]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/vmscan.c
mm/memory_hotplug: drop MHP_MEMBLOCK_API
[mirror_ubuntu-jammy-kernel.git] / mm / vmscan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60
61 #include "internal.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65
66 struct scan_control {
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
69
70 /*
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 * are scanned.
73 */
74 nodemask_t *nodemask;
75
76 /*
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
79 */
80 struct mem_cgroup *target_mem_cgroup;
81
82 /* Writepage batching in laptop mode; RECLAIM_WRITE */
83 unsigned int may_writepage:1;
84
85 /* Can mapped pages be reclaimed? */
86 unsigned int may_unmap:1;
87
88 /* Can pages be swapped as part of reclaim? */
89 unsigned int may_swap:1;
90
91 /* e.g. boosted watermark reclaim leaves slabs alone */
92 unsigned int may_shrinkslab:1;
93
94 /*
95 * Cgroups are not reclaimed below their configured memory.low,
96 * unless we threaten to OOM. If any cgroups are skipped due to
97 * memory.low and nothing was reclaimed, go back for memory.low.
98 */
99 unsigned int memcg_low_reclaim:1;
100 unsigned int memcg_low_skipped:1;
101
102 unsigned int hibernation_mode:1;
103
104 /* One of the zones is ready for compaction */
105 unsigned int compaction_ready:1;
106
107 /* Allocation order */
108 s8 order;
109
110 /* Scan (total_size >> priority) pages at once */
111 s8 priority;
112
113 /* The highest zone to isolate pages for reclaim from */
114 s8 reclaim_idx;
115
116 /* This context's GFP mask */
117 gfp_t gfp_mask;
118
119 /* Incremented by the number of inactive pages that were scanned */
120 unsigned long nr_scanned;
121
122 /* Number of pages freed so far during a call to shrink_zones() */
123 unsigned long nr_reclaimed;
124
125 struct {
126 unsigned int dirty;
127 unsigned int unqueued_dirty;
128 unsigned int congested;
129 unsigned int writeback;
130 unsigned int immediate;
131 unsigned int file_taken;
132 unsigned int taken;
133 } nr;
134
135 /* for recording the reclaimed slab by now */
136 struct reclaim_state reclaim_state;
137 };
138
139 #ifdef ARCH_HAS_PREFETCH
140 #define prefetch_prev_lru_page(_page, _base, _field) \
141 do { \
142 if ((_page)->lru.prev != _base) { \
143 struct page *prev; \
144 \
145 prev = lru_to_page(&(_page->lru)); \
146 prefetch(&prev->_field); \
147 } \
148 } while (0)
149 #else
150 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
151 #endif
152
153 #ifdef ARCH_HAS_PREFETCHW
154 #define prefetchw_prev_lru_page(_page, _base, _field) \
155 do { \
156 if ((_page)->lru.prev != _base) { \
157 struct page *prev; \
158 \
159 prev = lru_to_page(&(_page->lru)); \
160 prefetchw(&prev->_field); \
161 } \
162 } while (0)
163 #else
164 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
165 #endif
166
167 /*
168 * From 0 .. 100. Higher means more swappy.
169 */
170 int vm_swappiness = 60;
171 /*
172 * The total number of pages which are beyond the high watermark within all
173 * zones.
174 */
175 unsigned long vm_total_pages;
176
177 static LIST_HEAD(shrinker_list);
178 static DECLARE_RWSEM(shrinker_rwsem);
179
180 #ifdef CONFIG_MEMCG_KMEM
181
182 /*
183 * We allow subsystems to populate their shrinker-related
184 * LRU lists before register_shrinker_prepared() is called
185 * for the shrinker, since we don't want to impose
186 * restrictions on their internal registration order.
187 * In this case shrink_slab_memcg() may find corresponding
188 * bit is set in the shrinkers map.
189 *
190 * This value is used by the function to detect registering
191 * shrinkers and to skip do_shrink_slab() calls for them.
192 */
193 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
194
195 static DEFINE_IDR(shrinker_idr);
196 static int shrinker_nr_max;
197
198 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
199 {
200 int id, ret = -ENOMEM;
201
202 down_write(&shrinker_rwsem);
203 /* This may call shrinker, so it must use down_read_trylock() */
204 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
205 if (id < 0)
206 goto unlock;
207
208 if (id >= shrinker_nr_max) {
209 if (memcg_expand_shrinker_maps(id)) {
210 idr_remove(&shrinker_idr, id);
211 goto unlock;
212 }
213
214 shrinker_nr_max = id + 1;
215 }
216 shrinker->id = id;
217 ret = 0;
218 unlock:
219 up_write(&shrinker_rwsem);
220 return ret;
221 }
222
223 static void unregister_memcg_shrinker(struct shrinker *shrinker)
224 {
225 int id = shrinker->id;
226
227 BUG_ON(id < 0);
228
229 down_write(&shrinker_rwsem);
230 idr_remove(&shrinker_idr, id);
231 up_write(&shrinker_rwsem);
232 }
233 #else /* CONFIG_MEMCG_KMEM */
234 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
235 {
236 return 0;
237 }
238
239 static void unregister_memcg_shrinker(struct shrinker *shrinker)
240 {
241 }
242 #endif /* CONFIG_MEMCG_KMEM */
243
244 static void set_task_reclaim_state(struct task_struct *task,
245 struct reclaim_state *rs)
246 {
247 /* Check for an overwrite */
248 WARN_ON_ONCE(rs && task->reclaim_state);
249
250 /* Check for the nulling of an already-nulled member */
251 WARN_ON_ONCE(!rs && !task->reclaim_state);
252
253 task->reclaim_state = rs;
254 }
255
256 #ifdef CONFIG_MEMCG
257 static bool global_reclaim(struct scan_control *sc)
258 {
259 return !sc->target_mem_cgroup;
260 }
261
262 /**
263 * sane_reclaim - is the usual dirty throttling mechanism operational?
264 * @sc: scan_control in question
265 *
266 * The normal page dirty throttling mechanism in balance_dirty_pages() is
267 * completely broken with the legacy memcg and direct stalling in
268 * shrink_page_list() is used for throttling instead, which lacks all the
269 * niceties such as fairness, adaptive pausing, bandwidth proportional
270 * allocation and configurability.
271 *
272 * This function tests whether the vmscan currently in progress can assume
273 * that the normal dirty throttling mechanism is operational.
274 */
275 static bool sane_reclaim(struct scan_control *sc)
276 {
277 struct mem_cgroup *memcg = sc->target_mem_cgroup;
278
279 if (!memcg)
280 return true;
281 #ifdef CONFIG_CGROUP_WRITEBACK
282 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
283 return true;
284 #endif
285 return false;
286 }
287
288 static void set_memcg_congestion(pg_data_t *pgdat,
289 struct mem_cgroup *memcg,
290 bool congested)
291 {
292 struct mem_cgroup_per_node *mn;
293
294 if (!memcg)
295 return;
296
297 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
298 WRITE_ONCE(mn->congested, congested);
299 }
300
301 static bool memcg_congested(pg_data_t *pgdat,
302 struct mem_cgroup *memcg)
303 {
304 struct mem_cgroup_per_node *mn;
305
306 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
307 return READ_ONCE(mn->congested);
308
309 }
310 #else
311 static bool global_reclaim(struct scan_control *sc)
312 {
313 return true;
314 }
315
316 static bool sane_reclaim(struct scan_control *sc)
317 {
318 return true;
319 }
320
321 static inline void set_memcg_congestion(struct pglist_data *pgdat,
322 struct mem_cgroup *memcg, bool congested)
323 {
324 }
325
326 static inline bool memcg_congested(struct pglist_data *pgdat,
327 struct mem_cgroup *memcg)
328 {
329 return false;
330
331 }
332 #endif
333
334 /*
335 * This misses isolated pages which are not accounted for to save counters.
336 * As the data only determines if reclaim or compaction continues, it is
337 * not expected that isolated pages will be a dominating factor.
338 */
339 unsigned long zone_reclaimable_pages(struct zone *zone)
340 {
341 unsigned long nr;
342
343 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
344 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
345 if (get_nr_swap_pages() > 0)
346 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
347 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
348
349 return nr;
350 }
351
352 /**
353 * lruvec_lru_size - Returns the number of pages on the given LRU list.
354 * @lruvec: lru vector
355 * @lru: lru to use
356 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
357 */
358 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
359 {
360 unsigned long lru_size;
361 int zid;
362
363 if (!mem_cgroup_disabled())
364 lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
365 else
366 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
367
368 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
369 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
370 unsigned long size;
371
372 if (!managed_zone(zone))
373 continue;
374
375 if (!mem_cgroup_disabled())
376 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
377 else
378 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
379 NR_ZONE_LRU_BASE + lru);
380 lru_size -= min(size, lru_size);
381 }
382
383 return lru_size;
384
385 }
386
387 /*
388 * Add a shrinker callback to be called from the vm.
389 */
390 int prealloc_shrinker(struct shrinker *shrinker)
391 {
392 unsigned int size = sizeof(*shrinker->nr_deferred);
393
394 if (shrinker->flags & SHRINKER_NUMA_AWARE)
395 size *= nr_node_ids;
396
397 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
398 if (!shrinker->nr_deferred)
399 return -ENOMEM;
400
401 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
402 if (prealloc_memcg_shrinker(shrinker))
403 goto free_deferred;
404 }
405
406 return 0;
407
408 free_deferred:
409 kfree(shrinker->nr_deferred);
410 shrinker->nr_deferred = NULL;
411 return -ENOMEM;
412 }
413
414 void free_prealloced_shrinker(struct shrinker *shrinker)
415 {
416 if (!shrinker->nr_deferred)
417 return;
418
419 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
420 unregister_memcg_shrinker(shrinker);
421
422 kfree(shrinker->nr_deferred);
423 shrinker->nr_deferred = NULL;
424 }
425
426 void register_shrinker_prepared(struct shrinker *shrinker)
427 {
428 down_write(&shrinker_rwsem);
429 list_add_tail(&shrinker->list, &shrinker_list);
430 #ifdef CONFIG_MEMCG_KMEM
431 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
432 idr_replace(&shrinker_idr, shrinker, shrinker->id);
433 #endif
434 up_write(&shrinker_rwsem);
435 }
436
437 int register_shrinker(struct shrinker *shrinker)
438 {
439 int err = prealloc_shrinker(shrinker);
440
441 if (err)
442 return err;
443 register_shrinker_prepared(shrinker);
444 return 0;
445 }
446 EXPORT_SYMBOL(register_shrinker);
447
448 /*
449 * Remove one
450 */
451 void unregister_shrinker(struct shrinker *shrinker)
452 {
453 if (!shrinker->nr_deferred)
454 return;
455 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
456 unregister_memcg_shrinker(shrinker);
457 down_write(&shrinker_rwsem);
458 list_del(&shrinker->list);
459 up_write(&shrinker_rwsem);
460 kfree(shrinker->nr_deferred);
461 shrinker->nr_deferred = NULL;
462 }
463 EXPORT_SYMBOL(unregister_shrinker);
464
465 #define SHRINK_BATCH 128
466
467 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
468 struct shrinker *shrinker, int priority)
469 {
470 unsigned long freed = 0;
471 unsigned long long delta;
472 long total_scan;
473 long freeable;
474 long nr;
475 long new_nr;
476 int nid = shrinkctl->nid;
477 long batch_size = shrinker->batch ? shrinker->batch
478 : SHRINK_BATCH;
479 long scanned = 0, next_deferred;
480
481 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
482 nid = 0;
483
484 freeable = shrinker->count_objects(shrinker, shrinkctl);
485 if (freeable == 0 || freeable == SHRINK_EMPTY)
486 return freeable;
487
488 /*
489 * copy the current shrinker scan count into a local variable
490 * and zero it so that other concurrent shrinker invocations
491 * don't also do this scanning work.
492 */
493 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
494
495 total_scan = nr;
496 if (shrinker->seeks) {
497 delta = freeable >> priority;
498 delta *= 4;
499 do_div(delta, shrinker->seeks);
500 } else {
501 /*
502 * These objects don't require any IO to create. Trim
503 * them aggressively under memory pressure to keep
504 * them from causing refetches in the IO caches.
505 */
506 delta = freeable / 2;
507 }
508
509 total_scan += delta;
510 if (total_scan < 0) {
511 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
512 shrinker->scan_objects, total_scan);
513 total_scan = freeable;
514 next_deferred = nr;
515 } else
516 next_deferred = total_scan;
517
518 /*
519 * We need to avoid excessive windup on filesystem shrinkers
520 * due to large numbers of GFP_NOFS allocations causing the
521 * shrinkers to return -1 all the time. This results in a large
522 * nr being built up so when a shrink that can do some work
523 * comes along it empties the entire cache due to nr >>>
524 * freeable. This is bad for sustaining a working set in
525 * memory.
526 *
527 * Hence only allow the shrinker to scan the entire cache when
528 * a large delta change is calculated directly.
529 */
530 if (delta < freeable / 4)
531 total_scan = min(total_scan, freeable / 2);
532
533 /*
534 * Avoid risking looping forever due to too large nr value:
535 * never try to free more than twice the estimate number of
536 * freeable entries.
537 */
538 if (total_scan > freeable * 2)
539 total_scan = freeable * 2;
540
541 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
542 freeable, delta, total_scan, priority);
543
544 /*
545 * Normally, we should not scan less than batch_size objects in one
546 * pass to avoid too frequent shrinker calls, but if the slab has less
547 * than batch_size objects in total and we are really tight on memory,
548 * we will try to reclaim all available objects, otherwise we can end
549 * up failing allocations although there are plenty of reclaimable
550 * objects spread over several slabs with usage less than the
551 * batch_size.
552 *
553 * We detect the "tight on memory" situations by looking at the total
554 * number of objects we want to scan (total_scan). If it is greater
555 * than the total number of objects on slab (freeable), we must be
556 * scanning at high prio and therefore should try to reclaim as much as
557 * possible.
558 */
559 while (total_scan >= batch_size ||
560 total_scan >= freeable) {
561 unsigned long ret;
562 unsigned long nr_to_scan = min(batch_size, total_scan);
563
564 shrinkctl->nr_to_scan = nr_to_scan;
565 shrinkctl->nr_scanned = nr_to_scan;
566 ret = shrinker->scan_objects(shrinker, shrinkctl);
567 if (ret == SHRINK_STOP)
568 break;
569 freed += ret;
570
571 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
572 total_scan -= shrinkctl->nr_scanned;
573 scanned += shrinkctl->nr_scanned;
574
575 cond_resched();
576 }
577
578 if (next_deferred >= scanned)
579 next_deferred -= scanned;
580 else
581 next_deferred = 0;
582 /*
583 * move the unused scan count back into the shrinker in a
584 * manner that handles concurrent updates. If we exhausted the
585 * scan, there is no need to do an update.
586 */
587 if (next_deferred > 0)
588 new_nr = atomic_long_add_return(next_deferred,
589 &shrinker->nr_deferred[nid]);
590 else
591 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
592
593 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
594 return freed;
595 }
596
597 #ifdef CONFIG_MEMCG_KMEM
598 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
599 struct mem_cgroup *memcg, int priority)
600 {
601 struct memcg_shrinker_map *map;
602 unsigned long ret, freed = 0;
603 int i;
604
605 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
606 return 0;
607
608 if (!down_read_trylock(&shrinker_rwsem))
609 return 0;
610
611 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
612 true);
613 if (unlikely(!map))
614 goto unlock;
615
616 for_each_set_bit(i, map->map, shrinker_nr_max) {
617 struct shrink_control sc = {
618 .gfp_mask = gfp_mask,
619 .nid = nid,
620 .memcg = memcg,
621 };
622 struct shrinker *shrinker;
623
624 shrinker = idr_find(&shrinker_idr, i);
625 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
626 if (!shrinker)
627 clear_bit(i, map->map);
628 continue;
629 }
630
631 ret = do_shrink_slab(&sc, shrinker, priority);
632 if (ret == SHRINK_EMPTY) {
633 clear_bit(i, map->map);
634 /*
635 * After the shrinker reported that it had no objects to
636 * free, but before we cleared the corresponding bit in
637 * the memcg shrinker map, a new object might have been
638 * added. To make sure, we have the bit set in this
639 * case, we invoke the shrinker one more time and reset
640 * the bit if it reports that it is not empty anymore.
