]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - mm/vmscan.c
Merge tag 'acpi-4.18-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[mirror_ubuntu-eoan-kernel.git] / mm / vmscan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
58
59 #include "internal.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
63
64 struct scan_control {
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
68 /* This context's GFP mask */
69 gfp_t gfp_mask;
70
71 /* Allocation order */
72 int order;
73
74 /*
75 * Nodemask of nodes allowed by the caller. If NULL, all nodes
76 * are scanned.
77 */
78 nodemask_t *nodemask;
79
80 /*
81 * The memory cgroup that hit its limit and as a result is the
82 * primary target of this reclaim invocation.
83 */
84 struct mem_cgroup *target_mem_cgroup;
85
86 /* Scan (total_size >> priority) pages at once */
87 int priority;
88
89 /* The highest zone to isolate pages for reclaim from */
90 enum zone_type reclaim_idx;
91
92 /* Writepage batching in laptop mode; RECLAIM_WRITE */
93 unsigned int may_writepage:1;
94
95 /* Can mapped pages be reclaimed? */
96 unsigned int may_unmap:1;
97
98 /* Can pages be swapped as part of reclaim? */
99 unsigned int may_swap:1;
100
101 /*
102 * Cgroups are not reclaimed below their configured memory.low,
103 * unless we threaten to OOM. If any cgroups are skipped due to
104 * memory.low and nothing was reclaimed, go back for memory.low.
105 */
106 unsigned int memcg_low_reclaim:1;
107 unsigned int memcg_low_skipped:1;
108
109 unsigned int hibernation_mode:1;
110
111 /* One of the zones is ready for compaction */
112 unsigned int compaction_ready:1;
113
114 /* Incremented by the number of inactive pages that were scanned */
115 unsigned long nr_scanned;
116
117 /* Number of pages freed so far during a call to shrink_zones() */
118 unsigned long nr_reclaimed;
119
120 struct {
121 unsigned int dirty;
122 unsigned int unqueued_dirty;
123 unsigned int congested;
124 unsigned int writeback;
125 unsigned int immediate;
126 unsigned int file_taken;
127 unsigned int taken;
128 } nr;
129 };
130
131 #ifdef ARCH_HAS_PREFETCH
132 #define prefetch_prev_lru_page(_page, _base, _field) \
133 do { \
134 if ((_page)->lru.prev != _base) { \
135 struct page *prev; \
136 \
137 prev = lru_to_page(&(_page->lru)); \
138 prefetch(&prev->_field); \
139 } \
140 } while (0)
141 #else
142 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
143 #endif
144
145 #ifdef ARCH_HAS_PREFETCHW
146 #define prefetchw_prev_lru_page(_page, _base, _field) \
147 do { \
148 if ((_page)->lru.prev != _base) { \
149 struct page *prev; \
150 \
151 prev = lru_to_page(&(_page->lru)); \
152 prefetchw(&prev->_field); \
153 } \
154 } while (0)
155 #else
156 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
157 #endif
158
159 /*
160 * From 0 .. 100. Higher means more swappy.
161 */
162 int vm_swappiness = 60;
163 /*
164 * The total number of pages which are beyond the high watermark within all
165 * zones.
166 */
167 unsigned long vm_total_pages;
168
169 static LIST_HEAD(shrinker_list);
170 static DECLARE_RWSEM(shrinker_rwsem);
171
172 #ifdef CONFIG_MEMCG
173 static bool global_reclaim(struct scan_control *sc)
174 {
175 return !sc->target_mem_cgroup;
176 }
177
178 /**
179 * sane_reclaim - is the usual dirty throttling mechanism operational?
180 * @sc: scan_control in question
181 *
182 * The normal page dirty throttling mechanism in balance_dirty_pages() is
183 * completely broken with the legacy memcg and direct stalling in
184 * shrink_page_list() is used for throttling instead, which lacks all the
185 * niceties such as fairness, adaptive pausing, bandwidth proportional
186 * allocation and configurability.
187 *
188 * This function tests whether the vmscan currently in progress can assume
189 * that the normal dirty throttling mechanism is operational.
190 */
191 static bool sane_reclaim(struct scan_control *sc)
192 {
193 struct mem_cgroup *memcg = sc->target_mem_cgroup;
194
195 if (!memcg)
196 return true;
197 #ifdef CONFIG_CGROUP_WRITEBACK
198 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
199 return true;
200 #endif
201 return false;
202 }
203
204 static void set_memcg_congestion(pg_data_t *pgdat,
205 struct mem_cgroup *memcg,
206 bool congested)
207 {
208 struct mem_cgroup_per_node *mn;
209
210 if (!memcg)
211 return;
212
213 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
214 WRITE_ONCE(mn->congested, congested);
215 }
216
217 static bool memcg_congested(pg_data_t *pgdat,
218 struct mem_cgroup *memcg)
219 {
220 struct mem_cgroup_per_node *mn;
221
222 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
223 return READ_ONCE(mn->congested);
224
225 }
226 #else
227 static bool global_reclaim(struct scan_control *sc)
228 {
229 return true;
230 }
231
232 static bool sane_reclaim(struct scan_control *sc)
233 {
234 return true;
235 }
236
237 static inline void set_memcg_congestion(struct pglist_data *pgdat,
238 struct mem_cgroup *memcg, bool congested)
239 {
240 }
241
242 static inline bool memcg_congested(struct pglist_data *pgdat,
243 struct mem_cgroup *memcg)
244 {
245 return false;
246
247 }
248 #endif
249
250 /*
251 * This misses isolated pages which are not accounted for to save counters.
252 * As the data only determines if reclaim or compaction continues, it is
253 * not expected that isolated pages will be a dominating factor.
254 */
255 unsigned long zone_reclaimable_pages(struct zone *zone)
256 {
257 unsigned long nr;
258
259 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
260 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
261 if (get_nr_swap_pages() > 0)
262 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
263 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
264
265 return nr;
266 }
267
268 /**
269 * lruvec_lru_size - Returns the number of pages on the given LRU list.
270 * @lruvec: lru vector
271 * @lru: lru to use
272 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
273 */
274 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
275 {
276 unsigned long lru_size;
277 int zid;
278
279 if (!mem_cgroup_disabled())
280 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
281 else
282 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
283
284 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
285 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
286 unsigned long size;
287
288 if (!managed_zone(zone))
289 continue;
290
291 if (!mem_cgroup_disabled())
292 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
293 else
294 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
295 NR_ZONE_LRU_BASE + lru);
296 lru_size -= min(size, lru_size);
297 }
298
299 return lru_size;
300
301 }
302
303 /*
304 * Add a shrinker callback to be called from the vm.
305 */
306 int prealloc_shrinker(struct shrinker *shrinker)
307 {
308 size_t size = sizeof(*shrinker->nr_deferred);
309
310 if (shrinker->flags & SHRINKER_NUMA_AWARE)
311 size *= nr_node_ids;
312
313 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
314 if (!shrinker->nr_deferred)
315 return -ENOMEM;
316 return 0;
317 }
318
319 void free_prealloced_shrinker(struct shrinker *shrinker)
320 {
321 kfree(shrinker->nr_deferred);
322 shrinker->nr_deferred = NULL;
323 }
324
325 void register_shrinker_prepared(struct shrinker *shrinker)
326 {
327 down_write(&shrinker_rwsem);
328 list_add_tail(&shrinker->list, &shrinker_list);
329 up_write(&shrinker_rwsem);
330 }
331
332 int register_shrinker(struct shrinker *shrinker)
333 {
334 int err = prealloc_shrinker(shrinker);
335
336 if (err)
337 return err;
338 register_shrinker_prepared(shrinker);
339 return 0;
340 }
341 EXPORT_SYMBOL(register_shrinker);
342
343 /*
344 * Remove one
345 */
346 void unregister_shrinker(struct shrinker *shrinker)
347 {
348 if (!shrinker->nr_deferred)
349 return;
350 down_write(&shrinker_rwsem);
351 list_del(&shrinker->list);
352 up_write(&shrinker_rwsem);
353 kfree(shrinker->nr_deferred);
354 shrinker->nr_deferred = NULL;
355 }
356 EXPORT_SYMBOL(unregister_shrinker);
357
358 #define SHRINK_BATCH 128
359
360 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
361 struct shrinker *shrinker, int priority)
362 {
363 unsigned long freed = 0;
364 unsigned long long delta;
365 long total_scan;
366 long freeable;
367 long nr;
368 long new_nr;
369 int nid = shrinkctl->nid;
370 long batch_size = shrinker->batch ? shrinker->batch
371 : SHRINK_BATCH;
372 long scanned = 0, next_deferred;
373
374 freeable = shrinker->count_objects(shrinker, shrinkctl);
375 if (freeable == 0)
376 return 0;
377
378 /*
379 * copy the current shrinker scan count into a local variable
380 * and zero it so that other concurrent shrinker invocations
381 * don't also do this scanning work.
382 */
383 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
384
385 total_scan = nr;
386 delta = freeable >> priority;
387 delta *= 4;
388 do_div(delta, shrinker->seeks);
389 total_scan += delta;
390 if (total_scan < 0) {
391 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
392 shrinker->scan_objects, total_scan);
393 total_scan = freeable;
394 next_deferred = nr;
395 } else
396 next_deferred = total_scan;
397
398 /*
399 * We need to avoid excessive windup on filesystem shrinkers
400 * due to large numbers of GFP_NOFS allocations causing the
401 * shrinkers to return -1 all the time. This results in a large
402 * nr being built up so when a shrink that can do some work
403 * comes along it empties the entire cache due to nr >>>
404 * freeable. This is bad for sustaining a working set in
405 * memory.
406 *
407 * Hence only allow the shrinker to scan the entire cache when
408 * a large delta change is calculated directly.
409 */
410 if (delta < freeable / 4)
411 total_scan = min(total_scan, freeable / 2);
412
413 /*
414 * Avoid risking looping forever due to too large nr value:
415 * never try to free more than twice the estimate number of
416 * freeable entries.
417 */
418 if (total_scan > freeable * 2)
419 total_scan = freeable * 2;
420
421 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
422 freeable, delta, total_scan, priority);
423
424 /*
425 * Normally, we should not scan less than batch_size objects in one
426 * pass to avoid too frequent shrinker calls, but if the slab has less
427 * than batch_size objects in total and we are really tight on memory,
428 * we will try to reclaim all available objects, otherwise we can end
429 * up failing allocations although there are plenty of reclaimable
430 * objects spread over several slabs with usage less than the
431 * batch_size.
432 *
433 * We detect the "tight on memory" situations by looking at the total
434 * number of objects we want to scan (total_scan). If it is greater
435 * than the total number of objects on slab (freeable), we must be
436 * scanning at high prio and therefore should try to reclaim as much as
437 * possible.
438 */
439 while (total_scan >= batch_size ||
440 total_scan >= freeable) {
441 unsigned long ret;
442 unsigned long nr_to_scan = min(batch_size, total_scan);
443
444 shrinkctl->nr_to_scan = nr_to_scan;
445 shrinkctl->nr_scanned = nr_to_scan;
446 ret = shrinker->scan_objects(shrinker, shrinkctl);
447 if (ret == SHRINK_STOP)
448 break;
449 freed += ret;
450
451 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
452 total_scan -= shrinkctl->nr_scanned;
453 scanned += shrinkctl->nr_scanned;
454
455 cond_resched();
456 }
457
458 if (next_deferred >= scanned)
459 next_deferred -= scanned;
460 else
461 next_deferred = 0;
462 /*
463 * move the unused scan count back into the shrinker in a
464 * manner that handles concurrent updates. If we exhausted the
465 * scan, there is no need to do an update.
466 */
467 if (next_deferred > 0)
468 new_nr = atomic_long_add_return(next_deferred,
469 &shrinker->nr_deferred[nid]);
470 else
471 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
472
473 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
474 return freed;
475 }
476
477 /**
478 * shrink_slab - shrink slab caches
479 * @gfp_mask: allocation context
480 * @nid: node whose slab caches to target
481 * @memcg: memory cgroup whose slab caches to target
482 * @priority: the reclaim priority
483 *
484 * Call the shrink functions to age shrinkable caches.
485 *
486 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
487 * unaware shrinkers will receive a node id of 0 instead.
488 *
489 * @memcg specifies the memory cgroup to target. If it is not NULL,
490 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
491 * objects from the memory cgroup specified. Otherwise, only unaware
492 * shrinkers are called.
493 *
494 * @priority is sc->priority, we take the number of objects and >> by priority
495 * in order to get the scan target.
496 *
497 * Returns the number of reclaimed slab objects.
498 */
499 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
500 struct mem_cgroup *memcg,
501 int priority)
502 {
503 struct shrinker *shrinker;
504 unsigned long freed = 0;
505
506 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
507 return 0;
508
509 if (!down_read_trylock(&shrinker_rwsem))
510 goto out;
511
512 list_for_each_entry(shrinker, &shrinker_list, list) {
513 struct shrink_control sc = {
514 .gfp_mask = gfp_mask,
515 .nid = nid,
516 .memcg = memcg,
517 };
518
519 /*
520 * If kernel memory accounting is disabled, we ignore
521 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
522 * passing NULL for memcg.
523 */
524 if (memcg_kmem_enabled() &&
525 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
526 continue;
527
528 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
529 sc.nid = 0;
530
531 freed += do_shrink_slab(&sc, shrinker, priority);
532 /*
533 * Bail out if someone want to register a new shrinker to
534 * prevent the regsitration from being stalled for long periods
535 * by parallel ongoing shrinking.
536 */
537 if (rwsem_is_contended(&shrinker_rwsem)) {
538 freed = freed ? : 1;
539 break;
540 }
541 }
542
543 up_read(&shrinker_rwsem);
544 out:
545 cond_resched();
546 return freed;
547 }
548
549 void drop_slab_node(int nid)
550 {
551 unsigned long freed;
552
553 do {
554 struct mem_cgroup *memcg = NULL;
555
556 freed = 0;
557 do {
558 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
559 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
560 } while (freed > 10);
561 }
562
563 void drop_slab(void)
564 {
565 int nid;
566
567 for_each_online_node(nid)
568 drop_slab_node(nid);
569 }
570
571 static inline int is_page_cache_freeable(struct page *page)
572 {
573 /*
574 * A freeable page cache page is referenced only by the caller
575 * that isolated the page, the page cache radix tree and
576 * optional buffer heads at page->private.
577 */
578 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
579 HPAGE_PMD_NR : 1;
580 return page_count(page) - page_has_private(page) == 1 + radix_pins;
581 }
582
583 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
584 {
585 if (current->flags & PF_SWAPWRITE)
586 return 1;
587 if (!inode_write_congested(inode))
588 return 1;
589 if (inode_to_bdi(inode) == current->backing_dev_info)
590 return 1;
591 return 0;
592 }
593
594 /*
595 * We detected a synchronous write error writing a page out. Probably
596 * -ENOSPC. We need to propagate that into the address_space for a subsequent
597 * fsync(), msync() or close().
598 *
599 * The tricky part is that after writepage we cannot touch the mapping: nothing
600 * prevents it from being freed up. But we have a ref on the page and once
601 * that page is locked, the mapping is pinned.
602 *
603 * We're allowed to run sleeping lock_page() here because we know the caller has
604 * __GFP_FS.
