]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/vmalloc.c
Merge tag 'phy-for-4.11-rc' of git://git.kernel.org/pub/scm/linux/kernel/git/kishon...
[mirror_ubuntu-artful-kernel.git] / mm / vmalloc.c
1 /*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/notifier.h>
25 #include <linux/rbtree.h>
26 #include <linux/radix-tree.h>
27 #include <linux/rcupdate.h>
28 #include <linux/pfn.h>
29 #include <linux/kmemleak.h>
30 #include <linux/atomic.h>
31 #include <linux/compiler.h>
32 #include <linux/llist.h>
33 #include <linux/bitops.h>
34
35 #include <linux/uaccess.h>
36 #include <asm/tlbflush.h>
37 #include <asm/shmparam.h>
38
39 #include "internal.h"
40
41 struct vfree_deferred {
42 struct llist_head list;
43 struct work_struct wq;
44 };
45 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
46
47 static void __vunmap(const void *, int);
48
49 static void free_work(struct work_struct *w)
50 {
51 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
52 struct llist_node *llnode = llist_del_all(&p->list);
53 while (llnode) {
54 void *p = llnode;
55 llnode = llist_next(llnode);
56 __vunmap(p, 1);
57 }
58 }
59
60 /*** Page table manipulation functions ***/
61
62 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
63 {
64 pte_t *pte;
65
66 pte = pte_offset_kernel(pmd, addr);
67 do {
68 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
69 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
70 } while (pte++, addr += PAGE_SIZE, addr != end);
71 }
72
73 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
74 {
75 pmd_t *pmd;
76 unsigned long next;
77
78 pmd = pmd_offset(pud, addr);
79 do {
80 next = pmd_addr_end(addr, end);
81 if (pmd_clear_huge(pmd))
82 continue;
83 if (pmd_none_or_clear_bad(pmd))
84 continue;
85 vunmap_pte_range(pmd, addr, next);
86 } while (pmd++, addr = next, addr != end);
87 }
88
89 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
90 {
91 pud_t *pud;
92 unsigned long next;
93
94 pud = pud_offset(p4d, addr);
95 do {
96 next = pud_addr_end(addr, end);
97 if (pud_clear_huge(pud))
98 continue;
99 if (pud_none_or_clear_bad(pud))
100 continue;
101 vunmap_pmd_range(pud, addr, next);
102 } while (pud++, addr = next, addr != end);
103 }
104
105 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
106 {
107 p4d_t *p4d;
108 unsigned long next;
109
110 p4d = p4d_offset(pgd, addr);
111 do {
112 next = p4d_addr_end(addr, end);
113 if (p4d_clear_huge(p4d))
114 continue;
115 if (p4d_none_or_clear_bad(p4d))
116 continue;
117 vunmap_pud_range(p4d, addr, next);
118 } while (p4d++, addr = next, addr != end);
119 }
120
121 static void vunmap_page_range(unsigned long addr, unsigned long end)
122 {
123 pgd_t *pgd;
124 unsigned long next;
125
126 BUG_ON(addr >= end);
127 pgd = pgd_offset_k(addr);
128 do {
129 next = pgd_addr_end(addr, end);
130 if (pgd_none_or_clear_bad(pgd))
131 continue;
132 vunmap_p4d_range(pgd, addr, next);
133 } while (pgd++, addr = next, addr != end);
134 }
135
136 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
137 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
138 {
139 pte_t *pte;
140
141 /*
142 * nr is a running index into the array which helps higher level
143 * callers keep track of where we're up to.
144 */
145
146 pte = pte_alloc_kernel(pmd, addr);
147 if (!pte)
148 return -ENOMEM;
149 do {
150 struct page *page = pages[*nr];
151
152 if (WARN_ON(!pte_none(*pte)))
153 return -EBUSY;
154 if (WARN_ON(!page))
155 return -ENOMEM;
156 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
157 (*nr)++;
158 } while (pte++, addr += PAGE_SIZE, addr != end);
159 return 0;
160 }
161
162 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
163 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
164 {
165 pmd_t *pmd;
166 unsigned long next;
167
168 pmd = pmd_alloc(&init_mm, pud, addr);
169 if (!pmd)
170 return -ENOMEM;
171 do {
172 next = pmd_addr_end(addr, end);
173 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
174 return -ENOMEM;
175 } while (pmd++, addr = next, addr != end);
176 return 0;
177 }
178
179 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
180 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
181 {
182 pud_t *pud;
183 unsigned long next;
184
185 pud = pud_alloc(&init_mm, p4d, addr);
186 if (!pud)
187 return -ENOMEM;
188 do {
189 next = pud_addr_end(addr, end);
190 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
191 return -ENOMEM;
192 } while (pud++, addr = next, addr != end);
193 return 0;
194 }
195
196 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
197 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
198 {
199 p4d_t *p4d;
200 unsigned long next;
201
202 p4d = p4d_alloc(&init_mm, pgd, addr);
203 if (!p4d)
204 return -ENOMEM;
205 do {
206 next = p4d_addr_end(addr, end);
207 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
208 return -ENOMEM;
209 } while (p4d++, addr = next, addr != end);
210 return 0;
211 }
212
213 /*
214 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
215 * will have pfns corresponding to the "pages" array.
216 *
217 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
218 */
219 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
220 pgprot_t prot, struct page **pages)
221 {
222 pgd_t *pgd;
223 unsigned long next;
224 unsigned long addr = start;
225 int err = 0;
226 int nr = 0;
227
228 BUG_ON(addr >= end);
229 pgd = pgd_offset_k(addr);
230 do {
231 next = pgd_addr_end(addr, end);
232 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
233 if (err)
234 return err;
235 } while (pgd++, addr = next, addr != end);
236
237 return nr;
238 }
239
240 static int vmap_page_range(unsigned long start, unsigned long end,
241 pgprot_t prot, struct page **pages)
242 {
243 int ret;
244
245 ret = vmap_page_range_noflush(start, end, prot, pages);
246 flush_cache_vmap(start, end);
247 return ret;
248 }
249
250 int is_vmalloc_or_module_addr(const void *x)
251 {
252 /*
253 * ARM, x86-64 and sparc64 put modules in a special place,
254 * and fall back on vmalloc() if that fails. Others
255 * just put it in the vmalloc space.
256 */
257 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
258 unsigned long addr = (unsigned long)x;
259 if (addr >= MODULES_VADDR && addr < MODULES_END)
260 return 1;
261 #endif
262 return is_vmalloc_addr(x);
263 }
264
265 /*
266 * Walk a vmap address to the struct page it maps.
267 */
268 struct page *vmalloc_to_page(const void *vmalloc_addr)
269 {
270 unsigned long addr = (unsigned long) vmalloc_addr;
271 struct page *page = NULL;
272 pgd_t *pgd = pgd_offset_k(addr);
273 p4d_t *p4d;
274 pud_t *pud;
275 pmd_t *pmd;
276 pte_t *ptep, pte;
277
278 /*
279 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
280 * architectures that do not vmalloc module space
281 */
282 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
283
284 if (pgd_none(*pgd))
285 return NULL;
286 p4d = p4d_offset(pgd, addr);
287 if (p4d_none(*p4d))
288 return NULL;
289 pud = pud_offset(p4d, addr);
290 if (pud_none(*pud))
291 return NULL;
292 pmd = pmd_offset(pud, addr);
293 if (pmd_none(*pmd))
294 return NULL;
295
296 ptep = pte_offset_map(pmd, addr);
297 pte = *ptep;
298 if (pte_present(pte))
299 page = pte_page(pte);
300 pte_unmap(ptep);
301 return page;
302 }
303 EXPORT_SYMBOL(vmalloc_to_page);
304
305 /*
306 * Map a vmalloc()-space virtual address to the physical page frame number.
307 */
308 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
309 {
310 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
311 }
312 EXPORT_SYMBOL(vmalloc_to_pfn);
313
314
315 /*** Global kva allocator ***/
316
317 #define VM_VM_AREA 0x04
318
319 static DEFINE_SPINLOCK(vmap_area_lock);
320 /* Export for kexec only */
321 LIST_HEAD(vmap_area_list);
322 static LLIST_HEAD(vmap_purge_list);
323 static struct rb_root vmap_area_root = RB_ROOT;
324
325 /* The vmap cache globals are protected by vmap_area_lock */
326 static struct rb_node *free_vmap_cache;
327 static unsigned long cached_hole_size;
328 static unsigned long cached_vstart;
329 static unsigned long cached_align;
330
331 static unsigned long vmap_area_pcpu_hole;
332
333 static struct vmap_area *__find_vmap_area(unsigned long addr)
334 {
335 struct rb_node *n = vmap_area_root.rb_node;
336
337 while (n) {
338 struct vmap_area *va;
339
340 va = rb_entry(n, struct vmap_area, rb_node);
341 if (addr < va->va_start)
342 n = n->rb_left;
343 else if (addr >= va->va_end)
344 n = n->rb_right;
345 else
346 return va;
347 }
348
349 return NULL;
350 }
351
352 static void __insert_vmap_area(struct vmap_area *va)
353 {
354 struct rb_node **p = &vmap_area_root.rb_node;
355 struct rb_node *parent = NULL;
356 struct rb_node *tmp;
357
358 while (*p) {
359 struct vmap_area *tmp_va;
360
361 parent = *p;
362 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
363 if (va->va_start < tmp_va->va_end)
364 p = &(*p)->rb_left;
365 else if (va->va_end > tmp_va->va_start)
366 p = &(*p)->rb_right;
367 else
368 BUG();
369 }
370
371 rb_link_node(&va->rb_node, parent, p);
372 rb_insert_color(&va->rb_node, &vmap_area_root);
373
374 /* address-sort this list */
375 tmp = rb_prev(&va->rb_node);
376 if (tmp) {
377 struct vmap_area *prev;
378 prev = rb_entry(tmp, struct vmap_area, rb_node);
379 list_add_rcu(&va->list, &prev->list);
380 } else
381 list_add_rcu(&va->list, &vmap_area_list);
382 }
383
384 static void purge_vmap_area_lazy(void);
385
386 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
387
388 /*
389 * Allocate a region of KVA of the specified size and alignment, within the
390 * vstart and vend.
