]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/vmalloc.c
i2o: fix kernel-doc warnings
[mirror_ubuntu-jammy-kernel.git] / mm / vmalloc.c
1 /*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/debugobjects.h>
21 #include <linux/kallsyms.h>
22 #include <linux/list.h>
23 #include <linux/rbtree.h>
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
26
27 #include <asm/atomic.h>
28 #include <asm/uaccess.h>
29 #include <asm/tlbflush.h>
30
31
32 /*** Page table manipulation functions ***/
33
34 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
35 {
36 pte_t *pte;
37
38 pte = pte_offset_kernel(pmd, addr);
39 do {
40 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
41 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
42 } while (pte++, addr += PAGE_SIZE, addr != end);
43 }
44
45 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
46 {
47 pmd_t *pmd;
48 unsigned long next;
49
50 pmd = pmd_offset(pud, addr);
51 do {
52 next = pmd_addr_end(addr, end);
53 if (pmd_none_or_clear_bad(pmd))
54 continue;
55 vunmap_pte_range(pmd, addr, next);
56 } while (pmd++, addr = next, addr != end);
57 }
58
59 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
60 {
61 pud_t *pud;
62 unsigned long next;
63
64 pud = pud_offset(pgd, addr);
65 do {
66 next = pud_addr_end(addr, end);
67 if (pud_none_or_clear_bad(pud))
68 continue;
69 vunmap_pmd_range(pud, addr, next);
70 } while (pud++, addr = next, addr != end);
71 }
72
73 static void vunmap_page_range(unsigned long addr, unsigned long end)
74 {
75 pgd_t *pgd;
76 unsigned long next;
77
78 BUG_ON(addr >= end);
79 pgd = pgd_offset_k(addr);
80 flush_cache_vunmap(addr, end);
81 do {
82 next = pgd_addr_end(addr, end);
83 if (pgd_none_or_clear_bad(pgd))
84 continue;
85 vunmap_pud_range(pgd, addr, next);
86 } while (pgd++, addr = next, addr != end);
87 }
88
89 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
90 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
91 {
92 pte_t *pte;
93
94 /*
95 * nr is a running index into the array which helps higher level
96 * callers keep track of where we're up to.
97 */
98
99 pte = pte_alloc_kernel(pmd, addr);
100 if (!pte)
101 return -ENOMEM;
102 do {
103 struct page *page = pages[*nr];
104
105 if (WARN_ON(!pte_none(*pte)))
106 return -EBUSY;
107 if (WARN_ON(!page))
108 return -ENOMEM;
109 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
110 (*nr)++;
111 } while (pte++, addr += PAGE_SIZE, addr != end);
112 return 0;
113 }
114
115 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
116 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
117 {
118 pmd_t *pmd;
119 unsigned long next;
120
121 pmd = pmd_alloc(&init_mm, pud, addr);
122 if (!pmd)
123 return -ENOMEM;
124 do {
125 next = pmd_addr_end(addr, end);
126 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
127 return -ENOMEM;
128 } while (pmd++, addr = next, addr != end);
129 return 0;
130 }
131
132 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
133 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
134 {
135 pud_t *pud;
136 unsigned long next;
137
138 pud = pud_alloc(&init_mm, pgd, addr);
139 if (!pud)
140 return -ENOMEM;
141 do {
142 next = pud_addr_end(addr, end);
143 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
144 return -ENOMEM;
145 } while (pud++, addr = next, addr != end);
146 return 0;
147 }
148
149 /*
150 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
151 * will have pfns corresponding to the "pages" array.
152 *
153 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
154 */
155 static int vmap_page_range(unsigned long addr, unsigned long end,
156 pgprot_t prot, struct page **pages)
157 {
158 pgd_t *pgd;
159 unsigned long next;
160 int err = 0;
161 int nr = 0;
162
163 BUG_ON(addr >= end);
164 pgd = pgd_offset_k(addr);
165 do {
166 next = pgd_addr_end(addr, end);
167 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
168 if (err)
169 break;
170 } while (pgd++, addr = next, addr != end);
171 flush_cache_vmap(addr, end);
172
173 if (unlikely(err))
174 return err;
175 return nr;
176 }
177
178 static inline int is_vmalloc_or_module_addr(const void *x)
179 {
180 /*
181 * x86-64 and sparc64 put modules in a special place,
182 * and fall back on vmalloc() if that fails. Others
183 * just put it in the vmalloc space.
184 */
185 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
186 unsigned long addr = (unsigned long)x;
187 if (addr >= MODULES_VADDR && addr < MODULES_END)
188 return 1;
189 #endif
190 return is_vmalloc_addr(x);
191 }
192
193 /*
194 * Walk a vmap address to the struct page it maps.
195 */
196 struct page *vmalloc_to_page(const void *vmalloc_addr)
197 {
198 unsigned long addr = (unsigned long) vmalloc_addr;
199 struct page *page = NULL;
200 pgd_t *pgd = pgd_offset_k(addr);
201
202 /*
203 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
204 * architectures that do not vmalloc module space
205 */
206 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
207
208 if (!pgd_none(*pgd)) {
209 pud_t *pud = pud_offset(pgd, addr);
210 if (!pud_none(*pud)) {
211 pmd_t *pmd = pmd_offset(pud, addr);
212 if (!pmd_none(*pmd)) {
213 pte_t *ptep, pte;
214
215 ptep = pte_offset_map(pmd, addr);
216 pte = *ptep;
217 if (pte_present(pte))
218 page = pte_page(pte);
219 pte_unmap(ptep);
220 }
221 }
222 }
223 return page;
224 }
225 EXPORT_SYMBOL(vmalloc_to_page);
226
227 /*
228 * Map a vmalloc()-space virtual address to the physical page frame number.
