]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/vmalloc.c
Merge branch 'bugzilla-21212' into release
[mirror_ubuntu-bionic-kernel.git] / mm / vmalloc.c
1 /*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <asm/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
32 #include <asm/shmparam.h>
33
34 /*** Page table manipulation functions ***/
35
36 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
37 {
38 pte_t *pte;
39
40 pte = pte_offset_kernel(pmd, addr);
41 do {
42 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
43 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
44 } while (pte++, addr += PAGE_SIZE, addr != end);
45 }
46
47 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
48 {
49 pmd_t *pmd;
50 unsigned long next;
51
52 pmd = pmd_offset(pud, addr);
53 do {
54 next = pmd_addr_end(addr, end);
55 if (pmd_none_or_clear_bad(pmd))
56 continue;
57 vunmap_pte_range(pmd, addr, next);
58 } while (pmd++, addr = next, addr != end);
59 }
60
61 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
62 {
63 pud_t *pud;
64 unsigned long next;
65
66 pud = pud_offset(pgd, addr);
67 do {
68 next = pud_addr_end(addr, end);
69 if (pud_none_or_clear_bad(pud))
70 continue;
71 vunmap_pmd_range(pud, addr, next);
72 } while (pud++, addr = next, addr != end);
73 }
74
75 static void vunmap_page_range(unsigned long addr, unsigned long end)
76 {
77 pgd_t *pgd;
78 unsigned long next;
79
80 BUG_ON(addr >= end);
81 pgd = pgd_offset_k(addr);
82 do {
83 next = pgd_addr_end(addr, end);
84 if (pgd_none_or_clear_bad(pgd))
85 continue;
86 vunmap_pud_range(pgd, addr, next);
87 } while (pgd++, addr = next, addr != end);
88 }
89
90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
91 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
92 {
93 pte_t *pte;
94
95 /*
96 * nr is a running index into the array which helps higher level
97 * callers keep track of where we're up to.
98 */
99
100 pte = pte_alloc_kernel(pmd, addr);
101 if (!pte)
102 return -ENOMEM;
103 do {
104 struct page *page = pages[*nr];
105
106 if (WARN_ON(!pte_none(*pte)))
107 return -EBUSY;
108 if (WARN_ON(!page))
109 return -ENOMEM;
110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
111 (*nr)++;
112 } while (pte++, addr += PAGE_SIZE, addr != end);
113 return 0;
114 }
115
116 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
117 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
118 {
119 pmd_t *pmd;
120 unsigned long next;
121
122 pmd = pmd_alloc(&init_mm, pud, addr);
123 if (!pmd)
124 return -ENOMEM;
125 do {
126 next = pmd_addr_end(addr, end);
127 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
128 return -ENOMEM;
129 } while (pmd++, addr = next, addr != end);
130 return 0;
131 }
132
133 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
135 {
136 pud_t *pud;
137 unsigned long next;
138
139 pud = pud_alloc(&init_mm, pgd, addr);
140 if (!pud)
141 return -ENOMEM;
142 do {
143 next = pud_addr_end(addr, end);
144 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
145 return -ENOMEM;
146 } while (pud++, addr = next, addr != end);
147 return 0;
148 }
149
150 /*
151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152 * will have pfns corresponding to the "pages" array.
153 *
154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
155 */
156 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
157 pgprot_t prot, struct page **pages)
158 {
159 pgd_t *pgd;
160 unsigned long next;
161 unsigned long addr = start;
162 int err = 0;
163 int nr = 0;
164
165 BUG_ON(addr >= end);
166 pgd = pgd_offset_k(addr);
167 do {
168 next = pgd_addr_end(addr, end);
169 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
170 if (err)
171 return err;
172 } while (pgd++, addr = next, addr != end);
173
174 return nr;
175 }
176
177 static int vmap_page_range(unsigned long start, unsigned long end,
178 pgprot_t prot, struct page **pages)
179 {
180 int ret;
181
182 ret = vmap_page_range_noflush(start, end, prot, pages);
183 flush_cache_vmap(start, end);
184 return ret;
185 }
186
187 int is_vmalloc_or_module_addr(const void *x)
188 {
189 /*
190 * ARM, x86-64 and sparc64 put modules in a special place,
191 * and fall back on vmalloc() if that fails. Others
192 * just put it in the vmalloc space.
193 */
194 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
195 unsigned long addr = (unsigned long)x;
196 if (addr >= MODULES_VADDR && addr < MODULES_END)
197 return 1;
198 #endif
199 return is_vmalloc_addr(x);
200 }
201
202 /*
203 * Walk a vmap address to the struct page it maps.
204 */
205 struct page *vmalloc_to_page(const void *vmalloc_addr)
206 {
207 unsigned long addr = (unsigned long) vmalloc_addr;
208 struct page *page = NULL;
209 pgd_t *pgd = pgd_offset_k(addr);
210
211 /*
212 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
213 * architectures that do not vmalloc module space
214 */
215 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
216
217 if (!pgd_none(*pgd)) {
218 pud_t *pud = pud_offset(pgd, addr);
219 if (!pud_none(*pud)) {
220 pmd_t *pmd = pmd_offset(pud, addr);
221 if (!pmd_none(*pmd)) {
222 pte_t *ptep, pte;
223
224 ptep = pte_offset_map(pmd, addr);
225 pte = *ptep;
226 if (pte_present(pte))
227 page = pte_page(pte);
228 pte_unmap(ptep);
229 }
230 }
231 }
232 return page;
233 }
234 EXPORT_SYMBOL(vmalloc_to_page);
235
236 /*
237 * Map a vmalloc()-space virtual address to the physical page frame number.
238 */
239 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
240 {
241 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
242 }
243 EXPORT_SYMBOL(vmalloc_to_pfn);
244
245
246 /*** Global kva allocator ***/
247
248 #define VM_LAZY_FREE 0x01
249 #define VM_LAZY_FREEING 0x02
250 #define VM_VM_AREA 0x04
251
252 struct vmap_area {
253 unsigned long va_start;
254 unsigned long va_end;
255 unsigned long flags;
256 struct rb_node rb_node; /* address sorted rbtree */
257 struct list_head list; /* address sorted list */
258 struct list_head purge_list; /* "lazy purge" list */
259 void *private;
260 struct rcu_head rcu_head;
261 };
262
263 static DEFINE_SPINLOCK(vmap_area_lock);
264 static struct rb_root vmap_area_root = RB_ROOT;
265 static LIST_HEAD(vmap_area_list);
266 static unsigned long vmap_area_pcpu_hole;
267
268 static struct vmap_area *__find_vmap_area(unsigned long addr)
269 {
270 struct rb_node *n = vmap_area_root.rb_node;
271
272 while (n) {
273 struct vmap_area *va;
274
275 va = rb_entry(n, struct vmap_area, rb_node);
276 if (addr < va->va_start)
277 n = n->rb_left;
278 else if (addr > va->va_start)
279 n = n->rb_right;
280 else
281 return va;
282 }
283
284 return NULL;
285 }
286
287 static void __insert_vmap_area(struct vmap_area *va)
288 {
289 struct rb_node **p = &vmap_area_root.rb_node;
290 struct rb_node *parent = NULL;
291 struct rb_node *tmp;
292
293 while (*p) {
294 struct vmap_area *tmp_va;
295
296 parent = *p;
297 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
298 if (va->va_start < tmp_va->va_end)
299 p = &(*p)->rb_left;
300 else if (va->va_end > tmp_va->va_start)
301 p = &(*p)->rb_right;
302 else
303 BUG();
304 }
305
306 rb_link_node(&va->rb_node, parent, p);
307 rb_insert_color(&va->rb_node, &vmap_area_root);
308
309 /* address-sort this list so it is usable like the vmlist */
310 tmp = rb_prev(&va->rb_node);
311 if (tmp) {
312 struct vmap_area *prev;
313 prev = rb_entry(tmp, struct vmap_area, rb_node);
314 list_add_rcu(&va->list, &prev->list);
315 } else
316 list_add_rcu(&va->list, &vmap_area_list);
317 }
318
319 static void purge_vmap_area_lazy(void);
320
321 /*
322 * Allocate a region of KVA of the specified size and alignment, within the
323 * vstart and vend.
