]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/vmalloc.c
mm, x86/mm: Untangle address space layout definitions from basic pgtable type definitions
[mirror_ubuntu-hirsute-kernel.git] / mm / vmalloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/vmalloc.c
4 *
5 * Copyright (C) 1993 Linus Torvalds
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
9 * Numa awareness, Christoph Lameter, SGI, June 2005
10 */
11
12 #include <linux/vmalloc.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/sched/signal.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/interrupt.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/set_memory.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/list.h>
26 #include <linux/notifier.h>
27 #include <linux/rbtree.h>
28 #include <linux/radix-tree.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/llist.h>
35 #include <linux/bitops.h>
36 #include <linux/rbtree_augmented.h>
37
38 #include <linux/uaccess.h>
39 #include <asm/tlbflush.h>
40 #include <asm/shmparam.h>
41
42 #include "internal.h"
43
44 bool is_vmalloc_addr(const void *x)
45 {
46 unsigned long addr = (unsigned long)x;
47
48 return addr >= VMALLOC_START && addr < VMALLOC_END;
49 }
50 EXPORT_SYMBOL(is_vmalloc_addr);
51
52 struct vfree_deferred {
53 struct llist_head list;
54 struct work_struct wq;
55 };
56 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
57
58 static void __vunmap(const void *, int);
59
60 static void free_work(struct work_struct *w)
61 {
62 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
63 struct llist_node *t, *llnode;
64
65 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
66 __vunmap((void *)llnode, 1);
67 }
68
69 /*** Page table manipulation functions ***/
70
71 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
72 {
73 pte_t *pte;
74
75 pte = pte_offset_kernel(pmd, addr);
76 do {
77 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
78 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
79 } while (pte++, addr += PAGE_SIZE, addr != end);
80 }
81
82 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
83 {
84 pmd_t *pmd;
85 unsigned long next;
86
87 pmd = pmd_offset(pud, addr);
88 do {
89 next = pmd_addr_end(addr, end);
90 if (pmd_clear_huge(pmd))
91 continue;
92 if (pmd_none_or_clear_bad(pmd))
93 continue;
94 vunmap_pte_range(pmd, addr, next);
95 } while (pmd++, addr = next, addr != end);
96 }
97
98 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
99 {
100 pud_t *pud;
101 unsigned long next;
102
103 pud = pud_offset(p4d, addr);
104 do {
105 next = pud_addr_end(addr, end);
106 if (pud_clear_huge(pud))
107 continue;
108 if (pud_none_or_clear_bad(pud))
109 continue;
110 vunmap_pmd_range(pud, addr, next);
111 } while (pud++, addr = next, addr != end);
112 }
113
114 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
115 {
116 p4d_t *p4d;
117 unsigned long next;
118
119 p4d = p4d_offset(pgd, addr);
120 do {
121 next = p4d_addr_end(addr, end);
122 if (p4d_clear_huge(p4d))
123 continue;
124 if (p4d_none_or_clear_bad(p4d))
125 continue;
126 vunmap_pud_range(p4d, addr, next);
127 } while (p4d++, addr = next, addr != end);
128 }
129
130 static void vunmap_page_range(unsigned long addr, unsigned long end)
131 {
132 pgd_t *pgd;
133 unsigned long next;
134
135 BUG_ON(addr >= end);
136 pgd = pgd_offset_k(addr);
137 do {
138 next = pgd_addr_end(addr, end);
139 if (pgd_none_or_clear_bad(pgd))
140 continue;
141 vunmap_p4d_range(pgd, addr, next);
142 } while (pgd++, addr = next, addr != end);
143 }
144
145 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
146 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
147 {
148 pte_t *pte;
149
150 /*
151 * nr is a running index into the array which helps higher level
152 * callers keep track of where we're up to.
153 */
154
155 pte = pte_alloc_kernel(pmd, addr);
156 if (!pte)
157 return -ENOMEM;
158 do {
159 struct page *page = pages[*nr];
160
161 if (WARN_ON(!pte_none(*pte)))
162 return -EBUSY;
163 if (WARN_ON(!page))
164 return -ENOMEM;
165 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
166 (*nr)++;
167 } while (pte++, addr += PAGE_SIZE, addr != end);
168 return 0;
169 }
170
171 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
172 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
173 {
174 pmd_t *pmd;
175 unsigned long next;
176
177 pmd = pmd_alloc(&init_mm, pud, addr);
178 if (!pmd)
179 return -ENOMEM;
180 do {
181 next = pmd_addr_end(addr, end);
182 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
183 return -ENOMEM;
184 } while (pmd++, addr = next, addr != end);
185 return 0;
186 }
187
188 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
189 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
190 {
191 pud_t *pud;
192 unsigned long next;
193
194 pud = pud_alloc(&init_mm, p4d, addr);
195 if (!pud)
196 return -ENOMEM;
197 do {
198 next = pud_addr_end(addr, end);
199 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
200 return -ENOMEM;
201 } while (pud++, addr = next, addr != end);
202 return 0;
203 }
204
205 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
206 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
207 {
208 p4d_t *p4d;
209 unsigned long next;
210
211 p4d = p4d_alloc(&init_mm, pgd, addr);
212 if (!p4d)
213 return -ENOMEM;
214 do {
215 next = p4d_addr_end(addr, end);
216 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
217 return -ENOMEM;
218 } while (p4d++, addr = next, addr != end);
219 return 0;
220 }
221
222 /*
223 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
224 * will have pfns corresponding to the "pages" array.
225 *
226 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
227 */
228 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
229 pgprot_t prot, struct page **pages)
230 {
231 pgd_t *pgd;
232 unsigned long next;
233 unsigned long addr = start;
234 int err = 0;
235 int nr = 0;
236
237 BUG_ON(addr >= end);
238 pgd = pgd_offset_k(addr);
239 do {
240 next = pgd_addr_end(addr, end);
241 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
242 if (err)
243 return err;
244 } while (pgd++, addr = next, addr != end);
245
246 return nr;
247 }
248
249 static int vmap_page_range(unsigned long start, unsigned long end,
250 pgprot_t prot, struct page **pages)
251 {
252 int ret;
253
254 ret = vmap_page_range_noflush(start, end, prot, pages);
255 flush_cache_vmap(start, end);
256 return ret;
257 }
258
259 int is_vmalloc_or_module_addr(const void *x)
260 {
261 /*
262 * ARM, x86-64 and sparc64 put modules in a special place,
263 * and fall back on vmalloc() if that fails. Others
264 * just put it in the vmalloc space.
265 */
266 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
267 unsigned long addr = (unsigned long)x;
268 if (addr >= MODULES_VADDR && addr < MODULES_END)
269 return 1;
270 #endif
271 return is_vmalloc_addr(x);
272 }
273
274 /*
275 * Walk a vmap address to the struct page it maps.
276 */
277 struct page *vmalloc_to_page(const void *vmalloc_addr)
278 {
279 unsigned long addr = (unsigned long) vmalloc_addr;
280 struct page *page = NULL;
281 pgd_t *pgd = pgd_offset_k(addr);
282 p4d_t *p4d;
283 pud_t *pud;
284 pmd_t *pmd;
285 pte_t *ptep, pte;
286
287 /*
288 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
289 * architectures that do not vmalloc module space
290 */
291 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
292
293 if (pgd_none(*pgd))
294 return NULL;
295 p4d = p4d_offset(pgd, addr);
296 if (p4d_none(*p4d))
297 return NULL;
298 pud = pud_offset(p4d, addr);
299
300 /*
301 * Don't dereference bad PUD or PMD (below) entries. This will also
302 * identify huge mappings, which we may encounter on architectures
303 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
304 * identified as vmalloc addresses by is_vmalloc_addr(), but are
305 * not [unambiguously] associated with a struct page, so there is
306 * no correct value to return for them.
307 */
308 WARN_ON_ONCE(pud_bad(*pud));
309 if (pud_none(*pud) || pud_bad(*pud))
310 return NULL;
311 pmd = pmd_offset(pud, addr);
312 WARN_ON_ONCE(pmd_bad(*pmd));
313 if (pmd_none(*pmd) || pmd_bad(*pmd))
314 return NULL;
315
316 ptep = pte_offset_map(pmd, addr);
317 pte = *ptep;
318 if (pte_present(pte))
319 page = pte_page(pte);
320 pte_unmap(ptep);
321 return page;
322 }
323 EXPORT_SYMBOL(vmalloc_to_page);
324
325 /*
326 * Map a vmalloc()-space virtual address to the physical page frame number.
327 */
328 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
329 {
330 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
331 }
332 EXPORT_SYMBOL(vmalloc_to_pfn);
333
334
335 /*** Global kva allocator ***/
336
337 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
338 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
339
340
341 static DEFINE_SPINLOCK(vmap_area_lock);
342 static DEFINE_SPINLOCK(free_vmap_area_lock);
343 /* Export for kexec only */
344 LIST_HEAD(vmap_area_list);
345 static LLIST_HEAD(vmap_purge_list);
346 static struct rb_root vmap_area_root = RB_ROOT;
347 static bool vmap_initialized __read_mostly;
348
349 /*
350 * This kmem_cache is used for vmap_area objects. Instead of
351 * allocating from slab we reuse an object from this cache to
352 * make things faster. Especially in "no edge" splitting of
353 * free block.
354 */
355 static struct kmem_cache *vmap_area_cachep;
356
357 /*
358 * This linked list is used in pair with free_vmap_area_root.
359 * It gives O(1) access to prev/next to perform fast coalescing.
360 */
361 static LIST_HEAD(free_vmap_area_list);
362
363 /*
364 * This augment red-black tree represents the free vmap space.
365 * All vmap_area objects in this tree are sorted by va->va_start
366 * address. It is used for allocation and merging when a vmap
367 * object is released.
368 *
369 * Each vmap_area node contains a maximum available free block
370 * of its sub-tree, right or left. Therefore it is possible to
371 * find a lowest match of free area.
372 */
373 static struct rb_root free_vmap_area_root = RB_ROOT;
374
375 /*
376 * Preload a CPU with one object for "no edge" split case. The
377 * aim is to get rid of allocations from the atomic context, thus
378 * to use more permissive allocation masks.
379 */
380 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
381
382 static __always_inline unsigned long
383 va_size(struct vmap_area *va)
384 {
385 return (va->va_end - va->va_start);
386 }
387
388 static __always_inline unsigned long
389 get_subtree_max_size(struct rb_node *node)
390 {
391 struct vmap_area *va;
392
393 va = rb_entry_safe(node, struct vmap_area, rb_node);
394 return va ? va->subtree_max_size : 0;
395 }
396
397 /*
398 * Gets called when remove the node and rotate.
399 */
400 static __always_inline unsigned long
401 compute_subtree_max_size(struct vmap_area *va)
402 {
403 return max3(va_size(va),
404 get_subtree_max_size(va->rb_node.rb_left),
405 get_subtree_max_size(va->rb_node.rb_right));
406 }
407
408 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
409 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
410
411 static void purge_vmap_area_lazy(void);
412 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
413 static unsigned long lazy_max_pages(void);
414
415 static atomic_long_t nr_vmalloc_pages;
416
417 unsigned long vmalloc_nr_pages(void)
418 {
419 return atomic_long_read(&nr_vmalloc_pages);
420 }
421
422 static struct vmap_area *__find_vmap_area(unsigned long addr)
423 {
424 struct rb_node *n = vmap_area_root.rb_node;
425
426 while (n) {
427 struct vmap_area *va;
428
429 va = rb_entry(n, struct vmap_area, rb_node);
430 if (addr < va->va_start)
431 n = n->rb_left;
432 else if (addr >= va->va_end)
433 n = n->rb_right;
434 else
435 return va;
436 }
437
438 return NULL;
439 }
440
441 /*
442 * This function returns back addresses of parent node
443 * and its left or right link for further processing.
444 */
445 static __always_inline struct rb_node **
446 find_va_links(struct vmap_area *va,
447 struct rb_root *root, struct rb_node *from,
448 struct rb_node **parent)
449 {
450 struct vmap_area *tmp_va;
451 struct rb_node **link;
452
453 if (root) {
454 link = &root->rb_node;
455 if (unlikely(!*link)) {
456 *parent = NULL;
457 return link;
458 }
459 } else {
460 link = &from;
461 }
462
463 /*
464 * Go to the bottom of the tree. When we hit the last point
465 * we end up with parent rb_node and correct direction, i name
466 * it link, where the new va->rb_node will be attached to.
467 */
468 do {
469 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
470
471 /*
472 * During the traversal we also do some sanity check.
473 * Trigger the BUG() if there are sides(left/right)
474 * or full overlaps.
475 */
476 if (va->va_start < tmp_va->va_end &&
477 va->va_end <= tmp_va->va_start)
478 link = &(*link)->rb_left;
479 else if (va->va_end > tmp_va->va_start &&
480 va->va_start >= tmp_va->va_end)
481 link = &(*link)->rb_right;
482 else
483 BUG();
484 } while (*link);
485
486 *parent = &tmp_va->rb_node;
487 return link;
488 }
489
490 static __always_inline struct list_head *
491 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
492 {
493 struct list_head *list;
494
495 if (unlikely(!parent))
496 /*
497 * The red-black tree where we try to find VA neighbors
498 * before merging or inserting is empty, i.e. it means
499 * there is no free vmap space. Normally it does not
500 * happen but we handle this case anyway.