229 */
230 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
231 {
232 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
233 }
234 EXPORT_SYMBOL(vmalloc_to_pfn);
235
236
237 /*** Global kva allocator ***/
238
239 #define VM_LAZY_FREE 0x01
240 #define VM_LAZY_FREEING 0x02
241 #define VM_VM_AREA 0x04
242
243 struct vmap_area {
244 unsigned long va_start;
245 unsigned long va_end;
246 unsigned long flags;
247 struct rb_node rb_node; /* address sorted rbtree */
248 struct list_head list; /* address sorted list */
249 struct list_head purge_list; /* "lazy purge" list */
250 void *private;
251 struct rcu_head rcu_head;
252 };
253
254 static DEFINE_SPINLOCK(vmap_area_lock);
255 static struct rb_root vmap_area_root = RB_ROOT;
256 static LIST_HEAD(vmap_area_list);
257
258 static struct vmap_area *__find_vmap_area(unsigned long addr)
259 {
260 struct rb_node *n = vmap_area_root.rb_node;
261
262 while (n) {
263 struct vmap_area *va;
264
265 va = rb_entry(n, struct vmap_area, rb_node);
266 if (addr < va->va_start)
267 n = n->rb_left;
268 else if (addr > va->va_start)
269 n = n->rb_right;
270 else
271 return va;
272 }
273
274 return NULL;
275 }
276
277 static void __insert_vmap_area(struct vmap_area *va)
278 {
279 struct rb_node **p = &vmap_area_root.rb_node;
280 struct rb_node *parent = NULL;
281 struct rb_node *tmp;
282
283 while (*p) {
284 struct vmap_area *tmp;
285
286 parent = *p;
287 tmp = rb_entry(parent, struct vmap_area, rb_node);
288 if (va->va_start < tmp->va_end)
289 p = &(*p)->rb_left;
290 else if (va->va_end > tmp->va_start)
291 p = &(*p)->rb_right;
292 else
293 BUG();
294 }
295
296 rb_link_node(&va->rb_node, parent, p);
297 rb_insert_color(&va->rb_node, &vmap_area_root);
298
299 /* address-sort this list so it is usable like the vmlist */
300 tmp = rb_prev(&va->rb_node);
301 if (tmp) {
302 struct vmap_area *prev;
303 prev = rb_entry(tmp, struct vmap_area, rb_node);
304 list_add_rcu(&va->list, &prev->list);
305 } else
306 list_add_rcu(&va->list, &vmap_area_list);
307 }
308
309 static void purge_vmap_area_lazy(void);
310
311 /*
312 * Allocate a region of KVA of the specified size and alignment, within the
313 * vstart and vend.
314 */
315 static struct vmap_area *alloc_vmap_area(unsigned long size,
316 unsigned long align,
317 unsigned long vstart, unsigned long vend,
318 int node, gfp_t gfp_mask)
319 {
320 struct vmap_area *va;
321 struct rb_node *n;
322 unsigned long addr;
323 int purged = 0;
324
325 BUG_ON(size & ~PAGE_MASK);
326
327 addr = ALIGN(vstart, align);
328
329 va = kmalloc_node(sizeof(struct vmap_area),
330 gfp_mask & GFP_RECLAIM_MASK, node);
331 if (unlikely(!va))
332 return ERR_PTR(-ENOMEM);
333
334 retry:
335 spin_lock(&vmap_area_lock);
336 /* XXX: could have a last_hole cache */
337 n = vmap_area_root.rb_node;
338 if (n) {
339 struct vmap_area *first = NULL;
340
341 do {
342 struct vmap_area *tmp;
343 tmp = rb_entry(n, struct vmap_area, rb_node);
344 if (tmp->va_end >= addr) {
345 if (!first && tmp->va_start < addr + size)
346 first = tmp;
347 n = n->rb_left;
348 } else {
349 first = tmp;
350 n = n->rb_right;
351 }
352 } while (n);
353
354 if (!first)
355 goto found;
356
357 if (first->va_end < addr) {
358 n = rb_next(&first->rb_node);
359 if (n)
360 first = rb_entry(n, struct vmap_area, rb_node);
361 else
362 goto found;
363 }
364
365 while (addr + size >= first->va_start && addr + size <= vend) {
366 addr = ALIGN(first->va_end + PAGE_SIZE, align);
367
368 n = rb_next(&first->rb_node);
369 if (n)
370 first = rb_entry(n, struct vmap_area, rb_node);
371 else
372 goto found;
373 }
374 }
375 found:
376 if (addr + size > vend) {
377 spin_unlock(&vmap_area_lock);
378 if (!purged) {
379 purge_vmap_area_lazy();
380 purged = 1;
381 goto retry;
382 }
383 if (printk_ratelimit())
384 printk(KERN_WARNING "vmap allocation failed: "
385 "use vmalloc=<size> to increase size.\n");
386 return ERR_PTR(-EBUSY);
387 }
388
389 BUG_ON(addr & (align-1));
390
391 va->va_start = addr;
392 va->va_end = addr + size;
393 va->flags = 0;
394 __insert_vmap_area(va);
395 spin_unlock(&vmap_area_lock);
396
397 return va;
398 }
399
400 static void rcu_free_va(struct rcu_head *head)
401 {
402 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
403
404 kfree(va);
405 }
406
407 static void __free_vmap_area(struct vmap_area *va)
408 {
409 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
410 rb_erase(&va->rb_node, &vmap_area_root);
411 RB_CLEAR_NODE(&va->rb_node);
412 list_del_rcu(&va->list);
413
414 call_rcu(&va->rcu_head, rcu_free_va);
415 }
416
417 /*
418 * Free a region of KVA allocated by alloc_vmap_area
419 */
420 static void free_vmap_area(struct vmap_area *va)
421 {
422 spin_lock(&vmap_area_lock);
423 __free_vmap_area(va);
424 spin_unlock(&vmap_area_lock);
425 }
426
427 /*
428 * Clear the pagetable entries of a given vmap_area
429 */
430 static void unmap_vmap_area(struct vmap_area *va)
431 {
432 vunmap_page_range(va->va_start, va->va_end);
433 }
434
435 /*
436 * lazy_max_pages is the maximum amount of virtual address space we gather up
437 * before attempting to purge with a TLB flush.
438 *
439 * There is a tradeoff here: a larger number will cover more kernel page tables
440 * and take slightly longer to purge, but it will linearly reduce the number of
441 * global TLB flushes that must be performed. It would seem natural to scale
442 * this number up linearly with the number of CPUs (because vmapping activity
443 * could also scale linearly with the number of CPUs), however it is likely
444 * that in practice, workloads might be constrained in other ways that mean
445 * vmap activity will not scale linearly with CPUs. Also, I want to be
446 * conservative and not introduce a big latency on huge systems, so go with
447 * a less aggressive log scale. It will still be an improvement over the old
448 * code, and it will be simple to change the scale factor if we find that it
449 * becomes a problem on bigger systems.
