]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/vmalloc.c
f8f61ff3235bc8ed72fe886e130aef8d034553c7
[mirror_ubuntu-hirsute-kernel.git] / mm / vmalloc.c
1 /*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/radix-tree.h>
28 #include <linux/rcupdate.h>
29 #include <linux/pfn.h>
30 #include <linux/kmemleak.h>
31 #include <linux/atomic.h>
32 #include <linux/compiler.h>
33 #include <linux/llist.h>
34 #include <linux/bitops.h>
35 #include <linux/rbtree_augmented.h>
36
37 #include <linux/uaccess.h>
38 #include <asm/tlbflush.h>
39 #include <asm/shmparam.h>
40
41 #include "internal.h"
42
43 struct vfree_deferred {
44 struct llist_head list;
45 struct work_struct wq;
46 };
47 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
48
49 static void __vunmap(const void *, int);
50
51 static void free_work(struct work_struct *w)
52 {
53 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
54 struct llist_node *t, *llnode;
55
56 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
57 __vunmap((void *)llnode, 1);
58 }
59
60 /*** Page table manipulation functions ***/
61
62 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
63 {
64 pte_t *pte;
65
66 pte = pte_offset_kernel(pmd, addr);
67 do {
68 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
69 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
70 } while (pte++, addr += PAGE_SIZE, addr != end);
71 }
72
73 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
74 {
75 pmd_t *pmd;
76 unsigned long next;
77
78 pmd = pmd_offset(pud, addr);
79 do {
80 next = pmd_addr_end(addr, end);
81 if (pmd_clear_huge(pmd))
82 continue;
83 if (pmd_none_or_clear_bad(pmd))
84 continue;
85 vunmap_pte_range(pmd, addr, next);
86 } while (pmd++, addr = next, addr != end);
87 }
88
89 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
90 {
91 pud_t *pud;
92 unsigned long next;
93
94 pud = pud_offset(p4d, addr);
95 do {
96 next = pud_addr_end(addr, end);
97 if (pud_clear_huge(pud))
98 continue;
99 if (pud_none_or_clear_bad(pud))
100 continue;
101 vunmap_pmd_range(pud, addr, next);
102 } while (pud++, addr = next, addr != end);
103 }
104
105 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
106 {
107 p4d_t *p4d;
108 unsigned long next;
109
110 p4d = p4d_offset(pgd, addr);
111 do {
112 next = p4d_addr_end(addr, end);
113 if (p4d_clear_huge(p4d))
114 continue;
115 if (p4d_none_or_clear_bad(p4d))
116 continue;
117 vunmap_pud_range(p4d, addr, next);
118 } while (p4d++, addr = next, addr != end);
119 }
120
121 static void vunmap_page_range(unsigned long addr, unsigned long end)
122 {
123 pgd_t *pgd;
124 unsigned long next;
125
126 BUG_ON(addr >= end);
127 pgd = pgd_offset_k(addr);
128 do {
129 next = pgd_addr_end(addr, end);
130 if (pgd_none_or_clear_bad(pgd))
131 continue;
132 vunmap_p4d_range(pgd, addr, next);
133 } while (pgd++, addr = next, addr != end);
134 }
135
136 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
137 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
138 {
139 pte_t *pte;
140
141 /*
142 * nr is a running index into the array which helps higher level
143 * callers keep track of where we're up to.
144 */
145
146 pte = pte_alloc_kernel(pmd, addr);
147 if (!pte)
148 return -ENOMEM;
149 do {
150 struct page *page = pages[*nr];
151
152 if (WARN_ON(!pte_none(*pte)))
153 return -EBUSY;
154 if (WARN_ON(!page))
155 return -ENOMEM;
156 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
157 (*nr)++;
158 } while (pte++, addr += PAGE_SIZE, addr != end);
159 return 0;
160 }
161
162 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
163 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
164 {
165 pmd_t *pmd;
166 unsigned long next;
167
168 pmd = pmd_alloc(&init_mm, pud, addr);
169 if (!pmd)
170 return -ENOMEM;
171 do {
172 next = pmd_addr_end(addr, end);
173 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
174 return -ENOMEM;
175 } while (pmd++, addr = next, addr != end);
176 return 0;
177 }
178
179 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
180 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
181 {
182 pud_t *pud;
183 unsigned long next;
184
185 pud = pud_alloc(&init_mm, p4d, addr);
186 if (!pud)
187 return -ENOMEM;
188 do {
189 next = pud_addr_end(addr, end);
190 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
191 return -ENOMEM;
192 } while (pud++, addr = next, addr != end);
193 return 0;
194 }
195
196 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
197 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
198 {
199 p4d_t *p4d;
200 unsigned long next;
201
202 p4d = p4d_alloc(&init_mm, pgd, addr);
203 if (!p4d)
204 return -ENOMEM;
205 do {
206 next = p4d_addr_end(addr, end);
207 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
208 return -ENOMEM;
209 } while (p4d++, addr = next, addr != end);
210 return 0;
211 }
212
213 /*
214 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
215 * will have pfns corresponding to the "pages" array.
216 *
217 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
218 */
219 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
220 pgprot_t prot, struct page **pages)
221 {
222 pgd_t *pgd;
223 unsigned long next;
224 unsigned long addr = start;
225 int err = 0;
226 int nr = 0;
227
228 BUG_ON(addr >= end);
229 pgd = pgd_offset_k(addr);
230 do {
231 next = pgd_addr_end(addr, end);
232 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
233 if (err)
234 return err;
235 } while (pgd++, addr = next, addr != end);
236
237 return nr;
238 }
239
240 static int vmap_page_range(unsigned long start, unsigned long end,
241 pgprot_t prot, struct page **pages)
242 {
243 int ret;
244
245 ret = vmap_page_range_noflush(start, end, prot, pages);
246 flush_cache_vmap(start, end);
247 return ret;
248 }
249
250 int is_vmalloc_or_module_addr(const void *x)
251 {
252 /*
253 * ARM, x86-64 and sparc64 put modules in a special place,
254 * and fall back on vmalloc() if that fails. Others
255 * just put it in the vmalloc space.
256 */
257 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
258 unsigned long addr = (unsigned long)x;
259 if (addr >= MODULES_VADDR && addr < MODULES_END)
260 return 1;
261 #endif
262 return is_vmalloc_addr(x);
263 }
264
265 /*
266 * Walk a vmap address to the struct page it maps.
267 */
268 struct page *vmalloc_to_page(const void *vmalloc_addr)
269 {
270 unsigned long addr = (unsigned long) vmalloc_addr;
271 struct page *page = NULL;
272 pgd_t *pgd = pgd_offset_k(addr);
273 p4d_t *p4d;
274 pud_t *pud;
275 pmd_t *pmd;
276 pte_t *ptep, pte;
277
278 /*
279 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
280 * architectures that do not vmalloc module space
281 */
282 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
283
284 if (pgd_none(*pgd))
285 return NULL;
286 p4d = p4d_offset(pgd, addr);
287 if (p4d_none(*p4d))
288 return NULL;
289 pud = pud_offset(p4d, addr);
290
291 /*
292 * Don't dereference bad PUD or PMD (below) entries. This will also
293 * identify huge mappings, which we may encounter on architectures
294 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
295 * identified as vmalloc addresses by is_vmalloc_addr(), but are
296 * not [unambiguously] associated with a struct page, so there is
297 * no correct value to return for them.
298 */
299 WARN_ON_ONCE(pud_bad(*pud));
300 if (pud_none(*pud) || pud_bad(*pud))
301 return NULL;
302 pmd = pmd_offset(pud, addr);
303 WARN_ON_ONCE(pmd_bad(*pmd));
304 if (pmd_none(*pmd) || pmd_bad(*pmd))
305 return NULL;
306
307 ptep = pte_offset_map(pmd, addr);
308 pte = *ptep;
309 if (pte_present(pte))
310 page = pte_page(pte);
311 pte_unmap(ptep);
312 return page;
313 }
314 EXPORT_SYMBOL(vmalloc_to_page);
315
316 /*
317 * Map a vmalloc()-space virtual address to the physical page frame number.
318 */
319 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
320 {
321 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
322 }
323 EXPORT_SYMBOL(vmalloc_to_pfn);
324
325
326 /*** Global kva allocator ***/
327
328 #define VM_LAZY_FREE 0x02
329 #define VM_VM_AREA 0x04
330
331 static DEFINE_SPINLOCK(vmap_area_lock);
332 /* Export for kexec only */
333 LIST_HEAD(vmap_area_list);
334 static LLIST_HEAD(vmap_purge_list);
335 static struct rb_root vmap_area_root = RB_ROOT;
336 static bool vmap_initialized __read_mostly;
337
338 /*
339 * This kmem_cache is used for vmap_area objects. Instead of
340 * allocating from slab we reuse an object from this cache to
341 * make things faster. Especially in "no edge" splitting of
342 * free block.
343 */
344 static struct kmem_cache *vmap_area_cachep;
345
346 /*
347 * This linked list is used in pair with free_vmap_area_root.
348 * It gives O(1) access to prev/next to perform fast coalescing.
349 */
350 static LIST_HEAD(free_vmap_area_list);
351
352 /*
353 * This augment red-black tree represents the free vmap space.
354 * All vmap_area objects in this tree are sorted by va->va_start
355 * address. It is used for allocation and merging when a vmap
356 * object is released.
357 *
358 * Each vmap_area node contains a maximum available free block
359 * of its sub-tree, right or left. Therefore it is possible to
360 * find a lowest match of free area.
361 */
362 static struct rb_root free_vmap_area_root = RB_ROOT;
363
364 static __always_inline unsigned long
365 va_size(struct vmap_area *va)
366 {
367 return (va->va_end - va->va_start);
368 }
369
370 static __always_inline unsigned long
371 get_subtree_max_size(struct rb_node *node)
372 {
373 struct vmap_area *va;
374
375 va = rb_entry_safe(node, struct vmap_area, rb_node);
376 return va ? va->subtree_max_size : 0;
377 }
378
379 /*
380 * Gets called when remove the node and rotate.
381 */
382 static __always_inline unsigned long
383 compute_subtree_max_size(struct vmap_area *va)
384 {
385 return max3(va_size(va),
386 get_subtree_max_size(va->rb_node.rb_left),
387 get_subtree_max_size(va->rb_node.rb_right));
388 }
389
390 RB_DECLARE_CALLBACKS(static, free_vmap_area_rb_augment_cb,
391 struct vmap_area, rb_node, unsigned long, subtree_max_size,
392 compute_subtree_max_size)
393
394 static void purge_vmap_area_lazy(void);
395 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
396 static unsigned long lazy_max_pages(void);
397
398 static struct vmap_area *__find_vmap_area(unsigned long addr)
399 {
400 struct rb_node *n = vmap_area_root.rb_node;
401
402 while (n) {
403 struct vmap_area *va;
404
405 va = rb_entry(n, struct vmap_area, rb_node);
406 if (addr < va->va_start)
407 n = n->rb_left;
408 else if (addr >= va->va_end)
409 n = n->rb_right;
410 else
411 return va;
412 }
413
414 return NULL;
415 }
416
417 /*
418 * This function returns back addresses of parent node
419 * and its left or right link for further processing.
420 */
421 static __always_inline struct rb_node **
422 find_va_links(struct vmap_area *va,
423 struct rb_root *root, struct rb_node *from,
424 struct rb_node **parent)
425 {
426 struct vmap_area *tmp_va;
427 struct rb_node **link;
428
429 if (root) {
430 link = &root->rb_node;
431 if (unlikely(!*link)) {
432 *parent = NULL;
433 return link;
434 }
435 } else {
436 link = &from;
437 }
438
439 /*
440 * Go to the bottom of the tree. When we hit the last point
441 * we end up with parent rb_node and correct direction, i name
442 * it link, where the new va->rb_node will be attached to.
443 */
444 do {
445 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
446
447 /*
448 * During the traversal we also do some sanity check.
449 * Trigger the BUG() if there are sides(left/right)
450 * or full overlaps.
451 */
452 if (va->va_start < tmp_va->va_end &&
453 va->va_end <= tmp_va->va_start)
454 link = &(*link)->rb_left;
455 else if (va->va_end > tmp_va->va_start &&
456 va->va_start >= tmp_va->va_end)
457 link = &(*link)->rb_right;
458 else
459 BUG();
460 } while (*link);
461
462 *parent = &tmp_va->rb_node;
463 return link;
464 }
465
466 static __always_inline struct list_head *
467 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
468 {
469 struct list_head *list;
470
471 if (unlikely(!parent))
472 /*
473 * The red-black tree where we try to find VA neighbors
474 * before merging or inserting is empty, i.e. it means
475 * there is no free vmap space. Normally it does not
476 * happen but we handle this case anyway.