324 */
325 static struct vmap_area *alloc_vmap_area(unsigned long size,
326 unsigned long align,
327 unsigned long vstart, unsigned long vend,
328 int node, gfp_t gfp_mask)
329 {
330 struct vmap_area *va;
331 struct rb_node *n;
332 unsigned long addr;
333 int purged = 0;
334
335 BUG_ON(!size);
336 BUG_ON(size & ~PAGE_MASK);
337
338 va = kmalloc_node(sizeof(struct vmap_area),
339 gfp_mask & GFP_RECLAIM_MASK, node);
340 if (unlikely(!va))
341 return ERR_PTR(-ENOMEM);
342
343 retry:
344 addr = ALIGN(vstart, align);
345
346 spin_lock(&vmap_area_lock);
347 if (addr + size - 1 < addr)
348 goto overflow;
349
350 /* XXX: could have a last_hole cache */
351 n = vmap_area_root.rb_node;
352 if (n) {
353 struct vmap_area *first = NULL;
354
355 do {
356 struct vmap_area *tmp;
357 tmp = rb_entry(n, struct vmap_area, rb_node);
358 if (tmp->va_end >= addr) {
359 if (!first && tmp->va_start < addr + size)
360 first = tmp;
361 n = n->rb_left;
362 } else {
363 first = tmp;
364 n = n->rb_right;
365 }
366 } while (n);
367
368 if (!first)
369 goto found;
370
371 if (first->va_end < addr) {
372 n = rb_next(&first->rb_node);
373 if (n)
374 first = rb_entry(n, struct vmap_area, rb_node);
375 else
376 goto found;
377 }
378
379 while (addr + size > first->va_start && addr + size <= vend) {
380 addr = ALIGN(first->va_end + PAGE_SIZE, align);
381 if (addr + size - 1 < addr)
382 goto overflow;
383
384 n = rb_next(&first->rb_node);
385 if (n)
386 first = rb_entry(n, struct vmap_area, rb_node);
387 else
388 goto found;
389 }
390 }
391 found:
392 if (addr + size > vend) {
393 overflow:
394 spin_unlock(&vmap_area_lock);
395 if (!purged) {
396 purge_vmap_area_lazy();
397 purged = 1;
398 goto retry;
399 }
400 if (printk_ratelimit())
401 printk(KERN_WARNING
402 "vmap allocation for size %lu failed: "
403 "use vmalloc=<size> to increase size.\n", size);
404 kfree(va);
405 return ERR_PTR(-EBUSY);
406 }
407
408 BUG_ON(addr & (align-1));
409
410 va->va_start = addr;
411 va->va_end = addr + size;
412 va->flags = 0;
413 __insert_vmap_area(va);
414 spin_unlock(&vmap_area_lock);
415
416 return va;
417 }
418
419 static void rcu_free_va(struct rcu_head *head)
420 {
421 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
422
423 kfree(va);
424 }
425
426 static void __free_vmap_area(struct vmap_area *va)
427 {
428 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
429 rb_erase(&va->rb_node, &vmap_area_root);
430 RB_CLEAR_NODE(&va->rb_node);
431 list_del_rcu(&va->list);
432
433 /*
434 * Track the highest possible candidate for pcpu area
435 * allocation. Areas outside of vmalloc area can be returned
436 * here too, consider only end addresses which fall inside
437 * vmalloc area proper.
438 */
439 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
440 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
441
442 call_rcu(&va->rcu_head, rcu_free_va);
443 }
444
445 /*
446 * Free a region of KVA allocated by alloc_vmap_area
447 */
448 static void free_vmap_area(struct vmap_area *va)
449 {
450 spin_lock(&vmap_area_lock);
451 __free_vmap_area(va);
452 spin_unlock(&vmap_area_lock);
453 }
454
455 /*
456 * Clear the pagetable entries of a given vmap_area
457 */
458 static void unmap_vmap_area(struct vmap_area *va)
459 {
460 vunmap_page_range(va->va_start, va->va_end);
461 }
462
463 static void vmap_debug_free_range(unsigned long start, unsigned long end)
464 {
465 /*
466 * Unmap page tables and force a TLB flush immediately if
467 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
468 * bugs similarly to those in linear kernel virtual address
469 * space after a page has been freed.
470 *
471 * All the lazy freeing logic is still retained, in order to
472 * minimise intrusiveness of this debugging feature.
473 *
474 * This is going to be *slow* (linear kernel virtual address
475 * debugging doesn't do a broadcast TLB flush so it is a lot
476 * faster).
477 */
478 #ifdef CONFIG_DEBUG_PAGEALLOC
479 vunmap_page_range(start, end);
480 flush_tlb_kernel_range(start, end);
481 #endif
482 }
483
484 /*
485 * lazy_max_pages is the maximum amount of virtual address space we gather up
486 * before attempting to purge with a TLB flush.
487 *
488 * There is a tradeoff here: a larger number will cover more kernel page tables
489 * and take slightly longer to purge, but it will linearly reduce the number of
490 * global TLB flushes that must be performed. It would seem natural to scale
491 * this number up linearly with the number of CPUs (because vmapping activity
492 * could also scale linearly with the number of CPUs), however it is likely
493 * that in practice, workloads might be constrained in other ways that mean
494 * vmap activity will not scale linearly with CPUs. Also, I want to be
495 * conservative and not introduce a big latency on huge systems, so go with
496 * a less aggressive log scale. It will still be an improvement over the old
497 * code, and it will be simple to change the scale factor if we find that it
498 * becomes a problem on bigger systems.
499 */
500 static unsigned long lazy_max_pages(void)
501 {
502 unsigned int log;
503
504 log = fls(num_online_cpus());
505
506 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
507 }
508
509 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
510
511 /* for per-CPU blocks */
512 static void purge_fragmented_blocks_allcpus(void);
513
514 /*
515 * called before a call to iounmap() if the caller wants vm_area_struct's
516 * immediately freed.
517 */
518 void set_iounmap_nonlazy(void)
519 {
520 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
521 }
522
523 /*
524 * Purges all lazily-freed vmap areas.
525 *
526 * If sync is 0 then don't purge if there is already a purge in progress.
527 * If force_flush is 1, then flush kernel TLBs between *start and *end even
528 * if we found no lazy vmap areas to unmap (callers can use this to optimise
529 * their own TLB flushing).
530 * Returns with *start = min(*start, lowest purged address)
531 * *end = max(*end, highest purged address)
532 */
533 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
534 int sync, int force_flush)
535 {
536 static DEFINE_SPINLOCK(purge_lock);
537 LIST_HEAD(valist);
538 struct vmap_area *va;
539 struct vmap_area *n_va;
540 int nr = 0;
541
542 /*
543 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
544 * should not expect such behaviour. This just simplifies locking for
545 * the case that isn't actually used at the moment anyway.
546 */
547 if (!sync && !force_flush) {
548 if (!spin_trylock(&purge_lock))
549 return;
550 } else
551 spin_lock(&purge_lock);
552
553 if (sync)
554 purge_fragmented_blocks_allcpus();
555
556 rcu_read_lock();
557 list_for_each_entry_rcu(va, &vmap_area_list, list) {
558 if (va->flags & VM_LAZY_FREE) {
559 if (va->va_start < *start)
560 *start = va->va_start;
561 if (va->va_end > *end)
562 *end = va->va_end;
563 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
564 list_add_tail(&va->purge_list, &valist);
565 va->flags |= VM_LAZY_FREEING;
566 va->flags &= ~VM_LAZY_FREE;
567 }
568 }
569 rcu_read_unlock();
570
571 if (nr)
572 atomic_sub(nr, &vmap_lazy_nr);
573
574 if (nr || force_flush)
575 flush_tlb_kernel_range(*start, *end);
576
577 if (nr) {
578 spin_lock(&vmap_area_lock);
579 list_for_each_entry_safe(va, n_va, &valist, purge_list)
580 __free_vmap_area(va);
581 spin_unlock(&vmap_area_lock);
582 }
583 spin_unlock(&purge_lock);
584 }
585
586 /*
587 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
588 * is already purging.
589 */
590 static void try_purge_vmap_area_lazy(void)
591 {
592 unsigned long start = ULONG_MAX, end = 0;
593
594 __purge_vmap_area_lazy(&start, &end, 0, 0);
595 }
596
597 /*
598 * Kick off a purge of the outstanding lazy areas.
599 */
600 static void purge_vmap_area_lazy(void)
601 {
602 unsigned long start = ULONG_MAX, end = 0;
603
604 __purge_vmap_area_lazy(&start, &end, 1, 0);
605 }
606
607 /*
608 * Free a vmap area, caller ensuring that the area has been unmapped
609 * and flush_cache_vunmap had been called for the correct range
610 * previously.
611 */
612 static void free_vmap_area_noflush(struct vmap_area *va)
613 {
614 va->flags |= VM_LAZY_FREE;
615 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
616 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
617 try_purge_vmap_area_lazy();
618 }
619
620 /*
621 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
622 * called for the correct range previously.
623 */
624 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
625 {
626 unmap_vmap_area(va);
627 free_vmap_area_noflush(va);
628 }
629
630 /*
631 * Free and unmap a vmap area
632 */
633 static void free_unmap_vmap_area(struct vmap_area *va)
634 {
635 flush_cache_vunmap(va->va_start, va->va_end);
636 free_unmap_vmap_area_noflush(va);
637 }
638
639 static struct vmap_area *find_vmap_area(unsigned long addr)
640 {
641 struct vmap_area *va;
642
643 spin_lock(&vmap_area_lock);
644 va = __find_vmap_area(addr);
645 spin_unlock(&vmap_area_lock);
646
647 return va;
648 }
649
650 static void free_unmap_vmap_area_addr(unsigned long addr)
651 {
652 struct vmap_area *va;
653
654 va = find_vmap_area(addr);
655 BUG_ON(!va);
656 free_unmap_vmap_area(va);
657 }
658
659
660 /*** Per cpu kva allocator ***/
661
662 /*
663 * vmap space is limited especially on 32 bit architectures. Ensure there is
664 * room for at least 16 percpu vmap blocks per CPU.
