unsigned long next;
168
169 pud = pud_alloc(&init_mm, pgd, addr);
170 if (!pud)
171 return -ENOMEM;
172 do {
173 next = pud_addr_end(addr, end);
174 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
175 return -ENOMEM;
176 } while (pud++, addr = next, addr != end);
177 return 0;
178 }
179
180 /*
181 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
182 * will have pfns corresponding to the "pages" array.
183 *
184 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
185 */
186 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
187 pgprot_t prot, struct page **pages)
188 {
189 pgd_t *pgd;
190 unsigned long next;
191 unsigned long addr = start;
192 int err = 0;
193 int nr = 0;
194
195 BUG_ON(addr >= end);
196 pgd = pgd_offset_k(addr);
197 do {
198 next = pgd_addr_end(addr, end);
199 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
200 if (err)
201 return err;
202 } while (pgd++, addr = next, addr != end);
203
204 return nr;
205 }
206
207 static int vmap_page_range(unsigned long start, unsigned long end,
208 pgprot_t prot, struct page **pages)
209 {
210 int ret;
211
212 ret = vmap_page_range_noflush(start, end, prot, pages);
213 flush_cache_vmap(start, end);
214 return ret;
215 }
216
217 int is_vmalloc_or_module_addr(const void *x)
218 {
219 /*
220 * ARM, x86-64 and sparc64 put modules in a special place,
221 * and fall back on vmalloc() if that fails. Others
222 * just put it in the vmalloc space.
223 */
224 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
225 unsigned long addr = (unsigned long)x;
226 if (addr >= MODULES_VADDR && addr < MODULES_END)
227 return 1;
228 #endif
229 return is_vmalloc_addr(x);
230 }
231
232 /*
233 * Walk a vmap address to the struct page it maps.
234 */
235 struct page *vmalloc_to_page(const void *vmalloc_addr)
236 {
237 unsigned long addr = (unsigned long) vmalloc_addr;
238 struct page *page = NULL;
239 pgd_t *pgd = pgd_offset_k(addr);
240
241 /*
242 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
243 * architectures that do not vmalloc module space
244 */
245 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
246
247 if (!pgd_none(*pgd)) {
248 pud_t *pud = pud_offset(pgd, addr);
249 if (!pud_none(*pud)) {
250 pmd_t *pmd = pmd_offset(pud, addr);
251 if (!pmd_none(*pmd)) {
252 pte_t *ptep, pte;
253
254 ptep = pte_offset_map(pmd, addr);
255 pte = *ptep;
256 if (pte_present(pte))
257 page = pte_page(pte);
258 pte_unmap(ptep);
259 }
260 }
261 }
262 return page;
263 }
264 EXPORT_SYMBOL(vmalloc_to_page);
265
266 /*
267 * Map a vmalloc()-space virtual address to the physical page frame number.
268 */
269 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
270 {
271 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
272 }
273 EXPORT_SYMBOL(vmalloc_to_pfn);
274
275
276 /*** Global kva allocator ***/
277
278 #define VM_VM_AREA 0x04
279
280 static DEFINE_SPINLOCK(vmap_area_lock);
281 /* Export for kexec only */
282 LIST_HEAD(vmap_area_list);
283 static LLIST_HEAD(vmap_purge_list);
284 static struct rb_root vmap_area_root = RB_ROOT;
285
286 /* The vmap cache globals are protected by vmap_area_lock */
287 static struct rb_node *free_vmap_cache;
288 static unsigned long cached_hole_size;
289 static unsigned long cached_vstart;
290 static unsigned long cached_align;
291
292 static unsigned long vmap_area_pcpu_hole;
293
294 static struct vmap_area *__find_vmap_area(unsigned long addr)
295 {
296 struct rb_node *n = vmap_area_root.rb_node;
297
298 while (n) {
299 struct vmap_area *va;
300
301 va = rb_entry(n, struct vmap_area, rb_node);
302 if (addr < va->va_start)
303 n = n->rb_left;
304 else if (addr >= va->va_end)
305 n = n->rb_right;
306 else
307 return va;
308 }
309
310 return NULL;
311 }
312
313 static void __insert_vmap_area(struct vmap_area *va)
314 {
315 struct rb_node **p = &vmap_area_root.rb_node;
316 struct rb_node *parent = NULL;
317 struct rb_node *tmp;
318
319 while (*p) {
320 struct vmap_area *tmp_va;
321
322 parent = *p;
323 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
324 if (va->va_start < tmp_va->va_end)
325 p = &(*p)->rb_left;
326 else if (va->va_end > tmp_va->va_start)
327 p = &(*p)->rb_right;
328 else
329 BUG();
330 }
331
332 rb_link_node(&va->rb_node, parent, p);
333 rb_insert_color(&va->rb_node, &vmap_area_root);
334
335 /* address-sort this list */
336 tmp = rb_prev(&va->rb_node);
337 if (tmp) {
338 struct vmap_area *prev;
339 prev = rb_entry(tmp, struct vmap_area, rb_node);
340 list_add_rcu(&va->list, &prev->list);
341 } else
342 list_add_rcu(&va->list, &vmap_area_list);
343 }
344
345 static void purge_vmap_area_lazy(void);
346
347 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
348
349 /*
350 * Allocate a region of KVA of the specified size and alignment, within the
351 * vstart and vend.
352 */
353 static struct vmap_area *alloc_vmap_area(unsigned long size,
354 unsigned long align,
355 unsigned long vstart, unsigned long vend,
356 int node, gfp_t gfp_mask)
357 {
358 struct vmap_area *va;
359 struct rb_node *n;
360 unsigned long addr;
361 int purged = 0;
362 struct vmap_area *first;
363
364 BUG_ON(!size);
365 BUG_ON(offset_in_page(size));
366 BUG_ON(!is_power_of_2(align));
367
368 might_sleep();
369
370 va = kmalloc_node(sizeof(struct vmap_area),
371 gfp_mask & GFP_RECLAIM_MASK, node);
372 if (unlikely(!va))
373 return ERR_PTR(-ENOMEM);
374
375 /*
376 * Only scan the relevant parts containing pointers to other objects
377 * to avoid false negatives.
378 */
379 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
380
381 retry:
382 spin_lock(&vmap_area_lock);
383 /*
384 * Invalidate cache if we have more permissive parameters.
385 * cached_hole_size notes the largest hole noticed _below_
386 * the vmap_area cached in free_vmap_cache: if size fits
387 * into that hole, we want to scan from vstart to reuse
388 * the hole instead of allocating above free_vmap_cache.
389 * Note that __free_vmap_area may update free_vmap_cache
390 * without updating cached_hole_size or cached_align.
391 */
392 if (!free_vmap_cache ||
393 size < cached_hole_size ||
394 vstart < cached_vstart ||
395 align < cached_align) {
396 nocache:
397 cached_hole_size = 0;
398 free_vmap_cache = NULL;
399 }
400 /* record if we encounter less permissive parameters */
401 cached_vstart = vstart;
402 cached_align = align;
403
404 /* find starting point for our search */
405 if (free_vmap_cache) {
406 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
407 addr = ALIGN(first->va_end, align);
408 if (addr < vstart)
409 goto nocache;
410 if (addr + size < addr)
411 goto overflow;
412
413 } else {
414 addr = ALIGN(vstart, align);
415 if (addr + size < addr)
416 goto overflow;
417
418 n = vmap_area_root.rb_node;
419 first = NULL;
420
421 while (n) {
422 struct vmap_area *tmp;
423 tmp = rb_entry(n, struct vmap_area, rb_node);
424 if (tmp->va_end >= addr) {
425 first = tmp;
426 if (tmp->va_start <= addr)
427 break;
428 n = n->rb_left;
429 } else
430 n = n->rb_right;
431 }
432
433 if (!first)
434 goto found;
435 }
436
437 /* from the starting point, walk areas until a suitable hole is found */
438 while (addr + size > first->va_start && addr + size <= vend) {
439 if (addr + cached_hole_size < first->va_start)
440 cached_hole_size = first->va_start - addr;
441 addr = ALIGN(first->va_end, align);
442 if (addr + size < addr)
443 goto overflow;
444
445 if (list_is_last(&first->list, &vmap_area_list))
446 goto found;
447
448 first = list_next_entry(first, list);
449 }
450
451 found:
452 if (addr + size > vend)
453 goto overflow;
454
455 va->va_start = addr;
456 va->va_end = addr + size;
457 va->flags = 0;
458 __insert_vmap_area(va);
459 free_vmap_cache = &va->rb_node;
460 spin_unlock(&vmap_area_lock);
461
462 BUG_ON(!IS_ALIGNED(va->va_start, align));
463 BUG_ON(va->va_start < vstart);
464 BUG_ON(va->va_end > vend);
465
466 return va;
467
468 overflow:
469 spin_unlock(&vmap_area_lock);
470 if (!purged) {
471 purge_vmap_area_lazy();
472 purged = 1;
473 goto retry;
474 }
475
476 if (gfpflags_allow_blocking(gfp_mask)) {
477 unsigned long freed = 0;
478 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
479 if (freed > 0) {
480 purged = 0;
481 goto retry;
482 }
483 }
484
485 if (printk_ratelimit())
486 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
487 size);
488 kfree(va);
489 return ERR_PTR(-EBUSY);
490 }
491
492 int register_vmap_purge_notifier(struct notifier_block *nb)
493 {
494 return blocking_notifier_chain_register(&vmap_notify_list, nb);
495 }
496 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
497
498 int unregister_vmap_purge_notifier(struct notifier_block *nb)
499 {
500 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
501 }
502 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
503
504 static void __free_vmap_area(struct vmap_area *va)
505 {
506 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
507
508 if (free_vmap_cache) {
509 if (va->va_end < cached_vstart) {
510 free_vmap_cache = NULL;
511 } else {
512 struct vmap_area *cache;
513 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
514 if (va->va_start <= cache->va_start) {
515 free_vmap_cache = rb_prev(&va->rb_node);
516 /*
517 * We don't try to update cached_hole_size or
518 * cached_align, but it won't go very wrong.