477 */
478 return NULL;
479
480 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
481 return (&parent->rb_right == link ? list->next : list);
482 }
483
484 static __always_inline void
485 link_va(struct vmap_area *va, struct rb_root *root,
486 struct rb_node *parent, struct rb_node **link, struct list_head *head)
487 {
488 /*
489 * VA is still not in the list, but we can
490 * identify its future previous list_head node.
491 */
492 if (likely(parent)) {
493 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
494 if (&parent->rb_right != link)
495 head = head->prev;
496 }
497
498 /* Insert to the rb-tree */
499 rb_link_node(&va->rb_node, parent, link);
500 if (root == &free_vmap_area_root) {
501 /*
502 * Some explanation here. Just perform simple insertion
503 * to the tree. We do not set va->subtree_max_size to
504 * its current size before calling rb_insert_augmented().
505 * It is because of we populate the tree from the bottom
506 * to parent levels when the node _is_ in the tree.
507 *
508 * Therefore we set subtree_max_size to zero after insertion,
509 * to let __augment_tree_propagate_from() puts everything to
510 * the correct order later on.
511 */
512 rb_insert_augmented(&va->rb_node,
513 root, &free_vmap_area_rb_augment_cb);
514 va->subtree_max_size = 0;
515 } else {
516 rb_insert_color(&va->rb_node, root);
517 }
518
519 /* Address-sort this list */
520 list_add(&va->list, head);
521 }
522
523 static __always_inline void
524 unlink_va(struct vmap_area *va, struct rb_root *root)
525 {
526 /*
527 * During merging a VA node can be empty, therefore
528 * not linked with the tree nor list. Just check it.
529 */
530 if (!RB_EMPTY_NODE(&va->rb_node)) {
531 if (root == &free_vmap_area_root)
532 rb_erase_augmented(&va->rb_node,
533 root, &free_vmap_area_rb_augment_cb);
534 else
535 rb_erase(&va->rb_node, root);
536
537 list_del(&va->list);
538 RB_CLEAR_NODE(&va->rb_node);
539 }
540 }
541
542 /*
543 * This function populates subtree_max_size from bottom to upper
544 * levels starting from VA point. The propagation must be done
545 * when VA size is modified by changing its va_start/va_end. Or
546 * in case of newly inserting of VA to the tree.
547 *
548 * It means that __augment_tree_propagate_from() must be called:
549 * - After VA has been inserted to the tree(free path);
550 * - After VA has been shrunk(allocation path);
551 * - After VA has been increased(merging path).
552 *
553 * Please note that, it does not mean that upper parent nodes
554 * and their subtree_max_size are recalculated all the time up
555 * to the root node.
556 *
557 * 4--8
558 * /\
559 * / \
560 * / \
561 * 2--2 8--8
562 *
563 * For example if we modify the node 4, shrinking it to 2, then
564 * no any modification is required. If we shrink the node 2 to 1
565 * its subtree_max_size is updated only, and set to 1. If we shrink
566 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
567 * node becomes 4--6.
568 */
569 static __always_inline void
570 augment_tree_propagate_from(struct vmap_area *va)
571 {
572 struct rb_node *node = &va->rb_node;
573 unsigned long new_va_sub_max_size;
574
575 while (node) {
576 va = rb_entry(node, struct vmap_area, rb_node);
577 new_va_sub_max_size = compute_subtree_max_size(va);
578
579 /*
580 * If the newly calculated maximum available size of the
581 * subtree is equal to the current one, then it means that
582 * the tree is propagated correctly. So we have to stop at
583 * this point to save cycles.
584 */
585 if (va->subtree_max_size == new_va_sub_max_size)
586 break;
587
588 va->subtree_max_size = new_va_sub_max_size;
589 node = rb_parent(&va->rb_node);
590 }
591 }
592
593 static void
594 insert_vmap_area(struct vmap_area *va,
595 struct rb_root *root, struct list_head *head)
596 {
597 struct rb_node **link;
598 struct rb_node *parent;
599
600 link = find_va_links(va, root, NULL, &parent);
601 link_va(va, root, parent, link, head);
602 }
603
604 static void
605 insert_vmap_area_augment(struct vmap_area *va,
606 struct rb_node *from, struct rb_root *root,
607 struct list_head *head)
608 {
609 struct rb_node **link;
610 struct rb_node *parent;
611
612 if (from)
613 link = find_va_links(va, NULL, from, &parent);
614 else
615 link = find_va_links(va, root, NULL, &parent);
616
617 link_va(va, root, parent, link, head);
618 augment_tree_propagate_from(va);
619 }
620
621 /*
622 * Merge de-allocated chunk of VA memory with previous
623 * and next free blocks. If coalesce is not done a new
624 * free area is inserted. If VA has been merged, it is
625 * freed.
626 */
627 static __always_inline void
628 merge_or_add_vmap_area(struct vmap_area *va,
629 struct rb_root *root, struct list_head *head)
630 {
631 struct vmap_area *sibling;
632 struct list_head *next;
633 struct rb_node **link;
634 struct rb_node *parent;
635 bool merged = false;
636
637 /*
638 * Find a place in the tree where VA potentially will be
639 * inserted, unless it is merged with its sibling/siblings.
640 */
641 link = find_va_links(va, root, NULL, &parent);
642
643 /*
644 * Get next node of VA to check if merging can be done.
645 */
646 next = get_va_next_sibling(parent, link);
647 if (unlikely(next == NULL))
648 goto insert;
649
650 /*
651 * start end
652 * | |
653 * |<------VA------>|<-----Next----->|
654 * | |
655 * start end
656 */
657 if (next != head) {
658 sibling = list_entry(next, struct vmap_area, list);
659 if (sibling->va_start == va->va_end) {
660 sibling->va_start = va->va_start;
661
662 /* Check and update the tree if needed. */
663 augment_tree_propagate_from(sibling);
664
665 /* Remove this VA, it has been merged. */
666 unlink_va(va, root);
667
668 /* Free vmap_area object. */
669 kmem_cache_free(vmap_area_cachep, va);
670
671 /* Point to the new merged area. */
672 va = sibling;
673 merged = true;
674 }
675 }
676
677 /*
678 * start end
679 * | |
680 * |<-----Prev----->|<------VA------>|
681 * | |
682 * start end
683 */
684 if (next->prev != head) {
685 sibling = list_entry(next->prev, struct vmap_area, list);
686 if (sibling->va_end == va->va_start) {
687 sibling->va_end = va->va_end;
688
689 /* Check and update the tree if needed. */
690 augment_tree_propagate_from(sibling);
691
692 /* Remove this VA, it has been merged. */
693 unlink_va(va, root);
694
695 /* Free vmap_area object. */
696 kmem_cache_free(vmap_area_cachep, va);
697
698 return;
699 }
700 }
701
702 insert:
703 if (!merged) {
704 link_va(va, root, parent, link, head);
705 augment_tree_propagate_from(va);
706 }
707 }
708
709 static __always_inline bool
710 is_within_this_va(struct vmap_area *va, unsigned long size,
711 unsigned long align, unsigned long vstart)
712 {
713 unsigned long nva_start_addr;
714
715 if (va->va_start > vstart)
716 nva_start_addr = ALIGN(va->va_start, align);
717 else
718 nva_start_addr = ALIGN(vstart, align);
719
720 /* Can be overflowed due to big size or alignment. */
721 if (nva_start_addr + size < nva_start_addr ||
722 nva_start_addr < vstart)
723 return false;
724
725 return (nva_start_addr + size <= va->va_end);
726 }
727
728 /*
729 * Find the first free block(lowest start address) in the tree,
730 * that will accomplish the request corresponding to passing
731 * parameters.
732 */
733 static __always_inline struct vmap_area *
734 find_vmap_lowest_match(unsigned long size,
735 unsigned long align, unsigned long vstart)
736 {
737 struct vmap_area *va;
738 struct rb_node *node;
739 unsigned long length;
740
741 /* Start from the root. */
742 node = free_vmap_area_root.rb_node;
743
744 /* Adjust the search size for alignment overhead. */
745 length = size + align - 1;
746
747 while (node) {
748 va = rb_entry(node, struct vmap_area, rb_node);
749
750 if (get_subtree_max_size(node->rb_left) >= length &&
751 vstart < va->va_start) {
752 node = node->rb_left;
753 } else {
754 if (is_within_this_va(va, size, align, vstart))
755 return va;
756
757 /*
758 * Does not make sense to go deeper towards the right
759 * sub-tree if it does not have a free block that is
760 * equal or bigger to the requested search length.
761 */
762 if (get_subtree_max_size(node->rb_right) >= length) {
763 node = node->rb_right;
764 continue;
765 }
766
767 /*
768 * OK. We roll back and find the fist right sub-tree,
769 * that will satisfy the search criteria. It can happen
770 * only once due to "vstart" restriction.
771 */
772 while ((node = rb_parent(node))) {
773 va = rb_entry(node, struct vmap_area, rb_node);
774 if (is_within_this_va(va, size, align, vstart))
775 return va;
776
777 if (get_subtree_max_size(node->rb_right) >= length &&
778 vstart <= va->va_start) {
779 node = node->rb_right;
780 break;
781 }
782 }
783 }
784 }
785
786 return NULL;
787 }
788
789 enum fit_type {
790 NOTHING_FIT = 0,
791 FL_FIT_TYPE = 1, /* full fit */
792 LE_FIT_TYPE = 2, /* left edge fit */
793 RE_FIT_TYPE = 3, /* right edge fit */
794 NE_FIT_TYPE = 4 /* no edge fit */
795 };
796
797 static __always_inline enum fit_type
798 classify_va_fit_type(struct vmap_area *va,
799 unsigned long nva_start_addr, unsigned long size)
800 {
801 enum fit_type type;
802
803 /* Check if it is within VA. */
804 if (nva_start_addr < va->va_start ||
805 nva_start_addr + size > va->va_end)
806 return NOTHING_FIT;
807
808 /* Now classify. */
809 if (va->va_start == nva_start_addr) {
810 if (va->va_end == nva_start_addr + size)
811 type = FL_FIT_TYPE;
812 else
813 type = LE_FIT_TYPE;
814 } else if (va->va_end == nva_start_addr + size) {
815 type = RE_FIT_TYPE;
816 } else {
817 type = NE_FIT_TYPE;
818 }
819
820 return type;
821 }
822
823 static __always_inline int
824 adjust_va_to_fit_type(struct vmap_area *va,
825 unsigned long nva_start_addr, unsigned long size,
826 enum fit_type type)
827 {
828 struct vmap_area *lva;
829
830 if (type == FL_FIT_TYPE) {
831 /*
832 * No need to split VA, it fully fits.
833 *
834 * | |
835 * V NVA V
836 * |---------------|
837 */
838 unlink_va(va, &free_vmap_area_root);
839 kmem_cache_free(vmap_area_cachep, va);
840 } else if (type == LE_FIT_TYPE) {
841 /*
842 * Split left edge of fit VA.
843 *
844 * | |
845 * V NVA V R
846 * |-------|-------|
847 */
848 va->va_start += size;
849 } else if (type == RE_FIT_TYPE) {
850 /*
851 * Split right edge of fit VA.
852 *
853 * | |
854 * L V NVA V
855 * |-------|-------|
856 */
857 va->va_end = nva_start_addr;
858 } else if (type == NE_FIT_TYPE) {
859 /*
860 * Split no edge of fit VA.
861 *
862 * | |
863 * L V NVA V R
864 * |---|-------|---|
865 */
866 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
867 if (unlikely(!lva))
868 return -1;
869
870 /*
871 * Build the remainder.
872 */
873 lva->va_start = va->va_start;
874 lva->va_end = nva_start_addr;
875
876 /*
877 * Shrink this VA to remaining size.
878 */
879 va->va_start = nva_start_addr + size;
880 } else {
881 return -1;
882 }
883
884 if (type != FL_FIT_TYPE) {
885 augment_tree_propagate_from(va);
886
887 if (type == NE_FIT_TYPE)
888 insert_vmap_area_augment(lva, &va->rb_node,
889 &free_vmap_area_root, &free_vmap_area_list);
890 }
891
892 return 0;
893 }
894
895 /*
896 * Returns a start address of the newly allocated area, if success.