665 */
666 /*
667 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
668 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
669 * instead (we just need a rough idea)
670 */
671 #if BITS_PER_LONG == 32
672 #define VMALLOC_SPACE (128UL*1024*1024)
673 #else
674 #define VMALLOC_SPACE (128UL*1024*1024*1024)
675 #endif
676
677 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
678 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
679 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
680 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
681 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
682 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
683 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
684 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
685 VMALLOC_PAGES / NR_CPUS / 16))
686
687 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
688
689 static bool vmap_initialized __read_mostly = false;
690
691 struct vmap_block_queue {
692 spinlock_t lock;
693 struct list_head free;
694 };
695
696 struct vmap_block {
697 spinlock_t lock;
698 struct vmap_area *va;
699 struct vmap_block_queue *vbq;
700 unsigned long free, dirty;
701 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
702 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
703 struct list_head free_list;
704 struct rcu_head rcu_head;
705 struct list_head purge;
706 };
707
708 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
709 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
710
711 /*
712 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
713 * in the free path. Could get rid of this if we change the API to return a
714 * "cookie" from alloc, to be passed to free. But no big deal yet.
715 */
716 static DEFINE_SPINLOCK(vmap_block_tree_lock);
717 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
718
719 /*
720 * We should probably have a fallback mechanism to allocate virtual memory
721 * out of partially filled vmap blocks. However vmap block sizing should be
722 * fairly reasonable according to the vmalloc size, so it shouldn't be a
723 * big problem.
724 */
725
726 static unsigned long addr_to_vb_idx(unsigned long addr)
727 {
728 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
729 addr /= VMAP_BLOCK_SIZE;
730 return addr;
731 }
732
733 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
734 {
735 struct vmap_block_queue *vbq;
736 struct vmap_block *vb;
737 struct vmap_area *va;
738 unsigned long vb_idx;
739 int node, err;
740
741 node = numa_node_id();
742
743 vb = kmalloc_node(sizeof(struct vmap_block),
744 gfp_mask & GFP_RECLAIM_MASK, node);
745 if (unlikely(!vb))
746 return ERR_PTR(-ENOMEM);
747
748 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
749 VMALLOC_START, VMALLOC_END,
750 node, gfp_mask);
751 if (unlikely(IS_ERR(va))) {
752 kfree(vb);
753 return ERR_CAST(va);
754 }
755
756 err = radix_tree_preload(gfp_mask);
757 if (unlikely(err)) {
758 kfree(vb);
759 free_vmap_area(va);
760 return ERR_PTR(err);
761 }
762
763 spin_lock_init(&vb->lock);
764 vb->va = va;
765 vb->free = VMAP_BBMAP_BITS;
766 vb->dirty = 0;
767 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
768 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
769 INIT_LIST_HEAD(&vb->free_list);
770
771 vb_idx = addr_to_vb_idx(va->va_start);
772 spin_lock(&vmap_block_tree_lock);
773 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
774 spin_unlock(&vmap_block_tree_lock);
775 BUG_ON(err);
776 radix_tree_preload_end();
777
778 vbq = &get_cpu_var(vmap_block_queue);
779 vb->vbq = vbq;
780 spin_lock(&vbq->lock);
781 list_add_rcu(&vb->free_list, &vbq->free);
782 spin_unlock(&vbq->lock);
783 put_cpu_var(vmap_block_queue);
784
785 return vb;
786 }
787
788 static void rcu_free_vb(struct rcu_head *head)
789 {
790 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
791
792 kfree(vb);
793 }
794
795 static void free_vmap_block(struct vmap_block *vb)
796 {
797 struct vmap_block *tmp;
798 unsigned long vb_idx;
799
800 vb_idx = addr_to_vb_idx(vb->va->va_start);
801 spin_lock(&vmap_block_tree_lock);
802 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
803 spin_unlock(&vmap_block_tree_lock);
804 BUG_ON(tmp != vb);
805
806 free_vmap_area_noflush(vb->va);
807 call_rcu(&vb->rcu_head, rcu_free_vb);
808 }
809
810 static void purge_fragmented_blocks(int cpu)
811 {
812 LIST_HEAD(purge);
813 struct vmap_block *vb;
814 struct vmap_block *n_vb;
815 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
816
817 rcu_read_lock();
818 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
819
820 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
821 continue;
822
823 spin_lock(&vb->lock);
824 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
825 vb->free = 0; /* prevent further allocs after releasing lock */
826 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
827 bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
828 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
829 spin_lock(&vbq->lock);
830 list_del_rcu(&vb->free_list);
831 spin_unlock(&vbq->lock);
832 spin_unlock(&vb->lock);
833 list_add_tail(&vb->purge, &purge);
834 } else
835 spin_unlock(&vb->lock);
836 }
837 rcu_read_unlock();
838
839 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
840 list_del(&vb->purge);
841 free_vmap_block(vb);
842 }
843 }
844
845 static void purge_fragmented_blocks_thiscpu(void)
846 {
847 purge_fragmented_blocks(smp_processor_id());
848 }
849
850 static void purge_fragmented_blocks_allcpus(void)
851 {
852 int cpu;
853
854 for_each_possible_cpu(cpu)
855 purge_fragmented_blocks(cpu);
856 }
857
858 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
859 {
860 struct vmap_block_queue *vbq;
861 struct vmap_block *vb;
862 unsigned long addr = 0;
863 unsigned int order;
864 int purge = 0;
865
866 BUG_ON(size & ~PAGE_MASK);
867 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
868 order = get_order(size);
869
870 again:
871 rcu_read_lock();
872 vbq = &get_cpu_var(vmap_block_queue);
873 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
874 int i;
875
876 spin_lock(&vb->lock);
877 if (vb->free < 1UL << order)
878 goto next;
879
880 i = bitmap_find_free_region(vb->alloc_map,
881 VMAP_BBMAP_BITS, order);
882
883 if (i < 0) {
884 if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
885 /* fragmented and no outstanding allocations */
886 BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
887 purge = 1;
888 }
889 goto next;
890 }
891 addr = vb->va->va_start + (i << PAGE_SHIFT);
892 BUG_ON(addr_to_vb_idx(addr) !=
893 addr_to_vb_idx(vb->va->va_start));
894 vb->free -= 1UL << order;
895 if (vb->free == 0) {
896 spin_lock(&vbq->lock);
897 list_del_rcu(&vb->free_list);
898 spin_unlock(&vbq->lock);
899 }
900 spin_unlock(&vb->lock);
901 break;
902 next:
903 spin_unlock(&vb->lock);
904 }
905
906 if (purge)
907 purge_fragmented_blocks_thiscpu();
908
909 put_cpu_var(vmap_block_queue);
910 rcu_read_unlock();
911
912 if (!addr) {
913 vb = new_vmap_block(gfp_mask);
914 if (IS_ERR(vb))
915 return vb;
916 goto again;
917 }
918
919 return (void *)addr;
920 }
921
922 static void vb_free(const void *addr, unsigned long size)
923 {
924 unsigned long offset;
925 unsigned long vb_idx;
926 unsigned int order;
927 struct vmap_block *vb;
928
929 BUG_ON(size & ~PAGE_MASK);
930 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
931
932 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
933
934 order = get_order(size);
935
936 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
937
938 vb_idx = addr_to_vb_idx((unsigned long)addr);
939 rcu_read_lock();
940 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
941 rcu_read_unlock();
942 BUG_ON(!vb);
943
944 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
945
946 spin_lock(&vb->lock);
947 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
948
949 vb->dirty += 1UL << order;
950 if (vb->dirty == VMAP_BBMAP_BITS) {
951 BUG_ON(vb->free);
952 spin_unlock(&vb->lock);
953 free_vmap_block(vb);
954 } else
955 spin_unlock(&vb->lock);
956 }
957
958 /**
959 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
960 *
961 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
962 * to amortize TLB flushing overheads. What this means is that any page you
963 * have now, may, in a former life, have been mapped into kernel virtual
964 * address by the vmap layer and so there might be some CPUs with TLB entries
965 * still referencing that page (additional to the regular 1:1 kernel mapping).
966 *
967 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
968 * be sure that none of the pages we have control over will have any aliases
969 * from the vmap layer.