519 */
520 }
521 }
522 }
523 rb_erase(&va->rb_node, &vmap_area_root);
524 RB_CLEAR_NODE(&va->rb_node);
525 list_del_rcu(&va->list);
526
527 /*
528 * Track the highest possible candidate for pcpu area
529 * allocation. Areas outside of vmalloc area can be returned
530 * here too, consider only end addresses which fall inside
531 * vmalloc area proper.
532 */
533 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
534 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
535
536 kfree_rcu(va, rcu_head);
537 }
538
539 /*
540 * Free a region of KVA allocated by alloc_vmap_area
541 */
542 static void free_vmap_area(struct vmap_area *va)
543 {
544 spin_lock(&vmap_area_lock);
545 __free_vmap_area(va);
546 spin_unlock(&vmap_area_lock);
547 }
548
549 /*
550 * Clear the pagetable entries of a given vmap_area
551 */
552 static void unmap_vmap_area(struct vmap_area *va)
553 {
554 vunmap_page_range(va->va_start, va->va_end);
555 }
556
557 static void vmap_debug_free_range(unsigned long start, unsigned long end)
558 {
559 /*
560 * Unmap page tables and force a TLB flush immediately if pagealloc
561 * debugging is enabled. This catches use after free bugs similarly to
562 * those in linear kernel virtual address space after a page has been
563 * freed.
564 *
565 * All the lazy freeing logic is still retained, in order to minimise
566 * intrusiveness of this debugging feature.
567 *
568 * This is going to be *slow* (linear kernel virtual address debugging
569 * doesn't do a broadcast TLB flush so it is a lot faster).
570 */
571 if (debug_pagealloc_enabled()) {
572 vunmap_page_range(start, end);
573 flush_tlb_kernel_range(start, end);
574 }
575 }
576
577 /*
578 * lazy_max_pages is the maximum amount of virtual address space we gather up
579 * before attempting to purge with a TLB flush.
580 *
581 * There is a tradeoff here: a larger number will cover more kernel page tables
582 * and take slightly longer to purge, but it will linearly reduce the number of
583 * global TLB flushes that must be performed. It would seem natural to scale
584 * this number up linearly with the number of CPUs (because vmapping activity
585 * could also scale linearly with the number of CPUs), however it is likely
586 * that in practice, workloads might be constrained in other ways that mean
587 * vmap activity will not scale linearly with CPUs. Also, I want to be
588 * conservative and not introduce a big latency on huge systems, so go with
589 * a less aggressive log scale. It will still be an improvement over the old
590 * code, and it will be simple to change the scale factor if we find that it
591 * becomes a problem on bigger systems.
592 */
593 static unsigned long lazy_max_pages(void)
594 {
595 unsigned int log;
596
597 log = fls(num_online_cpus());
598
599 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
600 }
601
602 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
603
604 /*
605 * Serialize vmap purging. There is no actual criticial section protected
606 * by this look, but we want to avoid concurrent calls for performance
607 * reasons and to make the pcpu_get_vm_areas more deterministic.
608 */
609 static DEFINE_MUTEX(vmap_purge_lock);
610
611 /* for per-CPU blocks */
612 static void purge_fragmented_blocks_allcpus(void);
613
614 /*
615 * called before a call to iounmap() if the caller wants vm_area_struct's
616 * immediately freed.
617 */
618 void set_iounmap_nonlazy(void)
619 {
620 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
621 }
622
623 /*
624 * Purges all lazily-freed vmap areas.
625 */
626 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
627 {
628 struct llist_node *valist;
629 struct vmap_area *va;
630 struct vmap_area *n_va;
631 bool do_free = false;
632
633 lockdep_assert_held(&vmap_purge_lock);
634
635 valist = llist_del_all(&vmap_purge_list);
636 llist_for_each_entry(va, valist, purge_list) {
637 if (va->va_start < start)
638 start = va->va_start;
639 if (va->va_end > end)
640 end = va->va_end;
641 do_free = true;
642 }
643
644 if (!do_free)
645 return false;
646
647 flush_tlb_kernel_range(start, end);
648
649 spin_lock(&vmap_area_lock);
650 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
651 int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
652
653 __free_vmap_area(va);
654 atomic_sub(nr, &vmap_lazy_nr);
655 cond_resched_lock(&vmap_area_lock);
656 }
657 spin_unlock(&vmap_area_lock);
658 return true;
659 }
660
661 /*
662 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
663 * is already purging.
664 */
665 static void try_purge_vmap_area_lazy(void)
666 {
667 if (mutex_trylock(&vmap_purge_lock)) {
668 __purge_vmap_area_lazy(ULONG_MAX, 0);
669 mutex_unlock(&vmap_purge_lock);
670 }
671 }
672
673 /*
674 * Kick off a purge of the outstanding lazy areas.
675 */
676 static void purge_vmap_area_lazy(void)
677 {
678 mutex_lock(&vmap_purge_lock);
679 purge_fragmented_blocks_allcpus();
680 __purge_vmap_area_lazy(ULONG_MAX, 0);
681 mutex_unlock(&vmap_purge_lock);
682 }
683
684 /*
685 * Free a vmap area, caller ensuring that the area has been unmapped
686 * and flush_cache_vunmap had been called for the correct range
687 * previously.
688 */
689 static void free_vmap_area_noflush(struct vmap_area *va)
690 {
691 int nr_lazy;
692
693 nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
694 &vmap_lazy_nr);
695
696 /* After this point, we may free va at any time */
697 llist_add(&va->purge_list, &vmap_purge_list);
698
699 if (unlikely(nr_lazy > lazy_max_pages()))
700 try_purge_vmap_area_lazy();
701 }
702
703 /*
704 * Free and unmap a vmap area
705 */
706 static void free_unmap_vmap_area(struct vmap_area *va)
707 {
708 flush_cache_vunmap(va->va_start, va->va_end);
709 unmap_vmap_area(va);
710 free_vmap_area_noflush(va);
711 }
712
713 static struct vmap_area *find_vmap_area(unsigned long addr)
714 {
715 struct vmap_area *va;
716
717 spin_lock(&vmap_area_lock);
718 va = __find_vmap_area(addr);
719 spin_unlock(&vmap_area_lock);
720
721 return va;
722 }
723
724 /*** Per cpu kva allocator ***/
725
726 /*
727 * vmap space is limited especially on 32 bit architectures. Ensure there is
728 * room for at least 16 percpu vmap blocks per CPU.
729 */
730 /*
731 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
732 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
733 * instead (we just need a rough idea)
734 */
735 #if BITS_PER_LONG == 32
736 #define VMALLOC_SPACE (128UL*1024*1024)
737 #else
738 #define VMALLOC_SPACE (128UL*1024*1024*1024)
739 #endif
740
741 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
742 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
743 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
744 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
745 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
746 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
747 #define VMAP_BBMAP_BITS \
748 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
749 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
750 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
751
752 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
753
754 static bool vmap_initialized __read_mostly = false;
755
756 struct vmap_block_queue {
757 spinlock_t lock;
758 struct list_head free;
759 };
760
761 struct vmap_block {
762 spinlock_t lock;
763 struct vmap_area *va;
764 unsigned long free, dirty;
765 unsigned long dirty_min, dirty_max; /*< dirty range */
766 struct list_head free_list;
767 struct rcu_head rcu_head;
768 struct list_head purge;
769 };
770
771 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
772 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
773
774 /*
775 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
776 * in the free path. Could get rid of this if we change the API to return a
777 * "cookie" from alloc, to be passed to free. But no big deal yet.
778 */
779 static DEFINE_SPINLOCK(vmap_block_tree_lock);
780 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
781
782 /*
783 * We should probably have a fallback mechanism to allocate virtual memory
784 * out of partially filled vmap blocks. However vmap block sizing should be
785 * fairly reasonable according to the vmalloc size, so it shouldn't be a
786 * big problem.