897 * Otherwise a vend is returned that indicates failure.
898 */
899 static __always_inline unsigned long
900 __alloc_vmap_area(unsigned long size, unsigned long align,
901 unsigned long vstart, unsigned long vend, int node)
902 {
903 unsigned long nva_start_addr;
904 struct vmap_area *va;
905 enum fit_type type;
906 int ret;
907
908 va = find_vmap_lowest_match(size, align, vstart);
909 if (unlikely(!va))
910 return vend;
911
912 if (va->va_start > vstart)
913 nva_start_addr = ALIGN(va->va_start, align);
914 else
915 nva_start_addr = ALIGN(vstart, align);
916
917 /* Check the "vend" restriction. */
918 if (nva_start_addr + size > vend)
919 return vend;
920
921 /* Classify what we have found. */
922 type = classify_va_fit_type(va, nva_start_addr, size);
923 if (WARN_ON_ONCE(type == NOTHING_FIT))
924 return vend;
925
926 /* Update the free vmap_area. */
927 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
928 if (ret)
929 return vend;
930
931 return nva_start_addr;
932 }
933
934 /*
935 * Allocate a region of KVA of the specified size and alignment, within the
936 * vstart and vend.
937 */
938 static struct vmap_area *alloc_vmap_area(unsigned long size,
939 unsigned long align,
940 unsigned long vstart, unsigned long vend,
941 int node, gfp_t gfp_mask)
942 {
943 struct vmap_area *va;
944 unsigned long addr;
945 int purged = 0;
946
947 BUG_ON(!size);
948 BUG_ON(offset_in_page(size));
949 BUG_ON(!is_power_of_2(align));
950
951 if (unlikely(!vmap_initialized))
952 return ERR_PTR(-EBUSY);
953
954 might_sleep();
955
956 va = kmem_cache_alloc_node(vmap_area_cachep,
957 gfp_mask & GFP_RECLAIM_MASK, node);
958 if (unlikely(!va))
959 return ERR_PTR(-ENOMEM);
960
961 /*
962 * Only scan the relevant parts containing pointers to other objects
963 * to avoid false negatives.
964 */
965 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
966
967 retry:
968 spin_lock(&vmap_area_lock);
969
970 /*
971 * If an allocation fails, the "vend" address is
972 * returned. Therefore trigger the overflow path.
973 */
974 addr = __alloc_vmap_area(size, align, vstart, vend, node);
975 if (unlikely(addr == vend))
976 goto overflow;
977
978 va->va_start = addr;
979 va->va_end = addr + size;
980 va->flags = 0;
981 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
982
983 spin_unlock(&vmap_area_lock);
984
985 BUG_ON(!IS_ALIGNED(va->va_start, align));
986 BUG_ON(va->va_start < vstart);
987 BUG_ON(va->va_end > vend);
988
989 return va;
990
991 overflow:
992 spin_unlock(&vmap_area_lock);
993 if (!purged) {
994 purge_vmap_area_lazy();
995 purged = 1;
996 goto retry;
997 }
998
999 if (gfpflags_allow_blocking(gfp_mask)) {
1000 unsigned long freed = 0;
1001 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1002 if (freed > 0) {
1003 purged = 0;
1004 goto retry;
1005 }
1006 }
1007
1008 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1009 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1010 size);
1011
1012 kmem_cache_free(vmap_area_cachep, va);
1013 return ERR_PTR(-EBUSY);
1014 }
1015
1016 int register_vmap_purge_notifier(struct notifier_block *nb)
1017 {
1018 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1019 }
1020 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1021
1022 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1023 {
1024 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1025 }
1026 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1027
1028 static void __free_vmap_area(struct vmap_area *va)
1029 {
1030 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
1031
1032 /*
1033 * Remove from the busy tree/list.
1034 */
1035 unlink_va(va, &vmap_area_root);
1036
1037 /*
1038 * Merge VA with its neighbors, otherwise just add it.
1039 */
1040 merge_or_add_vmap_area(va,
1041 &free_vmap_area_root, &free_vmap_area_list);
1042 }
1043
1044 /*
1045 * Free a region of KVA allocated by alloc_vmap_area
1046 */
1047 static void free_vmap_area(struct vmap_area *va)
1048 {
1049 spin_lock(&vmap_area_lock);
1050 __free_vmap_area(va);
1051 spin_unlock(&vmap_area_lock);
1052 }
1053
1054 /*
1055 * Clear the pagetable entries of a given vmap_area
1056 */
1057 static void unmap_vmap_area(struct vmap_area *va)
1058 {
1059 vunmap_page_range(va->va_start, va->va_end);
1060 }
1061
1062 /*
1063 * lazy_max_pages is the maximum amount of virtual address space we gather up
1064 * before attempting to purge with a TLB flush.
1065 *
1066 * There is a tradeoff here: a larger number will cover more kernel page tables
1067 * and take slightly longer to purge, but it will linearly reduce the number of
1068 * global TLB flushes that must be performed. It would seem natural to scale
1069 * this number up linearly with the number of CPUs (because vmapping activity
1070 * could also scale linearly with the number of CPUs), however it is likely
1071 * that in practice, workloads might be constrained in other ways that mean
1072 * vmap activity will not scale linearly with CPUs. Also, I want to be
1073 * conservative and not introduce a big latency on huge systems, so go with
1074 * a less aggressive log scale. It will still be an improvement over the old
1075 * code, and it will be simple to change the scale factor if we find that it
1076 * becomes a problem on bigger systems.
1077 */
1078 static unsigned long lazy_max_pages(void)
1079 {
1080 unsigned int log;
1081
1082 log = fls(num_online_cpus());
1083
1084 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1085 }
1086
1087 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1088
1089 /*
1090 * Serialize vmap purging. There is no actual criticial section protected
1091 * by this look, but we want to avoid concurrent calls for performance
1092 * reasons and to make the pcpu_get_vm_areas more deterministic.
1093 */
1094 static DEFINE_MUTEX(vmap_purge_lock);
1095
1096 /* for per-CPU blocks */
1097 static void purge_fragmented_blocks_allcpus(void);
1098
1099 /*
1100 * called before a call to iounmap() if the caller wants vm_area_struct's
1101 * immediately freed.
1102 */
1103 void set_iounmap_nonlazy(void)
1104 {
1105 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1106 }
1107
1108 /*
1109 * Purges all lazily-freed vmap areas.
1110 */
1111 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1112 {
1113 unsigned long resched_threshold;
1114 struct llist_node *valist;
1115 struct vmap_area *va;
1116 struct vmap_area *n_va;
1117
1118 lockdep_assert_held(&vmap_purge_lock);
1119
1120 valist = llist_del_all(&vmap_purge_list);
1121 if (unlikely(valist == NULL))
1122 return false;
1123
1124 /*
1125 * TODO: to calculate a flush range without looping.
1126 * The list can be up to lazy_max_pages() elements.
1127 */
1128 llist_for_each_entry(va, valist, purge_list) {
1129 if (va->va_start < start)
1130 start = va->va_start;
1131 if (va->va_end > end)
1132 end = va->va_end;
1133 }
1134
1135 flush_tlb_kernel_range(start, end);
1136 resched_threshold = lazy_max_pages() << 1;
1137
1138 spin_lock(&vmap_area_lock);
1139 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1140 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1141
1142 __free_vmap_area(va);
1143 atomic_long_sub(nr, &vmap_lazy_nr);
1144
1145 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1146 cond_resched_lock(&vmap_area_lock);
1147 }
1148 spin_unlock(&vmap_area_lock);
1149 return true;
1150 }
1151
1152 /*
1153 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1154 * is already purging.
1155 */
1156 static void try_purge_vmap_area_lazy(void)
1157 {
1158 if (mutex_trylock(&vmap_purge_lock)) {
1159 __purge_vmap_area_lazy(ULONG_MAX, 0);
1160 mutex_unlock(&vmap_purge_lock);
1161 }
1162 }
1163
1164 /*
1165 * Kick off a purge of the outstanding lazy areas.
1166 */
1167 static void purge_vmap_area_lazy(void)
1168 {
1169 mutex_lock(&vmap_purge_lock);
1170 purge_fragmented_blocks_allcpus();
1171 __purge_vmap_area_lazy(ULONG_MAX, 0);
1172 mutex_unlock(&vmap_purge_lock);
1173 }
1174
1175 /*
1176 * Free a vmap area, caller ensuring that the area has been unmapped
1177 * and flush_cache_vunmap had been called for the correct range
1178 * previously.
1179 */
1180 static void free_vmap_area_noflush(struct vmap_area *va)
1181 {
1182 unsigned long nr_lazy;
1183
1184 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1185 PAGE_SHIFT, &vmap_lazy_nr);
1186
1187 /* After this point, we may free va at any time */
1188 llist_add(&va->purge_list, &vmap_purge_list);
1189
1190 if (unlikely(nr_lazy > lazy_max_pages()))
1191 try_purge_vmap_area_lazy();
1192 }
1193
1194 /*
1195 * Free and unmap a vmap area
1196 */
1197 static void free_unmap_vmap_area(struct vmap_area *va)
1198 {
1199 flush_cache_vunmap(va->va_start, va->va_end);
1200 unmap_vmap_area(va);
1201 if (debug_pagealloc_enabled())
1202 flush_tlb_kernel_range(va->va_start, va->va_end);
1203
1204 free_vmap_area_noflush(va);
1205 }
1206
1207 static struct vmap_area *find_vmap_area(unsigned long addr)
1208 {
1209 struct vmap_area *va;
1210
1211 spin_lock(&vmap_area_lock);
1212 va = __find_vmap_area(addr);
1213 spin_unlock(&vmap_area_lock);
1214
1215 return va;
1216 }
1217
1218 /*** Per cpu kva allocator ***/
1219
1220 /*
1221 * vmap space is limited especially on 32 bit architectures. Ensure there is
1222 * room for at least 16 percpu vmap blocks per CPU.
1223 */
1224 /*
1225 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1226 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1227 * instead (we just need a rough idea)
1228 */
1229 #if BITS_PER_LONG == 32
1230 #define VMALLOC_SPACE (128UL*1024*1024)
1231 #else
1232 #define VMALLOC_SPACE (128UL*1024*1024*1024)
1233 #endif
1234
1235 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1236 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1237 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1238 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1239 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1240 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1241 #define VMAP_BBMAP_BITS \
1242 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1243 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1244 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1245
1246 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1247
1248 struct vmap_block_queue {
1249 spinlock_t lock;
1250 struct list_head free;
1251 };
1252
1253 struct vmap_block {
1254 spinlock_t lock;
1255 struct vmap_area *va;
1256 unsigned long free, dirty;
1257 unsigned long dirty_min, dirty_max; /*< dirty range */
1258 struct list_head free_list;
1259 struct rcu_head rcu_head;
1260 struct list_head purge;
1261 };
1262
1263 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1264 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1265
1266 /*
1267 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1268 * in the free path. Could get rid of this if we change the API to return a
1269 * "cookie" from alloc, to be passed to free. But no big deal yet.
1270 */
1271 static DEFINE_SPINLOCK(vmap_block_tree_lock);
1272 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1273
1274 /*
1275 * We should probably have a fallback mechanism to allocate virtual memory
1276 * out of partially filled vmap blocks. However vmap block sizing should be
1277 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1278 * big problem.