450 */
451 static unsigned long lazy_max_pages(void)
452 {
453 unsigned int log;
454
455 log = fls(num_online_cpus());
456
457 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
458 }
459
460 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
461
462 /*
463 * Purges all lazily-freed vmap areas.
464 *
465 * If sync is 0 then don't purge if there is already a purge in progress.
466 * If force_flush is 1, then flush kernel TLBs between *start and *end even
467 * if we found no lazy vmap areas to unmap (callers can use this to optimise
468 * their own TLB flushing).
469 * Returns with *start = min(*start, lowest purged address)
470 * *end = max(*end, highest purged address)
471 */
472 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
473 int sync, int force_flush)
474 {
475 static DEFINE_SPINLOCK(purge_lock);
476 LIST_HEAD(valist);
477 struct vmap_area *va;
478 int nr = 0;
479
480 /*
481 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
482 * should not expect such behaviour. This just simplifies locking for
483 * the case that isn't actually used at the moment anyway.
484 */
485 if (!sync && !force_flush) {
486 if (!spin_trylock(&purge_lock))
487 return;
488 } else
489 spin_lock(&purge_lock);
490
491 rcu_read_lock();
492 list_for_each_entry_rcu(va, &vmap_area_list, list) {
493 if (va->flags & VM_LAZY_FREE) {
494 if (va->va_start < *start)
495 *start = va->va_start;
496 if (va->va_end > *end)
497 *end = va->va_end;
498 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
499 unmap_vmap_area(va);
500 list_add_tail(&va->purge_list, &valist);
501 va->flags |= VM_LAZY_FREEING;
502 va->flags &= ~VM_LAZY_FREE;
503 }
504 }
505 rcu_read_unlock();
506
507 if (nr) {
508 BUG_ON(nr > atomic_read(&vmap_lazy_nr));
509 atomic_sub(nr, &vmap_lazy_nr);
510 }
511
512 if (nr || force_flush)
513 flush_tlb_kernel_range(*start, *end);
514
515 if (nr) {
516 spin_lock(&vmap_area_lock);
517 list_for_each_entry(va, &valist, purge_list)
518 __free_vmap_area(va);
519 spin_unlock(&vmap_area_lock);
520 }
521 spin_unlock(&purge_lock);
522 }
523
524 /*
525 * Kick off a purge of the outstanding lazy areas.
526 */
527 static void purge_vmap_area_lazy(void)
528 {
529 unsigned long start = ULONG_MAX, end = 0;
530
531 __purge_vmap_area_lazy(&start, &end, 0, 0);
532 }
533
534 /*
535 * Free and unmap a vmap area
536 */
537 static void free_unmap_vmap_area(struct vmap_area *va)
538 {
539 va->flags |= VM_LAZY_FREE;
540 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
541 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
542 purge_vmap_area_lazy();
543 }
544
545 static struct vmap_area *find_vmap_area(unsigned long addr)
546 {
547 struct vmap_area *va;
548
549 spin_lock(&vmap_area_lock);
550 va = __find_vmap_area(addr);
551 spin_unlock(&vmap_area_lock);
552
553 return va;
554 }
555
556 static void free_unmap_vmap_area_addr(unsigned long addr)
557 {
558 struct vmap_area *va;
559
560 va = find_vmap_area(addr);
561 BUG_ON(!va);
562 free_unmap_vmap_area(va);
563 }
564
565
566 /*** Per cpu kva allocator ***/
567
568 /*
569 * vmap space is limited especially on 32 bit architectures. Ensure there is
570 * room for at least 16 percpu vmap blocks per CPU.
571 */
572 /*
573 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
574 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
575 * instead (we just need a rough idea)
576 */
577 #if BITS_PER_LONG == 32
578 #define VMALLOC_SPACE (128UL*1024*1024)
579 #else
580 #define VMALLOC_SPACE (128UL*1024*1024*1024)
581 #endif
582
583 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
584 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
585 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
586 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
587 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
588 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
589 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
590 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
591 VMALLOC_PAGES / NR_CPUS / 16))
592
593 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
594
595 struct vmap_block_queue {
596 spinlock_t lock;
597 struct list_head free;
598 struct list_head dirty;
599 unsigned int nr_dirty;
600 };
601
602 struct vmap_block {
603 spinlock_t lock;
604 struct vmap_area *va;
605 struct vmap_block_queue *vbq;
606 unsigned long free, dirty;
607 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
608 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
609 union {
610 struct {
611 struct list_head free_list;
612 struct list_head dirty_list;
613 };
614 struct rcu_head rcu_head;
615 };
616 };
617
618 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
619 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
620
621 /*
622 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
623 * in the free path. Could get rid of this if we change the API to return a
624 * "cookie" from alloc, to be passed to free. But no big deal yet.
625 */
626 static DEFINE_SPINLOCK(vmap_block_tree_lock);
627 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
628
629 /*
630 * We should probably have a fallback mechanism to allocate virtual memory
631 * out of partially filled vmap blocks. However vmap block sizing should be
632 * fairly reasonable according to the vmalloc size, so it shouldn't be a
633 * big problem.