605 */
606 static void handle_write_error(struct address_space *mapping,
607 struct page *page, int error)
608 {
609 lock_page(page);
610 if (page_mapping(page) == mapping)
611 mapping_set_error(mapping, error);
612 unlock_page(page);
613 }
614
615 /* possible outcome of pageout() */
616 typedef enum {
617 /* failed to write page out, page is locked */
618 PAGE_KEEP,
619 /* move page to the active list, page is locked */
620 PAGE_ACTIVATE,
621 /* page has been sent to the disk successfully, page is unlocked */
622 PAGE_SUCCESS,
623 /* page is clean and locked */
624 PAGE_CLEAN,
625 } pageout_t;
626
627 /*
628 * pageout is called by shrink_page_list() for each dirty page.
629 * Calls ->writepage().
630 */
631 static pageout_t pageout(struct page *page, struct address_space *mapping,
632 struct scan_control *sc)
633 {
634 /*
635 * If the page is dirty, only perform writeback if that write
636 * will be non-blocking. To prevent this allocation from being
637 * stalled by pagecache activity. But note that there may be
638 * stalls if we need to run get_block(). We could test
639 * PagePrivate for that.
640 *
641 * If this process is currently in __generic_file_write_iter() against
642 * this page's queue, we can perform writeback even if that
643 * will block.
644 *
645 * If the page is swapcache, write it back even if that would
646 * block, for some throttling. This happens by accident, because
647 * swap_backing_dev_info is bust: it doesn't reflect the
648 * congestion state of the swapdevs. Easy to fix, if needed.
649 */
650 if (!is_page_cache_freeable(page))
651 return PAGE_KEEP;
652 if (!mapping) {
653 /*
654 * Some data journaling orphaned pages can have
655 * page->mapping == NULL while being dirty with clean buffers.
656 */
657 if (page_has_private(page)) {
658 if (try_to_free_buffers(page)) {
659 ClearPageDirty(page);
660 pr_info("%s: orphaned page\n", __func__);
661 return PAGE_CLEAN;
662 }
663 }
664 return PAGE_KEEP;
665 }
666 if (mapping->a_ops->writepage == NULL)
667 return PAGE_ACTIVATE;
668 if (!may_write_to_inode(mapping->host, sc))
669 return PAGE_KEEP;
670
671 if (clear_page_dirty_for_io(page)) {
672 int res;
673 struct writeback_control wbc = {
674 .sync_mode = WB_SYNC_NONE,
675 .nr_to_write = SWAP_CLUSTER_MAX,
676 .range_start = 0,
677 .range_end = LLONG_MAX,
678 .for_reclaim = 1,
679 };
680
681 SetPageReclaim(page);
682 res = mapping->a_ops->writepage(page, &wbc);
683 if (res < 0)
684 handle_write_error(mapping, page, res);
685 if (res == AOP_WRITEPAGE_ACTIVATE) {
686 ClearPageReclaim(page);
687 return PAGE_ACTIVATE;
688 }
689
690 if (!PageWriteback(page)) {
691 /* synchronous write or broken a_ops? */
692 ClearPageReclaim(page);
693 }
694 trace_mm_vmscan_writepage(page);
695 inc_node_page_state(page, NR_VMSCAN_WRITE);
696 return PAGE_SUCCESS;
697 }
698
699 return PAGE_CLEAN;
700 }
701
702 /*
703 * Same as remove_mapping, but if the page is removed from the mapping, it
704 * gets returned with a refcount of 0.
705 */
706 static int __remove_mapping(struct address_space *mapping, struct page *page,
707 bool reclaimed)
708 {
709 unsigned long flags;
710 int refcount;
711
712 BUG_ON(!PageLocked(page));
713 BUG_ON(mapping != page_mapping(page));
714
715 xa_lock_irqsave(&mapping->i_pages, flags);
716 /*
717 * The non racy check for a busy page.
718 *
719 * Must be careful with the order of the tests. When someone has
720 * a ref to the page, it may be possible that they dirty it then
721 * drop the reference. So if PageDirty is tested before page_count
722 * here, then the following race may occur:
723 *
724 * get_user_pages(&page);
725 * [user mapping goes away]
726 * write_to(page);
727 * !PageDirty(page) [good]
728 * SetPageDirty(page);
729 * put_page(page);
730 * !page_count(page) [good, discard it]
731 *
732 * [oops, our write_to data is lost]
733 *
734 * Reversing the order of the tests ensures such a situation cannot
735 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
736 * load is not satisfied before that of page->_refcount.
737 *
738 * Note that if SetPageDirty is always performed via set_page_dirty,
739 * and thus under the i_pages lock, then this ordering is not required.
740 */
741 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
742 refcount = 1 + HPAGE_PMD_NR;
743 else
744 refcount = 2;
745 if (!page_ref_freeze(page, refcount))
746 goto cannot_free;
747 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
748 if (unlikely(PageDirty(page))) {
749 page_ref_unfreeze(page, refcount);
750 goto cannot_free;
751 }
752
753 if (PageSwapCache(page)) {
754 swp_entry_t swap = { .val = page_private(page) };
755 mem_cgroup_swapout(page, swap);
756 __delete_from_swap_cache(page);
757 xa_unlock_irqrestore(&mapping->i_pages, flags);
758 put_swap_page(page, swap);
759 } else {
760 void (*freepage)(struct page *);
761 void *shadow = NULL;
762
763 freepage = mapping->a_ops->freepage;
764 /*
765 * Remember a shadow entry for reclaimed file cache in
766 * order to detect refaults, thus thrashing, later on.
767 *
768 * But don't store shadows in an address space that is
769 * already exiting. This is not just an optizimation,
770 * inode reclaim needs to empty out the radix tree or
771 * the nodes are lost. Don't plant shadows behind its
772 * back.
773 *
774 * We also don't store shadows for DAX mappings because the
775 * only page cache pages found in these are zero pages
776 * covering holes, and because we don't want to mix DAX
777 * exceptional entries and shadow exceptional entries in the
778 * same address_space.
779 */
780 if (reclaimed && page_is_file_cache(page) &&
781 !mapping_exiting(mapping) && !dax_mapping(mapping))
782 shadow = workingset_eviction(mapping, page);
783 __delete_from_page_cache(page, shadow);
784 xa_unlock_irqrestore(&mapping->i_pages, flags);
785
786 if (freepage != NULL)
787 freepage(page);
788 }
789
790 return 1;
791
792 cannot_free:
793 xa_unlock_irqrestore(&mapping->i_pages, flags);
794 return 0;
795 }
796
797 /*
798 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
799 * someone else has a ref on the page, abort and return 0. If it was
800 * successfully detached, return 1. Assumes the caller has a single ref on
801 * this page.
802 */
803 int remove_mapping(struct address_space *mapping, struct page *page)
804 {
805 if (__remove_mapping(mapping, page, false)) {
806 /*
807 * Unfreezing the refcount with 1 rather than 2 effectively
808 * drops the pagecache ref for us without requiring another
809 * atomic operation.
810 */
811 page_ref_unfreeze(page, 1);
812 return 1;
813 }
814 return 0;
815 }
816
817 /**
818 * putback_lru_page - put previously isolated page onto appropriate LRU list
819 * @page: page to be put back to appropriate lru list
820 *
821 * Add previously isolated @page to appropriate LRU list.
822 * Page may still be unevictable for other reasons.
823 *
824 * lru_lock must not be held, interrupts must be enabled.
825 */
826 void putback_lru_page(struct page *page)
827 {
828 lru_cache_add(page);
829 put_page(page); /* drop ref from isolate */
830 }
831
832 enum page_references {
833 PAGEREF_RECLAIM,
834 PAGEREF_RECLAIM_CLEAN,
835 PAGEREF_KEEP,
836 PAGEREF_ACTIVATE,
837 };
838
839 static enum page_references page_check_references(struct page *page,
840 struct scan_control *sc)
841 {
842 int referenced_ptes, referenced_page;
843 unsigned long vm_flags;
844
845 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
846 &vm_flags);
847 referenced_page = TestClearPageReferenced(page);
848
849 /*
850 * Mlock lost the isolation race with us. Let try_to_unmap()
851 * move the page to the unevictable list.
852 */
853 if (vm_flags & VM_LOCKED)
854 return PAGEREF_RECLAIM;
855
856 if (referenced_ptes) {
857 if (PageSwapBacked(page))
858 return PAGEREF_ACTIVATE;
859 /*
860 * All mapped pages start out with page table
861 * references from the instantiating fault, so we need
862 * to look twice if a mapped file page is used more
863 * than once.
864 *
865 * Mark it and spare it for another trip around the
866 * inactive list. Another page table reference will
867 * lead to its activation.
868 *
869 * Note: the mark is set for activated pages as well
870 * so that recently deactivated but used pages are
871 * quickly recovered.
872 */
873 SetPageReferenced(page);
874
875 if (referenced_page || referenced_ptes > 1)
876 return PAGEREF_ACTIVATE;
877
878 /*
879 * Activate file-backed executable pages after first usage.
880 */
881 if (vm_flags & VM_EXEC)
882 return PAGEREF_ACTIVATE;
883
884 return PAGEREF_KEEP;
885 }
886
887 /* Reclaim if clean, defer dirty pages to writeback */
888 if (referenced_page && !PageSwapBacked(page))
889 return PAGEREF_RECLAIM_CLEAN;
890
891 return PAGEREF_RECLAIM;
892 }
893
894 /* Check if a page is dirty or under writeback */
895 static void page_check_dirty_writeback(struct page *page,
896 bool *dirty, bool *writeback)
897 {
898 struct address_space *mapping;
899
900 /*
901 * Anonymous pages are not handled by flushers and must be written
902 * from reclaim context. Do not stall reclaim based on them
903 */
904 if (!page_is_file_cache(page) ||
905 (PageAnon(page) && !PageSwapBacked(page))) {
906 *dirty = false;
907 *writeback = false;
908 return;
909 }
910
911 /* By default assume that the page flags are accurate */
912 *dirty = PageDirty(page);
913 *writeback = PageWriteback(page);
914
915 /* Verify dirty/writeback state if the filesystem supports it */
916 if (!page_has_private(page))
917 return;
918
919 mapping = page_mapping(page);
920 if (mapping && mapping->a_ops->is_dirty_writeback)
921 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
922 }
923
924 /*
925 * shrink_page_list() returns the number of reclaimed pages
926 */
927 static unsigned long shrink_page_list(struct list_head *page_list,
928 struct pglist_data *pgdat,
929 struct scan_control *sc,
930 enum ttu_flags ttu_flags,
931 struct reclaim_stat *stat,
932 bool force_reclaim)
933 {
934 LIST_HEAD(ret_pages);
935 LIST_HEAD(free_pages);
936 int pgactivate = 0;
937 unsigned nr_unqueued_dirty = 0;
938 unsigned nr_dirty = 0;
939 unsigned nr_congested = 0;
940 unsigned nr_reclaimed = 0;
941 unsigned nr_writeback = 0;
942 unsigned nr_immediate = 0;
943 unsigned nr_ref_keep = 0;
944 unsigned nr_unmap_fail = 0;
945
946 cond_resched();
947
948 while (!list_empty(page_list)) {
949 struct address_space *mapping;
950 struct page *page;
951 int may_enter_fs;
952 enum page_references references = PAGEREF_RECLAIM_CLEAN;
953 bool dirty, writeback;
954
955 cond_resched();
956
957 page = lru_to_page(page_list);
958 list_del(&page->lru);
959
960 if (!trylock_page(page))
961 goto keep;
962
963 VM_BUG_ON_PAGE(PageActive(page), page);
964
965 sc->nr_scanned++;
966
967 if (unlikely(!page_evictable(page)))
968 goto activate_locked;
969
970 if (!sc->may_unmap && page_mapped(page))
971 goto keep_locked;
972
973 /* Double the slab pressure for mapped and swapcache pages */
974 if ((page_mapped(page) || PageSwapCache(page)) &&
975 !(PageAnon(page) && !PageSwapBacked(page)))
976 sc->nr_scanned++;
977
978 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
979 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
980
981 /*
982 * The number of dirty pages determines if a node is marked
983 * reclaim_congested which affects wait_iff_congested. kswapd
984 * will stall and start writing pages if the tail of the LRU
985 * is all dirty unqueued pages.
986 */
987 page_check_dirty_writeback(page, &dirty, &writeback);
988 if (dirty || writeback)
989 nr_dirty++;
990
991 if (dirty && !writeback)
992 nr_unqueued_dirty++;
993
994 /*
995 * Treat this page as congested if the underlying BDI is or if
996 * pages are cycling through the LRU so quickly that the
997 * pages marked for immediate reclaim are making it to the
998 * end of the LRU a second time.
999 */
1000 mapping = page_mapping(page);
1001 if (((dirty || writeback) && mapping &&
1002 inode_write_congested(mapping->host)) ||
1003 (writeback && PageReclaim(page)))
1004 nr_congested++;
1005
1006 /*
1007 * If a page at the tail of the LRU is under writeback, there
1008 * are three cases to consider.
1009 *
1010 * 1) If reclaim is encountering an excessive number of pages
1011 * under writeback and this page is both under writeback and
1012 * PageReclaim then it indicates that pages are being queued
1013 * for IO but are being recycled through the LRU before the
1014 * IO can complete. Waiting on the page itself risks an
1015 * indefinite stall if it is impossible to writeback the
1016 * page due to IO error or disconnected storage so instead
1017 * note that the LRU is being scanned too quickly and the
1018 * caller can stall after page list has been processed.
1019 *
1020 * 2) Global or new memcg reclaim encounters a page that is
1021 * not marked for immediate reclaim, or the caller does not
1022 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1023 * not to fs). In this case mark the page for immediate
1024 * reclaim and continue scanning.
1025 *
1026 * Require may_enter_fs because we would wait on fs, which
1027 * may not have submitted IO yet. And the loop driver might
1028 * enter reclaim, and deadlock if it waits on a page for
1029 * which it is needed to do the write (loop masks off
1030 * __GFP_IO|__GFP_FS for this reason); but more thought
1031 * would probably show more reasons.
1032 *
1033 * 3) Legacy memcg encounters a page that is already marked
1034 * PageReclaim. memcg does not have any dirty pages
1035 * throttling so we could easily OOM just because too many
1036 * pages are in writeback and there is nothing else to
1037 * reclaim. Wait for the writeback to complete.
1038 *
1039 * In cases 1) and 2) we activate the pages to get them out of
1040 * the way while we continue scanning for clean pages on the
1041 * inactive list and refilling from the active list. The
1042 * observation here is that waiting for disk writes is more
1043 * expensive than potentially causing reloads down the line.
1044 * Since they're marked for immediate reclaim, they won't put
1045 * memory pressure on the cache working set any longer than it
1046 * takes to write them to disk.
1047 */
1048 if (PageWriteback(page)) {
1049 /* Case 1 above */
1050 if (current_is_kswapd() &&
1051 PageReclaim(page) &&
1052 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1053 nr_immediate++;
1054 goto activate_locked;
1055
1056 /* Case 2 above */
1057 } else if (sane_reclaim(sc) ||
1058 !PageReclaim(page) || !may_enter_fs) {
1059 /*
1060 * This is slightly racy - end_page_writeback()
1061 * might have just cleared PageReclaim, then
1062 * setting PageReclaim here end up interpreted
1063 * as PageReadahead - but that does not matter
1064 * enough to care. What we do want is for this
1065 * page to have PageReclaim set next time memcg
1066 * reclaim reaches the tests above, so it will
1067 * then wait_on_page_writeback() to avoid OOM;
1068 * and it's also appropriate in global reclaim.