1279 */
1280
1281 static unsigned long addr_to_vb_idx(unsigned long addr)
1282 {
1283 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1284 addr /= VMAP_BLOCK_SIZE;
1285 return addr;
1286 }
1287
1288 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1289 {
1290 unsigned long addr;
1291
1292 addr = va_start + (pages_off << PAGE_SHIFT);
1293 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1294 return (void *)addr;
1295 }
1296
1297 /**
1298 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1299 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1300 * @order: how many 2^order pages should be occupied in newly allocated block
1301 * @gfp_mask: flags for the page level allocator
1302 *
1303 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1304 */
1305 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1306 {
1307 struct vmap_block_queue *vbq;
1308 struct vmap_block *vb;
1309 struct vmap_area *va;
1310 unsigned long vb_idx;
1311 int node, err;
1312 void *vaddr;
1313
1314 node = numa_node_id();
1315
1316 vb = kmalloc_node(sizeof(struct vmap_block),
1317 gfp_mask & GFP_RECLAIM_MASK, node);
1318 if (unlikely(!vb))
1319 return ERR_PTR(-ENOMEM);
1320
1321 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1322 VMALLOC_START, VMALLOC_END,
1323 node, gfp_mask);
1324 if (IS_ERR(va)) {
1325 kfree(vb);
1326 return ERR_CAST(va);
1327 }
1328
1329 err = radix_tree_preload(gfp_mask);
1330 if (unlikely(err)) {
1331 kfree(vb);
1332 free_vmap_area(va);
1333 return ERR_PTR(err);
1334 }
1335
1336 vaddr = vmap_block_vaddr(va->va_start, 0);
1337 spin_lock_init(&vb->lock);
1338 vb->va = va;
1339 /* At least something should be left free */
1340 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1341 vb->free = VMAP_BBMAP_BITS - (1UL << order);
1342 vb->dirty = 0;
1343 vb->dirty_min = VMAP_BBMAP_BITS;
1344 vb->dirty_max = 0;
1345 INIT_LIST_HEAD(&vb->free_list);
1346
1347 vb_idx = addr_to_vb_idx(va->va_start);
1348 spin_lock(&vmap_block_tree_lock);
1349 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1350 spin_unlock(&vmap_block_tree_lock);
1351 BUG_ON(err);
1352 radix_tree_preload_end();
1353
1354 vbq = &get_cpu_var(vmap_block_queue);
1355 spin_lock(&vbq->lock);
1356 list_add_tail_rcu(&vb->free_list, &vbq->free);
1357 spin_unlock(&vbq->lock);
1358 put_cpu_var(vmap_block_queue);
1359
1360 return vaddr;
1361 }
1362
1363 static void free_vmap_block(struct vmap_block *vb)
1364 {
1365 struct vmap_block *tmp;
1366 unsigned long vb_idx;
1367
1368 vb_idx = addr_to_vb_idx(vb->va->va_start);
1369 spin_lock(&vmap_block_tree_lock);
1370 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1371 spin_unlock(&vmap_block_tree_lock);
1372 BUG_ON(tmp != vb);
1373
1374 free_vmap_area_noflush(vb->va);
1375 kfree_rcu(vb, rcu_head);
1376 }
1377
1378 static void purge_fragmented_blocks(int cpu)
1379 {
1380 LIST_HEAD(purge);
1381 struct vmap_block *vb;
1382 struct vmap_block *n_vb;
1383 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1384
1385 rcu_read_lock();
1386 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1387
1388 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1389 continue;
1390
1391 spin_lock(&vb->lock);
1392 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1393 vb->free = 0; /* prevent further allocs after releasing lock */
1394 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1395 vb->dirty_min = 0;
1396 vb->dirty_max = VMAP_BBMAP_BITS;
1397 spin_lock(&vbq->lock);
1398 list_del_rcu(&vb->free_list);
1399 spin_unlock(&vbq->lock);
1400 spin_unlock(&vb->lock);
1401 list_add_tail(&vb->purge, &purge);
1402 } else
1403 spin_unlock(&vb->lock);
1404 }
1405 rcu_read_unlock();
1406
1407 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1408 list_del(&vb->purge);
1409 free_vmap_block(vb);
1410 }
1411 }
1412
1413 static void purge_fragmented_blocks_allcpus(void)
1414 {
1415 int cpu;
1416
1417 for_each_possible_cpu(cpu)
1418 purge_fragmented_blocks(cpu);
1419 }
1420
1421 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1422 {
1423 struct vmap_block_queue *vbq;
1424 struct vmap_block *vb;
1425 void *vaddr = NULL;
1426 unsigned int order;
1427
1428 BUG_ON(offset_in_page(size));
1429 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1430 if (WARN_ON(size == 0)) {
1431 /*
1432 * Allocating 0 bytes isn't what caller wants since
1433 * get_order(0) returns funny result. Just warn and terminate
1434 * early.
1435 */
1436 return NULL;
1437 }
1438 order = get_order(size);
1439
1440 rcu_read_lock();
1441 vbq = &get_cpu_var(vmap_block_queue);
1442 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1443 unsigned long pages_off;
1444
1445 spin_lock(&vb->lock);
1446 if (vb->free < (1UL << order)) {
1447 spin_unlock(&vb->lock);
1448 continue;
1449 }
1450
1451 pages_off = VMAP_BBMAP_BITS - vb->free;
1452 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1453 vb->free -= 1UL << order;
1454 if (vb->free == 0) {
1455 spin_lock(&vbq->lock);
1456 list_del_rcu(&vb->free_list);
1457 spin_unlock(&vbq->lock);
1458 }
1459
1460 spin_unlock(&vb->lock);
1461 break;
1462 }
1463
1464 put_cpu_var(vmap_block_queue);
1465 rcu_read_unlock();
1466
1467 /* Allocate new block if nothing was found */
1468 if (!vaddr)
1469 vaddr = new_vmap_block(order, gfp_mask);
1470
1471 return vaddr;
1472 }
1473
1474 static void vb_free(const void *addr, unsigned long size)
1475 {
1476 unsigned long offset;
1477 unsigned long vb_idx;
1478 unsigned int order;
1479 struct vmap_block *vb;
1480
1481 BUG_ON(offset_in_page(size));
1482 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1483
1484 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1485
1486 order = get_order(size);
1487
1488 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1489 offset >>= PAGE_SHIFT;
1490
1491 vb_idx = addr_to_vb_idx((unsigned long)addr);
1492 rcu_read_lock();
1493 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1494 rcu_read_unlock();
1495 BUG_ON(!vb);
1496
1497 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1498
1499 if (debug_pagealloc_enabled())
1500 flush_tlb_kernel_range((unsigned long)addr,
1501 (unsigned long)addr + size);
1502
1503 spin_lock(&vb->lock);
1504
1505 /* Expand dirty range */
1506 vb->dirty_min = min(vb->dirty_min, offset);
1507 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1508
1509 vb->dirty += 1UL << order;
1510 if (vb->dirty == VMAP_BBMAP_BITS) {
1511 BUG_ON(vb->free);
1512 spin_unlock(&vb->lock);
1513 free_vmap_block(vb);
1514 } else
1515 spin_unlock(&vb->lock);
1516 }
1517
1518 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1519 {
1520 int cpu;
1521
1522 if (unlikely(!vmap_initialized))
1523 return;
1524
1525 might_sleep();
1526
1527 for_each_possible_cpu(cpu) {
1528 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1529 struct vmap_block *vb;
1530
1531 rcu_read_lock();
1532 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1533 spin_lock(&vb->lock);
1534 if (vb->dirty) {
1535 unsigned long va_start = vb->va->va_start;
1536 unsigned long s, e;
1537
1538 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1539 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1540
1541 start = min(s, start);
1542 end = max(e, end);
1543
1544 flush = 1;
1545 }
1546 spin_unlock(&vb->lock);
1547 }
1548 rcu_read_unlock();
1549 }
1550
1551 mutex_lock(&vmap_purge_lock);
1552 purge_fragmented_blocks_allcpus();
1553 if (!__purge_vmap_area_lazy(start, end) && flush)
1554 flush_tlb_kernel_range(start, end);
1555 mutex_unlock(&vmap_purge_lock);
1556 }
1557
1558 /**
1559 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1560 *
1561 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1562 * to amortize TLB flushing overheads. What this means is that any page you
1563 * have now, may, in a former life, have been mapped into kernel virtual
1564 * address by the vmap layer and so there might be some CPUs with TLB entries
1565 * still referencing that page (additional to the regular 1:1 kernel mapping).
1566 *
1567 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1568 * be sure that none of the pages we have control over will have any aliases
1569 * from the vmap layer.
1570 */
1571 void vm_unmap_aliases(void)
1572 {
1573 unsigned long start = ULONG_MAX, end = 0;
1574 int flush = 0;
1575
1576 _vm_unmap_aliases(start, end, flush);
1577 }
1578 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1579
1580 /**
1581 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1582 * @mem: the pointer returned by vm_map_ram
1583 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1584 */
1585 void vm_unmap_ram(const void *mem, unsigned int count)
1586 {
1587 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1588 unsigned long addr = (unsigned long)mem;
1589 struct vmap_area *va;
1590
1591 might_sleep();
1592 BUG_ON(!addr);
1593 BUG_ON(addr < VMALLOC_START);
1594 BUG_ON(addr > VMALLOC_END);
1595 BUG_ON(!PAGE_ALIGNED(addr));
1596
1597 if (likely(count <= VMAP_MAX_ALLOC)) {
1598 debug_check_no_locks_freed(mem, size);
1599 vb_free(mem, size);
1600 return;
1601 }
1602
1603 va = find_vmap_area(addr);
1604 BUG_ON(!va);
1605 debug_check_no_locks_freed((void *)va->va_start,
1606 (va->va_end - va->va_start));
1607 free_unmap_vmap_area(va);
1608 }
1609 EXPORT_SYMBOL(vm_unmap_ram);
1610
1611 /**
1612 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1613 * @pages: an array of pointers to the pages to be mapped
1614 * @count: number of pages
1615 * @node: prefer to allocate data structures on this node
1616 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1617 *
1618 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1619 * faster than vmap so it's good. But if you mix long-life and short-life
1620 * objects with vm_map_ram(), it could consume lots of address space through
1621 * fragmentation (especially on a 32bit machine). You could see failures in
1622 * the end. Please use this function for short-lived objects.
1623 *
1624 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1625 */
1626 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1627 {
1628 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1629 unsigned long addr;
1630 void *mem;
1631
1632 if (likely(count <= VMAP_MAX_ALLOC)) {
1633 mem = vb_alloc(size, GFP_KERNEL);
1634 if (IS_ERR(mem))
1635 return NULL;
1636 addr = (unsigned long)mem;
1637 } else {
1638 struct vmap_area *va;
1639 va = alloc_vmap_area(size, PAGE_SIZE,
1640 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1641 if (IS_ERR(va))
1642 return NULL;
1643
1644 addr = va->va_start;
1645 mem = (void *)addr;
1646 }
1647 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1648 vm_unmap_ram(mem, count);
1649 return NULL;
1650 }
1651 return mem;
1652 }
1653 EXPORT_SYMBOL(vm_map_ram);
1654
1655 static struct vm_struct *vmlist __initdata;
1656
1657 /**
1658 * vm_area_add_early - add vmap area early during boot
1659 * @vm: vm_struct to add
1660 *
1661 * This function is used to add fixed kernel vm area to vmlist before
1662 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1663 * should contain proper values and the other fields should be zero.
1664 *
1665 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1666 */
1667 void __init vm_area_add_early(struct vm_struct *vm)
1668 {
1669 struct vm_struct *tmp, **p;
1670
1671 BUG_ON(vmap_initialized);
1672 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1673 if (tmp->addr >= vm->addr) {
1674 BUG_ON(tmp->addr < vm->addr + vm->size);
1675 break;
1676 } else
1677 BUG_ON(tmp->addr + tmp->size > vm->addr);
1678 }
1679 vm->next = *p;
1680 *p = vm;
1681 }
1682
1683 /**
1684 * vm_area_register_early - register vmap area early during boot
1685 * @vm: vm_struct to register
1686 * @align: requested alignment
1687 *
1688 * This function is used to register kernel vm area before
1689 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1690 * proper values on entry and other fields should be zero. On return,
1691 * vm->addr contains the allocated address.
1692 *
1693 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1694 */
1695 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1696 {
1697 static size_t vm_init_off __initdata;
1698 unsigned long addr;
1699
1700 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1701 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1702
1703 vm->addr = (void *)addr;
1704
1705 vm_area_add_early(vm);
1706 }
1707
1708 static void vmap_init_free_space(void)
1709 {
1710 unsigned long vmap_start = 1;
1711 const unsigned long vmap_end = ULONG_MAX;
1712 struct vmap_area *busy, *free;
1713
1714 /*
1715 * B F B B B F
1716 * -|-----|.....|-----|-----|-----|.....|-
1717 * | The KVA space |
1718 * |<--------------------------------->|
1719 */
1720 list_for_each_entry(busy, &vmap_area_list, list) {
1721 if (busy->va_start - vmap_start > 0) {
1722 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1723 if (!WARN_ON_ONCE(!free)) {
1724 free->va_start = vmap_start;
1725 free->va_end = busy->va_start;
1726
1727 insert_vmap_area_augment(free, NULL,
1728 &free_vmap_area_root,
1729 &free_vmap_area_list);
1730 }
1731 }
1732
1733 vmap_start = busy->va_end;
1734 }
1735
1736 if (vmap_end - vmap_start > 0) {
1737 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1738 if (!WARN_ON_ONCE(!free)) {
1739 free->va_start = vmap_start;
1740 free->va_end = vmap_end;
1741
1742 insert_vmap_area_augment(free, NULL,
1743 &free_vmap_area_root,
1744 &free_vmap_area_list);
1745 }
1746 }
1747 }
1748
1749 void __init vmalloc_init(void)
1750 {
1751 struct vmap_area *va;
1752 struct vm_struct *tmp;
1753 int i;
1754
1755 /*
1756 * Create the cache for vmap_area objects.