391 */
392 static struct vmap_area *alloc_vmap_area(unsigned long size,
393 unsigned long align,
394 unsigned long vstart, unsigned long vend,
395 int node, gfp_t gfp_mask)
396 {
397 struct vmap_area *va;
398 struct rb_node *n;
399 unsigned long addr;
400 int purged = 0;
401 struct vmap_area *first;
402
403 BUG_ON(!size);
404 BUG_ON(offset_in_page(size));
405 BUG_ON(!is_power_of_2(align));
406
407 might_sleep();
408
409 va = kmalloc_node(sizeof(struct vmap_area),
410 gfp_mask & GFP_RECLAIM_MASK, node);
411 if (unlikely(!va))
412 return ERR_PTR(-ENOMEM);
413
414 /*
415 * Only scan the relevant parts containing pointers to other objects
416 * to avoid false negatives.
417 */
418 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
419
420 retry:
421 spin_lock(&vmap_area_lock);
422 /*
423 * Invalidate cache if we have more permissive parameters.
424 * cached_hole_size notes the largest hole noticed _below_
425 * the vmap_area cached in free_vmap_cache: if size fits
426 * into that hole, we want to scan from vstart to reuse
427 * the hole instead of allocating above free_vmap_cache.
428 * Note that __free_vmap_area may update free_vmap_cache
429 * without updating cached_hole_size or cached_align.
430 */
431 if (!free_vmap_cache ||
432 size < cached_hole_size ||
433 vstart < cached_vstart ||
434 align < cached_align) {
435 nocache:
436 cached_hole_size = 0;
437 free_vmap_cache = NULL;
438 }
439 /* record if we encounter less permissive parameters */
440 cached_vstart = vstart;
441 cached_align = align;
442
443 /* find starting point for our search */
444 if (free_vmap_cache) {
445 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
446 addr = ALIGN(first->va_end, align);
447 if (addr < vstart)
448 goto nocache;
449 if (addr + size < addr)
450 goto overflow;
451
452 } else {
453 addr = ALIGN(vstart, align);
454 if (addr + size < addr)
455 goto overflow;
456
457 n = vmap_area_root.rb_node;
458 first = NULL;
459
460 while (n) {
461 struct vmap_area *tmp;
462 tmp = rb_entry(n, struct vmap_area, rb_node);
463 if (tmp->va_end >= addr) {
464 first = tmp;
465 if (tmp->va_start <= addr)
466 break;
467 n = n->rb_left;
468 } else
469 n = n->rb_right;
470 }
471
472 if (!first)
473 goto found;
474 }
475
476 /* from the starting point, walk areas until a suitable hole is found */
477 while (addr + size > first->va_start && addr + size <= vend) {
478 if (addr + cached_hole_size < first->va_start)
479 cached_hole_size = first->va_start - addr;
480 addr = ALIGN(first->va_end, align);
481 if (addr + size < addr)
482 goto overflow;
483
484 if (list_is_last(&first->list, &vmap_area_list))
485 goto found;
486
487 first = list_next_entry(first, list);
488 }
489
490 found:
491 if (addr + size > vend)
492 goto overflow;
493
494 va->va_start = addr;
495 va->va_end = addr + size;
496 va->flags = 0;
497 __insert_vmap_area(va);
498 free_vmap_cache = &va->rb_node;
499 spin_unlock(&vmap_area_lock);
500
501 BUG_ON(!IS_ALIGNED(va->va_start, align));
502 BUG_ON(va->va_start < vstart);
503 BUG_ON(va->va_end > vend);
504
505 return va;
506
507 overflow:
508 spin_unlock(&vmap_area_lock);
509 if (!purged) {
510 purge_vmap_area_lazy();
511 purged = 1;
512 goto retry;
513 }
514
515 if (gfpflags_allow_blocking(gfp_mask)) {
516 unsigned long freed = 0;
517 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
518 if (freed > 0) {
519 purged = 0;
520 goto retry;
521 }
522 }
523
524 if (printk_ratelimit())
525 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
526 size);
527 kfree(va);
528 return ERR_PTR(-EBUSY);
529 }
530
531 int register_vmap_purge_notifier(struct notifier_block *nb)
532 {
533 return blocking_notifier_chain_register(&vmap_notify_list, nb);
534 }
535 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
536
537 int unregister_vmap_purge_notifier(struct notifier_block *nb)
538 {
539 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
540 }
541 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
542
543 static void __free_vmap_area(struct vmap_area *va)
544 {
545 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
546
547 if (free_vmap_cache) {
548 if (va->va_end < cached_vstart) {
549 free_vmap_cache = NULL;
550 } else {
551 struct vmap_area *cache;
552 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
553 if (va->va_start <= cache->va_start) {
554 free_vmap_cache = rb_prev(&va->rb_node);
555 /*
556 * We don't try to update cached_hole_size or
557 * cached_align, but it won't go very wrong.
558 */
559 }
560 }
561 }
562 rb_erase(&va->rb_node, &vmap_area_root);
563 RB_CLEAR_NODE(&va->rb_node);
564 list_del_rcu(&va->list);
565
566 /*
567 * Track the highest possible candidate for pcpu area
568 * allocation. Areas outside of vmalloc area can be returned
569 * here too, consider only end addresses which fall inside
570 * vmalloc area proper.
571 */
572 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
573 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
574
575 kfree_rcu(va, rcu_head);
576 }
577
578 /*
579 * Free a region of KVA allocated by alloc_vmap_area
580 */
581 static void free_vmap_area(struct vmap_area *va)
582 {
583 spin_lock(&vmap_area_lock);
584 __free_vmap_area(va);
585 spin_unlock(&vmap_area_lock);
586 }
587
588 /*
589 * Clear the pagetable entries of a given vmap_area
590 */
591 static void unmap_vmap_area(struct vmap_area *va)
592 {
593 vunmap_page_range(va->va_start, va->va_end);
594 }
595
596 static void vmap_debug_free_range(unsigned long start, unsigned long end)
597 {
598 /*
599 * Unmap page tables and force a TLB flush immediately if pagealloc
600 * debugging is enabled. This catches use after free bugs similarly to
601 * those in linear kernel virtual address space after a page has been
602 * freed.
603 *
604 * All the lazy freeing logic is still retained, in order to minimise
605 * intrusiveness of this debugging feature.
606 *
607 * This is going to be *slow* (linear kernel virtual address debugging
608 * doesn't do a broadcast TLB flush so it is a lot faster).
609 */
610 if (debug_pagealloc_enabled()) {
611 vunmap_page_range(start, end);
612 flush_tlb_kernel_range(start, end);
613 }
614 }
615
616 /*
617 * lazy_max_pages is the maximum amount of virtual address space we gather up
618 * before attempting to purge with a TLB flush.
619 *
620 * There is a tradeoff here: a larger number will cover more kernel page tables
621 * and take slightly longer to purge, but it will linearly reduce the number of
622 * global TLB flushes that must be performed. It would seem natural to scale
623 * this number up linearly with the number of CPUs (because vmapping activity
624 * could also scale linearly with the number of CPUs), however it is likely
625 * that in practice, workloads might be constrained in other ways that mean
626 * vmap activity will not scale linearly with CPUs. Also, I want to be
627 * conservative and not introduce a big latency on huge systems, so go with
628 * a less aggressive log scale. It will still be an improvement over the old
629 * code, and it will be simple to change the scale factor if we find that it
630 * becomes a problem on bigger systems.
631 */
632 static unsigned long lazy_max_pages(void)
633 {
634 unsigned int log;
635
636 log = fls(num_online_cpus());
637
638 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
639 }
640
641 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
642
643 /*
644 * Serialize vmap purging. There is no actual criticial section protected
645 * by this look, but we want to avoid concurrent calls for performance
646 * reasons and to make the pcpu_get_vm_areas more deterministic.
647 */
648 static DEFINE_MUTEX(vmap_purge_lock);
649
650 /* for per-CPU blocks */
651 static void purge_fragmented_blocks_allcpus(void);
652
653 /*
654 * called before a call to iounmap() if the caller wants vm_area_struct's
655 * immediately freed.
656 */
657 void set_iounmap_nonlazy(void)
658 {
659 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
660 }
661
662 /*
663 * Purges all lazily-freed vmap areas.
664 */
665 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
666 {
667 struct llist_node *valist;
668 struct vmap_area *va;
669 struct vmap_area *n_va;
670 bool do_free = false;
671
672 lockdep_assert_held(&vmap_purge_lock);
673
674 valist = llist_del_all(&vmap_purge_list);
675 llist_for_each_entry(va, valist, purge_list) {
676 if (va->va_start < start)
677 start = va->va_start;
678 if (va->va_end > end)
679 end = va->va_end;
680 do_free = true;
681 }
682
683 if (!do_free)
684 return false;
685
686 flush_tlb_kernel_range(start, end);
687
688 spin_lock(&vmap_area_lock);
689 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
690 int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
691
692 __free_vmap_area(va);
693 atomic_sub(nr, &vmap_lazy_nr);
694 cond_resched_lock(&vmap_area_lock);
695 }
696 spin_unlock(&vmap_area_lock);
697 return true;
698 }
699
700 /*
701 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
702 * is already purging.
703 */
704 static void try_purge_vmap_area_lazy(void)
705 {
706 if (mutex_trylock(&vmap_purge_lock)) {
707 __purge_vmap_area_lazy(ULONG_MAX, 0);
708 mutex_unlock(&vmap_purge_lock);
709 }
710 }
711
712 /*
713 * Kick off a purge of the outstanding lazy areas.
714 */
715 static void purge_vmap_area_lazy(void)
716 {
717 mutex_lock(&vmap_purge_lock);
718 purge_fragmented_blocks_allcpus();
719 __purge_vmap_area_lazy(ULONG_MAX, 0);
720 mutex_unlock(&vmap_purge_lock);
721 }
722
723 /*
724 * Free a vmap area, caller ensuring that the area has been unmapped
725 * and flush_cache_vunmap had been called for the correct range
726 * previously.
