]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/vmscan.c
drm/shmem-helper: Remove errant put in error path
[mirror_ubuntu-jammy-kernel.git] / mm / vmscan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/migrate.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
59
60 #include "internal.h"
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/vmscan.h>
64
65 struct scan_control {
66 /* How many pages shrink_list() should reclaim */
67 unsigned long nr_to_reclaim;
68
69 /*
70 * Nodemask of nodes allowed by the caller. If NULL, all nodes
71 * are scanned.
72 */
73 nodemask_t *nodemask;
74
75 /*
76 * The memory cgroup that hit its limit and as a result is the
77 * primary target of this reclaim invocation.
78 */
79 struct mem_cgroup *target_mem_cgroup;
80
81 /*
82 * Scan pressure balancing between anon and file LRUs
83 */
84 unsigned long anon_cost;
85 unsigned long file_cost;
86
87 /* Can active pages be deactivated as part of reclaim? */
88 #define DEACTIVATE_ANON 1
89 #define DEACTIVATE_FILE 2
90 unsigned int may_deactivate:2;
91 unsigned int force_deactivate:1;
92 unsigned int skipped_deactivate:1;
93
94 /* Writepage batching in laptop mode; RECLAIM_WRITE */
95 unsigned int may_writepage:1;
96
97 /* Can mapped pages be reclaimed? */
98 unsigned int may_unmap:1;
99
100 /* Can pages be swapped as part of reclaim? */
101 unsigned int may_swap:1;
102
103 /*
104 * Cgroup memory below memory.low is protected as long as we
105 * don't threaten to OOM. If any cgroup is reclaimed at
106 * reduced force or passed over entirely due to its memory.low
107 * setting (memcg_low_skipped), and nothing is reclaimed as a
108 * result, then go back for one more cycle that reclaims the protected
109 * memory (memcg_low_reclaim) to avert OOM.
110 */
111 unsigned int memcg_low_reclaim:1;
112 unsigned int memcg_low_skipped:1;
113
114 unsigned int hibernation_mode:1;
115
116 /* One of the zones is ready for compaction */
117 unsigned int compaction_ready:1;
118
119 /* There is easily reclaimable cold cache in the current node */
120 unsigned int cache_trim_mode:1;
121
122 /* The file pages on the current node are dangerously low */
123 unsigned int file_is_tiny:1;
124
125 /* Always discard instead of demoting to lower tier memory */
126 unsigned int no_demotion:1;
127
128 /* Allocation order */
129 s8 order;
130
131 /* Scan (total_size >> priority) pages at once */
132 s8 priority;
133
134 /* The highest zone to isolate pages for reclaim from */
135 s8 reclaim_idx;
136
137 /* This context's GFP mask */
138 gfp_t gfp_mask;
139
140 /* Incremented by the number of inactive pages that were scanned */
141 unsigned long nr_scanned;
142
143 /* Number of pages freed so far during a call to shrink_zones() */
144 unsigned long nr_reclaimed;
145
146 struct {
147 unsigned int dirty;
148 unsigned int unqueued_dirty;
149 unsigned int congested;
150 unsigned int writeback;
151 unsigned int immediate;
152 unsigned int file_taken;
153 unsigned int taken;
154 } nr;
155
156 /* for recording the reclaimed slab by now */
157 struct reclaim_state reclaim_state;
158 };
159
160 #ifdef ARCH_HAS_PREFETCHW
161 #define prefetchw_prev_lru_page(_page, _base, _field) \
162 do { \
163 if ((_page)->lru.prev != _base) { \
164 struct page *prev; \
165 \
166 prev = lru_to_page(&(_page->lru)); \
167 prefetchw(&prev->_field); \
168 } \
169 } while (0)
170 #else
171 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
172 #endif
173
174 /*
175 * From 0 .. 200. Higher means more swappy.
176 */
177 int vm_swappiness = 60;
178
179 static void set_task_reclaim_state(struct task_struct *task,
180 struct reclaim_state *rs)
181 {
182 /* Check for an overwrite */
183 WARN_ON_ONCE(rs && task->reclaim_state);
184
185 /* Check for the nulling of an already-nulled member */
186 WARN_ON_ONCE(!rs && !task->reclaim_state);
187
188 task->reclaim_state = rs;
189 }
190
191 static LIST_HEAD(shrinker_list);
192 static DECLARE_RWSEM(shrinker_rwsem);
193
194 #ifdef CONFIG_MEMCG
195 static int shrinker_nr_max;
196
197 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
198 static inline int shrinker_map_size(int nr_items)
199 {
200 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
201 }
202
203 static inline int shrinker_defer_size(int nr_items)
204 {
205 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
206 }
207
208 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
209 int nid)
210 {
211 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
212 lockdep_is_held(&shrinker_rwsem));
213 }
214
215 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
216 int map_size, int defer_size,
217 int old_map_size, int old_defer_size)
218 {
219 struct shrinker_info *new, *old;
220 struct mem_cgroup_per_node *pn;
221 int nid;
222 int size = map_size + defer_size;
223
224 for_each_node(nid) {
225 pn = memcg->nodeinfo[nid];
226 old = shrinker_info_protected(memcg, nid);
227 /* Not yet online memcg */
228 if (!old)
229 return 0;
230
231 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
232 if (!new)
233 return -ENOMEM;
234
235 new->nr_deferred = (atomic_long_t *)(new + 1);
236 new->map = (void *)new->nr_deferred + defer_size;
237
238 /* map: set all old bits, clear all new bits */
239 memset(new->map, (int)0xff, old_map_size);
240 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
241 /* nr_deferred: copy old values, clear all new values */
242 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
243 memset((void *)new->nr_deferred + old_defer_size, 0,
244 defer_size - old_defer_size);
245
246 rcu_assign_pointer(pn->shrinker_info, new);
247 kvfree_rcu(old, rcu);
248 }
249
250 return 0;
251 }
252
253 void free_shrinker_info(struct mem_cgroup *memcg)
254 {
255 struct mem_cgroup_per_node *pn;
256 struct shrinker_info *info;
257 int nid;
258
259 for_each_node(nid) {
260 pn = memcg->nodeinfo[nid];
261 info = rcu_dereference_protected(pn->shrinker_info, true);
262 kvfree(info);
263 rcu_assign_pointer(pn->shrinker_info, NULL);
264 }
265 }
266
267 int alloc_shrinker_info(struct mem_cgroup *memcg)
268 {
269 struct shrinker_info *info;
270 int nid, size, ret = 0;
271 int map_size, defer_size = 0;
272
273 down_write(&shrinker_rwsem);
274 map_size = shrinker_map_size(shrinker_nr_max);
275 defer_size = shrinker_defer_size(shrinker_nr_max);
276 size = map_size + defer_size;
277 for_each_node(nid) {
278 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
279 if (!info) {
280 free_shrinker_info(memcg);
281 ret = -ENOMEM;
282 break;
283 }
284 info->nr_deferred = (atomic_long_t *)(info + 1);
285 info->map = (void *)info->nr_deferred + defer_size;
286 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
287 }
288 up_write(&shrinker_rwsem);
289
290 return ret;
291 }
292
293 static inline bool need_expand(int nr_max)
294 {
295 return round_up(nr_max, BITS_PER_LONG) >
296 round_up(shrinker_nr_max, BITS_PER_LONG);
297 }
298
299 static int expand_shrinker_info(int new_id)
300 {
301 int ret = 0;
302 int new_nr_max = new_id + 1;
303 int map_size, defer_size = 0;
304 int old_map_size, old_defer_size = 0;
305 struct mem_cgroup *memcg;
306
307 if (!need_expand(new_nr_max))
308 goto out;
309
310 if (!root_mem_cgroup)
311 goto out;
312
313 lockdep_assert_held(&shrinker_rwsem);
314
315 map_size = shrinker_map_size(new_nr_max);
316 defer_size = shrinker_defer_size(new_nr_max);
317 old_map_size = shrinker_map_size(shrinker_nr_max);
318 old_defer_size = shrinker_defer_size(shrinker_nr_max);
319
320 memcg = mem_cgroup_iter(NULL, NULL, NULL);
321 do {
322 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
323 old_map_size, old_defer_size);
324 if (ret) {
325 mem_cgroup_iter_break(NULL, memcg);
326 goto out;
327 }
328 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
329 out:
330 if (!ret)
331 shrinker_nr_max = new_nr_max;
332
333 return ret;
334 }
335
336 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
337 {
338 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
339 struct shrinker_info *info;
340
341 rcu_read_lock();
342 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
343 /* Pairs with smp mb in shrink_slab() */
344 smp_mb__before_atomic();
345 set_bit(shrinker_id, info->map);
346 rcu_read_unlock();
347 }
348 }
349
350 static DEFINE_IDR(shrinker_idr);
351
352 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
353 {
354 int id, ret = -ENOMEM;
355
356 if (mem_cgroup_disabled())
357 return -ENOSYS;
358
359 down_write(&shrinker_rwsem);
360 /* This may call shrinker, so it must use down_read_trylock() */
361 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
362 if (id < 0)
363 goto unlock;
364
365 if (id >= shrinker_nr_max) {
366 if (expand_shrinker_info(id)) {
367 idr_remove(&shrinker_idr, id);
368 goto unlock;
369 }
370 }
371 shrinker->id = id;
372 ret = 0;
373 unlock:
374 up_write(&shrinker_rwsem);
375 return ret;
376 }
377
378 static void unregister_memcg_shrinker(struct shrinker *shrinker)
379 {
380 int id = shrinker->id;
381
382 BUG_ON(id < 0);
383
384 lockdep_assert_held(&shrinker_rwsem);
385
386 idr_remove(&shrinker_idr, id);
387 }
388
389 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
390 struct mem_cgroup *memcg)
391 {
392 struct shrinker_info *info;
393
394 info = shrinker_info_protected(memcg, nid);
395 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
396 }
397
398 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
399 struct mem_cgroup *memcg)
400 {
401 struct shrinker_info *info;
402
403 info = shrinker_info_protected(memcg, nid);
404 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
405 }
406
407 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
408 {
409 int i, nid;
410 long nr;
411 struct mem_cgroup *parent;
412 struct shrinker_info *child_info, *parent_info;
413
414 parent = parent_mem_cgroup(memcg);
415 if (!parent)
416 parent = root_mem_cgroup;
417
418 /* Prevent from concurrent shrinker_info expand */
419 down_read(&shrinker_rwsem);
420 for_each_node(nid) {
421 child_info = shrinker_info_protected(memcg, nid);
422 parent_info = shrinker_info_protected(parent, nid);
423 for (i = 0; i < shrinker_nr_max; i++) {
424 nr = atomic_long_read(&child_info->nr_deferred[i]);
425 atomic_long_add(nr, &parent_info->nr_deferred[i]);
426 }
427 }
428 up_read(&shrinker_rwsem);
429 }
430
431 static bool cgroup_reclaim(struct scan_control *sc)
432 {
433 return sc->target_mem_cgroup;
434 }
435
436 /**
437 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
438 * @sc: scan_control in question
439 *
440 * The normal page dirty throttling mechanism in balance_dirty_pages() is
441 * completely broken with the legacy memcg and direct stalling in
442 * shrink_page_list() is used for throttling instead, which lacks all the
443 * niceties such as fairness, adaptive pausing, bandwidth proportional
444 * allocation and configurability.
445 *
446 * This function tests whether the vmscan currently in progress can assume
447 * that the normal dirty throttling mechanism is operational.
448 */
449 static bool writeback_throttling_sane(struct scan_control *sc)
450 {
451 if (!cgroup_reclaim(sc))
452 return true;
453 #ifdef CONFIG_CGROUP_WRITEBACK
454 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
455 return true;
456 #endif
457 return false;
458 }
459 #else
460 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
461 {
462 return -ENOSYS;
463 }
464
465 static void unregister_memcg_shrinker(struct shrinker *shrinker)
466 {
467 }
468
469 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
470 struct mem_cgroup *memcg)
471 {
472 return 0;
473 }
474
475 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
476 struct mem_cgroup *memcg)
477 {
478 return 0;
479 }
480
481 static bool cgroup_reclaim(struct scan_control *sc)
482 {
483 return false;
484 }
485
486 static bool writeback_throttling_sane(struct scan_control *sc)
487 {
488 return true;
489 }
490 #endif
491
492 static long xchg_nr_deferred(struct shrinker *shrinker,
493 struct shrink_control *sc)
494 {
495 int nid = sc->nid;
496
497 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
498 nid = 0;
499
500 if (sc->memcg &&
501 (shrinker->flags & SHRINKER_MEMCG_AWARE))
502 return xchg_nr_deferred_memcg(nid, shrinker,
503 sc->memcg);
504
505 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
506 }
507
508
509 static long add_nr_deferred(long nr, struct shrinker *shrinker,
510 struct shrink_control *sc)
511 {
512 int nid = sc->nid;
513
514 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
515 nid = 0;
516
517 if (sc->memcg &&
518 (shrinker->flags & SHRINKER_MEMCG_AWARE))
519 return add_nr_deferred_memcg(nr, nid, shrinker,
520 sc->memcg);
521
522 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
523 }
524
525 static bool can_demote(int nid, struct scan_control *sc)
526 {
527 if (!numa_demotion_enabled)
528 return false;
529 if (sc) {
530 if (sc->no_demotion)
531 return false;
532 /* It is pointless to do demotion in memcg reclaim */
533 if (cgroup_reclaim(sc))
534 return false;
535 }
536 if (next_demotion_node(nid) == NUMA_NO_NODE)
537 return false;
538
539 return true;
540 }
541
542 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
543 int nid,
544 struct scan_control *sc)
545 {
546 if (memcg == NULL) {
547 /*
548 * For non-memcg reclaim, is there
549 * space in any swap device?
550 */
551 if (get_nr_swap_pages() > 0)
552 return true;
553 } else {
554 /* Is the memcg below its swap limit? */
555 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
556 return true;
557 }
558
559 /*
560 * The page can not be swapped.
561 *
562 * Can it be reclaimed from this node via demotion?
563 */
564 return can_demote(nid, sc);
565 }
566
567 /*
568 * This misses isolated pages which are not accounted for to save counters.
569 * As the data only determines if reclaim or compaction continues, it is
570 * not expected that isolated pages will be a dominating factor.
571 */
572 unsigned long zone_reclaimable_pages(struct zone *zone)
573 {
574 unsigned long nr;
575
576 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
577 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
578 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
579 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
580 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
581
582 return nr;
583 }
584
585 /**
586 * lruvec_lru_size - Returns the number of pages on the given LRU list.
587 * @lruvec: lru vector
588 * @lru: lru to use
589 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
590 */
591 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
592 int zone_idx)
593 {
594 unsigned long size = 0;
595 int zid;
596
597 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
598 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
599
600 if (!managed_zone(zone))
601 continue;
602
603 if (!mem_cgroup_disabled())
604 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
605 else
606 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
607 }
608 return size;
609 }
610
611 /*
612 * Add a shrinker callback to be called from the vm.
613 */
614 int prealloc_shrinker(struct shrinker *shrinker)
615 {
616 unsigned int size;
617 int err;
618
619 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
620 err = prealloc_memcg_shrinker(shrinker);
621 if (err != -ENOSYS)
622 return err;
623
624 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
625 }
626
627 size = sizeof(*shrinker->nr_deferred);
628 if (shrinker->flags & SHRINKER_NUMA_AWARE)
629 size *= nr_node_ids;
630
631 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
632 if (!shrinker->nr_deferred)
633 return -ENOMEM;
634
635 return 0;
636 }
637
638 void free_prealloced_shrinker(struct shrinker *shrinker)
639 {
640 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
641 down_write(&shrinker_rwsem);
642 unregister_memcg_shrinker(shrinker);
643 up_write(&shrinker_rwsem);
644 return;
645 }
646
647 kfree(shrinker->nr_deferred);
648 shrinker->nr_deferred = NULL;
649 }
650
651 void register_shrinker_prepared(struct shrinker *shrinker)
652 {
653 down_write(&shrinker_rwsem);
654 list_add_tail(&shrinker->list, &shrinker_list);
655 shrinker->flags |= SHRINKER_REGISTERED;
656 up_write(&shrinker_rwsem);
657 }
658
659 int register_shrinker(struct shrinker *shrinker)
660 {
661 int err = prealloc_shrinker(shrinker);
662
663 if (err)
664 return err;
665 register_shrinker_prepared(shrinker);
666 return 0;
667 }
668 EXPORT_SYMBOL(register_shrinker);
669
670 /*
671 * Remove one
672 */
673 void unregister_shrinker(struct shrinker *shrinker)
674 {
675 if (!(shrinker->flags & SHRINKER_REGISTERED))
676 return;
677
678 down_write(&shrinker_rwsem);
679 list_del(&shrinker->list);
680 shrinker->flags &= ~SHRINKER_REGISTERED;
681 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
682 unregister_memcg_shrinker(shrinker);
683 up_write(&shrinker_rwsem);
684
685 kfree(shrinker->nr_deferred);
686 shrinker->nr_deferred = NULL;
687 }
688 EXPORT_SYMBOL(unregister_shrinker);
689
690 #define SHRINK_BATCH 128
691
692 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
693 struct shrinker *shrinker, int priority)
694 {
695 unsigned long freed = 0;
696 unsigned long long delta;
697 long total_scan;
698 long freeable;
699 long nr;
700 long new_nr;
701 long batch_size = shrinker->batch ? shrinker->batch
702 : SHRINK_BATCH;
703 long scanned = 0, next_deferred;
704
705 freeable = shrinker->count_objects(shrinker, shrinkctl);
706 if (freeable == 0 || freeable == SHRINK_EMPTY)
707 return freeable;
708
709 /*
710 * copy the current shrinker scan count into a local variable
711 * and zero it so that other concurrent shrinker invocations
712 * don't also do this scanning work.