1757 */
1758 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1759
1760 for_each_possible_cpu(i) {
1761 struct vmap_block_queue *vbq;
1762 struct vfree_deferred *p;
1763
1764 vbq = &per_cpu(vmap_block_queue, i);
1765 spin_lock_init(&vbq->lock);
1766 INIT_LIST_HEAD(&vbq->free);
1767 p = &per_cpu(vfree_deferred, i);
1768 init_llist_head(&p->list);
1769 INIT_WORK(&p->wq, free_work);
1770 }
1771
1772 /* Import existing vmlist entries. */
1773 for (tmp = vmlist; tmp; tmp = tmp->next) {
1774 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1775 if (WARN_ON_ONCE(!va))
1776 continue;
1777
1778 va->flags = VM_VM_AREA;
1779 va->va_start = (unsigned long)tmp->addr;
1780 va->va_end = va->va_start + tmp->size;
1781 va->vm = tmp;
1782 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1783 }
1784
1785 /*
1786 * Now we can initialize a free vmap space.
1787 */
1788 vmap_init_free_space();
1789 vmap_initialized = true;
1790 }
1791
1792 /**
1793 * map_kernel_range_noflush - map kernel VM area with the specified pages
1794 * @addr: start of the VM area to map
1795 * @size: size of the VM area to map
1796 * @prot: page protection flags to use
1797 * @pages: pages to map
1798 *
1799 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1800 * specify should have been allocated using get_vm_area() and its
1801 * friends.
1802 *
1803 * NOTE:
1804 * This function does NOT do any cache flushing. The caller is
1805 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1806 * before calling this function.
1807 *
1808 * RETURNS:
1809 * The number of pages mapped on success, -errno on failure.
1810 */
1811 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1812 pgprot_t prot, struct page **pages)
1813 {
1814 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1815 }
1816
1817 /**
1818 * unmap_kernel_range_noflush - unmap kernel VM area
1819 * @addr: start of the VM area to unmap
1820 * @size: size of the VM area to unmap
1821 *
1822 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1823 * specify should have been allocated using get_vm_area() and its
1824 * friends.
1825 *
1826 * NOTE:
1827 * This function does NOT do any cache flushing. The caller is
1828 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1829 * before calling this function and flush_tlb_kernel_range() after.
1830 */
1831 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1832 {
1833 vunmap_page_range(addr, addr + size);
1834 }
1835 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1836
1837 /**
1838 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1839 * @addr: start of the VM area to unmap
1840 * @size: size of the VM area to unmap
1841 *
1842 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1843 * the unmapping and tlb after.
1844 */
1845 void unmap_kernel_range(unsigned long addr, unsigned long size)
1846 {
1847 unsigned long end = addr + size;
1848
1849 flush_cache_vunmap(addr, end);
1850 vunmap_page_range(addr, end);
1851 flush_tlb_kernel_range(addr, end);
1852 }
1853 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1854
1855 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1856 {
1857 unsigned long addr = (unsigned long)area->addr;
1858 unsigned long end = addr + get_vm_area_size(area);
1859 int err;
1860
1861 err = vmap_page_range(addr, end, prot, pages);
1862
1863 return err > 0 ? 0 : err;
1864 }
1865 EXPORT_SYMBOL_GPL(map_vm_area);
1866
1867 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1868 unsigned long flags, const void *caller)
1869 {
1870 spin_lock(&vmap_area_lock);
1871 vm->flags = flags;
1872 vm->addr = (void *)va->va_start;
1873 vm->size = va->va_end - va->va_start;
1874 vm->caller = caller;
1875 va->vm = vm;
1876 va->flags |= VM_VM_AREA;
1877 spin_unlock(&vmap_area_lock);
1878 }
1879
1880 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1881 {
1882 /*
1883 * Before removing VM_UNINITIALIZED,
1884 * we should make sure that vm has proper values.
1885 * Pair with smp_rmb() in show_numa_info().
1886 */
1887 smp_wmb();
1888 vm->flags &= ~VM_UNINITIALIZED;
1889 }
1890
1891 static struct vm_struct *__get_vm_area_node(unsigned long size,
1892 unsigned long align, unsigned long flags, unsigned long start,
1893 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1894 {
1895 struct vmap_area *va;
1896 struct vm_struct *area;
1897
1898 BUG_ON(in_interrupt());
1899 size = PAGE_ALIGN(size);
1900 if (unlikely(!size))
1901 return NULL;
1902
1903 if (flags & VM_IOREMAP)
1904 align = 1ul << clamp_t(int, get_count_order_long(size),
1905 PAGE_SHIFT, IOREMAP_MAX_ORDER);
1906
1907 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1908 if (unlikely(!area))
1909 return NULL;
1910
1911 if (!(flags & VM_NO_GUARD))
1912 size += PAGE_SIZE;
1913
1914 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1915 if (IS_ERR(va)) {
1916 kfree(area);
1917 return NULL;
1918 }
1919
1920 setup_vmalloc_vm(area, va, flags, caller);
1921
1922 return area;
1923 }
1924
1925 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1926 unsigned long start, unsigned long end)
1927 {
1928 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1929 GFP_KERNEL, __builtin_return_address(0));
1930 }
1931 EXPORT_SYMBOL_GPL(__get_vm_area);
1932
1933 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1934 unsigned long start, unsigned long end,
1935 const void *caller)
1936 {
1937 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1938 GFP_KERNEL, caller);
1939 }
1940
1941 /**
1942 * get_vm_area - reserve a contiguous kernel virtual area
1943 * @size: size of the area
1944 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1945 *
1946 * Search an area of @size in the kernel virtual mapping area,
1947 * and reserved it for out purposes. Returns the area descriptor
1948 * on success or %NULL on failure.
1949 *
1950 * Return: the area descriptor on success or %NULL on failure.
1951 */
1952 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1953 {
1954 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1955 NUMA_NO_NODE, GFP_KERNEL,
1956 __builtin_return_address(0));
1957 }
1958
1959 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1960 const void *caller)
1961 {
1962 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1963 NUMA_NO_NODE, GFP_KERNEL, caller);
1964 }
1965
1966 /**
1967 * find_vm_area - find a continuous kernel virtual area
1968 * @addr: base address
1969 *
1970 * Search for the kernel VM area starting at @addr, and return it.
1971 * It is up to the caller to do all required locking to keep the returned
1972 * pointer valid.
1973 *
1974 * Return: pointer to the found area or %NULL on faulure
1975 */
1976 struct vm_struct *find_vm_area(const void *addr)
1977 {
1978 struct vmap_area *va;
1979
1980 va = find_vmap_area((unsigned long)addr);
1981 if (va && va->flags & VM_VM_AREA)
1982 return va->vm;
1983
1984 return NULL;
1985 }
1986
1987 /**
1988 * remove_vm_area - find and remove a continuous kernel virtual area
1989 * @addr: base address
1990 *
1991 * Search for the kernel VM area starting at @addr, and remove it.
1992 * This function returns the found VM area, but using it is NOT safe
1993 * on SMP machines, except for its size or flags.
1994 *
1995 * Return: pointer to the found area or %NULL on faulure
1996 */
1997 struct vm_struct *remove_vm_area(const void *addr)
1998 {
1999 struct vmap_area *va;
2000
2001 might_sleep();
2002
2003 va = find_vmap_area((unsigned long)addr);
2004 if (va && va->flags & VM_VM_AREA) {
2005 struct vm_struct *vm = va->vm;
2006
2007 spin_lock(&vmap_area_lock);
2008 va->vm = NULL;
2009 va->flags &= ~VM_VM_AREA;
2010 va->flags |= VM_LAZY_FREE;
2011 spin_unlock(&vmap_area_lock);
2012
2013 kasan_free_shadow(vm);
2014 free_unmap_vmap_area(va);
2015
2016 return vm;
2017 }
2018 return NULL;
2019 }
2020
2021 static inline void set_area_direct_map(const struct vm_struct *area,
2022 int (*set_direct_map)(struct page *page))
2023 {
2024 int i;
2025
2026 for (i = 0; i < area->nr_pages; i++)
2027 if (page_address(area->pages[i]))
2028 set_direct_map(area->pages[i]);
2029 }
2030
2031 /* Handle removing and resetting vm mappings related to the vm_struct. */
2032 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2033 {
2034 unsigned long addr = (unsigned long)area->addr;
2035 unsigned long start = ULONG_MAX, end = 0;
2036 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2037 int i;
2038
2039 /*
2040 * The below block can be removed when all architectures that have
2041 * direct map permissions also have set_direct_map_() implementations.
2042 * This is concerned with resetting the direct map any an vm alias with
2043 * execute permissions, without leaving a RW+X window.
2044 */
2045 if (flush_reset && !IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
2046 set_memory_nx(addr, area->nr_pages);
2047 set_memory_rw(addr, area->nr_pages);
2048 }
2049
2050 remove_vm_area(area->addr);
2051
2052 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2053 if (!flush_reset)
2054 return;
2055
2056 /*
2057 * If not deallocating pages, just do the flush of the VM area and
2058 * return.
2059 */
2060 if (!deallocate_pages) {
2061 vm_unmap_aliases();
2062 return;
2063 }
2064
2065 /*
2066 * If execution gets here, flush the vm mapping and reset the direct
2067 * map. Find the start and end range of the direct mappings to make sure
2068 * the vm_unmap_aliases() flush includes the direct map.
2069 */
2070 for (i = 0; i < area->nr_pages; i++) {
2071 if (page_address(area->pages[i])) {
2072 start = min(addr, start);
2073 end = max(addr, end);
2074 }
2075 }
2076
2077 /*
2078 * Set direct map to something invalid so that it won't be cached if
2079 * there are any accesses after the TLB flush, then flush the TLB and
2080 * reset the direct map permissions to the default.
2081 */
2082 set_area_direct_map(area, set_direct_map_invalid_noflush);
2083 _vm_unmap_aliases(start, end, 1);
2084 set_area_direct_map(area, set_direct_map_default_noflush);
2085 }
2086
2087 static void __vunmap(const void *addr, int deallocate_pages)
2088 {
2089 struct vm_struct *area;
2090
2091 if (!addr)
2092 return;
2093
2094 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2095 addr))
2096 return;
2097
2098 area = find_vm_area(addr);
2099 if (unlikely(!area)) {
2100 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2101 addr);
2102 return;
2103 }
2104
2105 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2106 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2107
2108 vm_remove_mappings(area, deallocate_pages);
2109
2110 if (deallocate_pages) {
2111 int i;
2112
2113 for (i = 0; i < area->nr_pages; i++) {
2114 struct page *page = area->pages[i];
2115
2116 BUG_ON(!page);
2117 __free_pages(page, 0);
2118 }
2119
2120 kvfree(area->pages);
2121 }
2122
2123 kfree(area);
2124 return;
2125 }
2126
2127 static inline void __vfree_deferred(const void *addr)
2128 {
2129 /*
2130 * Use raw_cpu_ptr() because this can be called from preemptible
2131 * context. Preemption is absolutely fine here, because the llist_add()
2132 * implementation is lockless, so it works even if we are adding to
2133 * nother cpu's list. schedule_work() should be fine with this too.
2134 */
2135 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2136
2137 if (llist_add((struct llist_node *)addr, &p->list))
2138 schedule_work(&p->wq);
2139 }
2140
2141 /**
2142 * vfree_atomic - release memory allocated by vmalloc()
2143 * @addr: memory base address
2144 *
2145 * This one is just like vfree() but can be called in any atomic context
2146 * except NMIs.