727 */
728 static void free_vmap_area_noflush(struct vmap_area *va)
729 {
730 int nr_lazy;
731
732 nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
733 &vmap_lazy_nr);
734
735 /* After this point, we may free va at any time */
736 llist_add(&va->purge_list, &vmap_purge_list);
737
738 if (unlikely(nr_lazy > lazy_max_pages()))
739 try_purge_vmap_area_lazy();
740 }
741
742 /*
743 * Free and unmap a vmap area
744 */
745 static void free_unmap_vmap_area(struct vmap_area *va)
746 {
747 flush_cache_vunmap(va->va_start, va->va_end);
748 unmap_vmap_area(va);
749 free_vmap_area_noflush(va);
750 }
751
752 static struct vmap_area *find_vmap_area(unsigned long addr)
753 {
754 struct vmap_area *va;
755
756 spin_lock(&vmap_area_lock);
757 va = __find_vmap_area(addr);
758 spin_unlock(&vmap_area_lock);
759
760 return va;
761 }
762
763 /*** Per cpu kva allocator ***/
764
765 /*
766 * vmap space is limited especially on 32 bit architectures. Ensure there is
767 * room for at least 16 percpu vmap blocks per CPU.
768 */
769 /*
770 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
771 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
772 * instead (we just need a rough idea)
773 */
774 #if BITS_PER_LONG == 32
775 #define VMALLOC_SPACE (128UL*1024*1024)
776 #else
777 #define VMALLOC_SPACE (128UL*1024*1024*1024)
778 #endif
779
780 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
781 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
782 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
783 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
784 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
785 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
786 #define VMAP_BBMAP_BITS \
787 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
788 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
789 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
790
791 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
792
793 static bool vmap_initialized __read_mostly = false;
794
795 struct vmap_block_queue {
796 spinlock_t lock;
797 struct list_head free;
798 };
799
800 struct vmap_block {
801 spinlock_t lock;
802 struct vmap_area *va;
803 unsigned long free, dirty;
804 unsigned long dirty_min, dirty_max; /*< dirty range */
805 struct list_head free_list;
806 struct rcu_head rcu_head;
807 struct list_head purge;
808 };
809
810 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
811 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
812
813 /*
814 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
815 * in the free path. Could get rid of this if we change the API to return a
816 * "cookie" from alloc, to be passed to free. But no big deal yet.
817 */
818 static DEFINE_SPINLOCK(vmap_block_tree_lock);
819 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
820
821 /*
822 * We should probably have a fallback mechanism to allocate virtual memory
823 * out of partially filled vmap blocks. However vmap block sizing should be
824 * fairly reasonable according to the vmalloc size, so it shouldn't be a
825 * big problem.
826 */
827
828 static unsigned long addr_to_vb_idx(unsigned long addr)
829 {
830 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
831 addr /= VMAP_BLOCK_SIZE;
832 return addr;
833 }
834
835 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
836 {
837 unsigned long addr;
838
839 addr = va_start + (pages_off << PAGE_SHIFT);
840 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
841 return (void *)addr;
842 }
843
844 /**
845 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
846 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
847 * @order: how many 2^order pages should be occupied in newly allocated block
848 * @gfp_mask: flags for the page level allocator
849 *
850 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
851 */
852 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
853 {
854 struct vmap_block_queue *vbq;
855 struct vmap_block *vb;
856 struct vmap_area *va;
857 unsigned long vb_idx;
858 int node, err;
859 void *vaddr;
860
861 node = numa_node_id();
862
863 vb = kmalloc_node(sizeof(struct vmap_block),
864 gfp_mask & GFP_RECLAIM_MASK, node);
865 if (unlikely(!vb))
866 return ERR_PTR(-ENOMEM);
867
868 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
869 VMALLOC_START, VMALLOC_END,
870 node, gfp_mask);
871 if (IS_ERR(va)) {
872 kfree(vb);
873 return ERR_CAST(va);
874 }
875
876 err = radix_tree_preload(gfp_mask);
877 if (unlikely(err)) {
878 kfree(vb);
879 free_vmap_area(va);
880 return ERR_PTR(err);
881 }
882
883 vaddr = vmap_block_vaddr(va->va_start, 0);
884 spin_lock_init(&vb->lock);
885 vb->va = va;
886 /* At least something should be left free */
887 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
888 vb->free = VMAP_BBMAP_BITS - (1UL << order);
889 vb->dirty = 0;
890 vb->dirty_min = VMAP_BBMAP_BITS;
891 vb->dirty_max = 0;
892 INIT_LIST_HEAD(&vb->free_list);
893
894 vb_idx = addr_to_vb_idx(va->va_start);
895 spin_lock(&vmap_block_tree_lock);
896 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
897 spin_unlock(&vmap_block_tree_lock);
898 BUG_ON(err);
899 radix_tree_preload_end();
900
901 vbq = &get_cpu_var(vmap_block_queue);
902 spin_lock(&vbq->lock);
903 list_add_tail_rcu(&vb->free_list, &vbq->free);
904 spin_unlock(&vbq->lock);
905 put_cpu_var(vmap_block_queue);
906
907 return vaddr;
908 }
909
910 static void free_vmap_block(struct vmap_block *vb)
911 {
912 struct vmap_block *tmp;
913 unsigned long vb_idx;
914
915 vb_idx = addr_to_vb_idx(vb->va->va_start);
916 spin_lock(&vmap_block_tree_lock);
917 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
918 spin_unlock(&vmap_block_tree_lock);
919 BUG_ON(tmp != vb);
920
921 free_vmap_area_noflush(vb->va);
922 kfree_rcu(vb, rcu_head);
923 }
924
925 static void purge_fragmented_blocks(int cpu)
926 {
927 LIST_HEAD(purge);
928 struct vmap_block *vb;
929 struct vmap_block *n_vb;
930 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
931
932 rcu_read_lock();
933 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
934
935 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
936 continue;
937
938 spin_lock(&vb->lock);
939 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
940 vb->free = 0; /* prevent further allocs after releasing lock */
941 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
942 vb->dirty_min = 0;
943 vb->dirty_max = VMAP_BBMAP_BITS;
944 spin_lock(&vbq->lock);
945 list_del_rcu(&vb->free_list);
946 spin_unlock(&vbq->lock);
947 spin_unlock(&vb->lock);
948 list_add_tail(&vb->purge, &purge);
949 } else
950 spin_unlock(&vb->lock);
951 }
952 rcu_read_unlock();
953
954 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
955 list_del(&vb->purge);
956 free_vmap_block(vb);
957 }
958 }
959
960 static void purge_fragmented_blocks_allcpus(void)
961 {
962 int cpu;
963
964 for_each_possible_cpu(cpu)
965 purge_fragmented_blocks(cpu);
966 }
967
968 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
969 {
970 struct vmap_block_queue *vbq;
971 struct vmap_block *vb;
972 void *vaddr = NULL;
973 unsigned int order;
974
975 BUG_ON(offset_in_page(size));
976 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
977 if (WARN_ON(size == 0)) {
978 /*
979 * Allocating 0 bytes isn't what caller wants since
980 * get_order(0) returns funny result. Just warn and terminate
981 * early.
982 */
983 return NULL;
984 }
985 order = get_order(size);
986
987 rcu_read_lock();
988 vbq = &get_cpu_var(vmap_block_queue);
989 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
990 unsigned long pages_off;
991
992 spin_lock(&vb->lock);
993 if (vb->free < (1UL << order)) {
994 spin_unlock(&vb->lock);
995 continue;
996 }
997
998 pages_off = VMAP_BBMAP_BITS - vb->free;
999 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1000 vb->free -= 1UL << order;
1001 if (vb->free == 0) {
1002 spin_lock(&vbq->lock);
1003 list_del_rcu(&vb->free_list);
1004 spin_unlock(&vbq->lock);
1005 }
1006
1007 spin_unlock(&vb->lock);
1008 break;
1009 }
1010
1011 put_cpu_var(vmap_block_queue);
1012 rcu_read_unlock();
1013
1014 /* Allocate new block if nothing was found */
1015 if (!vaddr)
1016 vaddr = new_vmap_block(order, gfp_mask);
1017
1018 return vaddr;
1019 }
1020
1021 static void vb_free(const void *addr, unsigned long size)
1022 {
1023 unsigned long offset;
1024 unsigned long vb_idx;
1025 unsigned int order;
1026 struct vmap_block *vb;
1027
1028 BUG_ON(offset_in_page(size));
1029 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1030
1031 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1032
1033 order = get_order(size);
1034
1035 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1036 offset >>= PAGE_SHIFT;
1037
1038 vb_idx = addr_to_vb_idx((unsigned long)addr);
1039 rcu_read_lock();
1040 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1041 rcu_read_unlock();
1042 BUG_ON(!vb);
1043
1044 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1045
1046 spin_lock(&vb->lock);
1047
1048 /* Expand dirty range */
1049 vb->dirty_min = min(vb->dirty_min, offset);
1050 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1051
1052 vb->dirty += 1UL << order;
1053 if (vb->dirty == VMAP_BBMAP_BITS) {
1054 BUG_ON(vb->free);
1055 spin_unlock(&vb->lock);
1056 free_vmap_block(vb);
1057 } else
1058 spin_unlock(&vb->lock);
1059 }
1060
1061 /**
1062 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1063 *
1064 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1065 * to amortize TLB flushing overheads. What this means is that any page you
1066 * have now, may, in a former life, have been mapped into kernel virtual
1067 * address by the vmap layer and so there might be some CPUs with TLB entries
1068 * still referencing that page (additional to the regular 1:1 kernel mapping).
1069 *
1070 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1071 * be sure that none of the pages we have control over will have any aliases
1072 * from the vmap layer.