641 * The memory barrier here pairs with the barrier in
642 * memcg_set_shrinker_bit():
643 *
644 * list_lru_add() shrink_slab_memcg()
645 * list_add_tail() clear_bit()
646 * <MB> <MB>
647 * set_bit() do_shrink_slab()
648 */
649 smp_mb__after_atomic();
650 ret = do_shrink_slab(&sc, shrinker, priority);
651 if (ret == SHRINK_EMPTY)
652 ret = 0;
653 else
654 memcg_set_shrinker_bit(memcg, nid, i);
655 }
656 freed += ret;
657
658 if (rwsem_is_contended(&shrinker_rwsem)) {
659 freed = freed ? : 1;
660 break;
661 }
662 }
663 unlock:
664 up_read(&shrinker_rwsem);
665 return freed;
666 }
667 #else /* CONFIG_MEMCG_KMEM */
668 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
669 struct mem_cgroup *memcg, int priority)
670 {
671 return 0;
672 }
673 #endif /* CONFIG_MEMCG_KMEM */
674
675 /**
676 * shrink_slab - shrink slab caches
677 * @gfp_mask: allocation context
678 * @nid: node whose slab caches to target
679 * @memcg: memory cgroup whose slab caches to target
680 * @priority: the reclaim priority
681 *
682 * Call the shrink functions to age shrinkable caches.
683 *
684 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
685 * unaware shrinkers will receive a node id of 0 instead.
686 *
687 * @memcg specifies the memory cgroup to target. Unaware shrinkers
688 * are called only if it is the root cgroup.
689 *
690 * @priority is sc->priority, we take the number of objects and >> by priority
691 * in order to get the scan target.
692 *
693 * Returns the number of reclaimed slab objects.
694 */
695 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
696 struct mem_cgroup *memcg,
697 int priority)
698 {
699 unsigned long ret, freed = 0;
700 struct shrinker *shrinker;
701
702 if (!mem_cgroup_is_root(memcg))
703 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
704
705 if (!down_read_trylock(&shrinker_rwsem))
706 goto out;
707
708 list_for_each_entry(shrinker, &shrinker_list, list) {
709 struct shrink_control sc = {
710 .gfp_mask = gfp_mask,
711 .nid = nid,
712 .memcg = memcg,
713 };
714
715 ret = do_shrink_slab(&sc, shrinker, priority);
716 if (ret == SHRINK_EMPTY)
717 ret = 0;
718 freed += ret;
719 /*
720 * Bail out if someone want to register a new shrinker to
721 * prevent the regsitration from being stalled for long periods
722 * by parallel ongoing shrinking.
723 */
724 if (rwsem_is_contended(&shrinker_rwsem)) {
725 freed = freed ? : 1;
726 break;
727 }
728 }
729
730 up_read(&shrinker_rwsem);
731 out:
732 cond_resched();
733 return freed;
734 }
735
736 void drop_slab_node(int nid)
737 {
738 unsigned long freed;
739
740 do {
741 struct mem_cgroup *memcg = NULL;
742
743 freed = 0;
744 memcg = mem_cgroup_iter(NULL, NULL, NULL);
745 do {
746 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
747 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
748 } while (freed > 10);
749 }
750
751 void drop_slab(void)
752 {
753 int nid;
754
755 for_each_online_node(nid)
756 drop_slab_node(nid);
757 }
758
759 static inline int is_page_cache_freeable(struct page *page)
760 {
761 /*
762 * A freeable page cache page is referenced only by the caller
763 * that isolated the page, the page cache and optional buffer
764 * heads at page->private.
765 */
766 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
767 HPAGE_PMD_NR : 1;
768 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
769 }
770
771 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
772 {
773 if (current->flags & PF_SWAPWRITE)
774 return 1;
775 if (!inode_write_congested(inode))
776 return 1;
777 if (inode_to_bdi(inode) == current->backing_dev_info)
778 return 1;
779 return 0;
780 }
781
782 /*
783 * We detected a synchronous write error writing a page out. Probably
784 * -ENOSPC. We need to propagate that into the address_space for a subsequent
785 * fsync(), msync() or close().
786 *
787 * The tricky part is that after writepage we cannot touch the mapping: nothing
788 * prevents it from being freed up. But we have a ref on the page and once
789 * that page is locked, the mapping is pinned.
790 *
791 * We're allowed to run sleeping lock_page() here because we know the caller has
792 * __GFP_FS.
793 */
794 static void handle_write_error(struct address_space *mapping,
795 struct page *page, int error)
796 {
797 lock_page(page);
798 if (page_mapping(page) == mapping)
799 mapping_set_error(mapping, error);
800 unlock_page(page);
801 }
802
803 /* possible outcome of pageout() */
804 typedef enum {
805 /* failed to write page out, page is locked */
806 PAGE_KEEP,
807 /* move page to the active list, page is locked */
808 PAGE_ACTIVATE,
809 /* page has been sent to the disk successfully, page is unlocked */
810 PAGE_SUCCESS,
811 /* page is clean and locked */
812 PAGE_CLEAN,
813 } pageout_t;
814
815 /*
816 * pageout is called by shrink_page_list() for each dirty page.
817 * Calls ->writepage().
818 */
819 static pageout_t pageout(struct page *page, struct address_space *mapping,
820 struct scan_control *sc)
821 {
822 /*
823 * If the page is dirty, only perform writeback if that write
824 * will be non-blocking. To prevent this allocation from being
825 * stalled by pagecache activity. But note that there may be
826 * stalls if we need to run get_block(). We could test
827 * PagePrivate for that.
828 *
829 * If this process is currently in __generic_file_write_iter() against
830 * this page's queue, we can perform writeback even if that
831 * will block.
832 *
833 * If the page is swapcache, write it back even if that would
834 * block, for some throttling. This happens by accident, because
835 * swap_backing_dev_info is bust: it doesn't reflect the
836 * congestion state of the swapdevs. Easy to fix, if needed.
837 */
838 if (!is_page_cache_freeable(page))
839 return PAGE_KEEP;
840 if (!mapping) {
841 /*
842 * Some data journaling orphaned pages can have
843 * page->mapping == NULL while being dirty with clean buffers.
844 */
845 if (page_has_private(page)) {
846 if (try_to_free_buffers(page)) {
847 ClearPageDirty(page);
848 pr_info("%s: orphaned page\n", __func__);
849 return PAGE_CLEAN;
850 }
851 }
852 return PAGE_KEEP;
853 }
854 if (mapping->a_ops->writepage == NULL)
855 return PAGE_ACTIVATE;
856 if (!may_write_to_inode(mapping->host, sc))
857 return PAGE_KEEP;
858
859 if (clear_page_dirty_for_io(page)) {
860 int res;
861 struct writeback_control wbc = {
862 .sync_mode = WB_SYNC_NONE,
863 .nr_to_write = SWAP_CLUSTER_MAX,
864 .range_start = 0,
865 .range_end = LLONG_MAX,
866 .for_reclaim = 1,
867 };
868
869 SetPageReclaim(page);
870 res = mapping->a_ops->writepage(page, &wbc);
871 if (res < 0)
872 handle_write_error(mapping, page, res);
873 if (res == AOP_WRITEPAGE_ACTIVATE) {
874 ClearPageReclaim(page);
875 return PAGE_ACTIVATE;
876 }
877
878 if (!PageWriteback(page)) {
879 /* synchronous write or broken a_ops? */
880 ClearPageReclaim(page);
881 }
882 trace_mm_vmscan_writepage(page);
883 inc_node_page_state(page, NR_VMSCAN_WRITE);
884 return PAGE_SUCCESS;
885 }
886
887 return PAGE_CLEAN;
888 }
889
890 /*
891 * Same as remove_mapping, but if the page is removed from the mapping, it
892 * gets returned with a refcount of 0.
893 */
894 static int __remove_mapping(struct address_space *mapping, struct page *page,
895 bool reclaimed)
896 {
897 unsigned long flags;
898 int refcount;
899
900 BUG_ON(!PageLocked(page));
901 BUG_ON(mapping != page_mapping(page));
902
903 xa_lock_irqsave(&mapping->i_pages, flags);
904 /*
905 * The non racy check for a busy page.
906 *
907 * Must be careful with the order of the tests. When someone has
908 * a ref to the page, it may be possible that they dirty it then
909 * drop the reference. So if PageDirty is tested before page_count
910 * here, then the following race may occur:
911 *
912 * get_user_pages(&page);
913 * [user mapping goes away]
914 * write_to(page);
915 * !PageDirty(page) [good]
916 * SetPageDirty(page);
917 * put_page(page);
918 * !page_count(page) [good, discard it]
919 *
920 * [oops, our write_to data is lost]
921 *
922 * Reversing the order of the tests ensures such a situation cannot
923 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
924 * load is not satisfied before that of page->_refcount.
925 *
926 * Note that if SetPageDirty is always performed via set_page_dirty,
927 * and thus under the i_pages lock, then this ordering is not required.
928 */
929 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
930 refcount = 1 + HPAGE_PMD_NR;
931 else
932 refcount = 2;
933 if (!page_ref_freeze(page, refcount))
934 goto cannot_free;
935 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
936 if (unlikely(PageDirty(page))) {
937 page_ref_unfreeze(page, refcount);
938 goto cannot_free;
939 }
940
941 if (PageSwapCache(page)) {
942 swp_entry_t swap = { .val = page_private(page) };
943 mem_cgroup_swapout(page, swap);
944 __delete_from_swap_cache(page, swap);
945 xa_unlock_irqrestore(&mapping->i_pages, flags);
946 put_swap_page(page, swap);
947 } else {
948 void (*freepage)(struct page *);
949 void *shadow = NULL;
950
951 freepage = mapping->a_ops->freepage;
952 /*
953 * Remember a shadow entry for reclaimed file cache in
954 * order to detect refaults, thus thrashing, later on.
955 *
956 * But don't store shadows in an address space that is
957 * already exiting. This is not just an optizimation,
958 * inode reclaim needs to empty out the radix tree or
959 * the nodes are lost. Don't plant shadows behind its
960 * back.
961 *
962 * We also don't store shadows for DAX mappings because the
963 * only page cache pages found in these are zero pages
964 * covering holes, and because we don't want to mix DAX
965 * exceptional entries and shadow exceptional entries in the
966 * same address_space.
967 */
968 if (reclaimed && page_is_file_cache(page) &&
969 !mapping_exiting(mapping) && !dax_mapping(mapping))
970 shadow = workingset_eviction(page);
971 __delete_from_page_cache(page, shadow);
972 xa_unlock_irqrestore(&mapping->i_pages, flags);
973
974 if (freepage != NULL)
975 freepage(page);
976 }
977
978 return 1;
979
980 cannot_free:
981 xa_unlock_irqrestore(&mapping->i_pages, flags);
982 return 0;
983 }
984
985 /*
986 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
987 * someone else has a ref on the page, abort and return 0. If it was
988 * successfully detached, return 1. Assumes the caller has a single ref on
989 * this page.
990 */
991 int remove_mapping(struct address_space *mapping, struct page *page)
992 {
993 if (__remove_mapping(mapping, page, false)) {
994 /*
995 * Unfreezing the refcount with 1 rather than 2 effectively
996 * drops the pagecache ref for us without requiring another
997 * atomic operation.
998 */
999 page_ref_unfreeze(page, 1);
1000 return 1;
1001 }
1002 return 0;
1003 }
1004
1005 /**
1006 * putback_lru_page - put previously isolated page onto appropriate LRU list
1007 * @page: page to be put back to appropriate lru list
1008 *
1009 * Add previously isolated @page to appropriate LRU list.
1010 * Page may still be unevictable for other reasons.
1011 *
1012 * lru_lock must not be held, interrupts must be enabled.
1013 */
1014 void putback_lru_page(struct page *page)
1015 {
1016 lru_cache_add(page);
1017 put_page(page); /* drop ref from isolate */
1018 }
1019
1020 enum page_references {
1021 PAGEREF_RECLAIM,
1022 PAGEREF_RECLAIM_CLEAN,
1023 PAGEREF_KEEP,
1024 PAGEREF_ACTIVATE,
1025 };
1026
1027 static enum page_references page_check_references(struct page *page,
1028 struct scan_control *sc)
1029 {
1030 int referenced_ptes, referenced_page;
1031 unsigned long vm_flags;
1032
1033 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1034 &vm_flags);
1035 referenced_page = TestClearPageReferenced(page);
1036
1037 /*
1038 * Mlock lost the isolation race with us. Let try_to_unmap()
1039 * move the page to the unevictable list.
1040 */
1041 if (vm_flags & VM_LOCKED)
1042 return PAGEREF_RECLAIM;
1043
1044 if (referenced_ptes) {
1045 if (PageSwapBacked(page))
1046 return PAGEREF_ACTIVATE;
1047 /*
1048 * All mapped pages start out with page table
1049 * references from the instantiating fault, so we need
1050 * to look twice if a mapped file page is used more
1051 * than once.
1052 *
1053 * Mark it and spare it for another trip around the
1054 * inactive list. Another page table reference will
1055 * lead to its activation.
1056 *
1057 * Note: the mark is set for activated pages as well
1058 * so that recently deactivated but used pages are
1059 * quickly recovered.
1060 */
1061 SetPageReferenced(page);
1062
1063 if (referenced_page || referenced_ptes > 1)
1064 return PAGEREF_ACTIVATE;
1065
1066 /*
1067 * Activate file-backed executable pages after first usage.