634 */
635
636 static unsigned long addr_to_vb_idx(unsigned long addr)
637 {
638 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
639 addr /= VMAP_BLOCK_SIZE;
640 return addr;
641 }
642
643 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
644 {
645 struct vmap_block_queue *vbq;
646 struct vmap_block *vb;
647 struct vmap_area *va;
648 unsigned long vb_idx;
649 int node, err;
650
651 node = numa_node_id();
652
653 vb = kmalloc_node(sizeof(struct vmap_block),
654 gfp_mask & GFP_RECLAIM_MASK, node);
655 if (unlikely(!vb))
656 return ERR_PTR(-ENOMEM);
657
658 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
659 VMALLOC_START, VMALLOC_END,
660 node, gfp_mask);
661 if (unlikely(IS_ERR(va))) {
662 kfree(vb);
663 return ERR_PTR(PTR_ERR(va));
664 }
665
666 err = radix_tree_preload(gfp_mask);
667 if (unlikely(err)) {
668 kfree(vb);
669 free_vmap_area(va);
670 return ERR_PTR(err);
671 }
672
673 spin_lock_init(&vb->lock);
674 vb->va = va;
675 vb->free = VMAP_BBMAP_BITS;
676 vb->dirty = 0;
677 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
678 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
679 INIT_LIST_HEAD(&vb->free_list);
680 INIT_LIST_HEAD(&vb->dirty_list);
681
682 vb_idx = addr_to_vb_idx(va->va_start);
683 spin_lock(&vmap_block_tree_lock);
684 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
685 spin_unlock(&vmap_block_tree_lock);
686 BUG_ON(err);
687 radix_tree_preload_end();
688
689 vbq = &get_cpu_var(vmap_block_queue);
690 vb->vbq = vbq;
691 spin_lock(&vbq->lock);
692 list_add(&vb->free_list, &vbq->free);
693 spin_unlock(&vbq->lock);
694 put_cpu_var(vmap_cpu_blocks);
695
696 return vb;
697 }
698
699 static void rcu_free_vb(struct rcu_head *head)
700 {
701 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
702
703 kfree(vb);
704 }
705
706 static void free_vmap_block(struct vmap_block *vb)
707 {
708 struct vmap_block *tmp;
709 unsigned long vb_idx;
710
711 spin_lock(&vb->vbq->lock);
712 if (!list_empty(&vb->free_list))
713 list_del(&vb->free_list);
714 if (!list_empty(&vb->dirty_list))
715 list_del(&vb->dirty_list);
716 spin_unlock(&vb->vbq->lock);
717
718 vb_idx = addr_to_vb_idx(vb->va->va_start);
719 spin_lock(&vmap_block_tree_lock);
720 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
721 spin_unlock(&vmap_block_tree_lock);
722 BUG_ON(tmp != vb);
723
724 free_unmap_vmap_area(vb->va);
725 call_rcu(&vb->rcu_head, rcu_free_vb);
726 }
727
728 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
729 {
730 struct vmap_block_queue *vbq;
731 struct vmap_block *vb;
732 unsigned long addr = 0;
733 unsigned int order;
734
735 BUG_ON(size & ~PAGE_MASK);
736 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
737 order = get_order(size);
738
739 again:
740 rcu_read_lock();
741 vbq = &get_cpu_var(vmap_block_queue);
742 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
743 int i;
744
745 spin_lock(&vb->lock);
746 i = bitmap_find_free_region(vb->alloc_map,
747 VMAP_BBMAP_BITS, order);
748
749 if (i >= 0) {
750 addr = vb->va->va_start + (i << PAGE_SHIFT);
751 BUG_ON(addr_to_vb_idx(addr) !=
752 addr_to_vb_idx(vb->va->va_start));
753 vb->free -= 1UL << order;
754 if (vb->free == 0) {
755 spin_lock(&vbq->lock);
756 list_del_init(&vb->free_list);
757 spin_unlock(&vbq->lock);
758 }
759 spin_unlock(&vb->lock);
760 break;
761 }
762 spin_unlock(&vb->lock);
763 }
764 put_cpu_var(vmap_cpu_blocks);
765 rcu_read_unlock();
766
767 if (!addr) {
768 vb = new_vmap_block(gfp_mask);
769 if (IS_ERR(vb))
770 return vb;
771 goto again;
772 }
773
774 return (void *)addr;
775 }
776
777 static void vb_free(const void *addr, unsigned long size)
778 {
779 unsigned long offset;
780 unsigned long vb_idx;
781 unsigned int order;
782 struct vmap_block *vb;
783
784 BUG_ON(size & ~PAGE_MASK);
785 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
786 order = get_order(size);
787
788 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
789
790 vb_idx = addr_to_vb_idx((unsigned long)addr);
791 rcu_read_lock();
792 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
793 rcu_read_unlock();
794 BUG_ON(!vb);
795
796 spin_lock(&vb->lock);
797 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
798 if (!vb->dirty) {
799 spin_lock(&vb->vbq->lock);
800 list_add(&vb->dirty_list, &vb->vbq->dirty);
801 spin_unlock(&vb->vbq->lock);
802 }
803 vb->dirty += 1UL << order;
804 if (vb->dirty == VMAP_BBMAP_BITS) {
805 BUG_ON(vb->free || !list_empty(&vb->free_list));
806 spin_unlock(&vb->lock);
807 free_vmap_block(vb);
808 } else
809 spin_unlock(&vb->lock);
810 }
811
812 /**
813 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
814 *
815 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
816 * to amortize TLB flushing overheads. What this means is that any page you
817 * have now, may, in a former life, have been mapped into kernel virtual
818 * address by the vmap layer and so there might be some CPUs with TLB entries
819 * still referencing that page (additional to the regular 1:1 kernel mapping).
820 *
821 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
822 * be sure that none of the pages we have control over will have any aliases
823 * from the vmap layer.