1073 */
1074 void vm_unmap_aliases(void)
1075 {
1076 unsigned long start = ULONG_MAX, end = 0;
1077 int cpu;
1078 int flush = 0;
1079
1080 if (unlikely(!vmap_initialized))
1081 return;
1082
1083 might_sleep();
1084
1085 for_each_possible_cpu(cpu) {
1086 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1087 struct vmap_block *vb;
1088
1089 rcu_read_lock();
1090 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1091 spin_lock(&vb->lock);
1092 if (vb->dirty) {
1093 unsigned long va_start = vb->va->va_start;
1094 unsigned long s, e;
1095
1096 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1097 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1098
1099 start = min(s, start);
1100 end = max(e, end);
1101
1102 flush = 1;
1103 }
1104 spin_unlock(&vb->lock);
1105 }
1106 rcu_read_unlock();
1107 }
1108
1109 mutex_lock(&vmap_purge_lock);
1110 purge_fragmented_blocks_allcpus();
1111 if (!__purge_vmap_area_lazy(start, end) && flush)
1112 flush_tlb_kernel_range(start, end);
1113 mutex_unlock(&vmap_purge_lock);
1114 }
1115 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1116
1117 /**
1118 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1119 * @mem: the pointer returned by vm_map_ram
1120 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1121 */
1122 void vm_unmap_ram(const void *mem, unsigned int count)
1123 {
1124 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1125 unsigned long addr = (unsigned long)mem;
1126 struct vmap_area *va;
1127
1128 might_sleep();
1129 BUG_ON(!addr);
1130 BUG_ON(addr < VMALLOC_START);
1131 BUG_ON(addr > VMALLOC_END);
1132 BUG_ON(!PAGE_ALIGNED(addr));
1133
1134 debug_check_no_locks_freed(mem, size);
1135 vmap_debug_free_range(addr, addr+size);
1136
1137 if (likely(count <= VMAP_MAX_ALLOC)) {
1138 vb_free(mem, size);
1139 return;
1140 }
1141
1142 va = find_vmap_area(addr);
1143 BUG_ON(!va);
1144 free_unmap_vmap_area(va);
1145 }
1146 EXPORT_SYMBOL(vm_unmap_ram);
1147
1148 /**
1149 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1150 * @pages: an array of pointers to the pages to be mapped
1151 * @count: number of pages
1152 * @node: prefer to allocate data structures on this node
1153 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1154 *
1155 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1156 * faster than vmap so it's good. But if you mix long-life and short-life
1157 * objects with vm_map_ram(), it could consume lots of address space through
1158 * fragmentation (especially on a 32bit machine). You could see failures in
1159 * the end. Please use this function for short-lived objects.
1160 *
1161 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1162 */
1163 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1164 {
1165 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1166 unsigned long addr;
1167 void *mem;
1168
1169 if (likely(count <= VMAP_MAX_ALLOC)) {
1170 mem = vb_alloc(size, GFP_KERNEL);
1171 if (IS_ERR(mem))
1172 return NULL;
1173 addr = (unsigned long)mem;
1174 } else {
1175 struct vmap_area *va;
1176 va = alloc_vmap_area(size, PAGE_SIZE,
1177 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1178 if (IS_ERR(va))
1179 return NULL;
1180
1181 addr = va->va_start;
1182 mem = (void *)addr;
1183 }
1184 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1185 vm_unmap_ram(mem, count);
1186 return NULL;
1187 }
1188 return mem;
1189 }
1190 EXPORT_SYMBOL(vm_map_ram);
1191
1192 static struct vm_struct *vmlist __initdata;
1193 /**
1194 * vm_area_add_early - add vmap area early during boot
1195 * @vm: vm_struct to add
1196 *
1197 * This function is used to add fixed kernel vm area to vmlist before
1198 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1199 * should contain proper values and the other fields should be zero.
1200 *
1201 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1202 */
1203 void __init vm_area_add_early(struct vm_struct *vm)
1204 {
1205 struct vm_struct *tmp, **p;
1206
1207 BUG_ON(vmap_initialized);
1208 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1209 if (tmp->addr >= vm->addr) {
1210 BUG_ON(tmp->addr < vm->addr + vm->size);
1211 break;
1212 } else
1213 BUG_ON(tmp->addr + tmp->size > vm->addr);
1214 }
1215 vm->next = *p;
1216 *p = vm;
1217 }
1218
1219 /**
1220 * vm_area_register_early - register vmap area early during boot
1221 * @vm: vm_struct to register
1222 * @align: requested alignment
1223 *
1224 * This function is used to register kernel vm area before
1225 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1226 * proper values on entry and other fields should be zero. On return,
1227 * vm->addr contains the allocated address.
1228 *
1229 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1230 */
1231 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1232 {
1233 static size_t vm_init_off __initdata;
1234 unsigned long addr;
1235
1236 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1237 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1238
1239 vm->addr = (void *)addr;
1240
1241 vm_area_add_early(vm);
1242 }
1243
1244 void __init vmalloc_init(void)
1245 {
1246 struct vmap_area *va;
1247 struct vm_struct *tmp;
1248 int i;
1249
1250 for_each_possible_cpu(i) {
1251 struct vmap_block_queue *vbq;
1252 struct vfree_deferred *p;
1253
1254 vbq = &per_cpu(vmap_block_queue, i);
1255 spin_lock_init(&vbq->lock);
1256 INIT_LIST_HEAD(&vbq->free);
1257 p = &per_cpu(vfree_deferred, i);
1258 init_llist_head(&p->list);
1259 INIT_WORK(&p->wq, free_work);
1260 }
1261
1262 /* Import existing vmlist entries. */
1263 for (tmp = vmlist; tmp; tmp = tmp->next) {
1264 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1265 va->flags = VM_VM_AREA;
1266 va->va_start = (unsigned long)tmp->addr;
1267 va->va_end = va->va_start + tmp->size;
1268 va->vm = tmp;
1269 __insert_vmap_area(va);
1270 }
1271
1272 vmap_area_pcpu_hole = VMALLOC_END;
1273
1274 vmap_initialized = true;
1275 }
1276
1277 /**
1278 * map_kernel_range_noflush - map kernel VM area with the specified pages
1279 * @addr: start of the VM area to map
1280 * @size: size of the VM area to map
1281 * @prot: page protection flags to use
1282 * @pages: pages to map
1283 *
1284 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1285 * specify should have been allocated using get_vm_area() and its
1286 * friends.
1287 *
1288 * NOTE:
1289 * This function does NOT do any cache flushing. The caller is
1290 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1291 * before calling this function.
1292 *
1293 * RETURNS:
1294 * The number of pages mapped on success, -errno on failure.
1295 */
1296 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1297 pgprot_t prot, struct page **pages)
1298 {
1299 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1300 }
1301
1302 /**
1303 * unmap_kernel_range_noflush - unmap kernel VM area
1304 * @addr: start of the VM area to unmap
1305 * @size: size of the VM area to unmap
1306 *
1307 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1308 * specify should have been allocated using get_vm_area() and its
1309 * friends.
1310 *
1311 * NOTE:
1312 * This function does NOT do any cache flushing. The caller is
1313 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1314 * before calling this function and flush_tlb_kernel_range() after.
1315 */
1316 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1317 {
1318 vunmap_page_range(addr, addr + size);
1319 }
1320 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1321
1322 /**
1323 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1324 * @addr: start of the VM area to unmap
1325 * @size: size of the VM area to unmap
1326 *
1327 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1328 * the unmapping and tlb after.
1329 */
1330 void unmap_kernel_range(unsigned long addr, unsigned long size)
1331 {
1332 unsigned long end = addr + size;
1333
1334 flush_cache_vunmap(addr, end);
1335 vunmap_page_range(addr, end);
1336 flush_tlb_kernel_range(addr, end);
1337 }
1338 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1339
1340 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1341 {
1342 unsigned long addr = (unsigned long)area->addr;
1343 unsigned long end = addr + get_vm_area_size(area);
1344 int err;
1345
1346 err = vmap_page_range(addr, end, prot, pages);
1347
1348 return err > 0 ? 0 : err;
1349 }
1350 EXPORT_SYMBOL_GPL(map_vm_area);
1351
1352 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1353 unsigned long flags, const void *caller)
1354 {
1355 spin_lock(&vmap_area_lock);
1356 vm->flags = flags;
1357 vm->addr = (void *)va->va_start;
1358 vm->size = va->va_end - va->va_start;
1359 vm->caller = caller;
1360 va->vm = vm;
1361 va->flags |= VM_VM_AREA;
1362 spin_unlock(&vmap_area_lock);
1363 }
1364
1365 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1366 {
1367 /*
1368 * Before removing VM_UNINITIALIZED,
1369 * we should make sure that vm has proper values.
1370 * Pair with smp_rmb() in show_numa_info().
1371 */
1372 smp_wmb();
1373 vm->flags &= ~VM_UNINITIALIZED;
1374 }
1375
1376 static struct vm_struct *__get_vm_area_node(unsigned long size,
1377 unsigned long align, unsigned long flags, unsigned long start,
1378 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1379 {
1380 struct vmap_area *va;
1381 struct vm_struct *area;
1382
1383 BUG_ON(in_interrupt());
1384 size = PAGE_ALIGN(size);
1385 if (unlikely(!size))
1386 return NULL;
1387
1388 if (flags & VM_IOREMAP)
1389 align = 1ul << clamp_t(int, get_count_order_long(size),
1390 PAGE_SHIFT, IOREMAP_MAX_ORDER);
1391
1392 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1393 if (unlikely(!area))
1394 return NULL;
1395
1396 if (!(flags & VM_NO_GUARD))
1397 size += PAGE_SIZE;
1398
1399 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1400 if (IS_ERR(va)) {
1401 kfree(area);
1402 return NULL;
1403 }
1404
1405 setup_vmalloc_vm(area, va, flags, caller);
1406
1407 return area;
1408 }
1409
1410 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1411 unsigned long start, unsigned long end)
1412 {
1413 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1414 GFP_KERNEL, __builtin_return_address(0));
1415 }
1416 EXPORT_SYMBOL_GPL(__get_vm_area);
1417
1418 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1419 unsigned long start, unsigned long end,
1420 const void *caller)
1421 {
1422 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1423 GFP_KERNEL, caller);
1424 }
1425
1426 /**
1427 * get_vm_area - reserve a contiguous kernel virtual area
1428 * @size: size of the area
1429 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1430 *
1431 * Search an area of @size in the kernel virtual mapping area,
1432 * and reserved it for out purposes. Returns the area descriptor
1433 * on success or %NULL on failure.