2147 */
2148 void vfree_atomic(const void *addr)
2149 {
2150 BUG_ON(in_nmi());
2151
2152 kmemleak_free(addr);
2153
2154 if (!addr)
2155 return;
2156 __vfree_deferred(addr);
2157 }
2158
2159 static void __vfree(const void *addr)
2160 {
2161 if (unlikely(in_interrupt()))
2162 __vfree_deferred(addr);
2163 else
2164 __vunmap(addr, 1);
2165 }
2166
2167 /**
2168 * vfree - release memory allocated by vmalloc()
2169 * @addr: memory base address
2170 *
2171 * Free the virtually continuous memory area starting at @addr, as
2172 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2173 * NULL, no operation is performed.
2174 *
2175 * Must not be called in NMI context (strictly speaking, only if we don't
2176 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2177 * conventions for vfree() arch-depenedent would be a really bad idea)
2178 *
2179 * May sleep if called *not* from interrupt context.
2180 *
2181 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
2182 */
2183 void vfree(const void *addr)
2184 {
2185 BUG_ON(in_nmi());
2186
2187 kmemleak_free(addr);
2188
2189 might_sleep_if(!in_interrupt());
2190
2191 if (!addr)
2192 return;
2193
2194 __vfree(addr);
2195 }
2196 EXPORT_SYMBOL(vfree);
2197
2198 /**
2199 * vunmap - release virtual mapping obtained by vmap()
2200 * @addr: memory base address
2201 *
2202 * Free the virtually contiguous memory area starting at @addr,
2203 * which was created from the page array passed to vmap().
2204 *
2205 * Must not be called in interrupt context.
2206 */
2207 void vunmap(const void *addr)
2208 {
2209 BUG_ON(in_interrupt());
2210 might_sleep();
2211 if (addr)
2212 __vunmap(addr, 0);
2213 }
2214 EXPORT_SYMBOL(vunmap);
2215
2216 /**
2217 * vmap - map an array of pages into virtually contiguous space
2218 * @pages: array of page pointers
2219 * @count: number of pages to map
2220 * @flags: vm_area->flags
2221 * @prot: page protection for the mapping
2222 *
2223 * Maps @count pages from @pages into contiguous kernel virtual
2224 * space.
2225 *
2226 * Return: the address of the area or %NULL on failure
2227 */
2228 void *vmap(struct page **pages, unsigned int count,
2229 unsigned long flags, pgprot_t prot)
2230 {
2231 struct vm_struct *area;
2232 unsigned long size; /* In bytes */
2233
2234 might_sleep();
2235
2236 if (count > totalram_pages())
2237 return NULL;
2238
2239 size = (unsigned long)count << PAGE_SHIFT;
2240 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2241 if (!area)
2242 return NULL;
2243
2244 if (map_vm_area(area, prot, pages)) {
2245 vunmap(area->addr);
2246 return NULL;
2247 }
2248
2249 return area->addr;
2250 }
2251 EXPORT_SYMBOL(vmap);
2252
2253 static void *__vmalloc_node(unsigned long size, unsigned long align,
2254 gfp_t gfp_mask, pgprot_t prot,
2255 int node, const void *caller);
2256 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2257 pgprot_t prot, int node)
2258 {
2259 struct page **pages;
2260 unsigned int nr_pages, array_size, i;
2261 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2262 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2263 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2264 0 :
2265 __GFP_HIGHMEM;
2266
2267 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2268 array_size = (nr_pages * sizeof(struct page *));
2269
2270 area->nr_pages = nr_pages;
2271 /* Please note that the recursion is strictly bounded. */
2272 if (array_size > PAGE_SIZE) {
2273 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2274 PAGE_KERNEL, node, area->caller);
2275 } else {
2276 pages = kmalloc_node(array_size, nested_gfp, node);
2277 }
2278 area->pages = pages;
2279 if (!area->pages) {
2280 remove_vm_area(area->addr);
2281 kfree(area);
2282 return NULL;
2283 }
2284
2285 for (i = 0; i < area->nr_pages; i++) {
2286 struct page *page;
2287
2288 if (node == NUMA_NO_NODE)
2289 page = alloc_page(alloc_mask|highmem_mask);
2290 else
2291 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2292
2293 if (unlikely(!page)) {
2294 /* Successfully allocated i pages, free them in __vunmap() */
2295 area->nr_pages = i;
2296 goto fail;
2297 }
2298 area->pages[i] = page;
2299 if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
2300 cond_resched();
2301 }
2302
2303 if (map_vm_area(area, prot, pages))
2304 goto fail;
2305 return area->addr;
2306
2307 fail:
2308 warn_alloc(gfp_mask, NULL,
2309 "vmalloc: allocation failure, allocated %ld of %ld bytes",
2310 (area->nr_pages*PAGE_SIZE), area->size);
2311 __vfree(area->addr);
2312 return NULL;
2313 }
2314
2315 /**
2316 * __vmalloc_node_range - allocate virtually contiguous memory
2317 * @size: allocation size
2318 * @align: desired alignment
2319 * @start: vm area range start
2320 * @end: vm area range end
2321 * @gfp_mask: flags for the page level allocator
2322 * @prot: protection mask for the allocated pages
2323 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2324 * @node: node to use for allocation or NUMA_NO_NODE
2325 * @caller: caller's return address
2326 *
2327 * Allocate enough pages to cover @size from the page level
2328 * allocator with @gfp_mask flags. Map them into contiguous
2329 * kernel virtual space, using a pagetable protection of @prot.
2330 *
2331 * Return: the address of the area or %NULL on failure
2332 */
2333 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2334 unsigned long start, unsigned long end, gfp_t gfp_mask,
2335 pgprot_t prot, unsigned long vm_flags, int node,
2336 const void *caller)
2337 {
2338 struct vm_struct *area;
2339 void *addr;
2340 unsigned long real_size = size;
2341
2342 size = PAGE_ALIGN(size);
2343 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2344 goto fail;
2345
2346 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2347 vm_flags, start, end, node, gfp_mask, caller);
2348 if (!area)
2349 goto fail;
2350
2351 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2352 if (!addr)
2353 return NULL;
2354
2355 /*
2356 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2357 * flag. It means that vm_struct is not fully initialized.
2358 * Now, it is fully initialized, so remove this flag here.
2359 */
2360 clear_vm_uninitialized_flag(area);
2361
2362 kmemleak_vmalloc(area, size, gfp_mask);
2363
2364 return addr;
2365
2366 fail:
2367 warn_alloc(gfp_mask, NULL,
2368 "vmalloc: allocation failure: %lu bytes", real_size);
2369 return NULL;
2370 }
2371
2372 /*
2373 * This is only for performance analysis of vmalloc and stress purpose.
2374 * It is required by vmalloc test module, therefore do not use it other
2375 * than that.
2376 */
2377 #ifdef CONFIG_TEST_VMALLOC_MODULE
2378 EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2379 #endif
2380
2381 /**
2382 * __vmalloc_node - allocate virtually contiguous memory
2383 * @size: allocation size
2384 * @align: desired alignment
2385 * @gfp_mask: flags for the page level allocator
2386 * @prot: protection mask for the allocated pages
2387 * @node: node to use for allocation or NUMA_NO_NODE
2388 * @caller: caller's return address
2389 *
2390 * Allocate enough pages to cover @size from the page level
2391 * allocator with @gfp_mask flags. Map them into contiguous
2392 * kernel virtual space, using a pagetable protection of @prot.
2393 *
2394 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2395 * and __GFP_NOFAIL are not supported
2396 *
2397 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2398 * with mm people.
2399 *
2400 * Return: pointer to the allocated memory or %NULL on error
2401 */
2402 static void *__vmalloc_node(unsigned long size, unsigned long align,
2403 gfp_t gfp_mask, pgprot_t prot,
2404 int node, const void *caller)
2405 {
2406 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2407 gfp_mask, prot, 0, node, caller);
2408 }
2409
2410 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2411 {
2412 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2413 __builtin_return_address(0));
2414 }
2415 EXPORT_SYMBOL(__vmalloc);
2416
2417 static inline void *__vmalloc_node_flags(unsigned long size,
2418 int node, gfp_t flags)
2419 {
2420 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2421 node, __builtin_return_address(0));
2422 }
2423
2424
2425 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2426 void *caller)
2427 {
2428 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2429 }
2430
2431 /**
2432 * vmalloc - allocate virtually contiguous memory
2433 * @size: allocation size
2434 *
2435 * Allocate enough pages to cover @size from the page level
2436 * allocator and map them into contiguous kernel virtual space.
2437 *
2438 * For tight control over page level allocator and protection flags
2439 * use __vmalloc() instead.
2440 *
2441 * Return: pointer to the allocated memory or %NULL on error
2442 */
2443 void *vmalloc(unsigned long size)
2444 {
2445 return __vmalloc_node_flags(size, NUMA_NO_NODE,
2446 GFP_KERNEL);
2447 }
2448 EXPORT_SYMBOL(vmalloc);
2449
2450 /**
2451 * vzalloc - allocate virtually contiguous memory with zero fill
2452 * @size: allocation size
2453 *
2454 * Allocate enough pages to cover @size from the page level
2455 * allocator and map them into contiguous kernel virtual space.
2456 * The memory allocated is set to zero.
2457 *
2458 * For tight control over page level allocator and protection flags
2459 * use __vmalloc() instead.
2460 *
2461 * Return: pointer to the allocated memory or %NULL on error
2462 */
2463 void *vzalloc(unsigned long size)
2464 {
2465 return __vmalloc_node_flags(size, NUMA_NO_NODE,
2466 GFP_KERNEL | __GFP_ZERO);
2467 }
2468 EXPORT_SYMBOL(vzalloc);
2469
2470 /**
2471 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2472 * @size: allocation size
2473 *
2474 * The resulting memory area is zeroed so it can be mapped to userspace
2475 * without leaking data.
2476 *
2477 * Return: pointer to the allocated memory or %NULL on error
2478 */
2479 void *vmalloc_user(unsigned long size)
2480 {
2481 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2482 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2483 VM_USERMAP, NUMA_NO_NODE,
2484 __builtin_return_address(0));
2485 }
2486 EXPORT_SYMBOL(vmalloc_user);
2487
2488 /**
2489 * vmalloc_node - allocate memory on a specific node
2490 * @size: allocation size
2491 * @node: numa node
2492 *
2493 * Allocate enough pages to cover @size from the page level
2494 * allocator and map them into contiguous kernel virtual space.
2495 *
2496 * For tight control over page level allocator and protection flags
2497 * use __vmalloc() instead.
2498 *
2499 * Return: pointer to the allocated memory or %NULL on error
2500 */
2501 void *vmalloc_node(unsigned long size, int node)
2502 {
2503 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2504 node, __builtin_return_address(0));
2505 }
2506 EXPORT_SYMBOL(vmalloc_node);
2507
2508 /**
2509 * vzalloc_node - allocate memory on a specific node with zero fill
2510 * @size: allocation size
2511 * @node: numa node
2512 *
2513 * Allocate enough pages to cover @size from the page level
2514 * allocator and map them into contiguous kernel virtual space.
2515 * The memory allocated is set to zero.
2516 *
2517 * For tight control over page level allocator and protection flags
2518 * use __vmalloc_node() instead.
2519 *
2520 * Return: pointer to the allocated memory or %NULL on error
2521 */
2522 void *vzalloc_node(unsigned long size, int node)
2523 {
2524 return __vmalloc_node_flags(size, node,
2525 GFP_KERNEL | __GFP_ZERO);
2526 }
2527 EXPORT_SYMBOL(vzalloc_node);
2528
2529 /**
2530 * vmalloc_exec - allocate virtually contiguous, executable memory
2531 * @size: allocation size
2532 *
2533 * Kernel-internal function to allocate enough pages to cover @size
2534 * the page level allocator and map them into contiguous and
2535 * executable kernel virtual space.
2536 *
2537 * For tight control over page level allocator and protection flags
2538 * use __vmalloc() instead.
2539 *
2540 * Return: pointer to the allocated memory or %NULL on error
2541 */
2542 void *vmalloc_exec(unsigned long size)
2543 {
2544 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2545 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2546 NUMA_NO_NODE, __builtin_return_address(0));
2547 }
2548
2549 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2550 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2551 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2552 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2553 #else
2554 /*
2555 * 64b systems should always have either DMA or DMA32 zones. For others
2556 * GFP_DMA32 should do the right thing and use the normal zone.
2557 */
2558 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2559 #endif
2560
2561 /**
2562 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2563 * @size: allocation size
2564 *
2565 * Allocate enough 32bit PA addressable pages to cover @size from the
2566 * page level allocator and map them into contiguous kernel virtual space.