824 */
825 void vm_unmap_aliases(void)
826 {
827 unsigned long start = ULONG_MAX, end = 0;
828 int cpu;
829 int flush = 0;
830
831 for_each_possible_cpu(cpu) {
832 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
833 struct vmap_block *vb;
834
835 rcu_read_lock();
836 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
837 int i;
838
839 spin_lock(&vb->lock);
840 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
841 while (i < VMAP_BBMAP_BITS) {
842 unsigned long s, e;
843 int j;
844 j = find_next_zero_bit(vb->dirty_map,
845 VMAP_BBMAP_BITS, i);
846
847 s = vb->va->va_start + (i << PAGE_SHIFT);
848 e = vb->va->va_start + (j << PAGE_SHIFT);
849 vunmap_page_range(s, e);
850 flush = 1;
851
852 if (s < start)
853 start = s;
854 if (e > end)
855 end = e;
856
857 i = j;
858 i = find_next_bit(vb->dirty_map,
859 VMAP_BBMAP_BITS, i);
860 }
861 spin_unlock(&vb->lock);
862 }
863 rcu_read_unlock();
864 }
865
866 __purge_vmap_area_lazy(&start, &end, 1, flush);
867 }
868 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
869
870 /**
871 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
872 * @mem: the pointer returned by vm_map_ram
873 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
874 */
875 void vm_unmap_ram(const void *mem, unsigned int count)
876 {
877 unsigned long size = count << PAGE_SHIFT;
878 unsigned long addr = (unsigned long)mem;
879
880 BUG_ON(!addr);
881 BUG_ON(addr < VMALLOC_START);
882 BUG_ON(addr > VMALLOC_END);
883 BUG_ON(addr & (PAGE_SIZE-1));
884
885 debug_check_no_locks_freed(mem, size);
886
887 if (likely(count <= VMAP_MAX_ALLOC))
888 vb_free(mem, size);
889 else
890 free_unmap_vmap_area_addr(addr);
891 }
892 EXPORT_SYMBOL(vm_unmap_ram);
893
894 /**
895 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
896 * @pages: an array of pointers to the pages to be mapped
897 * @count: number of pages
898 * @node: prefer to allocate data structures on this node
899 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
900 * @returns: a pointer to the address that has been mapped, or NULL on failure
901 */
902 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
903 {
904 unsigned long size = count << PAGE_SHIFT;
905 unsigned long addr;
906 void *mem;
907
908 if (likely(count <= VMAP_MAX_ALLOC)) {
909 mem = vb_alloc(size, GFP_KERNEL);
910 if (IS_ERR(mem))
911 return NULL;
912 addr = (unsigned long)mem;
913 } else {
914 struct vmap_area *va;
915 va = alloc_vmap_area(size, PAGE_SIZE,
916 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
917 if (IS_ERR(va))
918 return NULL;
919
920 addr = va->va_start;
921 mem = (void *)addr;
922 }
923 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
924 vm_unmap_ram(mem, count);
925 return NULL;
926 }
927 return mem;
928 }
929 EXPORT_SYMBOL(vm_map_ram);
930
931 void __init vmalloc_init(void)
932 {
933 int i;
934
935 for_each_possible_cpu(i) {
936 struct vmap_block_queue *vbq;
937
938 vbq = &per_cpu(vmap_block_queue, i);
939 spin_lock_init(&vbq->lock);
940 INIT_LIST_HEAD(&vbq->free);
941 INIT_LIST_HEAD(&vbq->dirty);
942 vbq->nr_dirty = 0;
943 }
944 }
945
946 void unmap_kernel_range(unsigned long addr, unsigned long size)
947 {
948 unsigned long end = addr + size;
949 vunmap_page_range(addr, end);
950 flush_tlb_kernel_range(addr, end);
951 }
952
953 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
954 {
955 unsigned long addr = (unsigned long)area->addr;
956 unsigned long end = addr + area->size - PAGE_SIZE;
957 int err;
958
959 err = vmap_page_range(addr, end, prot, *pages);
960 if (err > 0) {
961 *pages += err;
962 err = 0;
963 }
964
965 return err;
966 }
967 EXPORT_SYMBOL_GPL(map_vm_area);
968
969 /*** Old vmalloc interfaces ***/
970 DEFINE_RWLOCK(vmlist_lock);
971 struct vm_struct *vmlist;
972
973 static struct vm_struct *__get_vm_area_node(unsigned long size,
974 unsigned long flags, unsigned long start, unsigned long end,
975 int node, gfp_t gfp_mask, void *caller)
976 {
977 static struct vmap_area *va;
978 struct vm_struct *area;
979 struct vm_struct *tmp, **p;
980 unsigned long align = 1;
981
982 BUG_ON(in_interrupt());
983 if (flags & VM_IOREMAP) {
984 int bit = fls(size);
985
986 if (bit > IOREMAP_MAX_ORDER)
987 bit = IOREMAP_MAX_ORDER;
988 else if (bit < PAGE_SHIFT)
989 bit = PAGE_SHIFT;
990
991 align = 1ul << bit;
992 }
993
994 size = PAGE_ALIGN(size);
995 if (unlikely(!size))
996 return NULL;
997
998 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
999 if (unlikely(!area))
1000 return NULL;
1001
1002 /*
1003 * We always allocate a guard page.
1004 */
1005 size += PAGE_SIZE;
1006
1007 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1008 if (IS_ERR(va)) {
1009 kfree(area);
1010 return NULL;
1011 }
1012
1013 area->flags = flags;
1014 area->addr = (void *)va->va_start;
1015 area->size = size;
1016 area->pages = NULL;
1017 area->nr_pages = 0;
1018 area->phys_addr = 0;
1019 area->caller = caller;
1020 va->private = area;
1021 va->flags |= VM_VM_AREA;
1022
1023 write_lock(&vmlist_lock);
1024 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1025 if (tmp->addr >= area->addr)
1026 break;
1027 }
1028 area->next = *p;
1029 *p = area;
1030 write_unlock(&vmlist_lock);
1031
1032 return area;
1033 }
1034
1035 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1036 unsigned long start, unsigned long end)
1037 {
1038 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1039 __builtin_return_address(0));
1040 }
1041 EXPORT_SYMBOL_GPL(__get_vm_area);
1042
1043 /**
1044 * get_vm_area - reserve a contiguous kernel virtual area
1045 * @size: size of the area
1046 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1047 *
1048 * Search an area of @size in the kernel virtual mapping area,
1049 * and reserved it for out purposes. Returns the area descriptor
1050 * on success or %NULL on failure.
1051 */
1052 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1053 {
1054 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1055 -1, GFP_KERNEL, __builtin_return_address(0));
1056 }
1057
1058 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1059 void *caller)
1060 {
1061 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1062 -1, GFP_KERNEL, caller);
1063 }
1064
1065 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1066 int node, gfp_t gfp_mask)
1067 {
1068 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
1069 gfp_mask, __builtin_return_address(0));
1070 }
1071
1072 static struct vm_struct *find_vm_area(const void *addr)
1073 {
1074 struct vmap_area *va;
1075
1076 va = find_vmap_area((unsigned long)addr);
1077 if (va && va->flags & VM_VM_AREA)
1078 return va->private;
1079
1080 return NULL;
1081 }
1082
1083 /**
1084 * remove_vm_area - find and remove a continuous kernel virtual area
1085 * @addr: base address
1086 *
1087 * Search for the kernel VM area starting at @addr, and remove it.
1088 * This function returns the found VM area, but using it is NOT safe
1089 * on SMP machines, except for its size or flags.