501 */
502 return NULL;
503
504 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
505 return (&parent->rb_right == link ? list->next : list);
506 }
507
508 static __always_inline void
509 link_va(struct vmap_area *va, struct rb_root *root,
510 struct rb_node *parent, struct rb_node **link, struct list_head *head)
511 {
512 /*
513 * VA is still not in the list, but we can
514 * identify its future previous list_head node.
515 */
516 if (likely(parent)) {
517 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
518 if (&parent->rb_right != link)
519 head = head->prev;
520 }
521
522 /* Insert to the rb-tree */
523 rb_link_node(&va->rb_node, parent, link);
524 if (root == &free_vmap_area_root) {
525 /*
526 * Some explanation here. Just perform simple insertion
527 * to the tree. We do not set va->subtree_max_size to
528 * its current size before calling rb_insert_augmented().
529 * It is because of we populate the tree from the bottom
530 * to parent levels when the node _is_ in the tree.
531 *
532 * Therefore we set subtree_max_size to zero after insertion,
533 * to let __augment_tree_propagate_from() puts everything to
534 * the correct order later on.
535 */
536 rb_insert_augmented(&va->rb_node,
537 root, &free_vmap_area_rb_augment_cb);
538 va->subtree_max_size = 0;
539 } else {
540 rb_insert_color(&va->rb_node, root);
541 }
542
543 /* Address-sort this list */
544 list_add(&va->list, head);
545 }
546
547 static __always_inline void
548 unlink_va(struct vmap_area *va, struct rb_root *root)
549 {
550 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
551 return;
552
553 if (root == &free_vmap_area_root)
554 rb_erase_augmented(&va->rb_node,
555 root, &free_vmap_area_rb_augment_cb);
556 else
557 rb_erase(&va->rb_node, root);
558
559 list_del(&va->list);
560 RB_CLEAR_NODE(&va->rb_node);
561 }
562
563 #if DEBUG_AUGMENT_PROPAGATE_CHECK
564 static void
565 augment_tree_propagate_check(struct rb_node *n)
566 {
567 struct vmap_area *va;
568 struct rb_node *node;
569 unsigned long size;
570 bool found = false;
571
572 if (n == NULL)
573 return;
574
575 va = rb_entry(n, struct vmap_area, rb_node);
576 size = va->subtree_max_size;
577 node = n;
578
579 while (node) {
580 va = rb_entry(node, struct vmap_area, rb_node);
581
582 if (get_subtree_max_size(node->rb_left) == size) {
583 node = node->rb_left;
584 } else {
585 if (va_size(va) == size) {
586 found = true;
587 break;
588 }
589
590 node = node->rb_right;
591 }
592 }
593
594 if (!found) {
595 va = rb_entry(n, struct vmap_area, rb_node);
596 pr_emerg("tree is corrupted: %lu, %lu\n",
597 va_size(va), va->subtree_max_size);
598 }
599
600 augment_tree_propagate_check(n->rb_left);
601 augment_tree_propagate_check(n->rb_right);
602 }
603 #endif
604
605 /*
606 * This function populates subtree_max_size from bottom to upper
607 * levels starting from VA point. The propagation must be done
608 * when VA size is modified by changing its va_start/va_end. Or
609 * in case of newly inserting of VA to the tree.
610 *
611 * It means that __augment_tree_propagate_from() must be called:
612 * - After VA has been inserted to the tree(free path);
613 * - After VA has been shrunk(allocation path);
614 * - After VA has been increased(merging path).
615 *
616 * Please note that, it does not mean that upper parent nodes
617 * and their subtree_max_size are recalculated all the time up
618 * to the root node.
619 *
620 * 4--8
621 * /\
622 * / \
623 * / \
624 * 2--2 8--8
625 *
626 * For example if we modify the node 4, shrinking it to 2, then
627 * no any modification is required. If we shrink the node 2 to 1
628 * its subtree_max_size is updated only, and set to 1. If we shrink
629 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
630 * node becomes 4--6.
631 */
632 static __always_inline void
633 augment_tree_propagate_from(struct vmap_area *va)
634 {
635 struct rb_node *node = &va->rb_node;
636 unsigned long new_va_sub_max_size;
637
638 while (node) {
639 va = rb_entry(node, struct vmap_area, rb_node);
640 new_va_sub_max_size = compute_subtree_max_size(va);
641
642 /*
643 * If the newly calculated maximum available size of the
644 * subtree is equal to the current one, then it means that
645 * the tree is propagated correctly. So we have to stop at
646 * this point to save cycles.
647 */
648 if (va->subtree_max_size == new_va_sub_max_size)
649 break;
650
651 va->subtree_max_size = new_va_sub_max_size;
652 node = rb_parent(&va->rb_node);
653 }
654
655 #if DEBUG_AUGMENT_PROPAGATE_CHECK
656 augment_tree_propagate_check(free_vmap_area_root.rb_node);
657 #endif
658 }
659
660 static void
661 insert_vmap_area(struct vmap_area *va,
662 struct rb_root *root, struct list_head *head)
663 {
664 struct rb_node **link;
665 struct rb_node *parent;
666
667 link = find_va_links(va, root, NULL, &parent);
668 link_va(va, root, parent, link, head);
669 }
670
671 static void
672 insert_vmap_area_augment(struct vmap_area *va,
673 struct rb_node *from, struct rb_root *root,
674 struct list_head *head)
675 {
676 struct rb_node **link;
677 struct rb_node *parent;
678
679 if (from)
680 link = find_va_links(va, NULL, from, &parent);
681 else
682 link = find_va_links(va, root, NULL, &parent);
683
684 link_va(va, root, parent, link, head);
685 augment_tree_propagate_from(va);
686 }
687
688 /*
689 * Merge de-allocated chunk of VA memory with previous
690 * and next free blocks. If coalesce is not done a new
691 * free area is inserted. If VA has been merged, it is
692 * freed.
693 */
694 static __always_inline struct vmap_area *
695 merge_or_add_vmap_area(struct vmap_area *va,
696 struct rb_root *root, struct list_head *head)
697 {
698 struct vmap_area *sibling;
699 struct list_head *next;
700 struct rb_node **link;
701 struct rb_node *parent;
702 bool merged = false;
703
704 /*
705 * Find a place in the tree where VA potentially will be
706 * inserted, unless it is merged with its sibling/siblings.
707 */
708 link = find_va_links(va, root, NULL, &parent);
709
710 /*
711 * Get next node of VA to check if merging can be done.
712 */
713 next = get_va_next_sibling(parent, link);
714 if (unlikely(next == NULL))
715 goto insert;
716
717 /*
718 * start end
719 * | |
720 * |<------VA------>|<-----Next----->|
721 * | |
722 * start end
723 */
724 if (next != head) {
725 sibling = list_entry(next, struct vmap_area, list);
726 if (sibling->va_start == va->va_end) {
727 sibling->va_start = va->va_start;
728
729 /* Check and update the tree if needed. */
730 augment_tree_propagate_from(sibling);
731
732 /* Free vmap_area object. */
733 kmem_cache_free(vmap_area_cachep, va);
734
735 /* Point to the new merged area. */
736 va = sibling;
737 merged = true;
738 }
739 }
740
741 /*
742 * start end
743 * | |
744 * |<-----Prev----->|<------VA------>|
745 * | |
746 * start end
747 */
748 if (next->prev != head) {
749 sibling = list_entry(next->prev, struct vmap_area, list);
750 if (sibling->va_end == va->va_start) {
751 sibling->va_end = va->va_end;
752
753 /* Check and update the tree if needed. */
754 augment_tree_propagate_from(sibling);
755
756 if (merged)
757 unlink_va(va, root);
758
759 /* Free vmap_area object. */
760 kmem_cache_free(vmap_area_cachep, va);
761
762 /* Point to the new merged area. */
763 va = sibling;
764 merged = true;
765 }
766 }
767
768 insert:
769 if (!merged) {
770 link_va(va, root, parent, link, head);
771 augment_tree_propagate_from(va);
772 }
773
774 return va;
775 }
776
777 static __always_inline bool
778 is_within_this_va(struct vmap_area *va, unsigned long size,
779 unsigned long align, unsigned long vstart)
780 {
781 unsigned long nva_start_addr;
782
783 if (va->va_start > vstart)
784 nva_start_addr = ALIGN(va->va_start, align);
785 else
786 nva_start_addr = ALIGN(vstart, align);
787
788 /* Can be overflowed due to big size or alignment. */
789 if (nva_start_addr + size < nva_start_addr ||
790 nva_start_addr < vstart)
791 return false;
792
793 return (nva_start_addr + size <= va->va_end);
794 }
795
796 /*
797 * Find the first free block(lowest start address) in the tree,
798 * that will accomplish the request corresponding to passing
799 * parameters.
800 */
801 static __always_inline struct vmap_area *
802 find_vmap_lowest_match(unsigned long size,
803 unsigned long align, unsigned long vstart)
804 {
805 struct vmap_area *va;
806 struct rb_node *node;
807 unsigned long length;
808
809 /* Start from the root. */
810 node = free_vmap_area_root.rb_node;
811
812 /* Adjust the search size for alignment overhead. */
813 length = size + align - 1;
814
815 while (node) {
816 va = rb_entry(node, struct vmap_area, rb_node);
817
818 if (get_subtree_max_size(node->rb_left) >= length &&
819 vstart < va->va_start) {
820 node = node->rb_left;
821 } else {
822 if (is_within_this_va(va, size, align, vstart))
823 return va;
824
825 /*
826 * Does not make sense to go deeper towards the right
827 * sub-tree if it does not have a free block that is
828 * equal or bigger to the requested search length.
829 */
830 if (get_subtree_max_size(node->rb_right) >= length) {
831 node = node->rb_right;
832 continue;
833 }
834
835 /*
836 * OK. We roll back and find the first right sub-tree,
837 * that will satisfy the search criteria. It can happen
838 * only once due to "vstart" restriction.
839 */
840 while ((node = rb_parent(node))) {
841 va = rb_entry(node, struct vmap_area, rb_node);
842 if (is_within_this_va(va, size, align, vstart))
843 return va;
844
845 if (get_subtree_max_size(node->rb_right) >= length &&
846 vstart <= va->va_start) {
847 node = node->rb_right;
848 break;
849 }
850 }
851 }
852 }
853
854 return NULL;
855 }
856
857 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
858 #include <linux/random.h>
859
860 static struct vmap_area *
861 find_vmap_lowest_linear_match(unsigned long size,
862 unsigned long align, unsigned long vstart)
863 {
864 struct vmap_area *va;
865
866 list_for_each_entry(va, &free_vmap_area_list, list) {
867 if (!is_within_this_va(va, size, align, vstart))
868 continue;
869
870 return va;
871 }
872
873 return NULL;
874 }
875
876 static void
877 find_vmap_lowest_match_check(unsigned long size)
878 {
879 struct vmap_area *va_1, *va_2;
880 unsigned long vstart;
881 unsigned int rnd;
882
883 get_random_bytes(&rnd, sizeof(rnd));
884 vstart = VMALLOC_START + rnd;
885
886 va_1 = find_vmap_lowest_match(size, 1, vstart);
887 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
888
889 if (va_1 != va_2)
890 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
891 va_1, va_2, vstart);
892 }
893 #endif
894
895 enum fit_type {
896 NOTHING_FIT = 0,
897 FL_FIT_TYPE = 1, /* full fit */
898 LE_FIT_TYPE = 2, /* left edge fit */
899 RE_FIT_TYPE = 3, /* right edge fit */
900 NE_FIT_TYPE = 4 /* no edge fit */
901 };
902
903 static __always_inline enum fit_type
904 classify_va_fit_type(struct vmap_area *va,
905 unsigned long nva_start_addr, unsigned long size)
906 {
907 enum fit_type type;
908
909 /* Check if it is within VA. */
910 if (nva_start_addr < va->va_start ||
911 nva_start_addr + size > va->va_end)
912 return NOTHING_FIT;
913
914 /* Now classify. */
915 if (va->va_start == nva_start_addr) {
916 if (va->va_end == nva_start_addr + size)
917 type = FL_FIT_TYPE;
918 else
919 type = LE_FIT_TYPE;
920 } else if (va->va_end == nva_start_addr + size) {
921 type = RE_FIT_TYPE;
922 } else {
923 type = NE_FIT_TYPE;
924 }
925
926 return type;
927 }
928
929 static __always_inline int
930 adjust_va_to_fit_type(struct vmap_area *va,
931 unsigned long nva_start_addr, unsigned long size,
932 enum fit_type type)
933 {
934 struct vmap_area *lva = NULL;
935
936 if (type == FL_FIT_TYPE) {
937 /*
938 * No need to split VA, it fully fits.
939 *
940 * | |
941 * V NVA V
942 * |---------------|
943 */
944 unlink_va(va, &free_vmap_area_root);
945 kmem_cache_free(vmap_area_cachep, va);
946 } else if (type == LE_FIT_TYPE) {
947 /*
948 * Split left edge of fit VA.
949 *
950 * | |
951 * V NVA V R
952 * |-------|-------|
953 */
954 va->va_start += size;
955 } else if (type == RE_FIT_TYPE) {
956 /*
957 * Split right edge of fit VA.
958 *
959 * | |
960 * L V NVA V
961 * |-------|-------|
962 */
963 va->va_end = nva_start_addr;
964 } else if (type == NE_FIT_TYPE) {
965 /*
966 * Split no edge of fit VA.
967 *
968 * | |
969 * L V NVA V R
970 * |---|-------|---|
971 */
972 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
973 if (unlikely(!lva)) {
974 /*
975 * For percpu allocator we do not do any pre-allocation
976 * and leave it as it is. The reason is it most likely
977 * never ends up with NE_FIT_TYPE splitting. In case of
978 * percpu allocations offsets and sizes are aligned to
979 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
980 * are its main fitting cases.