1068 */
1069 if (vm_flags & VM_EXEC)
1070 return PAGEREF_ACTIVATE;
1071
1072 return PAGEREF_KEEP;
1073 }
1074
1075 /* Reclaim if clean, defer dirty pages to writeback */
1076 if (referenced_page && !PageSwapBacked(page))
1077 return PAGEREF_RECLAIM_CLEAN;
1078
1079 return PAGEREF_RECLAIM;
1080 }
1081
1082 /* Check if a page is dirty or under writeback */
1083 static void page_check_dirty_writeback(struct page *page,
1084 bool *dirty, bool *writeback)
1085 {
1086 struct address_space *mapping;
1087
1088 /*
1089 * Anonymous pages are not handled by flushers and must be written
1090 * from reclaim context. Do not stall reclaim based on them
1091 */
1092 if (!page_is_file_cache(page) ||
1093 (PageAnon(page) && !PageSwapBacked(page))) {
1094 *dirty = false;
1095 *writeback = false;
1096 return;
1097 }
1098
1099 /* By default assume that the page flags are accurate */
1100 *dirty = PageDirty(page);
1101 *writeback = PageWriteback(page);
1102
1103 /* Verify dirty/writeback state if the filesystem supports it */
1104 if (!page_has_private(page))
1105 return;
1106
1107 mapping = page_mapping(page);
1108 if (mapping && mapping->a_ops->is_dirty_writeback)
1109 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1110 }
1111
1112 /*
1113 * shrink_page_list() returns the number of reclaimed pages
1114 */
1115 static unsigned long shrink_page_list(struct list_head *page_list,
1116 struct pglist_data *pgdat,
1117 struct scan_control *sc,
1118 enum ttu_flags ttu_flags,
1119 struct reclaim_stat *stat,
1120 bool force_reclaim)
1121 {
1122 LIST_HEAD(ret_pages);
1123 LIST_HEAD(free_pages);
1124 unsigned nr_reclaimed = 0;
1125 unsigned pgactivate = 0;
1126
1127 memset(stat, 0, sizeof(*stat));
1128 cond_resched();
1129
1130 while (!list_empty(page_list)) {
1131 struct address_space *mapping;
1132 struct page *page;
1133 int may_enter_fs;
1134 enum page_references references = PAGEREF_RECLAIM_CLEAN;
1135 bool dirty, writeback;
1136 unsigned int nr_pages;
1137
1138 cond_resched();
1139
1140 page = lru_to_page(page_list);
1141 list_del(&page->lru);
1142
1143 if (!trylock_page(page))
1144 goto keep;
1145
1146 VM_BUG_ON_PAGE(PageActive(page), page);
1147
1148 nr_pages = 1 << compound_order(page);
1149
1150 /* Account the number of base pages even though THP */
1151 sc->nr_scanned += nr_pages;
1152
1153 if (unlikely(!page_evictable(page)))
1154 goto activate_locked;
1155
1156 if (!sc->may_unmap && page_mapped(page))
1157 goto keep_locked;
1158
1159 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1160 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1161
1162 /*
1163 * The number of dirty pages determines if a node is marked
1164 * reclaim_congested which affects wait_iff_congested. kswapd
1165 * will stall and start writing pages if the tail of the LRU
1166 * is all dirty unqueued pages.
1167 */
1168 page_check_dirty_writeback(page, &dirty, &writeback);
1169 if (dirty || writeback)
1170 stat->nr_dirty++;
1171
1172 if (dirty && !writeback)
1173 stat->nr_unqueued_dirty++;
1174
1175 /*
1176 * Treat this page as congested if the underlying BDI is or if
1177 * pages are cycling through the LRU so quickly that the
1178 * pages marked for immediate reclaim are making it to the
1179 * end of the LRU a second time.
1180 */
1181 mapping = page_mapping(page);
1182 if (((dirty || writeback) && mapping &&
1183 inode_write_congested(mapping->host)) ||
1184 (writeback && PageReclaim(page)))
1185 stat->nr_congested++;
1186
1187 /*
1188 * If a page at the tail of the LRU is under writeback, there
1189 * are three cases to consider.
1190 *
1191 * 1) If reclaim is encountering an excessive number of pages
1192 * under writeback and this page is both under writeback and
1193 * PageReclaim then it indicates that pages are being queued
1194 * for IO but are being recycled through the LRU before the
1195 * IO can complete. Waiting on the page itself risks an
1196 * indefinite stall if it is impossible to writeback the
1197 * page due to IO error or disconnected storage so instead
1198 * note that the LRU is being scanned too quickly and the
1199 * caller can stall after page list has been processed.
1200 *
1201 * 2) Global or new memcg reclaim encounters a page that is
1202 * not marked for immediate reclaim, or the caller does not
1203 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1204 * not to fs). In this case mark the page for immediate
1205 * reclaim and continue scanning.
1206 *
1207 * Require may_enter_fs because we would wait on fs, which
1208 * may not have submitted IO yet. And the loop driver might
1209 * enter reclaim, and deadlock if it waits on a page for
1210 * which it is needed to do the write (loop masks off
1211 * __GFP_IO|__GFP_FS for this reason); but more thought
1212 * would probably show more reasons.
1213 *
1214 * 3) Legacy memcg encounters a page that is already marked
1215 * PageReclaim. memcg does not have any dirty pages
1216 * throttling so we could easily OOM just because too many
1217 * pages are in writeback and there is nothing else to
1218 * reclaim. Wait for the writeback to complete.
1219 *
1220 * In cases 1) and 2) we activate the pages to get them out of
1221 * the way while we continue scanning for clean pages on the
1222 * inactive list and refilling from the active list. The
1223 * observation here is that waiting for disk writes is more
1224 * expensive than potentially causing reloads down the line.
1225 * Since they're marked for immediate reclaim, they won't put
1226 * memory pressure on the cache working set any longer than it
1227 * takes to write them to disk.
1228 */
1229 if (PageWriteback(page)) {
1230 /* Case 1 above */
1231 if (current_is_kswapd() &&
1232 PageReclaim(page) &&
1233 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1234 stat->nr_immediate++;
1235 goto activate_locked;
1236
1237 /* Case 2 above */
1238 } else if (sane_reclaim(sc) ||
1239 !PageReclaim(page) || !may_enter_fs) {
1240 /*
1241 * This is slightly racy - end_page_writeback()
1242 * might have just cleared PageReclaim, then
1243 * setting PageReclaim here end up interpreted
1244 * as PageReadahead - but that does not matter
1245 * enough to care. What we do want is for this
1246 * page to have PageReclaim set next time memcg
1247 * reclaim reaches the tests above, so it will
1248 * then wait_on_page_writeback() to avoid OOM;
1249 * and it's also appropriate in global reclaim.
1250 */
1251 SetPageReclaim(page);
1252 stat->nr_writeback++;
1253 goto activate_locked;
1254
1255 /* Case 3 above */
1256 } else {
1257 unlock_page(page);
1258 wait_on_page_writeback(page);
1259 /* then go back and try same page again */
1260 list_add_tail(&page->lru, page_list);
1261 continue;
1262 }
1263 }
1264
1265 if (!force_reclaim)
1266 references = page_check_references(page, sc);
1267
1268 switch (references) {
1269 case PAGEREF_ACTIVATE:
1270 goto activate_locked;
1271 case PAGEREF_KEEP:
1272 stat->nr_ref_keep += nr_pages;
1273 goto keep_locked;
1274 case PAGEREF_RECLAIM:
1275 case PAGEREF_RECLAIM_CLEAN:
1276 ; /* try to reclaim the page below */
1277 }
1278
1279 /*
1280 * Anonymous process memory has backing store?
1281 * Try to allocate it some swap space here.
1282 * Lazyfree page could be freed directly
1283 */
1284 if (PageAnon(page) && PageSwapBacked(page)) {
1285 if (!PageSwapCache(page)) {
1286 if (!(sc->gfp_mask & __GFP_IO))
1287 goto keep_locked;
1288 if (PageTransHuge(page)) {
1289 /* cannot split THP, skip it */
1290 if (!can_split_huge_page(page, NULL))
1291 goto activate_locked;
1292 /*
1293 * Split pages without a PMD map right
1294 * away. Chances are some or all of the
1295 * tail pages can be freed without IO.
1296 */
1297 if (!compound_mapcount(page) &&
1298 split_huge_page_to_list(page,
1299 page_list))
1300 goto activate_locked;
1301 }
1302 if (!add_to_swap(page)) {
1303 if (!PageTransHuge(page))
1304 goto activate_locked_split;
1305 /* Fallback to swap normal pages */
1306 if (split_huge_page_to_list(page,
1307 page_list))
1308 goto activate_locked;
1309 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1310 count_vm_event(THP_SWPOUT_FALLBACK);
1311 #endif
1312 if (!add_to_swap(page))
1313 goto activate_locked_split;
1314 }
1315
1316 may_enter_fs = 1;
1317
1318 /* Adding to swap updated mapping */
1319 mapping = page_mapping(page);
1320 }
1321 } else if (unlikely(PageTransHuge(page))) {
1322 /* Split file THP */
1323 if (split_huge_page_to_list(page, page_list))
1324 goto keep_locked;
1325 }
1326
1327 /*
1328 * THP may get split above, need minus tail pages and update
1329 * nr_pages to avoid accounting tail pages twice.
1330 *
1331 * The tail pages that are added into swap cache successfully
1332 * reach here.
1333 */
1334 if ((nr_pages > 1) && !PageTransHuge(page)) {
1335 sc->nr_scanned -= (nr_pages - 1);
1336 nr_pages = 1;
1337 }
1338
1339 /*
1340 * The page is mapped into the page tables of one or more
1341 * processes. Try to unmap it here.
1342 */
1343 if (page_mapped(page)) {
1344 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1345
1346 if (unlikely(PageTransHuge(page)))
1347 flags |= TTU_SPLIT_HUGE_PMD;
1348 if (!try_to_unmap(page, flags)) {
1349 stat->nr_unmap_fail += nr_pages;
1350 goto activate_locked;
1351 }
1352 }
1353
1354 if (PageDirty(page)) {
1355 /*
1356 * Only kswapd can writeback filesystem pages
1357 * to avoid risk of stack overflow. But avoid
1358 * injecting inefficient single-page IO into
1359 * flusher writeback as much as possible: only
1360 * write pages when we've encountered many
1361 * dirty pages, and when we've already scanned
1362 * the rest of the LRU for clean pages and see
1363 * the same dirty pages again (PageReclaim).
1364 */
1365 if (page_is_file_cache(page) &&
1366 (!current_is_kswapd() || !PageReclaim(page) ||
1367 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1368 /*
1369 * Immediately reclaim when written back.
1370 * Similar in principal to deactivate_page()
1371 * except we already have the page isolated
1372 * and know it's dirty
1373 */
1374 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1375 SetPageReclaim(page);
1376
1377 goto activate_locked;
1378 }
1379
1380 if (references == PAGEREF_RECLAIM_CLEAN)
1381 goto keep_locked;
1382 if (!may_enter_fs)
1383 goto keep_locked;
1384 if (!sc->may_writepage)
1385 goto keep_locked;
1386
1387 /*
1388 * Page is dirty. Flush the TLB if a writable entry
1389 * potentially exists to avoid CPU writes after IO
1390 * starts and then write it out here.
1391 */
1392 try_to_unmap_flush_dirty();
1393 switch (pageout(page, mapping, sc)) {
1394 case PAGE_KEEP:
1395 goto keep_locked;
1396 case PAGE_ACTIVATE:
1397 goto activate_locked;
1398 case PAGE_SUCCESS:
1399 if (PageWriteback(page))
1400 goto keep;
1401 if (PageDirty(page))
1402 goto keep;
1403
1404 /*
1405 * A synchronous write - probably a ramdisk. Go
1406 * ahead and try to reclaim the page.
1407 */
1408 if (!trylock_page(page))
1409 goto keep;
1410 if (PageDirty(page) || PageWriteback(page))
1411 goto keep_locked;
1412 mapping = page_mapping(page);
1413 case PAGE_CLEAN:
1414 ; /* try to free the page below */
1415 }
1416 }
1417
1418 /*
1419 * If the page has buffers, try to free the buffer mappings
1420 * associated with this page. If we succeed we try to free
1421 * the page as well.
1422 *
1423 * We do this even if the page is PageDirty().
1424 * try_to_release_page() does not perform I/O, but it is
1425 * possible for a page to have PageDirty set, but it is actually
1426 * clean (all its buffers are clean). This happens if the
1427 * buffers were written out directly, with submit_bh(). ext3
1428 * will do this, as well as the blockdev mapping.
1429 * try_to_release_page() will discover that cleanness and will
1430 * drop the buffers and mark the page clean - it can be freed.
1431 *
1432 * Rarely, pages can have buffers and no ->mapping. These are
1433 * the pages which were not successfully invalidated in
1434 * truncate_complete_page(). We try to drop those buffers here
1435 * and if that worked, and the page is no longer mapped into
1436 * process address space (page_count == 1) it can be freed.
1437 * Otherwise, leave the page on the LRU so it is swappable.
1438 */
1439 if (page_has_private(page)) {
1440 if (!try_to_release_page(page, sc->gfp_mask))
1441 goto activate_locked;
1442 if (!mapping && page_count(page) == 1) {
1443 unlock_page(page);
1444 if (put_page_testzero(page))
1445 goto free_it;
1446 else {
1447 /*
1448 * rare race with speculative reference.
1449 * the speculative reference will free
1450 * this page shortly, so we may
1451 * increment nr_reclaimed here (and
1452 * leave it off the LRU).
1453 */
1454 nr_reclaimed++;
1455 continue;
1456 }
1457 }
1458 }
1459
1460 if (PageAnon(page) && !PageSwapBacked(page)) {
1461 /* follow __remove_mapping for reference */
1462 if (!page_ref_freeze(page, 1))
1463 goto keep_locked;
1464 if (PageDirty(page)) {
1465 page_ref_unfreeze(page, 1);
1466 goto keep_locked;
1467 }
1468
1469 count_vm_event(PGLAZYFREED);
1470 count_memcg_page_event(page, PGLAZYFREED);
1471 } else if (!mapping || !__remove_mapping(mapping, page, true))
1472 goto keep_locked;
1473
1474 unlock_page(page);
1475 free_it:
1476 /*
1477 * THP may get swapped out in a whole, need account
1478 * all base pages.
1479 */
1480 nr_reclaimed += nr_pages;
1481
1482 /*
1483 * Is there need to periodically free_page_list? It would
1484 * appear not as the counts should be low
1485 */
1486 if (unlikely(PageTransHuge(page))) {
1487 mem_cgroup_uncharge(page);
1488 (*get_compound_page_dtor(page))(page);
1489 } else
1490 list_add(&page->lru, &free_pages);
1491 continue;
1492
1493 activate_locked_split:
1494 /*
1495 * The tail pages that are failed to add into swap cache
1496 * reach here. Fixup nr_scanned and nr_pages.
1497 */
1498 if (nr_pages > 1) {
1499 sc->nr_scanned -= (nr_pages - 1);
1500 nr_pages = 1;
1501 }
1502 activate_locked:
1503 /* Not a candidate for swapping, so reclaim swap space. */
1504 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1505 PageMlocked(page)))
1506 try_to_free_swap(page);
1507 VM_BUG_ON_PAGE(PageActive(page), page);
1508 if (!PageMlocked(page)) {
1509 int type = page_is_file_cache(page);
1510 SetPageActive(page);
1511 stat->nr_activate[type] += nr_pages;
1512 count_memcg_page_event(page, PGACTIVATE);
1513 }
1514 keep_locked:
1515 unlock_page(page);
1516 keep:
1517 list_add(&page->lru, &ret_pages);
1518 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1519 }
1520
1521 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1522
1523 mem_cgroup_uncharge_list(&free_pages);
1524 try_to_unmap_flush();
1525 free_unref_page_list(&free_pages);
1526
1527 list_splice(&ret_pages, page_list);
1528 count_vm_events(PGACTIVATE, pgactivate);
1529
1530 return nr_reclaimed;
1531 }
1532
1533 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1534 struct list_head *page_list)
1535 {
1536 struct scan_control sc = {
1537 .gfp_mask = GFP_KERNEL,
1538 .priority = DEF_PRIORITY,
1539 .may_unmap = 1,
1540 };
1541 struct reclaim_stat dummy_stat;
1542 unsigned long ret;
1543 struct page *page, *next;
1544 LIST_HEAD(clean_pages);
1545
1546 list_for_each_entry_safe(page, next, page_list, lru) {
1547 if (page_is_file_cache(page) && !PageDirty(page) &&
1548 !__PageMovable(page) && !PageUnevictable(page)) {
1549 ClearPageActive(page);
1550 list_move(&page->lru, &clean_pages);
1551 }
1552 }
1553
1554 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1555 TTU_IGNORE_ACCESS, &dummy_stat, true);
1556 list_splice(&clean_pages, page_list);
1557 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1558 return ret;
1559 }
1560
1561 /*
1562 * Attempt to remove the specified page from its LRU. Only take this page
1563 * if it is of the appropriate PageActive status. Pages which are being
1564 * freed elsewhere are also ignored.