970 */
971 void vm_unmap_aliases(void)
972 {
973 unsigned long start = ULONG_MAX, end = 0;
974 int cpu;
975 int flush = 0;
976
977 if (unlikely(!vmap_initialized))
978 return;
979
980 for_each_possible_cpu(cpu) {
981 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
982 struct vmap_block *vb;
983
984 rcu_read_lock();
985 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
986 int i;
987
988 spin_lock(&vb->lock);
989 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
990 while (i < VMAP_BBMAP_BITS) {
991 unsigned long s, e;
992 int j;
993 j = find_next_zero_bit(vb->dirty_map,
994 VMAP_BBMAP_BITS, i);
995
996 s = vb->va->va_start + (i << PAGE_SHIFT);
997 e = vb->va->va_start + (j << PAGE_SHIFT);
998 flush = 1;
999
1000 if (s < start)
1001 start = s;
1002 if (e > end)
1003 end = e;
1004
1005 i = j;
1006 i = find_next_bit(vb->dirty_map,
1007 VMAP_BBMAP_BITS, i);
1008 }
1009 spin_unlock(&vb->lock);
1010 }
1011 rcu_read_unlock();
1012 }
1013
1014 __purge_vmap_area_lazy(&start, &end, 1, flush);
1015 }
1016 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1017
1018 /**
1019 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1020 * @mem: the pointer returned by vm_map_ram
1021 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1022 */
1023 void vm_unmap_ram(const void *mem, unsigned int count)
1024 {
1025 unsigned long size = count << PAGE_SHIFT;
1026 unsigned long addr = (unsigned long)mem;
1027
1028 BUG_ON(!addr);
1029 BUG_ON(addr < VMALLOC_START);
1030 BUG_ON(addr > VMALLOC_END);
1031 BUG_ON(addr & (PAGE_SIZE-1));
1032
1033 debug_check_no_locks_freed(mem, size);
1034 vmap_debug_free_range(addr, addr+size);
1035
1036 if (likely(count <= VMAP_MAX_ALLOC))
1037 vb_free(mem, size);
1038 else
1039 free_unmap_vmap_area_addr(addr);
1040 }
1041 EXPORT_SYMBOL(vm_unmap_ram);
1042
1043 /**
1044 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1045 * @pages: an array of pointers to the pages to be mapped
1046 * @count: number of pages
1047 * @node: prefer to allocate data structures on this node
1048 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1049 *
1050 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1051 */
1052 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1053 {
1054 unsigned long size = count << PAGE_SHIFT;
1055 unsigned long addr;
1056 void *mem;
1057
1058 if (likely(count <= VMAP_MAX_ALLOC)) {
1059 mem = vb_alloc(size, GFP_KERNEL);
1060 if (IS_ERR(mem))
1061 return NULL;
1062 addr = (unsigned long)mem;
1063 } else {
1064 struct vmap_area *va;
1065 va = alloc_vmap_area(size, PAGE_SIZE,
1066 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1067 if (IS_ERR(va))
1068 return NULL;
1069
1070 addr = va->va_start;
1071 mem = (void *)addr;
1072 }
1073 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1074 vm_unmap_ram(mem, count);
1075 return NULL;
1076 }
1077 return mem;
1078 }
1079 EXPORT_SYMBOL(vm_map_ram);
1080
1081 /**
1082 * vm_area_register_early - register vmap area early during boot
1083 * @vm: vm_struct to register
1084 * @align: requested alignment
1085 *
1086 * This function is used to register kernel vm area before
1087 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1088 * proper values on entry and other fields should be zero. On return,
1089 * vm->addr contains the allocated address.
1090 *
1091 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1092 */
1093 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1094 {
1095 static size_t vm_init_off __initdata;
1096 unsigned long addr;
1097
1098 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1099 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1100
1101 vm->addr = (void *)addr;
1102
1103 vm->next = vmlist;
1104 vmlist = vm;
1105 }
1106
1107 void __init vmalloc_init(void)
1108 {
1109 struct vmap_area *va;
1110 struct vm_struct *tmp;
1111 int i;
1112
1113 for_each_possible_cpu(i) {
1114 struct vmap_block_queue *vbq;
1115
1116 vbq = &per_cpu(vmap_block_queue, i);
1117 spin_lock_init(&vbq->lock);
1118 INIT_LIST_HEAD(&vbq->free);
1119 }
1120
1121 /* Import existing vmlist entries. */
1122 for (tmp = vmlist; tmp; tmp = tmp->next) {
1123 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1124 va->flags = tmp->flags | VM_VM_AREA;
1125 va->va_start = (unsigned long)tmp->addr;
1126 va->va_end = va->va_start + tmp->size;
1127 __insert_vmap_area(va);
1128 }
1129
1130 vmap_area_pcpu_hole = VMALLOC_END;
1131
1132 vmap_initialized = true;
1133 }
1134
1135 /**
1136 * map_kernel_range_noflush - map kernel VM area with the specified pages
1137 * @addr: start of the VM area to map
1138 * @size: size of the VM area to map
1139 * @prot: page protection flags to use
1140 * @pages: pages to map
1141 *
1142 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1143 * specify should have been allocated using get_vm_area() and its
1144 * friends.
1145 *
1146 * NOTE:
1147 * This function does NOT do any cache flushing. The caller is
1148 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1149 * before calling this function.
1150 *
1151 * RETURNS:
1152 * The number of pages mapped on success, -errno on failure.
1153 */
1154 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1155 pgprot_t prot, struct page **pages)
1156 {
1157 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1158 }
1159
1160 /**
1161 * unmap_kernel_range_noflush - unmap kernel VM area
1162 * @addr: start of the VM area to unmap
1163 * @size: size of the VM area to unmap
1164 *
1165 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1166 * specify should have been allocated using get_vm_area() and its
1167 * friends.
1168 *
1169 * NOTE:
1170 * This function does NOT do any cache flushing. The caller is
1171 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1172 * before calling this function and flush_tlb_kernel_range() after.
1173 */
1174 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1175 {
1176 vunmap_page_range(addr, addr + size);
1177 }
1178 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1179
1180 /**
1181 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1182 * @addr: start of the VM area to unmap
1183 * @size: size of the VM area to unmap
1184 *
1185 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1186 * the unmapping and tlb after.
1187 */
1188 void unmap_kernel_range(unsigned long addr, unsigned long size)
1189 {
1190 unsigned long end = addr + size;
1191
1192 flush_cache_vunmap(addr, end);
1193 vunmap_page_range(addr, end);
1194 flush_tlb_kernel_range(addr, end);
1195 }
1196
1197 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1198 {
1199 unsigned long addr = (unsigned long)area->addr;
1200 unsigned long end = addr + area->size - PAGE_SIZE;
1201 int err;
1202
1203 err = vmap_page_range(addr, end, prot, *pages);
1204 if (err > 0) {
1205 *pages += err;
1206 err = 0;
1207 }
1208
1209 return err;
1210 }
1211 EXPORT_SYMBOL_GPL(map_vm_area);
1212
1213 /*** Old vmalloc interfaces ***/
1214 DEFINE_RWLOCK(vmlist_lock);
1215 struct vm_struct *vmlist;
1216
1217 static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1218 unsigned long flags, void *caller)
1219 {
1220 struct vm_struct *tmp, **p;
1221
1222 vm->flags = flags;
1223 vm->addr = (void *)va->va_start;
1224 vm->size = va->va_end - va->va_start;
1225 vm->caller = caller;
1226 va->private = vm;
1227 va->flags |= VM_VM_AREA;
1228
1229 write_lock(&vmlist_lock);
1230 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1231 if (tmp->addr >= vm->addr)
1232 break;
1233 }
1234 vm->next = *p;
1235 *p = vm;
1236 write_unlock(&vmlist_lock);
1237 }
1238
1239 static struct vm_struct *__get_vm_area_node(unsigned long size,
1240 unsigned long align, unsigned long flags, unsigned long start,
1241 unsigned long end, int node, gfp_t gfp_mask, void *caller)
1242 {
1243 static struct vmap_area *va;
1244 struct vm_struct *area;
1245
1246 BUG_ON(in_interrupt());
1247 if (flags & VM_IOREMAP) {
1248 int bit = fls(size);
1249
1250 if (bit > IOREMAP_MAX_ORDER)
1251 bit = IOREMAP_MAX_ORDER;
1252 else if (bit < PAGE_SHIFT)
1253 bit = PAGE_SHIFT;
1254
1255 align = 1ul << bit;
1256 }
1257
1258 size = PAGE_ALIGN(size);
1259 if (unlikely(!size))
1260 return NULL;
1261
1262 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1263 if (unlikely(!area))
1264 return NULL;
1265
1266 /*
1267 * We always allocate a guard page.
1268 */
1269 size += PAGE_SIZE;
1270
1271 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1272 if (IS_ERR(va)) {
1273 kfree(area);
1274 return NULL;
1275 }
1276
1277 insert_vmalloc_vm(area, va, flags, caller);
1278 return area;
1279 }
1280
1281 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1282 unsigned long start, unsigned long end)
1283 {
1284 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1285 __builtin_return_address(0));
1286 }
1287 EXPORT_SYMBOL_GPL(__get_vm_area);
1288
1289 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1290 unsigned long start, unsigned long end,
1291 void *caller)
1292 {
1293 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1294 caller);
1295 }
1296
1297 /**
1298 * get_vm_area - reserve a contiguous kernel virtual area
1299 * @size: size of the area
1300 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1301 *
1302 * Search an area of @size in the kernel virtual mapping area,
1303 * and reserved it for out purposes. Returns the area descriptor
1304 * on success or %NULL on failure.