2567 *
2568 * Return: pointer to the allocated memory or %NULL on error
2569 */
2570 void *vmalloc_32(unsigned long size)
2571 {
2572 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
2573 NUMA_NO_NODE, __builtin_return_address(0));
2574 }
2575 EXPORT_SYMBOL(vmalloc_32);
2576
2577 /**
2578 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2579 * @size: allocation size
2580 *
2581 * The resulting memory area is 32bit addressable and zeroed so it can be
2582 * mapped to userspace without leaking data.
2583 *
2584 * Return: pointer to the allocated memory or %NULL on error
2585 */
2586 void *vmalloc_32_user(unsigned long size)
2587 {
2588 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2589 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2590 VM_USERMAP, NUMA_NO_NODE,
2591 __builtin_return_address(0));
2592 }
2593 EXPORT_SYMBOL(vmalloc_32_user);
2594
2595 /*
2596 * small helper routine , copy contents to buf from addr.
2597 * If the page is not present, fill zero.
2598 */
2599
2600 static int aligned_vread(char *buf, char *addr, unsigned long count)
2601 {
2602 struct page *p;
2603 int copied = 0;
2604
2605 while (count) {
2606 unsigned long offset, length;
2607
2608 offset = offset_in_page(addr);
2609 length = PAGE_SIZE - offset;
2610 if (length > count)
2611 length = count;
2612 p = vmalloc_to_page(addr);
2613 /*
2614 * To do safe access to this _mapped_ area, we need
2615 * lock. But adding lock here means that we need to add
2616 * overhead of vmalloc()/vfree() calles for this _debug_
2617 * interface, rarely used. Instead of that, we'll use
2618 * kmap() and get small overhead in this access function.
2619 */
2620 if (p) {
2621 /*
2622 * we can expect USER0 is not used (see vread/vwrite's
2623 * function description)
2624 */
2625 void *map = kmap_atomic(p);
2626 memcpy(buf, map + offset, length);
2627 kunmap_atomic(map);
2628 } else
2629 memset(buf, 0, length);
2630
2631 addr += length;
2632 buf += length;
2633 copied += length;
2634 count -= length;
2635 }
2636 return copied;
2637 }
2638
2639 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2640 {
2641 struct page *p;
2642 int copied = 0;
2643
2644 while (count) {
2645 unsigned long offset, length;
2646
2647 offset = offset_in_page(addr);
2648 length = PAGE_SIZE - offset;
2649 if (length > count)
2650 length = count;
2651 p = vmalloc_to_page(addr);
2652 /*
2653 * To do safe access to this _mapped_ area, we need
2654 * lock. But adding lock here means that we need to add
2655 * overhead of vmalloc()/vfree() calles for this _debug_
2656 * interface, rarely used. Instead of that, we'll use
2657 * kmap() and get small overhead in this access function.
2658 */
2659 if (p) {
2660 /*
2661 * we can expect USER0 is not used (see vread/vwrite's
2662 * function description)
2663 */
2664 void *map = kmap_atomic(p);
2665 memcpy(map + offset, buf, length);
2666 kunmap_atomic(map);
2667 }
2668 addr += length;
2669 buf += length;
2670 copied += length;
2671 count -= length;
2672 }
2673 return copied;
2674 }
2675
2676 /**
2677 * vread() - read vmalloc area in a safe way.
2678 * @buf: buffer for reading data
2679 * @addr: vm address.
2680 * @count: number of bytes to be read.
2681 *
2682 * This function checks that addr is a valid vmalloc'ed area, and
2683 * copy data from that area to a given buffer. If the given memory range
2684 * of [addr...addr+count) includes some valid address, data is copied to
2685 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2686 * IOREMAP area is treated as memory hole and no copy is done.
2687 *
2688 * If [addr...addr+count) doesn't includes any intersects with alive
2689 * vm_struct area, returns 0. @buf should be kernel's buffer.
2690 *
2691 * Note: In usual ops, vread() is never necessary because the caller
2692 * should know vmalloc() area is valid and can use memcpy().
2693 * This is for routines which have to access vmalloc area without
2694 * any informaion, as /dev/kmem.
2695 *
2696 * Return: number of bytes for which addr and buf should be increased
2697 * (same number as @count) or %0 if [addr...addr+count) doesn't
2698 * include any intersection with valid vmalloc area
2699 */
2700 long vread(char *buf, char *addr, unsigned long count)
2701 {
2702 struct vmap_area *va;
2703 struct vm_struct *vm;
2704 char *vaddr, *buf_start = buf;
2705 unsigned long buflen = count;
2706 unsigned long n;
2707
2708 /* Don't allow overflow */
2709 if ((unsigned long) addr + count < count)
2710 count = -(unsigned long) addr;
2711
2712 spin_lock(&vmap_area_lock);
2713 list_for_each_entry(va, &vmap_area_list, list) {
2714 if (!count)
2715 break;
2716
2717 if (!(va->flags & VM_VM_AREA))
2718 continue;
2719
2720 vm = va->vm;
2721 vaddr = (char *) vm->addr;
2722 if (addr >= vaddr + get_vm_area_size(vm))
2723 continue;
2724 while (addr < vaddr) {
2725 if (count == 0)
2726 goto finished;
2727 *buf = '\0';
2728 buf++;
2729 addr++;
2730 count--;
2731 }
2732 n = vaddr + get_vm_area_size(vm) - addr;
2733 if (n > count)
2734 n = count;
2735 if (!(vm->flags & VM_IOREMAP))
2736 aligned_vread(buf, addr, n);
2737 else /* IOREMAP area is treated as memory hole */
2738 memset(buf, 0, n);
2739 buf += n;
2740 addr += n;
2741 count -= n;
2742 }
2743 finished:
2744 spin_unlock(&vmap_area_lock);
2745
2746 if (buf == buf_start)
2747 return 0;
2748 /* zero-fill memory holes */
2749 if (buf != buf_start + buflen)
2750 memset(buf, 0, buflen - (buf - buf_start));
2751
2752 return buflen;
2753 }
2754
2755 /**
2756 * vwrite() - write vmalloc area in a safe way.
2757 * @buf: buffer for source data
2758 * @addr: vm address.
2759 * @count: number of bytes to be read.
2760 *
2761 * This function checks that addr is a valid vmalloc'ed area, and
2762 * copy data from a buffer to the given addr. If specified range of
2763 * [addr...addr+count) includes some valid address, data is copied from
2764 * proper area of @buf. If there are memory holes, no copy to hole.
2765 * IOREMAP area is treated as memory hole and no copy is done.
2766 *
2767 * If [addr...addr+count) doesn't includes any intersects with alive
2768 * vm_struct area, returns 0. @buf should be kernel's buffer.
2769 *
2770 * Note: In usual ops, vwrite() is never necessary because the caller
2771 * should know vmalloc() area is valid and can use memcpy().
2772 * This is for routines which have to access vmalloc area without
2773 * any informaion, as /dev/kmem.
2774 *
2775 * Return: number of bytes for which addr and buf should be
2776 * increased (same number as @count) or %0 if [addr...addr+count)
2777 * doesn't include any intersection with valid vmalloc area
2778 */
2779 long vwrite(char *buf, char *addr, unsigned long count)
2780 {
2781 struct vmap_area *va;
2782 struct vm_struct *vm;
2783 char *vaddr;
2784 unsigned long n, buflen;
2785 int copied = 0;
2786
2787 /* Don't allow overflow */
2788 if ((unsigned long) addr + count < count)
2789 count = -(unsigned long) addr;
2790 buflen = count;
2791
2792 spin_lock(&vmap_area_lock);
2793 list_for_each_entry(va, &vmap_area_list, list) {
2794 if (!count)
2795 break;
2796
2797 if (!(va->flags & VM_VM_AREA))
2798 continue;
2799
2800 vm = va->vm;
2801 vaddr = (char *) vm->addr;
2802 if (addr >= vaddr + get_vm_area_size(vm))
2803 continue;
2804 while (addr < vaddr) {
2805 if (count == 0)
2806 goto finished;
2807 buf++;
2808 addr++;
2809 count--;
2810 }
2811 n = vaddr + get_vm_area_size(vm) - addr;
2812 if (n > count)
2813 n = count;
2814 if (!(vm->flags & VM_IOREMAP)) {
2815 aligned_vwrite(buf, addr, n);
2816 copied++;
2817 }
2818 buf += n;
2819 addr += n;
2820 count -= n;
2821 }
2822 finished:
2823 spin_unlock(&vmap_area_lock);
2824 if (!copied)
2825 return 0;
2826 return buflen;
2827 }
2828
2829 /**
2830 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2831 * @vma: vma to cover
2832 * @uaddr: target user address to start at
2833 * @kaddr: virtual address of vmalloc kernel memory
2834 * @size: size of map area
2835 *
2836 * Returns: 0 for success, -Exxx on failure
2837 *
2838 * This function checks that @kaddr is a valid vmalloc'ed area,
2839 * and that it is big enough to cover the range starting at
2840 * @uaddr in @vma. Will return failure if that criteria isn't
2841 * met.
2842 *
2843 * Similar to remap_pfn_range() (see mm/memory.c)
2844 */
2845 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2846 void *kaddr, unsigned long size)
2847 {
2848 struct vm_struct *area;
2849
2850 size = PAGE_ALIGN(size);
2851
2852 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2853 return -EINVAL;
2854
2855 area = find_vm_area(kaddr);
2856 if (!area)
2857 return -EINVAL;
2858
2859 if (!(area->flags & VM_USERMAP))
2860 return -EINVAL;
2861
2862 if (kaddr + size > area->addr + get_vm_area_size(area))
2863 return -EINVAL;
2864
2865 do {
2866 struct page *page = vmalloc_to_page(kaddr);
2867 int ret;
2868
2869 ret = vm_insert_page(vma, uaddr, page);
2870 if (ret)
2871 return ret;
2872
2873 uaddr += PAGE_SIZE;
2874 kaddr += PAGE_SIZE;
2875 size -= PAGE_SIZE;
2876 } while (size > 0);
2877
2878 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2879
2880 return 0;
2881 }
2882 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2883
2884 /**
2885 * remap_vmalloc_range - map vmalloc pages to userspace
2886 * @vma: vma to cover (map full range of vma)
2887 * @addr: vmalloc memory
2888 * @pgoff: number of pages into addr before first page to map
2889 *
2890 * Returns: 0 for success, -Exxx on failure
2891 *
2892 * This function checks that addr is a valid vmalloc'ed area, and
2893 * that it is big enough to cover the vma. Will return failure if
2894 * that criteria isn't met.
2895 *
2896 * Similar to remap_pfn_range() (see mm/memory.c)
2897 */
2898 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2899 unsigned long pgoff)
2900 {
2901 return remap_vmalloc_range_partial(vma, vma->vm_start,
2902 addr + (pgoff << PAGE_SHIFT),
2903 vma->vm_end - vma->vm_start);
2904 }
2905 EXPORT_SYMBOL(remap_vmalloc_range);
2906
2907 /*
2908 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2909 * have one.
2910 */
2911 void __weak vmalloc_sync_all(void)
2912 {
2913 }
2914
2915
2916 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2917 {
2918 pte_t ***p = data;
2919
2920 if (p) {
2921 *(*p) = pte;
2922 (*p)++;
2923 }
2924 return 0;
2925 }
2926
2927 /**
2928 * alloc_vm_area - allocate a range of kernel address space
2929 * @size: size of the area
2930 * @ptes: returns the PTEs for the address space
2931 *
2932 * Returns: NULL on failure, vm_struct on success
2933 *
2934 * This function reserves a range of kernel address space, and
2935 * allocates pagetables to map that range. No actual mappings
2936 * are created.
2937 *
2938 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2939 * allocated for the VM area are returned.
2940 */
2941 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2942 {
2943 struct vm_struct *area;
2944
2945 area = get_vm_area_caller(size, VM_IOREMAP,
2946 __builtin_return_address(0));
2947 if (area == NULL)
2948 return NULL;
2949
2950 /*
2951 * This ensures that page tables are constructed for this region
2952 * of kernel virtual address space and mapped into init_mm.