787 */
788
789 static unsigned long addr_to_vb_idx(unsigned long addr)
790 {
791 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
792 addr /= VMAP_BLOCK_SIZE;
793 return addr;
794 }
795
796 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
797 {
798 unsigned long addr;
799
800 addr = va_start + (pages_off << PAGE_SHIFT);
801 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
802 return (void *)addr;
803 }
804
805 /**
806 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
807 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
808 * @order: how many 2^order pages should be occupied in newly allocated block
809 * @gfp_mask: flags for the page level allocator
810 *
811 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
812 */
813 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
814 {
815 struct vmap_block_queue *vbq;
816 struct vmap_block *vb;
817 struct vmap_area *va;
818 unsigned long vb_idx;
819 int node, err;
820 void *vaddr;
821
822 node = numa_node_id();
823
824 vb = kmalloc_node(sizeof(struct vmap_block),
825 gfp_mask & GFP_RECLAIM_MASK, node);
826 if (unlikely(!vb))
827 return ERR_PTR(-ENOMEM);
828
829 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
830 VMALLOC_START, VMALLOC_END,
831 node, gfp_mask);
832 if (IS_ERR(va)) {
833 kfree(vb);
834 return ERR_CAST(va);
835 }
836
837 err = radix_tree_preload(gfp_mask);
838 if (unlikely(err)) {
839 kfree(vb);
840 free_vmap_area(va);
841 return ERR_PTR(err);
842 }
843
844 vaddr = vmap_block_vaddr(va->va_start, 0);
845 spin_lock_init(&vb->lock);
846 vb->va = va;
847 /* At least something should be left free */
848 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
849 vb->free = VMAP_BBMAP_BITS - (1UL << order);
850 vb->dirty = 0;
851 vb->dirty_min = VMAP_BBMAP_BITS;
852 vb->dirty_max = 0;
853 INIT_LIST_HEAD(&vb->free_list);
854
855 vb_idx = addr_to_vb_idx(va->va_start);
856 spin_lock(&vmap_block_tree_lock);
857 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
858 spin_unlock(&vmap_block_tree_lock);
859 BUG_ON(err);
860 radix_tree_preload_end();
861
862 vbq = &get_cpu_var(vmap_block_queue);
863 spin_lock(&vbq->lock);
864 list_add_tail_rcu(&vb->free_list, &vbq->free);
865 spin_unlock(&vbq->lock);
866 put_cpu_var(vmap_block_queue);
867
868 return vaddr;
869 }
870
871 static void free_vmap_block(struct vmap_block *vb)
872 {
873 struct vmap_block *tmp;
874 unsigned long vb_idx;
875
876 vb_idx = addr_to_vb_idx(vb->va->va_start);
877 spin_lock(&vmap_block_tree_lock);
878 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
879 spin_unlock(&vmap_block_tree_lock);
880 BUG_ON(tmp != vb);
881
882 free_vmap_area_noflush(vb->va);
883 kfree_rcu(vb, rcu_head);
884 }
885
886 static void purge_fragmented_blocks(int cpu)
887 {
888 LIST_HEAD(purge);
889 struct vmap_block *vb;
890 struct vmap_block *n_vb;
891 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
892
893 rcu_read_lock();
894 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
895
896 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
897 continue;
898
899 spin_lock(&vb->lock);
900 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
901 vb->free = 0; /* prevent further allocs after releasing lock */
902 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
903 vb->dirty_min = 0;
904 vb->dirty_max = VMAP_BBMAP_BITS;
905 spin_lock(&vbq->lock);
906 list_del_rcu(&vb->free_list);
907 spin_unlock(&vbq->lock);
908 spin_unlock(&vb->lock);
909 list_add_tail(&vb->purge, &purge);
910 } else
911 spin_unlock(&vb->lock);
912 }
913 rcu_read_unlock();
914
915 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
916 list_del(&vb->purge);
917 free_vmap_block(vb);
918 }
919 }
920
921 static void purge_fragmented_blocks_allcpus(void)
922 {
923 int cpu;
924
925 for_each_possible_cpu(cpu)
926 purge_fragmented_blocks(cpu);
927 }
928
929 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
930 {
931 struct vmap_block_queue *vbq;
932 struct vmap_block *vb;
933 void *vaddr = NULL;
934 unsigned int order;
935
936 BUG_ON(offset_in_page(size));
937 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
938 if (WARN_ON(size == 0)) {
939 /*
940 * Allocating 0 bytes isn't what caller wants since
941 * get_order(0) returns funny result. Just warn and terminate
942 * early.
943 */
944 return NULL;
945 }
946 order = get_order(size);
947
948 rcu_read_lock();
949 vbq = &get_cpu_var(vmap_block_queue);
950 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
951 unsigned long pages_off;
952
953 spin_lock(&vb->lock);
954 if (vb->free < (1UL << order)) {
955 spin_unlock(&vb->lock);
956 continue;
957 }
958
959 pages_off = VMAP_BBMAP_BITS - vb->free;
960 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
961 vb->free -= 1UL << order;
962 if (vb->free == 0) {
963 spin_lock(&vbq->lock);
964 list_del_rcu(&vb->free_list);
965 spin_unlock(&vbq->lock);
966 }
967
968 spin_unlock(&vb->lock);
969 break;
970 }
971
972 put_cpu_var(vmap_block_queue);
973 rcu_read_unlock();
974
975 /* Allocate new block if nothing was found */
976 if (!vaddr)
977 vaddr = new_vmap_block(order, gfp_mask);
978
979 return vaddr;
980 }
981
982 static void vb_free(const void *addr, unsigned long size)
983 {
984 unsigned long offset;
985 unsigned long vb_idx;
986 unsigned int order;
987 struct vmap_block *vb;
988
989 BUG_ON(offset_in_page(size));
990 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
991
992 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
993
994 order = get_order(size);
995
996 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
997 offset >>= PAGE_SHIFT;
998
999 vb_idx = addr_to_vb_idx((unsigned long)addr);
1000 rcu_read_lock();
1001 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1002 rcu_read_unlock();
1003 BUG_ON(!vb);
1004
1005 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1006
1007 spin_lock(&vb->lock);
1008
1009 /* Expand dirty range */
1010 vb->dirty_min = min(vb->dirty_min, offset);
1011 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1012
1013 vb->dirty += 1UL << order;
1014 if (vb->dirty == VMAP_BBMAP_BITS) {
1015 BUG_ON(vb->free);
1016 spin_unlock(&vb->lock);
1017 free_vmap_block(vb);
1018 } else
1019 spin_unlock(&vb->lock);
1020 }
1021
1022 /**
1023 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1024 *
1025 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1026 * to amortize TLB flushing overheads. What this means is that any page you
1027 * have now, may, in a former life, have been mapped into kernel virtual
1028 * address by the vmap layer and so there might be some CPUs with TLB entries
1029 * still referencing that page (additional to the regular 1:1 kernel mapping).
1030 *
1031 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1032 * be sure that none of the pages we have control over will have any aliases
1033 * from the vmap layer.
1034 */
1035 void vm_unmap_aliases(void)
1036 {
1037 unsigned long start = ULONG_MAX, end = 0;
1038 int cpu;
1039 int flush = 0;
1040
1041 if (unlikely(!vmap_initialized))
1042 return;
1043
1044 might_sleep();
1045
1046 for_each_possible_cpu(cpu) {
1047 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1048 struct vmap_block *vb;
1049
1050 rcu_read_lock();
1051 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1052 spin_lock(&vb->lock);
1053 if (vb->dirty) {
1054 unsigned long va_start = vb->va->va_start;
1055 unsigned long s, e;
1056
1057 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1058 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1059
1060 start = min(s, start);
1061 end = max(e, end);
1062
1063 flush = 1;
1064 }
1065 spin_unlock(&vb->lock);
1066 }
1067 rcu_read_unlock();
1068 }
1069
1070 mutex_lock(&vmap_purge_lock);
1071 purge_fragmented_blocks_allcpus();
1072 if (!__purge_vmap_area_lazy(start, end) && flush)
1073 flush_tlb_kernel_range(start, end);
1074 mutex_unlock(&vmap_purge_lock);
1075 }
1076 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1077
1078 /**
1079 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1080 * @mem: the pointer returned by vm_map_ram
1081 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1082 */
1083 void vm_unmap_ram(const void *mem, unsigned int count)
1084 {
1085 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1086 unsigned long addr = (unsigned long)mem;
1087 struct vmap_area *va;
1088
1089 might_sleep();
1090 BUG_ON(!addr);
1091 BUG_ON(addr < VMALLOC_START);
1092 BUG_ON(addr > VMALLOC_END);
1093 BUG_ON(!PAGE_ALIGNED(addr));
1094
1095 debug_check_no_locks_freed(mem, size);
1096 vmap_debug_free_range(addr, addr+size);
1097
1098 if (likely(count <= VMAP_MAX_ALLOC)) {
1099 vb_free(mem, size);
1100 return;
1101 }
1102
1103 va = find_vmap_area(addr);
1104 BUG_ON(!va);
1105 free_unmap_vmap_area(va);
1106 }
1107 EXPORT_SYMBOL(vm_unmap_ram);
1108
1109 /**
1110 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1111 * @pages: an array of pointers to the pages to be mapped
1112 * @count: number of pages
1113 * @node: prefer to allocate data structures on this node
1114 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1115 *
1116 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1117 * faster than vmap so it's good. But if you mix long-life and short-life
1118 * objects with vm_map_ram(), it could consume lots of address space through
1119 * fragmentation (especially on a 32bit machine). You could see failures in
1120 * the end. Please use this function for short-lived objects.
1121 *
1122 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1123 */
1124 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1125 {
1126 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1127 unsigned long addr;
1128 void *mem;
1129
1130 if (likely(count <= VMAP_MAX_ALLOC)) {
1131 mem = vb_alloc(size, GFP_KERNEL);
1132 if (IS_ERR(mem))
1133 return NULL;
1134 addr = (unsigned long)mem;
1135 } else {
1136 struct vmap_area *va;
1137 va = alloc_vmap_area(size, PAGE_SIZE,
1138 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1139 if (IS_ERR(va))
1140 return NULL;
1141
1142 addr = va->va_start;
1143 mem = (void *)addr;
1144 }
1145 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1146 vm_unmap_ram(mem, count);
1147 return NULL;
1148 }
1149 return mem;
1150 }
1151 EXPORT_SYMBOL(vm_map_ram);
1152
1153 static struct vm_struct *vmlist __initdata;
1154 /**
1155 * vm_area_add_early - add vmap area early during boot
1156 * @vm: vm_struct to add
1157 *
1158 * This function is used to add fixed kernel vm area to vmlist before
1159 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1160 * should contain proper values and the other fields should be zero.