1069 */
1070 SetPageReclaim(page);
1071 nr_writeback++;
1072 goto activate_locked;
1073
1074 /* Case 3 above */
1075 } else {
1076 unlock_page(page);
1077 wait_on_page_writeback(page);
1078 /* then go back and try same page again */
1079 list_add_tail(&page->lru, page_list);
1080 continue;
1081 }
1082 }
1083
1084 if (!force_reclaim)
1085 references = page_check_references(page, sc);
1086
1087 switch (references) {
1088 case PAGEREF_ACTIVATE:
1089 goto activate_locked;
1090 case PAGEREF_KEEP:
1091 nr_ref_keep++;
1092 goto keep_locked;
1093 case PAGEREF_RECLAIM:
1094 case PAGEREF_RECLAIM_CLEAN:
1095 ; /* try to reclaim the page below */
1096 }
1097
1098 /*
1099 * Anonymous process memory has backing store?
1100 * Try to allocate it some swap space here.
1101 * Lazyfree page could be freed directly
1102 */
1103 if (PageAnon(page) && PageSwapBacked(page)) {
1104 if (!PageSwapCache(page)) {
1105 if (!(sc->gfp_mask & __GFP_IO))
1106 goto keep_locked;
1107 if (PageTransHuge(page)) {
1108 /* cannot split THP, skip it */
1109 if (!can_split_huge_page(page, NULL))
1110 goto activate_locked;
1111 /*
1112 * Split pages without a PMD map right
1113 * away. Chances are some or all of the
1114 * tail pages can be freed without IO.
1115 */
1116 if (!compound_mapcount(page) &&
1117 split_huge_page_to_list(page,
1118 page_list))
1119 goto activate_locked;
1120 }
1121 if (!add_to_swap(page)) {
1122 if (!PageTransHuge(page))
1123 goto activate_locked;
1124 /* Fallback to swap normal pages */
1125 if (split_huge_page_to_list(page,
1126 page_list))
1127 goto activate_locked;
1128 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1129 count_vm_event(THP_SWPOUT_FALLBACK);
1130 #endif
1131 if (!add_to_swap(page))
1132 goto activate_locked;
1133 }
1134
1135 may_enter_fs = 1;
1136
1137 /* Adding to swap updated mapping */
1138 mapping = page_mapping(page);
1139 }
1140 } else if (unlikely(PageTransHuge(page))) {
1141 /* Split file THP */
1142 if (split_huge_page_to_list(page, page_list))
1143 goto keep_locked;
1144 }
1145
1146 /*
1147 * The page is mapped into the page tables of one or more
1148 * processes. Try to unmap it here.
1149 */
1150 if (page_mapped(page)) {
1151 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1152
1153 if (unlikely(PageTransHuge(page)))
1154 flags |= TTU_SPLIT_HUGE_PMD;
1155 if (!try_to_unmap(page, flags)) {
1156 nr_unmap_fail++;
1157 goto activate_locked;
1158 }
1159 }
1160
1161 if (PageDirty(page)) {
1162 /*
1163 * Only kswapd can writeback filesystem pages
1164 * to avoid risk of stack overflow. But avoid
1165 * injecting inefficient single-page IO into
1166 * flusher writeback as much as possible: only
1167 * write pages when we've encountered many
1168 * dirty pages, and when we've already scanned
1169 * the rest of the LRU for clean pages and see
1170 * the same dirty pages again (PageReclaim).
1171 */
1172 if (page_is_file_cache(page) &&
1173 (!current_is_kswapd() || !PageReclaim(page) ||
1174 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1175 /*
1176 * Immediately reclaim when written back.
1177 * Similar in principal to deactivate_page()
1178 * except we already have the page isolated
1179 * and know it's dirty
1180 */
1181 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1182 SetPageReclaim(page);
1183
1184 goto activate_locked;
1185 }
1186
1187 if (references == PAGEREF_RECLAIM_CLEAN)
1188 goto keep_locked;
1189 if (!may_enter_fs)
1190 goto keep_locked;
1191 if (!sc->may_writepage)
1192 goto keep_locked;
1193
1194 /*
1195 * Page is dirty. Flush the TLB if a writable entry
1196 * potentially exists to avoid CPU writes after IO
1197 * starts and then write it out here.
1198 */
1199 try_to_unmap_flush_dirty();
1200 switch (pageout(page, mapping, sc)) {
1201 case PAGE_KEEP:
1202 goto keep_locked;
1203 case PAGE_ACTIVATE:
1204 goto activate_locked;
1205 case PAGE_SUCCESS:
1206 if (PageWriteback(page))
1207 goto keep;
1208 if (PageDirty(page))
1209 goto keep;
1210
1211 /*
1212 * A synchronous write - probably a ramdisk. Go
1213 * ahead and try to reclaim the page.
1214 */
1215 if (!trylock_page(page))
1216 goto keep;
1217 if (PageDirty(page) || PageWriteback(page))
1218 goto keep_locked;
1219 mapping = page_mapping(page);
1220 case PAGE_CLEAN:
1221 ; /* try to free the page below */
1222 }
1223 }
1224
1225 /*
1226 * If the page has buffers, try to free the buffer mappings
1227 * associated with this page. If we succeed we try to free
1228 * the page as well.
1229 *
1230 * We do this even if the page is PageDirty().
1231 * try_to_release_page() does not perform I/O, but it is
1232 * possible for a page to have PageDirty set, but it is actually
1233 * clean (all its buffers are clean). This happens if the
1234 * buffers were written out directly, with submit_bh(). ext3
1235 * will do this, as well as the blockdev mapping.
1236 * try_to_release_page() will discover that cleanness and will
1237 * drop the buffers and mark the page clean - it can be freed.
1238 *
1239 * Rarely, pages can have buffers and no ->mapping. These are
1240 * the pages which were not successfully invalidated in
1241 * truncate_complete_page(). We try to drop those buffers here
1242 * and if that worked, and the page is no longer mapped into
1243 * process address space (page_count == 1) it can be freed.
1244 * Otherwise, leave the page on the LRU so it is swappable.
1245 */
1246 if (page_has_private(page)) {
1247 if (!try_to_release_page(page, sc->gfp_mask))
1248 goto activate_locked;
1249 if (!mapping && page_count(page) == 1) {
1250 unlock_page(page);
1251 if (put_page_testzero(page))
1252 goto free_it;
1253 else {
1254 /*
1255 * rare race with speculative reference.
1256 * the speculative reference will free
1257 * this page shortly, so we may
1258 * increment nr_reclaimed here (and
1259 * leave it off the LRU).
1260 */
1261 nr_reclaimed++;
1262 continue;
1263 }
1264 }
1265 }
1266
1267 if (PageAnon(page) && !PageSwapBacked(page)) {
1268 /* follow __remove_mapping for reference */
1269 if (!page_ref_freeze(page, 1))
1270 goto keep_locked;
1271 if (PageDirty(page)) {
1272 page_ref_unfreeze(page, 1);
1273 goto keep_locked;
1274 }
1275
1276 count_vm_event(PGLAZYFREED);
1277 count_memcg_page_event(page, PGLAZYFREED);
1278 } else if (!mapping || !__remove_mapping(mapping, page, true))
1279 goto keep_locked;
1280 /*
1281 * At this point, we have no other references and there is
1282 * no way to pick any more up (removed from LRU, removed
1283 * from pagecache). Can use non-atomic bitops now (and
1284 * we obviously don't have to worry about waking up a process
1285 * waiting on the page lock, because there are no references.
1286 */
1287 __ClearPageLocked(page);
1288 free_it:
1289 nr_reclaimed++;
1290
1291 /*
1292 * Is there need to periodically free_page_list? It would
1293 * appear not as the counts should be low
1294 */
1295 if (unlikely(PageTransHuge(page))) {
1296 mem_cgroup_uncharge(page);
1297 (*get_compound_page_dtor(page))(page);
1298 } else
1299 list_add(&page->lru, &free_pages);
1300 continue;
1301
1302 activate_locked:
1303 /* Not a candidate for swapping, so reclaim swap space. */
1304 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1305 PageMlocked(page)))
1306 try_to_free_swap(page);
1307 VM_BUG_ON_PAGE(PageActive(page), page);
1308 if (!PageMlocked(page)) {
1309 SetPageActive(page);
1310 pgactivate++;
1311 count_memcg_page_event(page, PGACTIVATE);
1312 }
1313 keep_locked:
1314 unlock_page(page);
1315 keep:
1316 list_add(&page->lru, &ret_pages);
1317 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1318 }
1319
1320 mem_cgroup_uncharge_list(&free_pages);
1321 try_to_unmap_flush();
1322 free_unref_page_list(&free_pages);
1323
1324 list_splice(&ret_pages, page_list);
1325 count_vm_events(PGACTIVATE, pgactivate);
1326
1327 if (stat) {
1328 stat->nr_dirty = nr_dirty;
1329 stat->nr_congested = nr_congested;
1330 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1331 stat->nr_writeback = nr_writeback;
1332 stat->nr_immediate = nr_immediate;
1333 stat->nr_activate = pgactivate;
1334 stat->nr_ref_keep = nr_ref_keep;
1335 stat->nr_unmap_fail = nr_unmap_fail;
1336 }
1337 return nr_reclaimed;
1338 }
1339
1340 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1341 struct list_head *page_list)
1342 {
1343 struct scan_control sc = {
1344 .gfp_mask = GFP_KERNEL,
1345 .priority = DEF_PRIORITY,
1346 .may_unmap = 1,
1347 };
1348 unsigned long ret;
1349 struct page *page, *next;
1350 LIST_HEAD(clean_pages);
1351
1352 list_for_each_entry_safe(page, next, page_list, lru) {
1353 if (page_is_file_cache(page) && !PageDirty(page) &&
1354 !__PageMovable(page)) {
1355 ClearPageActive(page);
1356 list_move(&page->lru, &clean_pages);
1357 }
1358 }
1359
1360 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1361 TTU_IGNORE_ACCESS, NULL, true);
1362 list_splice(&clean_pages, page_list);
1363 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1364 return ret;
1365 }
1366
1367 /*
1368 * Attempt to remove the specified page from its LRU. Only take this page
1369 * if it is of the appropriate PageActive status. Pages which are being
1370 * freed elsewhere are also ignored.
1371 *
1372 * page: page to consider
1373 * mode: one of the LRU isolation modes defined above
1374 *
1375 * returns 0 on success, -ve errno on failure.
1376 */
1377 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1378 {
1379 int ret = -EINVAL;
1380
1381 /* Only take pages on the LRU. */
1382 if (!PageLRU(page))
1383 return ret;
1384
1385 /* Compaction should not handle unevictable pages but CMA can do so */
1386 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1387 return ret;
1388
1389 ret = -EBUSY;
1390
1391 /*
1392 * To minimise LRU disruption, the caller can indicate that it only
1393 * wants to isolate pages it will be able to operate on without
1394 * blocking - clean pages for the most part.
1395 *
1396 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1397 * that it is possible to migrate without blocking
1398 */
1399 if (mode & ISOLATE_ASYNC_MIGRATE) {
1400 /* All the caller can do on PageWriteback is block */
1401 if (PageWriteback(page))
1402 return ret;
1403
1404 if (PageDirty(page)) {
1405 struct address_space *mapping;
1406 bool migrate_dirty;
1407
1408 /*
1409 * Only pages without mappings or that have a
1410 * ->migratepage callback are possible to migrate
1411 * without blocking. However, we can be racing with
1412 * truncation so it's necessary to lock the page
1413 * to stabilise the mapping as truncation holds
1414 * the page lock until after the page is removed
1415 * from the page cache.
1416 */
1417 if (!trylock_page(page))
1418 return ret;
1419
1420 mapping = page_mapping(page);
1421 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1422 unlock_page(page);
1423 if (!migrate_dirty)
1424 return ret;
1425 }
1426 }
1427
1428 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1429 return ret;
1430
1431 if (likely(get_page_unless_zero(page))) {
1432 /*
1433 * Be careful not to clear PageLRU until after we're
1434 * sure the page is not being freed elsewhere -- the
1435 * page release code relies on it.
1436 */
1437 ClearPageLRU(page);
1438 ret = 0;
1439 }
1440
1441 return ret;
1442 }
1443
1444
1445 /*
1446 * Update LRU sizes after isolating pages. The LRU size updates must
1447 * be complete before mem_cgroup_update_lru_size due to a santity check.
1448 */
1449 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1450 enum lru_list lru, unsigned long *nr_zone_taken)
1451 {
1452 int zid;
1453
1454 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1455 if (!nr_zone_taken[zid])
1456 continue;
1457
1458 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1459 #ifdef CONFIG_MEMCG
1460 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1461 #endif
1462 }
1463
1464 }
1465
1466 /*
1467 * zone_lru_lock is heavily contended. Some of the functions that
1468 * shrink the lists perform better by taking out a batch of pages
1469 * and working on them outside the LRU lock.
1470 *
1471 * For pagecache intensive workloads, this function is the hottest
1472 * spot in the kernel (apart from copy_*_user functions).
1473 *
1474 * Appropriate locks must be held before calling this function.
1475 *
1476 * @nr_to_scan: The number of eligible pages to look through on the list.
1477 * @lruvec: The LRU vector to pull pages from.
1478 * @dst: The temp list to put pages on to.
1479 * @nr_scanned: The number of pages that were scanned.
1480 * @sc: The scan_control struct for this reclaim session
1481 * @mode: One of the LRU isolation modes
1482 * @lru: LRU list id for isolating
1483 *
1484 * returns how many pages were moved onto *@dst.
1485 */
1486 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1487 struct lruvec *lruvec, struct list_head *dst,
1488 unsigned long *nr_scanned, struct scan_control *sc,
1489 isolate_mode_t mode, enum lru_list lru)
1490 {
1491 struct list_head *src = &lruvec->lists[lru];
1492 unsigned long nr_taken = 0;
1493 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1494 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1495 unsigned long skipped = 0;
1496 unsigned long scan, total_scan, nr_pages;
1497 LIST_HEAD(pages_skipped);
1498
1499 scan = 0;
1500 for (total_scan = 0;
1501 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1502 total_scan++) {
1503 struct page *page;
1504
1505 page = lru_to_page(src);
1506 prefetchw_prev_lru_page(page, src, flags);
1507
1508 VM_BUG_ON_PAGE(!PageLRU(page), page);
1509
1510 if (page_zonenum(page) > sc->reclaim_idx) {
1511 list_move(&page->lru, &pages_skipped);
1512 nr_skipped[page_zonenum(page)]++;
1513 continue;
1514 }
1515
1516 /*
1517 * Do not count skipped pages because that makes the function
1518 * return with no isolated pages if the LRU mostly contains
1519 * ineligible pages. This causes the VM to not reclaim any
1520 * pages, triggering a premature OOM.
1521 */
1522 scan++;
1523 switch (__isolate_lru_page(page, mode)) {
1524 case 0:
1525 nr_pages = hpage_nr_pages(page);
1526 nr_taken += nr_pages;
1527 nr_zone_taken[page_zonenum(page)] += nr_pages;
1528 list_move(&page->lru, dst);
1529 break;
1530
1531 case -EBUSY:
1532 /* else it is being freed elsewhere */
1533 list_move(&page->lru, src);
1534 continue;
1535
1536 default:
1537 BUG();
1538 }
1539 }
1540
1541 /*
1542 * Splice any skipped pages to the start of the LRU list. Note that
1543 * this disrupts the LRU order when reclaiming for lower zones but
1544 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1545 * scanning would soon rescan the same pages to skip and put the
1546 * system at risk of premature OOM.