713 */
714 nr = xchg_nr_deferred(shrinker, shrinkctl);
715
716 if (shrinker->seeks) {
717 delta = freeable >> priority;
718 delta *= 4;
719 do_div(delta, shrinker->seeks);
720 } else {
721 /*
722 * These objects don't require any IO to create. Trim
723 * them aggressively under memory pressure to keep
724 * them from causing refetches in the IO caches.
725 */
726 delta = freeable / 2;
727 }
728
729 total_scan = nr >> priority;
730 total_scan += delta;
731 total_scan = min(total_scan, (2 * freeable));
732
733 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
734 freeable, delta, total_scan, priority);
735
736 /*
737 * Normally, we should not scan less than batch_size objects in one
738 * pass to avoid too frequent shrinker calls, but if the slab has less
739 * than batch_size objects in total and we are really tight on memory,
740 * we will try to reclaim all available objects, otherwise we can end
741 * up failing allocations although there are plenty of reclaimable
742 * objects spread over several slabs with usage less than the
743 * batch_size.
744 *
745 * We detect the "tight on memory" situations by looking at the total
746 * number of objects we want to scan (total_scan). If it is greater
747 * than the total number of objects on slab (freeable), we must be
748 * scanning at high prio and therefore should try to reclaim as much as
749 * possible.
750 */
751 while (total_scan >= batch_size ||
752 total_scan >= freeable) {
753 unsigned long ret;
754 unsigned long nr_to_scan = min(batch_size, total_scan);
755
756 shrinkctl->nr_to_scan = nr_to_scan;
757 shrinkctl->nr_scanned = nr_to_scan;
758 ret = shrinker->scan_objects(shrinker, shrinkctl);
759 if (ret == SHRINK_STOP)
760 break;
761 freed += ret;
762
763 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
764 total_scan -= shrinkctl->nr_scanned;
765 scanned += shrinkctl->nr_scanned;
766
767 cond_resched();
768 }
769
770 /*
771 * The deferred work is increased by any new work (delta) that wasn't
772 * done, decreased by old deferred work that was done now.
773 *
774 * And it is capped to two times of the freeable items.
775 */
776 next_deferred = max_t(long, (nr + delta - scanned), 0);
777 next_deferred = min(next_deferred, (2 * freeable));
778
779 /*
780 * move the unused scan count back into the shrinker in a
781 * manner that handles concurrent updates.
782 */
783 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
784
785 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
786 return freed;
787 }
788
789 #ifdef CONFIG_MEMCG
790 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
791 struct mem_cgroup *memcg, int priority)
792 {
793 struct shrinker_info *info;
794 unsigned long ret, freed = 0;
795 int i;
796
797 if (!mem_cgroup_online(memcg))
798 return 0;
799
800 if (!down_read_trylock(&shrinker_rwsem))
801 return 0;
802
803 info = shrinker_info_protected(memcg, nid);
804 if (unlikely(!info))
805 goto unlock;
806
807 for_each_set_bit(i, info->map, shrinker_nr_max) {
808 struct shrink_control sc = {
809 .gfp_mask = gfp_mask,
810 .nid = nid,
811 .memcg = memcg,
812 };
813 struct shrinker *shrinker;
814
815 shrinker = idr_find(&shrinker_idr, i);
816 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
817 if (!shrinker)
818 clear_bit(i, info->map);
819 continue;
820 }
821
822 /* Call non-slab shrinkers even though kmem is disabled */
823 if (!memcg_kmem_enabled() &&
824 !(shrinker->flags & SHRINKER_NONSLAB))
825 continue;
826
827 ret = do_shrink_slab(&sc, shrinker, priority);
828 if (ret == SHRINK_EMPTY) {
829 clear_bit(i, info->map);
830 /*
831 * After the shrinker reported that it had no objects to
832 * free, but before we cleared the corresponding bit in
833 * the memcg shrinker map, a new object might have been
834 * added. To make sure, we have the bit set in this
835 * case, we invoke the shrinker one more time and reset
836 * the bit if it reports that it is not empty anymore.
837 * The memory barrier here pairs with the barrier in
838 * set_shrinker_bit():
839 *
840 * list_lru_add() shrink_slab_memcg()
841 * list_add_tail() clear_bit()
842 * <MB> <MB>
843 * set_bit() do_shrink_slab()
844 */
845 smp_mb__after_atomic();
846 ret = do_shrink_slab(&sc, shrinker, priority);
847 if (ret == SHRINK_EMPTY)
848 ret = 0;
849 else
850 set_shrinker_bit(memcg, nid, i);
851 }
852 freed += ret;
853
854 if (rwsem_is_contended(&shrinker_rwsem)) {
855 freed = freed ? : 1;
856 break;
857 }
858 }
859 unlock:
860 up_read(&shrinker_rwsem);
861 return freed;
862 }
863 #else /* CONFIG_MEMCG */
864 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
865 struct mem_cgroup *memcg, int priority)
866 {
867 return 0;
868 }
869 #endif /* CONFIG_MEMCG */
870
871 /**
872 * shrink_slab - shrink slab caches
873 * @gfp_mask: allocation context
874 * @nid: node whose slab caches to target
875 * @memcg: memory cgroup whose slab caches to target
876 * @priority: the reclaim priority
877 *
878 * Call the shrink functions to age shrinkable caches.
879 *
880 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
881 * unaware shrinkers will receive a node id of 0 instead.
882 *
883 * @memcg specifies the memory cgroup to target. Unaware shrinkers
884 * are called only if it is the root cgroup.
885 *
886 * @priority is sc->priority, we take the number of objects and >> by priority
887 * in order to get the scan target.
888 *
889 * Returns the number of reclaimed slab objects.
890 */
891 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
892 struct mem_cgroup *memcg,
893 int priority)
894 {
895 unsigned long ret, freed = 0;
896 struct shrinker *shrinker;
897
898 /*
899 * The root memcg might be allocated even though memcg is disabled
900 * via "cgroup_disable=memory" boot parameter. This could make
901 * mem_cgroup_is_root() return false, then just run memcg slab
902 * shrink, but skip global shrink. This may result in premature
903 * oom.
904 */
905 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
906 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
907
908 if (!down_read_trylock(&shrinker_rwsem))
909 goto out;
910
911 list_for_each_entry(shrinker, &shrinker_list, list) {
912 struct shrink_control sc = {
913 .gfp_mask = gfp_mask,
914 .nid = nid,
915 .memcg = memcg,
916 };
917
918 ret = do_shrink_slab(&sc, shrinker, priority);
919 if (ret == SHRINK_EMPTY)
920 ret = 0;
921 freed += ret;
922 /*
923 * Bail out if someone want to register a new shrinker to
924 * prevent the registration from being stalled for long periods
925 * by parallel ongoing shrinking.
926 */
927 if (rwsem_is_contended(&shrinker_rwsem)) {
928 freed = freed ? : 1;
929 break;
930 }
931 }
932
933 up_read(&shrinker_rwsem);
934 out:
935 cond_resched();
936 return freed;
937 }
938
939 void drop_slab_node(int nid)
940 {
941 unsigned long freed;
942 int shift = 0;
943
944 do {
945 struct mem_cgroup *memcg = NULL;
946
947 if (fatal_signal_pending(current))
948 return;
949
950 freed = 0;
951 memcg = mem_cgroup_iter(NULL, NULL, NULL);
952 do {
953 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
954 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
955 } while ((freed >> shift++) > 1);
956 }
957
958 void drop_slab(void)
959 {
960 int nid;
961
962 for_each_online_node(nid)
963 drop_slab_node(nid);
964 }
965
966 static inline int is_page_cache_freeable(struct page *page)
967 {
968 /*
969 * A freeable page cache page is referenced only by the caller
970 * that isolated the page, the page cache and optional buffer
971 * heads at page->private.
972 */
973 int page_cache_pins = thp_nr_pages(page);
974 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
975 }
976
977 static int may_write_to_inode(struct inode *inode)
978 {
979 if (current->flags & PF_SWAPWRITE)
980 return 1;
981 if (!inode_write_congested(inode))
982 return 1;
983 if (inode_to_bdi(inode) == current->backing_dev_info)
984 return 1;
985 return 0;
986 }
987
988 /*
989 * We detected a synchronous write error writing a page out. Probably
990 * -ENOSPC. We need to propagate that into the address_space for a subsequent
991 * fsync(), msync() or close().
992 *
993 * The tricky part is that after writepage we cannot touch the mapping: nothing
994 * prevents it from being freed up. But we have a ref on the page and once
995 * that page is locked, the mapping is pinned.
996 *
997 * We're allowed to run sleeping lock_page() here because we know the caller has
998 * __GFP_FS.
999 */
1000 static void handle_write_error(struct address_space *mapping,
1001 struct page *page, int error)
1002 {
1003 lock_page(page);
1004 if (page_mapping(page) == mapping)
1005 mapping_set_error(mapping, error);
1006 unlock_page(page);
1007 }
1008
1009 /* possible outcome of pageout() */
1010 typedef enum {
1011 /* failed to write page out, page is locked */
1012 PAGE_KEEP,
1013 /* move page to the active list, page is locked */
1014 PAGE_ACTIVATE,
1015 /* page has been sent to the disk successfully, page is unlocked */
1016 PAGE_SUCCESS,
1017 /* page is clean and locked */
1018 PAGE_CLEAN,
1019 } pageout_t;
1020
1021 /*
1022 * pageout is called by shrink_page_list() for each dirty page.
1023 * Calls ->writepage().
1024 */
1025 static pageout_t pageout(struct page *page, struct address_space *mapping)
1026 {
1027 /*
1028 * If the page is dirty, only perform writeback if that write
1029 * will be non-blocking. To prevent this allocation from being
1030 * stalled by pagecache activity. But note that there may be
1031 * stalls if we need to run get_block(). We could test
1032 * PagePrivate for that.
1033 *
1034 * If this process is currently in __generic_file_write_iter() against
1035 * this page's queue, we can perform writeback even if that
1036 * will block.
1037 *
1038 * If the page is swapcache, write it back even if that would
1039 * block, for some throttling. This happens by accident, because
1040 * swap_backing_dev_info is bust: it doesn't reflect the
1041 * congestion state of the swapdevs. Easy to fix, if needed.
1042 */
1043 if (!is_page_cache_freeable(page))
1044 return PAGE_KEEP;
1045 if (!mapping) {
1046 /*
1047 * Some data journaling orphaned pages can have
1048 * page->mapping == NULL while being dirty with clean buffers.
1049 */
1050 if (page_has_private(page)) {
1051 if (try_to_free_buffers(page)) {
1052 ClearPageDirty(page);
1053 pr_info("%s: orphaned page\n", __func__);
1054 return PAGE_CLEAN;
1055 }
1056 }
1057 return PAGE_KEEP;
1058 }
1059 if (mapping->a_ops->writepage == NULL)
1060 return PAGE_ACTIVATE;
1061 if (!may_write_to_inode(mapping->host))
1062 return PAGE_KEEP;
1063
1064 if (clear_page_dirty_for_io(page)) {
1065 int res;
1066 struct writeback_control wbc = {
1067 .sync_mode = WB_SYNC_NONE,
1068 .nr_to_write = SWAP_CLUSTER_MAX,
1069 .range_start = 0,
1070 .range_end = LLONG_MAX,
1071 .for_reclaim = 1,
1072 };
1073
1074 SetPageReclaim(page);
1075 res = mapping->a_ops->writepage(page, &wbc);
1076 if (res < 0)
1077 handle_write_error(mapping, page, res);
1078 if (res == AOP_WRITEPAGE_ACTIVATE) {
1079 ClearPageReclaim(page);
1080 return PAGE_ACTIVATE;
1081 }
1082
1083 if (!PageWriteback(page)) {
1084 /* synchronous write or broken a_ops? */
1085 ClearPageReclaim(page);
1086 }
1087 trace_mm_vmscan_writepage(page);
1088 inc_node_page_state(page, NR_VMSCAN_WRITE);
1089 return PAGE_SUCCESS;
1090 }
1091
1092 return PAGE_CLEAN;
1093 }
1094
1095 /*
1096 * Same as remove_mapping, but if the page is removed from the mapping, it
1097 * gets returned with a refcount of 0.
1098 */
1099 static int __remove_mapping(struct address_space *mapping, struct page *page,
1100 bool reclaimed, struct mem_cgroup *target_memcg)
1101 {
1102 int refcount;
1103 void *shadow = NULL;
1104
1105 BUG_ON(!PageLocked(page));
1106 BUG_ON(mapping != page_mapping(page));
1107
1108 xa_lock_irq(&mapping->i_pages);
1109 /*
1110 * The non racy check for a busy page.
1111 *
1112 * Must be careful with the order of the tests. When someone has
1113 * a ref to the page, it may be possible that they dirty it then
1114 * drop the reference. So if PageDirty is tested before page_count
1115 * here, then the following race may occur:
1116 *
1117 * get_user_pages(&page);
1118 * [user mapping goes away]
1119 * write_to(page);
1120 * !PageDirty(page) [good]
1121 * SetPageDirty(page);
1122 * put_page(page);
1123 * !page_count(page) [good, discard it]
1124 *
1125 * [oops, our write_to data is lost]
1126 *
1127 * Reversing the order of the tests ensures such a situation cannot
1128 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1129 * load is not satisfied before that of page->_refcount.
1130 *
1131 * Note that if SetPageDirty is always performed via set_page_dirty,
1132 * and thus under the i_pages lock, then this ordering is not required.
1133 */
1134 refcount = 1 + compound_nr(page);
1135 if (!page_ref_freeze(page, refcount))
1136 goto cannot_free;
1137 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1138 if (unlikely(PageDirty(page))) {
1139 page_ref_unfreeze(page, refcount);
1140 goto cannot_free;
1141 }
1142
1143 if (PageSwapCache(page)) {
1144 swp_entry_t swap = { .val = page_private(page) };
1145 mem_cgroup_swapout(page, swap);
1146 if (reclaimed && !mapping_exiting(mapping))
1147 shadow = workingset_eviction(page, target_memcg);
1148 __delete_from_swap_cache(page, swap, shadow);
1149 xa_unlock_irq(&mapping->i_pages);
1150 put_swap_page(page, swap);
1151 } else {
1152 void (*freepage)(struct page *);
1153
1154 freepage = mapping->a_ops->freepage;
1155 /*
1156 * Remember a shadow entry for reclaimed file cache in
1157 * order to detect refaults, thus thrashing, later on.
1158 *
1159 * But don't store shadows in an address space that is
1160 * already exiting. This is not just an optimization,
1161 * inode reclaim needs to empty out the radix tree or
1162 * the nodes are lost. Don't plant shadows behind its
1163 * back.
1164 *
1165 * We also don't store shadows for DAX mappings because the
1166 * only page cache pages found in these are zero pages
1167 * covering holes, and because we don't want to mix DAX
1168 * exceptional entries and shadow exceptional entries in the
1169 * same address_space.
1170 */
1171 if (reclaimed && page_is_file_lru(page) &&
1172 !mapping_exiting(mapping) && !dax_mapping(mapping))
1173 shadow = workingset_eviction(page, target_memcg);
1174 __delete_from_page_cache(page, shadow);
1175 xa_unlock_irq(&mapping->i_pages);
1176
1177 if (freepage != NULL)
1178 freepage(page);
1179 }
1180
1181 return 1;
1182
1183 cannot_free:
1184 xa_unlock_irq(&mapping->i_pages);
1185 return 0;
1186 }
1187
1188 /*
1189 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
1190 * someone else has a ref on the page, abort and return 0. If it was
1191 * successfully detached, return 1. Assumes the caller has a single ref on
1192 * this page.
1193 */
1194 int remove_mapping(struct address_space *mapping, struct page *page)
1195 {
1196 if (__remove_mapping(mapping, page, false, NULL)) {
1197 /*
1198 * Unfreezing the refcount with 1 rather than 2 effectively
1199 * drops the pagecache ref for us without requiring another
1200 * atomic operation.
1201 */
1202 page_ref_unfreeze(page, 1);
1203 return 1;
1204 }
1205 return 0;
1206 }
1207
1208 /**
1209 * putback_lru_page - put previously isolated page onto appropriate LRU list
1210 * @page: page to be put back to appropriate lru list
1211 *
1212 * Add previously isolated @page to appropriate LRU list.
1213 * Page may still be unevictable for other reasons.
1214 *
1215 * lru_lock must not be held, interrupts must be enabled.
1216 */
1217 void putback_lru_page(struct page *page)
1218 {
1219 lru_cache_add(page);
1220 put_page(page); /* drop ref from isolate */
1221 }
1222
1223 enum page_references {
1224 PAGEREF_RECLAIM,
1225 PAGEREF_RECLAIM_CLEAN,
1226 PAGEREF_KEEP,
1227 PAGEREF_ACTIVATE,
1228 };
1229
1230 static enum page_references page_check_references(struct page *page,
1231 struct scan_control *sc)
1232 {
1233 int referenced_ptes, referenced_page;
1234 unsigned long vm_flags;
1235
1236 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1237 &vm_flags);
1238 referenced_page = TestClearPageReferenced(page);
1239
1240 /*
1241 * Mlock lost the isolation race with us. Let try_to_unmap()
1242 * move the page to the unevictable list.
1243 */
1244 if (vm_flags & VM_LOCKED)
1245 return PAGEREF_RECLAIM;
1246
1247 if (referenced_ptes) {
1248 /*
1249 * All mapped pages start out with page table
1250 * references from the instantiating fault, so we need
1251 * to look twice if a mapped file page is used more
1252 * than once.
1253 *
1254 * Mark it and spare it for another trip around the
1255 * inactive list. Another page table reference will
1256 * lead to its activation.
1257 *
1258 * Note: the mark is set for activated pages as well
1259 * so that recently deactivated but used pages are
1260 * quickly recovered.