1434 */
1435 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1436 {
1437 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1438 NUMA_NO_NODE, GFP_KERNEL,
1439 __builtin_return_address(0));
1440 }
1441
1442 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1443 const void *caller)
1444 {
1445 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1446 NUMA_NO_NODE, GFP_KERNEL, caller);
1447 }
1448
1449 /**
1450 * find_vm_area - find a continuous kernel virtual area
1451 * @addr: base address
1452 *
1453 * Search for the kernel VM area starting at @addr, and return it.
1454 * It is up to the caller to do all required locking to keep the returned
1455 * pointer valid.
1456 */
1457 struct vm_struct *find_vm_area(const void *addr)
1458 {
1459 struct vmap_area *va;
1460
1461 va = find_vmap_area((unsigned long)addr);
1462 if (va && va->flags & VM_VM_AREA)
1463 return va->vm;
1464
1465 return NULL;
1466 }
1467
1468 /**
1469 * remove_vm_area - find and remove a continuous kernel virtual area
1470 * @addr: base address
1471 *
1472 * Search for the kernel VM area starting at @addr, and remove it.
1473 * This function returns the found VM area, but using it is NOT safe
1474 * on SMP machines, except for its size or flags.
1475 */
1476 struct vm_struct *remove_vm_area(const void *addr)
1477 {
1478 struct vmap_area *va;
1479
1480 might_sleep();
1481
1482 va = find_vmap_area((unsigned long)addr);
1483 if (va && va->flags & VM_VM_AREA) {
1484 struct vm_struct *vm = va->vm;
1485
1486 spin_lock(&vmap_area_lock);
1487 va->vm = NULL;
1488 va->flags &= ~VM_VM_AREA;
1489 spin_unlock(&vmap_area_lock);
1490
1491 vmap_debug_free_range(va->va_start, va->va_end);
1492 kasan_free_shadow(vm);
1493 free_unmap_vmap_area(va);
1494
1495 return vm;
1496 }
1497 return NULL;
1498 }
1499
1500 static void __vunmap(const void *addr, int deallocate_pages)
1501 {
1502 struct vm_struct *area;
1503
1504 if (!addr)
1505 return;
1506
1507 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1508 addr))
1509 return;
1510
1511 area = remove_vm_area(addr);
1512 if (unlikely(!area)) {
1513 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1514 addr);
1515 return;
1516 }
1517
1518 debug_check_no_locks_freed(addr, get_vm_area_size(area));
1519 debug_check_no_obj_freed(addr, get_vm_area_size(area));
1520
1521 if (deallocate_pages) {
1522 int i;
1523
1524 for (i = 0; i < area->nr_pages; i++) {
1525 struct page *page = area->pages[i];
1526
1527 BUG_ON(!page);
1528 __free_pages(page, 0);
1529 }
1530
1531 kvfree(area->pages);
1532 }
1533
1534 kfree(area);
1535 return;
1536 }
1537
1538 static inline void __vfree_deferred(const void *addr)
1539 {
1540 /*
1541 * Use raw_cpu_ptr() because this can be called from preemptible
1542 * context. Preemption is absolutely fine here, because the llist_add()
1543 * implementation is lockless, so it works even if we are adding to
1544 * nother cpu's list. schedule_work() should be fine with this too.
1545 */
1546 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1547
1548 if (llist_add((struct llist_node *)addr, &p->list))
1549 schedule_work(&p->wq);
1550 }
1551
1552 /**
1553 * vfree_atomic - release memory allocated by vmalloc()
1554 * @addr: memory base address
1555 *
1556 * This one is just like vfree() but can be called in any atomic context
1557 * except NMIs.
1558 */
1559 void vfree_atomic(const void *addr)
1560 {
1561 BUG_ON(in_nmi());
1562
1563 kmemleak_free(addr);
1564
1565 if (!addr)
1566 return;
1567 __vfree_deferred(addr);
1568 }
1569
1570 /**
1571 * vfree - release memory allocated by vmalloc()
1572 * @addr: memory base address
1573 *
1574 * Free the virtually continuous memory area starting at @addr, as
1575 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1576 * NULL, no operation is performed.
1577 *
1578 * Must not be called in NMI context (strictly speaking, only if we don't
1579 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1580 * conventions for vfree() arch-depenedent would be a really bad idea)
1581 *
1582 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1583 */
1584 void vfree(const void *addr)
1585 {
1586 BUG_ON(in_nmi());
1587
1588 kmemleak_free(addr);
1589
1590 if (!addr)
1591 return;
1592 if (unlikely(in_interrupt()))
1593 __vfree_deferred(addr);
1594 else
1595 __vunmap(addr, 1);
1596 }
1597 EXPORT_SYMBOL(vfree);
1598
1599 /**
1600 * vunmap - release virtual mapping obtained by vmap()
1601 * @addr: memory base address
1602 *
1603 * Free the virtually contiguous memory area starting at @addr,
1604 * which was created from the page array passed to vmap().
1605 *
1606 * Must not be called in interrupt context.
1607 */
1608 void vunmap(const void *addr)
1609 {
1610 BUG_ON(in_interrupt());
1611 might_sleep();
1612 if (addr)
1613 __vunmap(addr, 0);
1614 }
1615 EXPORT_SYMBOL(vunmap);
1616
1617 /**
1618 * vmap - map an array of pages into virtually contiguous space
1619 * @pages: array of page pointers
1620 * @count: number of pages to map
1621 * @flags: vm_area->flags
1622 * @prot: page protection for the mapping
1623 *
1624 * Maps @count pages from @pages into contiguous kernel virtual
1625 * space.
1626 */
1627 void *vmap(struct page **pages, unsigned int count,
1628 unsigned long flags, pgprot_t prot)
1629 {
1630 struct vm_struct *area;
1631 unsigned long size; /* In bytes */
1632
1633 might_sleep();
1634
1635 if (count > totalram_pages)
1636 return NULL;
1637
1638 size = (unsigned long)count << PAGE_SHIFT;
1639 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1640 if (!area)
1641 return NULL;
1642
1643 if (map_vm_area(area, prot, pages)) {
1644 vunmap(area->addr);
1645 return NULL;
1646 }
1647
1648 return area->addr;
1649 }
1650 EXPORT_SYMBOL(vmap);
1651
1652 static void *__vmalloc_node(unsigned long size, unsigned long align,
1653 gfp_t gfp_mask, pgprot_t prot,
1654 int node, const void *caller);
1655 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1656 pgprot_t prot, int node)
1657 {
1658 struct page **pages;
1659 unsigned int nr_pages, array_size, i;
1660 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1661 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1662
1663 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1664 array_size = (nr_pages * sizeof(struct page *));
1665
1666 area->nr_pages = nr_pages;
1667 /* Please note that the recursion is strictly bounded. */
1668 if (array_size > PAGE_SIZE) {
1669 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1670 PAGE_KERNEL, node, area->caller);
1671 } else {
1672 pages = kmalloc_node(array_size, nested_gfp, node);
1673 }
1674 area->pages = pages;
1675 if (!area->pages) {
1676 remove_vm_area(area->addr);
1677 kfree(area);
1678 return NULL;
1679 }
1680
1681 for (i = 0; i < area->nr_pages; i++) {
1682 struct page *page;
1683
1684 if (fatal_signal_pending(current)) {
1685 area->nr_pages = i;
1686 goto fail;
1687 }
1688
1689 if (node == NUMA_NO_NODE)
1690 page = alloc_page(alloc_mask);
1691 else
1692 page = alloc_pages_node(node, alloc_mask, 0);
1693
1694 if (unlikely(!page)) {
1695 /* Successfully allocated i pages, free them in __vunmap() */
1696 area->nr_pages = i;
1697 goto fail;
1698 }
1699 area->pages[i] = page;
1700 if (gfpflags_allow_blocking(gfp_mask))
1701 cond_resched();
1702 }
1703
1704 if (map_vm_area(area, prot, pages))
1705 goto fail;
1706 return area->addr;
1707
1708 fail:
1709 warn_alloc(gfp_mask, NULL,
1710 "vmalloc: allocation failure, allocated %ld of %ld bytes",
1711 (area->nr_pages*PAGE_SIZE), area->size);
1712 vfree(area->addr);
1713 return NULL;
1714 }
1715
1716 /**
1717 * __vmalloc_node_range - allocate virtually contiguous memory
1718 * @size: allocation size
1719 * @align: desired alignment
1720 * @start: vm area range start
1721 * @end: vm area range end
1722 * @gfp_mask: flags for the page level allocator
1723 * @prot: protection mask for the allocated pages
1724 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
1725 * @node: node to use for allocation or NUMA_NO_NODE
1726 * @caller: caller's return address
1727 *
1728 * Allocate enough pages to cover @size from the page level
1729 * allocator with @gfp_mask flags. Map them into contiguous
1730 * kernel virtual space, using a pagetable protection of @prot.
1731 */
1732 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1733 unsigned long start, unsigned long end, gfp_t gfp_mask,
1734 pgprot_t prot, unsigned long vm_flags, int node,
1735 const void *caller)
1736 {
1737 struct vm_struct *area;
1738 void *addr;
1739 unsigned long real_size = size;
1740
1741 size = PAGE_ALIGN(size);
1742 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1743 goto fail;
1744
1745 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1746 vm_flags, start, end, node, gfp_mask, caller);
1747 if (!area)
1748 goto fail;
1749
1750 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1751 if (!addr)
1752 return NULL;
1753
1754 /*
1755 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1756 * flag. It means that vm_struct is not fully initialized.
1757 * Now, it is fully initialized, so remove this flag here.
1758 */
1759 clear_vm_uninitialized_flag(area);
1760
1761 /*
1762 * A ref_count = 2 is needed because vm_struct allocated in
1763 * __get_vm_area_node() contains a reference to the virtual address of
1764 * the vmalloc'ed block.