1547 */
1548 if (!list_empty(&pages_skipped)) {
1549 int zid;
1550
1551 list_splice(&pages_skipped, src);
1552 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1553 if (!nr_skipped[zid])
1554 continue;
1555
1556 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1557 skipped += nr_skipped[zid];
1558 }
1559 }
1560 *nr_scanned = total_scan;
1561 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1562 total_scan, skipped, nr_taken, mode, lru);
1563 update_lru_sizes(lruvec, lru, nr_zone_taken);
1564 return nr_taken;
1565 }
1566
1567 /**
1568 * isolate_lru_page - tries to isolate a page from its LRU list
1569 * @page: page to isolate from its LRU list
1570 *
1571 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1572 * vmstat statistic corresponding to whatever LRU list the page was on.
1573 *
1574 * Returns 0 if the page was removed from an LRU list.
1575 * Returns -EBUSY if the page was not on an LRU list.
1576 *
1577 * The returned page will have PageLRU() cleared. If it was found on
1578 * the active list, it will have PageActive set. If it was found on
1579 * the unevictable list, it will have the PageUnevictable bit set. That flag
1580 * may need to be cleared by the caller before letting the page go.
1581 *
1582 * The vmstat statistic corresponding to the list on which the page was
1583 * found will be decremented.
1584 *
1585 * Restrictions:
1586 *
1587 * (1) Must be called with an elevated refcount on the page. This is a
1588 * fundamentnal difference from isolate_lru_pages (which is called
1589 * without a stable reference).
1590 * (2) the lru_lock must not be held.
1591 * (3) interrupts must be enabled.
1592 */
1593 int isolate_lru_page(struct page *page)
1594 {
1595 int ret = -EBUSY;
1596
1597 VM_BUG_ON_PAGE(!page_count(page), page);
1598 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1599
1600 if (PageLRU(page)) {
1601 struct zone *zone = page_zone(page);
1602 struct lruvec *lruvec;
1603
1604 spin_lock_irq(zone_lru_lock(zone));
1605 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1606 if (PageLRU(page)) {
1607 int lru = page_lru(page);
1608 get_page(page);
1609 ClearPageLRU(page);
1610 del_page_from_lru_list(page, lruvec, lru);
1611 ret = 0;
1612 }
1613 spin_unlock_irq(zone_lru_lock(zone));
1614 }
1615 return ret;
1616 }
1617
1618 /*
1619 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1620 * then get resheduled. When there are massive number of tasks doing page
1621 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1622 * the LRU list will go small and be scanned faster than necessary, leading to
1623 * unnecessary swapping, thrashing and OOM.
1624 */
1625 static int too_many_isolated(struct pglist_data *pgdat, int file,
1626 struct scan_control *sc)
1627 {
1628 unsigned long inactive, isolated;
1629
1630 if (current_is_kswapd())
1631 return 0;
1632
1633 if (!sane_reclaim(sc))
1634 return 0;
1635
1636 if (file) {
1637 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1638 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1639 } else {
1640 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1641 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1642 }
1643
1644 /*
1645 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1646 * won't get blocked by normal direct-reclaimers, forming a circular
1647 * deadlock.
1648 */
1649 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1650 inactive >>= 3;
1651
1652 return isolated > inactive;
1653 }
1654
1655 static noinline_for_stack void
1656 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1657 {
1658 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1659 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1660 LIST_HEAD(pages_to_free);
1661
1662 /*
1663 * Put back any unfreeable pages.
1664 */
1665 while (!list_empty(page_list)) {
1666 struct page *page = lru_to_page(page_list);
1667 int lru;
1668
1669 VM_BUG_ON_PAGE(PageLRU(page), page);
1670 list_del(&page->lru);
1671 if (unlikely(!page_evictable(page))) {
1672 spin_unlock_irq(&pgdat->lru_lock);
1673 putback_lru_page(page);
1674 spin_lock_irq(&pgdat->lru_lock);
1675 continue;
1676 }
1677
1678 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1679
1680 SetPageLRU(page);
1681 lru = page_lru(page);
1682 add_page_to_lru_list(page, lruvec, lru);
1683
1684 if (is_active_lru(lru)) {
1685 int file = is_file_lru(lru);
1686 int numpages = hpage_nr_pages(page);
1687 reclaim_stat->recent_rotated[file] += numpages;
1688 }
1689 if (put_page_testzero(page)) {
1690 __ClearPageLRU(page);
1691 __ClearPageActive(page);
1692 del_page_from_lru_list(page, lruvec, lru);
1693
1694 if (unlikely(PageCompound(page))) {
1695 spin_unlock_irq(&pgdat->lru_lock);
1696 mem_cgroup_uncharge(page);
1697 (*get_compound_page_dtor(page))(page);
1698 spin_lock_irq(&pgdat->lru_lock);
1699 } else
1700 list_add(&page->lru, &pages_to_free);
1701 }
1702 }
1703
1704 /*
1705 * To save our caller's stack, now use input list for pages to free.
1706 */
1707 list_splice(&pages_to_free, page_list);
1708 }
1709
1710 /*
1711 * If a kernel thread (such as nfsd for loop-back mounts) services
1712 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1713 * In that case we should only throttle if the backing device it is
1714 * writing to is congested. In other cases it is safe to throttle.
1715 */
1716 static int current_may_throttle(void)
1717 {
1718 return !(current->flags & PF_LESS_THROTTLE) ||
1719 current->backing_dev_info == NULL ||
1720 bdi_write_congested(current->backing_dev_info);
1721 }
1722
1723 /*
1724 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1725 * of reclaimed pages
1726 */
1727 static noinline_for_stack unsigned long
1728 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1729 struct scan_control *sc, enum lru_list lru)
1730 {
1731 LIST_HEAD(page_list);
1732 unsigned long nr_scanned;
1733 unsigned long nr_reclaimed = 0;
1734 unsigned long nr_taken;
1735 struct reclaim_stat stat = {};
1736 isolate_mode_t isolate_mode = 0;
1737 int file = is_file_lru(lru);
1738 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1739 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1740 bool stalled = false;
1741
1742 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1743 if (stalled)
1744 return 0;
1745
1746 /* wait a bit for the reclaimer. */
1747 msleep(100);
1748 stalled = true;
1749
1750 /* We are about to die and free our memory. Return now. */
1751 if (fatal_signal_pending(current))
1752 return SWAP_CLUSTER_MAX;
1753 }
1754
1755 lru_add_drain();
1756
1757 if (!sc->may_unmap)
1758 isolate_mode |= ISOLATE_UNMAPPED;
1759
1760 spin_lock_irq(&pgdat->lru_lock);
1761
1762 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1763 &nr_scanned, sc, isolate_mode, lru);
1764
1765 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1766 reclaim_stat->recent_scanned[file] += nr_taken;
1767
1768 if (current_is_kswapd()) {
1769 if (global_reclaim(sc))
1770 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1771 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1772 nr_scanned);
1773 } else {
1774 if (global_reclaim(sc))
1775 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1776 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1777 nr_scanned);
1778 }
1779 spin_unlock_irq(&pgdat->lru_lock);
1780
1781 if (nr_taken == 0)
1782 return 0;
1783
1784 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1785 &stat, false);
1786
1787 spin_lock_irq(&pgdat->lru_lock);
1788
1789 if (current_is_kswapd()) {
1790 if (global_reclaim(sc))
1791 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1792 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1793 nr_reclaimed);
1794 } else {
1795 if (global_reclaim(sc))
1796 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1797 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1798 nr_reclaimed);
1799 }
1800
1801 putback_inactive_pages(lruvec, &page_list);
1802
1803 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1804
1805 spin_unlock_irq(&pgdat->lru_lock);
1806
1807 mem_cgroup_uncharge_list(&page_list);
1808 free_unref_page_list(&page_list);
1809
1810 /*
1811 * If dirty pages are scanned that are not queued for IO, it
1812 * implies that flushers are not doing their job. This can
1813 * happen when memory pressure pushes dirty pages to the end of
1814 * the LRU before the dirty limits are breached and the dirty
1815 * data has expired. It can also happen when the proportion of
1816 * dirty pages grows not through writes but through memory
1817 * pressure reclaiming all the clean cache. And in some cases,
1818 * the flushers simply cannot keep up with the allocation
1819 * rate. Nudge the flusher threads in case they are asleep.
1820 */
1821 if (stat.nr_unqueued_dirty == nr_taken)
1822 wakeup_flusher_threads(WB_REASON_VMSCAN);
1823
1824 sc->nr.dirty += stat.nr_dirty;
1825 sc->nr.congested += stat.nr_congested;
1826 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1827 sc->nr.writeback += stat.nr_writeback;
1828 sc->nr.immediate += stat.nr_immediate;
1829 sc->nr.taken += nr_taken;
1830 if (file)
1831 sc->nr.file_taken += nr_taken;
1832
1833 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1834 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1835 return nr_reclaimed;
1836 }
1837
1838 /*
1839 * This moves pages from the active list to the inactive list.
1840 *
1841 * We move them the other way if the page is referenced by one or more
1842 * processes, from rmap.
1843 *
1844 * If the pages are mostly unmapped, the processing is fast and it is
1845 * appropriate to hold zone_lru_lock across the whole operation. But if
1846 * the pages are mapped, the processing is slow (page_referenced()) so we
1847 * should drop zone_lru_lock around each page. It's impossible to balance
1848 * this, so instead we remove the pages from the LRU while processing them.
1849 * It is safe to rely on PG_active against the non-LRU pages in here because
1850 * nobody will play with that bit on a non-LRU page.
1851 *
1852 * The downside is that we have to touch page->_refcount against each page.
1853 * But we had to alter page->flags anyway.
1854 *
1855 * Returns the number of pages moved to the given lru.
1856 */
1857
1858 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1859 struct list_head *list,
1860 struct list_head *pages_to_free,
1861 enum lru_list lru)
1862 {
1863 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1864 struct page *page;
1865 int nr_pages;
1866 int nr_moved = 0;
1867
1868 while (!list_empty(list)) {
1869 page = lru_to_page(list);
1870 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1871
1872 VM_BUG_ON_PAGE(PageLRU(page), page);
1873 SetPageLRU(page);
1874
1875 nr_pages = hpage_nr_pages(page);
1876 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1877 list_move(&page->lru, &lruvec->lists[lru]);
1878
1879 if (put_page_testzero(page)) {
1880 __ClearPageLRU(page);
1881 __ClearPageActive(page);
1882 del_page_from_lru_list(page, lruvec, lru);
1883
1884 if (unlikely(PageCompound(page))) {
1885 spin_unlock_irq(&pgdat->lru_lock);
1886 mem_cgroup_uncharge(page);
1887 (*get_compound_page_dtor(page))(page);
1888 spin_lock_irq(&pgdat->lru_lock);
1889 } else
1890 list_add(&page->lru, pages_to_free);
1891 } else {
1892 nr_moved += nr_pages;
1893 }
1894 }
1895
1896 if (!is_active_lru(lru)) {
1897 __count_vm_events(PGDEACTIVATE, nr_moved);
1898 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1899 nr_moved);
1900 }
1901
1902 return nr_moved;
1903 }
1904
1905 static void shrink_active_list(unsigned long nr_to_scan,
1906 struct lruvec *lruvec,
1907 struct scan_control *sc,
1908 enum lru_list lru)
1909 {
1910 unsigned long nr_taken;
1911 unsigned long nr_scanned;
1912 unsigned long vm_flags;
1913 LIST_HEAD(l_hold); /* The pages which were snipped off */
1914 LIST_HEAD(l_active);
1915 LIST_HEAD(l_inactive);
1916 struct page *page;
1917 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1918 unsigned nr_deactivate, nr_activate;
1919 unsigned nr_rotated = 0;
1920 isolate_mode_t isolate_mode = 0;
1921 int file = is_file_lru(lru);
1922 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1923
1924 lru_add_drain();
1925
1926 if (!sc->may_unmap)
1927 isolate_mode |= ISOLATE_UNMAPPED;
1928
1929 spin_lock_irq(&pgdat->lru_lock);
1930
1931 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1932 &nr_scanned, sc, isolate_mode, lru);
1933
1934 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1935 reclaim_stat->recent_scanned[file] += nr_taken;
1936
1937 __count_vm_events(PGREFILL, nr_scanned);
1938 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
1939
1940 spin_unlock_irq(&pgdat->lru_lock);
1941
1942 while (!list_empty(&l_hold)) {
1943 cond_resched();
1944 page = lru_to_page(&l_hold);
1945 list_del(&page->lru);
1946
1947 if (unlikely(!page_evictable(page))) {
1948 putback_lru_page(page);
1949 continue;
1950 }
1951
1952 if (unlikely(buffer_heads_over_limit)) {
1953 if (page_has_private(page) && trylock_page(page)) {
1954 if (page_has_private(page))
1955 try_to_release_page(page, 0);
1956 unlock_page(page);
1957 }
1958 }
1959
1960 if (page_referenced(page, 0, sc->target_mem_cgroup,
1961 &vm_flags)) {
1962 nr_rotated += hpage_nr_pages(page);
1963 /*
1964 * Identify referenced, file-backed active pages and
1965 * give them one more trip around the active list. So
1966 * that executable code get better chances to stay in
1967 * memory under moderate memory pressure. Anon pages
1968 * are not likely to be evicted by use-once streaming
1969 * IO, plus JVM can create lots of anon VM_EXEC pages,
1970 * so we ignore them here.
1971 */
1972 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1973 list_add(&page->lru, &l_active);
1974 continue;
1975 }
1976 }
1977
1978 ClearPageActive(page); /* we are de-activating */
1979 list_add(&page->lru, &l_inactive);
1980 }
1981
1982 /*
1983 * Move pages back to the lru list.
1984 */
1985 spin_lock_irq(&pgdat->lru_lock);
1986 /*
1987 * Count referenced pages from currently used mappings as rotated,
1988 * even though only some of them are actually re-activated. This
1989 * helps balance scan pressure between file and anonymous pages in
1990 * get_scan_count.
1991 */
1992 reclaim_stat->recent_rotated[file] += nr_rotated;
1993
1994 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1995 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1996 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1997 spin_unlock_irq(&pgdat->lru_lock);
1998
1999 mem_cgroup_uncharge_list(&l_hold);
2000 free_unref_page_list(&l_hold);
2001 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2002 nr_deactivate, nr_rotated, sc->priority, file);
2003 }
2004
2005 /*
2006 * The inactive anon list should be small enough that the VM never has
2007 * to do too much work.
2008 *
2009 * The inactive file list should be small enough to leave most memory
2010 * to the established workingset on the scan-resistant active list,
2011 * but large enough to avoid thrashing the aggregate readahead window.
2012 *
2013 * Both inactive lists should also be large enough that each inactive
2014 * page has a chance to be referenced again before it is reclaimed.
2015 *
2016 * If that fails and refaulting is observed, the inactive list grows.