1261 */
1262 SetPageReferenced(page);
1263
1264 if (referenced_page || referenced_ptes > 1)
1265 return PAGEREF_ACTIVATE;
1266
1267 /*
1268 * Activate file-backed executable pages after first usage.
1269 */
1270 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1271 return PAGEREF_ACTIVATE;
1272
1273 return PAGEREF_KEEP;
1274 }
1275
1276 /* Reclaim if clean, defer dirty pages to writeback */
1277 if (referenced_page && !PageSwapBacked(page))
1278 return PAGEREF_RECLAIM_CLEAN;
1279
1280 return PAGEREF_RECLAIM;
1281 }
1282
1283 /* Check if a page is dirty or under writeback */
1284 static void page_check_dirty_writeback(struct page *page,
1285 bool *dirty, bool *writeback)
1286 {
1287 struct address_space *mapping;
1288
1289 /*
1290 * Anonymous pages are not handled by flushers and must be written
1291 * from reclaim context. Do not stall reclaim based on them
1292 */
1293 if (!page_is_file_lru(page) ||
1294 (PageAnon(page) && !PageSwapBacked(page))) {
1295 *dirty = false;
1296 *writeback = false;
1297 return;
1298 }
1299
1300 /* By default assume that the page flags are accurate */
1301 *dirty = PageDirty(page);
1302 *writeback = PageWriteback(page);
1303
1304 /* Verify dirty/writeback state if the filesystem supports it */
1305 if (!page_has_private(page))
1306 return;
1307
1308 mapping = page_mapping(page);
1309 if (mapping && mapping->a_ops->is_dirty_writeback)
1310 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1311 }
1312
1313 static struct page *alloc_demote_page(struct page *page, unsigned long node)
1314 {
1315 struct migration_target_control mtc = {
1316 /*
1317 * Allocate from 'node', or fail quickly and quietly.
1318 * When this happens, 'page' will likely just be discarded
1319 * instead of migrated.
1320 */
1321 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1322 __GFP_THISNODE | __GFP_NOWARN |
1323 __GFP_NOMEMALLOC | GFP_NOWAIT,
1324 .nid = node
1325 };
1326
1327 return alloc_migration_target(page, (unsigned long)&mtc);
1328 }
1329
1330 /*
1331 * Take pages on @demote_list and attempt to demote them to
1332 * another node. Pages which are not demoted are left on
1333 * @demote_pages.
1334 */
1335 static unsigned int demote_page_list(struct list_head *demote_pages,
1336 struct pglist_data *pgdat)
1337 {
1338 int target_nid = next_demotion_node(pgdat->node_id);
1339 unsigned int nr_succeeded;
1340 int err;
1341
1342 if (list_empty(demote_pages))
1343 return 0;
1344
1345 if (target_nid == NUMA_NO_NODE)
1346 return 0;
1347
1348 /* Demotion ignores all cpuset and mempolicy settings */
1349 err = migrate_pages(demote_pages, alloc_demote_page, NULL,
1350 target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1351 &nr_succeeded);
1352
1353 if (current_is_kswapd())
1354 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1355 else
1356 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1357
1358 return nr_succeeded;
1359 }
1360
1361 /*
1362 * shrink_page_list() returns the number of reclaimed pages
1363 */
1364 static unsigned int shrink_page_list(struct list_head *page_list,
1365 struct pglist_data *pgdat,
1366 struct scan_control *sc,
1367 struct reclaim_stat *stat,
1368 bool ignore_references)
1369 {
1370 LIST_HEAD(ret_pages);
1371 LIST_HEAD(free_pages);
1372 LIST_HEAD(demote_pages);
1373 unsigned int nr_reclaimed = 0;
1374 unsigned int pgactivate = 0;
1375 bool do_demote_pass;
1376
1377 memset(stat, 0, sizeof(*stat));
1378 cond_resched();
1379 do_demote_pass = can_demote(pgdat->node_id, sc);
1380
1381 retry:
1382 while (!list_empty(page_list)) {
1383 struct address_space *mapping;
1384 struct page *page;
1385 enum page_references references = PAGEREF_RECLAIM;
1386 bool dirty, writeback, may_enter_fs;
1387 unsigned int nr_pages;
1388
1389 cond_resched();
1390
1391 page = lru_to_page(page_list);
1392 list_del(&page->lru);
1393
1394 if (!trylock_page(page))
1395 goto keep;
1396
1397 VM_BUG_ON_PAGE(PageActive(page), page);
1398
1399 nr_pages = compound_nr(page);
1400
1401 /* Account the number of base pages even though THP */
1402 sc->nr_scanned += nr_pages;
1403
1404 if (unlikely(!page_evictable(page)))
1405 goto activate_locked;
1406
1407 if (!sc->may_unmap && page_mapped(page))
1408 goto keep_locked;
1409
1410 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1411 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1412
1413 /*
1414 * The number of dirty pages determines if a node is marked
1415 * reclaim_congested which affects wait_iff_congested. kswapd
1416 * will stall and start writing pages if the tail of the LRU
1417 * is all dirty unqueued pages.
1418 */
1419 page_check_dirty_writeback(page, &dirty, &writeback);
1420 if (dirty || writeback)
1421 stat->nr_dirty++;
1422
1423 if (dirty && !writeback)
1424 stat->nr_unqueued_dirty++;
1425
1426 /*
1427 * Treat this page as congested if the underlying BDI is or if
1428 * pages are cycling through the LRU so quickly that the
1429 * pages marked for immediate reclaim are making it to the
1430 * end of the LRU a second time.
1431 */
1432 mapping = page_mapping(page);
1433 if (((dirty || writeback) && mapping &&
1434 inode_write_congested(mapping->host)) ||
1435 (writeback && PageReclaim(page)))
1436 stat->nr_congested++;
1437
1438 /*
1439 * If a page at the tail of the LRU is under writeback, there
1440 * are three cases to consider.
1441 *
1442 * 1) If reclaim is encountering an excessive number of pages
1443 * under writeback and this page is both under writeback and
1444 * PageReclaim then it indicates that pages are being queued
1445 * for IO but are being recycled through the LRU before the
1446 * IO can complete. Waiting on the page itself risks an
1447 * indefinite stall if it is impossible to writeback the
1448 * page due to IO error or disconnected storage so instead
1449 * note that the LRU is being scanned too quickly and the
1450 * caller can stall after page list has been processed.
1451 *
1452 * 2) Global or new memcg reclaim encounters a page that is
1453 * not marked for immediate reclaim, or the caller does not
1454 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1455 * not to fs). In this case mark the page for immediate
1456 * reclaim and continue scanning.
1457 *
1458 * Require may_enter_fs because we would wait on fs, which
1459 * may not have submitted IO yet. And the loop driver might
1460 * enter reclaim, and deadlock if it waits on a page for
1461 * which it is needed to do the write (loop masks off
1462 * __GFP_IO|__GFP_FS for this reason); but more thought
1463 * would probably show more reasons.
1464 *
1465 * 3) Legacy memcg encounters a page that is already marked
1466 * PageReclaim. memcg does not have any dirty pages
1467 * throttling so we could easily OOM just because too many
1468 * pages are in writeback and there is nothing else to
1469 * reclaim. Wait for the writeback to complete.
1470 *
1471 * In cases 1) and 2) we activate the pages to get them out of
1472 * the way while we continue scanning for clean pages on the
1473 * inactive list and refilling from the active list. The
1474 * observation here is that waiting for disk writes is more
1475 * expensive than potentially causing reloads down the line.
1476 * Since they're marked for immediate reclaim, they won't put
1477 * memory pressure on the cache working set any longer than it
1478 * takes to write them to disk.
1479 */
1480 if (PageWriteback(page)) {
1481 /* Case 1 above */
1482 if (current_is_kswapd() &&
1483 PageReclaim(page) &&
1484 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1485 stat->nr_immediate++;
1486 goto activate_locked;
1487
1488 /* Case 2 above */
1489 } else if (writeback_throttling_sane(sc) ||
1490 !PageReclaim(page) || !may_enter_fs) {
1491 /*
1492 * This is slightly racy - end_page_writeback()
1493 * might have just cleared PageReclaim, then
1494 * setting PageReclaim here end up interpreted
1495 * as PageReadahead - but that does not matter
1496 * enough to care. What we do want is for this
1497 * page to have PageReclaim set next time memcg
1498 * reclaim reaches the tests above, so it will
1499 * then wait_on_page_writeback() to avoid OOM;
1500 * and it's also appropriate in global reclaim.
1501 */
1502 SetPageReclaim(page);
1503 stat->nr_writeback++;
1504 goto activate_locked;
1505
1506 /* Case 3 above */
1507 } else {
1508 unlock_page(page);
1509 wait_on_page_writeback(page);
1510 /* then go back and try same page again */
1511 list_add_tail(&page->lru, page_list);
1512 continue;
1513 }
1514 }
1515
1516 if (!ignore_references)
1517 references = page_check_references(page, sc);
1518
1519 switch (references) {
1520 case PAGEREF_ACTIVATE:
1521 goto activate_locked;
1522 case PAGEREF_KEEP:
1523 stat->nr_ref_keep += nr_pages;
1524 goto keep_locked;
1525 case PAGEREF_RECLAIM:
1526 case PAGEREF_RECLAIM_CLEAN:
1527 ; /* try to reclaim the page below */
1528 }
1529
1530 /*
1531 * Before reclaiming the page, try to relocate
1532 * its contents to another node.
1533 */
1534 if (do_demote_pass &&
1535 (thp_migration_supported() || !PageTransHuge(page))) {
1536 list_add(&page->lru, &demote_pages);
1537 unlock_page(page);
1538 continue;
1539 }
1540
1541 /*
1542 * Anonymous process memory has backing store?
1543 * Try to allocate it some swap space here.
1544 * Lazyfree page could be freed directly
1545 */
1546 if (PageAnon(page) && PageSwapBacked(page)) {
1547 if (!PageSwapCache(page)) {
1548 if (!(sc->gfp_mask & __GFP_IO))
1549 goto keep_locked;
1550 if (page_maybe_dma_pinned(page))
1551 goto keep_locked;
1552 if (PageTransHuge(page)) {
1553 /* cannot split THP, skip it */
1554 if (!can_split_huge_page(page, NULL))
1555 goto activate_locked;
1556 /*
1557 * Split pages without a PMD map right
1558 * away. Chances are some or all of the
1559 * tail pages can be freed without IO.
1560 */
1561 if (!compound_mapcount(page) &&
1562 split_huge_page_to_list(page,
1563 page_list))
1564 goto activate_locked;
1565 }
1566 if (!add_to_swap(page)) {
1567 if (!PageTransHuge(page))
1568 goto activate_locked_split;
1569 /* Fallback to swap normal pages */
1570 if (split_huge_page_to_list(page,
1571 page_list))
1572 goto activate_locked;
1573 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1574 count_vm_event(THP_SWPOUT_FALLBACK);
1575 #endif
1576 if (!add_to_swap(page))
1577 goto activate_locked_split;
1578 }
1579
1580 may_enter_fs = true;
1581
1582 /* Adding to swap updated mapping */
1583 mapping = page_mapping(page);
1584 }
1585 } else if (unlikely(PageTransHuge(page))) {
1586 /* Split file THP */
1587 if (split_huge_page_to_list(page, page_list))
1588 goto keep_locked;
1589 }
1590
1591 /*
1592 * THP may get split above, need minus tail pages and update
1593 * nr_pages to avoid accounting tail pages twice.
1594 *
1595 * The tail pages that are added into swap cache successfully
1596 * reach here.
1597 */
1598 if ((nr_pages > 1) && !PageTransHuge(page)) {
1599 sc->nr_scanned -= (nr_pages - 1);
1600 nr_pages = 1;
1601 }
1602
1603 /*
1604 * The page is mapped into the page tables of one or more
1605 * processes. Try to unmap it here.
1606 */
1607 if (page_mapped(page)) {
1608 enum ttu_flags flags = TTU_BATCH_FLUSH;
1609 bool was_swapbacked = PageSwapBacked(page);
1610
1611 if (unlikely(PageTransHuge(page)))
1612 flags |= TTU_SPLIT_HUGE_PMD;
1613
1614 try_to_unmap(page, flags);
1615 if (page_mapped(page)) {
1616 stat->nr_unmap_fail += nr_pages;
1617 if (!was_swapbacked && PageSwapBacked(page))
1618 stat->nr_lazyfree_fail += nr_pages;
1619 goto activate_locked;
1620 }
1621 }
1622
1623 if (PageDirty(page)) {
1624 /*
1625 * Only kswapd can writeback filesystem pages
1626 * to avoid risk of stack overflow. But avoid
1627 * injecting inefficient single-page IO into
1628 * flusher writeback as much as possible: only
1629 * write pages when we've encountered many
1630 * dirty pages, and when we've already scanned
1631 * the rest of the LRU for clean pages and see
1632 * the same dirty pages again (PageReclaim).
1633 */
1634 if (page_is_file_lru(page) &&
1635 (!current_is_kswapd() || !PageReclaim(page) ||
1636 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1637 /*
1638 * Immediately reclaim when written back.
1639 * Similar in principal to deactivate_page()
1640 * except we already have the page isolated
1641 * and know it's dirty
1642 */
1643 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1644 SetPageReclaim(page);
1645
1646 goto activate_locked;
1647 }
1648
1649 if (references == PAGEREF_RECLAIM_CLEAN)
1650 goto keep_locked;
1651 if (!may_enter_fs)
1652 goto keep_locked;
1653 if (!sc->may_writepage)
1654 goto keep_locked;
1655
1656 /*
1657 * Page is dirty. Flush the TLB if a writable entry
1658 * potentially exists to avoid CPU writes after IO
1659 * starts and then write it out here.
1660 */
1661 try_to_unmap_flush_dirty();
1662 switch (pageout(page, mapping)) {
1663 case PAGE_KEEP:
1664 goto keep_locked;
1665 case PAGE_ACTIVATE:
1666 goto activate_locked;
1667 case PAGE_SUCCESS:
1668 stat->nr_pageout += thp_nr_pages(page);
1669
1670 if (PageWriteback(page))
1671 goto keep;
1672 if (PageDirty(page))
1673 goto keep;
1674
1675 /*
1676 * A synchronous write - probably a ramdisk. Go
1677 * ahead and try to reclaim the page.
1678 */
1679 if (!trylock_page(page))
1680 goto keep;
1681 if (PageDirty(page) || PageWriteback(page))
1682 goto keep_locked;
1683 mapping = page_mapping(page);
1684 fallthrough;
1685 case PAGE_CLEAN:
1686 ; /* try to free the page below */
1687 }
1688 }
1689
1690 /*
1691 * If the page has buffers, try to free the buffer mappings
1692 * associated with this page. If we succeed we try to free
1693 * the page as well.
1694 *
1695 * We do this even if the page is PageDirty().
1696 * try_to_release_page() does not perform I/O, but it is
1697 * possible for a page to have PageDirty set, but it is actually
1698 * clean (all its buffers are clean). This happens if the
1699 * buffers were written out directly, with submit_bh(). ext3
1700 * will do this, as well as the blockdev mapping.
1701 * try_to_release_page() will discover that cleanness and will
1702 * drop the buffers and mark the page clean - it can be freed.
1703 *
1704 * Rarely, pages can have buffers and no ->mapping. These are
1705 * the pages which were not successfully invalidated in
1706 * truncate_cleanup_page(). We try to drop those buffers here
1707 * and if that worked, and the page is no longer mapped into
1708 * process address space (page_count == 1) it can be freed.
1709 * Otherwise, leave the page on the LRU so it is swappable.
1710 */
1711 if (page_has_private(page)) {
1712 if (!try_to_release_page(page, sc->gfp_mask))
1713 goto activate_locked;
1714 if (!mapping && page_count(page) == 1) {
1715 unlock_page(page);
1716 if (put_page_testzero(page))
1717 goto free_it;
1718 else {
1719 /*
1720 * rare race with speculative reference.
1721 * the speculative reference will free
1722 * this page shortly, so we may
1723 * increment nr_reclaimed here (and
1724 * leave it off the LRU).
1725 */
1726 nr_reclaimed++;
1727 continue;
1728 }
1729 }
1730 }
1731
1732 if (PageAnon(page) && !PageSwapBacked(page)) {
1733 /* follow __remove_mapping for reference */
1734 if (!page_ref_freeze(page, 1))
1735 goto keep_locked;
1736 /*
1737 * The page has only one reference left, which is
1738 * from the isolation. After the caller puts the
1739 * page back on lru and drops the reference, the
1740 * page will be freed anyway. It doesn't matter
1741 * which lru it goes. So we don't bother checking
1742 * PageDirty here.
1743 */
1744 count_vm_event(PGLAZYFREED);
1745 count_memcg_page_event(page, PGLAZYFREED);
1746 } else if (!mapping || !__remove_mapping(mapping, page, true,
1747 sc->target_mem_cgroup))
1748 goto keep_locked;
1749
1750 unlock_page(page);
1751 free_it:
1752 /*
1753 * THP may get swapped out in a whole, need account
1754 * all base pages.
1755 */
1756 nr_reclaimed += nr_pages;
1757
1758 /*
1759 * Is there need to periodically free_page_list? It would
1760 * appear not as the counts should be low
1761 */
1762 if (unlikely(PageTransHuge(page)))
1763 destroy_compound_page(page);
1764 else
1765 list_add(&page->lru, &free_pages);
1766 continue;
1767
1768 activate_locked_split:
1769 /*
1770 * The tail pages that are failed to add into swap cache
1771 * reach here. Fixup nr_scanned and nr_pages.