981 *
982 * There are a few exceptions though, as an example it is
983 * a first allocation (early boot up) when we have "one"
984 * big free space that has to be split.
985 *
986 * Also we can hit this path in case of regular "vmap"
987 * allocations, if "this" current CPU was not preloaded.
988 * See the comment in alloc_vmap_area() why. If so, then
989 * GFP_NOWAIT is used instead to get an extra object for
990 * split purpose. That is rare and most time does not
991 * occur.
992 *
993 * What happens if an allocation gets failed. Basically,
994 * an "overflow" path is triggered to purge lazily freed
995 * areas to free some memory, then, the "retry" path is
996 * triggered to repeat one more time. See more details
997 * in alloc_vmap_area() function.
998 */
999 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1000 if (!lva)
1001 return -1;
1002 }
1003
1004 /*
1005 * Build the remainder.
1006 */
1007 lva->va_start = va->va_start;
1008 lva->va_end = nva_start_addr;
1009
1010 /*
1011 * Shrink this VA to remaining size.
1012 */
1013 va->va_start = nva_start_addr + size;
1014 } else {
1015 return -1;
1016 }
1017
1018 if (type != FL_FIT_TYPE) {
1019 augment_tree_propagate_from(va);
1020
1021 if (lva) /* type == NE_FIT_TYPE */
1022 insert_vmap_area_augment(lva, &va->rb_node,
1023 &free_vmap_area_root, &free_vmap_area_list);
1024 }
1025
1026 return 0;
1027 }
1028
1029 /*
1030 * Returns a start address of the newly allocated area, if success.
1031 * Otherwise a vend is returned that indicates failure.
1032 */
1033 static __always_inline unsigned long
1034 __alloc_vmap_area(unsigned long size, unsigned long align,
1035 unsigned long vstart, unsigned long vend)
1036 {
1037 unsigned long nva_start_addr;
1038 struct vmap_area *va;
1039 enum fit_type type;
1040 int ret;
1041
1042 va = find_vmap_lowest_match(size, align, vstart);
1043 if (unlikely(!va))
1044 return vend;
1045
1046 if (va->va_start > vstart)
1047 nva_start_addr = ALIGN(va->va_start, align);
1048 else
1049 nva_start_addr = ALIGN(vstart, align);
1050
1051 /* Check the "vend" restriction. */
1052 if (nva_start_addr + size > vend)
1053 return vend;
1054
1055 /* Classify what we have found. */
1056 type = classify_va_fit_type(va, nva_start_addr, size);
1057 if (WARN_ON_ONCE(type == NOTHING_FIT))
1058 return vend;
1059
1060 /* Update the free vmap_area. */
1061 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1062 if (ret)
1063 return vend;
1064
1065 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1066 find_vmap_lowest_match_check(size);
1067 #endif
1068
1069 return nva_start_addr;
1070 }
1071
1072 /*
1073 * Allocate a region of KVA of the specified size and alignment, within the
1074 * vstart and vend.
1075 */
1076 static struct vmap_area *alloc_vmap_area(unsigned long size,
1077 unsigned long align,
1078 unsigned long vstart, unsigned long vend,
1079 int node, gfp_t gfp_mask)
1080 {
1081 struct vmap_area *va, *pva;
1082 unsigned long addr;
1083 int purged = 0;
1084
1085 BUG_ON(!size);
1086 BUG_ON(offset_in_page(size));
1087 BUG_ON(!is_power_of_2(align));
1088
1089 if (unlikely(!vmap_initialized))
1090 return ERR_PTR(-EBUSY);
1091
1092 might_sleep();
1093 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1094
1095 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1096 if (unlikely(!va))
1097 return ERR_PTR(-ENOMEM);
1098
1099 /*
1100 * Only scan the relevant parts containing pointers to other objects
1101 * to avoid false negatives.
1102 */
1103 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1104
1105 retry:
1106 /*
1107 * Preload this CPU with one extra vmap_area object. It is used
1108 * when fit type of free area is NE_FIT_TYPE. Please note, it
1109 * does not guarantee that an allocation occurs on a CPU that
1110 * is preloaded, instead we minimize the case when it is not.
1111 * It can happen because of cpu migration, because there is a
1112 * race until the below spinlock is taken.
1113 *
1114 * The preload is done in non-atomic context, thus it allows us
1115 * to use more permissive allocation masks to be more stable under
1116 * low memory condition and high memory pressure. In rare case,
1117 * if not preloaded, GFP_NOWAIT is used.
1118 *
1119 * Set "pva" to NULL here, because of "retry" path.
1120 */
1121 pva = NULL;
1122
1123 if (!this_cpu_read(ne_fit_preload_node))
1124 /*
1125 * Even if it fails we do not really care about that.
1126 * Just proceed as it is. If needed "overflow" path
1127 * will refill the cache we allocate from.
1128 */
1129 pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1130
1131 spin_lock(&free_vmap_area_lock);
1132
1133 if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1134 kmem_cache_free(vmap_area_cachep, pva);
1135
1136 /*
1137 * If an allocation fails, the "vend" address is
1138 * returned. Therefore trigger the overflow path.
1139 */
1140 addr = __alloc_vmap_area(size, align, vstart, vend);
1141 spin_unlock(&free_vmap_area_lock);
1142
1143 if (unlikely(addr == vend))
1144 goto overflow;
1145
1146 va->va_start = addr;
1147 va->va_end = addr + size;
1148 va->vm = NULL;
1149
1150 spin_lock(&vmap_area_lock);
1151 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1152 spin_unlock(&vmap_area_lock);
1153
1154 BUG_ON(!IS_ALIGNED(va->va_start, align));
1155 BUG_ON(va->va_start < vstart);
1156 BUG_ON(va->va_end > vend);
1157
1158 return va;
1159
1160 overflow:
1161 if (!purged) {
1162 purge_vmap_area_lazy();
1163 purged = 1;
1164 goto retry;
1165 }
1166
1167 if (gfpflags_allow_blocking(gfp_mask)) {
1168 unsigned long freed = 0;
1169 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1170 if (freed > 0) {
1171 purged = 0;
1172 goto retry;
1173 }
1174 }
1175
1176 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1177 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1178 size);
1179
1180 kmem_cache_free(vmap_area_cachep, va);
1181 return ERR_PTR(-EBUSY);
1182 }
1183
1184 int register_vmap_purge_notifier(struct notifier_block *nb)
1185 {
1186 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1187 }
1188 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1189
1190 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1191 {
1192 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1193 }
1194 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1195
1196 /*
1197 * Free a region of KVA allocated by alloc_vmap_area
1198 */
1199 static void free_vmap_area(struct vmap_area *va)
1200 {
1201 /*
1202 * Remove from the busy tree/list.
1203 */
1204 spin_lock(&vmap_area_lock);
1205 unlink_va(va, &vmap_area_root);
1206 spin_unlock(&vmap_area_lock);
1207
1208 /*
1209 * Insert/Merge it back to the free tree/list.
1210 */
1211 spin_lock(&free_vmap_area_lock);
1212 merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
1213 spin_unlock(&free_vmap_area_lock);
1214 }
1215
1216 /*
1217 * Clear the pagetable entries of a given vmap_area
1218 */
1219 static void unmap_vmap_area(struct vmap_area *va)
1220 {
1221 vunmap_page_range(va->va_start, va->va_end);
1222 }
1223
1224 /*
1225 * lazy_max_pages is the maximum amount of virtual address space we gather up
1226 * before attempting to purge with a TLB flush.
1227 *
1228 * There is a tradeoff here: a larger number will cover more kernel page tables
1229 * and take slightly longer to purge, but it will linearly reduce the number of
1230 * global TLB flushes that must be performed. It would seem natural to scale
1231 * this number up linearly with the number of CPUs (because vmapping activity
1232 * could also scale linearly with the number of CPUs), however it is likely
1233 * that in practice, workloads might be constrained in other ways that mean
1234 * vmap activity will not scale linearly with CPUs. Also, I want to be
1235 * conservative and not introduce a big latency on huge systems, so go with
1236 * a less aggressive log scale. It will still be an improvement over the old
1237 * code, and it will be simple to change the scale factor if we find that it
1238 * becomes a problem on bigger systems.
1239 */
1240 static unsigned long lazy_max_pages(void)
1241 {
1242 unsigned int log;
1243
1244 log = fls(num_online_cpus());
1245
1246 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1247 }
1248
1249 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1250
1251 /*
1252 * Serialize vmap purging. There is no actual criticial section protected
1253 * by this look, but we want to avoid concurrent calls for performance
1254 * reasons and to make the pcpu_get_vm_areas more deterministic.
1255 */
1256 static DEFINE_MUTEX(vmap_purge_lock);
1257
1258 /* for per-CPU blocks */
1259 static void purge_fragmented_blocks_allcpus(void);
1260
1261 /*
1262 * called before a call to iounmap() if the caller wants vm_area_struct's
1263 * immediately freed.
1264 */
1265 void set_iounmap_nonlazy(void)
1266 {
1267 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1268 }
1269
1270 /*
1271 * Purges all lazily-freed vmap areas.
1272 */
1273 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1274 {
1275 unsigned long resched_threshold;
1276 struct llist_node *valist;
1277 struct vmap_area *va;
1278 struct vmap_area *n_va;
1279
1280 lockdep_assert_held(&vmap_purge_lock);
1281
1282 valist = llist_del_all(&vmap_purge_list);
1283 if (unlikely(valist == NULL))
1284 return false;
1285
1286 /*
1287 * First make sure the mappings are removed from all page-tables
1288 * before they are freed.
1289 */
1290 vmalloc_sync_all();
1291
1292 /*
1293 * TODO: to calculate a flush range without looping.
1294 * The list can be up to lazy_max_pages() elements.
1295 */
1296 llist_for_each_entry(va, valist, purge_list) {
1297 if (va->va_start < start)
1298 start = va->va_start;
1299 if (va->va_end > end)
1300 end = va->va_end;
1301 }
1302
1303 flush_tlb_kernel_range(start, end);
1304 resched_threshold = lazy_max_pages() << 1;
1305
1306 spin_lock(&free_vmap_area_lock);
1307 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1308 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1309 unsigned long orig_start = va->va_start;
1310 unsigned long orig_end = va->va_end;
1311
1312 /*
1313 * Finally insert or merge lazily-freed area. It is
1314 * detached and there is no need to "unlink" it from
1315 * anything.
1316 */
1317 va = merge_or_add_vmap_area(va, &free_vmap_area_root,
1318 &free_vmap_area_list);
1319
1320 if (is_vmalloc_or_module_addr((void *)orig_start))
1321 kasan_release_vmalloc(orig_start, orig_end,
1322 va->va_start, va->va_end);
1323
1324 atomic_long_sub(nr, &vmap_lazy_nr);
1325
1326 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1327 cond_resched_lock(&free_vmap_area_lock);
1328 }
1329 spin_unlock(&free_vmap_area_lock);
1330 return true;
1331 }
1332
1333 /*
1334 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1335 * is already purging.
1336 */
1337 static void try_purge_vmap_area_lazy(void)
1338 {
1339 if (mutex_trylock(&vmap_purge_lock)) {
1340 __purge_vmap_area_lazy(ULONG_MAX, 0);
1341 mutex_unlock(&vmap_purge_lock);
1342 }
1343 }
1344
1345 /*
1346 * Kick off a purge of the outstanding lazy areas.
1347 */
1348 static void purge_vmap_area_lazy(void)
1349 {
1350 mutex_lock(&vmap_purge_lock);
1351 purge_fragmented_blocks_allcpus();
1352 __purge_vmap_area_lazy(ULONG_MAX, 0);
1353 mutex_unlock(&vmap_purge_lock);
1354 }
1355
1356 /*
1357 * Free a vmap area, caller ensuring that the area has been unmapped
1358 * and flush_cache_vunmap had been called for the correct range
1359 * previously.
1360 */
1361 static void free_vmap_area_noflush(struct vmap_area *va)
1362 {
1363 unsigned long nr_lazy;
1364
1365 spin_lock(&vmap_area_lock);
1366 unlink_va(va, &vmap_area_root);
1367 spin_unlock(&vmap_area_lock);
1368
1369 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1370 PAGE_SHIFT, &vmap_lazy_nr);
1371
1372 /* After this point, we may free va at any time */
1373 llist_add(&va->purge_list, &vmap_purge_list);
1374
1375 if (unlikely(nr_lazy > lazy_max_pages()))
1376 try_purge_vmap_area_lazy();
1377 }
1378
1379 /*
1380 * Free and unmap a vmap area
1381 */
1382 static void free_unmap_vmap_area(struct vmap_area *va)
1383 {
1384 flush_cache_vunmap(va->va_start, va->va_end);
1385 unmap_vmap_area(va);
1386 if (debug_pagealloc_enabled())
1387 flush_tlb_kernel_range(va->va_start, va->va_end);
1388
1389 free_vmap_area_noflush(va);
1390 }
1391
1392 static struct vmap_area *find_vmap_area(unsigned long addr)
1393 {
1394 struct vmap_area *va;
1395
1396 spin_lock(&vmap_area_lock);
1397 va = __find_vmap_area(addr);
1398 spin_unlock(&vmap_area_lock);
1399
1400 return va;
1401 }
1402
1403 /*** Per cpu kva allocator ***/
1404
1405 /*
1406 * vmap space is limited especially on 32 bit architectures. Ensure there is
1407 * room for at least 16 percpu vmap blocks per CPU.