1161 *
1162 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1163 */
1164 void __init vm_area_add_early(struct vm_struct *vm)
1165 {
1166 struct vm_struct *tmp, **p;
1167
1168 BUG_ON(vmap_initialized);
1169 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1170 if (tmp->addr >= vm->addr) {
1171 BUG_ON(tmp->addr < vm->addr + vm->size);
1172 break;
1173 } else
1174 BUG_ON(tmp->addr + tmp->size > vm->addr);
1175 }
1176 vm->next = *p;
1177 *p = vm;
1178 }
1179
1180 /**
1181 * vm_area_register_early - register vmap area early during boot
1182 * @vm: vm_struct to register
1183 * @align: requested alignment
1184 *
1185 * This function is used to register kernel vm area before
1186 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1187 * proper values on entry and other fields should be zero. On return,
1188 * vm->addr contains the allocated address.
1189 *
1190 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1191 */
1192 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1193 {
1194 static size_t vm_init_off __initdata;
1195 unsigned long addr;
1196
1197 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1198 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1199
1200 vm->addr = (void *)addr;
1201
1202 vm_area_add_early(vm);
1203 }
1204
1205 void __init vmalloc_init(void)
1206 {
1207 struct vmap_area *va;
1208 struct vm_struct *tmp;
1209 int i;
1210
1211 for_each_possible_cpu(i) {
1212 struct vmap_block_queue *vbq;
1213 struct vfree_deferred *p;
1214
1215 vbq = &per_cpu(vmap_block_queue, i);
1216 spin_lock_init(&vbq->lock);
1217 INIT_LIST_HEAD(&vbq->free);
1218 p = &per_cpu(vfree_deferred, i);
1219 init_llist_head(&p->list);
1220 INIT_WORK(&p->wq, free_work);
1221 }
1222
1223 /* Import existing vmlist entries. */
1224 for (tmp = vmlist; tmp; tmp = tmp->next) {
1225 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1226 va->flags = VM_VM_AREA;
1227 va->va_start = (unsigned long)tmp->addr;
1228 va->va_end = va->va_start + tmp->size;
1229 va->vm = tmp;
1230 __insert_vmap_area(va);
1231 }
1232
1233 vmap_area_pcpu_hole = VMALLOC_END;
1234
1235 vmap_initialized = true;
1236 }
1237
1238 /**
1239 * map_kernel_range_noflush - map kernel VM area with the specified pages
1240 * @addr: start of the VM area to map
1241 * @size: size of the VM area to map
1242 * @prot: page protection flags to use
1243 * @pages: pages to map
1244 *
1245 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1246 * specify should have been allocated using get_vm_area() and its
1247 * friends.
1248 *
1249 * NOTE:
1250 * This function does NOT do any cache flushing. The caller is
1251 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1252 * before calling this function.
1253 *
1254 * RETURNS:
1255 * The number of pages mapped on success, -errno on failure.
1256 */
1257 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1258 pgprot_t prot, struct page **pages)
1259 {
1260 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1261 }
1262
1263 /**
1264 * unmap_kernel_range_noflush - unmap kernel VM area
1265 * @addr: start of the VM area to unmap
1266 * @size: size of the VM area to unmap
1267 *
1268 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1269 * specify should have been allocated using get_vm_area() and its
1270 * friends.
1271 *
1272 * NOTE:
1273 * This function does NOT do any cache flushing. The caller is
1274 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1275 * before calling this function and flush_tlb_kernel_range() after.
1276 */
1277 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1278 {
1279 vunmap_page_range(addr, addr + size);
1280 }
1281 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1282
1283 /**
1284 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1285 * @addr: start of the VM area to unmap
1286 * @size: size of the VM area to unmap
1287 *
1288 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1289 * the unmapping and tlb after.
1290 */
1291 void unmap_kernel_range(unsigned long addr, unsigned long size)
1292 {
1293 unsigned long end = addr + size;
1294
1295 flush_cache_vunmap(addr, end);
1296 vunmap_page_range(addr, end);
1297 flush_tlb_kernel_range(addr, end);
1298 }
1299 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1300
1301 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1302 {
1303 unsigned long addr = (unsigned long)area->addr;
1304 unsigned long end = addr + get_vm_area_size(area);
1305 int err;
1306
1307 err = vmap_page_range(addr, end, prot, pages);
1308
1309 return err > 0 ? 0 : err;
1310 }
1311 EXPORT_SYMBOL_GPL(map_vm_area);
1312
1313 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1314 unsigned long flags, const void *caller)
1315 {
1316 spin_lock(&vmap_area_lock);
1317 vm->flags = flags;
1318 vm->addr = (void *)va->va_start;
1319 vm->size = va->va_end - va->va_start;
1320 vm->caller = caller;
1321 va->vm = vm;
1322 va->flags |= VM_VM_AREA;
1323 spin_unlock(&vmap_area_lock);
1324 }
1325
1326 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1327 {
1328 /*
1329 * Before removing VM_UNINITIALIZED,
1330 * we should make sure that vm has proper values.
1331 * Pair with smp_rmb() in show_numa_info().
1332 */
1333 smp_wmb();
1334 vm->flags &= ~VM_UNINITIALIZED;
1335 }
1336
1337 static struct vm_struct *__get_vm_area_node(unsigned long size,
1338 unsigned long align, unsigned long flags, unsigned long start,
1339 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1340 {
1341 struct vmap_area *va;
1342 struct vm_struct *area;
1343
1344 BUG_ON(in_interrupt());
1345 size = PAGE_ALIGN(size);
1346 if (unlikely(!size))
1347 return NULL;
1348
1349 if (flags & VM_IOREMAP)
1350 align = 1ul << clamp_t(int, get_count_order_long(size),
1351 PAGE_SHIFT, IOREMAP_MAX_ORDER);
1352
1353 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1354 if (unlikely(!area))
1355 return NULL;
1356
1357 if (!(flags & VM_NO_GUARD))
1358 size += PAGE_SIZE;
1359
1360 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1361 if (IS_ERR(va)) {
1362 kfree(area);
1363 return NULL;
1364 }
1365
1366 setup_vmalloc_vm(area, va, flags, caller);
1367
1368 return area;
1369 }
1370
1371 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1372 unsigned long start, unsigned long end)
1373 {
1374 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1375 GFP_KERNEL, __builtin_return_address(0));
1376 }
1377 EXPORT_SYMBOL_GPL(__get_vm_area);
1378
1379 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1380 unsigned long start, unsigned long end,
1381 const void *caller)
1382 {
1383 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1384 GFP_KERNEL, caller);
1385 }
1386
1387 /**
1388 * get_vm_area - reserve a contiguous kernel virtual area
1389 * @size: size of the area
1390 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1391 *
1392 * Search an area of @size in the kernel virtual mapping area,
1393 * and reserved it for out purposes. Returns the area descriptor
1394 * on success or %NULL on failure.
1395 */
1396 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1397 {
1398 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1399 NUMA_NO_NODE, GFP_KERNEL,
1400 __builtin_return_address(0));
1401 }
1402
1403 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1404 const void *caller)
1405 {
1406 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1407 NUMA_NO_NODE, GFP_KERNEL, caller);
1408 }
1409
1410 /**
1411 * find_vm_area - find a continuous kernel virtual area
1412 * @addr: base address
1413 *
1414 * Search for the kernel VM area starting at @addr, and return it.
1415 * It is up to the caller to do all required locking to keep the returned
1416 * pointer valid.
1417 */
1418 struct vm_struct *find_vm_area(const void *addr)
1419 {
1420 struct vmap_area *va;
1421
1422 va = find_vmap_area((unsigned long)addr);
1423 if (va && va->flags & VM_VM_AREA)
1424 return va->vm;
1425
1426 return NULL;
1427 }
1428
1429 /**
1430 * remove_vm_area - find and remove a continuous kernel virtual area
1431 * @addr: base address
1432 *
1433 * Search for the kernel VM area starting at @addr, and remove it.
1434 * This function returns the found VM area, but using it is NOT safe
1435 * on SMP machines, except for its size or flags.
1436 */
1437 struct vm_struct *remove_vm_area(const void *addr)
1438 {
1439 struct vmap_area *va;
1440
1441 might_sleep();
1442
1443 va = find_vmap_area((unsigned long)addr);
1444 if (va && va->flags & VM_VM_AREA) {
1445 struct vm_struct *vm = va->vm;
1446
1447 spin_lock(&vmap_area_lock);
1448 va->vm = NULL;
1449 va->flags &= ~VM_VM_AREA;
1450 spin_unlock(&vmap_area_lock);
1451
1452 vmap_debug_free_range(va->va_start, va->va_end);
1453 kasan_free_shadow(vm);
1454 free_unmap_vmap_area(va);
1455
1456 return vm;
1457 }
1458 return NULL;
1459 }
1460
1461 static void __vunmap(const void *addr, int deallocate_pages)
1462 {
1463 struct vm_struct *area;
1464
1465 if (!addr)
1466 return;
1467
1468 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1469 addr))
1470 return;
1471
1472 area = remove_vm_area(addr);
1473 if (unlikely(!area)) {
1474 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1475 addr);
1476 return;
1477 }
1478
1479 debug_check_no_locks_freed(addr, get_vm_area_size(area));
1480 debug_check_no_obj_freed(addr, get_vm_area_size(area));
1481
1482 if (deallocate_pages) {
1483 int i;
1484
1485 for (i = 0; i < area->nr_pages; i++) {
1486 struct page *page = area->pages[i];
1487
1488 BUG_ON(!page);
1489 __free_pages(page, 0);
1490 }
1491
1492 kvfree(area->pages);
1493 }
1494
1495 kfree(area);
1496 return;
1497 }
1498
1499 static inline void __vfree_deferred(const void *addr)
1500 {
1501 /*
1502 * Use raw_cpu_ptr() because this can be called from preemptible
1503 * context. Preemption is absolutely fine here, because the llist_add()
1504 * implementation is lockless, so it works even if we are adding to
1505 * nother cpu's list. schedule_work() should be fine with this too.