2017 *
2018 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2019 * on this LRU, maintained by the pageout code. An inactive_ratio
2020 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2021 *
2022 * total target max
2023 * memory ratio inactive
2024 * -------------------------------------
2025 * 10MB 1 5MB
2026 * 100MB 1 50MB
2027 * 1GB 3 250MB
2028 * 10GB 10 0.9GB
2029 * 100GB 31 3GB
2030 * 1TB 101 10GB
2031 * 10TB 320 32GB
2032 */
2033 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2034 struct mem_cgroup *memcg,
2035 struct scan_control *sc, bool actual_reclaim)
2036 {
2037 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2038 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2039 enum lru_list inactive_lru = file * LRU_FILE;
2040 unsigned long inactive, active;
2041 unsigned long inactive_ratio;
2042 unsigned long refaults;
2043 unsigned long gb;
2044
2045 /*
2046 * If we don't have swap space, anonymous page deactivation
2047 * is pointless.
2048 */
2049 if (!file && !total_swap_pages)
2050 return false;
2051
2052 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2053 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2054
2055 if (memcg)
2056 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2057 else
2058 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2059
2060 /*
2061 * When refaults are being observed, it means a new workingset
2062 * is being established. Disable active list protection to get
2063 * rid of the stale workingset quickly.
2064 */
2065 if (file && actual_reclaim && lruvec->refaults != refaults) {
2066 inactive_ratio = 0;
2067 } else {
2068 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2069 if (gb)
2070 inactive_ratio = int_sqrt(10 * gb);
2071 else
2072 inactive_ratio = 1;
2073 }
2074
2075 if (actual_reclaim)
2076 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2077 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2078 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2079 inactive_ratio, file);
2080
2081 return inactive * inactive_ratio < active;
2082 }
2083
2084 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2085 struct lruvec *lruvec, struct mem_cgroup *memcg,
2086 struct scan_control *sc)
2087 {
2088 if (is_active_lru(lru)) {
2089 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2090 memcg, sc, true))
2091 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2092 return 0;
2093 }
2094
2095 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2096 }
2097
2098 enum scan_balance {
2099 SCAN_EQUAL,
2100 SCAN_FRACT,
2101 SCAN_ANON,
2102 SCAN_FILE,
2103 };
2104
2105 /*
2106 * Determine how aggressively the anon and file LRU lists should be
2107 * scanned. The relative value of each set of LRU lists is determined
2108 * by looking at the fraction of the pages scanned we did rotate back
2109 * onto the active list instead of evict.
2110 *
2111 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2112 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2113 */
2114 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2115 struct scan_control *sc, unsigned long *nr,
2116 unsigned long *lru_pages)
2117 {
2118 int swappiness = mem_cgroup_swappiness(memcg);
2119 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2120 u64 fraction[2];
2121 u64 denominator = 0; /* gcc */
2122 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2123 unsigned long anon_prio, file_prio;
2124 enum scan_balance scan_balance;
2125 unsigned long anon, file;
2126 unsigned long ap, fp;
2127 enum lru_list lru;
2128
2129 /* If we have no swap space, do not bother scanning anon pages. */
2130 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2131 scan_balance = SCAN_FILE;
2132 goto out;
2133 }
2134
2135 /*
2136 * Global reclaim will swap to prevent OOM even with no
2137 * swappiness, but memcg users want to use this knob to
2138 * disable swapping for individual groups completely when
2139 * using the memory controller's swap limit feature would be
2140 * too expensive.
2141 */
2142 if (!global_reclaim(sc) && !swappiness) {
2143 scan_balance = SCAN_FILE;
2144 goto out;
2145 }
2146
2147 /*
2148 * Do not apply any pressure balancing cleverness when the
2149 * system is close to OOM, scan both anon and file equally
2150 * (unless the swappiness setting disagrees with swapping).
2151 */
2152 if (!sc->priority && swappiness) {
2153 scan_balance = SCAN_EQUAL;
2154 goto out;
2155 }
2156
2157 /*
2158 * Prevent the reclaimer from falling into the cache trap: as
2159 * cache pages start out inactive, every cache fault will tip
2160 * the scan balance towards the file LRU. And as the file LRU
2161 * shrinks, so does the window for rotation from references.
2162 * This means we have a runaway feedback loop where a tiny
2163 * thrashing file LRU becomes infinitely more attractive than
2164 * anon pages. Try to detect this based on file LRU size.
2165 */
2166 if (global_reclaim(sc)) {
2167 unsigned long pgdatfile;
2168 unsigned long pgdatfree;
2169 int z;
2170 unsigned long total_high_wmark = 0;
2171
2172 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2173 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2174 node_page_state(pgdat, NR_INACTIVE_FILE);
2175
2176 for (z = 0; z < MAX_NR_ZONES; z++) {
2177 struct zone *zone = &pgdat->node_zones[z];
2178 if (!managed_zone(zone))
2179 continue;
2180
2181 total_high_wmark += high_wmark_pages(zone);
2182 }
2183
2184 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2185 /*
2186 * Force SCAN_ANON if there are enough inactive
2187 * anonymous pages on the LRU in eligible zones.
2188 * Otherwise, the small LRU gets thrashed.
2189 */
2190 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2191 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2192 >> sc->priority) {
2193 scan_balance = SCAN_ANON;
2194 goto out;
2195 }
2196 }
2197 }
2198
2199 /*
2200 * If there is enough inactive page cache, i.e. if the size of the
2201 * inactive list is greater than that of the active list *and* the
2202 * inactive list actually has some pages to scan on this priority, we
2203 * do not reclaim anything from the anonymous working set right now.
2204 * Without the second condition we could end up never scanning an
2205 * lruvec even if it has plenty of old anonymous pages unless the
2206 * system is under heavy pressure.
2207 */
2208 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2209 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2210 scan_balance = SCAN_FILE;
2211 goto out;
2212 }
2213
2214 scan_balance = SCAN_FRACT;
2215
2216 /*
2217 * With swappiness at 100, anonymous and file have the same priority.
2218 * This scanning priority is essentially the inverse of IO cost.
2219 */
2220 anon_prio = swappiness;
2221 file_prio = 200 - anon_prio;
2222
2223 /*
2224 * OK, so we have swap space and a fair amount of page cache
2225 * pages. We use the recently rotated / recently scanned
2226 * ratios to determine how valuable each cache is.
2227 *
2228 * Because workloads change over time (and to avoid overflow)
2229 * we keep these statistics as a floating average, which ends
2230 * up weighing recent references more than old ones.
2231 *
2232 * anon in [0], file in [1]
2233 */
2234
2235 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2236 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2237 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2238 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2239
2240 spin_lock_irq(&pgdat->lru_lock);
2241 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2242 reclaim_stat->recent_scanned[0] /= 2;
2243 reclaim_stat->recent_rotated[0] /= 2;
2244 }
2245
2246 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2247 reclaim_stat->recent_scanned[1] /= 2;
2248 reclaim_stat->recent_rotated[1] /= 2;
2249 }
2250
2251 /*
2252 * The amount of pressure on anon vs file pages is inversely
2253 * proportional to the fraction of recently scanned pages on
2254 * each list that were recently referenced and in active use.
2255 */
2256 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2257 ap /= reclaim_stat->recent_rotated[0] + 1;
2258
2259 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2260 fp /= reclaim_stat->recent_rotated[1] + 1;
2261 spin_unlock_irq(&pgdat->lru_lock);
2262
2263 fraction[0] = ap;
2264 fraction[1] = fp;
2265 denominator = ap + fp + 1;
2266 out:
2267 *lru_pages = 0;
2268 for_each_evictable_lru(lru) {
2269 int file = is_file_lru(lru);
2270 unsigned long size;
2271 unsigned long scan;
2272
2273 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2274 scan = size >> sc->priority;
2275 /*
2276 * If the cgroup's already been deleted, make sure to
2277 * scrape out the remaining cache.
2278 */
2279 if (!scan && !mem_cgroup_online(memcg))
2280 scan = min(size, SWAP_CLUSTER_MAX);
2281
2282 switch (scan_balance) {
2283 case SCAN_EQUAL:
2284 /* Scan lists relative to size */
2285 break;
2286 case SCAN_FRACT:
2287 /*
2288 * Scan types proportional to swappiness and
2289 * their relative recent reclaim efficiency.
2290 */
2291 scan = div64_u64(scan * fraction[file],
2292 denominator);
2293 break;
2294 case SCAN_FILE:
2295 case SCAN_ANON:
2296 /* Scan one type exclusively */
2297 if ((scan_balance == SCAN_FILE) != file) {
2298 size = 0;
2299 scan = 0;
2300 }
2301 break;
2302 default:
2303 /* Look ma, no brain */
2304 BUG();
2305 }
2306
2307 *lru_pages += size;
2308 nr[lru] = scan;
2309 }
2310 }
2311
2312 /*
2313 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2314 */
2315 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2316 struct scan_control *sc, unsigned long *lru_pages)
2317 {
2318 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2319 unsigned long nr[NR_LRU_LISTS];
2320 unsigned long targets[NR_LRU_LISTS];
2321 unsigned long nr_to_scan;
2322 enum lru_list lru;
2323 unsigned long nr_reclaimed = 0;
2324 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2325 struct blk_plug plug;
2326 bool scan_adjusted;
2327
2328 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2329
2330 /* Record the original scan target for proportional adjustments later */
2331 memcpy(targets, nr, sizeof(nr));
2332
2333 /*
2334 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2335 * event that can occur when there is little memory pressure e.g.
2336 * multiple streaming readers/writers. Hence, we do not abort scanning
2337 * when the requested number of pages are reclaimed when scanning at
2338 * DEF_PRIORITY on the assumption that the fact we are direct
2339 * reclaiming implies that kswapd is not keeping up and it is best to
2340 * do a batch of work at once. For memcg reclaim one check is made to
2341 * abort proportional reclaim if either the file or anon lru has already
2342 * dropped to zero at the first pass.
2343 */
2344 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2345 sc->priority == DEF_PRIORITY);
2346
2347 blk_start_plug(&plug);
2348 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2349 nr[LRU_INACTIVE_FILE]) {
2350 unsigned long nr_anon, nr_file, percentage;
2351 unsigned long nr_scanned;
2352
2353 for_each_evictable_lru(lru) {
2354 if (nr[lru]) {
2355 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2356 nr[lru] -= nr_to_scan;
2357
2358 nr_reclaimed += shrink_list(lru, nr_to_scan,
2359 lruvec, memcg, sc);
2360 }
2361 }
2362
2363 cond_resched();
2364
2365 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2366 continue;
2367
2368 /*
2369 * For kswapd and memcg, reclaim at least the number of pages
2370 * requested. Ensure that the anon and file LRUs are scanned
2371 * proportionally what was requested by get_scan_count(). We
2372 * stop reclaiming one LRU and reduce the amount scanning
2373 * proportional to the original scan target.
2374 */
2375 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2376 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2377
2378 /*
2379 * It's just vindictive to attack the larger once the smaller
2380 * has gone to zero. And given the way we stop scanning the
2381 * smaller below, this makes sure that we only make one nudge
2382 * towards proportionality once we've got nr_to_reclaim.
2383 */
2384 if (!nr_file || !nr_anon)
2385 break;
2386
2387 if (nr_file > nr_anon) {
2388 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2389 targets[LRU_ACTIVE_ANON] + 1;
2390 lru = LRU_BASE;
2391 percentage = nr_anon * 100 / scan_target;
2392 } else {
2393 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2394 targets[LRU_ACTIVE_FILE] + 1;
2395 lru = LRU_FILE;
2396 percentage = nr_file * 100 / scan_target;
2397 }
2398
2399 /* Stop scanning the smaller of the LRU */
2400 nr[lru] = 0;
2401 nr[lru + LRU_ACTIVE] = 0;
2402
2403 /*
2404 * Recalculate the other LRU scan count based on its original
2405 * scan target and the percentage scanning already complete
2406 */
2407 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2408 nr_scanned = targets[lru] - nr[lru];
2409 nr[lru] = targets[lru] * (100 - percentage) / 100;
2410 nr[lru] -= min(nr[lru], nr_scanned);
2411
2412 lru += LRU_ACTIVE;
2413 nr_scanned = targets[lru] - nr[lru];
2414 nr[lru] = targets[lru] * (100 - percentage) / 100;
2415 nr[lru] -= min(nr[lru], nr_scanned);
2416
2417 scan_adjusted = true;
2418 }
2419 blk_finish_plug(&plug);
2420 sc->nr_reclaimed += nr_reclaimed;
2421
2422 /*
2423 * Even if we did not try to evict anon pages at all, we want to
2424 * rebalance the anon lru active/inactive ratio.
2425 */
2426 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2427 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2428 sc, LRU_ACTIVE_ANON);
2429 }
2430
2431 /* Use reclaim/compaction for costly allocs or under memory pressure */
2432 static bool in_reclaim_compaction(struct scan_control *sc)
2433 {
2434 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2435 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2436 sc->priority < DEF_PRIORITY - 2))
2437 return true;
2438
2439 return false;
2440 }
2441
2442 /*
2443 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2444 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2445 * true if more pages should be reclaimed such that when the page allocator
2446 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2447 * It will give up earlier than that if there is difficulty reclaiming pages.
2448 */
2449 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2450 unsigned long nr_reclaimed,
2451 unsigned long nr_scanned,
2452 struct scan_control *sc)
2453 {
2454 unsigned long pages_for_compaction;
2455 unsigned long inactive_lru_pages;
2456 int z;
2457
2458 /* If not in reclaim/compaction mode, stop */
2459 if (!in_reclaim_compaction(sc))
2460 return false;
2461
2462 /* Consider stopping depending on scan and reclaim activity */
2463 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2464 /*
2465 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2466 * full LRU list has been scanned and we are still failing
2467 * to reclaim pages. This full LRU scan is potentially
2468 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2469 */
2470 if (!nr_reclaimed && !nr_scanned)
2471 return false;
2472 } else {
2473 /*
2474 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2475 * fail without consequence, stop if we failed to reclaim
2476 * any pages from the last SWAP_CLUSTER_MAX number of
2477 * pages that were scanned. This will return to the
2478 * caller faster at the risk reclaim/compaction and
2479 * the resulting allocation attempt fails
2480 */
2481 if (!nr_reclaimed)
2482 return false;
2483 }
2484
2485 /*
2486 * If we have not reclaimed enough pages for compaction and the
2487 * inactive lists are large enough, continue reclaiming
2488 */
2489 pages_for_compaction = compact_gap(sc->order);
2490 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2491 if (get_nr_swap_pages() > 0)
2492 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2493 if (sc->nr_reclaimed < pages_for_compaction &&
2494 inactive_lru_pages > pages_for_compaction)
2495 return true;
2496
2497 /* If compaction would go ahead or the allocation would succeed, stop */
2498 for (z = 0; z <= sc->reclaim_idx; z++) {
2499 struct zone *zone = &pgdat->node_zones[z];
2500 if (!managed_zone(zone))
2501 continue;
2502
2503 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2504 case COMPACT_SUCCESS:
2505 case COMPACT_CONTINUE:
2506 return false;
2507 default:
2508 /* check next zone */
2509 ;
2510 }
2511 }
2512 return true;
2513 }
2514
2515 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2516 {
2517 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2518 (memcg && memcg_congested(pgdat, memcg));
2519 }
2520
2521 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2522 {
2523 struct reclaim_state *reclaim_state = current->reclaim_state;
2524 unsigned long nr_reclaimed, nr_scanned;
2525 bool reclaimable = false;
2526
2527 do {
2528 struct mem_cgroup *root = sc->target_mem_cgroup;
2529 struct mem_cgroup_reclaim_cookie reclaim = {
2530 .pgdat = pgdat,
2531 .priority = sc->priority,
2532 };
2533 unsigned long node_lru_pages = 0;
2534 struct mem_cgroup *memcg;
2535
2536 memset(&sc->nr, 0, sizeof(sc->nr));
2537
2538 nr_reclaimed = sc->nr_reclaimed;
2539 nr_scanned = sc->nr_scanned;
2540
2541 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2542 do {
2543 unsigned long lru_pages;
2544 unsigned long reclaimed;
2545 unsigned long scanned;
2546
2547 switch (mem_cgroup_protected(root, memcg)) {
2548 case MEMCG_PROT_MIN:
2549 /*
2550 * Hard protection.