1408 */
1409 /*
1410 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1411 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1412 * instead (we just need a rough idea)
1413 */
1414 #if BITS_PER_LONG == 32
1415 #define VMALLOC_SPACE (128UL*1024*1024)
1416 #else
1417 #define VMALLOC_SPACE (128UL*1024*1024*1024)
1418 #endif
1419
1420 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1421 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1422 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1423 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1424 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1425 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1426 #define VMAP_BBMAP_BITS \
1427 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1428 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1429 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1430
1431 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1432
1433 struct vmap_block_queue {
1434 spinlock_t lock;
1435 struct list_head free;
1436 };
1437
1438 struct vmap_block {
1439 spinlock_t lock;
1440 struct vmap_area *va;
1441 unsigned long free, dirty;
1442 unsigned long dirty_min, dirty_max; /*< dirty range */
1443 struct list_head free_list;
1444 struct rcu_head rcu_head;
1445 struct list_head purge;
1446 };
1447
1448 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1449 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1450
1451 /*
1452 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1453 * in the free path. Could get rid of this if we change the API to return a
1454 * "cookie" from alloc, to be passed to free. But no big deal yet.
1455 */
1456 static DEFINE_SPINLOCK(vmap_block_tree_lock);
1457 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1458
1459 /*
1460 * We should probably have a fallback mechanism to allocate virtual memory
1461 * out of partially filled vmap blocks. However vmap block sizing should be
1462 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1463 * big problem.
1464 */
1465
1466 static unsigned long addr_to_vb_idx(unsigned long addr)
1467 {
1468 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1469 addr /= VMAP_BLOCK_SIZE;
1470 return addr;
1471 }
1472
1473 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1474 {
1475 unsigned long addr;
1476
1477 addr = va_start + (pages_off << PAGE_SHIFT);
1478 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1479 return (void *)addr;
1480 }
1481
1482 /**
1483 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1484 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1485 * @order: how many 2^order pages should be occupied in newly allocated block
1486 * @gfp_mask: flags for the page level allocator
1487 *
1488 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1489 */
1490 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1491 {
1492 struct vmap_block_queue *vbq;
1493 struct vmap_block *vb;
1494 struct vmap_area *va;
1495 unsigned long vb_idx;
1496 int node, err;
1497 void *vaddr;
1498
1499 node = numa_node_id();
1500
1501 vb = kmalloc_node(sizeof(struct vmap_block),
1502 gfp_mask & GFP_RECLAIM_MASK, node);
1503 if (unlikely(!vb))
1504 return ERR_PTR(-ENOMEM);
1505
1506 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1507 VMALLOC_START, VMALLOC_END,
1508 node, gfp_mask);
1509 if (IS_ERR(va)) {
1510 kfree(vb);
1511 return ERR_CAST(va);
1512 }
1513
1514 err = radix_tree_preload(gfp_mask);
1515 if (unlikely(err)) {
1516 kfree(vb);
1517 free_vmap_area(va);
1518 return ERR_PTR(err);
1519 }
1520
1521 vaddr = vmap_block_vaddr(va->va_start, 0);
1522 spin_lock_init(&vb->lock);
1523 vb->va = va;
1524 /* At least something should be left free */
1525 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1526 vb->free = VMAP_BBMAP_BITS - (1UL << order);
1527 vb->dirty = 0;
1528 vb->dirty_min = VMAP_BBMAP_BITS;
1529 vb->dirty_max = 0;
1530 INIT_LIST_HEAD(&vb->free_list);
1531
1532 vb_idx = addr_to_vb_idx(va->va_start);
1533 spin_lock(&vmap_block_tree_lock);
1534 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1535 spin_unlock(&vmap_block_tree_lock);
1536 BUG_ON(err);
1537 radix_tree_preload_end();
1538
1539 vbq = &get_cpu_var(vmap_block_queue);
1540 spin_lock(&vbq->lock);
1541 list_add_tail_rcu(&vb->free_list, &vbq->free);
1542 spin_unlock(&vbq->lock);
1543 put_cpu_var(vmap_block_queue);
1544
1545 return vaddr;
1546 }
1547
1548 static void free_vmap_block(struct vmap_block *vb)
1549 {
1550 struct vmap_block *tmp;
1551 unsigned long vb_idx;
1552
1553 vb_idx = addr_to_vb_idx(vb->va->va_start);
1554 spin_lock(&vmap_block_tree_lock);
1555 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1556 spin_unlock(&vmap_block_tree_lock);
1557 BUG_ON(tmp != vb);
1558
1559 free_vmap_area_noflush(vb->va);
1560 kfree_rcu(vb, rcu_head);
1561 }
1562
1563 static void purge_fragmented_blocks(int cpu)
1564 {
1565 LIST_HEAD(purge);
1566 struct vmap_block *vb;
1567 struct vmap_block *n_vb;
1568 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1569
1570 rcu_read_lock();
1571 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1572
1573 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1574 continue;
1575
1576 spin_lock(&vb->lock);
1577 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1578 vb->free = 0; /* prevent further allocs after releasing lock */
1579 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1580 vb->dirty_min = 0;
1581 vb->dirty_max = VMAP_BBMAP_BITS;
1582 spin_lock(&vbq->lock);
1583 list_del_rcu(&vb->free_list);
1584 spin_unlock(&vbq->lock);
1585 spin_unlock(&vb->lock);
1586 list_add_tail(&vb->purge, &purge);
1587 } else
1588 spin_unlock(&vb->lock);
1589 }
1590 rcu_read_unlock();
1591
1592 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1593 list_del(&vb->purge);
1594 free_vmap_block(vb);
1595 }
1596 }
1597
1598 static void purge_fragmented_blocks_allcpus(void)
1599 {
1600 int cpu;
1601
1602 for_each_possible_cpu(cpu)
1603 purge_fragmented_blocks(cpu);
1604 }
1605
1606 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1607 {
1608 struct vmap_block_queue *vbq;
1609 struct vmap_block *vb;
1610 void *vaddr = NULL;
1611 unsigned int order;
1612
1613 BUG_ON(offset_in_page(size));
1614 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1615 if (WARN_ON(size == 0)) {
1616 /*
1617 * Allocating 0 bytes isn't what caller wants since
1618 * get_order(0) returns funny result. Just warn and terminate
1619 * early.
1620 */
1621 return NULL;
1622 }
1623 order = get_order(size);
1624
1625 rcu_read_lock();
1626 vbq = &get_cpu_var(vmap_block_queue);
1627 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1628 unsigned long pages_off;
1629
1630 spin_lock(&vb->lock);
1631 if (vb->free < (1UL << order)) {
1632 spin_unlock(&vb->lock);
1633 continue;
1634 }
1635
1636 pages_off = VMAP_BBMAP_BITS - vb->free;
1637 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1638 vb->free -= 1UL << order;
1639 if (vb->free == 0) {
1640 spin_lock(&vbq->lock);
1641 list_del_rcu(&vb->free_list);
1642 spin_unlock(&vbq->lock);
1643 }
1644
1645 spin_unlock(&vb->lock);
1646 break;
1647 }
1648
1649 put_cpu_var(vmap_block_queue);
1650 rcu_read_unlock();
1651
1652 /* Allocate new block if nothing was found */
1653 if (!vaddr)
1654 vaddr = new_vmap_block(order, gfp_mask);
1655
1656 return vaddr;
1657 }
1658
1659 static void vb_free(const void *addr, unsigned long size)
1660 {
1661 unsigned long offset;
1662 unsigned long vb_idx;
1663 unsigned int order;
1664 struct vmap_block *vb;
1665
1666 BUG_ON(offset_in_page(size));
1667 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1668
1669 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1670
1671 order = get_order(size);
1672
1673 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1674 offset >>= PAGE_SHIFT;
1675
1676 vb_idx = addr_to_vb_idx((unsigned long)addr);
1677 rcu_read_lock();
1678 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1679 rcu_read_unlock();
1680 BUG_ON(!vb);
1681
1682 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1683
1684 if (debug_pagealloc_enabled())
1685 flush_tlb_kernel_range((unsigned long)addr,
1686 (unsigned long)addr + size);
1687
1688 spin_lock(&vb->lock);
1689
1690 /* Expand dirty range */
1691 vb->dirty_min = min(vb->dirty_min, offset);
1692 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1693
1694 vb->dirty += 1UL << order;
1695 if (vb->dirty == VMAP_BBMAP_BITS) {
1696 BUG_ON(vb->free);
1697 spin_unlock(&vb->lock);
1698 free_vmap_block(vb);
1699 } else
1700 spin_unlock(&vb->lock);
1701 }
1702
1703 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1704 {
1705 int cpu;
1706
1707 if (unlikely(!vmap_initialized))
1708 return;
1709
1710 might_sleep();
1711
1712 for_each_possible_cpu(cpu) {
1713 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1714 struct vmap_block *vb;
1715
1716 rcu_read_lock();
1717 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1718 spin_lock(&vb->lock);
1719 if (vb->dirty) {
1720 unsigned long va_start = vb->va->va_start;
1721 unsigned long s, e;
1722
1723 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1724 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1725
1726 start = min(s, start);
1727 end = max(e, end);
1728
1729 flush = 1;
1730 }
1731 spin_unlock(&vb->lock);
1732 }
1733 rcu_read_unlock();
1734 }
1735
1736 mutex_lock(&vmap_purge_lock);
1737 purge_fragmented_blocks_allcpus();
1738 if (!__purge_vmap_area_lazy(start, end) && flush)
1739 flush_tlb_kernel_range(start, end);
1740 mutex_unlock(&vmap_purge_lock);
1741 }
1742
1743 /**
1744 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1745 *
1746 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1747 * to amortize TLB flushing overheads. What this means is that any page you
1748 * have now, may, in a former life, have been mapped into kernel virtual
1749 * address by the vmap layer and so there might be some CPUs with TLB entries
1750 * still referencing that page (additional to the regular 1:1 kernel mapping).
1751 *
1752 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1753 * be sure that none of the pages we have control over will have any aliases
1754 * from the vmap layer.
1755 */
1756 void vm_unmap_aliases(void)
1757 {
1758 unsigned long start = ULONG_MAX, end = 0;
1759 int flush = 0;
1760
1761 _vm_unmap_aliases(start, end, flush);
1762 }
1763 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1764
1765 /**
1766 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1767 * @mem: the pointer returned by vm_map_ram
1768 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1769 */
1770 void vm_unmap_ram(const void *mem, unsigned int count)
1771 {
1772 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1773 unsigned long addr = (unsigned long)mem;
1774 struct vmap_area *va;
1775
1776 might_sleep();
1777 BUG_ON(!addr);
1778 BUG_ON(addr < VMALLOC_START);
1779 BUG_ON(addr > VMALLOC_END);
1780 BUG_ON(!PAGE_ALIGNED(addr));
1781
1782 if (likely(count <= VMAP_MAX_ALLOC)) {
1783 debug_check_no_locks_freed(mem, size);
1784 vb_free(mem, size);
1785 return;
1786 }
1787
1788 va = find_vmap_area(addr);
1789 BUG_ON(!va);
1790 debug_check_no_locks_freed((void *)va->va_start,
1791 (va->va_end - va->va_start));
1792 free_unmap_vmap_area(va);
1793 }
1794 EXPORT_SYMBOL(vm_unmap_ram);
1795
1796 /**
1797 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1798 * @pages: an array of pointers to the pages to be mapped
1799 * @count: number of pages
1800 * @node: prefer to allocate data structures on this node
1801 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1802 *
1803 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1804 * faster than vmap so it's good. But if you mix long-life and short-life
1805 * objects with vm_map_ram(), it could consume lots of address space through
1806 * fragmentation (especially on a 32bit machine). You could see failures in
1807 * the end. Please use this function for short-lived objects.
1808 *
1809 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1810 */
1811 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1812 {
1813 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1814 unsigned long addr;
1815 void *mem;
1816
1817 if (likely(count <= VMAP_MAX_ALLOC)) {
1818 mem = vb_alloc(size, GFP_KERNEL);
1819 if (IS_ERR(mem))
1820 return NULL;
1821 addr = (unsigned long)mem;
1822 } else {
1823 struct vmap_area *va;
1824 va = alloc_vmap_area(size, PAGE_SIZE,
1825 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1826 if (IS_ERR(va))
1827 return NULL;
1828
1829 addr = va->va_start;
1830 mem = (void *)addr;
1831 }
1832 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1833 vm_unmap_ram(mem, count);
1834 return NULL;
1835 }
1836 return mem;
1837 }
1838 EXPORT_SYMBOL(vm_map_ram);
1839
1840 static struct vm_struct *vmlist __initdata;
1841
1842 /**
1843 * vm_area_add_early - add vmap area early during boot
1844 * @vm: vm_struct to add
1845 *
1846 * This function is used to add fixed kernel vm area to vmlist before
1847 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1848 * should contain proper values and the other fields should be zero.
1849 *
1850 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1851 */
1852 void __init vm_area_add_early(struct vm_struct *vm)
1853 {
1854 struct vm_struct *tmp, **p;
1855
1856 BUG_ON(vmap_initialized);
1857 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1858 if (tmp->addr >= vm->addr) {
1859 BUG_ON(tmp->addr < vm->addr + vm->size);
1860 break;
1861 } else
1862 BUG_ON(tmp->addr + tmp->size > vm->addr);
1863 }
1864 vm->next = *p;
1865 *p = vm;
1866 }
1867
1868 /**
1869 * vm_area_register_early - register vmap area early during boot
1870 * @vm: vm_struct to register
1871 * @align: requested alignment
1872 *
1873 * This function is used to register kernel vm area before
1874 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1875 * proper values on entry and other fields should be zero. On return,
1876 * vm->addr contains the allocated address.