1305 */
1306 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1307 {
1308 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1309 -1, GFP_KERNEL, __builtin_return_address(0));
1310 }
1311
1312 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1313 void *caller)
1314 {
1315 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1316 -1, GFP_KERNEL, caller);
1317 }
1318
1319 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1320 int node, gfp_t gfp_mask)
1321 {
1322 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1323 node, gfp_mask, __builtin_return_address(0));
1324 }
1325
1326 static struct vm_struct *find_vm_area(const void *addr)
1327 {
1328 struct vmap_area *va;
1329
1330 va = find_vmap_area((unsigned long)addr);
1331 if (va && va->flags & VM_VM_AREA)
1332 return va->private;
1333
1334 return NULL;
1335 }
1336
1337 /**
1338 * remove_vm_area - find and remove a continuous kernel virtual area
1339 * @addr: base address
1340 *
1341 * Search for the kernel VM area starting at @addr, and remove it.
1342 * This function returns the found VM area, but using it is NOT safe
1343 * on SMP machines, except for its size or flags.
1344 */
1345 struct vm_struct *remove_vm_area(const void *addr)
1346 {
1347 struct vmap_area *va;
1348
1349 va = find_vmap_area((unsigned long)addr);
1350 if (va && va->flags & VM_VM_AREA) {
1351 struct vm_struct *vm = va->private;
1352 struct vm_struct *tmp, **p;
1353 /*
1354 * remove from list and disallow access to this vm_struct
1355 * before unmap. (address range confliction is maintained by
1356 * vmap.)
1357 */
1358 write_lock(&vmlist_lock);
1359 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1360 ;
1361 *p = tmp->next;
1362 write_unlock(&vmlist_lock);
1363
1364 vmap_debug_free_range(va->va_start, va->va_end);
1365 free_unmap_vmap_area(va);
1366 vm->size -= PAGE_SIZE;
1367
1368 return vm;
1369 }
1370 return NULL;
1371 }
1372
1373 static void __vunmap(const void *addr, int deallocate_pages)
1374 {
1375 struct vm_struct *area;
1376
1377 if (!addr)
1378 return;
1379
1380 if ((PAGE_SIZE-1) & (unsigned long)addr) {
1381 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1382 return;
1383 }
1384
1385 area = remove_vm_area(addr);
1386 if (unlikely(!area)) {
1387 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1388 addr);
1389 return;
1390 }
1391
1392 debug_check_no_locks_freed(addr, area->size);
1393 debug_check_no_obj_freed(addr, area->size);
1394
1395 if (deallocate_pages) {
1396 int i;
1397
1398 for (i = 0; i < area->nr_pages; i++) {
1399 struct page *page = area->pages[i];
1400
1401 BUG_ON(!page);
1402 __free_page(page);
1403 }
1404
1405 if (area->flags & VM_VPAGES)
1406 vfree(area->pages);
1407 else
1408 kfree(area->pages);
1409 }
1410
1411 kfree(area);
1412 return;
1413 }
1414
1415 /**
1416 * vfree - release memory allocated by vmalloc()
1417 * @addr: memory base address
1418 *
1419 * Free the virtually continuous memory area starting at @addr, as
1420 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1421 * NULL, no operation is performed.
1422 *
1423 * Must not be called in interrupt context.
1424 */
1425 void vfree(const void *addr)
1426 {
1427 BUG_ON(in_interrupt());
1428
1429 kmemleak_free(addr);
1430
1431 __vunmap(addr, 1);
1432 }
1433 EXPORT_SYMBOL(vfree);
1434
1435 /**
1436 * vunmap - release virtual mapping obtained by vmap()
1437 * @addr: memory base address
1438 *
1439 * Free the virtually contiguous memory area starting at @addr,
1440 * which was created from the page array passed to vmap().
1441 *
1442 * Must not be called in interrupt context.
1443 */
1444 void vunmap(const void *addr)
1445 {
1446 BUG_ON(in_interrupt());
1447 might_sleep();
1448 __vunmap(addr, 0);
1449 }
1450 EXPORT_SYMBOL(vunmap);
1451
1452 /**
1453 * vmap - map an array of pages into virtually contiguous space
1454 * @pages: array of page pointers
1455 * @count: number of pages to map
1456 * @flags: vm_area->flags
1457 * @prot: page protection for the mapping
1458 *
1459 * Maps @count pages from @pages into contiguous kernel virtual
1460 * space.
1461 */
1462 void *vmap(struct page **pages, unsigned int count,
1463 unsigned long flags, pgprot_t prot)
1464 {
1465 struct vm_struct *area;
1466
1467 might_sleep();
1468
1469 if (count > totalram_pages)
1470 return NULL;
1471
1472 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1473 __builtin_return_address(0));
1474 if (!area)
1475 return NULL;
1476
1477 if (map_vm_area(area, prot, &pages)) {
1478 vunmap(area->addr);
1479 return NULL;
1480 }
1481
1482 return area->addr;
1483 }
1484 EXPORT_SYMBOL(vmap);
1485
1486 static void *__vmalloc_node(unsigned long size, unsigned long align,
1487 gfp_t gfp_mask, pgprot_t prot,
1488 int node, void *caller);
1489 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1490 pgprot_t prot, int node, void *caller)
1491 {
1492 struct page **pages;
1493 unsigned int nr_pages, array_size, i;
1494 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1495
1496 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1497 array_size = (nr_pages * sizeof(struct page *));
1498
1499 area->nr_pages = nr_pages;
1500 /* Please note that the recursion is strictly bounded. */
1501 if (array_size > PAGE_SIZE) {
1502 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1503 PAGE_KERNEL, node, caller);
1504 area->flags |= VM_VPAGES;
1505 } else {
1506 pages = kmalloc_node(array_size, nested_gfp, node);
1507 }
1508 area->pages = pages;
1509 area->caller = caller;
1510 if (!area->pages) {
1511 remove_vm_area(area->addr);
1512 kfree(area);
1513 return NULL;
1514 }
1515
1516 for (i = 0; i < area->nr_pages; i++) {
1517 struct page *page;
1518
1519 if (node < 0)
1520 page = alloc_page(gfp_mask);
1521 else
1522 page = alloc_pages_node(node, gfp_mask, 0);
1523
1524 if (unlikely(!page)) {
1525 /* Successfully allocated i pages, free them in __vunmap() */
1526 area->nr_pages = i;
1527 goto fail;
1528 }
1529 area->pages[i] = page;
1530 }
1531
1532 if (map_vm_area(area, prot, &pages))
1533 goto fail;
1534 return area->addr;
1535
1536 fail:
1537 vfree(area->addr);
1538 return NULL;
1539 }
1540
1541 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1542 {
1543 void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
1544 __builtin_return_address(0));
1545
1546 /*
1547 * A ref_count = 3 is needed because the vm_struct and vmap_area
1548 * structures allocated in the __get_vm_area_node() function contain
1549 * references to the virtual address of the vmalloc'ed block.
1550 */
1551 kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);
1552
1553 return addr;
1554 }
1555
1556 /**
1557 * __vmalloc_node - allocate virtually contiguous memory
1558 * @size: allocation size
1559 * @align: desired alignment
1560 * @gfp_mask: flags for the page level allocator
1561 * @prot: protection mask for the allocated pages
1562 * @node: node to use for allocation or -1
1563 * @caller: caller's return address
1564 *
1565 * Allocate enough pages to cover @size from the page level
1566 * allocator with @gfp_mask flags. Map them into contiguous
1567 * kernel virtual space, using a pagetable protection of @prot.
1568 */
1569 static void *__vmalloc_node(unsigned long size, unsigned long align,
1570 gfp_t gfp_mask, pgprot_t prot,
1571 int node, void *caller)
1572 {
1573 struct vm_struct *area;
1574 void *addr;
1575 unsigned long real_size = size;
1576
1577 size = PAGE_ALIGN(size);
1578 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1579 return NULL;
1580
1581 area = __get_vm_area_node(size, align, VM_ALLOC, VMALLOC_START,
1582 VMALLOC_END, node, gfp_mask, caller);
1583
1584 if (!area)
1585 return NULL;
1586
1587 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1588
1589 /*
1590 * A ref_count = 3 is needed because the vm_struct and vmap_area
1591 * structures allocated in the __get_vm_area_node() function contain
1592 * references to the virtual address of the vmalloc'ed block.
1593 */
1594 kmemleak_alloc(addr, real_size, 3, gfp_mask);
1595
1596 return addr;
1597 }
1598
1599 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1600 {
1601 return __vmalloc_node(size, 1, gfp_mask, prot, -1,
1602 __builtin_return_address(0));
1603 }
1604 EXPORT_SYMBOL(__vmalloc);
1605
1606 static inline void *__vmalloc_node_flags(unsigned long size,
1607 int node, gfp_t flags)
1608 {
1609 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1610 node, __builtin_return_address(0));
1611 }
1612
1613 /**
1614 * vmalloc - allocate virtually contiguous memory
1615 * @size: allocation size
1616 * Allocate enough pages to cover @size from the page level
1617 * allocator and map them into contiguous kernel virtual space.
1618 *
1619 * For tight control over page level allocator and protection flags
1620 * use __vmalloc() instead.
1621 */
1622 void *vmalloc(unsigned long size)
1623 {
1624 return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM);
1625 }
1626 EXPORT_SYMBOL(vmalloc);
1627
1628 /**
1629 * vzalloc - allocate virtually contiguous memory with zero fill
1630 * @size: allocation size
1631 * Allocate enough pages to cover @size from the page level
1632 * allocator and map them into contiguous kernel virtual space.