1090 */
1091 struct vm_struct *remove_vm_area(const void *addr)
1092 {
1093 struct vmap_area *va;
1094
1095 va = find_vmap_area((unsigned long)addr);
1096 if (va && va->flags & VM_VM_AREA) {
1097 struct vm_struct *vm = va->private;
1098 struct vm_struct *tmp, **p;
1099 free_unmap_vmap_area(va);
1100 vm->size -= PAGE_SIZE;
1101
1102 write_lock(&vmlist_lock);
1103 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1104 ;
1105 *p = tmp->next;
1106 write_unlock(&vmlist_lock);
1107
1108 return vm;
1109 }
1110 return NULL;
1111 }
1112
1113 static void __vunmap(const void *addr, int deallocate_pages)
1114 {
1115 struct vm_struct *area;
1116
1117 if (!addr)
1118 return;
1119
1120 if ((PAGE_SIZE-1) & (unsigned long)addr) {
1121 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1122 return;
1123 }
1124
1125 area = remove_vm_area(addr);
1126 if (unlikely(!area)) {
1127 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1128 addr);
1129 return;
1130 }
1131
1132 debug_check_no_locks_freed(addr, area->size);
1133 debug_check_no_obj_freed(addr, area->size);
1134
1135 if (deallocate_pages) {
1136 int i;
1137
1138 for (i = 0; i < area->nr_pages; i++) {
1139 struct page *page = area->pages[i];
1140
1141 BUG_ON(!page);
1142 __free_page(page);
1143 }
1144
1145 if (area->flags & VM_VPAGES)
1146 vfree(area->pages);
1147 else
1148 kfree(area->pages);
1149 }
1150
1151 kfree(area);
1152 return;
1153 }
1154
1155 /**
1156 * vfree - release memory allocated by vmalloc()
1157 * @addr: memory base address
1158 *
1159 * Free the virtually continuous memory area starting at @addr, as
1160 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1161 * NULL, no operation is performed.
1162 *
1163 * Must not be called in interrupt context.
1164 */
1165 void vfree(const void *addr)
1166 {
1167 BUG_ON(in_interrupt());
1168 __vunmap(addr, 1);
1169 }
1170 EXPORT_SYMBOL(vfree);
1171
1172 /**
1173 * vunmap - release virtual mapping obtained by vmap()
1174 * @addr: memory base address
1175 *
1176 * Free the virtually contiguous memory area starting at @addr,
1177 * which was created from the page array passed to vmap().
1178 *
1179 * Must not be called in interrupt context.
1180 */
1181 void vunmap(const void *addr)
1182 {
1183 BUG_ON(in_interrupt());
1184 __vunmap(addr, 0);
1185 }
1186 EXPORT_SYMBOL(vunmap);
1187
1188 /**
1189 * vmap - map an array of pages into virtually contiguous space
1190 * @pages: array of page pointers
1191 * @count: number of pages to map
1192 * @flags: vm_area->flags
1193 * @prot: page protection for the mapping
1194 *
1195 * Maps @count pages from @pages into contiguous kernel virtual
1196 * space.
1197 */
1198 void *vmap(struct page **pages, unsigned int count,
1199 unsigned long flags, pgprot_t prot)
1200 {
1201 struct vm_struct *area;
1202
1203 if (count > num_physpages)
1204 return NULL;
1205
1206 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1207 __builtin_return_address(0));
1208 if (!area)
1209 return NULL;
1210
1211 if (map_vm_area(area, prot, &pages)) {
1212 vunmap(area->addr);
1213 return NULL;
1214 }
1215
1216 return area->addr;
1217 }
1218 EXPORT_SYMBOL(vmap);
1219
1220 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1221 int node, void *caller);
1222 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1223 pgprot_t prot, int node, void *caller)
1224 {
1225 struct page **pages;
1226 unsigned int nr_pages, array_size, i;
1227
1228 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1229 array_size = (nr_pages * sizeof(struct page *));
1230
1231 area->nr_pages = nr_pages;
1232 /* Please note that the recursion is strictly bounded. */
1233 if (array_size > PAGE_SIZE) {
1234 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
1235 PAGE_KERNEL, node, caller);
1236 area->flags |= VM_VPAGES;
1237 } else {
1238 pages = kmalloc_node(array_size,
1239 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
1240 node);
1241 }
1242 area->pages = pages;
1243 area->caller = caller;
1244 if (!area->pages) {
1245 remove_vm_area(area->addr);
1246 kfree(area);
1247 return NULL;
1248 }
1249
1250 for (i = 0; i < area->nr_pages; i++) {
1251 struct page *page;
1252
1253 if (node < 0)
1254 page = alloc_page(gfp_mask);
1255 else
1256 page = alloc_pages_node(node, gfp_mask, 0);
1257
1258 if (unlikely(!page)) {
1259 /* Successfully allocated i pages, free them in __vunmap() */
1260 area->nr_pages = i;
1261 goto fail;
1262 }
1263 area->pages[i] = page;
1264 }
1265
1266 if (map_vm_area(area, prot, &pages))
1267 goto fail;
1268 return area->addr;
1269
1270 fail:
1271 vfree(area->addr);
1272 return NULL;
1273 }
1274
1275 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1276 {
1277 return __vmalloc_area_node(area, gfp_mask, prot, -1,
1278 __builtin_return_address(0));
1279 }
1280
1281 /**
1282 * __vmalloc_node - allocate virtually contiguous memory
1283 * @size: allocation size
1284 * @gfp_mask: flags for the page level allocator
1285 * @prot: protection mask for the allocated pages
1286 * @node: node to use for allocation or -1
1287 * @caller: caller's return address
1288 *
1289 * Allocate enough pages to cover @size from the page level
1290 * allocator with @gfp_mask flags. Map them into contiguous
1291 * kernel virtual space, using a pagetable protection of @prot.
1292 */
1293 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1294 int node, void *caller)
1295 {
1296 struct vm_struct *area;
1297
1298 size = PAGE_ALIGN(size);
1299 if (!size || (size >> PAGE_SHIFT) > num_physpages)
1300 return NULL;
1301
1302 area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
1303 node, gfp_mask, caller);
1304
1305 if (!area)
1306 return NULL;
1307
1308 return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1309 }
1310
1311 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1312 {
1313 return __vmalloc_node(size, gfp_mask, prot, -1,
1314 __builtin_return_address(0));
1315 }
1316 EXPORT_SYMBOL(__vmalloc);
1317
1318 /**
1319 * vmalloc - allocate virtually contiguous memory
1320 * @size: allocation size
1321 * Allocate enough pages to cover @size from the page level
1322 * allocator and map them into contiguous kernel virtual space.