1506 */
1507 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1508
1509 if (llist_add((struct llist_node *)addr, &p->list))
1510 schedule_work(&p->wq);
1511 }
1512
1513 /**
1514 * vfree_atomic - release memory allocated by vmalloc()
1515 * @addr: memory base address
1516 *
1517 * This one is just like vfree() but can be called in any atomic context
1518 * except NMIs.
1519 */
1520 void vfree_atomic(const void *addr)
1521 {
1522 BUG_ON(in_nmi());
1523
1524 kmemleak_free(addr);
1525
1526 if (!addr)
1527 return;
1528 __vfree_deferred(addr);
1529 }
1530
1531 /**
1532 * vfree - release memory allocated by vmalloc()
1533 * @addr: memory base address
1534 *
1535 * Free the virtually continuous memory area starting at @addr, as
1536 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1537 * NULL, no operation is performed.
1538 *
1539 * Must not be called in NMI context (strictly speaking, only if we don't
1540 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1541 * conventions for vfree() arch-depenedent would be a really bad idea)
1542 *
1543 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1544 */
1545 void vfree(const void *addr)
1546 {
1547 BUG_ON(in_nmi());
1548
1549 kmemleak_free(addr);
1550
1551 if (!addr)
1552 return;
1553 if (unlikely(in_interrupt()))
1554 __vfree_deferred(addr);
1555 else
1556 __vunmap(addr, 1);
1557 }
1558 EXPORT_SYMBOL(vfree);
1559
1560 /**
1561 * vunmap - release virtual mapping obtained by vmap()
1562 * @addr: memory base address
1563 *
1564 * Free the virtually contiguous memory area starting at @addr,
1565 * which was created from the page array passed to vmap().
1566 *
1567 * Must not be called in interrupt context.
1568 */
1569 void vunmap(const void *addr)
1570 {
1571 BUG_ON(in_interrupt());
1572 might_sleep();
1573 if (addr)
1574 __vunmap(addr, 0);
1575 }
1576 EXPORT_SYMBOL(vunmap);
1577
1578 /**
1579 * vmap - map an array of pages into virtually contiguous space
1580 * @pages: array of page pointers
1581 * @count: number of pages to map
1582 * @flags: vm_area->flags
1583 * @prot: page protection for the mapping
1584 *
1585 * Maps @count pages from @pages into contiguous kernel virtual
1586 * space.
1587 */
1588 void *vmap(struct page **pages, unsigned int count,
1589 unsigned long flags, pgprot_t prot)
1590 {
1591 struct vm_struct *area;
1592 unsigned long size; /* In bytes */
1593
1594 might_sleep();
1595
1596 if (count > totalram_pages)
1597 return NULL;
1598
1599 size = (unsigned long)count << PAGE_SHIFT;
1600 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1601 if (!area)
1602 return NULL;
1603
1604 if (map_vm_area(area, prot, pages)) {
1605 vunmap(area->addr);
1606 return NULL;
1607 }
1608
1609 return area->addr;
1610 }
1611 EXPORT_SYMBOL(vmap);
1612
1613 static void *__vmalloc_node(unsigned long size, unsigned long align,
1614 gfp_t gfp_mask, pgprot_t prot,
1615 int node, const void *caller);
1616 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1617 pgprot_t prot, int node)
1618 {
1619 struct page **pages;
1620 unsigned int nr_pages, array_size, i;
1621 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1622 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1623
1624 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1625 array_size = (nr_pages * sizeof(struct page *));
1626
1627 area->nr_pages = nr_pages;
1628 /* Please note that the recursion is strictly bounded. */
1629 if (array_size > PAGE_SIZE) {
1630 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1631 PAGE_KERNEL, node, area->caller);
1632 } else {
1633 pages = kmalloc_node(array_size, nested_gfp, node);
1634 }
1635 area->pages = pages;
1636 if (!area->pages) {
1637 remove_vm_area(area->addr);
1638 kfree(area);
1639 return NULL;
1640 }
1641
1642 for (i = 0; i < area->nr_pages; i++) {
1643 struct page *page;
1644
1645 if (fatal_signal_pending(current)) {
1646 area->nr_pages = i;
1647 goto fail;
1648 }
1649
1650 if (node == NUMA_NO_NODE)
1651 page = alloc_page(alloc_mask);
1652 else
1653 page = alloc_pages_node(node, alloc_mask, 0);
1654
1655 if (unlikely(!page)) {
1656 /* Successfully allocated i pages, free them in __vunmap() */
1657 area->nr_pages = i;
1658 goto fail;
1659 }
1660 area->pages[i] = page;
1661 if (gfpflags_allow_blocking(gfp_mask))
1662 cond_resched();
1663 }
1664
1665 if (map_vm_area(area, prot, pages))
1666 goto fail;
1667 return area->addr;
1668
1669 fail:
1670 warn_alloc(gfp_mask, NULL,
1671 "vmalloc: allocation failure, allocated %ld of %ld bytes",
1672 (area->nr_pages*PAGE_SIZE), area->size);
1673 vfree(area->addr);
1674 return NULL;
1675 }
1676
1677 /**
1678 * __vmalloc_node_range - allocate virtually contiguous memory
1679 * @size: allocation size
1680 * @align: desired alignment
1681 * @start: vm area range start
1682 * @end: vm area range end
1683 * @gfp_mask: flags for the page level allocator
1684 * @prot: protection mask for the allocated pages
1685 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
1686 * @node: node to use for allocation or NUMA_NO_NODE
1687 * @caller: caller's return address
1688 *
1689 * Allocate enough pages to cover @size from the page level
1690 * allocator with @gfp_mask flags. Map them into contiguous
1691 * kernel virtual space, using a pagetable protection of @prot.
1692 */
1693 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1694 unsigned long start, unsigned long end, gfp_t gfp_mask,
1695 pgprot_t prot, unsigned long vm_flags, int node,
1696 const void *caller)
1697 {
1698 struct vm_struct *area;
1699 void *addr;
1700 unsigned long real_size = size;
1701
1702 size = PAGE_ALIGN(size);
1703 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1704 goto fail;
1705
1706 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1707 vm_flags, start, end, node, gfp_mask, caller);
1708 if (!area)
1709 goto fail;
1710
1711 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1712 if (!addr)
1713 return NULL;
1714
1715 /*
1716 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1717 * flag. It means that vm_struct is not fully initialized.
1718 * Now, it is fully initialized, so remove this flag here.
1719 */
1720 clear_vm_uninitialized_flag(area);
1721
1722 /*
1723 * A ref_count = 2 is needed because vm_struct allocated in
1724 * __get_vm_area_node() contains a reference to the virtual address of
1725 * the vmalloc'ed block.
1726 */
1727 kmemleak_alloc(addr, real_size, 2, gfp_mask);
1728
1729 return addr;
1730
1731 fail:
1732 warn_alloc(gfp_mask, NULL,
1733 "vmalloc: allocation failure: %lu bytes", real_size);
1734 return NULL;
1735 }
1736
1737 /**
1738 * __vmalloc_node - allocate virtually contiguous memory
1739 * @size: allocation size
1740 * @align: desired alignment
1741 * @gfp_mask: flags for the page level allocator
1742 * @prot: protection mask for the allocated pages
1743 * @node: node to use for allocation or NUMA_NO_NODE
1744 * @caller: caller's return address
1745 *
1746 * Allocate enough pages to cover @size from the page level
1747 * allocator with @gfp_mask flags. Map them into contiguous
1748 * kernel virtual space, using a pagetable protection of @prot.
1749 */
1750 static void *__vmalloc_node(unsigned long size, unsigned long align,
1751 gfp_t gfp_mask, pgprot_t prot,
1752 int node, const void *caller)
1753 {
1754 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1755 gfp_mask, prot, 0, node, caller);
1756 }
1757
1758 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1759 {
1760 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1761 __builtin_return_address(0));
1762 }
1763 EXPORT_SYMBOL(__vmalloc);
1764
1765 static inline void *__vmalloc_node_flags(unsigned long size,
1766 int node, gfp_t flags)
1767 {
1768 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1769 node, __builtin_return_address(0));
1770 }
1771
1772 /**
1773 * vmalloc - allocate virtually contiguous memory
1774 * @size: allocation size
1775 * Allocate enough pages to cover @size from the page level
1776 * allocator and map them into contiguous kernel virtual space.
1777 *
1778 * For tight control over page level allocator and protection flags
1779 * use __vmalloc() instead.