1633 * The memory allocated is set to zero.
1634 *
1635 * For tight control over page level allocator and protection flags
1636 * use __vmalloc() instead.
1637 */
1638 void *vzalloc(unsigned long size)
1639 {
1640 return __vmalloc_node_flags(size, -1,
1641 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1642 }
1643 EXPORT_SYMBOL(vzalloc);
1644
1645 /**
1646 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1647 * @size: allocation size
1648 *
1649 * The resulting memory area is zeroed so it can be mapped to userspace
1650 * without leaking data.
1651 */
1652 void *vmalloc_user(unsigned long size)
1653 {
1654 struct vm_struct *area;
1655 void *ret;
1656
1657 ret = __vmalloc_node(size, SHMLBA,
1658 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1659 PAGE_KERNEL, -1, __builtin_return_address(0));
1660 if (ret) {
1661 area = find_vm_area(ret);
1662 area->flags |= VM_USERMAP;
1663 }
1664 return ret;
1665 }
1666 EXPORT_SYMBOL(vmalloc_user);
1667
1668 /**
1669 * vmalloc_node - allocate memory on a specific node
1670 * @size: allocation size
1671 * @node: numa node
1672 *
1673 * Allocate enough pages to cover @size from the page level
1674 * allocator and map them into contiguous kernel virtual space.
1675 *
1676 * For tight control over page level allocator and protection flags
1677 * use __vmalloc() instead.
1678 */
1679 void *vmalloc_node(unsigned long size, int node)
1680 {
1681 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1682 node, __builtin_return_address(0));
1683 }
1684 EXPORT_SYMBOL(vmalloc_node);
1685
1686 /**
1687 * vzalloc_node - allocate memory on a specific node with zero fill
1688 * @size: allocation size
1689 * @node: numa node
1690 *
1691 * Allocate enough pages to cover @size from the page level
1692 * allocator and map them into contiguous kernel virtual space.
1693 * The memory allocated is set to zero.
1694 *
1695 * For tight control over page level allocator and protection flags
1696 * use __vmalloc_node() instead.
1697 */
1698 void *vzalloc_node(unsigned long size, int node)
1699 {
1700 return __vmalloc_node_flags(size, node,
1701 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1702 }
1703 EXPORT_SYMBOL(vzalloc_node);
1704
1705 #ifndef PAGE_KERNEL_EXEC
1706 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1707 #endif
1708
1709 /**
1710 * vmalloc_exec - allocate virtually contiguous, executable memory
1711 * @size: allocation size
1712 *
1713 * Kernel-internal function to allocate enough pages to cover @size
1714 * the page level allocator and map them into contiguous and
1715 * executable kernel virtual space.
1716 *
1717 * For tight control over page level allocator and protection flags
1718 * use __vmalloc() instead.
1719 */
1720
1721 void *vmalloc_exec(unsigned long size)
1722 {
1723 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1724 -1, __builtin_return_address(0));
1725 }
1726
1727 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1728 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1729 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1730 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1731 #else
1732 #define GFP_VMALLOC32 GFP_KERNEL
1733 #endif
1734
1735 /**
1736 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1737 * @size: allocation size
1738 *
1739 * Allocate enough 32bit PA addressable pages to cover @size from the
1740 * page level allocator and map them into contiguous kernel virtual space.
1741 */
1742 void *vmalloc_32(unsigned long size)
1743 {
1744 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1745 -1, __builtin_return_address(0));
1746 }
1747 EXPORT_SYMBOL(vmalloc_32);
1748
1749 /**
1750 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1751 * @size: allocation size
1752 *
1753 * The resulting memory area is 32bit addressable and zeroed so it can be
1754 * mapped to userspace without leaking data.
1755 */
1756 void *vmalloc_32_user(unsigned long size)
1757 {
1758 struct vm_struct *area;
1759 void *ret;
1760
1761 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1762 -1, __builtin_return_address(0));
1763 if (ret) {
1764 area = find_vm_area(ret);
1765 area->flags |= VM_USERMAP;
1766 }
1767 return ret;
1768 }
1769 EXPORT_SYMBOL(vmalloc_32_user);
1770
1771 /*
1772 * small helper routine , copy contents to buf from addr.
1773 * If the page is not present, fill zero.
1774 */
1775
1776 static int aligned_vread(char *buf, char *addr, unsigned long count)
1777 {
1778 struct page *p;
1779 int copied = 0;
1780
1781 while (count) {
1782 unsigned long offset, length;
1783
1784 offset = (unsigned long)addr & ~PAGE_MASK;
1785 length = PAGE_SIZE - offset;
1786 if (length > count)
1787 length = count;
1788 p = vmalloc_to_page(addr);
1789 /*
1790 * To do safe access to this _mapped_ area, we need
1791 * lock. But adding lock here means that we need to add
1792 * overhead of vmalloc()/vfree() calles for this _debug_
1793 * interface, rarely used. Instead of that, we'll use
1794 * kmap() and get small overhead in this access function.
1795 */
1796 if (p) {
1797 /*
1798 * we can expect USER0 is not used (see vread/vwrite's
1799 * function description)
1800 */
1801 void *map = kmap_atomic(p, KM_USER0);
1802 memcpy(buf, map + offset, length);
1803 kunmap_atomic(map, KM_USER0);
1804 } else
1805 memset(buf, 0, length);
1806
1807 addr += length;
1808 buf += length;
1809 copied += length;
1810 count -= length;
1811 }
1812 return copied;
1813 }
1814
1815 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1816 {
1817 struct page *p;
1818 int copied = 0;
1819
1820 while (count) {
1821 unsigned long offset, length;
1822
1823 offset = (unsigned long)addr & ~PAGE_MASK;
1824 length = PAGE_SIZE - offset;
1825 if (length > count)
1826 length = count;
1827 p = vmalloc_to_page(addr);
1828 /*
1829 * To do safe access to this _mapped_ area, we need
1830 * lock. But adding lock here means that we need to add
1831 * overhead of vmalloc()/vfree() calles for this _debug_
1832 * interface, rarely used. Instead of that, we'll use
1833 * kmap() and get small overhead in this access function.
1834 */
1835 if (p) {
1836 /*
1837 * we can expect USER0 is not used (see vread/vwrite's
1838 * function description)
1839 */
1840 void *map = kmap_atomic(p, KM_USER0);
1841 memcpy(map + offset, buf, length);
1842 kunmap_atomic(map, KM_USER0);
1843 }
1844 addr += length;
1845 buf += length;
1846 copied += length;
1847 count -= length;
1848 }
1849 return copied;
1850 }
1851
1852 /**
1853 * vread() - read vmalloc area in a safe way.
1854 * @buf: buffer for reading data
1855 * @addr: vm address.
1856 * @count: number of bytes to be read.
1857 *
1858 * Returns # of bytes which addr and buf should be increased.
1859 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1860 * includes any intersect with alive vmalloc area.
1861 *
1862 * This function checks that addr is a valid vmalloc'ed area, and
1863 * copy data from that area to a given buffer. If the given memory range
1864 * of [addr...addr+count) includes some valid address, data is copied to
1865 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1866 * IOREMAP area is treated as memory hole and no copy is done.
1867 *
1868 * If [addr...addr+count) doesn't includes any intersects with alive
1869 * vm_struct area, returns 0.
1870 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1871 * the caller should guarantee KM_USER0 is not used.
1872 *
1873 * Note: In usual ops, vread() is never necessary because the caller
1874 * should know vmalloc() area is valid and can use memcpy().
1875 * This is for routines which have to access vmalloc area without
1876 * any informaion, as /dev/kmem.
1877 *
1878 */
1879
1880 long vread(char *buf, char *addr, unsigned long count)
1881 {
1882 struct vm_struct *tmp;
1883 char *vaddr, *buf_start = buf;
1884 unsigned long buflen = count;
1885 unsigned long n;
1886
1887 /* Don't allow overflow */
1888 if ((unsigned long) addr + count < count)
1889 count = -(unsigned long) addr;
1890
1891 read_lock(&vmlist_lock);
1892 for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1893 vaddr = (char *) tmp->addr;
1894 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1895 continue;
1896 while (addr < vaddr) {
1897 if (count == 0)
1898 goto finished;
1899 *buf = '\0';
1900 buf++;
1901 addr++;
1902 count--;
1903 }
1904 n = vaddr + tmp->size - PAGE_SIZE - addr;
1905 if (n > count)
1906 n = count;
1907 if (!(tmp->flags & VM_IOREMAP))
1908 aligned_vread(buf, addr, n);
1909 else /* IOREMAP area is treated as memory hole */
1910 memset(buf, 0, n);
1911 buf += n;
1912 addr += n;
1913 count -= n;
1914 }
1915 finished:
1916 read_unlock(&vmlist_lock);
1917
1918 if (buf == buf_start)
1919 return 0;
1920 /* zero-fill memory holes */
1921 if (buf != buf_start + buflen)
1922 memset(buf, 0, buflen - (buf - buf_start));
1923
1924 return buflen;
1925 }
1926
1927 /**
1928 * vwrite() - write vmalloc area in a safe way.