1765 */
1766 kmemleak_alloc(addr, real_size, 2, gfp_mask);
1767
1768 return addr;
1769
1770 fail:
1771 warn_alloc(gfp_mask, NULL,
1772 "vmalloc: allocation failure: %lu bytes", real_size);
1773 return NULL;
1774 }
1775
1776 /**
1777 * __vmalloc_node - allocate virtually contiguous memory
1778 * @size: allocation size
1779 * @align: desired alignment
1780 * @gfp_mask: flags for the page level allocator
1781 * @prot: protection mask for the allocated pages
1782 * @node: node to use for allocation or NUMA_NO_NODE
1783 * @caller: caller's return address
1784 *
1785 * Allocate enough pages to cover @size from the page level
1786 * allocator with @gfp_mask flags. Map them into contiguous
1787 * kernel virtual space, using a pagetable protection of @prot.
1788 */
1789 static void *__vmalloc_node(unsigned long size, unsigned long align,
1790 gfp_t gfp_mask, pgprot_t prot,
1791 int node, const void *caller)
1792 {
1793 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1794 gfp_mask, prot, 0, node, caller);
1795 }
1796
1797 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1798 {
1799 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1800 __builtin_return_address(0));
1801 }
1802 EXPORT_SYMBOL(__vmalloc);
1803
1804 static inline void *__vmalloc_node_flags(unsigned long size,
1805 int node, gfp_t flags)
1806 {
1807 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1808 node, __builtin_return_address(0));
1809 }
1810
1811 /**
1812 * vmalloc - allocate virtually contiguous memory
1813 * @size: allocation size
1814 * Allocate enough pages to cover @size from the page level
1815 * allocator and map them into contiguous kernel virtual space.
1816 *
1817 * For tight control over page level allocator and protection flags
1818 * use __vmalloc() instead.
1819 */
1820 void *vmalloc(unsigned long size)
1821 {
1822 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1823 GFP_KERNEL | __GFP_HIGHMEM);
1824 }
1825 EXPORT_SYMBOL(vmalloc);
1826
1827 /**
1828 * vzalloc - allocate virtually contiguous memory with zero fill
1829 * @size: allocation size
1830 * Allocate enough pages to cover @size from the page level
1831 * allocator and map them into contiguous kernel virtual space.
1832 * The memory allocated is set to zero.
1833 *
1834 * For tight control over page level allocator and protection flags
1835 * use __vmalloc() instead.
1836 */
1837 void *vzalloc(unsigned long size)
1838 {
1839 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1840 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1841 }
1842 EXPORT_SYMBOL(vzalloc);
1843
1844 /**
1845 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1846 * @size: allocation size
1847 *
1848 * The resulting memory area is zeroed so it can be mapped to userspace
1849 * without leaking data.
1850 */
1851 void *vmalloc_user(unsigned long size)
1852 {
1853 struct vm_struct *area;
1854 void *ret;
1855
1856 ret = __vmalloc_node(size, SHMLBA,
1857 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1858 PAGE_KERNEL, NUMA_NO_NODE,
1859 __builtin_return_address(0));
1860 if (ret) {
1861 area = find_vm_area(ret);
1862 area->flags |= VM_USERMAP;
1863 }
1864 return ret;
1865 }
1866 EXPORT_SYMBOL(vmalloc_user);
1867
1868 /**
1869 * vmalloc_node - allocate memory on a specific node
1870 * @size: allocation size
1871 * @node: numa node
1872 *
1873 * Allocate enough pages to cover @size from the page level
1874 * allocator and map them into contiguous kernel virtual space.
1875 *
1876 * For tight control over page level allocator and protection flags
1877 * use __vmalloc() instead.
1878 */
1879 void *vmalloc_node(unsigned long size, int node)
1880 {
1881 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1882 node, __builtin_return_address(0));
1883 }
1884 EXPORT_SYMBOL(vmalloc_node);
1885
1886 /**
1887 * vzalloc_node - allocate memory on a specific node with zero fill
1888 * @size: allocation size
1889 * @node: numa node
1890 *
1891 * Allocate enough pages to cover @size from the page level
1892 * allocator and map them into contiguous kernel virtual space.
1893 * The memory allocated is set to zero.
1894 *
1895 * For tight control over page level allocator and protection flags
1896 * use __vmalloc_node() instead.
1897 */
1898 void *vzalloc_node(unsigned long size, int node)
1899 {
1900 return __vmalloc_node_flags(size, node,
1901 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1902 }
1903 EXPORT_SYMBOL(vzalloc_node);
1904
1905 #ifndef PAGE_KERNEL_EXEC
1906 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1907 #endif
1908
1909 /**
1910 * vmalloc_exec - allocate virtually contiguous, executable memory
1911 * @size: allocation size
1912 *
1913 * Kernel-internal function to allocate enough pages to cover @size
1914 * the page level allocator and map them into contiguous and
1915 * executable kernel virtual space.
1916 *
1917 * For tight control over page level allocator and protection flags
1918 * use __vmalloc() instead.
1919 */
1920
1921 void *vmalloc_exec(unsigned long size)
1922 {
1923 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1924 NUMA_NO_NODE, __builtin_return_address(0));
1925 }
1926
1927 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1928 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1929 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1930 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1931 #else
1932 #define GFP_VMALLOC32 GFP_KERNEL
1933 #endif
1934
1935 /**
1936 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1937 * @size: allocation size
1938 *
1939 * Allocate enough 32bit PA addressable pages to cover @size from the
1940 * page level allocator and map them into contiguous kernel virtual space.
1941 */
1942 void *vmalloc_32(unsigned long size)
1943 {
1944 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1945 NUMA_NO_NODE, __builtin_return_address(0));
1946 }
1947 EXPORT_SYMBOL(vmalloc_32);
1948
1949 /**
1950 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1951 * @size: allocation size
1952 *
1953 * The resulting memory area is 32bit addressable and zeroed so it can be
1954 * mapped to userspace without leaking data.
1955 */
1956 void *vmalloc_32_user(unsigned long size)
1957 {
1958 struct vm_struct *area;
1959 void *ret;
1960
1961 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1962 NUMA_NO_NODE, __builtin_return_address(0));
1963 if (ret) {
1964 area = find_vm_area(ret);
1965 area->flags |= VM_USERMAP;
1966 }
1967 return ret;
1968 }
1969 EXPORT_SYMBOL(vmalloc_32_user);
1970
1971 /*
1972 * small helper routine , copy contents to buf from addr.
1973 * If the page is not present, fill zero.
1974 */
1975
1976 static int aligned_vread(char *buf, char *addr, unsigned long count)
1977 {
1978 struct page *p;
1979 int copied = 0;
1980
1981 while (count) {
1982 unsigned long offset, length;
1983
1984 offset = offset_in_page(addr);
1985 length = PAGE_SIZE - offset;
1986 if (length > count)
1987 length = count;
1988 p = vmalloc_to_page(addr);
1989 /*
1990 * To do safe access to this _mapped_ area, we need
1991 * lock. But adding lock here means that we need to add
1992 * overhead of vmalloc()/vfree() calles for this _debug_
1993 * interface, rarely used. Instead of that, we'll use
1994 * kmap() and get small overhead in this access function.
1995 */
1996 if (p) {
1997 /*
1998 * we can expect USER0 is not used (see vread/vwrite's
1999 * function description)
2000 */
2001 void *map = kmap_atomic(p);
2002 memcpy(buf, map + offset, length);
2003 kunmap_atomic(map);
2004 } else
2005 memset(buf, 0, length);
2006
2007 addr += length;
2008 buf += length;
2009 copied += length;
2010 count -= length;
2011 }
2012 return copied;
2013 }
2014
2015 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2016 {
2017 struct page *p;
2018 int copied = 0;
2019
2020 while (count) {
2021 unsigned long offset, length;
2022
2023 offset = offset_in_page(addr);
2024 length = PAGE_SIZE - offset;
2025 if (length > count)
2026 length = count;
2027 p = vmalloc_to_page(addr);
2028 /*
2029 * To do safe access to this _mapped_ area, we need
2030 * lock. But adding lock here means that we need to add
2031 * overhead of vmalloc()/vfree() calles for this _debug_
2032 * interface, rarely used. Instead of that, we'll use
2033 * kmap() and get small overhead in this access function.
2034 */
2035 if (p) {
2036 /*
2037 * we can expect USER0 is not used (see vread/vwrite's
2038 * function description)
2039 */
2040 void *map = kmap_atomic(p);
2041 memcpy(map + offset, buf, length);
2042 kunmap_atomic(map);
2043 }
2044 addr += length;
2045 buf += length;
2046 copied += length;
2047 count -= length;
2048 }
2049 return copied;
2050 }
2051
2052 /**
2053 * vread() - read vmalloc area in a safe way.
2054 * @buf: buffer for reading data
2055 * @addr: vm address.
2056 * @count: number of bytes to be read.
2057 *
2058 * Returns # of bytes which addr and buf should be increased.
2059 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
2060 * includes any intersect with alive vmalloc area.
2061 *
2062 * This function checks that addr is a valid vmalloc'ed area, and
2063 * copy data from that area to a given buffer. If the given memory range
2064 * of [addr...addr+count) includes some valid address, data is copied to
2065 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2066 * IOREMAP area is treated as memory hole and no copy is done.
2067 *
2068 * If [addr...addr+count) doesn't includes any intersects with alive
2069 * vm_struct area, returns 0. @buf should be kernel's buffer.
2070 *
2071 * Note: In usual ops, vread() is never necessary because the caller
2072 * should know vmalloc() area is valid and can use memcpy().
2073 * This is for routines which have to access vmalloc area without
2074 * any informaion, as /dev/kmem.