1780 */
1781 void *vmalloc(unsigned long size)
1782 {
1783 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1784 GFP_KERNEL | __GFP_HIGHMEM);
1785 }
1786 EXPORT_SYMBOL(vmalloc);
1787
1788 /**
1789 * vzalloc - allocate virtually contiguous memory with zero fill
1790 * @size: allocation size
1791 * Allocate enough pages to cover @size from the page level
1792 * allocator and map them into contiguous kernel virtual space.
1793 * The memory allocated is set to zero.
1794 *
1795 * For tight control over page level allocator and protection flags
1796 * use __vmalloc() instead.
1797 */
1798 void *vzalloc(unsigned long size)
1799 {
1800 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1801 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1802 }
1803 EXPORT_SYMBOL(vzalloc);
1804
1805 /**
1806 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1807 * @size: allocation size
1808 *
1809 * The resulting memory area is zeroed so it can be mapped to userspace
1810 * without leaking data.
1811 */
1812 void *vmalloc_user(unsigned long size)
1813 {
1814 struct vm_struct *area;
1815 void *ret;
1816
1817 ret = __vmalloc_node(size, SHMLBA,
1818 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1819 PAGE_KERNEL, NUMA_NO_NODE,
1820 __builtin_return_address(0));
1821 if (ret) {
1822 area = find_vm_area(ret);
1823 area->flags |= VM_USERMAP;
1824 }
1825 return ret;
1826 }
1827 EXPORT_SYMBOL(vmalloc_user);
1828
1829 /**
1830 * vmalloc_node - allocate memory on a specific node
1831 * @size: allocation size
1832 * @node: numa node
1833 *
1834 * Allocate enough pages to cover @size from the page level
1835 * allocator and map them into contiguous kernel virtual space.
1836 *
1837 * For tight control over page level allocator and protection flags
1838 * use __vmalloc() instead.
1839 */
1840 void *vmalloc_node(unsigned long size, int node)
1841 {
1842 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1843 node, __builtin_return_address(0));
1844 }
1845 EXPORT_SYMBOL(vmalloc_node);
1846
1847 /**
1848 * vzalloc_node - allocate memory on a specific node with zero fill
1849 * @size: allocation size
1850 * @node: numa node
1851 *
1852 * Allocate enough pages to cover @size from the page level
1853 * allocator and map them into contiguous kernel virtual space.
1854 * The memory allocated is set to zero.
1855 *
1856 * For tight control over page level allocator and protection flags
1857 * use __vmalloc_node() instead.
1858 */
1859 void *vzalloc_node(unsigned long size, int node)
1860 {
1861 return __vmalloc_node_flags(size, node,
1862 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1863 }
1864 EXPORT_SYMBOL(vzalloc_node);
1865
1866 #ifndef PAGE_KERNEL_EXEC
1867 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1868 #endif
1869
1870 /**
1871 * vmalloc_exec - allocate virtually contiguous, executable memory
1872 * @size: allocation size
1873 *
1874 * Kernel-internal function to allocate enough pages to cover @size
1875 * the page level allocator and map them into contiguous and
1876 * executable kernel virtual space.
1877 *
1878 * For tight control over page level allocator and protection flags
1879 * use __vmalloc() instead.
1880 */
1881
1882 void *vmalloc_exec(unsigned long size)
1883 {
1884 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1885 NUMA_NO_NODE, __builtin_return_address(0));
1886 }
1887
1888 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1889 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1890 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1891 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1892 #else
1893 #define GFP_VMALLOC32 GFP_KERNEL
1894 #endif
1895
1896 /**
1897 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1898 * @size: allocation size
1899 *
1900 * Allocate enough 32bit PA addressable pages to cover @size from the
1901 * page level allocator and map them into contiguous kernel virtual space.
1902 */
1903 void *vmalloc_32(unsigned long size)
1904 {
1905 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1906 NUMA_NO_NODE, __builtin_return_address(0));
1907 }
1908 EXPORT_SYMBOL(vmalloc_32);
1909
1910 /**
1911 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1912 * @size: allocation size
1913 *
1914 * The resulting memory area is 32bit addressable and zeroed so it can be
1915 * mapped to userspace without leaking data.
1916 */
1917 void *vmalloc_32_user(unsigned long size)
1918 {
1919 struct vm_struct *area;
1920 void *ret;
1921
1922 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1923 NUMA_NO_NODE, __builtin_return_address(0));
1924 if (ret) {
1925 area = find_vm_area(ret);
1926 area->flags |= VM_USERMAP;
1927 }
1928 return ret;
1929 }
1930 EXPORT_SYMBOL(vmalloc_32_user);
1931
1932 /*
1933 * small helper routine , copy contents to buf from addr.
1934 * If the page is not present, fill zero.
1935 */
1936
1937 static int aligned_vread(char *buf, char *addr, unsigned long count)
1938 {
1939 struct page *p;
1940 int copied = 0;
1941
1942 while (count) {
1943 unsigned long offset, length;
1944
1945 offset = offset_in_page(addr);
1946 length = PAGE_SIZE - offset;
1947 if (length > count)
1948 length = count;
1949 p = vmalloc_to_page(addr);
1950 /*
1951 * To do safe access to this _mapped_ area, we need
1952 * lock. But adding lock here means that we need to add
1953 * overhead of vmalloc()/vfree() calles for this _debug_
1954 * interface, rarely used. Instead of that, we'll use
1955 * kmap() and get small overhead in this access function.
1956 */
1957 if (p) {
1958 /*
1959 * we can expect USER0 is not used (see vread/vwrite's
1960 * function description)
1961 */
1962 void *map = kmap_atomic(p);
1963 memcpy(buf, map + offset, length);
1964 kunmap_atomic(map);
1965 } else
1966 memset(buf, 0, length);
1967
1968 addr += length;
1969 buf += length;
1970 copied += length;
1971 count -= length;
1972 }
1973 return copied;
1974 }
1975
1976 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1977 {
1978 struct page *p;
1979 int copied = 0;
1980
1981 while (count) {
1982 unsigned long offset, length;
1983
1984 offset = offset_in_page(addr);
1985 length = PAGE_SIZE - offset;
1986 if (length > count)
1987 length = count;
1988 p = vmalloc_to_page(addr);
1989 /*
1990 * To do safe access to this _mapped_ area, we need
1991 * lock. But adding lock here means that we need to add
1992 * overhead of vmalloc()/vfree() calles for this _debug_
1993 * interface, rarely used. Instead of that, we'll use
1994 * kmap() and get small overhead in this access function.
1995 */
1996 if (p) {
1997 /*
1998 * we can expect USER0 is not used (see vread/vwrite's
1999 * function description)
2000 */
2001 void *map = kmap_atomic(p);
2002 memcpy(map + offset, buf, length);
2003 kunmap_atomic(map);
2004 }
2005 addr += length;
2006 buf += length;
2007 copied += length;
2008 count -= length;
2009 }
2010 return copied;
2011 }
2012
2013 /**
2014 * vread() - read vmalloc area in a safe way.
2015 * @buf: buffer for reading data
2016 * @addr: vm address.
2017 * @count: number of bytes to be read.
2018 *
2019 * Returns # of bytes which addr and buf should be increased.
2020 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
2021 * includes any intersect with alive vmalloc area.
2022 *
2023 * This function checks that addr is a valid vmalloc'ed area, and
2024 * copy data from that area to a given buffer. If the given memory range
2025 * of [addr...addr+count) includes some valid address, data is copied to
2026 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2027 * IOREMAP area is treated as memory hole and no copy is done.
2028 *
2029 * If [addr...addr+count) doesn't includes any intersects with alive
2030 * vm_struct area, returns 0. @buf should be kernel's buffer.
2031 *
2032 * Note: In usual ops, vread() is never necessary because the caller
2033 * should know vmalloc() area is valid and can use memcpy().
2034 * This is for routines which have to access vmalloc area without
2035 * any informaion, as /dev/kmem.
2036 *
2037 */
2038
2039 long vread(char *buf, char *addr, unsigned long count)
2040 {
2041 struct vmap_area *va;
2042 struct vm_struct *vm;
2043 char *vaddr, *buf_start = buf;
2044 unsigned long buflen = count;
2045 unsigned long n;
2046
2047 /* Don't allow overflow */
2048 if ((unsigned long) addr + count < count)
2049 count = -(unsigned long) addr;
2050
2051 spin_lock(&vmap_area_lock);
2052 list_for_each_entry(va, &vmap_area_list, list) {
2053 if (!count)
2054 break;
2055
2056 if (!(va->flags & VM_VM_AREA))
2057 continue;
2058
2059 vm = va->vm;
2060 vaddr = (char *) vm->addr;
2061 if (addr >= vaddr + get_vm_area_size(vm))
2062 continue;
2063 while (addr < vaddr) {
2064 if (count == 0)
2065 goto finished;
2066 *buf = '\0';
2067 buf++;
2068 addr++;
2069 count--;
2070 }
2071 n = vaddr + get_vm_area_size(vm) - addr;
2072 if (n > count)
2073 n = count;
2074 if (!(vm->flags & VM_IOREMAP))
2075 aligned_vread(buf, addr, n);
2076 else /* IOREMAP area is treated as memory hole */
2077 memset(buf, 0, n);
2078 buf += n;
2079 addr += n;
2080 count -= n;
2081 }
2082 finished:
2083 spin_unlock(&vmap_area_lock);
2084
2085 if (buf == buf_start)
2086 return 0;
2087 /* zero-fill memory holes */
2088 if (buf != buf_start + buflen)
2089 memset(buf, 0, buflen - (buf - buf_start));
2090
2091 return buflen;
2092 }
2093
2094 /**
2095 * vwrite() - write vmalloc area in a safe way.