1877 *
1878 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1879 */
1880 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1881 {
1882 static size_t vm_init_off __initdata;
1883 unsigned long addr;
1884
1885 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1886 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1887
1888 vm->addr = (void *)addr;
1889
1890 vm_area_add_early(vm);
1891 }
1892
1893 static void vmap_init_free_space(void)
1894 {
1895 unsigned long vmap_start = 1;
1896 const unsigned long vmap_end = ULONG_MAX;
1897 struct vmap_area *busy, *free;
1898
1899 /*
1900 * B F B B B F
1901 * -|-----|.....|-----|-----|-----|.....|-
1902 * | The KVA space |
1903 * |<--------------------------------->|
1904 */
1905 list_for_each_entry(busy, &vmap_area_list, list) {
1906 if (busy->va_start - vmap_start > 0) {
1907 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1908 if (!WARN_ON_ONCE(!free)) {
1909 free->va_start = vmap_start;
1910 free->va_end = busy->va_start;
1911
1912 insert_vmap_area_augment(free, NULL,
1913 &free_vmap_area_root,
1914 &free_vmap_area_list);
1915 }
1916 }
1917
1918 vmap_start = busy->va_end;
1919 }
1920
1921 if (vmap_end - vmap_start > 0) {
1922 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1923 if (!WARN_ON_ONCE(!free)) {
1924 free->va_start = vmap_start;
1925 free->va_end = vmap_end;
1926
1927 insert_vmap_area_augment(free, NULL,
1928 &free_vmap_area_root,
1929 &free_vmap_area_list);
1930 }
1931 }
1932 }
1933
1934 void __init vmalloc_init(void)
1935 {
1936 struct vmap_area *va;
1937 struct vm_struct *tmp;
1938 int i;
1939
1940 /*
1941 * Create the cache for vmap_area objects.
1942 */
1943 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1944
1945 for_each_possible_cpu(i) {
1946 struct vmap_block_queue *vbq;
1947 struct vfree_deferred *p;
1948
1949 vbq = &per_cpu(vmap_block_queue, i);
1950 spin_lock_init(&vbq->lock);
1951 INIT_LIST_HEAD(&vbq->free);
1952 p = &per_cpu(vfree_deferred, i);
1953 init_llist_head(&p->list);
1954 INIT_WORK(&p->wq, free_work);
1955 }
1956
1957 /* Import existing vmlist entries. */
1958 for (tmp = vmlist; tmp; tmp = tmp->next) {
1959 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1960 if (WARN_ON_ONCE(!va))
1961 continue;
1962
1963 va->va_start = (unsigned long)tmp->addr;
1964 va->va_end = va->va_start + tmp->size;
1965 va->vm = tmp;
1966 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1967 }
1968
1969 /*
1970 * Now we can initialize a free vmap space.
1971 */
1972 vmap_init_free_space();
1973 vmap_initialized = true;
1974 }
1975
1976 /**
1977 * map_kernel_range_noflush - map kernel VM area with the specified pages
1978 * @addr: start of the VM area to map
1979 * @size: size of the VM area to map
1980 * @prot: page protection flags to use
1981 * @pages: pages to map
1982 *
1983 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1984 * specify should have been allocated using get_vm_area() and its
1985 * friends.
1986 *
1987 * NOTE:
1988 * This function does NOT do any cache flushing. The caller is
1989 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1990 * before calling this function.
1991 *
1992 * RETURNS:
1993 * The number of pages mapped on success, -errno on failure.
1994 */
1995 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1996 pgprot_t prot, struct page **pages)
1997 {
1998 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1999 }
2000
2001 /**
2002 * unmap_kernel_range_noflush - unmap kernel VM area
2003 * @addr: start of the VM area to unmap
2004 * @size: size of the VM area to unmap
2005 *
2006 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
2007 * specify should have been allocated using get_vm_area() and its
2008 * friends.
2009 *
2010 * NOTE:
2011 * This function does NOT do any cache flushing. The caller is
2012 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
2013 * before calling this function and flush_tlb_kernel_range() after.
2014 */
2015 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
2016 {
2017 vunmap_page_range(addr, addr + size);
2018 }
2019 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
2020
2021 /**
2022 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2023 * @addr: start of the VM area to unmap
2024 * @size: size of the VM area to unmap
2025 *
2026 * Similar to unmap_kernel_range_noflush() but flushes vcache before
2027 * the unmapping and tlb after.
2028 */
2029 void unmap_kernel_range(unsigned long addr, unsigned long size)
2030 {
2031 unsigned long end = addr + size;
2032
2033 flush_cache_vunmap(addr, end);
2034 vunmap_page_range(addr, end);
2035 flush_tlb_kernel_range(addr, end);
2036 }
2037 EXPORT_SYMBOL_GPL(unmap_kernel_range);
2038
2039 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
2040 {
2041 unsigned long addr = (unsigned long)area->addr;
2042 unsigned long end = addr + get_vm_area_size(area);
2043 int err;
2044
2045 err = vmap_page_range(addr, end, prot, pages);
2046
2047 return err > 0 ? 0 : err;
2048 }
2049 EXPORT_SYMBOL_GPL(map_vm_area);
2050
2051 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2052 struct vmap_area *va, unsigned long flags, const void *caller)
2053 {
2054 vm->flags = flags;
2055 vm->addr = (void *)va->va_start;
2056 vm->size = va->va_end - va->va_start;
2057 vm->caller = caller;
2058 va->vm = vm;
2059 }
2060
2061 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2062 unsigned long flags, const void *caller)
2063 {
2064 spin_lock(&vmap_area_lock);
2065 setup_vmalloc_vm_locked(vm, va, flags, caller);
2066 spin_unlock(&vmap_area_lock);
2067 }
2068
2069 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2070 {
2071 /*
2072 * Before removing VM_UNINITIALIZED,
2073 * we should make sure that vm has proper values.
2074 * Pair with smp_rmb() in show_numa_info().
2075 */
2076 smp_wmb();
2077 vm->flags &= ~VM_UNINITIALIZED;
2078 }
2079
2080 static struct vm_struct *__get_vm_area_node(unsigned long size,
2081 unsigned long align, unsigned long flags, unsigned long start,
2082 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2083 {
2084 struct vmap_area *va;
2085 struct vm_struct *area;
2086
2087 BUG_ON(in_interrupt());
2088 size = PAGE_ALIGN(size);
2089 if (unlikely(!size))
2090 return NULL;
2091
2092 if (flags & VM_IOREMAP)
2093 align = 1ul << clamp_t(int, get_count_order_long(size),
2094 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2095
2096 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2097 if (unlikely(!area))
2098 return NULL;
2099
2100 if (!(flags & VM_NO_GUARD))
2101 size += PAGE_SIZE;
2102
2103 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2104 if (IS_ERR(va)) {
2105 kfree(area);
2106 return NULL;
2107 }
2108
2109 setup_vmalloc_vm(area, va, flags, caller);
2110
2111 /*
2112 * For KASAN, if we are in vmalloc space, we need to cover the shadow
2113 * area with real memory. If we come here through VM_ALLOC, this is
2114 * done by a higher level function that has access to the true size,
2115 * which might not be a full page.
2116 *
2117 * We assume module space comes via VM_ALLOC path.
2118 */
2119 if (is_vmalloc_addr(area->addr) && !(area->flags & VM_ALLOC)) {
2120 if (kasan_populate_vmalloc(area->size, area)) {
2121 unmap_vmap_area(va);
2122 kfree(area);
2123 return NULL;
2124 }
2125 }
2126
2127 return area;
2128 }
2129
2130 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2131 unsigned long start, unsigned long end)
2132 {
2133 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2134 GFP_KERNEL, __builtin_return_address(0));
2135 }
2136 EXPORT_SYMBOL_GPL(__get_vm_area);
2137
2138 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2139 unsigned long start, unsigned long end,
2140 const void *caller)
2141 {
2142 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2143 GFP_KERNEL, caller);
2144 }
2145
2146 /**
2147 * get_vm_area - reserve a contiguous kernel virtual area
2148 * @size: size of the area
2149 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2150 *
2151 * Search an area of @size in the kernel virtual mapping area,
2152 * and reserved it for out purposes. Returns the area descriptor
2153 * on success or %NULL on failure.
2154 *
2155 * Return: the area descriptor on success or %NULL on failure.
2156 */
2157 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2158 {
2159 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2160 NUMA_NO_NODE, GFP_KERNEL,
2161 __builtin_return_address(0));
2162 }
2163
2164 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2165 const void *caller)
2166 {
2167 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2168 NUMA_NO_NODE, GFP_KERNEL, caller);
2169 }
2170
2171 /**
2172 * find_vm_area - find a continuous kernel virtual area
2173 * @addr: base address
2174 *
2175 * Search for the kernel VM area starting at @addr, and return it.
2176 * It is up to the caller to do all required locking to keep the returned
2177 * pointer valid.
2178 *
2179 * Return: pointer to the found area or %NULL on faulure
2180 */
2181 struct vm_struct *find_vm_area(const void *addr)
2182 {
2183 struct vmap_area *va;
2184
2185 va = find_vmap_area((unsigned long)addr);
2186 if (!va)
2187 return NULL;
2188
2189 return va->vm;
2190 }
2191
2192 /**
2193 * remove_vm_area - find and remove a continuous kernel virtual area
2194 * @addr: base address
2195 *
2196 * Search for the kernel VM area starting at @addr, and remove it.
2197 * This function returns the found VM area, but using it is NOT safe
2198 * on SMP machines, except for its size or flags.
2199 *
2200 * Return: pointer to the found area or %NULL on faulure
2201 */
2202 struct vm_struct *remove_vm_area(const void *addr)
2203 {
2204 struct vmap_area *va;
2205
2206 might_sleep();
2207
2208 spin_lock(&vmap_area_lock);
2209 va = __find_vmap_area((unsigned long)addr);
2210 if (va && va->vm) {
2211 struct vm_struct *vm = va->vm;
2212
2213 va->vm = NULL;
2214 spin_unlock(&vmap_area_lock);
2215
2216 kasan_free_shadow(vm);
2217 free_unmap_vmap_area(va);
2218
2219 return vm;
2220 }
2221
2222 spin_unlock(&vmap_area_lock);
2223 return NULL;
2224 }
2225
2226 static inline void set_area_direct_map(const struct vm_struct *area,
2227 int (*set_direct_map)(struct page *page))
2228 {
2229 int i;
2230
2231 for (i = 0; i < area->nr_pages; i++)
2232 if (page_address(area->pages[i]))
2233 set_direct_map(area->pages[i]);
2234 }
2235
2236 /* Handle removing and resetting vm mappings related to the vm_struct. */
2237 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2238 {
2239 unsigned long start = ULONG_MAX, end = 0;
2240 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2241 int flush_dmap = 0;
2242 int i;
2243
2244 remove_vm_area(area->addr);
2245
2246 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2247 if (!flush_reset)
2248 return;
2249
2250 /*
2251 * If not deallocating pages, just do the flush of the VM area and
2252 * return.
2253 */
2254 if (!deallocate_pages) {
2255 vm_unmap_aliases();
2256 return;
2257 }
2258
2259 /*
2260 * If execution gets here, flush the vm mapping and reset the direct
2261 * map. Find the start and end range of the direct mappings to make sure
2262 * the vm_unmap_aliases() flush includes the direct map.
2263 */
2264 for (i = 0; i < area->nr_pages; i++) {
2265 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2266 if (addr) {
2267 start = min(addr, start);
2268 end = max(addr + PAGE_SIZE, end);
2269 flush_dmap = 1;
2270 }
2271 }
2272
2273 /*
2274 * Set direct map to something invalid so that it won't be cached if
2275 * there are any accesses after the TLB flush, then flush the TLB and
2276 * reset the direct map permissions to the default.
2277 */
2278 set_area_direct_map(area, set_direct_map_invalid_noflush);
2279 _vm_unmap_aliases(start, end, flush_dmap);
2280 set_area_direct_map(area, set_direct_map_default_noflush);
2281 }
2282
2283 static void __vunmap(const void *addr, int deallocate_pages)
2284 {
2285 struct vm_struct *area;
2286
2287 if (!addr)
2288 return;
2289
2290 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2291 addr))
2292 return;
2293
2294 area = find_vm_area(addr);
2295 if (unlikely(!area)) {
2296 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2297 addr);
2298 return;
2299 }
2300
2301 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2302 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2303
2304 if (area->flags & VM_KASAN)
2305 kasan_poison_vmalloc(area->addr, area->size);
2306
2307 vm_remove_mappings(area, deallocate_pages);
2308
2309 if (deallocate_pages) {
2310 int i;
2311
2312 for (i = 0; i < area->nr_pages; i++) {
2313 struct page *page = area->pages[i];
2314
2315 BUG_ON(!page);
2316 __free_pages(page, 0);
2317 }
2318 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2319
2320 kvfree(area->pages);
2321 }
2322
2323 kfree(area);
2324 return;
2325 }
2326
2327 static inline void __vfree_deferred(const void *addr)
2328 {
2329 /*
2330 * Use raw_cpu_ptr() because this can be called from preemptible
2331 * context. Preemption is absolutely fine here, because the llist_add()
2332 * implementation is lockless, so it works even if we are adding to
2333 * nother cpu's list. schedule_work() should be fine with this too.