1929 * @buf: buffer for source data
1930 * @addr: vm address.
1931 * @count: number of bytes to be read.
1932 *
1933 * Returns # of bytes which addr and buf should be incresed.
1934 * (same number to @count).
1935 * If [addr...addr+count) doesn't includes any intersect with valid
1936 * vmalloc area, returns 0.
1937 *
1938 * This function checks that addr is a valid vmalloc'ed area, and
1939 * copy data from a buffer to the given addr. If specified range of
1940 * [addr...addr+count) includes some valid address, data is copied from
1941 * proper area of @buf. If there are memory holes, no copy to hole.
1942 * IOREMAP area is treated as memory hole and no copy is done.
1943 *
1944 * If [addr...addr+count) doesn't includes any intersects with alive
1945 * vm_struct area, returns 0.
1946 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1947 * the caller should guarantee KM_USER0 is not used.
1948 *
1949 * Note: In usual ops, vwrite() is never necessary because the caller
1950 * should know vmalloc() area is valid and can use memcpy().
1951 * This is for routines which have to access vmalloc area without
1952 * any informaion, as /dev/kmem.
1953 *
1954 * The caller should guarantee KM_USER1 is not used.
1955 */
1956
1957 long vwrite(char *buf, char *addr, unsigned long count)
1958 {
1959 struct vm_struct *tmp;
1960 char *vaddr;
1961 unsigned long n, buflen;
1962 int copied = 0;
1963
1964 /* Don't allow overflow */
1965 if ((unsigned long) addr + count < count)
1966 count = -(unsigned long) addr;
1967 buflen = count;
1968
1969 read_lock(&vmlist_lock);
1970 for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1971 vaddr = (char *) tmp->addr;
1972 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1973 continue;
1974 while (addr < vaddr) {
1975 if (count == 0)
1976 goto finished;
1977 buf++;
1978 addr++;
1979 count--;
1980 }
1981 n = vaddr + tmp->size - PAGE_SIZE - addr;
1982 if (n > count)
1983 n = count;
1984 if (!(tmp->flags & VM_IOREMAP)) {
1985 aligned_vwrite(buf, addr, n);
1986 copied++;
1987 }
1988 buf += n;
1989 addr += n;
1990 count -= n;
1991 }
1992 finished:
1993 read_unlock(&vmlist_lock);
1994 if (!copied)
1995 return 0;
1996 return buflen;
1997 }
1998
1999 /**
2000 * remap_vmalloc_range - map vmalloc pages to userspace
2001 * @vma: vma to cover (map full range of vma)
2002 * @addr: vmalloc memory
2003 * @pgoff: number of pages into addr before first page to map
2004 *
2005 * Returns: 0 for success, -Exxx on failure
2006 *
2007 * This function checks that addr is a valid vmalloc'ed area, and
2008 * that it is big enough to cover the vma. Will return failure if
2009 * that criteria isn't met.
2010 *
2011 * Similar to remap_pfn_range() (see mm/memory.c)
2012 */
2013 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2014 unsigned long pgoff)
2015 {
2016 struct vm_struct *area;
2017 unsigned long uaddr = vma->vm_start;
2018 unsigned long usize = vma->vm_end - vma->vm_start;
2019
2020 if ((PAGE_SIZE-1) & (unsigned long)addr)
2021 return -EINVAL;
2022
2023 area = find_vm_area(addr);
2024 if (!area)
2025 return -EINVAL;
2026
2027 if (!(area->flags & VM_USERMAP))
2028 return -EINVAL;
2029
2030 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
2031 return -EINVAL;
2032
2033 addr += pgoff << PAGE_SHIFT;
2034 do {
2035 struct page *page = vmalloc_to_page(addr);
2036 int ret;
2037
2038 ret = vm_insert_page(vma, uaddr, page);
2039 if (ret)
2040 return ret;
2041
2042 uaddr += PAGE_SIZE;
2043 addr += PAGE_SIZE;
2044 usize -= PAGE_SIZE;
2045 } while (usize > 0);
2046
2047 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
2048 vma->vm_flags |= VM_RESERVED;
2049
2050 return 0;
2051 }
2052 EXPORT_SYMBOL(remap_vmalloc_range);
2053
2054 /*
2055 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2056 * have one.
2057 */
2058 void __attribute__((weak)) vmalloc_sync_all(void)
2059 {
2060 }
2061
2062
2063 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2064 {
2065 /* apply_to_page_range() does all the hard work. */
2066 return 0;
2067 }
2068
2069 /**
2070 * alloc_vm_area - allocate a range of kernel address space
2071 * @size: size of the area
2072 *
2073 * Returns: NULL on failure, vm_struct on success
2074 *
2075 * This function reserves a range of kernel address space, and
2076 * allocates pagetables to map that range. No actual mappings
2077 * are created. If the kernel address space is not shared
2078 * between processes, it syncs the pagetable across all
2079 * processes.
2080 */
2081 struct vm_struct *alloc_vm_area(size_t size)
2082 {
2083 struct vm_struct *area;
2084
2085 area = get_vm_area_caller(size, VM_IOREMAP,
2086 __builtin_return_address(0));
2087 if (area == NULL)
2088 return NULL;
2089
2090 /*
2091 * This ensures that page tables are constructed for this region
2092 * of kernel virtual address space and mapped into init_mm.
2093 */
2094 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2095 area->size, f, NULL)) {
2096 free_vm_area(area);
2097 return NULL;
2098 }
2099
2100 /* Make sure the pagetables are constructed in process kernel
2101 mappings */
2102 vmalloc_sync_all();
2103
2104 return area;
2105 }
2106 EXPORT_SYMBOL_GPL(alloc_vm_area);
2107
2108 void free_vm_area(struct vm_struct *area)
2109 {
2110 struct vm_struct *ret;
2111 ret = remove_vm_area(area->addr);
2112 BUG_ON(ret != area);
2113 kfree(area);
2114 }
2115 EXPORT_SYMBOL_GPL(free_vm_area);
2116
2117 #ifdef CONFIG_SMP
2118 static struct vmap_area *node_to_va(struct rb_node *n)
2119 {
2120 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2121 }
2122
2123 /**
2124 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2125 * @end: target address
2126 * @pnext: out arg for the next vmap_area
2127 * @pprev: out arg for the previous vmap_area
2128 *
2129 * Returns: %true if either or both of next and prev are found,
2130 * %false if no vmap_area exists
2131 *
2132 * Find vmap_areas end addresses of which enclose @end. ie. if not
2133 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2134 */
2135 static bool pvm_find_next_prev(unsigned long end,
2136 struct vmap_area **pnext,
2137 struct vmap_area **pprev)
2138 {
2139 struct rb_node *n = vmap_area_root.rb_node;
2140 struct vmap_area *va = NULL;
2141
2142 while (n) {
2143 va = rb_entry(n, struct vmap_area, rb_node);
2144 if (end < va->va_end)
2145 n = n->rb_left;
2146 else if (end > va->va_end)
2147 n = n->rb_right;
2148 else
2149 break;
2150 }
2151
2152 if (!va)
2153 return false;
2154
2155 if (va->va_end > end) {
2156 *pnext = va;
2157 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2158 } else {
2159 *pprev = va;
2160 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2161 }
2162 return true;
2163 }
2164
2165 /**
2166 * pvm_determine_end - find the highest aligned address between two vmap_areas
2167 * @pnext: in/out arg for the next vmap_area
2168 * @pprev: in/out arg for the previous vmap_area
2169 * @align: alignment
2170 *
2171 * Returns: determined end address
2172 *
2173 * Find the highest aligned address between *@pnext and *@pprev below
2174 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2175 * down address is between the end addresses of the two vmap_areas.
2176 *
2177 * Please note that the address returned by this function may fall
2178 * inside *@pnext vmap_area. The caller is responsible for checking
2179 * that.
2180 */
2181 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2182 struct vmap_area **pprev,
2183 unsigned long align)
2184 {
2185 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2186 unsigned long addr;
2187
2188 if (*pnext)
2189 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2190 else
2191 addr = vmalloc_end;
2192
2193 while (*pprev && (*pprev)->va_end > addr) {
2194 *pnext = *pprev;
2195 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2196 }
2197
2198 return addr;
2199 }
2200
2201 /**
2202 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2203 * @offsets: array containing offset of each area
2204 * @sizes: array containing size of each area
2205 * @nr_vms: the number of areas to allocate
2206 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2207 * @gfp_mask: allocation mask
2208 *
2209 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2210 * vm_structs on success, %NULL on failure
2211 *
2212 * Percpu allocator wants to use congruent vm areas so that it can
2213 * maintain the offsets among percpu areas. This function allocates
2214 * congruent vmalloc areas for it. These areas tend to be scattered
2215 * pretty far, distance between two areas easily going up to
2216 * gigabytes. To avoid interacting with regular vmallocs, these areas
2217 * are allocated from top.
2218 *
2219 * Despite its complicated look, this allocator is rather simple. It
2220 * does everything top-down and scans areas from the end looking for
2221 * matching slot. While scanning, if any of the areas overlaps with
2222 * existing vmap_area, the base address is pulled down to fit the
2223 * area. Scanning is repeated till all the areas fit and then all
2224 * necessary data structres are inserted and the result is returned.