1565 *
1566 * page: page to consider
1567 * mode: one of the LRU isolation modes defined above
1568 *
1569 * returns 0 on success, -ve errno on failure.
1570 */
1571 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1572 {
1573 int ret = -EINVAL;
1574
1575 /* Only take pages on the LRU. */
1576 if (!PageLRU(page))
1577 return ret;
1578
1579 /* Compaction should not handle unevictable pages but CMA can do so */
1580 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1581 return ret;
1582
1583 ret = -EBUSY;
1584
1585 /*
1586 * To minimise LRU disruption, the caller can indicate that it only
1587 * wants to isolate pages it will be able to operate on without
1588 * blocking - clean pages for the most part.
1589 *
1590 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1591 * that it is possible to migrate without blocking
1592 */
1593 if (mode & ISOLATE_ASYNC_MIGRATE) {
1594 /* All the caller can do on PageWriteback is block */
1595 if (PageWriteback(page))
1596 return ret;
1597
1598 if (PageDirty(page)) {
1599 struct address_space *mapping;
1600 bool migrate_dirty;
1601
1602 /*
1603 * Only pages without mappings or that have a
1604 * ->migratepage callback are possible to migrate
1605 * without blocking. However, we can be racing with
1606 * truncation so it's necessary to lock the page
1607 * to stabilise the mapping as truncation holds
1608 * the page lock until after the page is removed
1609 * from the page cache.
1610 */
1611 if (!trylock_page(page))
1612 return ret;
1613
1614 mapping = page_mapping(page);
1615 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1616 unlock_page(page);
1617 if (!migrate_dirty)
1618 return ret;
1619 }
1620 }
1621
1622 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1623 return ret;
1624
1625 if (likely(get_page_unless_zero(page))) {
1626 /*
1627 * Be careful not to clear PageLRU until after we're
1628 * sure the page is not being freed elsewhere -- the
1629 * page release code relies on it.
1630 */
1631 ClearPageLRU(page);
1632 ret = 0;
1633 }
1634
1635 return ret;
1636 }
1637
1638
1639 /*
1640 * Update LRU sizes after isolating pages. The LRU size updates must
1641 * be complete before mem_cgroup_update_lru_size due to a santity check.
1642 */
1643 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1644 enum lru_list lru, unsigned long *nr_zone_taken)
1645 {
1646 int zid;
1647
1648 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1649 if (!nr_zone_taken[zid])
1650 continue;
1651
1652 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1653 #ifdef CONFIG_MEMCG
1654 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1655 #endif
1656 }
1657
1658 }
1659
1660 /**
1661 * pgdat->lru_lock is heavily contended. Some of the functions that
1662 * shrink the lists perform better by taking out a batch of pages
1663 * and working on them outside the LRU lock.
1664 *
1665 * For pagecache intensive workloads, this function is the hottest
1666 * spot in the kernel (apart from copy_*_user functions).
1667 *
1668 * Appropriate locks must be held before calling this function.
1669 *
1670 * @nr_to_scan: The number of eligible pages to look through on the list.
1671 * @lruvec: The LRU vector to pull pages from.
1672 * @dst: The temp list to put pages on to.
1673 * @nr_scanned: The number of pages that were scanned.
1674 * @sc: The scan_control struct for this reclaim session
1675 * @mode: One of the LRU isolation modes
1676 * @lru: LRU list id for isolating
1677 *
1678 * returns how many pages were moved onto *@dst.
1679 */
1680 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1681 struct lruvec *lruvec, struct list_head *dst,
1682 unsigned long *nr_scanned, struct scan_control *sc,
1683 enum lru_list lru)
1684 {
1685 struct list_head *src = &lruvec->lists[lru];
1686 unsigned long nr_taken = 0;
1687 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1688 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1689 unsigned long skipped = 0;
1690 unsigned long scan, total_scan, nr_pages;
1691 LIST_HEAD(pages_skipped);
1692 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1693
1694 total_scan = 0;
1695 scan = 0;
1696 while (scan < nr_to_scan && !list_empty(src)) {
1697 struct page *page;
1698
1699 page = lru_to_page(src);
1700 prefetchw_prev_lru_page(page, src, flags);
1701
1702 VM_BUG_ON_PAGE(!PageLRU(page), page);
1703
1704 nr_pages = 1 << compound_order(page);
1705 total_scan += nr_pages;
1706
1707 if (page_zonenum(page) > sc->reclaim_idx) {
1708 list_move(&page->lru, &pages_skipped);
1709 nr_skipped[page_zonenum(page)] += nr_pages;
1710 continue;
1711 }
1712
1713 /*
1714 * Do not count skipped pages because that makes the function
1715 * return with no isolated pages if the LRU mostly contains
1716 * ineligible pages. This causes the VM to not reclaim any
1717 * pages, triggering a premature OOM.
1718 *
1719 * Account all tail pages of THP. This would not cause
1720 * premature OOM since __isolate_lru_page() returns -EBUSY
1721 * only when the page is being freed somewhere else.
1722 */
1723 scan += nr_pages;
1724 switch (__isolate_lru_page(page, mode)) {
1725 case 0:
1726 nr_taken += nr_pages;
1727 nr_zone_taken[page_zonenum(page)] += nr_pages;
1728 list_move(&page->lru, dst);
1729 break;
1730
1731 case -EBUSY:
1732 /* else it is being freed elsewhere */
1733 list_move(&page->lru, src);
1734 continue;
1735
1736 default:
1737 BUG();
1738 }
1739 }
1740
1741 /*
1742 * Splice any skipped pages to the start of the LRU list. Note that
1743 * this disrupts the LRU order when reclaiming for lower zones but
1744 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1745 * scanning would soon rescan the same pages to skip and put the
1746 * system at risk of premature OOM.
1747 */
1748 if (!list_empty(&pages_skipped)) {
1749 int zid;
1750
1751 list_splice(&pages_skipped, src);
1752 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1753 if (!nr_skipped[zid])
1754 continue;
1755
1756 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1757 skipped += nr_skipped[zid];
1758 }
1759 }
1760 *nr_scanned = total_scan;
1761 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1762 total_scan, skipped, nr_taken, mode, lru);
1763 update_lru_sizes(lruvec, lru, nr_zone_taken);
1764 return nr_taken;
1765 }
1766
1767 /**
1768 * isolate_lru_page - tries to isolate a page from its LRU list
1769 * @page: page to isolate from its LRU list
1770 *
1771 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1772 * vmstat statistic corresponding to whatever LRU list the page was on.
1773 *
1774 * Returns 0 if the page was removed from an LRU list.
1775 * Returns -EBUSY if the page was not on an LRU list.
1776 *
1777 * The returned page will have PageLRU() cleared. If it was found on
1778 * the active list, it will have PageActive set. If it was found on
1779 * the unevictable list, it will have the PageUnevictable bit set. That flag
1780 * may need to be cleared by the caller before letting the page go.
1781 *
1782 * The vmstat statistic corresponding to the list on which the page was
1783 * found will be decremented.
1784 *
1785 * Restrictions:
1786 *
1787 * (1) Must be called with an elevated refcount on the page. This is a
1788 * fundamentnal difference from isolate_lru_pages (which is called
1789 * without a stable reference).
1790 * (2) the lru_lock must not be held.
1791 * (3) interrupts must be enabled.
1792 */
1793 int isolate_lru_page(struct page *page)
1794 {
1795 int ret = -EBUSY;
1796
1797 VM_BUG_ON_PAGE(!page_count(page), page);
1798 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1799
1800 if (PageLRU(page)) {
1801 pg_data_t *pgdat = page_pgdat(page);
1802 struct lruvec *lruvec;
1803
1804 spin_lock_irq(&pgdat->lru_lock);
1805 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1806 if (PageLRU(page)) {
1807 int lru = page_lru(page);
1808 get_page(page);
1809 ClearPageLRU(page);
1810 del_page_from_lru_list(page, lruvec, lru);
1811 ret = 0;
1812 }
1813 spin_unlock_irq(&pgdat->lru_lock);
1814 }
1815 return ret;
1816 }
1817
1818 /*
1819 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1820 * then get resheduled. When there are massive number of tasks doing page
1821 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1822 * the LRU list will go small and be scanned faster than necessary, leading to
1823 * unnecessary swapping, thrashing and OOM.
1824 */
1825 static int too_many_isolated(struct pglist_data *pgdat, int file,
1826 struct scan_control *sc)
1827 {
1828 unsigned long inactive, isolated;
1829
1830 if (current_is_kswapd())
1831 return 0;
1832
1833 if (!sane_reclaim(sc))
1834 return 0;
1835
1836 if (file) {
1837 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1838 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1839 } else {
1840 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1841 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1842 }
1843
1844 /*
1845 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1846 * won't get blocked by normal direct-reclaimers, forming a circular
1847 * deadlock.
1848 */
1849 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1850 inactive >>= 3;
1851
1852 return isolated > inactive;
1853 }
1854
1855 /*
1856 * This moves pages from @list to corresponding LRU list.
1857 *
1858 * We move them the other way if the page is referenced by one or more
1859 * processes, from rmap.
1860 *
1861 * If the pages are mostly unmapped, the processing is fast and it is
1862 * appropriate to hold zone_lru_lock across the whole operation. But if
1863 * the pages are mapped, the processing is slow (page_referenced()) so we
1864 * should drop zone_lru_lock around each page. It's impossible to balance
1865 * this, so instead we remove the pages from the LRU while processing them.
1866 * It is safe to rely on PG_active against the non-LRU pages in here because
1867 * nobody will play with that bit on a non-LRU page.
1868 *
1869 * The downside is that we have to touch page->_refcount against each page.
1870 * But we had to alter page->flags anyway.
1871 *
1872 * Returns the number of pages moved to the given lruvec.
1873 */
1874
1875 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1876 struct list_head *list)
1877 {
1878 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1879 int nr_pages, nr_moved = 0;
1880 LIST_HEAD(pages_to_free);
1881 struct page *page;
1882 enum lru_list lru;
1883
1884 while (!list_empty(list)) {
1885 page = lru_to_page(list);
1886 VM_BUG_ON_PAGE(PageLRU(page), page);
1887 if (unlikely(!page_evictable(page))) {
1888 list_del(&page->lru);
1889 spin_unlock_irq(&pgdat->lru_lock);
1890 putback_lru_page(page);
1891 spin_lock_irq(&pgdat->lru_lock);
1892 continue;
1893 }
1894 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1895
1896 SetPageLRU(page);
1897 lru = page_lru(page);
1898
1899 nr_pages = hpage_nr_pages(page);
1900 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1901 list_move(&page->lru, &lruvec->lists[lru]);
1902
1903 if (put_page_testzero(page)) {
1904 __ClearPageLRU(page);
1905 __ClearPageActive(page);
1906 del_page_from_lru_list(page, lruvec, lru);
1907
1908 if (unlikely(PageCompound(page))) {
1909 spin_unlock_irq(&pgdat->lru_lock);
1910 mem_cgroup_uncharge(page);
1911 (*get_compound_page_dtor(page))(page);
1912 spin_lock_irq(&pgdat->lru_lock);
1913 } else
1914 list_add(&page->lru, &pages_to_free);
1915 } else {
1916 nr_moved += nr_pages;
1917 }
1918 }
1919
1920 /*
1921 * To save our caller's stack, now use input list for pages to free.
1922 */
1923 list_splice(&pages_to_free, list);
1924
1925 return nr_moved;
1926 }
1927
1928 /*
1929 * If a kernel thread (such as nfsd for loop-back mounts) services
1930 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1931 * In that case we should only throttle if the backing device it is
1932 * writing to is congested. In other cases it is safe to throttle.
1933 */
1934 static int current_may_throttle(void)
1935 {
1936 return !(current->flags & PF_LESS_THROTTLE) ||
1937 current->backing_dev_info == NULL ||
1938 bdi_write_congested(current->backing_dev_info);
1939 }
1940
1941 /*
1942 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1943 * of reclaimed pages
1944 */
1945 static noinline_for_stack unsigned long
1946 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1947 struct scan_control *sc, enum lru_list lru)
1948 {
1949 LIST_HEAD(page_list);
1950 unsigned long nr_scanned;
1951 unsigned long nr_reclaimed = 0;
1952 unsigned long nr_taken;
1953 struct reclaim_stat stat;
1954 int file = is_file_lru(lru);
1955 enum vm_event_item item;
1956 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1957 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1958 bool stalled = false;
1959
1960 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1961 if (stalled)
1962 return 0;
1963
1964 /* wait a bit for the reclaimer. */
1965 msleep(100);
1966 stalled = true;
1967
1968 /* We are about to die and free our memory. Return now. */
1969 if (fatal_signal_pending(current))
1970 return SWAP_CLUSTER_MAX;
1971 }
1972
1973 lru_add_drain();
1974
1975 spin_lock_irq(&pgdat->lru_lock);
1976
1977 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1978 &nr_scanned, sc, lru);
1979
1980 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1981 reclaim_stat->recent_scanned[file] += nr_taken;
1982
1983 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1984 if (global_reclaim(sc))
1985 __count_vm_events(item, nr_scanned);
1986 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1987 spin_unlock_irq(&pgdat->lru_lock);
1988
1989 if (nr_taken == 0)
1990 return 0;
1991
1992 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1993 &stat, false);
1994
1995 spin_lock_irq(&pgdat->lru_lock);
1996
1997 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1998 if (global_reclaim(sc))
1999 __count_vm_events(item, nr_reclaimed);
2000 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2001 reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
2002 reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
2003
2004 move_pages_to_lru(lruvec, &page_list);
2005
2006 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2007
2008 spin_unlock_irq(&pgdat->lru_lock);
2009
2010 mem_cgroup_uncharge_list(&page_list);
2011 free_unref_page_list(&page_list);
2012
2013 /*
2014 * If dirty pages are scanned that are not queued for IO, it
2015 * implies that flushers are not doing their job. This can
2016 * happen when memory pressure pushes dirty pages to the end of
2017 * the LRU before the dirty limits are breached and the dirty
2018 * data has expired. It can also happen when the proportion of
2019 * dirty pages grows not through writes but through memory
2020 * pressure reclaiming all the clean cache. And in some cases,
2021 * the flushers simply cannot keep up with the allocation
2022 * rate. Nudge the flusher threads in case they are asleep.