2551 * If there is no reclaimable memory, OOM.
2552 */
2553 continue;
2554 case MEMCG_PROT_LOW:
2555 /*
2556 * Soft protection.
2557 * Respect the protection only as long as
2558 * there is an unprotected supply
2559 * of reclaimable memory from other cgroups.
2560 */
2561 if (!sc->memcg_low_reclaim) {
2562 sc->memcg_low_skipped = 1;
2563 continue;
2564 }
2565 memcg_memory_event(memcg, MEMCG_LOW);
2566 break;
2567 case MEMCG_PROT_NONE:
2568 break;
2569 }
2570
2571 reclaimed = sc->nr_reclaimed;
2572 scanned = sc->nr_scanned;
2573 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2574 node_lru_pages += lru_pages;
2575
2576 if (memcg)
2577 shrink_slab(sc->gfp_mask, pgdat->node_id,
2578 memcg, sc->priority);
2579
2580 /* Record the group's reclaim efficiency */
2581 vmpressure(sc->gfp_mask, memcg, false,
2582 sc->nr_scanned - scanned,
2583 sc->nr_reclaimed - reclaimed);
2584
2585 /*
2586 * Direct reclaim and kswapd have to scan all memory
2587 * cgroups to fulfill the overall scan target for the
2588 * node.
2589 *
2590 * Limit reclaim, on the other hand, only cares about
2591 * nr_to_reclaim pages to be reclaimed and it will
2592 * retry with decreasing priority if one round over the
2593 * whole hierarchy is not sufficient.
2594 */
2595 if (!global_reclaim(sc) &&
2596 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2597 mem_cgroup_iter_break(root, memcg);
2598 break;
2599 }
2600 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2601
2602 if (global_reclaim(sc))
2603 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2604 sc->priority);
2605
2606 if (reclaim_state) {
2607 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2608 reclaim_state->reclaimed_slab = 0;
2609 }
2610
2611 /* Record the subtree's reclaim efficiency */
2612 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2613 sc->nr_scanned - nr_scanned,
2614 sc->nr_reclaimed - nr_reclaimed);
2615
2616 if (sc->nr_reclaimed - nr_reclaimed)
2617 reclaimable = true;
2618
2619 if (current_is_kswapd()) {
2620 /*
2621 * If reclaim is isolating dirty pages under writeback,
2622 * it implies that the long-lived page allocation rate
2623 * is exceeding the page laundering rate. Either the
2624 * global limits are not being effective at throttling
2625 * processes due to the page distribution throughout
2626 * zones or there is heavy usage of a slow backing
2627 * device. The only option is to throttle from reclaim
2628 * context which is not ideal as there is no guarantee
2629 * the dirtying process is throttled in the same way
2630 * balance_dirty_pages() manages.
2631 *
2632 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2633 * count the number of pages under pages flagged for
2634 * immediate reclaim and stall if any are encountered
2635 * in the nr_immediate check below.
2636 */
2637 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2638 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2639
2640 /*
2641 * Tag a node as congested if all the dirty pages
2642 * scanned were backed by a congested BDI and
2643 * wait_iff_congested will stall.
2644 */
2645 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2646 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2647
2648 /* Allow kswapd to start writing pages during reclaim.*/
2649 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2650 set_bit(PGDAT_DIRTY, &pgdat->flags);
2651
2652 /*
2653 * If kswapd scans pages marked marked for immediate
2654 * reclaim and under writeback (nr_immediate), it
2655 * implies that pages are cycling through the LRU
2656 * faster than they are written so also forcibly stall.
2657 */
2658 if (sc->nr.immediate)
2659 congestion_wait(BLK_RW_ASYNC, HZ/10);
2660 }
2661
2662 /*
2663 * Legacy memcg will stall in page writeback so avoid forcibly
2664 * stalling in wait_iff_congested().
2665 */
2666 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2667 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2668 set_memcg_congestion(pgdat, root, true);
2669
2670 /*
2671 * Stall direct reclaim for IO completions if underlying BDIs
2672 * and node is congested. Allow kswapd to continue until it
2673 * starts encountering unqueued dirty pages or cycling through
2674 * the LRU too quickly.
2675 */
2676 if (!sc->hibernation_mode && !current_is_kswapd() &&
2677 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2678 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2679
2680 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2681 sc->nr_scanned - nr_scanned, sc));
2682
2683 /*
2684 * Kswapd gives up on balancing particular nodes after too
2685 * many failures to reclaim anything from them and goes to
2686 * sleep. On reclaim progress, reset the failure counter. A
2687 * successful direct reclaim run will revive a dormant kswapd.
2688 */
2689 if (reclaimable)
2690 pgdat->kswapd_failures = 0;
2691
2692 return reclaimable;
2693 }
2694
2695 /*
2696 * Returns true if compaction should go ahead for a costly-order request, or
2697 * the allocation would already succeed without compaction. Return false if we
2698 * should reclaim first.
2699 */
2700 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2701 {
2702 unsigned long watermark;
2703 enum compact_result suitable;
2704
2705 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2706 if (suitable == COMPACT_SUCCESS)
2707 /* Allocation should succeed already. Don't reclaim. */
2708 return true;
2709 if (suitable == COMPACT_SKIPPED)
2710 /* Compaction cannot yet proceed. Do reclaim. */
2711 return false;
2712
2713 /*
2714 * Compaction is already possible, but it takes time to run and there
2715 * are potentially other callers using the pages just freed. So proceed
2716 * with reclaim to make a buffer of free pages available to give
2717 * compaction a reasonable chance of completing and allocating the page.
2718 * Note that we won't actually reclaim the whole buffer in one attempt
2719 * as the target watermark in should_continue_reclaim() is lower. But if
2720 * we are already above the high+gap watermark, don't reclaim at all.
2721 */
2722 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2723
2724 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2725 }
2726
2727 /*
2728 * This is the direct reclaim path, for page-allocating processes. We only
2729 * try to reclaim pages from zones which will satisfy the caller's allocation
2730 * request.
2731 *
2732 * If a zone is deemed to be full of pinned pages then just give it a light
2733 * scan then give up on it.
2734 */
2735 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2736 {
2737 struct zoneref *z;
2738 struct zone *zone;
2739 unsigned long nr_soft_reclaimed;
2740 unsigned long nr_soft_scanned;
2741 gfp_t orig_mask;
2742 pg_data_t *last_pgdat = NULL;
2743
2744 /*
2745 * If the number of buffer_heads in the machine exceeds the maximum
2746 * allowed level, force direct reclaim to scan the highmem zone as
2747 * highmem pages could be pinning lowmem pages storing buffer_heads
2748 */
2749 orig_mask = sc->gfp_mask;
2750 if (buffer_heads_over_limit) {
2751 sc->gfp_mask |= __GFP_HIGHMEM;
2752 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2753 }
2754
2755 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2756 sc->reclaim_idx, sc->nodemask) {
2757 /*
2758 * Take care memory controller reclaiming has small influence
2759 * to global LRU.
2760 */
2761 if (global_reclaim(sc)) {
2762 if (!cpuset_zone_allowed(zone,
2763 GFP_KERNEL | __GFP_HARDWALL))
2764 continue;
2765
2766 /*
2767 * If we already have plenty of memory free for
2768 * compaction in this zone, don't free any more.
2769 * Even though compaction is invoked for any
2770 * non-zero order, only frequent costly order
2771 * reclamation is disruptive enough to become a
2772 * noticeable problem, like transparent huge
2773 * page allocations.
2774 */
2775 if (IS_ENABLED(CONFIG_COMPACTION) &&
2776 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2777 compaction_ready(zone, sc)) {
2778 sc->compaction_ready = true;
2779 continue;
2780 }
2781
2782 /*
2783 * Shrink each node in the zonelist once. If the
2784 * zonelist is ordered by zone (not the default) then a
2785 * node may be shrunk multiple times but in that case
2786 * the user prefers lower zones being preserved.
2787 */
2788 if (zone->zone_pgdat == last_pgdat)
2789 continue;
2790
2791 /*
2792 * This steals pages from memory cgroups over softlimit
2793 * and returns the number of reclaimed pages and
2794 * scanned pages. This works for global memory pressure
2795 * and balancing, not for a memcg's limit.
2796 */
2797 nr_soft_scanned = 0;
2798 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2799 sc->order, sc->gfp_mask,
2800 &nr_soft_scanned);
2801 sc->nr_reclaimed += nr_soft_reclaimed;
2802 sc->nr_scanned += nr_soft_scanned;
2803 /* need some check for avoid more shrink_zone() */
2804 }
2805
2806 /* See comment about same check for global reclaim above */
2807 if (zone->zone_pgdat == last_pgdat)
2808 continue;
2809 last_pgdat = zone->zone_pgdat;
2810 shrink_node(zone->zone_pgdat, sc);
2811 }
2812
2813 /*
2814 * Restore to original mask to avoid the impact on the caller if we
2815 * promoted it to __GFP_HIGHMEM.
2816 */
2817 sc->gfp_mask = orig_mask;
2818 }
2819
2820 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2821 {
2822 struct mem_cgroup *memcg;
2823
2824 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2825 do {
2826 unsigned long refaults;
2827 struct lruvec *lruvec;
2828
2829 if (memcg)
2830 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2831 else
2832 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2833
2834 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2835 lruvec->refaults = refaults;
2836 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2837 }
2838
2839 /*
2840 * This is the main entry point to direct page reclaim.
2841 *
2842 * If a full scan of the inactive list fails to free enough memory then we
2843 * are "out of memory" and something needs to be killed.
2844 *
2845 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2846 * high - the zone may be full of dirty or under-writeback pages, which this
2847 * caller can't do much about. We kick the writeback threads and take explicit
2848 * naps in the hope that some of these pages can be written. But if the
2849 * allocating task holds filesystem locks which prevent writeout this might not
2850 * work, and the allocation attempt will fail.
2851 *
2852 * returns: 0, if no pages reclaimed
2853 * else, the number of pages reclaimed
2854 */
2855 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2856 struct scan_control *sc)
2857 {
2858 int initial_priority = sc->priority;
2859 pg_data_t *last_pgdat;
2860 struct zoneref *z;
2861 struct zone *zone;
2862 retry:
2863 delayacct_freepages_start();
2864
2865 if (global_reclaim(sc))
2866 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2867
2868 do {
2869 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2870 sc->priority);
2871 sc->nr_scanned = 0;
2872 shrink_zones(zonelist, sc);
2873
2874 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2875 break;
2876
2877 if (sc->compaction_ready)
2878 break;
2879
2880 /*
2881 * If we're getting trouble reclaiming, start doing
2882 * writepage even in laptop mode.
2883 */
2884 if (sc->priority < DEF_PRIORITY - 2)
2885 sc->may_writepage = 1;
2886 } while (--sc->priority >= 0);
2887
2888 last_pgdat = NULL;
2889 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2890 sc->nodemask) {
2891 if (zone->zone_pgdat == last_pgdat)
2892 continue;
2893 last_pgdat = zone->zone_pgdat;
2894 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2895 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
2896 }
2897
2898 delayacct_freepages_end();
2899
2900 if (sc->nr_reclaimed)
2901 return sc->nr_reclaimed;
2902
2903 /* Aborted reclaim to try compaction? don't OOM, then */
2904 if (sc->compaction_ready)
2905 return 1;
2906
2907 /* Untapped cgroup reserves? Don't OOM, retry. */
2908 if (sc->memcg_low_skipped) {
2909 sc->priority = initial_priority;
2910 sc->memcg_low_reclaim = 1;
2911 sc->memcg_low_skipped = 0;
2912 goto retry;
2913 }
2914
2915 return 0;
2916 }
2917
2918 static bool allow_direct_reclaim(pg_data_t *pgdat)
2919 {
2920 struct zone *zone;
2921 unsigned long pfmemalloc_reserve = 0;
2922 unsigned long free_pages = 0;
2923 int i;
2924 bool wmark_ok;
2925
2926 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2927 return true;
2928
2929 for (i = 0; i <= ZONE_NORMAL; i++) {
2930 zone = &pgdat->node_zones[i];
2931 if (!managed_zone(zone))
2932 continue;
2933
2934 if (!zone_reclaimable_pages(zone))
2935 continue;
2936
2937 pfmemalloc_reserve += min_wmark_pages(zone);
2938 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2939 }
2940
2941 /* If there are no reserves (unexpected config) then do not throttle */
2942 if (!pfmemalloc_reserve)
2943 return true;
2944
2945 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2946
2947 /* kswapd must be awake if processes are being throttled */
2948 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2949 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2950 (enum zone_type)ZONE_NORMAL);
2951 wake_up_interruptible(&pgdat->kswapd_wait);
2952 }
2953
2954 return wmark_ok;
2955 }
2956
2957 /*
2958 * Throttle direct reclaimers if backing storage is backed by the network
2959 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2960 * depleted. kswapd will continue to make progress and wake the processes
2961 * when the low watermark is reached.
2962 *
2963 * Returns true if a fatal signal was delivered during throttling. If this
2964 * happens, the page allocator should not consider triggering the OOM killer.
2965 */
2966 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2967 nodemask_t *nodemask)
2968 {
2969 struct zoneref *z;
2970 struct zone *zone;
2971 pg_data_t *pgdat = NULL;
2972
2973 /*
2974 * Kernel threads should not be throttled as they may be indirectly
2975 * responsible for cleaning pages necessary for reclaim to make forward
2976 * progress. kjournald for example may enter direct reclaim while
2977 * committing a transaction where throttling it could forcing other
2978 * processes to block on log_wait_commit().
2979 */
2980 if (current->flags & PF_KTHREAD)
2981 goto out;
2982
2983 /*
2984 * If a fatal signal is pending, this process should not throttle.
2985 * It should return quickly so it can exit and free its memory
2986 */
2987 if (fatal_signal_pending(current))
2988 goto out;
2989
2990 /*
2991 * Check if the pfmemalloc reserves are ok by finding the first node
2992 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2993 * GFP_KERNEL will be required for allocating network buffers when
2994 * swapping over the network so ZONE_HIGHMEM is unusable.
2995 *
2996 * Throttling is based on the first usable node and throttled processes
2997 * wait on a queue until kswapd makes progress and wakes them. There
2998 * is an affinity then between processes waking up and where reclaim
2999 * progress has been made assuming the process wakes on the same node.
3000 * More importantly, processes running on remote nodes will not compete
3001 * for remote pfmemalloc reserves and processes on different nodes
3002 * should make reasonable progress.