1772 */
1773 if (nr_pages > 1) {
1774 sc->nr_scanned -= (nr_pages - 1);
1775 nr_pages = 1;
1776 }
1777 activate_locked:
1778 /* Not a candidate for swapping, so reclaim swap space. */
1779 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1780 PageMlocked(page)))
1781 try_to_free_swap(page);
1782 VM_BUG_ON_PAGE(PageActive(page), page);
1783 if (!PageMlocked(page)) {
1784 int type = page_is_file_lru(page);
1785 SetPageActive(page);
1786 stat->nr_activate[type] += nr_pages;
1787 count_memcg_page_event(page, PGACTIVATE);
1788 }
1789 keep_locked:
1790 unlock_page(page);
1791 keep:
1792 list_add(&page->lru, &ret_pages);
1793 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1794 }
1795 /* 'page_list' is always empty here */
1796
1797 /* Migrate pages selected for demotion */
1798 nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1799 /* Pages that could not be demoted are still in @demote_pages */
1800 if (!list_empty(&demote_pages)) {
1801 /* Pages which failed to demoted go back on @page_list for retry: */
1802 list_splice_init(&demote_pages, page_list);
1803 do_demote_pass = false;
1804 goto retry;
1805 }
1806
1807 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1808
1809 mem_cgroup_uncharge_list(&free_pages);
1810 try_to_unmap_flush();
1811 free_unref_page_list(&free_pages);
1812
1813 list_splice(&ret_pages, page_list);
1814 count_vm_events(PGACTIVATE, pgactivate);
1815
1816 return nr_reclaimed;
1817 }
1818
1819 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1820 struct list_head *page_list)
1821 {
1822 struct scan_control sc = {
1823 .gfp_mask = GFP_KERNEL,
1824 .may_unmap = 1,
1825 };
1826 struct reclaim_stat stat;
1827 unsigned int nr_reclaimed;
1828 struct page *page, *next;
1829 LIST_HEAD(clean_pages);
1830 unsigned int noreclaim_flag;
1831
1832 list_for_each_entry_safe(page, next, page_list, lru) {
1833 if (!PageHuge(page) && page_is_file_lru(page) &&
1834 !PageDirty(page) && !__PageMovable(page) &&
1835 !PageUnevictable(page)) {
1836 ClearPageActive(page);
1837 list_move(&page->lru, &clean_pages);
1838 }
1839 }
1840
1841 /*
1842 * We should be safe here since we are only dealing with file pages and
1843 * we are not kswapd and therefore cannot write dirty file pages. But
1844 * call memalloc_noreclaim_save() anyway, just in case these conditions
1845 * change in the future.
1846 */
1847 noreclaim_flag = memalloc_noreclaim_save();
1848 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1849 &stat, true);
1850 memalloc_noreclaim_restore(noreclaim_flag);
1851
1852 list_splice(&clean_pages, page_list);
1853 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1854 -(long)nr_reclaimed);
1855 /*
1856 * Since lazyfree pages are isolated from file LRU from the beginning,
1857 * they will rotate back to anonymous LRU in the end if it failed to
1858 * discard so isolated count will be mismatched.
1859 * Compensate the isolated count for both LRU lists.
1860 */
1861 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1862 stat.nr_lazyfree_fail);
1863 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1864 -(long)stat.nr_lazyfree_fail);
1865 return nr_reclaimed;
1866 }
1867
1868 /*
1869 * Update LRU sizes after isolating pages. The LRU size updates must
1870 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1871 */
1872 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1873 enum lru_list lru, unsigned long *nr_zone_taken)
1874 {
1875 int zid;
1876
1877 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1878 if (!nr_zone_taken[zid])
1879 continue;
1880
1881 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1882 }
1883
1884 }
1885
1886 /*
1887 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1888 *
1889 * lruvec->lru_lock is heavily contended. Some of the functions that
1890 * shrink the lists perform better by taking out a batch of pages
1891 * and working on them outside the LRU lock.
1892 *
1893 * For pagecache intensive workloads, this function is the hottest
1894 * spot in the kernel (apart from copy_*_user functions).
1895 *
1896 * Lru_lock must be held before calling this function.
1897 *
1898 * @nr_to_scan: The number of eligible pages to look through on the list.
1899 * @lruvec: The LRU vector to pull pages from.
1900 * @dst: The temp list to put pages on to.
1901 * @nr_scanned: The number of pages that were scanned.
1902 * @sc: The scan_control struct for this reclaim session
1903 * @lru: LRU list id for isolating
1904 *
1905 * returns how many pages were moved onto *@dst.
1906 */
1907 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1908 struct lruvec *lruvec, struct list_head *dst,
1909 unsigned long *nr_scanned, struct scan_control *sc,
1910 enum lru_list lru)
1911 {
1912 struct list_head *src = &lruvec->lists[lru];
1913 unsigned long nr_taken = 0;
1914 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1915 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1916 unsigned long skipped = 0;
1917 unsigned long scan, total_scan, nr_pages;
1918 LIST_HEAD(pages_skipped);
1919
1920 total_scan = 0;
1921 scan = 0;
1922 while (scan < nr_to_scan && !list_empty(src)) {
1923 struct list_head *move_to = src;
1924 struct page *page;
1925
1926 page = lru_to_page(src);
1927 prefetchw_prev_lru_page(page, src, flags);
1928
1929 nr_pages = compound_nr(page);
1930 total_scan += nr_pages;
1931
1932 if (page_zonenum(page) > sc->reclaim_idx) {
1933 nr_skipped[page_zonenum(page)] += nr_pages;
1934 move_to = &pages_skipped;
1935 goto move;
1936 }
1937
1938 /*
1939 * Do not count skipped pages because that makes the function
1940 * return with no isolated pages if the LRU mostly contains
1941 * ineligible pages. This causes the VM to not reclaim any
1942 * pages, triggering a premature OOM.
1943 * Account all tail pages of THP.
1944 */
1945 scan += nr_pages;
1946
1947 if (!PageLRU(page))
1948 goto move;
1949 if (!sc->may_unmap && page_mapped(page))
1950 goto move;
1951
1952 /*
1953 * Be careful not to clear PageLRU until after we're
1954 * sure the page is not being freed elsewhere -- the
1955 * page release code relies on it.
1956 */
1957 if (unlikely(!get_page_unless_zero(page)))
1958 goto move;
1959
1960 if (!TestClearPageLRU(page)) {
1961 /* Another thread is already isolating this page */
1962 put_page(page);
1963 goto move;
1964 }
1965
1966 nr_taken += nr_pages;
1967 nr_zone_taken[page_zonenum(page)] += nr_pages;
1968 move_to = dst;
1969 move:
1970 list_move(&page->lru, move_to);
1971 }
1972
1973 /*
1974 * Splice any skipped pages to the start of the LRU list. Note that
1975 * this disrupts the LRU order when reclaiming for lower zones but
1976 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1977 * scanning would soon rescan the same pages to skip and put the
1978 * system at risk of premature OOM.
1979 */
1980 if (!list_empty(&pages_skipped)) {
1981 int zid;
1982
1983 list_splice(&pages_skipped, src);
1984 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1985 if (!nr_skipped[zid])
1986 continue;
1987
1988 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1989 skipped += nr_skipped[zid];
1990 }
1991 }
1992 *nr_scanned = total_scan;
1993 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1994 total_scan, skipped, nr_taken,
1995 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
1996 update_lru_sizes(lruvec, lru, nr_zone_taken);
1997 return nr_taken;
1998 }
1999
2000 /**
2001 * isolate_lru_page - tries to isolate a page from its LRU list
2002 * @page: page to isolate from its LRU list
2003 *
2004 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
2005 * vmstat statistic corresponding to whatever LRU list the page was on.
2006 *
2007 * Returns 0 if the page was removed from an LRU list.
2008 * Returns -EBUSY if the page was not on an LRU list.
2009 *
2010 * The returned page will have PageLRU() cleared. If it was found on
2011 * the active list, it will have PageActive set. If it was found on
2012 * the unevictable list, it will have the PageUnevictable bit set. That flag
2013 * may need to be cleared by the caller before letting the page go.
2014 *
2015 * The vmstat statistic corresponding to the list on which the page was
2016 * found will be decremented.
2017 *
2018 * Restrictions:
2019 *
2020 * (1) Must be called with an elevated refcount on the page. This is a
2021 * fundamental difference from isolate_lru_pages (which is called
2022 * without a stable reference).
2023 * (2) the lru_lock must not be held.
2024 * (3) interrupts must be enabled.
2025 */
2026 int isolate_lru_page(struct page *page)
2027 {
2028 int ret = -EBUSY;
2029
2030 VM_BUG_ON_PAGE(!page_count(page), page);
2031 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
2032
2033 if (TestClearPageLRU(page)) {
2034 struct lruvec *lruvec;
2035
2036 get_page(page);
2037 lruvec = lock_page_lruvec_irq(page);
2038 del_page_from_lru_list(page, lruvec);
2039 unlock_page_lruvec_irq(lruvec);
2040 ret = 0;
2041 }
2042
2043 return ret;
2044 }
2045
2046 /*
2047 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2048 * then get rescheduled. When there are massive number of tasks doing page
2049 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2050 * the LRU list will go small and be scanned faster than necessary, leading to
2051 * unnecessary swapping, thrashing and OOM.
2052 */
2053 static int too_many_isolated(struct pglist_data *pgdat, int file,
2054 struct scan_control *sc)
2055 {
2056 unsigned long inactive, isolated;
2057
2058 if (current_is_kswapd())
2059 return 0;
2060
2061 if (!writeback_throttling_sane(sc))
2062 return 0;
2063
2064 if (file) {
2065 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2066 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2067 } else {
2068 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2069 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2070 }
2071
2072 /*
2073 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2074 * won't get blocked by normal direct-reclaimers, forming a circular
2075 * deadlock.
2076 */
2077 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2078 inactive >>= 3;
2079
2080 return isolated > inactive;
2081 }
2082
2083 /*
2084 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2085 * On return, @list is reused as a list of pages to be freed by the caller.
2086 *
2087 * Returns the number of pages moved to the given lruvec.
2088 */
2089 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2090 struct list_head *list)
2091 {
2092 int nr_pages, nr_moved = 0;
2093 LIST_HEAD(pages_to_free);
2094 struct page *page;
2095
2096 while (!list_empty(list)) {
2097 page = lru_to_page(list);
2098 VM_BUG_ON_PAGE(PageLRU(page), page);
2099 list_del(&page->lru);
2100 if (unlikely(!page_evictable(page))) {
2101 spin_unlock_irq(&lruvec->lru_lock);
2102 putback_lru_page(page);
2103 spin_lock_irq(&lruvec->lru_lock);
2104 continue;
2105 }
2106
2107 /*
2108 * The SetPageLRU needs to be kept here for list integrity.
2109 * Otherwise:
2110 * #0 move_pages_to_lru #1 release_pages
2111 * if !put_page_testzero
2112 * if (put_page_testzero())
2113 * !PageLRU //skip lru_lock
2114 * SetPageLRU()
2115 * list_add(&page->lru,)
2116 * list_add(&page->lru,)
2117 */
2118 SetPageLRU(page);
2119
2120 if (unlikely(put_page_testzero(page))) {
2121 __clear_page_lru_flags(page);
2122
2123 if (unlikely(PageCompound(page))) {
2124 spin_unlock_irq(&lruvec->lru_lock);
2125 destroy_compound_page(page);
2126 spin_lock_irq(&lruvec->lru_lock);
2127 } else
2128 list_add(&page->lru, &pages_to_free);
2129
2130 continue;
2131 }
2132
2133 /*
2134 * All pages were isolated from the same lruvec (and isolation
2135 * inhibits memcg migration).
2136 */
2137 VM_BUG_ON_PAGE(!page_matches_lruvec(page, lruvec), page);
2138 add_page_to_lru_list(page, lruvec);
2139 nr_pages = thp_nr_pages(page);
2140 nr_moved += nr_pages;
2141 if (PageActive(page))
2142 workingset_age_nonresident(lruvec, nr_pages);
2143 }
2144
2145 /*
2146 * To save our caller's stack, now use input list for pages to free.
2147 */
2148 list_splice(&pages_to_free, list);
2149
2150 return nr_moved;
2151 }
2152
2153 /*
2154 * If a kernel thread (such as nfsd for loop-back mounts) services
2155 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
2156 * In that case we should only throttle if the backing device it is
2157 * writing to is congested. In other cases it is safe to throttle.
2158 */
2159 static int current_may_throttle(void)
2160 {
2161 return !(current->flags & PF_LOCAL_THROTTLE) ||
2162 current->backing_dev_info == NULL ||
2163 bdi_write_congested(current->backing_dev_info);
2164 }
2165
2166 /*
2167 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
2168 * of reclaimed pages
2169 */
2170 static unsigned long
2171 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2172 struct scan_control *sc, enum lru_list lru)
2173 {
2174 LIST_HEAD(page_list);
2175 unsigned long nr_scanned;
2176 unsigned int nr_reclaimed = 0;
2177 unsigned long nr_taken;
2178 struct reclaim_stat stat;
2179 bool file = is_file_lru(lru);
2180 enum vm_event_item item;
2181 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2182 bool stalled = false;
2183
2184 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2185 if (stalled)
2186 return 0;
2187
2188 /* wait a bit for the reclaimer. */
2189 msleep(100);
2190 stalled = true;
2191
2192 /* We are about to die and free our memory. Return now. */
2193 if (fatal_signal_pending(current))
2194 return SWAP_CLUSTER_MAX;
2195 }
2196
2197 lru_add_drain();
2198
2199 spin_lock_irq(&lruvec->lru_lock);
2200
2201 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2202 &nr_scanned, sc, lru);
2203
2204 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2205 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2206 if (!cgroup_reclaim(sc))
2207 __count_vm_events(item, nr_scanned);
2208 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2209 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2210
2211 spin_unlock_irq(&lruvec->lru_lock);
2212
2213 if (nr_taken == 0)
2214 return 0;
2215
2216 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2217
2218 spin_lock_irq(&lruvec->lru_lock);
2219 move_pages_to_lru(lruvec, &page_list);
2220
2221 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2222 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2223 if (!cgroup_reclaim(sc))
2224 __count_vm_events(item, nr_reclaimed);
2225 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2226 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2227 spin_unlock_irq(&lruvec->lru_lock);
2228
2229 lru_note_cost(lruvec, file, stat.nr_pageout);
2230 mem_cgroup_uncharge_list(&page_list);
2231 free_unref_page_list(&page_list);
2232
2233 /*
2234 * If dirty pages are scanned that are not queued for IO, it
2235 * implies that flushers are not doing their job. This can
2236 * happen when memory pressure pushes dirty pages to the end of
2237 * the LRU before the dirty limits are breached and the dirty
2238 * data has expired. It can also happen when the proportion of
2239 * dirty pages grows not through writes but through memory
2240 * pressure reclaiming all the clean cache. And in some cases,
2241 * the flushers simply cannot keep up with the allocation
2242 * rate. Nudge the flusher threads in case they are asleep.
2243 */
2244 if (stat.nr_unqueued_dirty == nr_taken)
2245 wakeup_flusher_threads(WB_REASON_VMSCAN);
2246
2247 sc->nr.dirty += stat.nr_dirty;
2248 sc->nr.congested += stat.nr_congested;
2249 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2250 sc->nr.writeback += stat.nr_writeback;
2251 sc->nr.immediate += stat.nr_immediate;
2252 sc->nr.taken += nr_taken;
2253 if (file)
2254 sc->nr.file_taken += nr_taken;
2255
2256 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2257 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2258 return nr_reclaimed;
2259 }
2260
2261 /*
2262 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2263 *
2264 * We move them the other way if the page is referenced by one or more
2265 * processes.
2266 *
2267 * If the pages are mostly unmapped, the processing is fast and it is
2268 * appropriate to hold lru_lock across the whole operation. But if
2269 * the pages are mapped, the processing is slow (page_referenced()), so
2270 * we should drop lru_lock around each page. It's impossible to balance
2271 * this, so instead we remove the pages from the LRU while processing them.
2272 * It is safe to rely on PG_active against the non-LRU pages in here because
2273 * nobody will play with that bit on a non-LRU page.
2274 *
2275 * The downside is that we have to touch page->_refcount against each page.
2276 * But we had to alter page->flags anyway.
2277 */
2278 static void shrink_active_list(unsigned long nr_to_scan,
2279 struct lruvec *lruvec,
2280 struct scan_control *sc,
2281 enum lru_list lru)
2282 {
2283 unsigned long nr_taken;
2284 unsigned long nr_scanned;
2285 unsigned long vm_flags;
2286 LIST_HEAD(l_hold); /* The pages which were snipped off */
2287 LIST_HEAD(l_active);
2288 LIST_HEAD(l_inactive);
2289 struct page *page;
2290 unsigned nr_deactivate, nr_activate;
2291 unsigned nr_rotated = 0;
2292 int file = is_file_lru(lru);
2293 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2294
2295 lru_add_drain();
2296
2297 spin_lock_irq(&lruvec->lru_lock);
2298
2299 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2300 &nr_scanned, sc, lru);
2301
2302 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2303
2304 if (!cgroup_reclaim(sc))
2305 __count_vm_events(PGREFILL, nr_scanned);
2306 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2307
2308 spin_unlock_irq(&lruvec->lru_lock);
2309
2310 while (!list_empty(&l_hold)) {
2311 cond_resched();
2312 page = lru_to_page(&l_hold);
2313 list_del(&page->lru);
2314
2315 if (unlikely(!page_evictable(page))) {
2316 putback_lru_page(page);
2317 continue;
2318 }
2319
2320 if (unlikely(buffer_heads_over_limit)) {
2321 if (page_has_private(page) && trylock_page(page)) {
2322 if (page_has_private(page))
2323 try_to_release_page(page, 0);
2324 unlock_page(page);
2325 }
2326 }
2327
2328 if (page_referenced(page, 0, sc->target_mem_cgroup,
2329 &vm_flags)) {
2330 /*
2331 * Identify referenced, file-backed active pages and
2332 * give them one more trip around the active list. So
2333 * that executable code get better chances to stay in
2334 * memory under moderate memory pressure. Anon pages
2335 * are not likely to be evicted by use-once streaming
2336 * IO, plus JVM can create lots of anon VM_EXEC pages,
2337 * so we ignore them here.