2075 *
2076 */
2077
2078 long vread(char *buf, char *addr, unsigned long count)
2079 {
2080 struct vmap_area *va;
2081 struct vm_struct *vm;
2082 char *vaddr, *buf_start = buf;
2083 unsigned long buflen = count;
2084 unsigned long n;
2085
2086 /* Don't allow overflow */
2087 if ((unsigned long) addr + count < count)
2088 count = -(unsigned long) addr;
2089
2090 spin_lock(&vmap_area_lock);
2091 list_for_each_entry(va, &vmap_area_list, list) {
2092 if (!count)
2093 break;
2094
2095 if (!(va->flags & VM_VM_AREA))
2096 continue;
2097
2098 vm = va->vm;
2099 vaddr = (char *) vm->addr;
2100 if (addr >= vaddr + get_vm_area_size(vm))
2101 continue;
2102 while (addr < vaddr) {
2103 if (count == 0)
2104 goto finished;
2105 *buf = '\0';
2106 buf++;
2107 addr++;
2108 count--;
2109 }
2110 n = vaddr + get_vm_area_size(vm) - addr;
2111 if (n > count)
2112 n = count;
2113 if (!(vm->flags & VM_IOREMAP))
2114 aligned_vread(buf, addr, n);
2115 else /* IOREMAP area is treated as memory hole */
2116 memset(buf, 0, n);
2117 buf += n;
2118 addr += n;
2119 count -= n;
2120 }
2121 finished:
2122 spin_unlock(&vmap_area_lock);
2123
2124 if (buf == buf_start)
2125 return 0;
2126 /* zero-fill memory holes */
2127 if (buf != buf_start + buflen)
2128 memset(buf, 0, buflen - (buf - buf_start));
2129
2130 return buflen;
2131 }
2132
2133 /**
2134 * vwrite() - write vmalloc area in a safe way.
2135 * @buf: buffer for source data
2136 * @addr: vm address.
2137 * @count: number of bytes to be read.
2138 *
2139 * Returns # of bytes which addr and buf should be incresed.
2140 * (same number to @count).
2141 * If [addr...addr+count) doesn't includes any intersect with valid
2142 * vmalloc area, returns 0.
2143 *
2144 * This function checks that addr is a valid vmalloc'ed area, and
2145 * copy data from a buffer to the given addr. If specified range of
2146 * [addr...addr+count) includes some valid address, data is copied from
2147 * proper area of @buf. If there are memory holes, no copy to hole.
2148 * IOREMAP area is treated as memory hole and no copy is done.
2149 *
2150 * If [addr...addr+count) doesn't includes any intersects with alive
2151 * vm_struct area, returns 0. @buf should be kernel's buffer.
2152 *
2153 * Note: In usual ops, vwrite() is never necessary because the caller
2154 * should know vmalloc() area is valid and can use memcpy().
2155 * This is for routines which have to access vmalloc area without
2156 * any informaion, as /dev/kmem.
2157 */
2158
2159 long vwrite(char *buf, char *addr, unsigned long count)
2160 {
2161 struct vmap_area *va;
2162 struct vm_struct *vm;
2163 char *vaddr;
2164 unsigned long n, buflen;
2165 int copied = 0;
2166
2167 /* Don't allow overflow */
2168 if ((unsigned long) addr + count < count)
2169 count = -(unsigned long) addr;
2170 buflen = count;
2171
2172 spin_lock(&vmap_area_lock);
2173 list_for_each_entry(va, &vmap_area_list, list) {
2174 if (!count)
2175 break;
2176
2177 if (!(va->flags & VM_VM_AREA))
2178 continue;
2179
2180 vm = va->vm;
2181 vaddr = (char *) vm->addr;
2182 if (addr >= vaddr + get_vm_area_size(vm))
2183 continue;
2184 while (addr < vaddr) {
2185 if (count == 0)
2186 goto finished;
2187 buf++;
2188 addr++;
2189 count--;
2190 }
2191 n = vaddr + get_vm_area_size(vm) - addr;
2192 if (n > count)
2193 n = count;
2194 if (!(vm->flags & VM_IOREMAP)) {
2195 aligned_vwrite(buf, addr, n);
2196 copied++;
2197 }
2198 buf += n;
2199 addr += n;
2200 count -= n;
2201 }
2202 finished:
2203 spin_unlock(&vmap_area_lock);
2204 if (!copied)
2205 return 0;
2206 return buflen;
2207 }
2208
2209 /**
2210 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2211 * @vma: vma to cover
2212 * @uaddr: target user address to start at
2213 * @kaddr: virtual address of vmalloc kernel memory
2214 * @size: size of map area
2215 *
2216 * Returns: 0 for success, -Exxx on failure
2217 *
2218 * This function checks that @kaddr is a valid vmalloc'ed area,
2219 * and that it is big enough to cover the range starting at
2220 * @uaddr in @vma. Will return failure if that criteria isn't
2221 * met.
2222 *
2223 * Similar to remap_pfn_range() (see mm/memory.c)
2224 */
2225 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2226 void *kaddr, unsigned long size)
2227 {
2228 struct vm_struct *area;
2229
2230 size = PAGE_ALIGN(size);
2231
2232 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2233 return -EINVAL;
2234
2235 area = find_vm_area(kaddr);
2236 if (!area)
2237 return -EINVAL;
2238
2239 if (!(area->flags & VM_USERMAP))
2240 return -EINVAL;
2241
2242 if (kaddr + size > area->addr + area->size)
2243 return -EINVAL;
2244
2245 do {
2246 struct page *page = vmalloc_to_page(kaddr);
2247 int ret;
2248
2249 ret = vm_insert_page(vma, uaddr, page);
2250 if (ret)
2251 return ret;
2252
2253 uaddr += PAGE_SIZE;
2254 kaddr += PAGE_SIZE;
2255 size -= PAGE_SIZE;
2256 } while (size > 0);
2257
2258 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2259
2260 return 0;
2261 }
2262 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2263
2264 /**
2265 * remap_vmalloc_range - map vmalloc pages to userspace
2266 * @vma: vma to cover (map full range of vma)
2267 * @addr: vmalloc memory
2268 * @pgoff: number of pages into addr before first page to map
2269 *
2270 * Returns: 0 for success, -Exxx on failure
2271 *
2272 * This function checks that addr is a valid vmalloc'ed area, and
2273 * that it is big enough to cover the vma. Will return failure if
2274 * that criteria isn't met.
2275 *
2276 * Similar to remap_pfn_range() (see mm/memory.c)
2277 */
2278 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2279 unsigned long pgoff)
2280 {
2281 return remap_vmalloc_range_partial(vma, vma->vm_start,
2282 addr + (pgoff << PAGE_SHIFT),
2283 vma->vm_end - vma->vm_start);
2284 }
2285 EXPORT_SYMBOL(remap_vmalloc_range);
2286
2287 /*
2288 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2289 * have one.
2290 */
2291 void __weak vmalloc_sync_all(void)
2292 {
2293 }
2294
2295
2296 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2297 {
2298 pte_t ***p = data;
2299
2300 if (p) {
2301 *(*p) = pte;
2302 (*p)++;
2303 }
2304 return 0;
2305 }
2306
2307 /**
2308 * alloc_vm_area - allocate a range of kernel address space
2309 * @size: size of the area
2310 * @ptes: returns the PTEs for the address space
2311 *
2312 * Returns: NULL on failure, vm_struct on success
2313 *
2314 * This function reserves a range of kernel address space, and
2315 * allocates pagetables to map that range. No actual mappings
2316 * are created.
2317 *
2318 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2319 * allocated for the VM area are returned.
2320 */
2321 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2322 {
2323 struct vm_struct *area;
2324
2325 area = get_vm_area_caller(size, VM_IOREMAP,
2326 __builtin_return_address(0));
2327 if (area == NULL)
2328 return NULL;
2329
2330 /*
2331 * This ensures that page tables are constructed for this region
2332 * of kernel virtual address space and mapped into init_mm.
2333 */
2334 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2335 size, f, ptes ? &ptes : NULL)) {
2336 free_vm_area(area);
2337 return NULL;
2338 }
2339
2340 return area;
2341 }
2342 EXPORT_SYMBOL_GPL(alloc_vm_area);
2343
2344 void free_vm_area(struct vm_struct *area)
2345 {
2346 struct vm_struct *ret;
2347 ret = remove_vm_area(area->addr);
2348 BUG_ON(ret != area);
2349 kfree(area);
2350 }
2351 EXPORT_SYMBOL_GPL(free_vm_area);
2352
2353 #ifdef CONFIG_SMP
2354 static struct vmap_area *node_to_va(struct rb_node *n)
2355 {
2356 return rb_entry_safe(n, struct vmap_area, rb_node);
2357 }
2358
2359 /**
2360 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2361 * @end: target address
2362 * @pnext: out arg for the next vmap_area
2363 * @pprev: out arg for the previous vmap_area
2364 *
2365 * Returns: %true if either or both of next and prev are found,
2366 * %false if no vmap_area exists
2367 *
2368 * Find vmap_areas end addresses of which enclose @end. ie. if not
2369 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2370 */
2371 static bool pvm_find_next_prev(unsigned long end,
2372 struct vmap_area **pnext,
2373 struct vmap_area **pprev)
2374 {
2375 struct rb_node *n = vmap_area_root.rb_node;
2376 struct vmap_area *va = NULL;
2377
2378 while (n) {
2379 va = rb_entry(n, struct vmap_area, rb_node);
2380 if (end < va->va_end)
2381 n = n->rb_left;
2382 else if (end > va->va_end)
2383 n = n->rb_right;
2384 else
2385 break;
2386 }
2387
2388 if (!va)
2389 return false;
2390
2391 if (va->va_end > end) {
2392 *pnext = va;
2393 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2394 } else {
2395 *pprev = va;
2396 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2397 }
2398 return true;
2399 }
2400
2401 /**
2402 * pvm_determine_end - find the highest aligned address between two vmap_areas
2403 * @pnext: in/out arg for the next vmap_area
2404 * @pprev: in/out arg for the previous vmap_area
2405 * @align: alignment
2406 *
2407 * Returns: determined end address
2408 *
2409 * Find the highest aligned address between *@pnext and *@pprev below
2410 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2411 * down address is between the end addresses of the two vmap_areas.
2412 *
2413 * Please note that the address returned by this function may fall
2414 * inside *@pnext vmap_area. The caller is responsible for checking
2415 * that.