2096 * @buf: buffer for source data
2097 * @addr: vm address.
2098 * @count: number of bytes to be read.
2099 *
2100 * Returns # of bytes which addr and buf should be incresed.
2101 * (same number to @count).
2102 * If [addr...addr+count) doesn't includes any intersect with valid
2103 * vmalloc area, returns 0.
2104 *
2105 * This function checks that addr is a valid vmalloc'ed area, and
2106 * copy data from a buffer to the given addr. If specified range of
2107 * [addr...addr+count) includes some valid address, data is copied from
2108 * proper area of @buf. If there are memory holes, no copy to hole.
2109 * IOREMAP area is treated as memory hole and no copy is done.
2110 *
2111 * If [addr...addr+count) doesn't includes any intersects with alive
2112 * vm_struct area, returns 0. @buf should be kernel's buffer.
2113 *
2114 * Note: In usual ops, vwrite() is never necessary because the caller
2115 * should know vmalloc() area is valid and can use memcpy().
2116 * This is for routines which have to access vmalloc area without
2117 * any informaion, as /dev/kmem.
2118 */
2119
2120 long vwrite(char *buf, char *addr, unsigned long count)
2121 {
2122 struct vmap_area *va;
2123 struct vm_struct *vm;
2124 char *vaddr;
2125 unsigned long n, buflen;
2126 int copied = 0;
2127
2128 /* Don't allow overflow */
2129 if ((unsigned long) addr + count < count)
2130 count = -(unsigned long) addr;
2131 buflen = count;
2132
2133 spin_lock(&vmap_area_lock);
2134 list_for_each_entry(va, &vmap_area_list, list) {
2135 if (!count)
2136 break;
2137
2138 if (!(va->flags & VM_VM_AREA))
2139 continue;
2140
2141 vm = va->vm;
2142 vaddr = (char *) vm->addr;
2143 if (addr >= vaddr + get_vm_area_size(vm))
2144 continue;
2145 while (addr < vaddr) {
2146 if (count == 0)
2147 goto finished;
2148 buf++;
2149 addr++;
2150 count--;
2151 }
2152 n = vaddr + get_vm_area_size(vm) - addr;
2153 if (n > count)
2154 n = count;
2155 if (!(vm->flags & VM_IOREMAP)) {
2156 aligned_vwrite(buf, addr, n);
2157 copied++;
2158 }
2159 buf += n;
2160 addr += n;
2161 count -= n;
2162 }
2163 finished:
2164 spin_unlock(&vmap_area_lock);
2165 if (!copied)
2166 return 0;
2167 return buflen;
2168 }
2169
2170 /**
2171 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2172 * @vma: vma to cover
2173 * @uaddr: target user address to start at
2174 * @kaddr: virtual address of vmalloc kernel memory
2175 * @size: size of map area
2176 *
2177 * Returns: 0 for success, -Exxx on failure
2178 *
2179 * This function checks that @kaddr is a valid vmalloc'ed area,
2180 * and that it is big enough to cover the range starting at
2181 * @uaddr in @vma. Will return failure if that criteria isn't
2182 * met.
2183 *
2184 * Similar to remap_pfn_range() (see mm/memory.c)
2185 */
2186 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2187 void *kaddr, unsigned long size)
2188 {
2189 struct vm_struct *area;
2190
2191 size = PAGE_ALIGN(size);
2192
2193 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2194 return -EINVAL;
2195
2196 area = find_vm_area(kaddr);
2197 if (!area)
2198 return -EINVAL;
2199
2200 if (!(area->flags & VM_USERMAP))
2201 return -EINVAL;
2202
2203 if (kaddr + size > area->addr + area->size)
2204 return -EINVAL;
2205
2206 do {
2207 struct page *page = vmalloc_to_page(kaddr);
2208 int ret;
2209
2210 ret = vm_insert_page(vma, uaddr, page);
2211 if (ret)
2212 return ret;
2213
2214 uaddr += PAGE_SIZE;
2215 kaddr += PAGE_SIZE;
2216 size -= PAGE_SIZE;
2217 } while (size > 0);
2218
2219 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2220
2221 return 0;
2222 }
2223 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2224
2225 /**
2226 * remap_vmalloc_range - map vmalloc pages to userspace
2227 * @vma: vma to cover (map full range of vma)
2228 * @addr: vmalloc memory
2229 * @pgoff: number of pages into addr before first page to map
2230 *
2231 * Returns: 0 for success, -Exxx on failure
2232 *
2233 * This function checks that addr is a valid vmalloc'ed area, and
2234 * that it is big enough to cover the vma. Will return failure if
2235 * that criteria isn't met.
2236 *
2237 * Similar to remap_pfn_range() (see mm/memory.c)
2238 */
2239 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2240 unsigned long pgoff)
2241 {
2242 return remap_vmalloc_range_partial(vma, vma->vm_start,
2243 addr + (pgoff << PAGE_SHIFT),
2244 vma->vm_end - vma->vm_start);
2245 }
2246 EXPORT_SYMBOL(remap_vmalloc_range);
2247
2248 /*
2249 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2250 * have one.
2251 */
2252 void __weak vmalloc_sync_all(void)
2253 {
2254 }
2255
2256
2257 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2258 {
2259 pte_t ***p = data;
2260
2261 if (p) {
2262 *(*p) = pte;
2263 (*p)++;
2264 }
2265 return 0;
2266 }
2267
2268 /**
2269 * alloc_vm_area - allocate a range of kernel address space
2270 * @size: size of the area
2271 * @ptes: returns the PTEs for the address space
2272 *
2273 * Returns: NULL on failure, vm_struct on success
2274 *
2275 * This function reserves a range of kernel address space, and
2276 * allocates pagetables to map that range. No actual mappings
2277 * are created.
2278 *
2279 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2280 * allocated for the VM area are returned.
2281 */
2282 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2283 {
2284 struct vm_struct *area;
2285
2286 area = get_vm_area_caller(size, VM_IOREMAP,
2287 __builtin_return_address(0));
2288 if (area == NULL)
2289 return NULL;
2290
2291 /*
2292 * This ensures that page tables are constructed for this region
2293 * of kernel virtual address space and mapped into init_mm.
2294 */
2295 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2296 size, f, ptes ? &ptes : NULL)) {
2297 free_vm_area(area);
2298 return NULL;
2299 }
2300
2301 return area;
2302 }
2303 EXPORT_SYMBOL_GPL(alloc_vm_area);
2304
2305 void free_vm_area(struct vm_struct *area)
2306 {
2307 struct vm_struct *ret;
2308 ret = remove_vm_area(area->addr);
2309 BUG_ON(ret != area);
2310 kfree(area);
2311 }
2312 EXPORT_SYMBOL_GPL(free_vm_area);
2313
2314 #ifdef CONFIG_SMP
2315 static struct vmap_area *node_to_va(struct rb_node *n)
2316 {
2317 return rb_entry_safe(n, struct vmap_area, rb_node);
2318 }
2319
2320 /**
2321 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2322 * @end: target address
2323 * @pnext: out arg for the next vmap_area
2324 * @pprev: out arg for the previous vmap_area
2325 *
2326 * Returns: %true if either or both of next and prev are found,
2327 * %false if no vmap_area exists
2328 *
2329 * Find vmap_areas end addresses of which enclose @end. ie. if not
2330 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2331 */
2332 static bool pvm_find_next_prev(unsigned long end,
2333 struct vmap_area **pnext,
2334 struct vmap_area **pprev)
2335 {
2336 struct rb_node *n = vmap_area_root.rb_node;
2337 struct vmap_area *va = NULL;
2338
2339 while (n) {
2340 va = rb_entry(n, struct vmap_area, rb_node);
2341 if (end < va->va_end)
2342 n = n->rb_left;
2343 else if (end > va->va_end)
2344 n = n->rb_right;
2345 else
2346 break;
2347 }
2348
2349 if (!va)
2350 return false;
2351
2352 if (va->va_end > end) {
2353 *pnext = va;
2354 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2355 } else {
2356 *pprev = va;
2357 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2358 }
2359 return true;
2360 }
2361
2362 /**
2363 * pvm_determine_end - find the highest aligned address between two vmap_areas
2364 * @pnext: in/out arg for the next vmap_area
2365 * @pprev: in/out arg for the previous vmap_area
2366 * @align: alignment
2367 *
2368 * Returns: determined end address
2369 *
2370 * Find the highest aligned address between *@pnext and *@pprev below
2371 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2372 * down address is between the end addresses of the two vmap_areas.
2373 *
2374 * Please note that the address returned by this function may fall
2375 * inside *@pnext vmap_area. The caller is responsible for checking
2376 * that.
2377 */
2378 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2379 struct vmap_area **pprev,
2380 unsigned long align)
2381 {
2382 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2383 unsigned long addr;
2384
2385 if (*pnext)
2386 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2387 else
2388 addr = vmalloc_end;
2389
2390 while (*pprev && (*pprev)->va_end > addr) {
2391 *pnext = *pprev;
2392 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2393 }
2394
2395 return addr;
2396 }
2397
2398 /**
2399 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2400 * @offsets: array containing offset of each area
2401 * @sizes: array containing size of each area
2402 * @nr_vms: the number of areas to allocate
2403 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2404 *
2405 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2406 * vm_structs on success, %NULL on failure
2407 *
2408 * Percpu allocator wants to use congruent vm areas so that it can
2409 * maintain the offsets among percpu areas. This function allocates
2410 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2411 * be scattered pretty far, distance between two areas easily going up
2412 * to gigabytes. To avoid interacting with regular vmallocs, these
2413 * areas are allocated from top.