2334 */
2335 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2336
2337 if (llist_add((struct llist_node *)addr, &p->list))
2338 schedule_work(&p->wq);
2339 }
2340
2341 /**
2342 * vfree_atomic - release memory allocated by vmalloc()
2343 * @addr: memory base address
2344 *
2345 * This one is just like vfree() but can be called in any atomic context
2346 * except NMIs.
2347 */
2348 void vfree_atomic(const void *addr)
2349 {
2350 BUG_ON(in_nmi());
2351
2352 kmemleak_free(addr);
2353
2354 if (!addr)
2355 return;
2356 __vfree_deferred(addr);
2357 }
2358
2359 static void __vfree(const void *addr)
2360 {
2361 if (unlikely(in_interrupt()))
2362 __vfree_deferred(addr);
2363 else
2364 __vunmap(addr, 1);
2365 }
2366
2367 /**
2368 * vfree - release memory allocated by vmalloc()
2369 * @addr: memory base address
2370 *
2371 * Free the virtually continuous memory area starting at @addr, as
2372 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2373 * NULL, no operation is performed.
2374 *
2375 * Must not be called in NMI context (strictly speaking, only if we don't
2376 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2377 * conventions for vfree() arch-depenedent would be a really bad idea)
2378 *
2379 * May sleep if called *not* from interrupt context.
2380 *
2381 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
2382 */
2383 void vfree(const void *addr)
2384 {
2385 BUG_ON(in_nmi());
2386
2387 kmemleak_free(addr);
2388
2389 might_sleep_if(!in_interrupt());
2390
2391 if (!addr)
2392 return;
2393
2394 __vfree(addr);
2395 }
2396 EXPORT_SYMBOL(vfree);
2397
2398 /**
2399 * vunmap - release virtual mapping obtained by vmap()
2400 * @addr: memory base address
2401 *
2402 * Free the virtually contiguous memory area starting at @addr,
2403 * which was created from the page array passed to vmap().
2404 *
2405 * Must not be called in interrupt context.
2406 */
2407 void vunmap(const void *addr)
2408 {
2409 BUG_ON(in_interrupt());
2410 might_sleep();
2411 if (addr)
2412 __vunmap(addr, 0);
2413 }
2414 EXPORT_SYMBOL(vunmap);
2415
2416 /**
2417 * vmap - map an array of pages into virtually contiguous space
2418 * @pages: array of page pointers
2419 * @count: number of pages to map
2420 * @flags: vm_area->flags
2421 * @prot: page protection for the mapping
2422 *
2423 * Maps @count pages from @pages into contiguous kernel virtual
2424 * space.
2425 *
2426 * Return: the address of the area or %NULL on failure
2427 */
2428 void *vmap(struct page **pages, unsigned int count,
2429 unsigned long flags, pgprot_t prot)
2430 {
2431 struct vm_struct *area;
2432 unsigned long size; /* In bytes */
2433
2434 might_sleep();
2435
2436 if (count > totalram_pages())
2437 return NULL;
2438
2439 size = (unsigned long)count << PAGE_SHIFT;
2440 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2441 if (!area)
2442 return NULL;
2443
2444 if (map_vm_area(area, prot, pages)) {
2445 vunmap(area->addr);
2446 return NULL;
2447 }
2448
2449 return area->addr;
2450 }
2451 EXPORT_SYMBOL(vmap);
2452
2453 static void *__vmalloc_node(unsigned long size, unsigned long align,
2454 gfp_t gfp_mask, pgprot_t prot,
2455 int node, const void *caller);
2456 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2457 pgprot_t prot, int node)
2458 {
2459 struct page **pages;
2460 unsigned int nr_pages, array_size, i;
2461 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2462 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2463 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2464 0 :
2465 __GFP_HIGHMEM;
2466
2467 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2468 array_size = (nr_pages * sizeof(struct page *));
2469
2470 /* Please note that the recursion is strictly bounded. */
2471 if (array_size > PAGE_SIZE) {
2472 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2473 PAGE_KERNEL, node, area->caller);
2474 } else {
2475 pages = kmalloc_node(array_size, nested_gfp, node);
2476 }
2477
2478 if (!pages) {
2479 remove_vm_area(area->addr);
2480 kfree(area);
2481 return NULL;
2482 }
2483
2484 area->pages = pages;
2485 area->nr_pages = nr_pages;
2486
2487 for (i = 0; i < area->nr_pages; i++) {
2488 struct page *page;
2489
2490 if (node == NUMA_NO_NODE)
2491 page = alloc_page(alloc_mask|highmem_mask);
2492 else
2493 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2494
2495 if (unlikely(!page)) {
2496 /* Successfully allocated i pages, free them in __vunmap() */
2497 area->nr_pages = i;
2498 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2499 goto fail;
2500 }
2501 area->pages[i] = page;
2502 if (gfpflags_allow_blocking(gfp_mask))
2503 cond_resched();
2504 }
2505 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2506
2507 if (map_vm_area(area, prot, pages))
2508 goto fail;
2509 return area->addr;
2510
2511 fail:
2512 warn_alloc(gfp_mask, NULL,
2513 "vmalloc: allocation failure, allocated %ld of %ld bytes",
2514 (area->nr_pages*PAGE_SIZE), area->size);
2515 __vfree(area->addr);
2516 return NULL;
2517 }
2518
2519 /**
2520 * __vmalloc_node_range - allocate virtually contiguous memory
2521 * @size: allocation size
2522 * @align: desired alignment
2523 * @start: vm area range start
2524 * @end: vm area range end
2525 * @gfp_mask: flags for the page level allocator
2526 * @prot: protection mask for the allocated pages
2527 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2528 * @node: node to use for allocation or NUMA_NO_NODE
2529 * @caller: caller's return address
2530 *
2531 * Allocate enough pages to cover @size from the page level
2532 * allocator with @gfp_mask flags. Map them into contiguous
2533 * kernel virtual space, using a pagetable protection of @prot.
2534 *
2535 * Return: the address of the area or %NULL on failure
2536 */
2537 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2538 unsigned long start, unsigned long end, gfp_t gfp_mask,
2539 pgprot_t prot, unsigned long vm_flags, int node,
2540 const void *caller)
2541 {
2542 struct vm_struct *area;
2543 void *addr;
2544 unsigned long real_size = size;
2545
2546 size = PAGE_ALIGN(size);
2547 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2548 goto fail;
2549
2550 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2551 vm_flags, start, end, node, gfp_mask, caller);
2552 if (!area)
2553 goto fail;
2554
2555 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2556 if (!addr)
2557 return NULL;
2558
2559 if (is_vmalloc_or_module_addr(area->addr)) {
2560 if (kasan_populate_vmalloc(real_size, area))
2561 return NULL;
2562 }
2563
2564 /*
2565 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2566 * flag. It means that vm_struct is not fully initialized.
2567 * Now, it is fully initialized, so remove this flag here.
2568 */
2569 clear_vm_uninitialized_flag(area);
2570
2571 kmemleak_vmalloc(area, size, gfp_mask);
2572
2573 return addr;
2574
2575 fail:
2576 warn_alloc(gfp_mask, NULL,
2577 "vmalloc: allocation failure: %lu bytes", real_size);
2578 return NULL;
2579 }
2580
2581 /*
2582 * This is only for performance analysis of vmalloc and stress purpose.
2583 * It is required by vmalloc test module, therefore do not use it other
2584 * than that.
2585 */
2586 #ifdef CONFIG_TEST_VMALLOC_MODULE
2587 EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2588 #endif
2589
2590 /**
2591 * __vmalloc_node - allocate virtually contiguous memory
2592 * @size: allocation size
2593 * @align: desired alignment
2594 * @gfp_mask: flags for the page level allocator
2595 * @prot: protection mask for the allocated pages
2596 * @node: node to use for allocation or NUMA_NO_NODE
2597 * @caller: caller's return address
2598 *
2599 * Allocate enough pages to cover @size from the page level
2600 * allocator with @gfp_mask flags. Map them into contiguous
2601 * kernel virtual space, using a pagetable protection of @prot.
2602 *
2603 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2604 * and __GFP_NOFAIL are not supported
2605 *
2606 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2607 * with mm people.
2608 *
2609 * Return: pointer to the allocated memory or %NULL on error
2610 */
2611 static void *__vmalloc_node(unsigned long size, unsigned long align,
2612 gfp_t gfp_mask, pgprot_t prot,
2613 int node, const void *caller)
2614 {
2615 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2616 gfp_mask, prot, 0, node, caller);
2617 }
2618
2619 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2620 {
2621 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2622 __builtin_return_address(0));
2623 }
2624 EXPORT_SYMBOL(__vmalloc);
2625
2626 static inline void *__vmalloc_node_flags(unsigned long size,
2627 int node, gfp_t flags)
2628 {
2629 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2630 node, __builtin_return_address(0));
2631 }
2632
2633
2634 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2635 void *caller)
2636 {
2637 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2638 }
2639
2640 /**
2641 * vmalloc - allocate virtually contiguous memory
2642 * @size: allocation size
2643 *
2644 * Allocate enough pages to cover @size from the page level
2645 * allocator and map them into contiguous kernel virtual space.
2646 *
2647 * For tight control over page level allocator and protection flags
2648 * use __vmalloc() instead.
2649 *
2650 * Return: pointer to the allocated memory or %NULL on error
2651 */
2652 void *vmalloc(unsigned long size)
2653 {
2654 return __vmalloc_node_flags(size, NUMA_NO_NODE,
2655 GFP_KERNEL);
2656 }
2657 EXPORT_SYMBOL(vmalloc);
2658
2659 /**
2660 * vzalloc - allocate virtually contiguous memory with zero fill
2661 * @size: allocation size
2662 *
2663 * Allocate enough pages to cover @size from the page level
2664 * allocator and map them into contiguous kernel virtual space.
2665 * The memory allocated is set to zero.
2666 *
2667 * For tight control over page level allocator and protection flags
2668 * use __vmalloc() instead.
2669 *
2670 * Return: pointer to the allocated memory or %NULL on error
2671 */
2672 void *vzalloc(unsigned long size)
2673 {
2674 return __vmalloc_node_flags(size, NUMA_NO_NODE,
2675 GFP_KERNEL | __GFP_ZERO);
2676 }
2677 EXPORT_SYMBOL(vzalloc);
2678
2679 /**
2680 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2681 * @size: allocation size
2682 *
2683 * The resulting memory area is zeroed so it can be mapped to userspace
2684 * without leaking data.
2685 *
2686 * Return: pointer to the allocated memory or %NULL on error
2687 */
2688 void *vmalloc_user(unsigned long size)
2689 {
2690 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2691 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2692 VM_USERMAP, NUMA_NO_NODE,
2693 __builtin_return_address(0));
2694 }
2695 EXPORT_SYMBOL(vmalloc_user);
2696
2697 /**
2698 * vmalloc_node - allocate memory on a specific node
2699 * @size: allocation size
2700 * @node: numa node
2701 *
2702 * Allocate enough pages to cover @size from the page level
2703 * allocator and map them into contiguous kernel virtual space.
2704 *
2705 * For tight control over page level allocator and protection flags
2706 * use __vmalloc() instead.
2707 *
2708 * Return: pointer to the allocated memory or %NULL on error
2709 */
2710 void *vmalloc_node(unsigned long size, int node)
2711 {
2712 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2713 node, __builtin_return_address(0));
2714 }
2715 EXPORT_SYMBOL(vmalloc_node);
2716
2717 /**
2718 * vzalloc_node - allocate memory on a specific node with zero fill
2719 * @size: allocation size
2720 * @node: numa node
2721 *
2722 * Allocate enough pages to cover @size from the page level
2723 * allocator and map them into contiguous kernel virtual space.
2724 * The memory allocated is set to zero.
2725 *
2726 * For tight control over page level allocator and protection flags
2727 * use __vmalloc_node() instead.
2728 *
2729 * Return: pointer to the allocated memory or %NULL on error
2730 */
2731 void *vzalloc_node(unsigned long size, int node)
2732 {
2733 return __vmalloc_node_flags(size, node,
2734 GFP_KERNEL | __GFP_ZERO);
2735 }
2736 EXPORT_SYMBOL(vzalloc_node);
2737
2738 /**
2739 * vmalloc_user_node_flags - allocate memory for userspace on a specific node
2740 * @size: allocation size
2741 * @node: numa node
2742 * @flags: flags for the page level allocator
2743 *
2744 * The resulting memory area is zeroed so it can be mapped to userspace
2745 * without leaking data.
2746 *
2747 * Return: pointer to the allocated memory or %NULL on error
2748 */
2749 void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
2750 {
2751 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2752 flags | __GFP_ZERO, PAGE_KERNEL,
2753 VM_USERMAP, node,
2754 __builtin_return_address(0));
2755 }
2756 EXPORT_SYMBOL(vmalloc_user_node_flags);
2757
2758 /**
2759 * vmalloc_exec - allocate virtually contiguous, executable memory
2760 * @size: allocation size
2761 *
2762 * Kernel-internal function to allocate enough pages to cover @size
2763 * the page level allocator and map them into contiguous and
2764 * executable kernel virtual space.
2765 *
2766 * For tight control over page level allocator and protection flags
2767 * use __vmalloc() instead.
2768 *
2769 * Return: pointer to the allocated memory or %NULL on error
2770 */
2771 void *vmalloc_exec(unsigned long size)
2772 {
2773 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2774 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2775 NUMA_NO_NODE, __builtin_return_address(0));
2776 }
2777
2778 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2779 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2780 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2781 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2782 #else
2783 /*
2784 * 64b systems should always have either DMA or DMA32 zones. For others
2785 * GFP_DMA32 should do the right thing and use the normal zone.