2338 */
2339 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2340 nr_rotated += thp_nr_pages(page);
2341 list_add(&page->lru, &l_active);
2342 continue;
2343 }
2344 }
2345
2346 ClearPageActive(page); /* we are de-activating */
2347 SetPageWorkingset(page);
2348 list_add(&page->lru, &l_inactive);
2349 }
2350
2351 /*
2352 * Move pages back to the lru list.
2353 */
2354 spin_lock_irq(&lruvec->lru_lock);
2355
2356 nr_activate = move_pages_to_lru(lruvec, &l_active);
2357 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2358 /* Keep all free pages in l_active list */
2359 list_splice(&l_inactive, &l_active);
2360
2361 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2362 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2363
2364 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2365 spin_unlock_irq(&lruvec->lru_lock);
2366
2367 mem_cgroup_uncharge_list(&l_active);
2368 free_unref_page_list(&l_active);
2369 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2370 nr_deactivate, nr_rotated, sc->priority, file);
2371 }
2372
2373 unsigned long reclaim_pages(struct list_head *page_list)
2374 {
2375 int nid = NUMA_NO_NODE;
2376 unsigned int nr_reclaimed = 0;
2377 LIST_HEAD(node_page_list);
2378 struct reclaim_stat dummy_stat;
2379 struct page *page;
2380 unsigned int noreclaim_flag;
2381 struct scan_control sc = {
2382 .gfp_mask = GFP_KERNEL,
2383 .may_writepage = 1,
2384 .may_unmap = 1,
2385 .may_swap = 1,
2386 .no_demotion = 1,
2387 };
2388
2389 noreclaim_flag = memalloc_noreclaim_save();
2390
2391 while (!list_empty(page_list)) {
2392 page = lru_to_page(page_list);
2393 if (nid == NUMA_NO_NODE) {
2394 nid = page_to_nid(page);
2395 INIT_LIST_HEAD(&node_page_list);
2396 }
2397
2398 if (nid == page_to_nid(page)) {
2399 ClearPageActive(page);
2400 list_move(&page->lru, &node_page_list);
2401 continue;
2402 }
2403
2404 nr_reclaimed += shrink_page_list(&node_page_list,
2405 NODE_DATA(nid),
2406 &sc, &dummy_stat, false);
2407 while (!list_empty(&node_page_list)) {
2408 page = lru_to_page(&node_page_list);
2409 list_del(&page->lru);
2410 putback_lru_page(page);
2411 }
2412
2413 nid = NUMA_NO_NODE;
2414 }
2415
2416 if (!list_empty(&node_page_list)) {
2417 nr_reclaimed += shrink_page_list(&node_page_list,
2418 NODE_DATA(nid),
2419 &sc, &dummy_stat, false);
2420 while (!list_empty(&node_page_list)) {
2421 page = lru_to_page(&node_page_list);
2422 list_del(&page->lru);
2423 putback_lru_page(page);
2424 }
2425 }
2426
2427 memalloc_noreclaim_restore(noreclaim_flag);
2428
2429 return nr_reclaimed;
2430 }
2431
2432 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2433 struct lruvec *lruvec, struct scan_control *sc)
2434 {
2435 if (is_active_lru(lru)) {
2436 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2437 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2438 else
2439 sc->skipped_deactivate = 1;
2440 return 0;
2441 }
2442
2443 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2444 }
2445
2446 /*
2447 * The inactive anon list should be small enough that the VM never has
2448 * to do too much work.
2449 *
2450 * The inactive file list should be small enough to leave most memory
2451 * to the established workingset on the scan-resistant active list,
2452 * but large enough to avoid thrashing the aggregate readahead window.
2453 *
2454 * Both inactive lists should also be large enough that each inactive
2455 * page has a chance to be referenced again before it is reclaimed.
2456 *
2457 * If that fails and refaulting is observed, the inactive list grows.
2458 *
2459 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2460 * on this LRU, maintained by the pageout code. An inactive_ratio
2461 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2462 *
2463 * total target max
2464 * memory ratio inactive
2465 * -------------------------------------
2466 * 10MB 1 5MB
2467 * 100MB 1 50MB
2468 * 1GB 3 250MB
2469 * 10GB 10 0.9GB
2470 * 100GB 31 3GB
2471 * 1TB 101 10GB
2472 * 10TB 320 32GB
2473 */
2474 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2475 {
2476 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2477 unsigned long inactive, active;
2478 unsigned long inactive_ratio;
2479 unsigned long gb;
2480
2481 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2482 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2483
2484 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2485 if (gb)
2486 inactive_ratio = int_sqrt(10 * gb);
2487 else
2488 inactive_ratio = 1;
2489
2490 return inactive * inactive_ratio < active;
2491 }
2492
2493 enum scan_balance {
2494 SCAN_EQUAL,
2495 SCAN_FRACT,
2496 SCAN_ANON,
2497 SCAN_FILE,
2498 };
2499
2500 /*
2501 * Determine how aggressively the anon and file LRU lists should be
2502 * scanned. The relative value of each set of LRU lists is determined
2503 * by looking at the fraction of the pages scanned we did rotate back
2504 * onto the active list instead of evict.
2505 *
2506 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2507 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2508 */
2509 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2510 unsigned long *nr)
2511 {
2512 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2513 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2514 unsigned long anon_cost, file_cost, total_cost;
2515 int swappiness = mem_cgroup_swappiness(memcg);
2516 u64 fraction[ANON_AND_FILE];
2517 u64 denominator = 0; /* gcc */
2518 enum scan_balance scan_balance;
2519 unsigned long ap, fp;
2520 enum lru_list lru;
2521
2522 /* If we have no swap space, do not bother scanning anon pages. */
2523 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2524 scan_balance = SCAN_FILE;
2525 goto out;
2526 }
2527
2528 /*
2529 * Global reclaim will swap to prevent OOM even with no
2530 * swappiness, but memcg users want to use this knob to
2531 * disable swapping for individual groups completely when
2532 * using the memory controller's swap limit feature would be
2533 * too expensive.
2534 */
2535 if (cgroup_reclaim(sc) && !swappiness) {
2536 scan_balance = SCAN_FILE;
2537 goto out;
2538 }
2539
2540 /*
2541 * Do not apply any pressure balancing cleverness when the
2542 * system is close to OOM, scan both anon and file equally
2543 * (unless the swappiness setting disagrees with swapping).
2544 */
2545 if (!sc->priority && swappiness) {
2546 scan_balance = SCAN_EQUAL;
2547 goto out;
2548 }
2549
2550 /*
2551 * If the system is almost out of file pages, force-scan anon.
2552 */
2553 if (sc->file_is_tiny) {
2554 scan_balance = SCAN_ANON;
2555 goto out;
2556 }
2557
2558 /*
2559 * If there is enough inactive page cache, we do not reclaim
2560 * anything from the anonymous working right now.
2561 */
2562 if (sc->cache_trim_mode) {
2563 scan_balance = SCAN_FILE;
2564 goto out;
2565 }
2566
2567 scan_balance = SCAN_FRACT;
2568 /*
2569 * Calculate the pressure balance between anon and file pages.
2570 *
2571 * The amount of pressure we put on each LRU is inversely
2572 * proportional to the cost of reclaiming each list, as
2573 * determined by the share of pages that are refaulting, times
2574 * the relative IO cost of bringing back a swapped out
2575 * anonymous page vs reloading a filesystem page (swappiness).
2576 *
2577 * Although we limit that influence to ensure no list gets
2578 * left behind completely: at least a third of the pressure is
2579 * applied, before swappiness.
2580 *
2581 * With swappiness at 100, anon and file have equal IO cost.
2582 */
2583 total_cost = sc->anon_cost + sc->file_cost;
2584 anon_cost = total_cost + sc->anon_cost;
2585 file_cost = total_cost + sc->file_cost;
2586 total_cost = anon_cost + file_cost;
2587
2588 ap = swappiness * (total_cost + 1);
2589 ap /= anon_cost + 1;
2590
2591 fp = (200 - swappiness) * (total_cost + 1);
2592 fp /= file_cost + 1;
2593
2594 fraction[0] = ap;
2595 fraction[1] = fp;
2596 denominator = ap + fp;
2597 out:
2598 for_each_evictable_lru(lru) {
2599 int file = is_file_lru(lru);
2600 unsigned long lruvec_size;
2601 unsigned long low, min;
2602 unsigned long scan;
2603
2604 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2605 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2606 &min, &low);
2607
2608 if (min || low) {
2609 /*
2610 * Scale a cgroup's reclaim pressure by proportioning
2611 * its current usage to its memory.low or memory.min
2612 * setting.
2613 *
2614 * This is important, as otherwise scanning aggression
2615 * becomes extremely binary -- from nothing as we
2616 * approach the memory protection threshold, to totally
2617 * nominal as we exceed it. This results in requiring
2618 * setting extremely liberal protection thresholds. It
2619 * also means we simply get no protection at all if we
2620 * set it too low, which is not ideal.
2621 *
2622 * If there is any protection in place, we reduce scan
2623 * pressure by how much of the total memory used is
2624 * within protection thresholds.
2625 *
2626 * There is one special case: in the first reclaim pass,
2627 * we skip over all groups that are within their low
2628 * protection. If that fails to reclaim enough pages to
2629 * satisfy the reclaim goal, we come back and override
2630 * the best-effort low protection. However, we still
2631 * ideally want to honor how well-behaved groups are in
2632 * that case instead of simply punishing them all
2633 * equally. As such, we reclaim them based on how much
2634 * memory they are using, reducing the scan pressure
2635 * again by how much of the total memory used is under
2636 * hard protection.
2637 */
2638 unsigned long cgroup_size = mem_cgroup_size(memcg);
2639 unsigned long protection;
2640
2641 /* memory.low scaling, make sure we retry before OOM */
2642 if (!sc->memcg_low_reclaim && low > min) {
2643 protection = low;
2644 sc->memcg_low_skipped = 1;
2645 } else {
2646 protection = min;
2647 }
2648
2649 /* Avoid TOCTOU with earlier protection check */
2650 cgroup_size = max(cgroup_size, protection);
2651
2652 scan = lruvec_size - lruvec_size * protection /
2653 (cgroup_size + 1);
2654
2655 /*
2656 * Minimally target SWAP_CLUSTER_MAX pages to keep
2657 * reclaim moving forwards, avoiding decrementing
2658 * sc->priority further than desirable.
2659 */
2660 scan = max(scan, SWAP_CLUSTER_MAX);
2661 } else {
2662 scan = lruvec_size;
2663 }
2664
2665 scan >>= sc->priority;
2666
2667 /*
2668 * If the cgroup's already been deleted, make sure to
2669 * scrape out the remaining cache.
2670 */
2671 if (!scan && !mem_cgroup_online(memcg))
2672 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2673
2674 switch (scan_balance) {
2675 case SCAN_EQUAL:
2676 /* Scan lists relative to size */
2677 break;
2678 case SCAN_FRACT:
2679 /*
2680 * Scan types proportional to swappiness and
2681 * their relative recent reclaim efficiency.
2682 * Make sure we don't miss the last page on
2683 * the offlined memory cgroups because of a
2684 * round-off error.
2685 */
2686 scan = mem_cgroup_online(memcg) ?
2687 div64_u64(scan * fraction[file], denominator) :
2688 DIV64_U64_ROUND_UP(scan * fraction[file],
2689 denominator);
2690 break;
2691 case SCAN_FILE:
2692 case SCAN_ANON:
2693 /* Scan one type exclusively */
2694 if ((scan_balance == SCAN_FILE) != file)
2695 scan = 0;
2696 break;
2697 default:
2698 /* Look ma, no brain */
2699 BUG();
2700 }
2701
2702 nr[lru] = scan;
2703 }
2704 }
2705
2706 /*
2707 * Anonymous LRU management is a waste if there is
2708 * ultimately no way to reclaim the memory.
2709 */
2710 static bool can_age_anon_pages(struct pglist_data *pgdat,
2711 struct scan_control *sc)
2712 {
2713 /* Aging the anon LRU is valuable if swap is present: */
2714 if (total_swap_pages > 0)
2715 return true;
2716
2717 /* Also valuable if anon pages can be demoted: */
2718 return can_demote(pgdat->node_id, sc);
2719 }
2720
2721 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2722 {
2723 unsigned long nr[NR_LRU_LISTS];
2724 unsigned long targets[NR_LRU_LISTS];
2725 unsigned long nr_to_scan;
2726 enum lru_list lru;
2727 unsigned long nr_reclaimed = 0;
2728 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2729 bool proportional_reclaim;
2730 struct blk_plug plug;
2731
2732 get_scan_count(lruvec, sc, nr);
2733
2734 /* Record the original scan target for proportional adjustments later */
2735 memcpy(targets, nr, sizeof(nr));
2736
2737 /*
2738 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2739 * event that can occur when there is little memory pressure e.g.
2740 * multiple streaming readers/writers. Hence, we do not abort scanning
2741 * when the requested number of pages are reclaimed when scanning at
2742 * DEF_PRIORITY on the assumption that the fact we are direct
2743 * reclaiming implies that kswapd is not keeping up and it is best to
2744 * do a batch of work at once. For memcg reclaim one check is made to
2745 * abort proportional reclaim if either the file or anon lru has already
2746 * dropped to zero at the first pass.
2747 */
2748 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2749 sc->priority == DEF_PRIORITY);
2750
2751 blk_start_plug(&plug);
2752 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2753 nr[LRU_INACTIVE_FILE]) {
2754 unsigned long nr_anon, nr_file, percentage;
2755 unsigned long nr_scanned;
2756
2757 for_each_evictable_lru(lru) {
2758 if (nr[lru]) {
2759 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2760 nr[lru] -= nr_to_scan;
2761
2762 nr_reclaimed += shrink_list(lru, nr_to_scan,
2763 lruvec, sc);
2764 }
2765 }
2766
2767 cond_resched();
2768
2769 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
2770 continue;
2771
2772 /*
2773 * For kswapd and memcg, reclaim at least the number of pages
2774 * requested. Ensure that the anon and file LRUs are scanned
2775 * proportionally what was requested by get_scan_count(). We
2776 * stop reclaiming one LRU and reduce the amount scanning
2777 * proportional to the original scan target.
2778 */
2779 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2780 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2781
2782 /*
2783 * It's just vindictive to attack the larger once the smaller
2784 * has gone to zero. And given the way we stop scanning the
2785 * smaller below, this makes sure that we only make one nudge
2786 * towards proportionality once we've got nr_to_reclaim.
2787 */
2788 if (!nr_file || !nr_anon)
2789 break;
2790
2791 if (nr_file > nr_anon) {
2792 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2793 targets[LRU_ACTIVE_ANON] + 1;
2794 lru = LRU_BASE;
2795 percentage = nr_anon * 100 / scan_target;
2796 } else {
2797 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2798 targets[LRU_ACTIVE_FILE] + 1;
2799 lru = LRU_FILE;
2800 percentage = nr_file * 100 / scan_target;
2801 }
2802
2803 /* Stop scanning the smaller of the LRU */
2804 nr[lru] = 0;
2805 nr[lru + LRU_ACTIVE] = 0;
2806
2807 /*
2808 * Recalculate the other LRU scan count based on its original
2809 * scan target and the percentage scanning already complete
2810 */
2811 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2812 nr_scanned = targets[lru] - nr[lru];
2813 nr[lru] = targets[lru] * (100 - percentage) / 100;
2814 nr[lru] -= min(nr[lru], nr_scanned);
2815
2816 lru += LRU_ACTIVE;
2817 nr_scanned = targets[lru] - nr[lru];
2818 nr[lru] = targets[lru] * (100 - percentage) / 100;
2819 nr[lru] -= min(nr[lru], nr_scanned);
2820 }
2821 blk_finish_plug(&plug);
2822 sc->nr_reclaimed += nr_reclaimed;
2823
2824 /*
2825 * Even if we did not try to evict anon pages at all, we want to
2826 * rebalance the anon lru active/inactive ratio.
2827 */
2828 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
2829 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2830 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2831 sc, LRU_ACTIVE_ANON);
2832 }
2833
2834 /* Use reclaim/compaction for costly allocs or under memory pressure */
2835 static bool in_reclaim_compaction(struct scan_control *sc)
2836 {
2837 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2838 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2839 sc->priority < DEF_PRIORITY - 2))
2840 return true;
2841
2842 return false;
2843 }
2844
2845 /*
2846 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2847 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2848 * true if more pages should be reclaimed such that when the page allocator
2849 * calls try_to_compact_pages() that it will have enough free pages to succeed.
2850 * It will give up earlier than that if there is difficulty reclaiming pages.
2851 */
2852 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2853 unsigned long nr_reclaimed,
2854 struct scan_control *sc)
2855 {
2856 unsigned long pages_for_compaction;
2857 unsigned long inactive_lru_pages;
2858 int z;
2859
2860 /* If not in reclaim/compaction mode, stop */
2861 if (!in_reclaim_compaction(sc))
2862 return false;
2863
2864 /*
2865 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2866 * number of pages that were scanned. This will return to the caller
2867 * with the risk reclaim/compaction and the resulting allocation attempt
2868 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2869 * allocations through requiring that the full LRU list has been scanned
2870 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2871 * scan, but that approximation was wrong, and there were corner cases
2872 * where always a non-zero amount of pages were scanned.