2023 */
2024 if (stat.nr_unqueued_dirty == nr_taken)
2025 wakeup_flusher_threads(WB_REASON_VMSCAN);
2026
2027 sc->nr.dirty += stat.nr_dirty;
2028 sc->nr.congested += stat.nr_congested;
2029 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2030 sc->nr.writeback += stat.nr_writeback;
2031 sc->nr.immediate += stat.nr_immediate;
2032 sc->nr.taken += nr_taken;
2033 if (file)
2034 sc->nr.file_taken += nr_taken;
2035
2036 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2037 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2038 return nr_reclaimed;
2039 }
2040
2041 static void shrink_active_list(unsigned long nr_to_scan,
2042 struct lruvec *lruvec,
2043 struct scan_control *sc,
2044 enum lru_list lru)
2045 {
2046 unsigned long nr_taken;
2047 unsigned long nr_scanned;
2048 unsigned long vm_flags;
2049 LIST_HEAD(l_hold); /* The pages which were snipped off */
2050 LIST_HEAD(l_active);
2051 LIST_HEAD(l_inactive);
2052 struct page *page;
2053 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2054 unsigned nr_deactivate, nr_activate;
2055 unsigned nr_rotated = 0;
2056 int file = is_file_lru(lru);
2057 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2058
2059 lru_add_drain();
2060
2061 spin_lock_irq(&pgdat->lru_lock);
2062
2063 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2064 &nr_scanned, sc, lru);
2065
2066 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2067 reclaim_stat->recent_scanned[file] += nr_taken;
2068
2069 __count_vm_events(PGREFILL, nr_scanned);
2070 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2071
2072 spin_unlock_irq(&pgdat->lru_lock);
2073
2074 while (!list_empty(&l_hold)) {
2075 cond_resched();
2076 page = lru_to_page(&l_hold);
2077 list_del(&page->lru);
2078
2079 if (unlikely(!page_evictable(page))) {
2080 putback_lru_page(page);
2081 continue;
2082 }
2083
2084 if (unlikely(buffer_heads_over_limit)) {
2085 if (page_has_private(page) && trylock_page(page)) {
2086 if (page_has_private(page))
2087 try_to_release_page(page, 0);
2088 unlock_page(page);
2089 }
2090 }
2091
2092 if (page_referenced(page, 0, sc->target_mem_cgroup,
2093 &vm_flags)) {
2094 nr_rotated += hpage_nr_pages(page);
2095 /*
2096 * Identify referenced, file-backed active pages and
2097 * give them one more trip around the active list. So
2098 * that executable code get better chances to stay in
2099 * memory under moderate memory pressure. Anon pages
2100 * are not likely to be evicted by use-once streaming
2101 * IO, plus JVM can create lots of anon VM_EXEC pages,
2102 * so we ignore them here.
2103 */
2104 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2105 list_add(&page->lru, &l_active);
2106 continue;
2107 }
2108 }
2109
2110 ClearPageActive(page); /* we are de-activating */
2111 SetPageWorkingset(page);
2112 list_add(&page->lru, &l_inactive);
2113 }
2114
2115 /*
2116 * Move pages back to the lru list.
2117 */
2118 spin_lock_irq(&pgdat->lru_lock);
2119 /*
2120 * Count referenced pages from currently used mappings as rotated,
2121 * even though only some of them are actually re-activated. This
2122 * helps balance scan pressure between file and anonymous pages in
2123 * get_scan_count.
2124 */
2125 reclaim_stat->recent_rotated[file] += nr_rotated;
2126
2127 nr_activate = move_pages_to_lru(lruvec, &l_active);
2128 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2129 /* Keep all free pages in l_active list */
2130 list_splice(&l_inactive, &l_active);
2131
2132 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2133 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2134
2135 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2136 spin_unlock_irq(&pgdat->lru_lock);
2137
2138 mem_cgroup_uncharge_list(&l_active);
2139 free_unref_page_list(&l_active);
2140 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2141 nr_deactivate, nr_rotated, sc->priority, file);
2142 }
2143
2144 /*
2145 * The inactive anon list should be small enough that the VM never has
2146 * to do too much work.
2147 *
2148 * The inactive file list should be small enough to leave most memory
2149 * to the established workingset on the scan-resistant active list,
2150 * but large enough to avoid thrashing the aggregate readahead window.
2151 *
2152 * Both inactive lists should also be large enough that each inactive
2153 * page has a chance to be referenced again before it is reclaimed.
2154 *
2155 * If that fails and refaulting is observed, the inactive list grows.
2156 *
2157 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2158 * on this LRU, maintained by the pageout code. An inactive_ratio
2159 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2160 *
2161 * total target max
2162 * memory ratio inactive
2163 * -------------------------------------
2164 * 10MB 1 5MB
2165 * 100MB 1 50MB
2166 * 1GB 3 250MB
2167 * 10GB 10 0.9GB
2168 * 100GB 31 3GB
2169 * 1TB 101 10GB
2170 * 10TB 320 32GB
2171 */
2172 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2173 struct scan_control *sc, bool trace)
2174 {
2175 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2176 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2177 enum lru_list inactive_lru = file * LRU_FILE;
2178 unsigned long inactive, active;
2179 unsigned long inactive_ratio;
2180 unsigned long refaults;
2181 unsigned long gb;
2182
2183 /*
2184 * If we don't have swap space, anonymous page deactivation
2185 * is pointless.
2186 */
2187 if (!file && !total_swap_pages)
2188 return false;
2189
2190 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2191 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2192
2193 /*
2194 * When refaults are being observed, it means a new workingset
2195 * is being established. Disable active list protection to get
2196 * rid of the stale workingset quickly.
2197 */
2198 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2199 if (file && lruvec->refaults != refaults) {
2200 inactive_ratio = 0;
2201 } else {
2202 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2203 if (gb)
2204 inactive_ratio = int_sqrt(10 * gb);
2205 else
2206 inactive_ratio = 1;
2207 }
2208
2209 if (trace)
2210 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2211 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2212 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2213 inactive_ratio, file);
2214
2215 return inactive * inactive_ratio < active;
2216 }
2217
2218 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2219 struct lruvec *lruvec, struct scan_control *sc)
2220 {
2221 if (is_active_lru(lru)) {
2222 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2223 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2224 return 0;
2225 }
2226
2227 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2228 }
2229
2230 enum scan_balance {
2231 SCAN_EQUAL,
2232 SCAN_FRACT,
2233 SCAN_ANON,
2234 SCAN_FILE,
2235 };
2236
2237 /*
2238 * Determine how aggressively the anon and file LRU lists should be
2239 * scanned. The relative value of each set of LRU lists is determined
2240 * by looking at the fraction of the pages scanned we did rotate back
2241 * onto the active list instead of evict.
2242 *
2243 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2244 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2245 */
2246 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2247 struct scan_control *sc, unsigned long *nr,
2248 unsigned long *lru_pages)
2249 {
2250 int swappiness = mem_cgroup_swappiness(memcg);
2251 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2252 u64 fraction[2];
2253 u64 denominator = 0; /* gcc */
2254 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2255 unsigned long anon_prio, file_prio;
2256 enum scan_balance scan_balance;
2257 unsigned long anon, file;
2258 unsigned long ap, fp;
2259 enum lru_list lru;
2260
2261 /* If we have no swap space, do not bother scanning anon pages. */
2262 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2263 scan_balance = SCAN_FILE;
2264 goto out;
2265 }
2266
2267 /*
2268 * Global reclaim will swap to prevent OOM even with no
2269 * swappiness, but memcg users want to use this knob to
2270 * disable swapping for individual groups completely when
2271 * using the memory controller's swap limit feature would be
2272 * too expensive.
2273 */
2274 if (!global_reclaim(sc) && !swappiness) {
2275 scan_balance = SCAN_FILE;
2276 goto out;
2277 }
2278
2279 /*
2280 * Do not apply any pressure balancing cleverness when the
2281 * system is close to OOM, scan both anon and file equally
2282 * (unless the swappiness setting disagrees with swapping).
2283 */
2284 if (!sc->priority && swappiness) {
2285 scan_balance = SCAN_EQUAL;
2286 goto out;
2287 }
2288
2289 /*
2290 * Prevent the reclaimer from falling into the cache trap: as
2291 * cache pages start out inactive, every cache fault will tip
2292 * the scan balance towards the file LRU. And as the file LRU
2293 * shrinks, so does the window for rotation from references.
2294 * This means we have a runaway feedback loop where a tiny
2295 * thrashing file LRU becomes infinitely more attractive than
2296 * anon pages. Try to detect this based on file LRU size.
2297 */
2298 if (global_reclaim(sc)) {
2299 unsigned long pgdatfile;
2300 unsigned long pgdatfree;
2301 int z;
2302 unsigned long total_high_wmark = 0;
2303
2304 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2305 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2306 node_page_state(pgdat, NR_INACTIVE_FILE);
2307
2308 for (z = 0; z < MAX_NR_ZONES; z++) {
2309 struct zone *zone = &pgdat->node_zones[z];
2310 if (!managed_zone(zone))
2311 continue;
2312
2313 total_high_wmark += high_wmark_pages(zone);
2314 }
2315
2316 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2317 /*
2318 * Force SCAN_ANON if there are enough inactive
2319 * anonymous pages on the LRU in eligible zones.
2320 * Otherwise, the small LRU gets thrashed.
2321 */
2322 if (!inactive_list_is_low(lruvec, false, sc, false) &&
2323 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2324 >> sc->priority) {
2325 scan_balance = SCAN_ANON;
2326 goto out;
2327 }
2328 }
2329 }
2330
2331 /*
2332 * If there is enough inactive page cache, i.e. if the size of the
2333 * inactive list is greater than that of the active list *and* the
2334 * inactive list actually has some pages to scan on this priority, we
2335 * do not reclaim anything from the anonymous working set right now.
2336 * Without the second condition we could end up never scanning an
2337 * lruvec even if it has plenty of old anonymous pages unless the
2338 * system is under heavy pressure.
2339 */
2340 if (!inactive_list_is_low(lruvec, true, sc, false) &&
2341 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2342 scan_balance = SCAN_FILE;
2343 goto out;
2344 }
2345
2346 scan_balance = SCAN_FRACT;
2347
2348 /*
2349 * With swappiness at 100, anonymous and file have the same priority.
2350 * This scanning priority is essentially the inverse of IO cost.
2351 */
2352 anon_prio = swappiness;
2353 file_prio = 200 - anon_prio;
2354
2355 /*
2356 * OK, so we have swap space and a fair amount of page cache
2357 * pages. We use the recently rotated / recently scanned
2358 * ratios to determine how valuable each cache is.
2359 *
2360 * Because workloads change over time (and to avoid overflow)
2361 * we keep these statistics as a floating average, which ends
2362 * up weighing recent references more than old ones.
2363 *
2364 * anon in [0], file in [1]
2365 */
2366
2367 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2368 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2369 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2370 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2371
2372 spin_lock_irq(&pgdat->lru_lock);
2373 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2374 reclaim_stat->recent_scanned[0] /= 2;
2375 reclaim_stat->recent_rotated[0] /= 2;
2376 }
2377
2378 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2379 reclaim_stat->recent_scanned[1] /= 2;
2380 reclaim_stat->recent_rotated[1] /= 2;
2381 }
2382
2383 /*
2384 * The amount of pressure on anon vs file pages is inversely
2385 * proportional to the fraction of recently scanned pages on
2386 * each list that were recently referenced and in active use.
2387 */
2388 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2389 ap /= reclaim_stat->recent_rotated[0] + 1;
2390
2391 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2392 fp /= reclaim_stat->recent_rotated[1] + 1;
2393 spin_unlock_irq(&pgdat->lru_lock);
2394
2395 fraction[0] = ap;
2396 fraction[1] = fp;
2397 denominator = ap + fp + 1;
2398 out:
2399 *lru_pages = 0;
2400 for_each_evictable_lru(lru) {
2401 int file = is_file_lru(lru);
2402 unsigned long size;
2403 unsigned long scan;
2404
2405 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2406 scan = size >> sc->priority;
2407 /*
2408 * If the cgroup's already been deleted, make sure to
2409 * scrape out the remaining cache.
2410 */
2411 if (!scan && !mem_cgroup_online(memcg))
2412 scan = min(size, SWAP_CLUSTER_MAX);
2413
2414 switch (scan_balance) {
2415 case SCAN_EQUAL:
2416 /* Scan lists relative to size */
2417 break;
2418 case SCAN_FRACT:
2419 /*
2420 * Scan types proportional to swappiness and
2421 * their relative recent reclaim efficiency.
2422 * Make sure we don't miss the last page
2423 * because of a round-off error.
2424 */
2425 scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2426 denominator);
2427 break;
2428 case SCAN_FILE:
2429 case SCAN_ANON:
2430 /* Scan one type exclusively */
2431 if ((scan_balance == SCAN_FILE) != file) {
2432 size = 0;
2433 scan = 0;
2434 }
2435 break;
2436 default:
2437 /* Look ma, no brain */
2438 BUG();
2439 }
2440
2441 *lru_pages += size;
2442 nr[lru] = scan;
2443 }
2444 }
2445
2446 /*
2447 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2448 */
2449 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2450 struct scan_control *sc, unsigned long *lru_pages)
2451 {
2452 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2453 unsigned long nr[NR_LRU_LISTS];
2454 unsigned long targets[NR_LRU_LISTS];
2455 unsigned long nr_to_scan;
2456 enum lru_list lru;
2457 unsigned long nr_reclaimed = 0;
2458 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2459 struct blk_plug plug;
2460 bool scan_adjusted;
2461
2462 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2463
2464 /* Record the original scan target for proportional adjustments later */
2465 memcpy(targets, nr, sizeof(nr));
2466
2467 /*
2468 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2469 * event that can occur when there is little memory pressure e.g.
2470 * multiple streaming readers/writers. Hence, we do not abort scanning
2471 * when the requested number of pages are reclaimed when scanning at
2472 * DEF_PRIORITY on the assumption that the fact we are direct
2473 * reclaiming implies that kswapd is not keeping up and it is best to
2474 * do a batch of work at once. For memcg reclaim one check is made to
2475 * abort proportional reclaim if either the file or anon lru has already
2476 * dropped to zero at the first pass.
2477 */
2478 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2479 sc->priority == DEF_PRIORITY);
2480
2481 blk_start_plug(&plug);
2482 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2483 nr[LRU_INACTIVE_FILE]) {
2484 unsigned long nr_anon, nr_file, percentage;
2485 unsigned long nr_scanned;
2486
2487 for_each_evictable_lru(lru) {
2488 if (nr[lru]) {
2489 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2490 nr[lru] -= nr_to_scan;
2491
2492 nr_reclaimed += shrink_list(lru, nr_to_scan,
2493 lruvec, sc);
2494 }
2495 }
2496
2497 cond_resched();
2498
2499 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2500 continue;
2501
2502 /*
2503 * For kswapd and memcg, reclaim at least the number of pages
2504 * requested. Ensure that the anon and file LRUs are scanned
2505 * proportionally what was requested by get_scan_count(). We
2506 * stop reclaiming one LRU and reduce the amount scanning
2507 * proportional to the original scan target.
2508 */
2509 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2510 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2511
2512 /*
2513 * It's just vindictive to attack the larger once the smaller
2514 * has gone to zero. And given the way we stop scanning the
2515 * smaller below, this makes sure that we only make one nudge
2516 * towards proportionality once we've got nr_to_reclaim.
2517 */
2518 if (!nr_file || !nr_anon)
2519 break;
2520
2521 if (nr_file > nr_anon) {
2522 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2523 targets[LRU_ACTIVE_ANON] + 1;
2524 lru = LRU_BASE;
2525 percentage = nr_anon * 100 / scan_target;
2526 } else {
2527 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2528 targets[LRU_ACTIVE_FILE] + 1;
2529 lru = LRU_FILE;
2530 percentage = nr_file * 100 / scan_target;
2531 }
2532
2533 /* Stop scanning the smaller of the LRU */
2534 nr[lru] = 0;
2535 nr[lru + LRU_ACTIVE] = 0;
2536
2537 /*
2538 * Recalculate the other LRU scan count based on its original
2539 * scan target and the percentage scanning already complete
2540 */
2541 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2542 nr_scanned = targets[lru] - nr[lru];
2543 nr[lru] = targets[lru] * (100 - percentage) / 100;
2544 nr[lru] -= min(nr[lru], nr_scanned);
2545
2546 lru += LRU_ACTIVE;
2547 nr_scanned = targets[lru] - nr[lru];
2548 nr[lru] = targets[lru] * (100 - percentage) / 100;
2549 nr[lru] -= min(nr[lru], nr_scanned);
2550
2551 scan_adjusted = true;
2552 }
2553 blk_finish_plug(&plug);
2554 sc->nr_reclaimed += nr_reclaimed;
2555
2556 /*
2557 * Even if we did not try to evict anon pages at all, we want to
2558 * rebalance the anon lru active/inactive ratio.