2414 *
2415 * Despite its complicated look, this allocator is rather simple. It
2416 * does everything top-down and scans areas from the end looking for
2417 * matching slot. While scanning, if any of the areas overlaps with
2418 * existing vmap_area, the base address is pulled down to fit the
2419 * area. Scanning is repeated till all the areas fit and then all
2420 * necessary data structres are inserted and the result is returned.
2421 */
2422 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2423 const size_t *sizes, int nr_vms,
2424 size_t align)
2425 {
2426 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2427 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2428 struct vmap_area **vas, *prev, *next;
2429 struct vm_struct **vms;
2430 int area, area2, last_area, term_area;
2431 unsigned long base, start, end, last_end;
2432 bool purged = false;
2433
2434 /* verify parameters and allocate data structures */
2435 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2436 for (last_area = 0, area = 0; area < nr_vms; area++) {
2437 start = offsets[area];
2438 end = start + sizes[area];
2439
2440 /* is everything aligned properly? */
2441 BUG_ON(!IS_ALIGNED(offsets[area], align));
2442 BUG_ON(!IS_ALIGNED(sizes[area], align));
2443
2444 /* detect the area with the highest address */
2445 if (start > offsets[last_area])
2446 last_area = area;
2447
2448 for (area2 = 0; area2 < nr_vms; area2++) {
2449 unsigned long start2 = offsets[area2];
2450 unsigned long end2 = start2 + sizes[area2];
2451
2452 if (area2 == area)
2453 continue;
2454
2455 BUG_ON(start2 >= start && start2 < end);
2456 BUG_ON(end2 <= end && end2 > start);
2457 }
2458 }
2459 last_end = offsets[last_area] + sizes[last_area];
2460
2461 if (vmalloc_end - vmalloc_start < last_end) {
2462 WARN_ON(true);
2463 return NULL;
2464 }
2465
2466 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2467 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2468 if (!vas || !vms)
2469 goto err_free2;
2470
2471 for (area = 0; area < nr_vms; area++) {
2472 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2473 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2474 if (!vas[area] || !vms[area])
2475 goto err_free;
2476 }
2477 retry:
2478 spin_lock(&vmap_area_lock);
2479
2480 /* start scanning - we scan from the top, begin with the last area */
2481 area = term_area = last_area;
2482 start = offsets[area];
2483 end = start + sizes[area];
2484
2485 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2486 base = vmalloc_end - last_end;
2487 goto found;
2488 }
2489 base = pvm_determine_end(&next, &prev, align) - end;
2490
2491 while (true) {
2492 BUG_ON(next && next->va_end <= base + end);
2493 BUG_ON(prev && prev->va_end > base + end);
2494
2495 /*
2496 * base might have underflowed, add last_end before
2497 * comparing.
2498 */
2499 if (base + last_end < vmalloc_start + last_end) {
2500 spin_unlock(&vmap_area_lock);
2501 if (!purged) {
2502 purge_vmap_area_lazy();
2503 purged = true;
2504 goto retry;
2505 }
2506 goto err_free;
2507 }
2508
2509 /*
2510 * If next overlaps, move base downwards so that it's
2511 * right below next and then recheck.
2512 */
2513 if (next && next->va_start < base + end) {
2514 base = pvm_determine_end(&next, &prev, align) - end;
2515 term_area = area;
2516 continue;
2517 }
2518
2519 /*
2520 * If prev overlaps, shift down next and prev and move
2521 * base so that it's right below new next and then
2522 * recheck.
2523 */
2524 if (prev && prev->va_end > base + start) {
2525 next = prev;
2526 prev = node_to_va(rb_prev(&next->rb_node));
2527 base = pvm_determine_end(&next, &prev, align) - end;
2528 term_area = area;
2529 continue;
2530 }
2531
2532 /*
2533 * This area fits, move on to the previous one. If
2534 * the previous one is the terminal one, we're done.
2535 */
2536 area = (area + nr_vms - 1) % nr_vms;
2537 if (area == term_area)
2538 break;
2539 start = offsets[area];
2540 end = start + sizes[area];
2541 pvm_find_next_prev(base + end, &next, &prev);
2542 }
2543 found:
2544 /* we've found a fitting base, insert all va's */
2545 for (area = 0; area < nr_vms; area++) {
2546 struct vmap_area *va = vas[area];
2547
2548 va->va_start = base + offsets[area];
2549 va->va_end = va->va_start + sizes[area];
2550 __insert_vmap_area(va);
2551 }
2552
2553 vmap_area_pcpu_hole = base + offsets[last_area];
2554
2555 spin_unlock(&vmap_area_lock);
2556
2557 /* insert all vm's */
2558 for (area = 0; area < nr_vms; area++)
2559 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2560 pcpu_get_vm_areas);
2561
2562 kfree(vas);
2563 return vms;
2564
2565 err_free:
2566 for (area = 0; area < nr_vms; area++) {
2567 kfree(vas[area]);
2568 kfree(vms[area]);
2569 }
2570 err_free2:
2571 kfree(vas);
2572 kfree(vms);
2573 return NULL;
2574 }
2575
2576 /**
2577 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2578 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2579 * @nr_vms: the number of allocated areas
2580 *
2581 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2582 */
2583 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2584 {
2585 int i;
2586
2587 for (i = 0; i < nr_vms; i++)
2588 free_vm_area(vms[i]);
2589 kfree(vms);
2590 }
2591 #endif /* CONFIG_SMP */
2592
2593 #ifdef CONFIG_PROC_FS
2594 static void *s_start(struct seq_file *m, loff_t *pos)
2595 __acquires(&vmap_area_lock)
2596 {
2597 spin_lock(&vmap_area_lock);
2598 return seq_list_start(&vmap_area_list, *pos);
2599 }
2600
2601 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2602 {
2603 return seq_list_next(p, &vmap_area_list, pos);
2604 }
2605
2606 static void s_stop(struct seq_file *m, void *p)
2607 __releases(&vmap_area_lock)
2608 {
2609 spin_unlock(&vmap_area_lock);
2610 }
2611
2612 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2613 {
2614 if (IS_ENABLED(CONFIG_NUMA)) {
2615 unsigned int nr, *counters = m->private;
2616
2617 if (!counters)
2618 return;
2619
2620 if (v->flags & VM_UNINITIALIZED)
2621 return;
2622 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2623 smp_rmb();
2624
2625 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2626
2627 for (nr = 0; nr < v->nr_pages; nr++)
2628 counters[page_to_nid(v->pages[nr])]++;
2629
2630 for_each_node_state(nr, N_HIGH_MEMORY)
2631 if (counters[nr])
2632 seq_printf(m, " N%u=%u", nr, counters[nr]);
2633 }
2634 }
2635
2636 static int s_show(struct seq_file *m, void *p)
2637 {
2638 struct vmap_area *va;
2639 struct vm_struct *v;
2640
2641 va = list_entry(p, struct vmap_area, list);
2642
2643 /*
2644 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2645 * behalf of vmap area is being tear down or vm_map_ram allocation.
2646 */
2647 if (!(va->flags & VM_VM_AREA))
2648 return 0;
2649
2650 v = va->vm;
2651
2652 seq_printf(m, "0x%pK-0x%pK %7ld",
2653 v->addr, v->addr + v->size, v->size);
2654
2655 if (v->caller)
2656 seq_printf(m, " %pS", v->caller);
2657
2658 if (v->nr_pages)
2659 seq_printf(m, " pages=%d", v->nr_pages);
2660
2661 if (v->phys_addr)
2662 seq_printf(m, " phys=%pa", &v->phys_addr);
2663
2664 if (v->flags & VM_IOREMAP)
2665 seq_puts(m, " ioremap");
2666
2667 if (v->flags & VM_ALLOC)
2668 seq_puts(m, " vmalloc");
2669
2670 if (v->flags & VM_MAP)
2671 seq_puts(m, " vmap");
2672
2673 if (v->flags & VM_USERMAP)
2674 seq_puts(m, " user");
2675
2676 if (is_vmalloc_addr(v->pages))
2677 seq_puts(m, " vpages");
2678
2679 show_numa_info(m, v);
2680 seq_putc(m, '\n');
2681 return 0;
2682 }
2683
2684 static const struct seq_operations vmalloc_op = {
2685 .start = s_start,
2686 .next = s_next,
2687 .stop = s_stop,
2688 .show = s_show,
2689 };
2690
2691 static int vmalloc_open(struct inode *inode, struct file *file)
2692 {
2693 if (IS_ENABLED(CONFIG_NUMA))
2694 return seq_open_private(file, &vmalloc_op,
2695 nr_node_ids * sizeof(unsigned int));
2696 else
2697 return seq_open(file, &vmalloc_op);
2698 }
2699
2700 static const struct file_operations proc_vmalloc_operations = {
2701 .open = vmalloc_open,
2702 .read = seq_read,
2703 .llseek = seq_lseek,
2704 .release = seq_release_private,
2705 };
2706
2707 static int __init proc_vmalloc_init(void)
2708 {
2709 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2710 return 0;
2711 }
2712 module_init(proc_vmalloc_init);
2713
2714 #endif
2715