2416 */
2417 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2418 struct vmap_area **pprev,
2419 unsigned long align)
2420 {
2421 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2422 unsigned long addr;
2423
2424 if (*pnext)
2425 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2426 else
2427 addr = vmalloc_end;
2428
2429 while (*pprev && (*pprev)->va_end > addr) {
2430 *pnext = *pprev;
2431 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2432 }
2433
2434 return addr;
2435 }
2436
2437 /**
2438 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2439 * @offsets: array containing offset of each area
2440 * @sizes: array containing size of each area
2441 * @nr_vms: the number of areas to allocate
2442 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2443 *
2444 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2445 * vm_structs on success, %NULL on failure
2446 *
2447 * Percpu allocator wants to use congruent vm areas so that it can
2448 * maintain the offsets among percpu areas. This function allocates
2449 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2450 * be scattered pretty far, distance between two areas easily going up
2451 * to gigabytes. To avoid interacting with regular vmallocs, these
2452 * areas are allocated from top.
2453 *
2454 * Despite its complicated look, this allocator is rather simple. It
2455 * does everything top-down and scans areas from the end looking for
2456 * matching slot. While scanning, if any of the areas overlaps with
2457 * existing vmap_area, the base address is pulled down to fit the
2458 * area. Scanning is repeated till all the areas fit and then all
2459 * necessary data structres are inserted and the result is returned.
2460 */
2461 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2462 const size_t *sizes, int nr_vms,
2463 size_t align)
2464 {
2465 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2466 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2467 struct vmap_area **vas, *prev, *next;
2468 struct vm_struct **vms;
2469 int area, area2, last_area, term_area;
2470 unsigned long base, start, end, last_end;
2471 bool purged = false;
2472
2473 /* verify parameters and allocate data structures */
2474 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2475 for (last_area = 0, area = 0; area < nr_vms; area++) {
2476 start = offsets[area];
2477 end = start + sizes[area];
2478
2479 /* is everything aligned properly? */
2480 BUG_ON(!IS_ALIGNED(offsets[area], align));
2481 BUG_ON(!IS_ALIGNED(sizes[area], align));
2482
2483 /* detect the area with the highest address */
2484 if (start > offsets[last_area])
2485 last_area = area;
2486
2487 for (area2 = 0; area2 < nr_vms; area2++) {
2488 unsigned long start2 = offsets[area2];
2489 unsigned long end2 = start2 + sizes[area2];
2490
2491 if (area2 == area)
2492 continue;
2493
2494 BUG_ON(start2 >= start && start2 < end);
2495 BUG_ON(end2 <= end && end2 > start);
2496 }
2497 }
2498 last_end = offsets[last_area] + sizes[last_area];
2499
2500 if (vmalloc_end - vmalloc_start < last_end) {
2501 WARN_ON(true);
2502 return NULL;
2503 }
2504
2505 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2506 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2507 if (!vas || !vms)
2508 goto err_free2;
2509
2510 for (area = 0; area < nr_vms; area++) {
2511 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2512 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2513 if (!vas[area] || !vms[area])
2514 goto err_free;
2515 }
2516 retry:
2517 spin_lock(&vmap_area_lock);
2518
2519 /* start scanning - we scan from the top, begin with the last area */
2520 area = term_area = last_area;
2521 start = offsets[area];
2522 end = start + sizes[area];
2523
2524 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2525 base = vmalloc_end - last_end;
2526 goto found;
2527 }
2528 base = pvm_determine_end(&next, &prev, align) - end;
2529
2530 while (true) {
2531 BUG_ON(next && next->va_end <= base + end);
2532 BUG_ON(prev && prev->va_end > base + end);
2533
2534 /*
2535 * base might have underflowed, add last_end before
2536 * comparing.
2537 */
2538 if (base + last_end < vmalloc_start + last_end) {
2539 spin_unlock(&vmap_area_lock);
2540 if (!purged) {
2541 purge_vmap_area_lazy();
2542 purged = true;
2543 goto retry;
2544 }
2545 goto err_free;
2546 }
2547
2548 /*
2549 * If next overlaps, move base downwards so that it's
2550 * right below next and then recheck.
2551 */
2552 if (next && next->va_start < base + end) {
2553 base = pvm_determine_end(&next, &prev, align) - end;
2554 term_area = area;
2555 continue;
2556 }
2557
2558 /*
2559 * If prev overlaps, shift down next and prev and move
2560 * base so that it's right below new next and then
2561 * recheck.
2562 */
2563 if (prev && prev->va_end > base + start) {
2564 next = prev;
2565 prev = node_to_va(rb_prev(&next->rb_node));
2566 base = pvm_determine_end(&next, &prev, align) - end;
2567 term_area = area;
2568 continue;
2569 }
2570
2571 /*
2572 * This area fits, move on to the previous one. If
2573 * the previous one is the terminal one, we're done.
2574 */
2575 area = (area + nr_vms - 1) % nr_vms;
2576 if (area == term_area)
2577 break;
2578 start = offsets[area];
2579 end = start + sizes[area];
2580 pvm_find_next_prev(base + end, &next, &prev);
2581 }
2582 found:
2583 /* we've found a fitting base, insert all va's */
2584 for (area = 0; area < nr_vms; area++) {
2585 struct vmap_area *va = vas[area];
2586
2587 va->va_start = base + offsets[area];
2588 va->va_end = va->va_start + sizes[area];
2589 __insert_vmap_area(va);
2590 }
2591
2592 vmap_area_pcpu_hole = base + offsets[last_area];
2593
2594 spin_unlock(&vmap_area_lock);
2595
2596 /* insert all vm's */
2597 for (area = 0; area < nr_vms; area++)
2598 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2599 pcpu_get_vm_areas);
2600
2601 kfree(vas);
2602 return vms;
2603
2604 err_free:
2605 for (area = 0; area < nr_vms; area++) {
2606 kfree(vas[area]);
2607 kfree(vms[area]);
2608 }
2609 err_free2:
2610 kfree(vas);
2611 kfree(vms);
2612 return NULL;
2613 }
2614
2615 /**
2616 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2617 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2618 * @nr_vms: the number of allocated areas
2619 *
2620 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2621 */
2622 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2623 {
2624 int i;
2625
2626 for (i = 0; i < nr_vms; i++)
2627 free_vm_area(vms[i]);
2628 kfree(vms);
2629 }
2630 #endif /* CONFIG_SMP */
2631
2632 #ifdef CONFIG_PROC_FS
2633 static void *s_start(struct seq_file *m, loff_t *pos)
2634 __acquires(&vmap_area_lock)
2635 {
2636 spin_lock(&vmap_area_lock);
2637 return seq_list_start(&vmap_area_list, *pos);
2638 }
2639
2640 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2641 {
2642 return seq_list_next(p, &vmap_area_list, pos);
2643 }
2644
2645 static void s_stop(struct seq_file *m, void *p)
2646 __releases(&vmap_area_lock)
2647 {
2648 spin_unlock(&vmap_area_lock);
2649 }
2650
2651 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2652 {
2653 if (IS_ENABLED(CONFIG_NUMA)) {
2654 unsigned int nr, *counters = m->private;
2655
2656 if (!counters)
2657 return;
2658
2659 if (v->flags & VM_UNINITIALIZED)
2660 return;
2661 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2662 smp_rmb();
2663
2664 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2665
2666 for (nr = 0; nr < v->nr_pages; nr++)
2667 counters[page_to_nid(v->pages[nr])]++;
2668
2669 for_each_node_state(nr, N_HIGH_MEMORY)
2670 if (counters[nr])
2671 seq_printf(m, " N%u=%u", nr, counters[nr]);
2672 }
2673 }
2674
2675 static int s_show(struct seq_file *m, void *p)
2676 {
2677 struct vmap_area *va;
2678 struct vm_struct *v;
2679
2680 va = list_entry(p, struct vmap_area, list);
2681
2682 /*
2683 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2684 * behalf of vmap area is being tear down or vm_map_ram allocation.
2685 */
2686 if (!(va->flags & VM_VM_AREA))
2687 return 0;
2688
2689 v = va->vm;
2690
2691 seq_printf(m, "0x%pK-0x%pK %7ld",
2692 v->addr, v->addr + v->size, v->size);
2693
2694 if (v->caller)
2695 seq_printf(m, " %pS", v->caller);
2696
2697 if (v->nr_pages)
2698 seq_printf(m, " pages=%d", v->nr_pages);
2699
2700 if (v->phys_addr)
2701 seq_printf(m, " phys=%pa", &v->phys_addr);
2702
2703 if (v->flags & VM_IOREMAP)
2704 seq_puts(m, " ioremap");
2705
2706 if (v->flags & VM_ALLOC)
2707 seq_puts(m, " vmalloc");
2708
2709 if (v->flags & VM_MAP)
2710 seq_puts(m, " vmap");
2711
2712 if (v->flags & VM_USERMAP)
2713 seq_puts(m, " user");
2714
2715 if (is_vmalloc_addr(v->pages))
2716 seq_puts(m, " vpages");
2717
2718 show_numa_info(m, v);
2719 seq_putc(m, '\n');
2720 return 0;
2721 }
2722
2723 static const struct seq_operations vmalloc_op = {
2724 .start = s_start,
2725 .next = s_next,
2726 .stop = s_stop,
2727 .show = s_show,
2728 };
2729
2730 static int vmalloc_open(struct inode *inode, struct file *file)
2731 {
2732 if (IS_ENABLED(CONFIG_NUMA))
2733 return seq_open_private(file, &vmalloc_op,
2734 nr_node_ids * sizeof(unsigned int));
2735 else
2736 return seq_open(file, &vmalloc_op);
2737 }
2738
2739 static const struct file_operations proc_vmalloc_operations = {
2740 .open = vmalloc_open,
2741 .read = seq_read,
2742 .llseek = seq_lseek,
2743 .release = seq_release_private,
2744 };
2745
2746 static int __init proc_vmalloc_init(void)
2747 {
2748 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2749 return 0;
2750 }
2751 module_init(proc_vmalloc_init);
2752
2753 #endif
2754