1323 *
1324 * For tight control over page level allocator and protection flags
1325 * use __vmalloc() instead.
1326 */
1327 void *vmalloc(unsigned long size)
1328 {
1329 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1330 -1, __builtin_return_address(0));
1331 }
1332 EXPORT_SYMBOL(vmalloc);
1333
1334 /**
1335 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1336 * @size: allocation size
1337 *
1338 * The resulting memory area is zeroed so it can be mapped to userspace
1339 * without leaking data.
1340 */
1341 void *vmalloc_user(unsigned long size)
1342 {
1343 struct vm_struct *area;
1344 void *ret;
1345
1346 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
1347 if (ret) {
1348 area = find_vm_area(ret);
1349 area->flags |= VM_USERMAP;
1350 }
1351 return ret;
1352 }
1353 EXPORT_SYMBOL(vmalloc_user);
1354
1355 /**
1356 * vmalloc_node - allocate memory on a specific node
1357 * @size: allocation size
1358 * @node: numa node
1359 *
1360 * Allocate enough pages to cover @size from the page level
1361 * allocator and map them into contiguous kernel virtual space.
1362 *
1363 * For tight control over page level allocator and protection flags
1364 * use __vmalloc() instead.
1365 */
1366 void *vmalloc_node(unsigned long size, int node)
1367 {
1368 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1369 node, __builtin_return_address(0));
1370 }
1371 EXPORT_SYMBOL(vmalloc_node);
1372
1373 #ifndef PAGE_KERNEL_EXEC
1374 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1375 #endif
1376
1377 /**
1378 * vmalloc_exec - allocate virtually contiguous, executable memory
1379 * @size: allocation size
1380 *
1381 * Kernel-internal function to allocate enough pages to cover @size
1382 * the page level allocator and map them into contiguous and
1383 * executable kernel virtual space.
1384 *
1385 * For tight control over page level allocator and protection flags
1386 * use __vmalloc() instead.
1387 */
1388
1389 void *vmalloc_exec(unsigned long size)
1390 {
1391 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
1392 }
1393
1394 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1395 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1396 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1397 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1398 #else
1399 #define GFP_VMALLOC32 GFP_KERNEL
1400 #endif
1401
1402 /**
1403 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1404 * @size: allocation size
1405 *
1406 * Allocate enough 32bit PA addressable pages to cover @size from the
1407 * page level allocator and map them into contiguous kernel virtual space.
1408 */
1409 void *vmalloc_32(unsigned long size)
1410 {
1411 return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL);
1412 }
1413 EXPORT_SYMBOL(vmalloc_32);
1414
1415 /**
1416 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1417 * @size: allocation size
1418 *
1419 * The resulting memory area is 32bit addressable and zeroed so it can be
1420 * mapped to userspace without leaking data.
1421 */
1422 void *vmalloc_32_user(unsigned long size)
1423 {
1424 struct vm_struct *area;
1425 void *ret;
1426
1427 ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
1428 if (ret) {
1429 area = find_vm_area(ret);
1430 area->flags |= VM_USERMAP;
1431 }
1432 return ret;
1433 }
1434 EXPORT_SYMBOL(vmalloc_32_user);
1435
1436 long vread(char *buf, char *addr, unsigned long count)
1437 {
1438 struct vm_struct *tmp;
1439 char *vaddr, *buf_start = buf;
1440 unsigned long n;
1441
1442 /* Don't allow overflow */
1443 if ((unsigned long) addr + count < count)
1444 count = -(unsigned long) addr;
1445
1446 read_lock(&vmlist_lock);
1447 for (tmp = vmlist; tmp; tmp = tmp->next) {
1448 vaddr = (char *) tmp->addr;
1449 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1450 continue;
1451 while (addr < vaddr) {
1452 if (count == 0)
1453 goto finished;
1454 *buf = '\0';
1455 buf++;
1456 addr++;
1457 count--;
1458 }
1459 n = vaddr + tmp->size - PAGE_SIZE - addr;
1460 do {
1461 if (count == 0)
1462 goto finished;
1463 *buf = *addr;
1464 buf++;
1465 addr++;
1466 count--;
1467 } while (--n > 0);
1468 }
1469 finished:
1470 read_unlock(&vmlist_lock);
1471 return buf - buf_start;
1472 }
1473
1474 long vwrite(char *buf, char *addr, unsigned long count)
1475 {
1476 struct vm_struct *tmp;
1477 char *vaddr, *buf_start = buf;
1478 unsigned long n;
1479
1480 /* Don't allow overflow */
1481 if ((unsigned long) addr + count < count)
1482 count = -(unsigned long) addr;
1483
1484 read_lock(&vmlist_lock);
1485 for (tmp = vmlist; tmp; tmp = tmp->next) {
1486 vaddr = (char *) tmp->addr;
1487 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1488 continue;
1489 while (addr < vaddr) {
1490 if (count == 0)
1491 goto finished;
1492 buf++;
1493 addr++;
1494 count--;
1495 }
1496 n = vaddr + tmp->size - PAGE_SIZE - addr;
1497 do {
1498 if (count == 0)
1499 goto finished;
1500 *addr = *buf;
1501 buf++;
1502 addr++;
1503 count--;
1504 } while (--n > 0);
1505 }
1506 finished:
1507 read_unlock(&vmlist_lock);
1508 return buf - buf_start;
1509 }
1510
1511 /**
1512 * remap_vmalloc_range - map vmalloc pages to userspace
1513 * @vma: vma to cover (map full range of vma)
1514 * @addr: vmalloc memory
1515 * @pgoff: number of pages into addr before first page to map
1516 *
1517 * Returns: 0 for success, -Exxx on failure
1518 *
1519 * This function checks that addr is a valid vmalloc'ed area, and
1520 * that it is big enough to cover the vma. Will return failure if
1521 * that criteria isn't met.