2873 */
2874 if (!nr_reclaimed)
2875 return false;
2876
2877 /* If compaction would go ahead or the allocation would succeed, stop */
2878 for (z = 0; z <= sc->reclaim_idx; z++) {
2879 struct zone *zone = &pgdat->node_zones[z];
2880 if (!managed_zone(zone))
2881 continue;
2882
2883 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2884 case COMPACT_SUCCESS:
2885 case COMPACT_CONTINUE:
2886 return false;
2887 default:
2888 /* check next zone */
2889 ;
2890 }
2891 }
2892
2893 /*
2894 * If we have not reclaimed enough pages for compaction and the
2895 * inactive lists are large enough, continue reclaiming
2896 */
2897 pages_for_compaction = compact_gap(sc->order);
2898 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2899 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
2900 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2901
2902 return inactive_lru_pages > pages_for_compaction;
2903 }
2904
2905 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2906 {
2907 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2908 struct mem_cgroup *memcg;
2909
2910 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2911 do {
2912 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2913 unsigned long reclaimed;
2914 unsigned long scanned;
2915
2916 /*
2917 * This loop can become CPU-bound when target memcgs
2918 * aren't eligible for reclaim - either because they
2919 * don't have any reclaimable pages, or because their
2920 * memory is explicitly protected. Avoid soft lockups.
2921 */
2922 cond_resched();
2923
2924 mem_cgroup_calculate_protection(target_memcg, memcg);
2925
2926 if (mem_cgroup_below_min(memcg)) {
2927 /*
2928 * Hard protection.
2929 * If there is no reclaimable memory, OOM.
2930 */
2931 continue;
2932 } else if (mem_cgroup_below_low(memcg)) {
2933 /*
2934 * Soft protection.
2935 * Respect the protection only as long as
2936 * there is an unprotected supply
2937 * of reclaimable memory from other cgroups.
2938 */
2939 if (!sc->memcg_low_reclaim) {
2940 sc->memcg_low_skipped = 1;
2941 continue;
2942 }
2943 memcg_memory_event(memcg, MEMCG_LOW);
2944 }
2945
2946 reclaimed = sc->nr_reclaimed;
2947 scanned = sc->nr_scanned;
2948
2949 shrink_lruvec(lruvec, sc);
2950
2951 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2952 sc->priority);
2953
2954 /* Record the group's reclaim efficiency */
2955 vmpressure(sc->gfp_mask, memcg, false,
2956 sc->nr_scanned - scanned,
2957 sc->nr_reclaimed - reclaimed);
2958
2959 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2960 }
2961
2962 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2963 {
2964 struct reclaim_state *reclaim_state = current->reclaim_state;
2965 unsigned long nr_reclaimed, nr_scanned;
2966 struct lruvec *target_lruvec;
2967 bool reclaimable = false;
2968 unsigned long file;
2969
2970 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2971
2972 again:
2973 /*
2974 * Flush the memory cgroup stats, so that we read accurate per-memcg
2975 * lruvec stats for heuristics.
2976 */
2977 mem_cgroup_flush_stats();
2978
2979 memset(&sc->nr, 0, sizeof(sc->nr));
2980
2981 nr_reclaimed = sc->nr_reclaimed;
2982 nr_scanned = sc->nr_scanned;
2983
2984 /*
2985 * Determine the scan balance between anon and file LRUs.
2986 */
2987 spin_lock_irq(&target_lruvec->lru_lock);
2988 sc->anon_cost = target_lruvec->anon_cost;
2989 sc->file_cost = target_lruvec->file_cost;
2990 spin_unlock_irq(&target_lruvec->lru_lock);
2991
2992 /*
2993 * Target desirable inactive:active list ratios for the anon
2994 * and file LRU lists.
2995 */
2996 if (!sc->force_deactivate) {
2997 unsigned long refaults;
2998
2999 refaults = lruvec_page_state(target_lruvec,
3000 WORKINGSET_ACTIVATE_ANON);
3001 if (refaults != target_lruvec->refaults[0] ||
3002 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
3003 sc->may_deactivate |= DEACTIVATE_ANON;
3004 else
3005 sc->may_deactivate &= ~DEACTIVATE_ANON;
3006
3007 /*
3008 * When refaults are being observed, it means a new
3009 * workingset is being established. Deactivate to get
3010 * rid of any stale active pages quickly.
3011 */
3012 refaults = lruvec_page_state(target_lruvec,
3013 WORKINGSET_ACTIVATE_FILE);
3014 if (refaults != target_lruvec->refaults[1] ||
3015 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3016 sc->may_deactivate |= DEACTIVATE_FILE;
3017 else
3018 sc->may_deactivate &= ~DEACTIVATE_FILE;
3019 } else
3020 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3021
3022 /*
3023 * If we have plenty of inactive file pages that aren't
3024 * thrashing, try to reclaim those first before touching
3025 * anonymous pages.
3026 */
3027 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3028 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3029 sc->cache_trim_mode = 1;
3030 else
3031 sc->cache_trim_mode = 0;
3032
3033 /*
3034 * Prevent the reclaimer from falling into the cache trap: as
3035 * cache pages start out inactive, every cache fault will tip
3036 * the scan balance towards the file LRU. And as the file LRU
3037 * shrinks, so does the window for rotation from references.
3038 * This means we have a runaway feedback loop where a tiny
3039 * thrashing file LRU becomes infinitely more attractive than
3040 * anon pages. Try to detect this based on file LRU size.
3041 */
3042 if (!cgroup_reclaim(sc)) {
3043 unsigned long total_high_wmark = 0;
3044 unsigned long free, anon;
3045 int z;
3046
3047 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3048 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3049 node_page_state(pgdat, NR_INACTIVE_FILE);
3050
3051 for (z = 0; z < MAX_NR_ZONES; z++) {
3052 struct zone *zone = &pgdat->node_zones[z];
3053 if (!managed_zone(zone))
3054 continue;
3055
3056 total_high_wmark += high_wmark_pages(zone);
3057 }
3058
3059 /*
3060 * Consider anon: if that's low too, this isn't a
3061 * runaway file reclaim problem, but rather just
3062 * extreme pressure. Reclaim as per usual then.
3063 */
3064 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3065
3066 sc->file_is_tiny =
3067 file + free <= total_high_wmark &&
3068 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3069 anon >> sc->priority;
3070 }
3071
3072 shrink_node_memcgs(pgdat, sc);
3073
3074 if (reclaim_state) {
3075 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3076 reclaim_state->reclaimed_slab = 0;
3077 }
3078
3079 /* Record the subtree's reclaim efficiency */
3080 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3081 sc->nr_scanned - nr_scanned,
3082 sc->nr_reclaimed - nr_reclaimed);
3083
3084 if (sc->nr_reclaimed - nr_reclaimed)
3085 reclaimable = true;
3086
3087 if (current_is_kswapd()) {
3088 /*
3089 * If reclaim is isolating dirty pages under writeback,
3090 * it implies that the long-lived page allocation rate
3091 * is exceeding the page laundering rate. Either the
3092 * global limits are not being effective at throttling
3093 * processes due to the page distribution throughout
3094 * zones or there is heavy usage of a slow backing
3095 * device. The only option is to throttle from reclaim
3096 * context which is not ideal as there is no guarantee
3097 * the dirtying process is throttled in the same way
3098 * balance_dirty_pages() manages.
3099 *
3100 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3101 * count the number of pages under pages flagged for
3102 * immediate reclaim and stall if any are encountered
3103 * in the nr_immediate check below.
3104 */
3105 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3106 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3107
3108 /* Allow kswapd to start writing pages during reclaim.*/
3109 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3110 set_bit(PGDAT_DIRTY, &pgdat->flags);
3111
3112 /*
3113 * If kswapd scans pages marked for immediate
3114 * reclaim and under writeback (nr_immediate), it
3115 * implies that pages are cycling through the LRU
3116 * faster than they are written so also forcibly stall.
3117 */
3118 if (sc->nr.immediate)
3119 congestion_wait(BLK_RW_ASYNC, HZ/10);
3120 }
3121
3122 /*
3123 * Tag a node/memcg as congested if all the dirty pages
3124 * scanned were backed by a congested BDI and
3125 * wait_iff_congested will stall.
3126 *
3127 * Legacy memcg will stall in page writeback so avoid forcibly
3128 * stalling in wait_iff_congested().
3129 */
3130 if ((current_is_kswapd() ||
3131 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3132 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3133 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3134
3135 /*
3136 * Stall direct reclaim for IO completions if underlying BDIs
3137 * and node is congested. Allow kswapd to continue until it
3138 * starts encountering unqueued dirty pages or cycling through
3139 * the LRU too quickly.
3140 */
3141 if (!current_is_kswapd() && current_may_throttle() &&
3142 !sc->hibernation_mode &&
3143 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3144 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
3145
3146 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3147 sc))
3148 goto again;
3149
3150 /*
3151 * Kswapd gives up on balancing particular nodes after too
3152 * many failures to reclaim anything from them and goes to
3153 * sleep. On reclaim progress, reset the failure counter. A
3154 * successful direct reclaim run will revive a dormant kswapd.
3155 */
3156 if (reclaimable)
3157 pgdat->kswapd_failures = 0;
3158 }
3159
3160 /*
3161 * Returns true if compaction should go ahead for a costly-order request, or
3162 * the allocation would already succeed without compaction. Return false if we
3163 * should reclaim first.
3164 */
3165 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3166 {
3167 unsigned long watermark;
3168 enum compact_result suitable;
3169
3170 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3171 if (suitable == COMPACT_SUCCESS)
3172 /* Allocation should succeed already. Don't reclaim. */
3173 return true;
3174 if (suitable == COMPACT_SKIPPED)
3175 /* Compaction cannot yet proceed. Do reclaim. */
3176 return false;
3177
3178 /*
3179 * Compaction is already possible, but it takes time to run and there
3180 * are potentially other callers using the pages just freed. So proceed
3181 * with reclaim to make a buffer of free pages available to give
3182 * compaction a reasonable chance of completing and allocating the page.
3183 * Note that we won't actually reclaim the whole buffer in one attempt
3184 * as the target watermark in should_continue_reclaim() is lower. But if
3185 * we are already above the high+gap watermark, don't reclaim at all.
3186 */
3187 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3188
3189 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3190 }
3191
3192 /*
3193 * This is the direct reclaim path, for page-allocating processes. We only
3194 * try to reclaim pages from zones which will satisfy the caller's allocation
3195 * request.
3196 *
3197 * If a zone is deemed to be full of pinned pages then just give it a light
3198 * scan then give up on it.
3199 */
3200 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3201 {
3202 struct zoneref *z;
3203 struct zone *zone;
3204 unsigned long nr_soft_reclaimed;
3205 unsigned long nr_soft_scanned;
3206 gfp_t orig_mask;
3207 pg_data_t *last_pgdat = NULL;
3208
3209 /*
3210 * If the number of buffer_heads in the machine exceeds the maximum
3211 * allowed level, force direct reclaim to scan the highmem zone as
3212 * highmem pages could be pinning lowmem pages storing buffer_heads
3213 */
3214 orig_mask = sc->gfp_mask;
3215 if (buffer_heads_over_limit) {
3216 sc->gfp_mask |= __GFP_HIGHMEM;
3217 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3218 }
3219
3220 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3221 sc->reclaim_idx, sc->nodemask) {
3222 /*
3223 * Take care memory controller reclaiming has small influence
3224 * to global LRU.
3225 */
3226 if (!cgroup_reclaim(sc)) {
3227 if (!cpuset_zone_allowed(zone,
3228 GFP_KERNEL | __GFP_HARDWALL))
3229 continue;
3230
3231 /*
3232 * If we already have plenty of memory free for
3233 * compaction in this zone, don't free any more.
3234 * Even though compaction is invoked for any
3235 * non-zero order, only frequent costly order
3236 * reclamation is disruptive enough to become a
3237 * noticeable problem, like transparent huge
3238 * page allocations.
3239 */
3240 if (IS_ENABLED(CONFIG_COMPACTION) &&
3241 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3242 compaction_ready(zone, sc)) {
3243 sc->compaction_ready = true;
3244 continue;
3245 }
3246
3247 /*
3248 * Shrink each node in the zonelist once. If the
3249 * zonelist is ordered by zone (not the default) then a
3250 * node may be shrunk multiple times but in that case
3251 * the user prefers lower zones being preserved.
3252 */
3253 if (zone->zone_pgdat == last_pgdat)
3254 continue;
3255
3256 /*
3257 * This steals pages from memory cgroups over softlimit
3258 * and returns the number of reclaimed pages and
3259 * scanned pages. This works for global memory pressure
3260 * and balancing, not for a memcg's limit.
3261 */
3262 nr_soft_scanned = 0;
3263 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3264 sc->order, sc->gfp_mask,
3265 &nr_soft_scanned);
3266 sc->nr_reclaimed += nr_soft_reclaimed;
3267 sc->nr_scanned += nr_soft_scanned;
3268 /* need some check for avoid more shrink_zone() */
3269 }
3270
3271 /* See comment about same check for global reclaim above */
3272 if (zone->zone_pgdat == last_pgdat)
3273 continue;
3274 last_pgdat = zone->zone_pgdat;
3275 shrink_node(zone->zone_pgdat, sc);
3276 }
3277
3278 /*
3279 * Restore to original mask to avoid the impact on the caller if we
3280 * promoted it to __GFP_HIGHMEM.
3281 */
3282 sc->gfp_mask = orig_mask;
3283 }
3284
3285 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3286 {
3287 struct lruvec *target_lruvec;
3288 unsigned long refaults;
3289
3290 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3291 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3292 target_lruvec->refaults[0] = refaults;
3293 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3294 target_lruvec->refaults[1] = refaults;
3295 }
3296
3297 /*
3298 * This is the main entry point to direct page reclaim.
3299 *
3300 * If a full scan of the inactive list fails to free enough memory then we
3301 * are "out of memory" and something needs to be killed.
3302 *
3303 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3304 * high - the zone may be full of dirty or under-writeback pages, which this
3305 * caller can't do much about. We kick the writeback threads and take explicit
3306 * naps in the hope that some of these pages can be written. But if the
3307 * allocating task holds filesystem locks which prevent writeout this might not
3308 * work, and the allocation attempt will fail.
3309 *
3310 * returns: 0, if no pages reclaimed
3311 * else, the number of pages reclaimed
3312 */
3313 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3314 struct scan_control *sc)
3315 {
3316 int initial_priority = sc->priority;
3317 pg_data_t *last_pgdat;
3318 struct zoneref *z;
3319 struct zone *zone;
3320 retry:
3321 delayacct_freepages_start();
3322
3323 if (!cgroup_reclaim(sc))
3324 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3325
3326 do {
3327 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3328 sc->priority);
3329 sc->nr_scanned = 0;
3330 shrink_zones(zonelist, sc);
3331
3332 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3333 break;
3334
3335 if (sc->compaction_ready)
3336 break;
3337
3338 /*
3339 * If we're getting trouble reclaiming, start doing
3340 * writepage even in laptop mode.
3341 */
3342 if (sc->priority < DEF_PRIORITY - 2)
3343 sc->may_writepage = 1;
3344 } while (--sc->priority >= 0);
3345
3346 last_pgdat = NULL;
3347 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3348 sc->nodemask) {
3349 if (zone->zone_pgdat == last_pgdat)
3350 continue;
3351 last_pgdat = zone->zone_pgdat;
3352
3353 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3354
3355 if (cgroup_reclaim(sc)) {
3356 struct lruvec *lruvec;
3357
3358 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3359 zone->zone_pgdat);
3360 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3361 }
3362 }
3363
3364 delayacct_freepages_end();
3365
3366 if (sc->nr_reclaimed)
3367 return sc->nr_reclaimed;
3368
3369 /* Aborted reclaim to try compaction? don't OOM, then */
3370 if (sc->compaction_ready)
3371 return 1;
3372
3373 /*
3374 * We make inactive:active ratio decisions based on the node's
3375 * composition of memory, but a restrictive reclaim_idx or a
3376 * memory.low cgroup setting can exempt large amounts of
3377 * memory from reclaim. Neither of which are very common, so
3378 * instead of doing costly eligibility calculations of the
3379 * entire cgroup subtree up front, we assume the estimates are
3380 * good, and retry with forcible deactivation if that fails.
3381 */
3382 if (sc->skipped_deactivate) {
3383 sc->priority = initial_priority;
3384 sc->force_deactivate = 1;
3385 sc->skipped_deactivate = 0;
3386 goto retry;
3387 }
3388
3389 /* Untapped cgroup reserves? Don't OOM, retry. */
3390 if (sc->memcg_low_skipped) {
3391 sc->priority = initial_priority;
3392 sc->force_deactivate = 0;
3393 sc->memcg_low_reclaim = 1;
3394 sc->memcg_low_skipped = 0;
3395 goto retry;
3396 }
3397
3398 return 0;
3399 }
3400
3401 static bool allow_direct_reclaim(pg_data_t *pgdat)
3402 {
3403 struct zone *zone;
3404 unsigned long pfmemalloc_reserve = 0;
3405 unsigned long free_pages = 0;
3406 int i;
3407 bool wmark_ok;
3408
3409 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3410 return true;
3411
3412 for (i = 0; i <= ZONE_NORMAL; i++) {
3413 zone = &pgdat->node_zones[i];
3414 if (!managed_zone(zone))
3415 continue;
3416
3417 if (!zone_reclaimable_pages(zone))
3418 continue;
3419
3420 pfmemalloc_reserve += min_wmark_pages(zone);
3421 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3422 }
3423
3424 /* If there are no reserves (unexpected config) then do not throttle */
3425 if (!pfmemalloc_reserve)
3426 return true;
3427
3428 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3429
3430 /* kswapd must be awake if processes are being throttled */
3431 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3432 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3433 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3434
3435 wake_up_interruptible(&pgdat->kswapd_wait);
3436 }
3437
3438 return wmark_ok;
3439 }
3440
3441 /*
3442 * Throttle direct reclaimers if backing storage is backed by the network
3443 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3444 * depleted. kswapd will continue to make progress and wake the processes
3445 * when the low watermark is reached.
3446 *
3447 * Returns true if a fatal signal was delivered during throttling. If this
3448 * happens, the page allocator should not consider triggering the OOM killer.