2953 */
2954 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2955 size, f, ptes ? &ptes : NULL)) {
2956 free_vm_area(area);
2957 return NULL;
2958 }
2959
2960 return area;
2961 }
2962 EXPORT_SYMBOL_GPL(alloc_vm_area);
2963
2964 void free_vm_area(struct vm_struct *area)
2965 {
2966 struct vm_struct *ret;
2967 ret = remove_vm_area(area->addr);
2968 BUG_ON(ret != area);
2969 kfree(area);
2970 }
2971 EXPORT_SYMBOL_GPL(free_vm_area);
2972
2973 #ifdef CONFIG_SMP
2974 static struct vmap_area *node_to_va(struct rb_node *n)
2975 {
2976 return rb_entry_safe(n, struct vmap_area, rb_node);
2977 }
2978
2979 /**
2980 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
2981 * @addr: target address
2982 *
2983 * Returns: vmap_area if it is found. If there is no such area
2984 * the first highest(reverse order) vmap_area is returned
2985 * i.e. va->va_start < addr && va->va_end < addr or NULL
2986 * if there are no any areas before @addr.
2987 */
2988 static struct vmap_area *
2989 pvm_find_va_enclose_addr(unsigned long addr)
2990 {
2991 struct vmap_area *va, *tmp;
2992 struct rb_node *n;
2993
2994 n = free_vmap_area_root.rb_node;
2995 va = NULL;
2996
2997 while (n) {
2998 tmp = rb_entry(n, struct vmap_area, rb_node);
2999 if (tmp->va_start <= addr) {
3000 va = tmp;
3001 if (tmp->va_end >= addr)
3002 break;
3003
3004 n = n->rb_right;
3005 } else {
3006 n = n->rb_left;
3007 }
3008 }
3009
3010 return va;
3011 }
3012
3013 /**
3014 * pvm_determine_end_from_reverse - find the highest aligned address
3015 * of free block below VMALLOC_END
3016 * @va:
3017 * in - the VA we start the search(reverse order);
3018 * out - the VA with the highest aligned end address.
3019 *
3020 * Returns: determined end address within vmap_area
3021 */
3022 static unsigned long
3023 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3024 {
3025 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3026 unsigned long addr;
3027
3028 if (likely(*va)) {
3029 list_for_each_entry_from_reverse((*va),
3030 &free_vmap_area_list, list) {
3031 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3032 if ((*va)->va_start < addr)
3033 return addr;
3034 }
3035 }
3036
3037 return 0;
3038 }
3039
3040 /**
3041 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3042 * @offsets: array containing offset of each area
3043 * @sizes: array containing size of each area
3044 * @nr_vms: the number of areas to allocate
3045 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3046 *
3047 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3048 * vm_structs on success, %NULL on failure
3049 *
3050 * Percpu allocator wants to use congruent vm areas so that it can
3051 * maintain the offsets among percpu areas. This function allocates
3052 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3053 * be scattered pretty far, distance between two areas easily going up
3054 * to gigabytes. To avoid interacting with regular vmallocs, these
3055 * areas are allocated from top.
3056 *
3057 * Despite its complicated look, this allocator is rather simple. It
3058 * does everything top-down and scans free blocks from the end looking
3059 * for matching base. While scanning, if any of the areas do not fit the
3060 * base address is pulled down to fit the area. Scanning is repeated till
3061 * all the areas fit and then all necessary data structures are inserted
3062 * and the result is returned.
3063 */
3064 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3065 const size_t *sizes, int nr_vms,
3066 size_t align)
3067 {
3068 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3069 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3070 struct vmap_area **vas, *va;
3071 struct vm_struct **vms;
3072 int area, area2, last_area, term_area;
3073 unsigned long base, start, size, end, last_end;
3074 bool purged = false;
3075 enum fit_type type;
3076
3077 /* verify parameters and allocate data structures */
3078 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3079 for (last_area = 0, area = 0; area < nr_vms; area++) {
3080 start = offsets[area];
3081 end = start + sizes[area];
3082
3083 /* is everything aligned properly? */
3084 BUG_ON(!IS_ALIGNED(offsets[area], align));
3085 BUG_ON(!IS_ALIGNED(sizes[area], align));
3086
3087 /* detect the area with the highest address */
3088 if (start > offsets[last_area])
3089 last_area = area;
3090
3091 for (area2 = area + 1; area2 < nr_vms; area2++) {
3092 unsigned long start2 = offsets[area2];
3093 unsigned long end2 = start2 + sizes[area2];
3094
3095 BUG_ON(start2 < end && start < end2);
3096 }
3097 }
3098 last_end = offsets[last_area] + sizes[last_area];
3099
3100 if (vmalloc_end - vmalloc_start < last_end) {
3101 WARN_ON(true);
3102 return NULL;
3103 }
3104
3105 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3106 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3107 if (!vas || !vms)
3108 goto err_free2;
3109
3110 for (area = 0; area < nr_vms; area++) {
3111 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3112 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3113 if (!vas[area] || !vms[area])
3114 goto err_free;
3115 }
3116 retry:
3117 spin_lock(&vmap_area_lock);
3118
3119 /* start scanning - we scan from the top, begin with the last area */
3120 area = term_area = last_area;
3121 start = offsets[area];
3122 end = start + sizes[area];
3123
3124 va = pvm_find_va_enclose_addr(vmalloc_end);
3125 base = pvm_determine_end_from_reverse(&va, align) - end;
3126
3127 while (true) {
3128 /*
3129 * base might have underflowed, add last_end before
3130 * comparing.
3131 */
3132 if (base + last_end < vmalloc_start + last_end)
3133 goto overflow;
3134
3135 /*
3136 * Fitting base has not been found.
3137 */
3138 if (va == NULL)
3139 goto overflow;
3140
3141 /*
3142 * If this VA does not fit, move base downwards and recheck.
3143 */
3144 if (base + start < va->va_start || base + end > va->va_end) {
3145 va = node_to_va(rb_prev(&va->rb_node));
3146 base = pvm_determine_end_from_reverse(&va, align) - end;
3147 term_area = area;
3148 continue;
3149 }
3150
3151 /*
3152 * This area fits, move on to the previous one. If
3153 * the previous one is the terminal one, we're done.
3154 */
3155 area = (area + nr_vms - 1) % nr_vms;
3156 if (area == term_area)
3157 break;
3158
3159 start = offsets[area];
3160 end = start + sizes[area];
3161 va = pvm_find_va_enclose_addr(base + end);
3162 }
3163
3164 /* we've found a fitting base, insert all va's */
3165 for (area = 0; area < nr_vms; area++) {
3166 int ret;
3167
3168 start = base + offsets[area];
3169 size = sizes[area];
3170
3171 va = pvm_find_va_enclose_addr(start);
3172 if (WARN_ON_ONCE(va == NULL))
3173 /* It is a BUG(), but trigger recovery instead. */
3174 goto recovery;
3175
3176 type = classify_va_fit_type(va, start, size);
3177 if (WARN_ON_ONCE(type == NOTHING_FIT))
3178 /* It is a BUG(), but trigger recovery instead. */
3179 goto recovery;
3180
3181 ret = adjust_va_to_fit_type(va, start, size, type);
3182 if (unlikely(ret))
3183 goto recovery;
3184
3185 /* Allocated area. */
3186 va = vas[area];
3187 va->va_start = start;
3188 va->va_end = start + size;
3189
3190 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
3191 }
3192
3193 spin_unlock(&vmap_area_lock);
3194
3195 /* insert all vm's */
3196 for (area = 0; area < nr_vms; area++)
3197 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
3198 pcpu_get_vm_areas);
3199
3200 kfree(vas);
3201 return vms;
3202
3203 recovery:
3204 /* Remove previously inserted areas. */
3205 while (area--) {
3206 __free_vmap_area(vas[area]);
3207 vas[area] = NULL;
3208 }
3209
3210 overflow:
3211 spin_unlock(&vmap_area_lock);
3212 if (!purged) {
3213 purge_vmap_area_lazy();
3214 purged = true;
3215
3216 /* Before "retry", check if we recover. */
3217 for (area = 0; area < nr_vms; area++) {
3218 if (vas[area])
3219 continue;
3220
3221 vas[area] = kmem_cache_zalloc(
3222 vmap_area_cachep, GFP_KERNEL);
3223 if (!vas[area])
3224 goto err_free;
3225 }
3226
3227 goto retry;
3228 }
3229
3230 err_free:
3231 for (area = 0; area < nr_vms; area++) {
3232 if (vas[area])
3233 kmem_cache_free(vmap_area_cachep, vas[area]);
3234
3235 kfree(vms[area]);
3236 }
3237 err_free2:
3238 kfree(vas);
3239 kfree(vms);
3240 return NULL;
3241 }
3242
3243 /**
3244 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3245 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3246 * @nr_vms: the number of allocated areas
3247 *
3248 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3249 */
3250 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3251 {
3252 int i;
3253
3254 for (i = 0; i < nr_vms; i++)
3255 free_vm_area(vms[i]);
3256 kfree(vms);
3257 }
3258 #endif /* CONFIG_SMP */
3259
3260 #ifdef CONFIG_PROC_FS
3261 static void *s_start(struct seq_file *m, loff_t *pos)
3262 __acquires(&vmap_area_lock)
3263 {
3264 spin_lock(&vmap_area_lock);
3265 return seq_list_start(&vmap_area_list, *pos);
3266 }
3267
3268 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3269 {
3270 return seq_list_next(p, &vmap_area_list, pos);
3271 }
3272
3273 static void s_stop(struct seq_file *m, void *p)
3274 __releases(&vmap_area_lock)
3275 {
3276 spin_unlock(&vmap_area_lock);
3277 }
3278
3279 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3280 {
3281 if (IS_ENABLED(CONFIG_NUMA)) {
3282 unsigned int nr, *counters = m->private;
3283
3284 if (!counters)
3285 return;
3286
3287 if (v->flags & VM_UNINITIALIZED)
3288 return;
3289 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3290 smp_rmb();
3291
3292 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3293
3294 for (nr = 0; nr < v->nr_pages; nr++)
3295 counters[page_to_nid(v->pages[nr])]++;
3296
3297 for_each_node_state(nr, N_HIGH_MEMORY)
3298 if (counters[nr])
3299 seq_printf(m, " N%u=%u", nr, counters[nr]);
3300 }
3301 }
3302
3303 static int s_show(struct seq_file *m, void *p)
3304 {
3305 struct vmap_area *va;
3306 struct vm_struct *v;
3307
3308 va = list_entry(p, struct vmap_area, list);
3309
3310 /*
3311 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
3312 * behalf of vmap area is being tear down or vm_map_ram allocation.
3313 */
3314 if (!(va->flags & VM_VM_AREA)) {
3315 seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
3316 (void *)va->va_start, (void *)va->va_end,
3317 va->va_end - va->va_start,
3318 va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
3319
3320 return 0;
3321 }
3322
3323 v = va->vm;
3324
3325 seq_printf(m, "0x%pK-0x%pK %7ld",
3326 v->addr, v->addr + v->size, v->size);
3327
3328 if (v->caller)
3329 seq_printf(m, " %pS", v->caller);
3330
3331 if (v->nr_pages)
3332 seq_printf(m, " pages=%d", v->nr_pages);
3333
3334 if (v->phys_addr)
3335 seq_printf(m, " phys=%pa", &v->phys_addr);
3336
3337 if (v->flags & VM_IOREMAP)
3338 seq_puts(m, " ioremap");
3339
3340 if (v->flags & VM_ALLOC)
3341 seq_puts(m, " vmalloc");
3342
3343 if (v->flags & VM_MAP)
3344 seq_puts(m, " vmap");
3345
3346 if (v->flags & VM_USERMAP)
3347 seq_puts(m, " user");
3348
3349 if (is_vmalloc_addr(v->pages))
3350 seq_puts(m, " vpages");
3351
3352 show_numa_info(m, v);
3353 seq_putc(m, '\n');
3354 return 0;
3355 }
3356
3357 static const struct seq_operations vmalloc_op = {
3358 .start = s_start,
3359 .next = s_next,
3360 .stop = s_stop,
3361 .show = s_show,
3362 };
3363
3364 static int __init proc_vmalloc_init(void)
3365 {
3366 if (IS_ENABLED(CONFIG_NUMA))
3367 proc_create_seq_private("vmallocinfo", 0400, NULL,
3368 &vmalloc_op,
3369 nr_node_ids * sizeof(unsigned int), NULL);
3370 else
3371 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3372 return 0;
3373 }
3374 module_init(proc_vmalloc_init);
3375
3376 #endif