3003 */
3004 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3005 gfp_zone(gfp_mask), nodemask) {
3006 if (zone_idx(zone) > ZONE_NORMAL)
3007 continue;
3008
3009 /* Throttle based on the first usable node */
3010 pgdat = zone->zone_pgdat;
3011 if (allow_direct_reclaim(pgdat))
3012 goto out;
3013 break;
3014 }
3015
3016 /* If no zone was usable by the allocation flags then do not throttle */
3017 if (!pgdat)
3018 goto out;
3019
3020 /* Account for the throttling */
3021 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3022
3023 /*
3024 * If the caller cannot enter the filesystem, it's possible that it
3025 * is due to the caller holding an FS lock or performing a journal
3026 * transaction in the case of a filesystem like ext[3|4]. In this case,
3027 * it is not safe to block on pfmemalloc_wait as kswapd could be
3028 * blocked waiting on the same lock. Instead, throttle for up to a
3029 * second before continuing.
3030 */
3031 if (!(gfp_mask & __GFP_FS)) {
3032 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3033 allow_direct_reclaim(pgdat), HZ);
3034
3035 goto check_pending;
3036 }
3037
3038 /* Throttle until kswapd wakes the process */
3039 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3040 allow_direct_reclaim(pgdat));
3041
3042 check_pending:
3043 if (fatal_signal_pending(current))
3044 return true;
3045
3046 out:
3047 return false;
3048 }
3049
3050 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3051 gfp_t gfp_mask, nodemask_t *nodemask)
3052 {
3053 unsigned long nr_reclaimed;
3054 struct scan_control sc = {
3055 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3056 .gfp_mask = current_gfp_context(gfp_mask),
3057 .reclaim_idx = gfp_zone(gfp_mask),
3058 .order = order,
3059 .nodemask = nodemask,
3060 .priority = DEF_PRIORITY,
3061 .may_writepage = !laptop_mode,
3062 .may_unmap = 1,
3063 .may_swap = 1,
3064 };
3065
3066 /*
3067 * Do not enter reclaim if fatal signal was delivered while throttled.
3068 * 1 is returned so that the page allocator does not OOM kill at this
3069 * point.
3070 */
3071 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3072 return 1;
3073
3074 trace_mm_vmscan_direct_reclaim_begin(order,
3075 sc.may_writepage,
3076 sc.gfp_mask,
3077 sc.reclaim_idx);
3078
3079 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3080
3081 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3082
3083 return nr_reclaimed;
3084 }
3085
3086 #ifdef CONFIG_MEMCG
3087
3088 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3089 gfp_t gfp_mask, bool noswap,
3090 pg_data_t *pgdat,
3091 unsigned long *nr_scanned)
3092 {
3093 struct scan_control sc = {
3094 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3095 .target_mem_cgroup = memcg,
3096 .may_writepage = !laptop_mode,
3097 .may_unmap = 1,
3098 .reclaim_idx = MAX_NR_ZONES - 1,
3099 .may_swap = !noswap,
3100 };
3101 unsigned long lru_pages;
3102
3103 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3104 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3105
3106 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3107 sc.may_writepage,
3108 sc.gfp_mask,
3109 sc.reclaim_idx);
3110
3111 /*
3112 * NOTE: Although we can get the priority field, using it
3113 * here is not a good idea, since it limits the pages we can scan.
3114 * if we don't reclaim here, the shrink_node from balance_pgdat
3115 * will pick up pages from other mem cgroup's as well. We hack
3116 * the priority and make it zero.
3117 */
3118 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3119
3120 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3121
3122 *nr_scanned = sc.nr_scanned;
3123 return sc.nr_reclaimed;
3124 }
3125
3126 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3127 unsigned long nr_pages,
3128 gfp_t gfp_mask,
3129 bool may_swap)
3130 {
3131 struct zonelist *zonelist;
3132 unsigned long nr_reclaimed;
3133 int nid;
3134 unsigned int noreclaim_flag;
3135 struct scan_control sc = {
3136 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3137 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3138 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3139 .reclaim_idx = MAX_NR_ZONES - 1,
3140 .target_mem_cgroup = memcg,
3141 .priority = DEF_PRIORITY,
3142 .may_writepage = !laptop_mode,
3143 .may_unmap = 1,
3144 .may_swap = may_swap,
3145 };
3146
3147 /*
3148 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3149 * take care of from where we get pages. So the node where we start the
3150 * scan does not need to be the current node.
3151 */
3152 nid = mem_cgroup_select_victim_node(memcg);
3153
3154 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3155
3156 trace_mm_vmscan_memcg_reclaim_begin(0,
3157 sc.may_writepage,
3158 sc.gfp_mask,
3159 sc.reclaim_idx);
3160
3161 noreclaim_flag = memalloc_noreclaim_save();
3162 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3163 memalloc_noreclaim_restore(noreclaim_flag);
3164
3165 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3166
3167 return nr_reclaimed;
3168 }
3169 #endif
3170
3171 static void age_active_anon(struct pglist_data *pgdat,
3172 struct scan_control *sc)
3173 {
3174 struct mem_cgroup *memcg;
3175
3176 if (!total_swap_pages)
3177 return;
3178
3179 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3180 do {
3181 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3182
3183 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3184 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3185 sc, LRU_ACTIVE_ANON);
3186
3187 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3188 } while (memcg);
3189 }
3190
3191 /*
3192 * Returns true if there is an eligible zone balanced for the request order
3193 * and classzone_idx
3194 */
3195 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3196 {
3197 int i;
3198 unsigned long mark = -1;
3199 struct zone *zone;
3200
3201 for (i = 0; i <= classzone_idx; i++) {
3202 zone = pgdat->node_zones + i;
3203
3204 if (!managed_zone(zone))
3205 continue;
3206
3207 mark = high_wmark_pages(zone);
3208 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3209 return true;
3210 }
3211
3212 /*
3213 * If a node has no populated zone within classzone_idx, it does not
3214 * need balancing by definition. This can happen if a zone-restricted
3215 * allocation tries to wake a remote kswapd.
3216 */
3217 if (mark == -1)
3218 return true;
3219
3220 return false;
3221 }
3222
3223 /* Clear pgdat state for congested, dirty or under writeback. */
3224 static void clear_pgdat_congested(pg_data_t *pgdat)
3225 {
3226 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3227 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3228 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3229 }
3230
3231 /*
3232 * Prepare kswapd for sleeping. This verifies that there are no processes
3233 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3234 *
3235 * Returns true if kswapd is ready to sleep
3236 */
3237 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3238 {
3239 /*
3240 * The throttled processes are normally woken up in balance_pgdat() as
3241 * soon as allow_direct_reclaim() is true. But there is a potential
3242 * race between when kswapd checks the watermarks and a process gets
3243 * throttled. There is also a potential race if processes get
3244 * throttled, kswapd wakes, a large process exits thereby balancing the
3245 * zones, which causes kswapd to exit balance_pgdat() before reaching
3246 * the wake up checks. If kswapd is going to sleep, no process should
3247 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3248 * the wake up is premature, processes will wake kswapd and get
3249 * throttled again. The difference from wake ups in balance_pgdat() is
3250 * that here we are under prepare_to_wait().
3251 */
3252 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3253 wake_up_all(&pgdat->pfmemalloc_wait);
3254
3255 /* Hopeless node, leave it to direct reclaim */
3256 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3257 return true;
3258
3259 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3260 clear_pgdat_congested(pgdat);
3261 return true;
3262 }
3263
3264 return false;
3265 }
3266
3267 /*
3268 * kswapd shrinks a node of pages that are at or below the highest usable
3269 * zone that is currently unbalanced.
3270 *
3271 * Returns true if kswapd scanned at least the requested number of pages to
3272 * reclaim or if the lack of progress was due to pages under writeback.
3273 * This is used to determine if the scanning priority needs to be raised.
3274 */
3275 static bool kswapd_shrink_node(pg_data_t *pgdat,
3276 struct scan_control *sc)
3277 {
3278 struct zone *zone;
3279 int z;
3280
3281 /* Reclaim a number of pages proportional to the number of zones */
3282 sc->nr_to_reclaim = 0;
3283 for (z = 0; z <= sc->reclaim_idx; z++) {
3284 zone = pgdat->node_zones + z;
3285 if (!managed_zone(zone))
3286 continue;
3287
3288 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3289 }
3290
3291 /*
3292 * Historically care was taken to put equal pressure on all zones but
3293 * now pressure is applied based on node LRU order.
3294 */
3295 shrink_node(pgdat, sc);
3296
3297 /*
3298 * Fragmentation may mean that the system cannot be rebalanced for
3299 * high-order allocations. If twice the allocation size has been
3300 * reclaimed then recheck watermarks only at order-0 to prevent
3301 * excessive reclaim. Assume that a process requested a high-order
3302 * can direct reclaim/compact.
3303 */
3304 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3305 sc->order = 0;
3306
3307 return sc->nr_scanned >= sc->nr_to_reclaim;
3308 }
3309
3310 /*
3311 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3312 * that are eligible for use by the caller until at least one zone is
3313 * balanced.
3314 *
3315 * Returns the order kswapd finished reclaiming at.
3316 *
3317 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3318 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3319 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3320 * or lower is eligible for reclaim until at least one usable zone is
3321 * balanced.
3322 */
3323 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3324 {
3325 int i;
3326 unsigned long nr_soft_reclaimed;
3327 unsigned long nr_soft_scanned;
3328 struct zone *zone;
3329 struct scan_control sc = {
3330 .gfp_mask = GFP_KERNEL,
3331 .order = order,
3332 .priority = DEF_PRIORITY,
3333 .may_writepage = !laptop_mode,
3334 .may_unmap = 1,
3335 .may_swap = 1,
3336 };
3337
3338 __fs_reclaim_acquire();
3339
3340 count_vm_event(PAGEOUTRUN);
3341
3342 do {
3343 unsigned long nr_reclaimed = sc.nr_reclaimed;
3344 bool raise_priority = true;
3345 bool ret;
3346
3347 sc.reclaim_idx = classzone_idx;
3348
3349 /*
3350 * If the number of buffer_heads exceeds the maximum allowed
3351 * then consider reclaiming from all zones. This has a dual
3352 * purpose -- on 64-bit systems it is expected that
3353 * buffer_heads are stripped during active rotation. On 32-bit
3354 * systems, highmem pages can pin lowmem memory and shrinking
3355 * buffers can relieve lowmem pressure. Reclaim may still not
3356 * go ahead if all eligible zones for the original allocation
3357 * request are balanced to avoid excessive reclaim from kswapd.
3358 */
3359 if (buffer_heads_over_limit) {
3360 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3361 zone = pgdat->node_zones + i;
3362 if (!managed_zone(zone))
3363 continue;
3364
3365 sc.reclaim_idx = i;
3366 break;
3367 }
3368 }
3369
3370 /*
3371 * Only reclaim if there are no eligible zones. Note that
3372 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3373 * have adjusted it.
3374 */
3375 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3376 goto out;
3377
3378 /*
3379 * Do some background aging of the anon list, to give
3380 * pages a chance to be referenced before reclaiming. All
3381 * pages are rotated regardless of classzone as this is
3382 * about consistent aging.
3383 */
3384 age_active_anon(pgdat, &sc);
3385
3386 /*
3387 * If we're getting trouble reclaiming, start doing writepage
3388 * even in laptop mode.
3389 */
3390 if (sc.priority < DEF_PRIORITY - 2)
3391 sc.may_writepage = 1;
3392
3393 /* Call soft limit reclaim before calling shrink_node. */
3394 sc.nr_scanned = 0;
3395 nr_soft_scanned = 0;
3396 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3397 sc.gfp_mask, &nr_soft_scanned);
3398 sc.nr_reclaimed += nr_soft_reclaimed;
3399
3400 /*
3401 * There should be no need to raise the scanning priority if
3402 * enough pages are already being scanned that that high
3403 * watermark would be met at 100% efficiency.
3404 */
3405 if (kswapd_shrink_node(pgdat, &sc))
3406 raise_priority = false;
3407
3408 /*
3409 * If the low watermark is met there is no need for processes
3410 * to be throttled on pfmemalloc_wait as they should not be
3411 * able to safely make forward progress. Wake them
3412 */
3413 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3414 allow_direct_reclaim(pgdat))
3415 wake_up_all(&pgdat->pfmemalloc_wait);
3416
3417 /* Check if kswapd should be suspending */
3418 __fs_reclaim_release();
3419 ret = try_to_freeze();
3420 __fs_reclaim_acquire();
3421 if (ret || kthread_should_stop())
3422 break;
3423
3424 /*
3425 * Raise priority if scanning rate is too low or there was no
3426 * progress in reclaiming pages
3427 */
3428 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3429 if (raise_priority || !nr_reclaimed)
3430 sc.priority--;
3431 } while (sc.priority >= 1);
3432
3433 if (!sc.nr_reclaimed)
3434 pgdat->kswapd_failures++;
3435
3436 out:
3437 snapshot_refaults(NULL, pgdat);
3438 __fs_reclaim_release();
3439 /*
3440 * Return the order kswapd stopped reclaiming at as
3441 * prepare_kswapd_sleep() takes it into account. If another caller
3442 * entered the allocator slow path while kswapd was awake, order will
3443 * remain at the higher level.
3444 */
3445 return sc.order;
3446 }
3447
3448 /*
3449 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3450 * allocation request woke kswapd for. When kswapd has not woken recently,
3451 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3452 * given classzone and returns it or the highest classzone index kswapd
3453 * was recently woke for.
3454 */
3455 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3456 enum zone_type classzone_idx)
3457 {
3458 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3459 return classzone_idx;
3460
3461 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3462 }
3463
3464 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3465 unsigned int classzone_idx)
3466 {
3467 long remaining = 0;
3468 DEFINE_WAIT(wait);
3469
3470 if (freezing(current) || kthread_should_stop())
3471 return;
3472
3473 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3474
3475 /*
3476 * Try to sleep for a short interval. Note that kcompactd will only be
3477 * woken if it is possible to sleep for a short interval. This is
3478 * deliberate on the assumption that if reclaim cannot keep an
3479 * eligible zone balanced that it's also unlikely that compaction will
3480 * succeed.
3481 */
3482 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3483 /*
3484 * Compaction records what page blocks it recently failed to
3485 * isolate pages from and skips them in the future scanning.
3486 * When kswapd is going to sleep, it is reasonable to assume
3487 * that pages and compaction may succeed so reset the cache.
3488 */
3489 reset_isolation_suitable(pgdat);
3490
3491 /*
3492 * We have freed the memory, now we should compact it to make
3493 * allocation of the requested order possible.
3494 */
3495 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3496
3497 remaining = schedule_timeout(HZ/10);
3498
3499 /*
3500 * If woken prematurely then reset kswapd_classzone_idx and
3501 * order. The values will either be from a wakeup request or
3502 * the previous request that slept prematurely.
3503 */
3504 if (remaining) {
3505 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3506 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3507 }
3508
3509 finish_wait(&pgdat->kswapd_wait, &wait);
3510 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3511 }
3512
3513 /*
3514 * After a short sleep, check if it was a premature sleep. If not, then
3515 * go fully to sleep until explicitly woken up.
3516 */
3517 if (!remaining &&
3518 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3519 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3520
3521 /*
3522 * vmstat counters are not perfectly accurate and the estimated
3523 * value for counters such as NR_FREE_PAGES can deviate from the
3524 * true value by nr_online_cpus * threshold. To avoid the zone
3525 * watermarks being breached while under pressure, we reduce the
3526 * per-cpu vmstat threshold while kswapd is awake and restore
3527 * them before going back to sleep.