3449 */
3450 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3451 nodemask_t *nodemask)
3452 {
3453 struct zoneref *z;
3454 struct zone *zone;
3455 pg_data_t *pgdat = NULL;
3456
3457 /*
3458 * Kernel threads should not be throttled as they may be indirectly
3459 * responsible for cleaning pages necessary for reclaim to make forward
3460 * progress. kjournald for example may enter direct reclaim while
3461 * committing a transaction where throttling it could forcing other
3462 * processes to block on log_wait_commit().
3463 */
3464 if (current->flags & PF_KTHREAD)
3465 goto out;
3466
3467 /*
3468 * If a fatal signal is pending, this process should not throttle.
3469 * It should return quickly so it can exit and free its memory
3470 */
3471 if (fatal_signal_pending(current))
3472 goto out;
3473
3474 /*
3475 * Check if the pfmemalloc reserves are ok by finding the first node
3476 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3477 * GFP_KERNEL will be required for allocating network buffers when
3478 * swapping over the network so ZONE_HIGHMEM is unusable.
3479 *
3480 * Throttling is based on the first usable node and throttled processes
3481 * wait on a queue until kswapd makes progress and wakes them. There
3482 * is an affinity then between processes waking up and where reclaim
3483 * progress has been made assuming the process wakes on the same node.
3484 * More importantly, processes running on remote nodes will not compete
3485 * for remote pfmemalloc reserves and processes on different nodes
3486 * should make reasonable progress.
3487 */
3488 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3489 gfp_zone(gfp_mask), nodemask) {
3490 if (zone_idx(zone) > ZONE_NORMAL)
3491 continue;
3492
3493 /* Throttle based on the first usable node */
3494 pgdat = zone->zone_pgdat;
3495 if (allow_direct_reclaim(pgdat))
3496 goto out;
3497 break;
3498 }
3499
3500 /* If no zone was usable by the allocation flags then do not throttle */
3501 if (!pgdat)
3502 goto out;
3503
3504 /* Account for the throttling */
3505 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3506
3507 /*
3508 * If the caller cannot enter the filesystem, it's possible that it
3509 * is due to the caller holding an FS lock or performing a journal
3510 * transaction in the case of a filesystem like ext[3|4]. In this case,
3511 * it is not safe to block on pfmemalloc_wait as kswapd could be
3512 * blocked waiting on the same lock. Instead, throttle for up to a
3513 * second before continuing.
3514 */
3515 if (!(gfp_mask & __GFP_FS))
3516 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3517 allow_direct_reclaim(pgdat), HZ);
3518 else
3519 /* Throttle until kswapd wakes the process */
3520 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3521 allow_direct_reclaim(pgdat));
3522
3523 if (fatal_signal_pending(current))
3524 return true;
3525
3526 out:
3527 return false;
3528 }
3529
3530 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3531 gfp_t gfp_mask, nodemask_t *nodemask)
3532 {
3533 unsigned long nr_reclaimed;
3534 struct scan_control sc = {
3535 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3536 .gfp_mask = current_gfp_context(gfp_mask),
3537 .reclaim_idx = gfp_zone(gfp_mask),
3538 .order = order,
3539 .nodemask = nodemask,
3540 .priority = DEF_PRIORITY,
3541 .may_writepage = !laptop_mode,
3542 .may_unmap = 1,
3543 .may_swap = 1,
3544 };
3545
3546 /*
3547 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3548 * Confirm they are large enough for max values.
3549 */
3550 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3551 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3552 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3553
3554 /*
3555 * Do not enter reclaim if fatal signal was delivered while throttled.
3556 * 1 is returned so that the page allocator does not OOM kill at this
3557 * point.
3558 */
3559 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3560 return 1;
3561
3562 set_task_reclaim_state(current, &sc.reclaim_state);
3563 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3564
3565 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3566
3567 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3568 set_task_reclaim_state(current, NULL);
3569
3570 return nr_reclaimed;
3571 }
3572
3573 #ifdef CONFIG_MEMCG
3574
3575 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3576 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3577 gfp_t gfp_mask, bool noswap,
3578 pg_data_t *pgdat,
3579 unsigned long *nr_scanned)
3580 {
3581 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3582 struct scan_control sc = {
3583 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3584 .target_mem_cgroup = memcg,
3585 .may_writepage = !laptop_mode,
3586 .may_unmap = 1,
3587 .reclaim_idx = MAX_NR_ZONES - 1,
3588 .may_swap = !noswap,
3589 };
3590
3591 WARN_ON_ONCE(!current->reclaim_state);
3592
3593 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3594 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3595
3596 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3597 sc.gfp_mask);
3598
3599 /*
3600 * NOTE: Although we can get the priority field, using it
3601 * here is not a good idea, since it limits the pages we can scan.
3602 * if we don't reclaim here, the shrink_node from balance_pgdat
3603 * will pick up pages from other mem cgroup's as well. We hack
3604 * the priority and make it zero.
3605 */
3606 shrink_lruvec(lruvec, &sc);
3607
3608 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3609
3610 *nr_scanned = sc.nr_scanned;
3611
3612 return sc.nr_reclaimed;
3613 }
3614
3615 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3616 unsigned long nr_pages,
3617 gfp_t gfp_mask,
3618 bool may_swap)
3619 {
3620 unsigned long nr_reclaimed;
3621 unsigned int noreclaim_flag;
3622 struct scan_control sc = {
3623 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3624 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3625 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3626 .reclaim_idx = MAX_NR_ZONES - 1,
3627 .target_mem_cgroup = memcg,
3628 .priority = DEF_PRIORITY,
3629 .may_writepage = !laptop_mode,
3630 .may_unmap = 1,
3631 .may_swap = may_swap,
3632 };
3633 /*
3634 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3635 * equal pressure on all the nodes. This is based on the assumption that
3636 * the reclaim does not bail out early.
3637 */
3638 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3639
3640 set_task_reclaim_state(current, &sc.reclaim_state);
3641 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3642 noreclaim_flag = memalloc_noreclaim_save();
3643
3644 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3645
3646 memalloc_noreclaim_restore(noreclaim_flag);
3647 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3648 set_task_reclaim_state(current, NULL);
3649
3650 return nr_reclaimed;
3651 }
3652 #endif
3653
3654 static void age_active_anon(struct pglist_data *pgdat,
3655 struct scan_control *sc)
3656 {
3657 struct mem_cgroup *memcg;
3658 struct lruvec *lruvec;
3659
3660 if (!can_age_anon_pages(pgdat, sc))
3661 return;
3662
3663 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3664 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3665 return;
3666
3667 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3668 do {
3669 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3670 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3671 sc, LRU_ACTIVE_ANON);
3672 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3673 } while (memcg);
3674 }
3675
3676 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3677 {
3678 int i;
3679 struct zone *zone;
3680
3681 /*
3682 * Check for watermark boosts top-down as the higher zones
3683 * are more likely to be boosted. Both watermarks and boosts
3684 * should not be checked at the same time as reclaim would
3685 * start prematurely when there is no boosting and a lower
3686 * zone is balanced.
3687 */
3688 for (i = highest_zoneidx; i >= 0; i--) {
3689 zone = pgdat->node_zones + i;
3690 if (!managed_zone(zone))
3691 continue;
3692
3693 if (zone->watermark_boost)
3694 return true;
3695 }
3696
3697 return false;
3698 }
3699
3700 /*
3701 * Returns true if there is an eligible zone balanced for the request order
3702 * and highest_zoneidx
3703 */
3704 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3705 {
3706 int i;
3707 unsigned long mark = -1;
3708 struct zone *zone;
3709
3710 /*
3711 * Check watermarks bottom-up as lower zones are more likely to
3712 * meet watermarks.
3713 */
3714 for (i = 0; i <= highest_zoneidx; i++) {
3715 zone = pgdat->node_zones + i;
3716
3717 if (!managed_zone(zone))
3718 continue;
3719
3720 mark = high_wmark_pages(zone);
3721 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3722 return true;
3723 }
3724
3725 /*
3726 * If a node has no populated zone within highest_zoneidx, it does not
3727 * need balancing by definition. This can happen if a zone-restricted
3728 * allocation tries to wake a remote kswapd.
3729 */
3730 if (mark == -1)
3731 return true;
3732
3733 return false;
3734 }
3735
3736 /* Clear pgdat state for congested, dirty or under writeback. */
3737 static void clear_pgdat_congested(pg_data_t *pgdat)
3738 {
3739 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3740
3741 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3742 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3743 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3744 }
3745
3746 /*
3747 * Prepare kswapd for sleeping. This verifies that there are no processes
3748 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3749 *
3750 * Returns true if kswapd is ready to sleep
3751 */
3752 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3753 int highest_zoneidx)
3754 {
3755 /*
3756 * The throttled processes are normally woken up in balance_pgdat() as
3757 * soon as allow_direct_reclaim() is true. But there is a potential
3758 * race between when kswapd checks the watermarks and a process gets
3759 * throttled. There is also a potential race if processes get
3760 * throttled, kswapd wakes, a large process exits thereby balancing the
3761 * zones, which causes kswapd to exit balance_pgdat() before reaching
3762 * the wake up checks. If kswapd is going to sleep, no process should
3763 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3764 * the wake up is premature, processes will wake kswapd and get
3765 * throttled again. The difference from wake ups in balance_pgdat() is
3766 * that here we are under prepare_to_wait().
3767 */
3768 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3769 wake_up_all(&pgdat->pfmemalloc_wait);
3770
3771 /* Hopeless node, leave it to direct reclaim */
3772 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3773 return true;
3774
3775 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3776 clear_pgdat_congested(pgdat);
3777 return true;
3778 }
3779
3780 return false;
3781 }
3782
3783 /*
3784 * kswapd shrinks a node of pages that are at or below the highest usable
3785 * zone that is currently unbalanced.
3786 *
3787 * Returns true if kswapd scanned at least the requested number of pages to
3788 * reclaim or if the lack of progress was due to pages under writeback.
3789 * This is used to determine if the scanning priority needs to be raised.
3790 */
3791 static bool kswapd_shrink_node(pg_data_t *pgdat,
3792 struct scan_control *sc)
3793 {
3794 struct zone *zone;
3795 int z;
3796
3797 /* Reclaim a number of pages proportional to the number of zones */
3798 sc->nr_to_reclaim = 0;
3799 for (z = 0; z <= sc->reclaim_idx; z++) {
3800 zone = pgdat->node_zones + z;
3801 if (!managed_zone(zone))
3802 continue;
3803
3804 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3805 }
3806
3807 /*
3808 * Historically care was taken to put equal pressure on all zones but
3809 * now pressure is applied based on node LRU order.
3810 */
3811 shrink_node(pgdat, sc);
3812
3813 /*
3814 * Fragmentation may mean that the system cannot be rebalanced for
3815 * high-order allocations. If twice the allocation size has been
3816 * reclaimed then recheck watermarks only at order-0 to prevent
3817 * excessive reclaim. Assume that a process requested a high-order
3818 * can direct reclaim/compact.
3819 */
3820 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3821 sc->order = 0;
3822
3823 return sc->nr_scanned >= sc->nr_to_reclaim;
3824 }
3825
3826 /* Page allocator PCP high watermark is lowered if reclaim is active. */
3827 static inline void
3828 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
3829 {
3830 int i;
3831 struct zone *zone;
3832
3833 for (i = 0; i <= highest_zoneidx; i++) {
3834 zone = pgdat->node_zones + i;
3835
3836 if (!managed_zone(zone))
3837 continue;
3838
3839 if (active)
3840 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
3841 else
3842 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
3843 }
3844 }
3845
3846 static inline void
3847 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
3848 {
3849 update_reclaim_active(pgdat, highest_zoneidx, true);
3850 }
3851
3852 static inline void
3853 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
3854 {
3855 update_reclaim_active(pgdat, highest_zoneidx, false);
3856 }
3857
3858 /*
3859 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3860 * that are eligible for use by the caller until at least one zone is
3861 * balanced.
3862 *
3863 * Returns the order kswapd finished reclaiming at.
3864 *
3865 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3866 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3867 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3868 * or lower is eligible for reclaim until at least one usable zone is
3869 * balanced.
3870 */
3871 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3872 {
3873 int i;
3874 unsigned long nr_soft_reclaimed;
3875 unsigned long nr_soft_scanned;
3876 unsigned long pflags;
3877 unsigned long nr_boost_reclaim;
3878 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3879 bool boosted;
3880 struct zone *zone;
3881 struct scan_control sc = {
3882 .gfp_mask = GFP_KERNEL,
3883 .order = order,
3884 .may_unmap = 1,
3885 };
3886
3887 set_task_reclaim_state(current, &sc.reclaim_state);
3888 psi_memstall_enter(&pflags);
3889 __fs_reclaim_acquire(_THIS_IP_);
3890
3891 count_vm_event(PAGEOUTRUN);
3892
3893 /*
3894 * Account for the reclaim boost. Note that the zone boost is left in
3895 * place so that parallel allocations that are near the watermark will
3896 * stall or direct reclaim until kswapd is finished.
3897 */
3898 nr_boost_reclaim = 0;
3899 for (i = 0; i <= highest_zoneidx; i++) {
3900 zone = pgdat->node_zones + i;
3901 if (!managed_zone(zone))
3902 continue;
3903
3904 nr_boost_reclaim += zone->watermark_boost;
3905 zone_boosts[i] = zone->watermark_boost;
3906 }
3907 boosted = nr_boost_reclaim;
3908
3909 restart:
3910 set_reclaim_active(pgdat, highest_zoneidx);
3911 sc.priority = DEF_PRIORITY;
3912 do {
3913 unsigned long nr_reclaimed = sc.nr_reclaimed;
3914 bool raise_priority = true;
3915 bool balanced;
3916 bool ret;
3917
3918 sc.reclaim_idx = highest_zoneidx;
3919
3920 /*
3921 * If the number of buffer_heads exceeds the maximum allowed
3922 * then consider reclaiming from all zones. This has a dual
3923 * purpose -- on 64-bit systems it is expected that
3924 * buffer_heads are stripped during active rotation. On 32-bit
3925 * systems, highmem pages can pin lowmem memory and shrinking
3926 * buffers can relieve lowmem pressure. Reclaim may still not
3927 * go ahead if all eligible zones for the original allocation
3928 * request are balanced to avoid excessive reclaim from kswapd.
3929 */
3930 if (buffer_heads_over_limit) {
3931 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3932 zone = pgdat->node_zones + i;
3933 if (!managed_zone(zone))
3934 continue;
3935
3936 sc.reclaim_idx = i;
3937 break;
3938 }
3939 }
3940
3941 /*
3942 * If the pgdat is imbalanced then ignore boosting and preserve
3943 * the watermarks for a later time and restart. Note that the
3944 * zone watermarks will be still reset at the end of balancing
3945 * on the grounds that the normal reclaim should be enough to
3946 * re-evaluate if boosting is required when kswapd next wakes.
3947 */
3948 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3949 if (!balanced && nr_boost_reclaim) {
3950 nr_boost_reclaim = 0;
3951 goto restart;
3952 }
3953
3954 /*
3955 * If boosting is not active then only reclaim if there are no
3956 * eligible zones. Note that sc.reclaim_idx is not used as
3957 * buffer_heads_over_limit may have adjusted it.
3958 */
3959 if (!nr_boost_reclaim && balanced)
3960 goto out;
3961
3962 /* Limit the priority of boosting to avoid reclaim writeback */
3963 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3964 raise_priority = false;
3965
3966 /*
3967 * Do not writeback or swap pages for boosted reclaim. The
3968 * intent is to relieve pressure not issue sub-optimal IO
3969 * from reclaim context. If no pages are reclaimed, the
3970 * reclaim will be aborted.
3971 */
3972 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3973 sc.may_swap = !nr_boost_reclaim;
3974
3975 /*
3976 * Do some background aging of the anon list, to give
3977 * pages a chance to be referenced before reclaiming. All
3978 * pages are rotated regardless of classzone as this is
3979 * about consistent aging.
3980 */
3981 age_active_anon(pgdat, &sc);
3982
3983 /*
3984 * If we're getting trouble reclaiming, start doing writepage
3985 * even in laptop mode.
3986 */
3987 if (sc.priority < DEF_PRIORITY - 2)
3988 sc.may_writepage = 1;
3989
3990 /* Call soft limit reclaim before calling shrink_node. */
3991 sc.nr_scanned = 0;
3992 nr_soft_scanned = 0;
3993 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3994 sc.gfp_mask, &nr_soft_scanned);
3995 sc.nr_reclaimed += nr_soft_reclaimed;
3996
3997 /*
3998 * There should be no need to raise the scanning priority if
3999 * enough pages are already being scanned that that high
4000 * watermark would be met at 100% efficiency.
4001 */
4002 if (kswapd_shrink_node(pgdat, &sc))
4003 raise_priority = false;
4004
4005 /*
4006 * If the low watermark is met there is no need for processes
4007 * to be throttled on pfmemalloc_wait as they should not be
4008 * able to safely make forward progress. Wake them
4009 */
4010 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
4011 allow_direct_reclaim(pgdat))
4012 wake_up_all(&pgdat->pfmemalloc_wait);
4013
4014 /* Check if kswapd should be suspending */
4015 __fs_reclaim_release(_THIS_IP_);
4016 ret = try_to_freeze();
4017 __fs_reclaim_acquire(_THIS_IP_);
4018 if (ret || kthread_should_stop())
4019 break;
4020
4021 /*
4022 * Raise priority if scanning rate is too low or there was no
4023 * progress in reclaiming pages
4024 */
4025 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
4026 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4027
4028 /*
4029 * If reclaim made no progress for a boost, stop reclaim as
4030 * IO cannot be queued and it could be an infinite loop in
4031 * extreme circumstances.