1522 *
1523 * Similar to remap_pfn_range() (see mm/memory.c)
1524 */
1525 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1526 unsigned long pgoff)
1527 {
1528 struct vm_struct *area;
1529 unsigned long uaddr = vma->vm_start;
1530 unsigned long usize = vma->vm_end - vma->vm_start;
1531
1532 if ((PAGE_SIZE-1) & (unsigned long)addr)
1533 return -EINVAL;
1534
1535 area = find_vm_area(addr);
1536 if (!area)
1537 return -EINVAL;
1538
1539 if (!(area->flags & VM_USERMAP))
1540 return -EINVAL;
1541
1542 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1543 return -EINVAL;
1544
1545 addr += pgoff << PAGE_SHIFT;
1546 do {
1547 struct page *page = vmalloc_to_page(addr);
1548 int ret;
1549
1550 ret = vm_insert_page(vma, uaddr, page);
1551 if (ret)
1552 return ret;
1553
1554 uaddr += PAGE_SIZE;
1555 addr += PAGE_SIZE;
1556 usize -= PAGE_SIZE;
1557 } while (usize > 0);
1558
1559 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1560 vma->vm_flags |= VM_RESERVED;
1561
1562 return 0;
1563 }
1564 EXPORT_SYMBOL(remap_vmalloc_range);
1565
1566 /*
1567 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1568 * have one.
1569 */
1570 void __attribute__((weak)) vmalloc_sync_all(void)
1571 {
1572 }
1573
1574
1575 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
1576 {
1577 /* apply_to_page_range() does all the hard work. */
1578 return 0;
1579 }
1580
1581 /**
1582 * alloc_vm_area - allocate a range of kernel address space
1583 * @size: size of the area
1584 *
1585 * Returns: NULL on failure, vm_struct on success
1586 *
1587 * This function reserves a range of kernel address space, and
1588 * allocates pagetables to map that range. No actual mappings
1589 * are created. If the kernel address space is not shared
1590 * between processes, it syncs the pagetable across all
1591 * processes.
1592 */
1593 struct vm_struct *alloc_vm_area(size_t size)
1594 {
1595 struct vm_struct *area;
1596
1597 area = get_vm_area_caller(size, VM_IOREMAP,
1598 __builtin_return_address(0));
1599 if (area == NULL)
1600 return NULL;
1601
1602 /*
1603 * This ensures that page tables are constructed for this region
1604 * of kernel virtual address space and mapped into init_mm.
1605 */
1606 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1607 area->size, f, NULL)) {
1608 free_vm_area(area);
1609 return NULL;
1610 }
1611
1612 /* Make sure the pagetables are constructed in process kernel
1613 mappings */
1614 vmalloc_sync_all();
1615
1616 return area;
1617 }
1618 EXPORT_SYMBOL_GPL(alloc_vm_area);
1619
1620 void free_vm_area(struct vm_struct *area)
1621 {
1622 struct vm_struct *ret;
1623 ret = remove_vm_area(area->addr);
1624 BUG_ON(ret != area);
1625 kfree(area);
1626 }
1627 EXPORT_SYMBOL_GPL(free_vm_area);
1628
1629
1630 #ifdef CONFIG_PROC_FS
1631 static void *s_start(struct seq_file *m, loff_t *pos)
1632 {
1633 loff_t n = *pos;
1634 struct vm_struct *v;
1635
1636 read_lock(&vmlist_lock);
1637 v = vmlist;
1638 while (n > 0 && v) {
1639 n--;
1640 v = v->next;
1641 }
1642 if (!n)
1643 return v;
1644
1645 return NULL;
1646
1647 }
1648
1649 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
1650 {
1651 struct vm_struct *v = p;
1652
1653 ++*pos;
1654 return v->next;
1655 }
1656
1657 static void s_stop(struct seq_file *m, void *p)
1658 {
1659 read_unlock(&vmlist_lock);
1660 }
1661
1662 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
1663 {
1664 if (NUMA_BUILD) {
1665 unsigned int nr, *counters = m->private;
1666
1667 if (!counters)
1668 return;
1669
1670 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
1671
1672 for (nr = 0; nr < v->nr_pages; nr++)
1673 counters[page_to_nid(v->pages[nr])]++;
1674
1675 for_each_node_state(nr, N_HIGH_MEMORY)
1676 if (counters[nr])
1677 seq_printf(m, " N%u=%u", nr, counters[nr]);
1678 }
1679 }
1680
1681 static int s_show(struct seq_file *m, void *p)
1682 {
1683 struct vm_struct *v = p;
1684
1685 seq_printf(m, "0x%p-0x%p %7ld",
1686 v->addr, v->addr + v->size, v->size);
1687
1688 if (v->caller) {
1689 char buff[2 * KSYM_NAME_LEN];
1690
1691 seq_putc(m, ' ');
1692 sprint_symbol(buff, (unsigned long)v->caller);
1693 seq_puts(m, buff);
1694 }
1695
1696 if (v->nr_pages)
1697 seq_printf(m, " pages=%d", v->nr_pages);
1698
1699 if (v->phys_addr)
1700 seq_printf(m, " phys=%lx", v->phys_addr);
1701
1702 if (v->flags & VM_IOREMAP)
1703 seq_printf(m, " ioremap");
1704
1705 if (v->flags & VM_ALLOC)
1706 seq_printf(m, " vmalloc");
1707
1708 if (v->flags & VM_MAP)
1709 seq_printf(m, " vmap");
1710
1711 if (v->flags & VM_USERMAP)
1712 seq_printf(m, " user");
1713
1714 if (v->flags & VM_VPAGES)
1715 seq_printf(m, " vpages");
1716
1717 show_numa_info(m, v);
1718 seq_putc(m, '\n');
1719 return 0;
1720 }
1721
1722 static const struct seq_operations vmalloc_op = {
1723 .start = s_start,
1724 .next = s_next,
1725 .stop = s_stop,
1726 .show = s_show,
1727 };
1728
1729 static int vmalloc_open(struct inode *inode, struct file *file)
1730 {
1731 unsigned int *ptr = NULL;
1732 int ret;
1733
1734 if (NUMA_BUILD)
1735 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
1736 ret = seq_open(file, &vmalloc_op);
1737 if (!ret) {
1738 struct seq_file *m = file->private_data;
1739 m->private = ptr;
1740 } else
1741 kfree(ptr);
1742 return ret;
1743 }
1744
1745 static const struct file_operations proc_vmalloc_operations = {
1746 .open = vmalloc_open,
1747 .read = seq_read,
1748 .llseek = seq_lseek,
1749 .release = seq_release_private,
1750 };
1751
1752 static int __init proc_vmalloc_init(void)
1753 {
1754 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
1755 return 0;
1756 }
1757 module_init(proc_vmalloc_init);
1758 #endif
1759