2559 */
2560 if (inactive_list_is_low(lruvec, false, sc, true))
2561 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2562 sc, LRU_ACTIVE_ANON);
2563 }
2564
2565 /* Use reclaim/compaction for costly allocs or under memory pressure */
2566 static bool in_reclaim_compaction(struct scan_control *sc)
2567 {
2568 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2569 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2570 sc->priority < DEF_PRIORITY - 2))
2571 return true;
2572
2573 return false;
2574 }
2575
2576 /*
2577 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2578 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2579 * true if more pages should be reclaimed such that when the page allocator
2580 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2581 * It will give up earlier than that if there is difficulty reclaiming pages.
2582 */
2583 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2584 unsigned long nr_reclaimed,
2585 unsigned long nr_scanned,
2586 struct scan_control *sc)
2587 {
2588 unsigned long pages_for_compaction;
2589 unsigned long inactive_lru_pages;
2590 int z;
2591
2592 /* If not in reclaim/compaction mode, stop */
2593 if (!in_reclaim_compaction(sc))
2594 return false;
2595
2596 /* Consider stopping depending on scan and reclaim activity */
2597 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2598 /*
2599 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2600 * full LRU list has been scanned and we are still failing
2601 * to reclaim pages. This full LRU scan is potentially
2602 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2603 */
2604 if (!nr_reclaimed && !nr_scanned)
2605 return false;
2606 } else {
2607 /*
2608 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2609 * fail without consequence, stop if we failed to reclaim
2610 * any pages from the last SWAP_CLUSTER_MAX number of
2611 * pages that were scanned. This will return to the
2612 * caller faster at the risk reclaim/compaction and
2613 * the resulting allocation attempt fails
2614 */
2615 if (!nr_reclaimed)
2616 return false;
2617 }
2618
2619 /*
2620 * If we have not reclaimed enough pages for compaction and the
2621 * inactive lists are large enough, continue reclaiming
2622 */
2623 pages_for_compaction = compact_gap(sc->order);
2624 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2625 if (get_nr_swap_pages() > 0)
2626 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2627 if (sc->nr_reclaimed < pages_for_compaction &&
2628 inactive_lru_pages > pages_for_compaction)
2629 return true;
2630
2631 /* If compaction would go ahead or the allocation would succeed, stop */
2632 for (z = 0; z <= sc->reclaim_idx; z++) {
2633 struct zone *zone = &pgdat->node_zones[z];
2634 if (!managed_zone(zone))
2635 continue;
2636
2637 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2638 case COMPACT_SUCCESS:
2639 case COMPACT_CONTINUE:
2640 return false;
2641 default:
2642 /* check next zone */
2643 ;
2644 }
2645 }
2646 return true;
2647 }
2648
2649 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2650 {
2651 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2652 (memcg && memcg_congested(pgdat, memcg));
2653 }
2654
2655 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2656 {
2657 struct reclaim_state *reclaim_state = current->reclaim_state;
2658 unsigned long nr_reclaimed, nr_scanned;
2659 bool reclaimable = false;
2660
2661 do {
2662 struct mem_cgroup *root = sc->target_mem_cgroup;
2663 struct mem_cgroup_reclaim_cookie reclaim = {
2664 .pgdat = pgdat,
2665 .priority = sc->priority,
2666 };
2667 unsigned long node_lru_pages = 0;
2668 struct mem_cgroup *memcg;
2669
2670 memset(&sc->nr, 0, sizeof(sc->nr));
2671
2672 nr_reclaimed = sc->nr_reclaimed;
2673 nr_scanned = sc->nr_scanned;
2674
2675 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2676 do {
2677 unsigned long lru_pages;
2678 unsigned long reclaimed;
2679 unsigned long scanned;
2680
2681 switch (mem_cgroup_protected(root, memcg)) {
2682 case MEMCG_PROT_MIN:
2683 /*
2684 * Hard protection.
2685 * If there is no reclaimable memory, OOM.
2686 */
2687 continue;
2688 case MEMCG_PROT_LOW:
2689 /*
2690 * Soft protection.
2691 * Respect the protection only as long as
2692 * there is an unprotected supply
2693 * of reclaimable memory from other cgroups.
2694 */
2695 if (!sc->memcg_low_reclaim) {
2696 sc->memcg_low_skipped = 1;
2697 continue;
2698 }
2699 memcg_memory_event(memcg, MEMCG_LOW);
2700 break;
2701 case MEMCG_PROT_NONE:
2702 break;
2703 }
2704
2705 reclaimed = sc->nr_reclaimed;
2706 scanned = sc->nr_scanned;
2707 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2708 node_lru_pages += lru_pages;
2709
2710 if (sc->may_shrinkslab) {
2711 shrink_slab(sc->gfp_mask, pgdat->node_id,
2712 memcg, sc->priority);
2713 }
2714
2715 /* Record the group's reclaim efficiency */
2716 vmpressure(sc->gfp_mask, memcg, false,
2717 sc->nr_scanned - scanned,
2718 sc->nr_reclaimed - reclaimed);
2719
2720 /*
2721 * Kswapd have to scan all memory cgroups to fulfill
2722 * the overall scan target for the node.
2723 *
2724 * Limit reclaim, on the other hand, only cares about
2725 * nr_to_reclaim pages to be reclaimed and it will
2726 * retry with decreasing priority if one round over the
2727 * whole hierarchy is not sufficient.
2728 */
2729 if (!current_is_kswapd() &&
2730 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2731 mem_cgroup_iter_break(root, memcg);
2732 break;
2733 }
2734 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2735
2736 if (reclaim_state) {
2737 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2738 reclaim_state->reclaimed_slab = 0;
2739 }
2740
2741 /* Record the subtree's reclaim efficiency */
2742 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2743 sc->nr_scanned - nr_scanned,
2744 sc->nr_reclaimed - nr_reclaimed);
2745
2746 if (sc->nr_reclaimed - nr_reclaimed)
2747 reclaimable = true;
2748
2749 if (current_is_kswapd()) {
2750 /*
2751 * If reclaim is isolating dirty pages under writeback,
2752 * it implies that the long-lived page allocation rate
2753 * is exceeding the page laundering rate. Either the
2754 * global limits are not being effective at throttling
2755 * processes due to the page distribution throughout
2756 * zones or there is heavy usage of a slow backing
2757 * device. The only option is to throttle from reclaim
2758 * context which is not ideal as there is no guarantee
2759 * the dirtying process is throttled in the same way
2760 * balance_dirty_pages() manages.
2761 *
2762 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2763 * count the number of pages under pages flagged for
2764 * immediate reclaim and stall if any are encountered
2765 * in the nr_immediate check below.
2766 */
2767 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2768 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2769
2770 /*
2771 * Tag a node as congested if all the dirty pages
2772 * scanned were backed by a congested BDI and
2773 * wait_iff_congested will stall.
2774 */
2775 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2776 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2777
2778 /* Allow kswapd to start writing pages during reclaim.*/
2779 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2780 set_bit(PGDAT_DIRTY, &pgdat->flags);
2781
2782 /*
2783 * If kswapd scans pages marked marked for immediate
2784 * reclaim and under writeback (nr_immediate), it
2785 * implies that pages are cycling through the LRU
2786 * faster than they are written so also forcibly stall.
2787 */
2788 if (sc->nr.immediate)
2789 congestion_wait(BLK_RW_ASYNC, HZ/10);
2790 }
2791
2792 /*
2793 * Legacy memcg will stall in page writeback so avoid forcibly
2794 * stalling in wait_iff_congested().
2795 */
2796 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2797 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2798 set_memcg_congestion(pgdat, root, true);
2799
2800 /*
2801 * Stall direct reclaim for IO completions if underlying BDIs
2802 * and node is congested. Allow kswapd to continue until it
2803 * starts encountering unqueued dirty pages or cycling through
2804 * the LRU too quickly.
2805 */
2806 if (!sc->hibernation_mode && !current_is_kswapd() &&
2807 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2808 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2809
2810 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2811 sc->nr_scanned - nr_scanned, sc));
2812
2813 /*
2814 * Kswapd gives up on balancing particular nodes after too
2815 * many failures to reclaim anything from them and goes to
2816 * sleep. On reclaim progress, reset the failure counter. A
2817 * successful direct reclaim run will revive a dormant kswapd.
2818 */
2819 if (reclaimable)
2820 pgdat->kswapd_failures = 0;
2821
2822 return reclaimable;
2823 }
2824
2825 /*
2826 * Returns true if compaction should go ahead for a costly-order request, or
2827 * the allocation would already succeed without compaction. Return false if we
2828 * should reclaim first.
2829 */
2830 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2831 {
2832 unsigned long watermark;
2833 enum compact_result suitable;
2834
2835 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2836 if (suitable == COMPACT_SUCCESS)
2837 /* Allocation should succeed already. Don't reclaim. */
2838 return true;
2839 if (suitable == COMPACT_SKIPPED)
2840 /* Compaction cannot yet proceed. Do reclaim. */
2841 return false;
2842
2843 /*
2844 * Compaction is already possible, but it takes time to run and there
2845 * are potentially other callers using the pages just freed. So proceed
2846 * with reclaim to make a buffer of free pages available to give
2847 * compaction a reasonable chance of completing and allocating the page.
2848 * Note that we won't actually reclaim the whole buffer in one attempt
2849 * as the target watermark in should_continue_reclaim() is lower. But if
2850 * we are already above the high+gap watermark, don't reclaim at all.
2851 */
2852 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2853
2854 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2855 }
2856
2857 /*
2858 * This is the direct reclaim path, for page-allocating processes. We only
2859 * try to reclaim pages from zones which will satisfy the caller's allocation
2860 * request.
2861 *
2862 * If a zone is deemed to be full of pinned pages then just give it a light
2863 * scan then give up on it.
2864 */
2865 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2866 {
2867 struct zoneref *z;
2868 struct zone *zone;
2869 unsigned long nr_soft_reclaimed;
2870 unsigned long nr_soft_scanned;
2871 gfp_t orig_mask;
2872 pg_data_t *last_pgdat = NULL;
2873
2874 /*
2875 * If the number of buffer_heads in the machine exceeds the maximum
2876 * allowed level, force direct reclaim to scan the highmem zone as
2877 * highmem pages could be pinning lowmem pages storing buffer_heads
2878 */
2879 orig_mask = sc->gfp_mask;
2880 if (buffer_heads_over_limit) {
2881 sc->gfp_mask |= __GFP_HIGHMEM;
2882 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2883 }
2884
2885 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2886 sc->reclaim_idx, sc->nodemask) {
2887 /*
2888 * Take care memory controller reclaiming has small influence
2889 * to global LRU.
2890 */
2891 if (global_reclaim(sc)) {
2892 if (!cpuset_zone_allowed(zone,
2893 GFP_KERNEL | __GFP_HARDWALL))
2894 continue;
2895
2896 /*
2897 * If we already have plenty of memory free for
2898 * compaction in this zone, don't free any more.
2899 * Even though compaction is invoked for any
2900 * non-zero order, only frequent costly order
2901 * reclamation is disruptive enough to become a
2902 * noticeable problem, like transparent huge
2903 * page allocations.
2904 */
2905 if (IS_ENABLED(CONFIG_COMPACTION) &&
2906 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2907 compaction_ready(zone, sc)) {
2908 sc->compaction_ready = true;
2909 continue;
2910 }
2911
2912 /*
2913 * Shrink each node in the zonelist once. If the
2914 * zonelist is ordered by zone (not the default) then a
2915 * node may be shrunk multiple times but in that case
2916 * the user prefers lower zones being preserved.
2917 */
2918 if (zone->zone_pgdat == last_pgdat)
2919 continue;
2920
2921 /*
2922 * This steals pages from memory cgroups over softlimit
2923 * and returns the number of reclaimed pages and
2924 * scanned pages. This works for global memory pressure
2925 * and balancing, not for a memcg's limit.
2926 */
2927 nr_soft_scanned = 0;
2928 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2929 sc->order, sc->gfp_mask,
2930 &nr_soft_scanned);
2931 sc->nr_reclaimed += nr_soft_reclaimed;
2932 sc->nr_scanned += nr_soft_scanned;
2933 /* need some check for avoid more shrink_zone() */
2934 }
2935
2936 /* See comment about same check for global reclaim above */
2937 if (zone->zone_pgdat == last_pgdat)
2938 continue;
2939 last_pgdat = zone->zone_pgdat;
2940 shrink_node(zone->zone_pgdat, sc);
2941 }
2942
2943 /*
2944 * Restore to original mask to avoid the impact on the caller if we
2945 * promoted it to __GFP_HIGHMEM.
2946 */
2947 sc->gfp_mask = orig_mask;
2948 }
2949
2950 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2951 {
2952 struct mem_cgroup *memcg;
2953
2954 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2955 do {
2956 unsigned long refaults;
2957 struct lruvec *lruvec;
2958
2959 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2960 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2961 lruvec->refaults = refaults;
2962 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2963 }
2964
2965 /*
2966 * This is the main entry point to direct page reclaim.
2967 *
2968 * If a full scan of the inactive list fails to free enough memory then we
2969 * are "out of memory" and something needs to be killed.
2970 *
2971 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2972 * high - the zone may be full of dirty or under-writeback pages, which this
2973 * caller can't do much about. We kick the writeback threads and take explicit
2974 * naps in the hope that some of these pages can be written. But if the
2975 * allocating task holds filesystem locks which prevent writeout this might not
2976 * work, and the allocation attempt will fail.
2977 *
2978 * returns: 0, if no pages reclaimed
2979 * else, the number of pages reclaimed
2980 */
2981 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2982 struct scan_control *sc)
2983 {
2984 int initial_priority = sc->priority;
2985 pg_data_t *last_pgdat;
2986 struct zoneref *z;
2987 struct zone *zone;
2988 retry:
2989 delayacct_freepages_start();
2990
2991 if (global_reclaim(sc))
2992 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2993
2994 do {
2995 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2996 sc->priority);
2997 sc->nr_scanned = 0;
2998 shrink_zones(zonelist, sc);
2999
3000 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3001 break;
3002
3003 if (sc->compaction_ready)
3004 break;
3005
3006 /*
3007 * If we're getting trouble reclaiming, start doing
3008 * writepage even in laptop mode.