2225 */
2226 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2227 const size_t *sizes, int nr_vms,
2228 size_t align, gfp_t gfp_mask)
2229 {
2230 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2231 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2232 struct vmap_area **vas, *prev, *next;
2233 struct vm_struct **vms;
2234 int area, area2, last_area, term_area;
2235 unsigned long base, start, end, last_end;
2236 bool purged = false;
2237
2238 gfp_mask &= GFP_RECLAIM_MASK;
2239
2240 /* verify parameters and allocate data structures */
2241 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2242 for (last_area = 0, area = 0; area < nr_vms; area++) {
2243 start = offsets[area];
2244 end = start + sizes[area];
2245
2246 /* is everything aligned properly? */
2247 BUG_ON(!IS_ALIGNED(offsets[area], align));
2248 BUG_ON(!IS_ALIGNED(sizes[area], align));
2249
2250 /* detect the area with the highest address */
2251 if (start > offsets[last_area])
2252 last_area = area;
2253
2254 for (area2 = 0; area2 < nr_vms; area2++) {
2255 unsigned long start2 = offsets[area2];
2256 unsigned long end2 = start2 + sizes[area2];
2257
2258 if (area2 == area)
2259 continue;
2260
2261 BUG_ON(start2 >= start && start2 < end);
2262 BUG_ON(end2 <= end && end2 > start);
2263 }
2264 }
2265 last_end = offsets[last_area] + sizes[last_area];
2266
2267 if (vmalloc_end - vmalloc_start < last_end) {
2268 WARN_ON(true);
2269 return NULL;
2270 }
2271
2272 vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask);
2273 vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask);
2274 if (!vas || !vms)
2275 goto err_free;
2276
2277 for (area = 0; area < nr_vms; area++) {
2278 vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask);
2279 vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask);
2280 if (!vas[area] || !vms[area])
2281 goto err_free;
2282 }
2283 retry:
2284 spin_lock(&vmap_area_lock);
2285
2286 /* start scanning - we scan from the top, begin with the last area */
2287 area = term_area = last_area;
2288 start = offsets[area];
2289 end = start + sizes[area];
2290
2291 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2292 base = vmalloc_end - last_end;
2293 goto found;
2294 }
2295 base = pvm_determine_end(&next, &prev, align) - end;
2296
2297 while (true) {
2298 BUG_ON(next && next->va_end <= base + end);
2299 BUG_ON(prev && prev->va_end > base + end);
2300
2301 /*
2302 * base might have underflowed, add last_end before
2303 * comparing.
2304 */
2305 if (base + last_end < vmalloc_start + last_end) {
2306 spin_unlock(&vmap_area_lock);
2307 if (!purged) {
2308 purge_vmap_area_lazy();
2309 purged = true;
2310 goto retry;
2311 }
2312 goto err_free;
2313 }
2314
2315 /*
2316 * If next overlaps, move base downwards so that it's
2317 * right below next and then recheck.
2318 */
2319 if (next && next->va_start < base + end) {
2320 base = pvm_determine_end(&next, &prev, align) - end;
2321 term_area = area;
2322 continue;
2323 }
2324
2325 /*
2326 * If prev overlaps, shift down next and prev and move
2327 * base so that it's right below new next and then
2328 * recheck.
2329 */
2330 if (prev && prev->va_end > base + start) {
2331 next = prev;
2332 prev = node_to_va(rb_prev(&next->rb_node));
2333 base = pvm_determine_end(&next, &prev, align) - end;
2334 term_area = area;
2335 continue;
2336 }
2337
2338 /*
2339 * This area fits, move on to the previous one. If
2340 * the previous one is the terminal one, we're done.
2341 */
2342 area = (area + nr_vms - 1) % nr_vms;
2343 if (area == term_area)
2344 break;
2345 start = offsets[area];
2346 end = start + sizes[area];
2347 pvm_find_next_prev(base + end, &next, &prev);
2348 }
2349 found:
2350 /* we've found a fitting base, insert all va's */
2351 for (area = 0; area < nr_vms; area++) {
2352 struct vmap_area *va = vas[area];
2353
2354 va->va_start = base + offsets[area];
2355 va->va_end = va->va_start + sizes[area];
2356 __insert_vmap_area(va);
2357 }
2358
2359 vmap_area_pcpu_hole = base + offsets[last_area];
2360
2361 spin_unlock(&vmap_area_lock);
2362
2363 /* insert all vm's */
2364 for (area = 0; area < nr_vms; area++)
2365 insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2366 pcpu_get_vm_areas);
2367
2368 kfree(vas);
2369 return vms;
2370
2371 err_free:
2372 for (area = 0; area < nr_vms; area++) {
2373 if (vas)
2374 kfree(vas[area]);
2375 if (vms)
2376 kfree(vms[area]);
2377 }
2378 kfree(vas);
2379 kfree(vms);
2380 return NULL;
2381 }
2382
2383 /**
2384 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2385 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2386 * @nr_vms: the number of allocated areas
2387 *
2388 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2389 */
2390 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2391 {
2392 int i;
2393
2394 for (i = 0; i < nr_vms; i++)
2395 free_vm_area(vms[i]);
2396 kfree(vms);
2397 }
2398 #endif /* CONFIG_SMP */
2399
2400 #ifdef CONFIG_PROC_FS
2401 static void *s_start(struct seq_file *m, loff_t *pos)
2402 __acquires(&vmlist_lock)
2403 {
2404 loff_t n = *pos;
2405 struct vm_struct *v;
2406
2407 read_lock(&vmlist_lock);
2408 v = vmlist;
2409 while (n > 0 && v) {
2410 n--;
2411 v = v->next;
2412 }
2413 if (!n)
2414 return v;
2415
2416 return NULL;
2417
2418 }
2419
2420 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2421 {
2422 struct vm_struct *v = p;
2423
2424 ++*pos;
2425 return v->next;
2426 }
2427
2428 static void s_stop(struct seq_file *m, void *p)
2429 __releases(&vmlist_lock)
2430 {
2431 read_unlock(&vmlist_lock);
2432 }
2433
2434 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2435 {
2436 if (NUMA_BUILD) {
2437 unsigned int nr, *counters = m->private;
2438
2439 if (!counters)
2440 return;
2441
2442 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2443
2444 for (nr = 0; nr < v->nr_pages; nr++)
2445 counters[page_to_nid(v->pages[nr])]++;
2446
2447 for_each_node_state(nr, N_HIGH_MEMORY)
2448 if (counters[nr])
2449 seq_printf(m, " N%u=%u", nr, counters[nr]);
2450 }
2451 }
2452
2453 static int s_show(struct seq_file *m, void *p)
2454 {
2455 struct vm_struct *v = p;
2456
2457 seq_printf(m, "0x%p-0x%p %7ld",
2458 v->addr, v->addr + v->size, v->size);
2459
2460 if (v->caller) {
2461 char buff[KSYM_SYMBOL_LEN];
2462
2463 seq_putc(m, ' ');
2464 sprint_symbol(buff, (unsigned long)v->caller);
2465 seq_puts(m, buff);
2466 }
2467
2468 if (v->nr_pages)
2469 seq_printf(m, " pages=%d", v->nr_pages);
2470
2471 if (v->phys_addr)
2472 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2473
2474 if (v->flags & VM_IOREMAP)
2475 seq_printf(m, " ioremap");
2476
2477 if (v->flags & VM_ALLOC)
2478 seq_printf(m, " vmalloc");
2479
2480 if (v->flags & VM_MAP)
2481 seq_printf(m, " vmap");
2482
2483 if (v->flags & VM_USERMAP)
2484 seq_printf(m, " user");
2485
2486 if (v->flags & VM_VPAGES)
2487 seq_printf(m, " vpages");
2488
2489 show_numa_info(m, v);
2490 seq_putc(m, '\n');
2491 return 0;
2492 }
2493
2494 static const struct seq_operations vmalloc_op = {
2495 .start = s_start,
2496 .next = s_next,
2497 .stop = s_stop,
2498 .show = s_show,
2499 };
2500
2501 static int vmalloc_open(struct inode *inode, struct file *file)
2502 {
2503 unsigned int *ptr = NULL;
2504 int ret;
2505
2506 if (NUMA_BUILD) {
2507 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2508 if (ptr == NULL)
2509 return -ENOMEM;
2510 }
2511 ret = seq_open(file, &vmalloc_op);
2512 if (!ret) {
2513 struct seq_file *m = file->private_data;
2514 m->private = ptr;
2515 } else
2516 kfree(ptr);
2517 return ret;
2518 }
2519
2520 static const struct file_operations proc_vmalloc_operations = {
2521 .open = vmalloc_open,
2522 .read = seq_read,
2523 .llseek = seq_lseek,
2524 .release = seq_release_private,
2525 };
2526
2527 static int __init proc_vmalloc_init(void)
2528 {
2529 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2530 return 0;
2531 }
2532 module_init(proc_vmalloc_init);
2533 #endif
2534