3528 */
3529 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3530
3531 if (!kthread_should_stop())
3532 schedule();
3533
3534 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3535 } else {
3536 if (remaining)
3537 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3538 else
3539 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3540 }
3541 finish_wait(&pgdat->kswapd_wait, &wait);
3542 }
3543
3544 /*
3545 * The background pageout daemon, started as a kernel thread
3546 * from the init process.
3547 *
3548 * This basically trickles out pages so that we have _some_
3549 * free memory available even if there is no other activity
3550 * that frees anything up. This is needed for things like routing
3551 * etc, where we otherwise might have all activity going on in
3552 * asynchronous contexts that cannot page things out.
3553 *
3554 * If there are applications that are active memory-allocators
3555 * (most normal use), this basically shouldn't matter.
3556 */
3557 static int kswapd(void *p)
3558 {
3559 unsigned int alloc_order, reclaim_order;
3560 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3561 pg_data_t *pgdat = (pg_data_t*)p;
3562 struct task_struct *tsk = current;
3563
3564 struct reclaim_state reclaim_state = {
3565 .reclaimed_slab = 0,
3566 };
3567 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3568
3569 if (!cpumask_empty(cpumask))
3570 set_cpus_allowed_ptr(tsk, cpumask);
3571 current->reclaim_state = &reclaim_state;
3572
3573 /*
3574 * Tell the memory management that we're a "memory allocator",
3575 * and that if we need more memory we should get access to it
3576 * regardless (see "__alloc_pages()"). "kswapd" should
3577 * never get caught in the normal page freeing logic.
3578 *
3579 * (Kswapd normally doesn't need memory anyway, but sometimes
3580 * you need a small amount of memory in order to be able to
3581 * page out something else, and this flag essentially protects
3582 * us from recursively trying to free more memory as we're
3583 * trying to free the first piece of memory in the first place).
3584 */
3585 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3586 set_freezable();
3587
3588 pgdat->kswapd_order = 0;
3589 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3590 for ( ; ; ) {
3591 bool ret;
3592
3593 alloc_order = reclaim_order = pgdat->kswapd_order;
3594 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3595
3596 kswapd_try_sleep:
3597 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3598 classzone_idx);
3599
3600 /* Read the new order and classzone_idx */
3601 alloc_order = reclaim_order = pgdat->kswapd_order;
3602 classzone_idx = kswapd_classzone_idx(pgdat, 0);
3603 pgdat->kswapd_order = 0;
3604 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3605
3606 ret = try_to_freeze();
3607 if (kthread_should_stop())
3608 break;
3609
3610 /*
3611 * We can speed up thawing tasks if we don't call balance_pgdat
3612 * after returning from the refrigerator
3613 */
3614 if (ret)
3615 continue;
3616
3617 /*
3618 * Reclaim begins at the requested order but if a high-order
3619 * reclaim fails then kswapd falls back to reclaiming for
3620 * order-0. If that happens, kswapd will consider sleeping
3621 * for the order it finished reclaiming at (reclaim_order)
3622 * but kcompactd is woken to compact for the original
3623 * request (alloc_order).
3624 */
3625 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3626 alloc_order);
3627 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3628 if (reclaim_order < alloc_order)
3629 goto kswapd_try_sleep;
3630 }
3631
3632 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3633 current->reclaim_state = NULL;
3634
3635 return 0;
3636 }
3637
3638 /*
3639 * A zone is low on free memory or too fragmented for high-order memory. If
3640 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3641 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3642 * has failed or is not needed, still wake up kcompactd if only compaction is
3643 * needed.
3644 */
3645 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3646 enum zone_type classzone_idx)
3647 {
3648 pg_data_t *pgdat;
3649
3650 if (!managed_zone(zone))
3651 return;
3652
3653 if (!cpuset_zone_allowed(zone, gfp_flags))
3654 return;
3655 pgdat = zone->zone_pgdat;
3656 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3657 classzone_idx);
3658 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3659 if (!waitqueue_active(&pgdat->kswapd_wait))
3660 return;
3661
3662 /* Hopeless node, leave it to direct reclaim if possible */
3663 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3664 pgdat_balanced(pgdat, order, classzone_idx)) {
3665 /*
3666 * There may be plenty of free memory available, but it's too
3667 * fragmented for high-order allocations. Wake up kcompactd
3668 * and rely on compaction_suitable() to determine if it's
3669 * needed. If it fails, it will defer subsequent attempts to
3670 * ratelimit its work.
3671 */
3672 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3673 wakeup_kcompactd(pgdat, order, classzone_idx);
3674 return;
3675 }
3676
3677 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3678 gfp_flags);
3679 wake_up_interruptible(&pgdat->kswapd_wait);
3680 }
3681
3682 #ifdef CONFIG_HIBERNATION
3683 /*
3684 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3685 * freed pages.
3686 *
3687 * Rather than trying to age LRUs the aim is to preserve the overall
3688 * LRU order by reclaiming preferentially
3689 * inactive > active > active referenced > active mapped
3690 */
3691 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3692 {
3693 struct reclaim_state reclaim_state;
3694 struct scan_control sc = {
3695 .nr_to_reclaim = nr_to_reclaim,
3696 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3697 .reclaim_idx = MAX_NR_ZONES - 1,
3698 .priority = DEF_PRIORITY,
3699 .may_writepage = 1,
3700 .may_unmap = 1,
3701 .may_swap = 1,
3702 .hibernation_mode = 1,
3703 };
3704 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3705 struct task_struct *p = current;
3706 unsigned long nr_reclaimed;
3707 unsigned int noreclaim_flag;
3708
3709 fs_reclaim_acquire(sc.gfp_mask);
3710 noreclaim_flag = memalloc_noreclaim_save();
3711 reclaim_state.reclaimed_slab = 0;
3712 p->reclaim_state = &reclaim_state;
3713
3714 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3715
3716 p->reclaim_state = NULL;
3717 memalloc_noreclaim_restore(noreclaim_flag);
3718 fs_reclaim_release(sc.gfp_mask);
3719
3720 return nr_reclaimed;
3721 }
3722 #endif /* CONFIG_HIBERNATION */
3723
3724 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3725 not required for correctness. So if the last cpu in a node goes
3726 away, we get changed to run anywhere: as the first one comes back,
3727 restore their cpu bindings. */
3728 static int kswapd_cpu_online(unsigned int cpu)
3729 {
3730 int nid;
3731
3732 for_each_node_state(nid, N_MEMORY) {
3733 pg_data_t *pgdat = NODE_DATA(nid);
3734 const struct cpumask *mask;
3735
3736 mask = cpumask_of_node(pgdat->node_id);
3737
3738 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3739 /* One of our CPUs online: restore mask */
3740 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3741 }
3742 return 0;
3743 }
3744
3745 /*
3746 * This kswapd start function will be called by init and node-hot-add.
3747 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3748 */
3749 int kswapd_run(int nid)
3750 {
3751 pg_data_t *pgdat = NODE_DATA(nid);
3752 int ret = 0;
3753
3754 if (pgdat->kswapd)
3755 return 0;
3756
3757 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3758 if (IS_ERR(pgdat->kswapd)) {
3759 /* failure at boot is fatal */
3760 BUG_ON(system_state < SYSTEM_RUNNING);
3761 pr_err("Failed to start kswapd on node %d\n", nid);
3762 ret = PTR_ERR(pgdat->kswapd);
3763 pgdat->kswapd = NULL;
3764 }
3765 return ret;
3766 }
3767
3768 /*
3769 * Called by memory hotplug when all memory in a node is offlined. Caller must
3770 * hold mem_hotplug_begin/end().
3771 */
3772 void kswapd_stop(int nid)
3773 {
3774 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3775
3776 if (kswapd) {
3777 kthread_stop(kswapd);
3778 NODE_DATA(nid)->kswapd = NULL;
3779 }
3780 }
3781
3782 static int __init kswapd_init(void)
3783 {
3784 int nid, ret;
3785
3786 swap_setup();
3787 for_each_node_state(nid, N_MEMORY)
3788 kswapd_run(nid);
3789 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3790 "mm/vmscan:online", kswapd_cpu_online,
3791 NULL);
3792 WARN_ON(ret < 0);
3793 return 0;
3794 }
3795
3796 module_init(kswapd_init)
3797
3798 #ifdef CONFIG_NUMA
3799 /*
3800 * Node reclaim mode
3801 *
3802 * If non-zero call node_reclaim when the number of free pages falls below
3803 * the watermarks.
3804 */
3805 int node_reclaim_mode __read_mostly;
3806
3807 #define RECLAIM_OFF 0
3808 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3809 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3810 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3811
3812 /*
3813 * Priority for NODE_RECLAIM. This determines the fraction of pages
3814 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3815 * a zone.
3816 */
3817 #define NODE_RECLAIM_PRIORITY 4
3818
3819 /*
3820 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3821 * occur.
3822 */
3823 int sysctl_min_unmapped_ratio = 1;
3824
3825 /*
3826 * If the number of slab pages in a zone grows beyond this percentage then
3827 * slab reclaim needs to occur.
3828 */
3829 int sysctl_min_slab_ratio = 5;
3830
3831 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3832 {
3833 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3834 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3835 node_page_state(pgdat, NR_ACTIVE_FILE);
3836
3837 /*
3838 * It's possible for there to be more file mapped pages than
3839 * accounted for by the pages on the file LRU lists because
3840 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3841 */
3842 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3843 }
3844
3845 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3846 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3847 {
3848 unsigned long nr_pagecache_reclaimable;
3849 unsigned long delta = 0;
3850
3851 /*
3852 * If RECLAIM_UNMAP is set, then all file pages are considered
3853 * potentially reclaimable. Otherwise, we have to worry about
3854 * pages like swapcache and node_unmapped_file_pages() provides
3855 * a better estimate
3856 */
3857 if (node_reclaim_mode & RECLAIM_UNMAP)
3858 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3859 else
3860 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3861
3862 /* If we can't clean pages, remove dirty pages from consideration */
3863 if (!(node_reclaim_mode & RECLAIM_WRITE))
3864 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3865
3866 /* Watch for any possible underflows due to delta */
3867 if (unlikely(delta > nr_pagecache_reclaimable))
3868 delta = nr_pagecache_reclaimable;
3869
3870 return nr_pagecache_reclaimable - delta;
3871 }
3872
3873 /*
3874 * Try to free up some pages from this node through reclaim.
3875 */
3876 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3877 {
3878 /* Minimum pages needed in order to stay on node */
3879 const unsigned long nr_pages = 1 << order;
3880 struct task_struct *p = current;
3881 struct reclaim_state reclaim_state;
3882 unsigned int noreclaim_flag;
3883 struct scan_control sc = {
3884 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3885 .gfp_mask = current_gfp_context(gfp_mask),
3886 .order = order,
3887 .priority = NODE_RECLAIM_PRIORITY,
3888 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3889 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3890 .may_swap = 1,
3891 .reclaim_idx = gfp_zone(gfp_mask),
3892 };
3893
3894 cond_resched();
3895 fs_reclaim_acquire(sc.gfp_mask);
3896 /*
3897 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3898 * and we also need to be able to write out pages for RECLAIM_WRITE
3899 * and RECLAIM_UNMAP.
3900 */
3901 noreclaim_flag = memalloc_noreclaim_save();
3902 p->flags |= PF_SWAPWRITE;
3903 reclaim_state.reclaimed_slab = 0;
3904 p->reclaim_state = &reclaim_state;
3905
3906 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3907 /*
3908 * Free memory by calling shrink node with increasing
3909 * priorities until we have enough memory freed.
3910 */
3911 do {
3912 shrink_node(pgdat, &sc);
3913 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3914 }
3915
3916 p->reclaim_state = NULL;
3917 current->flags &= ~PF_SWAPWRITE;
3918 memalloc_noreclaim_restore(noreclaim_flag);
3919 fs_reclaim_release(sc.gfp_mask);
3920 return sc.nr_reclaimed >= nr_pages;
3921 }
3922
3923 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3924 {
3925 int ret;
3926
3927 /*
3928 * Node reclaim reclaims unmapped file backed pages and
3929 * slab pages if we are over the defined limits.
3930 *
3931 * A small portion of unmapped file backed pages is needed for
3932 * file I/O otherwise pages read by file I/O will be immediately
3933 * thrown out if the node is overallocated. So we do not reclaim
3934 * if less than a specified percentage of the node is used by
3935 * unmapped file backed pages.
3936 */
3937 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3938 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3939 return NODE_RECLAIM_FULL;
3940
3941 /*
3942 * Do not scan if the allocation should not be delayed.
3943 */
3944 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3945 return NODE_RECLAIM_NOSCAN;
3946
3947 /*
3948 * Only run node reclaim on the local node or on nodes that do not
3949 * have associated processors. This will favor the local processor
3950 * over remote processors and spread off node memory allocations
3951 * as wide as possible.
3952 */
3953 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3954 return NODE_RECLAIM_NOSCAN;
3955
3956 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3957 return NODE_RECLAIM_NOSCAN;
3958
3959 ret = __node_reclaim(pgdat, gfp_mask, order);
3960 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3961
3962 if (!ret)
3963 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3964
3965 return ret;
3966 }
3967 #endif
3968
3969 /*
3970 * page_evictable - test whether a page is evictable
3971 * @page: the page to test
3972 *
3973 * Test whether page is evictable--i.e., should be placed on active/inactive
3974 * lists vs unevictable list.
3975 *
3976 * Reasons page might not be evictable:
3977 * (1) page's mapping marked unevictable
3978 * (2) page is part of an mlocked VMA
3979 *
3980 */
3981 int page_evictable(struct page *page)
3982 {
3983 int ret;
3984
3985 /* Prevent address_space of inode and swap cache from being freed */
3986 rcu_read_lock();
3987 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3988 rcu_read_unlock();
3989 return ret;
3990 }
3991
3992 #ifdef CONFIG_SHMEM
3993 /**
3994 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3995 * @pages: array of pages to check
3996 * @nr_pages: number of pages to check
3997 *
3998 * Checks pages for evictability and moves them to the appropriate lru list.
3999 *
4000 * This function is only used for SysV IPC SHM_UNLOCK.
4001 */
4002 void check_move_unevictable_pages(struct page **pages, int nr_pages)
4003 {
4004 struct lruvec *lruvec;
4005 struct pglist_data *pgdat = NULL;
4006 int pgscanned = 0;
4007 int pgrescued = 0;
4008 int i;
4009
4010 for (i = 0; i < nr_pages; i++) {
4011 struct page *page = pages[i];
4012 struct pglist_data *pagepgdat = page_pgdat(page);
4013
4014 pgscanned++;
4015 if (pagepgdat != pgdat) {
4016 if (pgdat)
4017 spin_unlock_irq(&pgdat->lru_lock);
4018 pgdat = pagepgdat;
4019 spin_lock_irq(&pgdat->lru_lock);
4020 }
4021 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4022
4023 if (!PageLRU(page) || !PageUnevictable(page))
4024 continue;
4025
4026 if (page_evictable(page)) {
4027 enum lru_list lru = page_lru_base_type(page);
4028
4029 VM_BUG_ON_PAGE(PageActive(page), page);
4030 ClearPageUnevictable(page);
4031 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4032 add_page_to_lru_list(page, lruvec, lru);
4033 pgrescued++;
4034 }
4035 }
4036
4037 if (pgdat) {
4038 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4039 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4040 spin_unlock_irq(&pgdat->lru_lock);
4041 }
4042 }
4043 #endif /* CONFIG_SHMEM */