3009 */
3010 if (sc->priority < DEF_PRIORITY - 2)
3011 sc->may_writepage = 1;
3012 } while (--sc->priority >= 0);
3013
3014 last_pgdat = NULL;
3015 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3016 sc->nodemask) {
3017 if (zone->zone_pgdat == last_pgdat)
3018 continue;
3019 last_pgdat = zone->zone_pgdat;
3020 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3021 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3022 }
3023
3024 delayacct_freepages_end();
3025
3026 if (sc->nr_reclaimed)
3027 return sc->nr_reclaimed;
3028
3029 /* Aborted reclaim to try compaction? don't OOM, then */
3030 if (sc->compaction_ready)
3031 return 1;
3032
3033 /* Untapped cgroup reserves? Don't OOM, retry. */
3034 if (sc->memcg_low_skipped) {
3035 sc->priority = initial_priority;
3036 sc->memcg_low_reclaim = 1;
3037 sc->memcg_low_skipped = 0;
3038 goto retry;
3039 }
3040
3041 return 0;
3042 }
3043
3044 static bool allow_direct_reclaim(pg_data_t *pgdat)
3045 {
3046 struct zone *zone;
3047 unsigned long pfmemalloc_reserve = 0;
3048 unsigned long free_pages = 0;
3049 int i;
3050 bool wmark_ok;
3051
3052 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3053 return true;
3054
3055 for (i = 0; i <= ZONE_NORMAL; i++) {
3056 zone = &pgdat->node_zones[i];
3057 if (!managed_zone(zone))
3058 continue;
3059
3060 if (!zone_reclaimable_pages(zone))
3061 continue;
3062
3063 pfmemalloc_reserve += min_wmark_pages(zone);
3064 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3065 }
3066
3067 /* If there are no reserves (unexpected config) then do not throttle */
3068 if (!pfmemalloc_reserve)
3069 return true;
3070
3071 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3072
3073 /* kswapd must be awake if processes are being throttled */
3074 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3075 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3076 (enum zone_type)ZONE_NORMAL);
3077 wake_up_interruptible(&pgdat->kswapd_wait);
3078 }
3079
3080 return wmark_ok;
3081 }
3082
3083 /*
3084 * Throttle direct reclaimers if backing storage is backed by the network
3085 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3086 * depleted. kswapd will continue to make progress and wake the processes
3087 * when the low watermark is reached.
3088 *
3089 * Returns true if a fatal signal was delivered during throttling. If this
3090 * happens, the page allocator should not consider triggering the OOM killer.
3091 */
3092 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3093 nodemask_t *nodemask)
3094 {
3095 struct zoneref *z;
3096 struct zone *zone;
3097 pg_data_t *pgdat = NULL;
3098
3099 /*
3100 * Kernel threads should not be throttled as they may be indirectly
3101 * responsible for cleaning pages necessary for reclaim to make forward
3102 * progress. kjournald for example may enter direct reclaim while
3103 * committing a transaction where throttling it could forcing other
3104 * processes to block on log_wait_commit().
3105 */
3106 if (current->flags & PF_KTHREAD)
3107 goto out;
3108
3109 /*
3110 * If a fatal signal is pending, this process should not throttle.
3111 * It should return quickly so it can exit and free its memory
3112 */
3113 if (fatal_signal_pending(current))
3114 goto out;
3115
3116 /*
3117 * Check if the pfmemalloc reserves are ok by finding the first node
3118 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3119 * GFP_KERNEL will be required for allocating network buffers when
3120 * swapping over the network so ZONE_HIGHMEM is unusable.
3121 *
3122 * Throttling is based on the first usable node and throttled processes
3123 * wait on a queue until kswapd makes progress and wakes them. There
3124 * is an affinity then between processes waking up and where reclaim
3125 * progress has been made assuming the process wakes on the same node.
3126 * More importantly, processes running on remote nodes will not compete
3127 * for remote pfmemalloc reserves and processes on different nodes
3128 * should make reasonable progress.
3129 */
3130 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3131 gfp_zone(gfp_mask), nodemask) {
3132 if (zone_idx(zone) > ZONE_NORMAL)
3133 continue;
3134
3135 /* Throttle based on the first usable node */
3136 pgdat = zone->zone_pgdat;
3137 if (allow_direct_reclaim(pgdat))
3138 goto out;
3139 break;
3140 }
3141
3142 /* If no zone was usable by the allocation flags then do not throttle */
3143 if (!pgdat)
3144 goto out;
3145
3146 /* Account for the throttling */
3147 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3148
3149 /*
3150 * If the caller cannot enter the filesystem, it's possible that it
3151 * is due to the caller holding an FS lock or performing a journal
3152 * transaction in the case of a filesystem like ext[3|4]. In this case,
3153 * it is not safe to block on pfmemalloc_wait as kswapd could be
3154 * blocked waiting on the same lock. Instead, throttle for up to a
3155 * second before continuing.
3156 */
3157 if (!(gfp_mask & __GFP_FS)) {
3158 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3159 allow_direct_reclaim(pgdat), HZ);
3160
3161 goto check_pending;
3162 }
3163
3164 /* Throttle until kswapd wakes the process */
3165 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3166 allow_direct_reclaim(pgdat));
3167
3168 check_pending:
3169 if (fatal_signal_pending(current))
3170 return true;
3171
3172 out:
3173 return false;
3174 }
3175
3176 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3177 gfp_t gfp_mask, nodemask_t *nodemask)
3178 {
3179 unsigned long nr_reclaimed;
3180 struct scan_control sc = {
3181 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3182 .gfp_mask = current_gfp_context(gfp_mask),
3183 .reclaim_idx = gfp_zone(gfp_mask),
3184 .order = order,
3185 .nodemask = nodemask,
3186 .priority = DEF_PRIORITY,
3187 .may_writepage = !laptop_mode,
3188 .may_unmap = 1,
3189 .may_swap = 1,
3190 .may_shrinkslab = 1,
3191 };
3192
3193 /*
3194 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3195 * Confirm they are large enough for max values.
3196 */
3197 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3198 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3199 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3200
3201 /*
3202 * Do not enter reclaim if fatal signal was delivered while throttled.
3203 * 1 is returned so that the page allocator does not OOM kill at this
3204 * point.
3205 */
3206 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3207 return 1;
3208
3209 set_task_reclaim_state(current, &sc.reclaim_state);
3210 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3211
3212 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3213
3214 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3215 set_task_reclaim_state(current, NULL);
3216
3217 return nr_reclaimed;
3218 }
3219
3220 #ifdef CONFIG_MEMCG
3221
3222 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3223 gfp_t gfp_mask, bool noswap,
3224 pg_data_t *pgdat,
3225 unsigned long *nr_scanned)
3226 {
3227 struct scan_control sc = {
3228 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3229 .target_mem_cgroup = memcg,
3230 .may_writepage = !laptop_mode,
3231 .may_unmap = 1,
3232 .reclaim_idx = MAX_NR_ZONES - 1,
3233 .may_swap = !noswap,
3234 .may_shrinkslab = 1,
3235 };
3236 unsigned long lru_pages;
3237
3238 set_task_reclaim_state(current, &sc.reclaim_state);
3239 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3240 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3241
3242 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3243 sc.gfp_mask);
3244
3245 /*
3246 * NOTE: Although we can get the priority field, using it
3247 * here is not a good idea, since it limits the pages we can scan.
3248 * if we don't reclaim here, the shrink_node from balance_pgdat
3249 * will pick up pages from other mem cgroup's as well. We hack
3250 * the priority and make it zero.
3251 */
3252 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3253
3254 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3255
3256 set_task_reclaim_state(current, NULL);
3257 *nr_scanned = sc.nr_scanned;
3258
3259 return sc.nr_reclaimed;
3260 }
3261
3262 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3263 unsigned long nr_pages,
3264 gfp_t gfp_mask,
3265 bool may_swap)
3266 {
3267 struct zonelist *zonelist;
3268 unsigned long nr_reclaimed;
3269 unsigned long pflags;
3270 int nid;
3271 unsigned int noreclaim_flag;
3272 struct scan_control sc = {
3273 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3274 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3275 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3276 .reclaim_idx = MAX_NR_ZONES - 1,
3277 .target_mem_cgroup = memcg,
3278 .priority = DEF_PRIORITY,
3279 .may_writepage = !laptop_mode,
3280 .may_unmap = 1,
3281 .may_swap = may_swap,
3282 .may_shrinkslab = 1,
3283 };
3284
3285 set_task_reclaim_state(current, &sc.reclaim_state);
3286 /*
3287 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3288 * take care of from where we get pages. So the node where we start the
3289 * scan does not need to be the current node.
3290 */
3291 nid = mem_cgroup_select_victim_node(memcg);
3292
3293 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3294
3295 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3296
3297 psi_memstall_enter(&pflags);
3298 noreclaim_flag = memalloc_noreclaim_save();
3299
3300 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3301
3302 memalloc_noreclaim_restore(noreclaim_flag);
3303 psi_memstall_leave(&pflags);
3304
3305 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3306 set_task_reclaim_state(current, NULL);
3307
3308 return nr_reclaimed;
3309 }
3310 #endif
3311
3312 static void age_active_anon(struct pglist_data *pgdat,
3313 struct scan_control *sc)
3314 {
3315 struct mem_cgroup *memcg;
3316
3317 if (!total_swap_pages)
3318 return;
3319
3320 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3321 do {
3322 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3323
3324 if (inactive_list_is_low(lruvec, false, sc, true))
3325 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3326 sc, LRU_ACTIVE_ANON);
3327
3328 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3329 } while (memcg);
3330 }
3331
3332 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3333 {
3334 int i;
3335 struct zone *zone;
3336
3337 /*
3338 * Check for watermark boosts top-down as the higher zones
3339 * are more likely to be boosted. Both watermarks and boosts
3340 * should not be checked at the time time as reclaim would
3341 * start prematurely when there is no boosting and a lower
3342 * zone is balanced.
3343 */
3344 for (i = classzone_idx; i >= 0; i--) {
3345 zone = pgdat->node_zones + i;
3346 if (!managed_zone(zone))
3347 continue;
3348
3349 if (zone->watermark_boost)
3350 return true;
3351 }
3352
3353 return false;
3354 }
3355
3356 /*
3357 * Returns true if there is an eligible zone balanced for the request order
3358 * and classzone_idx
3359 */
3360 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3361 {
3362 int i;
3363 unsigned long mark = -1;
3364 struct zone *zone;
3365
3366 /*
3367 * Check watermarks bottom-up as lower zones are more likely to
3368 * meet watermarks.
3369 */
3370 for (i = 0; i <= classzone_idx; i++) {
3371 zone = pgdat->node_zones + i;
3372
3373 if (!managed_zone(zone))
3374 continue;
3375
3376 mark = high_wmark_pages(zone);
3377 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3378 return true;
3379 }
3380
3381 /*
3382 * If a node has no populated zone within classzone_idx, it does not
3383 * need balancing by definition. This can happen if a zone-restricted
3384 * allocation tries to wake a remote kswapd.
3385 */
3386 if (mark == -1)
3387 return true;
3388
3389 return false;
3390 }
3391
3392 /* Clear pgdat state for congested, dirty or under writeback. */
3393 static void clear_pgdat_congested(pg_data_t *pgdat)
3394 {
3395 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3396 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3397 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3398 }
3399
3400 /*
3401 * Prepare kswapd for sleeping. This verifies that there are no processes
3402 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3403 *
3404 * Returns true if kswapd is ready to sleep
3405 */
3406 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3407 {
3408 /*
3409 * The throttled processes are normally woken up in balance_pgdat() as
3410 * soon as allow_direct_reclaim() is true. But there is a potential
3411 * race between when kswapd checks the watermarks and a process gets
3412 * throttled. There is also a potential race if processes get
3413 * throttled, kswapd wakes, a large process exits thereby balancing the
3414 * zones, which causes kswapd to exit balance_pgdat() before reaching
3415 * the wake up checks. If kswapd is going to sleep, no process should
3416 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3417 * the wake up is premature, processes will wake kswapd and get
3418 * throttled again. The difference from wake ups in balance_pgdat() is
3419 * that here we are under prepare_to_wait().
3420 */
3421 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3422 wake_up_all(&pgdat->pfmemalloc_wait);
3423
3424 /* Hopeless node, leave it to direct reclaim */
3425 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3426 return true;
3427
3428 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3429 clear_pgdat_congested(pgdat);
3430 return true;
3431 }
3432
3433 return false;
3434 }
3435
3436 /*
3437 * kswapd shrinks a node of pages that are at or below the highest usable
3438 * zone that is currently unbalanced.
3439 *
3440 * Returns true if kswapd scanned at least the requested number of pages to
3441 * reclaim or if the lack of progress was due to pages under writeback.
3442 * This is used to determine if the scanning priority needs to be raised.
3443 */
3444 static bool kswapd_shrink_node(pg_data_t *pgdat,
3445 struct scan_control *sc)
3446 {
3447 struct zone *zone;
3448 int z;
3449
3450 /* Reclaim a number of pages proportional to the number of zones */
3451 sc->nr_to_reclaim = 0;
3452 for (z = 0; z <= sc->reclaim_idx; z++) {
3453 zone = pgdat->node_zones + z;
3454 if (!managed_zone(zone))
3455 continue;
3456
3457 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3458 }
3459
3460 /*
3461 * Historically care was taken to put equal pressure on all zones but
3462 * now pressure is applied based on node LRU order.
3463 */
3464 shrink_node(pgdat, sc);
3465
3466 /*
3467 * Fragmentation may mean that the system cannot be rebalanced for
3468 * high-order allocations. If twice the allocation size has been
3469 * reclaimed then recheck watermarks only at order-0 to prevent
3470 * excessive reclaim. Assume that a process requested a high-order
3471 * can direct reclaim/compact.
3472 */
3473 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3474 sc->order = 0;
3475
3476 return sc->nr_scanned >= sc->nr_to_reclaim;
3477 }
3478
3479 /*
3480 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3481 * that are eligible for use by the caller until at least one zone is
3482 * balanced.
3483 *
3484 * Returns the order kswapd finished reclaiming at.
3485 *
3486 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3487 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3488 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3489 * or lower is eligible for reclaim until at least one usable zone is
3490 * balanced.
3491 */
3492 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3493 {
3494 int i;
3495 unsigned long nr_soft_reclaimed;
3496 unsigned long nr_soft_scanned;
3497 unsigned long pflags;
3498 unsigned long nr_boost_reclaim;
3499 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3500 bool boosted;
3501 struct zone *zone;
3502 struct scan_control sc = {
3503 .gfp_mask = GFP_KERNEL,
3504 .order = order,
3505 .may_unmap = 1,
3506 };
3507
3508 set_task_reclaim_state(current, &sc.reclaim_state);
3509 psi_memstall_enter(&pflags);
3510 __fs_reclaim_acquire();
3511
3512 count_vm_event(PAGEOUTRUN);
3513
3514 /*
3515 * Account for the reclaim boost. Note that the zone boost is left in
3516 * place so that parallel allocations that are near the watermark will
3517 * stall or direct reclaim until kswapd is finished.
3518 */
3519 nr_boost_reclaim = 0;
3520 for (i = 0; i <= classzone_idx; i++) {
3521 zone = pgdat->node_zones + i;
3522 if (!managed_zone(zone))
3523 continue;
3524
3525 nr_boost_reclaim += zone->watermark_boost;
3526 zone_boosts[i] = zone->watermark_boost;
3527 }
3528 boosted = nr_boost_reclaim;
3529
3530 restart:
3531 sc.priority = DEF_PRIORITY;
3532 do {
3533 unsigned long nr_reclaimed = sc.nr_reclaimed;
3534 bool raise_priority = true;
3535 bool balanced;
3536 bool ret;
3537
3538 sc.reclaim_idx = classzone_idx;
3539
3540 /*
3541 * If the number of buffer_heads exceeds the maximum allowed
3542 * then consider reclaiming from all zones. This has a dual
3543 * purpose -- on 64-bit systems it is expected that
3544 * buffer_heads are stripped during active rotation. On 32-bit
3545 * systems, highmem pages can pin lowmem memory and shrinking
3546 * buffers can relieve lowmem pressure. Reclaim may still not
3547 * go ahead if all eligible zones for the original allocation
3548 * request are balanced to avoid excessive reclaim from kswapd.
3549 */
3550 if (buffer_heads_over_limit) {
3551 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3552 zone = pgdat->node_zones + i;
3553 if (!managed_zone(zone))
3554 continue;
3555
3556 sc.reclaim_idx = i;
3557 break;
3558 }
3559 }
3560
3561 /*
3562 * If the pgdat is imbalanced then ignore boosting and preserve
3563 * the watermarks for a later time and restart. Note that the
3564 * zone watermarks will be still reset at the end of balancing
3565 * on the grounds that the normal reclaim should be enough to
3566 * re-evaluate if boosting is required when kswapd next wakes.