4032 */
4033 if (nr_boost_reclaim && !nr_reclaimed)
4034 break;
4035
4036 if (raise_priority || !nr_reclaimed)
4037 sc.priority--;
4038 } while (sc.priority >= 1);
4039
4040 if (!sc.nr_reclaimed)
4041 pgdat->kswapd_failures++;
4042
4043 out:
4044 clear_reclaim_active(pgdat, highest_zoneidx);
4045
4046 /* If reclaim was boosted, account for the reclaim done in this pass */
4047 if (boosted) {
4048 unsigned long flags;
4049
4050 for (i = 0; i <= highest_zoneidx; i++) {
4051 if (!zone_boosts[i])
4052 continue;
4053
4054 /* Increments are under the zone lock */
4055 zone = pgdat->node_zones + i;
4056 spin_lock_irqsave(&zone->lock, flags);
4057 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4058 spin_unlock_irqrestore(&zone->lock, flags);
4059 }
4060
4061 /*
4062 * As there is now likely space, wakeup kcompact to defragment
4063 * pageblocks.
4064 */
4065 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
4066 }
4067
4068 snapshot_refaults(NULL, pgdat);
4069 __fs_reclaim_release(_THIS_IP_);
4070 psi_memstall_leave(&pflags);
4071 set_task_reclaim_state(current, NULL);
4072
4073 /*
4074 * Return the order kswapd stopped reclaiming at as
4075 * prepare_kswapd_sleep() takes it into account. If another caller
4076 * entered the allocator slow path while kswapd was awake, order will
4077 * remain at the higher level.
4078 */
4079 return sc.order;
4080 }
4081
4082 /*
4083 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4084 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4085 * not a valid index then either kswapd runs for first time or kswapd couldn't
4086 * sleep after previous reclaim attempt (node is still unbalanced). In that
4087 * case return the zone index of the previous kswapd reclaim cycle.
4088 */
4089 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4090 enum zone_type prev_highest_zoneidx)
4091 {
4092 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4093
4094 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4095 }
4096
4097 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4098 unsigned int highest_zoneidx)
4099 {
4100 long remaining = 0;
4101 DEFINE_WAIT(wait);
4102
4103 if (freezing(current) || kthread_should_stop())
4104 return;
4105
4106 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4107
4108 /*
4109 * Try to sleep for a short interval. Note that kcompactd will only be
4110 * woken if it is possible to sleep for a short interval. This is
4111 * deliberate on the assumption that if reclaim cannot keep an
4112 * eligible zone balanced that it's also unlikely that compaction will
4113 * succeed.
4114 */
4115 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4116 /*
4117 * Compaction records what page blocks it recently failed to
4118 * isolate pages from and skips them in the future scanning.
4119 * When kswapd is going to sleep, it is reasonable to assume
4120 * that pages and compaction may succeed so reset the cache.
4121 */
4122 reset_isolation_suitable(pgdat);
4123
4124 /*
4125 * We have freed the memory, now we should compact it to make
4126 * allocation of the requested order possible.
4127 */
4128 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4129
4130 remaining = schedule_timeout(HZ/10);
4131
4132 /*
4133 * If woken prematurely then reset kswapd_highest_zoneidx and
4134 * order. The values will either be from a wakeup request or
4135 * the previous request that slept prematurely.
4136 */
4137 if (remaining) {
4138 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4139 kswapd_highest_zoneidx(pgdat,
4140 highest_zoneidx));
4141
4142 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4143 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4144 }
4145
4146 finish_wait(&pgdat->kswapd_wait, &wait);
4147 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4148 }
4149
4150 /*
4151 * After a short sleep, check if it was a premature sleep. If not, then
4152 * go fully to sleep until explicitly woken up.
4153 */
4154 if (!remaining &&
4155 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4156 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4157
4158 /*
4159 * vmstat counters are not perfectly accurate and the estimated
4160 * value for counters such as NR_FREE_PAGES can deviate from the
4161 * true value by nr_online_cpus * threshold. To avoid the zone
4162 * watermarks being breached while under pressure, we reduce the
4163 * per-cpu vmstat threshold while kswapd is awake and restore
4164 * them before going back to sleep.
4165 */
4166 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4167
4168 if (!kthread_should_stop())
4169 schedule();
4170
4171 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4172 } else {
4173 if (remaining)
4174 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4175 else
4176 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4177 }
4178 finish_wait(&pgdat->kswapd_wait, &wait);
4179 }
4180
4181 /*
4182 * The background pageout daemon, started as a kernel thread
4183 * from the init process.
4184 *
4185 * This basically trickles out pages so that we have _some_
4186 * free memory available even if there is no other activity
4187 * that frees anything up. This is needed for things like routing
4188 * etc, where we otherwise might have all activity going on in
4189 * asynchronous contexts that cannot page things out.
4190 *
4191 * If there are applications that are active memory-allocators
4192 * (most normal use), this basically shouldn't matter.
4193 */
4194 static int kswapd(void *p)
4195 {
4196 unsigned int alloc_order, reclaim_order;
4197 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4198 pg_data_t *pgdat = (pg_data_t *)p;
4199 struct task_struct *tsk = current;
4200 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4201
4202 if (!cpumask_empty(cpumask))
4203 set_cpus_allowed_ptr(tsk, cpumask);
4204
4205 /*
4206 * Tell the memory management that we're a "memory allocator",
4207 * and that if we need more memory we should get access to it
4208 * regardless (see "__alloc_pages()"). "kswapd" should
4209 * never get caught in the normal page freeing logic.
4210 *
4211 * (Kswapd normally doesn't need memory anyway, but sometimes
4212 * you need a small amount of memory in order to be able to
4213 * page out something else, and this flag essentially protects
4214 * us from recursively trying to free more memory as we're
4215 * trying to free the first piece of memory in the first place).
4216 */
4217 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
4218 set_freezable();
4219
4220 WRITE_ONCE(pgdat->kswapd_order, 0);
4221 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4222 for ( ; ; ) {
4223 bool ret;
4224
4225 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4226 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4227 highest_zoneidx);
4228
4229 kswapd_try_sleep:
4230 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4231 highest_zoneidx);
4232
4233 /* Read the new order and highest_zoneidx */
4234 alloc_order = READ_ONCE(pgdat->kswapd_order);
4235 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4236 highest_zoneidx);
4237 WRITE_ONCE(pgdat->kswapd_order, 0);
4238 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4239
4240 ret = try_to_freeze();
4241 if (kthread_should_stop())
4242 break;
4243
4244 /*
4245 * We can speed up thawing tasks if we don't call balance_pgdat
4246 * after returning from the refrigerator
4247 */
4248 if (ret)
4249 continue;
4250
4251 /*
4252 * Reclaim begins at the requested order but if a high-order
4253 * reclaim fails then kswapd falls back to reclaiming for
4254 * order-0. If that happens, kswapd will consider sleeping
4255 * for the order it finished reclaiming at (reclaim_order)
4256 * but kcompactd is woken to compact for the original
4257 * request (alloc_order).
4258 */
4259 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4260 alloc_order);
4261 reclaim_order = balance_pgdat(pgdat, alloc_order,
4262 highest_zoneidx);
4263 if (reclaim_order < alloc_order)
4264 goto kswapd_try_sleep;
4265 }
4266
4267 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
4268
4269 return 0;
4270 }
4271
4272 /*
4273 * A zone is low on free memory or too fragmented for high-order memory. If
4274 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4275 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4276 * has failed or is not needed, still wake up kcompactd if only compaction is
4277 * needed.
4278 */
4279 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4280 enum zone_type highest_zoneidx)
4281 {
4282 pg_data_t *pgdat;
4283 enum zone_type curr_idx;
4284
4285 if (!managed_zone(zone))
4286 return;
4287
4288 if (!cpuset_zone_allowed(zone, gfp_flags))
4289 return;
4290
4291 pgdat = zone->zone_pgdat;
4292 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4293
4294 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4295 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4296
4297 if (READ_ONCE(pgdat->kswapd_order) < order)
4298 WRITE_ONCE(pgdat->kswapd_order, order);
4299
4300 if (!waitqueue_active(&pgdat->kswapd_wait))
4301 return;
4302
4303 /* Hopeless node, leave it to direct reclaim if possible */
4304 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4305 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4306 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4307 /*
4308 * There may be plenty of free memory available, but it's too
4309 * fragmented for high-order allocations. Wake up kcompactd
4310 * and rely on compaction_suitable() to determine if it's
4311 * needed. If it fails, it will defer subsequent attempts to
4312 * ratelimit its work.
4313 */
4314 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4315 wakeup_kcompactd(pgdat, order, highest_zoneidx);
4316 return;
4317 }
4318
4319 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4320 gfp_flags);
4321 wake_up_interruptible(&pgdat->kswapd_wait);
4322 }
4323
4324 #ifdef CONFIG_HIBERNATION
4325 /*
4326 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4327 * freed pages.
4328 *
4329 * Rather than trying to age LRUs the aim is to preserve the overall
4330 * LRU order by reclaiming preferentially
4331 * inactive > active > active referenced > active mapped
4332 */
4333 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4334 {
4335 struct scan_control sc = {
4336 .nr_to_reclaim = nr_to_reclaim,
4337 .gfp_mask = GFP_HIGHUSER_MOVABLE,
4338 .reclaim_idx = MAX_NR_ZONES - 1,
4339 .priority = DEF_PRIORITY,
4340 .may_writepage = 1,
4341 .may_unmap = 1,
4342 .may_swap = 1,
4343 .hibernation_mode = 1,
4344 };
4345 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4346 unsigned long nr_reclaimed;
4347 unsigned int noreclaim_flag;
4348
4349 fs_reclaim_acquire(sc.gfp_mask);
4350 noreclaim_flag = memalloc_noreclaim_save();
4351 set_task_reclaim_state(current, &sc.reclaim_state);
4352
4353 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4354
4355 set_task_reclaim_state(current, NULL);
4356 memalloc_noreclaim_restore(noreclaim_flag);
4357 fs_reclaim_release(sc.gfp_mask);
4358
4359 return nr_reclaimed;
4360 }
4361 #endif /* CONFIG_HIBERNATION */
4362
4363 /*
4364 * This kswapd start function will be called by init and node-hot-add.
4365 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4366 */
4367 void kswapd_run(int nid)
4368 {
4369 pg_data_t *pgdat = NODE_DATA(nid);
4370
4371 if (pgdat->kswapd)
4372 return;
4373
4374 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4375 if (IS_ERR(pgdat->kswapd)) {
4376 /* failure at boot is fatal */
4377 BUG_ON(system_state < SYSTEM_RUNNING);
4378 pr_err("Failed to start kswapd on node %d\n", nid);
4379 pgdat->kswapd = NULL;
4380 }
4381 }
4382
4383 /*
4384 * Called by memory hotplug when all memory in a node is offlined. Caller must
4385 * hold mem_hotplug_begin/end().
4386 */
4387 void kswapd_stop(int nid)
4388 {
4389 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4390
4391 if (kswapd) {
4392 kthread_stop(kswapd);
4393 NODE_DATA(nid)->kswapd = NULL;
4394 }
4395 }
4396
4397 static int __init kswapd_init(void)
4398 {
4399 int nid;
4400
4401 swap_setup();
4402 for_each_node_state(nid, N_MEMORY)
4403 kswapd_run(nid);
4404 return 0;
4405 }
4406
4407 module_init(kswapd_init)
4408
4409 #ifdef CONFIG_NUMA
4410 /*
4411 * Node reclaim mode
4412 *
4413 * If non-zero call node_reclaim when the number of free pages falls below
4414 * the watermarks.
4415 */
4416 int node_reclaim_mode __read_mostly;
4417
4418 /*
4419 * Priority for NODE_RECLAIM. This determines the fraction of pages
4420 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4421 * a zone.
4422 */
4423 #define NODE_RECLAIM_PRIORITY 4
4424
4425 /*
4426 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4427 * occur.
4428 */
4429 int sysctl_min_unmapped_ratio = 1;
4430
4431 /*
4432 * If the number of slab pages in a zone grows beyond this percentage then
4433 * slab reclaim needs to occur.
4434 */
4435 int sysctl_min_slab_ratio = 5;
4436
4437 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4438 {
4439 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4440 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4441 node_page_state(pgdat, NR_ACTIVE_FILE);
4442
4443 /*
4444 * It's possible for there to be more file mapped pages than
4445 * accounted for by the pages on the file LRU lists because
4446 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4447 */
4448 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4449 }
4450
4451 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4452 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4453 {
4454 unsigned long nr_pagecache_reclaimable;
4455 unsigned long delta = 0;
4456
4457 /*
4458 * If RECLAIM_UNMAP is set, then all file pages are considered
4459 * potentially reclaimable. Otherwise, we have to worry about
4460 * pages like swapcache and node_unmapped_file_pages() provides
4461 * a better estimate
4462 */
4463 if (node_reclaim_mode & RECLAIM_UNMAP)
4464 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4465 else
4466 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4467
4468 /* If we can't clean pages, remove dirty pages from consideration */
4469 if (!(node_reclaim_mode & RECLAIM_WRITE))
4470 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4471
4472 /* Watch for any possible underflows due to delta */
4473 if (unlikely(delta > nr_pagecache_reclaimable))
4474 delta = nr_pagecache_reclaimable;
4475
4476 return nr_pagecache_reclaimable - delta;
4477 }
4478
4479 /*
4480 * Try to free up some pages from this node through reclaim.
4481 */
4482 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4483 {
4484 /* Minimum pages needed in order to stay on node */
4485 const unsigned long nr_pages = 1 << order;
4486 struct task_struct *p = current;
4487 unsigned int noreclaim_flag;
4488 struct scan_control sc = {
4489 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4490 .gfp_mask = current_gfp_context(gfp_mask),
4491 .order = order,
4492 .priority = NODE_RECLAIM_PRIORITY,
4493 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4494 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4495 .may_swap = 1,
4496 .reclaim_idx = gfp_zone(gfp_mask),
4497 };
4498 unsigned long pflags;
4499
4500 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4501 sc.gfp_mask);
4502
4503 cond_resched();
4504 psi_memstall_enter(&pflags);
4505 fs_reclaim_acquire(sc.gfp_mask);
4506 /*
4507 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4508 * and we also need to be able to write out pages for RECLAIM_WRITE
4509 * and RECLAIM_UNMAP.
4510 */
4511 noreclaim_flag = memalloc_noreclaim_save();
4512 p->flags |= PF_SWAPWRITE;
4513 set_task_reclaim_state(p, &sc.reclaim_state);
4514
4515 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4516 /*
4517 * Free memory by calling shrink node with increasing
4518 * priorities until we have enough memory freed.
4519 */
4520 do {
4521 shrink_node(pgdat, &sc);
4522 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4523 }
4524
4525 set_task_reclaim_state(p, NULL);
4526 current->flags &= ~PF_SWAPWRITE;
4527 memalloc_noreclaim_restore(noreclaim_flag);
4528 fs_reclaim_release(sc.gfp_mask);
4529 psi_memstall_leave(&pflags);
4530
4531 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4532
4533 return sc.nr_reclaimed >= nr_pages;
4534 }
4535
4536 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4537 {
4538 int ret;
4539
4540 /*
4541 * Node reclaim reclaims unmapped file backed pages and
4542 * slab pages if we are over the defined limits.
4543 *
4544 * A small portion of unmapped file backed pages is needed for
4545 * file I/O otherwise pages read by file I/O will be immediately
4546 * thrown out if the node is overallocated. So we do not reclaim
4547 * if less than a specified percentage of the node is used by
4548 * unmapped file backed pages.
4549 */
4550 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4551 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4552 pgdat->min_slab_pages)
4553 return NODE_RECLAIM_FULL;
4554
4555 /*
4556 * Do not scan if the allocation should not be delayed.
4557 */
4558 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4559 return NODE_RECLAIM_NOSCAN;
4560
4561 /*
4562 * Only run node reclaim on the local node or on nodes that do not
4563 * have associated processors. This will favor the local processor
4564 * over remote processors and spread off node memory allocations
4565 * as wide as possible.
4566 */
4567 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4568 return NODE_RECLAIM_NOSCAN;
4569
4570 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4571 return NODE_RECLAIM_NOSCAN;
4572
4573 ret = __node_reclaim(pgdat, gfp_mask, order);
4574 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4575
4576 if (!ret)
4577 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4578
4579 return ret;
4580 }
4581 #endif
4582
4583 /**
4584 * check_move_unevictable_pages - check pages for evictability and move to
4585 * appropriate zone lru list
4586 * @pvec: pagevec with lru pages to check
4587 *
4588 * Checks pages for evictability, if an evictable page is in the unevictable
4589 * lru list, moves it to the appropriate evictable lru list. This function
4590 * should be only used for lru pages.
4591 */
4592 void check_move_unevictable_pages(struct pagevec *pvec)
4593 {
4594 struct lruvec *lruvec = NULL;
4595 int pgscanned = 0;
4596 int pgrescued = 0;
4597 int i;
4598
4599 for (i = 0; i < pvec->nr; i++) {
4600 struct page *page = pvec->pages[i];
4601 int nr_pages;
4602
4603 if (PageTransTail(page))
4604 continue;
4605
4606 nr_pages = thp_nr_pages(page);
4607 pgscanned += nr_pages;
4608
4609 /* block memcg migration during page moving between lru */
4610 if (!TestClearPageLRU(page))
4611 continue;
4612
4613 lruvec = relock_page_lruvec_irq(page, lruvec);
4614 if (page_evictable(page) && PageUnevictable(page)) {
4615 del_page_from_lru_list(page, lruvec);
4616 ClearPageUnevictable(page);
4617 add_page_to_lru_list(page, lruvec);
4618 pgrescued += nr_pages;
4619 }
4620 SetPageLRU(page);
4621 }
4622
4623 if (lruvec) {
4624 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4625 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4626 unlock_page_lruvec_irq(lruvec);
4627 } else if (pgscanned) {
4628 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4629 }
4630 }
4631 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);