2786 */
2787 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2788 #endif
2789
2790 /**
2791 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2792 * @size: allocation size
2793 *
2794 * Allocate enough 32bit PA addressable pages to cover @size from the
2795 * page level allocator and map them into contiguous kernel virtual space.
2796 *
2797 * Return: pointer to the allocated memory or %NULL on error
2798 */
2799 void *vmalloc_32(unsigned long size)
2800 {
2801 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
2802 NUMA_NO_NODE, __builtin_return_address(0));
2803 }
2804 EXPORT_SYMBOL(vmalloc_32);
2805
2806 /**
2807 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2808 * @size: allocation size
2809 *
2810 * The resulting memory area is 32bit addressable and zeroed so it can be
2811 * mapped to userspace without leaking data.
2812 *
2813 * Return: pointer to the allocated memory or %NULL on error
2814 */
2815 void *vmalloc_32_user(unsigned long size)
2816 {
2817 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2818 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2819 VM_USERMAP, NUMA_NO_NODE,
2820 __builtin_return_address(0));
2821 }
2822 EXPORT_SYMBOL(vmalloc_32_user);
2823
2824 /*
2825 * small helper routine , copy contents to buf from addr.
2826 * If the page is not present, fill zero.
2827 */
2828
2829 static int aligned_vread(char *buf, char *addr, unsigned long count)
2830 {
2831 struct page *p;
2832 int copied = 0;
2833
2834 while (count) {
2835 unsigned long offset, length;
2836
2837 offset = offset_in_page(addr);
2838 length = PAGE_SIZE - offset;
2839 if (length > count)
2840 length = count;
2841 p = vmalloc_to_page(addr);
2842 /*
2843 * To do safe access to this _mapped_ area, we need
2844 * lock. But adding lock here means that we need to add
2845 * overhead of vmalloc()/vfree() calles for this _debug_
2846 * interface, rarely used. Instead of that, we'll use
2847 * kmap() and get small overhead in this access function.
2848 */
2849 if (p) {
2850 /*
2851 * we can expect USER0 is not used (see vread/vwrite's
2852 * function description)
2853 */
2854 void *map = kmap_atomic(p);
2855 memcpy(buf, map + offset, length);
2856 kunmap_atomic(map);
2857 } else
2858 memset(buf, 0, length);
2859
2860 addr += length;
2861 buf += length;
2862 copied += length;
2863 count -= length;
2864 }
2865 return copied;
2866 }
2867
2868 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2869 {
2870 struct page *p;
2871 int copied = 0;
2872
2873 while (count) {
2874 unsigned long offset, length;
2875
2876 offset = offset_in_page(addr);
2877 length = PAGE_SIZE - offset;
2878 if (length > count)
2879 length = count;
2880 p = vmalloc_to_page(addr);
2881 /*
2882 * To do safe access to this _mapped_ area, we need
2883 * lock. But adding lock here means that we need to add
2884 * overhead of vmalloc()/vfree() calles for this _debug_
2885 * interface, rarely used. Instead of that, we'll use
2886 * kmap() and get small overhead in this access function.
2887 */
2888 if (p) {
2889 /*
2890 * we can expect USER0 is not used (see vread/vwrite's
2891 * function description)
2892 */
2893 void *map = kmap_atomic(p);
2894 memcpy(map + offset, buf, length);
2895 kunmap_atomic(map);
2896 }
2897 addr += length;
2898 buf += length;
2899 copied += length;
2900 count -= length;
2901 }
2902 return copied;
2903 }
2904
2905 /**
2906 * vread() - read vmalloc area in a safe way.
2907 * @buf: buffer for reading data
2908 * @addr: vm address.
2909 * @count: number of bytes to be read.
2910 *
2911 * This function checks that addr is a valid vmalloc'ed area, and
2912 * copy data from that area to a given buffer. If the given memory range
2913 * of [addr...addr+count) includes some valid address, data is copied to
2914 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2915 * IOREMAP area is treated as memory hole and no copy is done.
2916 *
2917 * If [addr...addr+count) doesn't includes any intersects with alive
2918 * vm_struct area, returns 0. @buf should be kernel's buffer.
2919 *
2920 * Note: In usual ops, vread() is never necessary because the caller
2921 * should know vmalloc() area is valid and can use memcpy().
2922 * This is for routines which have to access vmalloc area without
2923 * any information, as /dev/kmem.
2924 *
2925 * Return: number of bytes for which addr and buf should be increased
2926 * (same number as @count) or %0 if [addr...addr+count) doesn't
2927 * include any intersection with valid vmalloc area
2928 */
2929 long vread(char *buf, char *addr, unsigned long count)
2930 {
2931 struct vmap_area *va;
2932 struct vm_struct *vm;
2933 char *vaddr, *buf_start = buf;
2934 unsigned long buflen = count;
2935 unsigned long n;
2936
2937 /* Don't allow overflow */
2938 if ((unsigned long) addr + count < count)
2939 count = -(unsigned long) addr;
2940
2941 spin_lock(&vmap_area_lock);
2942 list_for_each_entry(va, &vmap_area_list, list) {
2943 if (!count)
2944 break;
2945
2946 if (!va->vm)
2947 continue;
2948
2949 vm = va->vm;
2950 vaddr = (char *) vm->addr;
2951 if (addr >= vaddr + get_vm_area_size(vm))
2952 continue;
2953 while (addr < vaddr) {
2954 if (count == 0)
2955 goto finished;
2956 *buf = '\0';
2957 buf++;
2958 addr++;
2959 count--;
2960 }
2961 n = vaddr + get_vm_area_size(vm) - addr;
2962 if (n > count)
2963 n = count;
2964 if (!(vm->flags & VM_IOREMAP))
2965 aligned_vread(buf, addr, n);
2966 else /* IOREMAP area is treated as memory hole */
2967 memset(buf, 0, n);
2968 buf += n;
2969 addr += n;
2970 count -= n;
2971 }
2972 finished:
2973 spin_unlock(&vmap_area_lock);
2974
2975 if (buf == buf_start)
2976 return 0;
2977 /* zero-fill memory holes */
2978 if (buf != buf_start + buflen)
2979 memset(buf, 0, buflen - (buf - buf_start));
2980
2981 return buflen;
2982 }
2983
2984 /**
2985 * vwrite() - write vmalloc area in a safe way.
2986 * @buf: buffer for source data
2987 * @addr: vm address.
2988 * @count: number of bytes to be read.
2989 *
2990 * This function checks that addr is a valid vmalloc'ed area, and
2991 * copy data from a buffer to the given addr. If specified range of
2992 * [addr...addr+count) includes some valid address, data is copied from
2993 * proper area of @buf. If there are memory holes, no copy to hole.
2994 * IOREMAP area is treated as memory hole and no copy is done.
2995 *
2996 * If [addr...addr+count) doesn't includes any intersects with alive
2997 * vm_struct area, returns 0. @buf should be kernel's buffer.
2998 *
2999 * Note: In usual ops, vwrite() is never necessary because the caller
3000 * should know vmalloc() area is valid and can use memcpy().
3001 * This is for routines which have to access vmalloc area without
3002 * any information, as /dev/kmem.
3003 *
3004 * Return: number of bytes for which addr and buf should be
3005 * increased (same number as @count) or %0 if [addr...addr+count)
3006 * doesn't include any intersection with valid vmalloc area
3007 */
3008 long vwrite(char *buf, char *addr, unsigned long count)
3009 {
3010 struct vmap_area *va;
3011 struct vm_struct *vm;
3012 char *vaddr;
3013 unsigned long n, buflen;
3014 int copied = 0;
3015
3016 /* Don't allow overflow */
3017 if ((unsigned long) addr + count < count)
3018 count = -(unsigned long) addr;
3019 buflen = count;
3020
3021 spin_lock(&vmap_area_lock);
3022 list_for_each_entry(va, &vmap_area_list, list) {
3023 if (!count)
3024 break;
3025
3026 if (!va->vm)
3027 continue;
3028
3029 vm = va->vm;
3030 vaddr = (char *) vm->addr;
3031 if (addr >= vaddr + get_vm_area_size(vm))
3032 continue;
3033 while (addr < vaddr) {
3034 if (count == 0)
3035 goto finished;
3036 buf++;
3037 addr++;
3038 count--;
3039 }
3040 n = vaddr + get_vm_area_size(vm) - addr;
3041 if (n > count)
3042 n = count;
3043 if (!(vm->flags & VM_IOREMAP)) {
3044 aligned_vwrite(buf, addr, n);
3045 copied++;
3046 }
3047 buf += n;
3048 addr += n;
3049 count -= n;
3050 }
3051 finished:
3052 spin_unlock(&vmap_area_lock);
3053 if (!copied)
3054 return 0;
3055 return buflen;
3056 }
3057
3058 /**
3059 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3060 * @vma: vma to cover
3061 * @uaddr: target user address to start at
3062 * @kaddr: virtual address of vmalloc kernel memory
3063 * @size: size of map area
3064 *
3065 * Returns: 0 for success, -Exxx on failure
3066 *
3067 * This function checks that @kaddr is a valid vmalloc'ed area,
3068 * and that it is big enough to cover the range starting at
3069 * @uaddr in @vma. Will return failure if that criteria isn't
3070 * met.
3071 *
3072 * Similar to remap_pfn_range() (see mm/memory.c)
3073 */
3074 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3075 void *kaddr, unsigned long size)
3076 {
3077 struct vm_struct *area;
3078
3079 size = PAGE_ALIGN(size);
3080
3081 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3082 return -EINVAL;
3083
3084 area = find_vm_area(kaddr);
3085 if (!area)
3086 return -EINVAL;
3087
3088 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3089 return -EINVAL;
3090
3091 if (kaddr + size > area->addr + get_vm_area_size(area))
3092 return -EINVAL;
3093
3094 do {
3095 struct page *page = vmalloc_to_page(kaddr);
3096 int ret;
3097
3098 ret = vm_insert_page(vma, uaddr, page);
3099 if (ret)
3100 return ret;
3101
3102 uaddr += PAGE_SIZE;
3103 kaddr += PAGE_SIZE;
3104 size -= PAGE_SIZE;
3105 } while (size > 0);
3106
3107 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3108
3109 return 0;
3110 }
3111 EXPORT_SYMBOL(remap_vmalloc_range_partial);
3112
3113 /**
3114 * remap_vmalloc_range - map vmalloc pages to userspace
3115 * @vma: vma to cover (map full range of vma)
3116 * @addr: vmalloc memory
3117 * @pgoff: number of pages into addr before first page to map
3118 *
3119 * Returns: 0 for success, -Exxx on failure
3120 *
3121 * This function checks that addr is a valid vmalloc'ed area, and
3122 * that it is big enough to cover the vma. Will return failure if
3123 * that criteria isn't met.
3124 *
3125 * Similar to remap_pfn_range() (see mm/memory.c)
3126 */
3127 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3128 unsigned long pgoff)
3129 {
3130 return remap_vmalloc_range_partial(vma, vma->vm_start,
3131 addr + (pgoff << PAGE_SHIFT),
3132 vma->vm_end - vma->vm_start);
3133 }
3134 EXPORT_SYMBOL(remap_vmalloc_range);
3135
3136 /*
3137 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
3138 * have one.
3139 *
3140 * The purpose of this function is to make sure the vmalloc area
3141 * mappings are identical in all page-tables in the system.
3142 */
3143 void __weak vmalloc_sync_all(void)
3144 {
3145 }
3146
3147
3148 static int f(pte_t *pte, unsigned long addr, void *data)
3149 {
3150 pte_t ***p = data;
3151
3152 if (p) {
3153 *(*p) = pte;
3154 (*p)++;
3155 }
3156 return 0;
3157 }
3158
3159 /**
3160 * alloc_vm_area - allocate a range of kernel address space
3161 * @size: size of the area
3162 * @ptes: returns the PTEs for the address space
3163 *
3164 * Returns: NULL on failure, vm_struct on success
3165 *
3166 * This function reserves a range of kernel address space, and
3167 * allocates pagetables to map that range. No actual mappings
3168 * are created.
3169 *
3170 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3171 * allocated for the VM area are returned.
3172 */
3173 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3174 {
3175 struct vm_struct *area;
3176
3177 area = get_vm_area_caller(size, VM_IOREMAP,
3178 __builtin_return_address(0));
3179 if (area == NULL)
3180 return NULL;
3181
3182 /*
3183 * This ensures that page tables are constructed for this region
3184 * of kernel virtual address space and mapped into init_mm.
3185 */
3186 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3187 size, f, ptes ? &ptes : NULL)) {
3188 free_vm_area(area);
3189 return NULL;
3190 }
3191
3192 return area;
3193 }
3194 EXPORT_SYMBOL_GPL(alloc_vm_area);
3195
3196 void free_vm_area(struct vm_struct *area)
3197 {
3198 struct vm_struct *ret;
3199 ret = remove_vm_area(area->addr);
3200 BUG_ON(ret != area);
3201 kfree(area);
3202 }
3203 EXPORT_SYMBOL_GPL(free_vm_area);
3204
3205 #ifdef CONFIG_SMP
3206 static struct vmap_area *node_to_va(struct rb_node *n)
3207 {
3208 return rb_entry_safe(n, struct vmap_area, rb_node);
3209 }
3210
3211 /**
3212 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3213 * @addr: target address
3214 *
3215 * Returns: vmap_area if it is found. If there is no such area
3216 * the first highest(reverse order) vmap_area is returned
3217 * i.e. va->va_start < addr && va->va_end < addr or NULL
3218 * if there are no any areas before @addr.
3219 */
3220 static struct vmap_area *
3221 pvm_find_va_enclose_addr(unsigned long addr)
3222 {
3223 struct vmap_area *va, *tmp;
3224 struct rb_node *n;
3225
3226 n = free_vmap_area_root.rb_node;
3227 va = NULL;
3228
3229 while (n) {
3230 tmp = rb_entry(n, struct vmap_area, rb_node);
3231 if (tmp->va_start <= addr) {
3232 va = tmp;
3233 if (tmp->va_end >= addr)
3234 break;
3235
3236 n = n->rb_right;
3237 } else {
3238 n = n->rb_left;
3239 }
3240 }
3241
3242 return va;
3243 }
3244
3245 /**
3246 * pvm_determine_end_from_reverse - find the highest aligned address
3247 * of free block below VMALLOC_END
3248 * @va:
3249 * in - the VA we start the search(reverse order);
3250 * out - the VA with the highest aligned end address.
3251 *
3252 * Returns: determined end address within vmap_area
3253 */
3254 static unsigned long
3255 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3256 {
3257 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3258 unsigned long addr;
3259
3260 if (likely(*va)) {
3261 list_for_each_entry_from_reverse((*va),
3262 &free_vmap_area_list, list) {
3263 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3264 if ((*va)->va_start < addr)
3265 return addr;
3266 }
3267 }
3268
3269 return 0;
3270 }
3271
3272 /**
3273 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3274 * @offsets: array containing offset of each area
3275 * @sizes: array containing size of each area
3276 * @nr_vms: the number of areas to allocate
3277 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3278 *
3279 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3280 * vm_structs on success, %NULL on failure
3281 *
3282 * Percpu allocator wants to use congruent vm areas so that it can
3283 * maintain the offsets among percpu areas. This function allocates
3284 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3285 * be scattered pretty far, distance between two areas easily going up
3286 * to gigabytes. To avoid interacting with regular vmallocs, these
3287 * areas are allocated from top.
3288 *
3289 * Despite its complicated look, this allocator is rather simple. It
3290 * does everything top-down and scans free blocks from the end looking
3291 * for matching base. While scanning, if any of the areas do not fit the
3292 * base address is pulled down to fit the area. Scanning is repeated till
3293 * all the areas fit and then all necessary data structures are inserted
3294 * and the result is returned.
3295 */
3296 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3297 const size_t *sizes, int nr_vms,
3298 size_t align)
3299 {
3300 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3301 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3302 struct vmap_area **vas, *va;
3303 struct vm_struct **vms;
3304 int area, area2, last_area, term_area;
3305 unsigned long base, start, size, end, last_end;
3306 bool purged = false;
3307 enum fit_type type;
3308
3309 /* verify parameters and allocate data structures */
3310 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3311 for (last_area = 0, area = 0; area < nr_vms; area++) {
3312 start = offsets[area];
3313 end = start + sizes[area];
3314
3315 /* is everything aligned properly? */
3316 BUG_ON(!IS_ALIGNED(offsets[area], align));
3317 BUG_ON(!IS_ALIGNED(sizes[area], align));
3318
3319 /* detect the area with the highest address */
3320 if (start > offsets[last_area])
3321 last_area = area;
3322
3323 for (area2 = area + 1; area2 < nr_vms; area2++) {
3324 unsigned long start2 = offsets[area2];
3325 unsigned long end2 = start2 + sizes[area2];
3326
3327 BUG_ON(start2 < end && start < end2);
3328 }
3329 }
3330 last_end = offsets[last_area] + sizes[last_area];
3331
3332 if (vmalloc_end - vmalloc_start < last_end) {
3333 WARN_ON(true);
3334 return NULL;
3335 }
3336
3337 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3338 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3339 if (!vas || !vms)
3340 goto err_free2;
3341
3342 for (area = 0; area < nr_vms; area++) {
3343 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3344 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3345 if (!vas[area] || !vms[area])
3346 goto err_free;
3347 }
3348 retry:
3349 spin_lock(&free_vmap_area_lock);
3350
3351 /* start scanning - we scan from the top, begin with the last area */
3352 area = term_area = last_area;
3353 start = offsets[area];
3354 end = start + sizes[area];
3355
3356 va = pvm_find_va_enclose_addr(vmalloc_end);
3357 base = pvm_determine_end_from_reverse(&va, align) - end;
3358
3359 while (true) {
3360 /*
3361 * base might have underflowed, add last_end before
3362 * comparing.
3363 */
3364 if (base + last_end < vmalloc_start + last_end)
3365 goto overflow;
3366
3367 /*
3368 * Fitting base has not been found.
3369 */
3370 if (va == NULL)
3371 goto overflow;
3372
3373 /*
3374 * If required width exeeds current VA block, move
3375 * base downwards and then recheck.
3376 */
3377 if (base + end > va->va_end) {
3378 base = pvm_determine_end_from_reverse(&va, align) - end;
3379 term_area = area;
3380 continue;
3381 }
3382
3383 /*
3384 * If this VA does not fit, move base downwards and recheck.
3385 */
3386 if (base + start < va->va_start) {
3387 va = node_to_va(rb_prev(&va->rb_node));
3388 base = pvm_determine_end_from_reverse(&va, align) - end;
3389 term_area = area;
3390 continue;
3391 }
3392
3393 /*
3394 * This area fits, move on to the previous one. If
3395 * the previous one is the terminal one, we're done.
3396 */
3397 area = (area + nr_vms - 1) % nr_vms;
3398 if (area == term_area)
3399 break;
3400
3401 start = offsets[area];
3402 end = start + sizes[area];
3403 va = pvm_find_va_enclose_addr(base + end);
3404 }
3405
3406 /* we've found a fitting base, insert all va's */
3407 for (area = 0; area < nr_vms; area++) {
3408 int ret;
3409
3410 start = base + offsets[area];
3411 size = sizes[area];
3412
3413 va = pvm_find_va_enclose_addr(start);
3414 if (WARN_ON_ONCE(va == NULL))
3415 /* It is a BUG(), but trigger recovery instead. */
3416 goto recovery;
3417
3418 type = classify_va_fit_type(va, start, size);
3419 if (WARN_ON_ONCE(type == NOTHING_FIT))
3420 /* It is a BUG(), but trigger recovery instead. */
3421 goto recovery;
3422
3423 ret = adjust_va_to_fit_type(va, start, size, type);
3424 if (unlikely(ret))
3425 goto recovery;
3426
3427 /* Allocated area. */
3428 va = vas[area];
3429 va->va_start = start;
3430 va->va_end = start + size;
3431 }
3432
3433 spin_unlock(&free_vmap_area_lock);
3434
3435 /* insert all vm's */
3436 spin_lock(&vmap_area_lock);
3437 for (area = 0; area < nr_vms; area++) {
3438 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3439
3440 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3441 pcpu_get_vm_areas);
3442 }
3443 spin_unlock(&vmap_area_lock);
3444
3445 /* populate the shadow space outside of the lock */
3446 for (area = 0; area < nr_vms; area++) {
3447 /* assume success here */
3448 kasan_populate_vmalloc(sizes[area], vms[area]);
3449 }
3450
3451 kfree(vas);
3452 return vms;
3453
3454 recovery:
3455 /*
3456 * Remove previously allocated areas. There is no
3457 * need in removing these areas from the busy tree,
3458 * because they are inserted only on the final step
3459 * and when pcpu_get_vm_areas() is success.
3460 */
3461 while (area--) {
3462 merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3463 &free_vmap_area_list);
3464 vas[area] = NULL;
3465 }
3466
3467 overflow:
3468 spin_unlock(&free_vmap_area_lock);
3469 if (!purged) {
3470 purge_vmap_area_lazy();
3471 purged = true;
3472
3473 /* Before "retry", check if we recover. */
3474 for (area = 0; area < nr_vms; area++) {
3475 if (vas[area])
3476 continue;
3477
3478 vas[area] = kmem_cache_zalloc(
3479 vmap_area_cachep, GFP_KERNEL);
3480 if (!vas[area])
3481 goto err_free;
3482 }
3483
3484 goto retry;
3485 }
3486
3487 err_free:
3488 for (area = 0; area < nr_vms; area++) {
3489 if (vas[area])
3490 kmem_cache_free(vmap_area_cachep, vas[area]);
3491
3492 kfree(vms[area]);
3493 }
3494 err_free2:
3495 kfree(vas);
3496 kfree(vms);
3497 return NULL;
3498 }
3499
3500 /**
3501 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3502 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3503 * @nr_vms: the number of allocated areas
3504 *
3505 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3506 */
3507 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3508 {
3509 int i;
3510
3511 for (i = 0; i < nr_vms; i++)
3512 free_vm_area(vms[i]);
3513 kfree(vms);
3514 }
3515 #endif /* CONFIG_SMP */
3516
3517 #ifdef CONFIG_PROC_FS
3518 static void *s_start(struct seq_file *m, loff_t *pos)
3519 __acquires(&vmap_purge_lock)
3520 __acquires(&vmap_area_lock)
3521 {
3522 mutex_lock(&vmap_purge_lock);
3523 spin_lock(&vmap_area_lock);
3524
3525 return seq_list_start(&vmap_area_list, *pos);
3526 }
3527
3528 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3529 {
3530 return seq_list_next(p, &vmap_area_list, pos);
3531 }
3532
3533 static void s_stop(struct seq_file *m, void *p)
3534 __releases(&vmap_purge_lock)
3535 __releases(&vmap_area_lock)
3536 {
3537 mutex_unlock(&vmap_purge_lock);
3538 spin_unlock(&vmap_area_lock);
3539 }
3540
3541 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3542 {
3543 if (IS_ENABLED(CONFIG_NUMA)) {
3544 unsigned int nr, *counters = m->private;
3545
3546 if (!counters)
3547 return;
3548
3549 if (v->flags & VM_UNINITIALIZED)
3550 return;
3551 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3552 smp_rmb();
3553
3554 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3555
3556 for (nr = 0; nr < v->nr_pages; nr++)
3557 counters[page_to_nid(v->pages[nr])]++;
3558
3559 for_each_node_state(nr, N_HIGH_MEMORY)
3560 if (counters[nr])
3561 seq_printf(m, " N%u=%u", nr, counters[nr]);
3562 }
3563 }
3564
3565 static void show_purge_info(struct seq_file *m)
3566 {
3567 struct llist_node *head;
3568 struct vmap_area *va;
3569
3570 head = READ_ONCE(vmap_purge_list.first);
3571 if (head == NULL)
3572 return;
3573
3574 llist_for_each_entry(va, head, purge_list) {
3575 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3576 (void *)va->va_start, (void *)va->va_end,
3577 va->va_end - va->va_start);
3578 }
3579 }
3580
3581 static int s_show(struct seq_file *m, void *p)
3582 {
3583 struct vmap_area *va;
3584 struct vm_struct *v;
3585
3586 va = list_entry(p, struct vmap_area, list);
3587
3588 /*
3589 * s_show can encounter race with remove_vm_area, !vm on behalf
3590 * of vmap area is being tear down or vm_map_ram allocation.
3591 */
3592 if (!va->vm) {
3593 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3594 (void *)va->va_start, (void *)va->va_end,
3595 va->va_end - va->va_start);
3596
3597 return 0;
3598 }
3599
3600 v = va->vm;
3601
3602 seq_printf(m, "0x%pK-0x%pK %7ld",
3603 v->addr, v->addr + v->size, v->size);
3604
3605 if (v->caller)
3606 seq_printf(m, " %pS", v->caller);
3607
3608 if (v->nr_pages)
3609 seq_printf(m, " pages=%d", v->nr_pages);
3610
3611 if (v->phys_addr)
3612 seq_printf(m, " phys=%pa", &v->phys_addr);
3613
3614 if (v->flags & VM_IOREMAP)
3615 seq_puts(m, " ioremap");
3616
3617 if (v->flags & VM_ALLOC)
3618 seq_puts(m, " vmalloc");
3619
3620 if (v->flags & VM_MAP)
3621 seq_puts(m, " vmap");
3622
3623 if (v->flags & VM_USERMAP)
3624 seq_puts(m, " user");
3625
3626 if (v->flags & VM_DMA_COHERENT)
3627 seq_puts(m, " dma-coherent");
3628
3629 if (is_vmalloc_addr(v->pages))
3630 seq_puts(m, " vpages");
3631
3632 show_numa_info(m, v);
3633 seq_putc(m, '\n');
3634
3635 /*
3636 * As a final step, dump "unpurged" areas. Note,
3637 * that entire "/proc/vmallocinfo" output will not
3638 * be address sorted, because the purge list is not
3639 * sorted.
3640 */
3641 if (list_is_last(&va->list, &vmap_area_list))
3642 show_purge_info(m);
3643
3644 return 0;
3645 }
3646
3647 static const struct seq_operations vmalloc_op = {
3648 .start = s_start,
3649 .next = s_next,
3650 .stop = s_stop,
3651 .show = s_show,
3652 };
3653
3654 static int __init proc_vmalloc_init(void)
3655 {
3656 if (IS_ENABLED(CONFIG_NUMA))
3657 proc_create_seq_private("vmallocinfo", 0400, NULL,
3658 &vmalloc_op,
3659 nr_node_ids * sizeof(unsigned int), NULL);
3660 else
3661 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3662 return 0;
3663 }
3664 module_init(proc_vmalloc_init);
3665
3666 #endif