3567 */
3568 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3569 if (!balanced && nr_boost_reclaim) {
3570 nr_boost_reclaim = 0;
3571 goto restart;
3572 }
3573
3574 /*
3575 * If boosting is not active then only reclaim if there are no
3576 * eligible zones. Note that sc.reclaim_idx is not used as
3577 * buffer_heads_over_limit may have adjusted it.
3578 */
3579 if (!nr_boost_reclaim && balanced)
3580 goto out;
3581
3582 /* Limit the priority of boosting to avoid reclaim writeback */
3583 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3584 raise_priority = false;
3585
3586 /*
3587 * Do not writeback or swap pages for boosted reclaim. The
3588 * intent is to relieve pressure not issue sub-optimal IO
3589 * from reclaim context. If no pages are reclaimed, the
3590 * reclaim will be aborted.
3591 */
3592 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3593 sc.may_swap = !nr_boost_reclaim;
3594 sc.may_shrinkslab = !nr_boost_reclaim;
3595
3596 /*
3597 * Do some background aging of the anon list, to give
3598 * pages a chance to be referenced before reclaiming. All
3599 * pages are rotated regardless of classzone as this is
3600 * about consistent aging.
3601 */
3602 age_active_anon(pgdat, &sc);
3603
3604 /*
3605 * If we're getting trouble reclaiming, start doing writepage
3606 * even in laptop mode.
3607 */
3608 if (sc.priority < DEF_PRIORITY - 2)
3609 sc.may_writepage = 1;
3610
3611 /* Call soft limit reclaim before calling shrink_node. */
3612 sc.nr_scanned = 0;
3613 nr_soft_scanned = 0;
3614 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3615 sc.gfp_mask, &nr_soft_scanned);
3616 sc.nr_reclaimed += nr_soft_reclaimed;
3617
3618 /*
3619 * There should be no need to raise the scanning priority if
3620 * enough pages are already being scanned that that high
3621 * watermark would be met at 100% efficiency.
3622 */
3623 if (kswapd_shrink_node(pgdat, &sc))
3624 raise_priority = false;
3625
3626 /*
3627 * If the low watermark is met there is no need for processes
3628 * to be throttled on pfmemalloc_wait as they should not be
3629 * able to safely make forward progress. Wake them
3630 */
3631 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3632 allow_direct_reclaim(pgdat))
3633 wake_up_all(&pgdat->pfmemalloc_wait);
3634
3635 /* Check if kswapd should be suspending */
3636 __fs_reclaim_release();
3637 ret = try_to_freeze();
3638 __fs_reclaim_acquire();
3639 if (ret || kthread_should_stop())
3640 break;
3641
3642 /*
3643 * Raise priority if scanning rate is too low or there was no
3644 * progress in reclaiming pages
3645 */
3646 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3647 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3648
3649 /*
3650 * If reclaim made no progress for a boost, stop reclaim as
3651 * IO cannot be queued and it could be an infinite loop in
3652 * extreme circumstances.
3653 */
3654 if (nr_boost_reclaim && !nr_reclaimed)
3655 break;
3656
3657 if (raise_priority || !nr_reclaimed)
3658 sc.priority--;
3659 } while (sc.priority >= 1);
3660
3661 if (!sc.nr_reclaimed)
3662 pgdat->kswapd_failures++;
3663
3664 out:
3665 /* If reclaim was boosted, account for the reclaim done in this pass */
3666 if (boosted) {
3667 unsigned long flags;
3668
3669 for (i = 0; i <= classzone_idx; i++) {
3670 if (!zone_boosts[i])
3671 continue;
3672
3673 /* Increments are under the zone lock */
3674 zone = pgdat->node_zones + i;
3675 spin_lock_irqsave(&zone->lock, flags);
3676 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3677 spin_unlock_irqrestore(&zone->lock, flags);
3678 }
3679
3680 /*
3681 * As there is now likely space, wakeup kcompact to defragment
3682 * pageblocks.
3683 */
3684 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3685 }
3686
3687 snapshot_refaults(NULL, pgdat);
3688 __fs_reclaim_release();
3689 psi_memstall_leave(&pflags);
3690 set_task_reclaim_state(current, NULL);
3691
3692 /*
3693 * Return the order kswapd stopped reclaiming at as
3694 * prepare_kswapd_sleep() takes it into account. If another caller
3695 * entered the allocator slow path while kswapd was awake, order will
3696 * remain at the higher level.
3697 */
3698 return sc.order;
3699 }
3700
3701 /*
3702 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3703 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3704 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3705 * after previous reclaim attempt (node is still unbalanced). In that case
3706 * return the zone index of the previous kswapd reclaim cycle.
3707 */
3708 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3709 enum zone_type prev_classzone_idx)
3710 {
3711 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3712 return prev_classzone_idx;
3713 return pgdat->kswapd_classzone_idx;
3714 }
3715
3716 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3717 unsigned int classzone_idx)
3718 {
3719 long remaining = 0;
3720 DEFINE_WAIT(wait);
3721
3722 if (freezing(current) || kthread_should_stop())
3723 return;
3724
3725 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3726
3727 /*
3728 * Try to sleep for a short interval. Note that kcompactd will only be
3729 * woken if it is possible to sleep for a short interval. This is
3730 * deliberate on the assumption that if reclaim cannot keep an
3731 * eligible zone balanced that it's also unlikely that compaction will
3732 * succeed.
3733 */
3734 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3735 /*
3736 * Compaction records what page blocks it recently failed to
3737 * isolate pages from and skips them in the future scanning.
3738 * When kswapd is going to sleep, it is reasonable to assume
3739 * that pages and compaction may succeed so reset the cache.
3740 */
3741 reset_isolation_suitable(pgdat);
3742
3743 /*
3744 * We have freed the memory, now we should compact it to make
3745 * allocation of the requested order possible.
3746 */
3747 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3748
3749 remaining = schedule_timeout(HZ/10);
3750
3751 /*
3752 * If woken prematurely then reset kswapd_classzone_idx and
3753 * order. The values will either be from a wakeup request or
3754 * the previous request that slept prematurely.
3755 */
3756 if (remaining) {
3757 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3758 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3759 }
3760
3761 finish_wait(&pgdat->kswapd_wait, &wait);
3762 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3763 }
3764
3765 /*
3766 * After a short sleep, check if it was a premature sleep. If not, then
3767 * go fully to sleep until explicitly woken up.
3768 */
3769 if (!remaining &&
3770 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3771 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3772
3773 /*
3774 * vmstat counters are not perfectly accurate and the estimated
3775 * value for counters such as NR_FREE_PAGES can deviate from the
3776 * true value by nr_online_cpus * threshold. To avoid the zone
3777 * watermarks being breached while under pressure, we reduce the
3778 * per-cpu vmstat threshold while kswapd is awake and restore
3779 * them before going back to sleep.
3780 */
3781 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3782
3783 if (!kthread_should_stop())
3784 schedule();
3785
3786 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3787 } else {
3788 if (remaining)
3789 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3790 else
3791 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3792 }
3793 finish_wait(&pgdat->kswapd_wait, &wait);
3794 }
3795
3796 /*
3797 * The background pageout daemon, started as a kernel thread
3798 * from the init process.
3799 *
3800 * This basically trickles out pages so that we have _some_
3801 * free memory available even if there is no other activity
3802 * that frees anything up. This is needed for things like routing
3803 * etc, where we otherwise might have all activity going on in
3804 * asynchronous contexts that cannot page things out.
3805 *
3806 * If there are applications that are active memory-allocators
3807 * (most normal use), this basically shouldn't matter.
3808 */
3809 static int kswapd(void *p)
3810 {
3811 unsigned int alloc_order, reclaim_order;
3812 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3813 pg_data_t *pgdat = (pg_data_t*)p;
3814 struct task_struct *tsk = current;
3815 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3816
3817 if (!cpumask_empty(cpumask))
3818 set_cpus_allowed_ptr(tsk, cpumask);
3819
3820 /*
3821 * Tell the memory management that we're a "memory allocator",
3822 * and that if we need more memory we should get access to it
3823 * regardless (see "__alloc_pages()"). "kswapd" should
3824 * never get caught in the normal page freeing logic.
3825 *
3826 * (Kswapd normally doesn't need memory anyway, but sometimes
3827 * you need a small amount of memory in order to be able to
3828 * page out something else, and this flag essentially protects
3829 * us from recursively trying to free more memory as we're
3830 * trying to free the first piece of memory in the first place).
3831 */
3832 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3833 set_freezable();
3834
3835 pgdat->kswapd_order = 0;
3836 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3837 for ( ; ; ) {
3838 bool ret;
3839
3840 alloc_order = reclaim_order = pgdat->kswapd_order;
3841 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3842
3843 kswapd_try_sleep:
3844 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3845 classzone_idx);
3846
3847 /* Read the new order and classzone_idx */
3848 alloc_order = reclaim_order = pgdat->kswapd_order;
3849 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3850 pgdat->kswapd_order = 0;
3851 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3852
3853 ret = try_to_freeze();
3854 if (kthread_should_stop())
3855 break;
3856
3857 /*
3858 * We can speed up thawing tasks if we don't call balance_pgdat
3859 * after returning from the refrigerator
3860 */
3861 if (ret)
3862 continue;
3863
3864 /*
3865 * Reclaim begins at the requested order but if a high-order
3866 * reclaim fails then kswapd falls back to reclaiming for
3867 * order-0. If that happens, kswapd will consider sleeping
3868 * for the order it finished reclaiming at (reclaim_order)
3869 * but kcompactd is woken to compact for the original
3870 * request (alloc_order).
3871 */
3872 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3873 alloc_order);
3874 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3875 if (reclaim_order < alloc_order)
3876 goto kswapd_try_sleep;
3877 }
3878
3879 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3880
3881 return 0;
3882 }
3883
3884 /*
3885 * A zone is low on free memory or too fragmented for high-order memory. If
3886 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3887 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3888 * has failed or is not needed, still wake up kcompactd if only compaction is
3889 * needed.
3890 */
3891 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3892 enum zone_type classzone_idx)
3893 {
3894 pg_data_t *pgdat;
3895
3896 if (!managed_zone(zone))
3897 return;
3898
3899 if (!cpuset_zone_allowed(zone, gfp_flags))
3900 return;
3901 pgdat = zone->zone_pgdat;
3902
3903 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3904 pgdat->kswapd_classzone_idx = classzone_idx;
3905 else
3906 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3907 classzone_idx);
3908 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3909 if (!waitqueue_active(&pgdat->kswapd_wait))
3910 return;
3911
3912 /* Hopeless node, leave it to direct reclaim if possible */
3913 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3914 (pgdat_balanced(pgdat, order, classzone_idx) &&
3915 !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3916 /*
3917 * There may be plenty of free memory available, but it's too
3918 * fragmented for high-order allocations. Wake up kcompactd
3919 * and rely on compaction_suitable() to determine if it's
3920 * needed. If it fails, it will defer subsequent attempts to
3921 * ratelimit its work.
3922 */
3923 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3924 wakeup_kcompactd(pgdat, order, classzone_idx);
3925 return;
3926 }
3927
3928 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3929 gfp_flags);
3930 wake_up_interruptible(&pgdat->kswapd_wait);
3931 }
3932
3933 #ifdef CONFIG_HIBERNATION
3934 /*
3935 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3936 * freed pages.
3937 *
3938 * Rather than trying to age LRUs the aim is to preserve the overall
3939 * LRU order by reclaiming preferentially
3940 * inactive > active > active referenced > active mapped
3941 */
3942 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3943 {
3944 struct scan_control sc = {
3945 .nr_to_reclaim = nr_to_reclaim,
3946 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3947 .reclaim_idx = MAX_NR_ZONES - 1,
3948 .priority = DEF_PRIORITY,
3949 .may_writepage = 1,
3950 .may_unmap = 1,
3951 .may_swap = 1,
3952 .hibernation_mode = 1,
3953 };
3954 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3955 unsigned long nr_reclaimed;
3956 unsigned int noreclaim_flag;
3957
3958 fs_reclaim_acquire(sc.gfp_mask);
3959 noreclaim_flag = memalloc_noreclaim_save();
3960 set_task_reclaim_state(current, &sc.reclaim_state);
3961
3962 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3963
3964 set_task_reclaim_state(current, NULL);
3965 memalloc_noreclaim_restore(noreclaim_flag);
3966 fs_reclaim_release(sc.gfp_mask);
3967
3968 return nr_reclaimed;
3969 }
3970 #endif /* CONFIG_HIBERNATION */
3971
3972 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3973 not required for correctness. So if the last cpu in a node goes
3974 away, we get changed to run anywhere: as the first one comes back,
3975 restore their cpu bindings. */
3976 static int kswapd_cpu_online(unsigned int cpu)
3977 {
3978 int nid;
3979
3980 for_each_node_state(nid, N_MEMORY) {
3981 pg_data_t *pgdat = NODE_DATA(nid);
3982 const struct cpumask *mask;
3983
3984 mask = cpumask_of_node(pgdat->node_id);
3985
3986 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3987 /* One of our CPUs online: restore mask */
3988 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3989 }
3990 return 0;
3991 }
3992
3993 /*
3994 * This kswapd start function will be called by init and node-hot-add.
3995 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3996 */
3997 int kswapd_run(int nid)
3998 {
3999 pg_data_t *pgdat = NODE_DATA(nid);
4000 int ret = 0;
4001
4002 if (pgdat->kswapd)
4003 return 0;
4004
4005 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4006 if (IS_ERR(pgdat->kswapd)) {
4007 /* failure at boot is fatal */
4008 BUG_ON(system_state < SYSTEM_RUNNING);
4009 pr_err("Failed to start kswapd on node %d\n", nid);
4010 ret = PTR_ERR(pgdat->kswapd);
4011 pgdat->kswapd = NULL;
4012 }
4013 return ret;
4014 }
4015
4016 /*
4017 * Called by memory hotplug when all memory in a node is offlined. Caller must
4018 * hold mem_hotplug_begin/end().
4019 */
4020 void kswapd_stop(int nid)
4021 {
4022 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4023
4024 if (kswapd) {
4025 kthread_stop(kswapd);
4026 NODE_DATA(nid)->kswapd = NULL;
4027 }
4028 }
4029
4030 static int __init kswapd_init(void)
4031 {
4032 int nid, ret;
4033
4034 swap_setup();
4035 for_each_node_state(nid, N_MEMORY)
4036 kswapd_run(nid);
4037 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4038 "mm/vmscan:online", kswapd_cpu_online,
4039 NULL);
4040 WARN_ON(ret < 0);
4041 return 0;
4042 }
4043
4044 module_init(kswapd_init)
4045
4046 #ifdef CONFIG_NUMA
4047 /*
4048 * Node reclaim mode
4049 *
4050 * If non-zero call node_reclaim when the number of free pages falls below
4051 * the watermarks.
4052 */
4053 int node_reclaim_mode __read_mostly;
4054
4055 #define RECLAIM_OFF 0
4056 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
4057 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
4058 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
4059
4060 /*
4061 * Priority for NODE_RECLAIM. This determines the fraction of pages
4062 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4063 * a zone.
4064 */
4065 #define NODE_RECLAIM_PRIORITY 4
4066
4067 /*
4068 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4069 * occur.
4070 */
4071 int sysctl_min_unmapped_ratio = 1;
4072
4073 /*
4074 * If the number of slab pages in a zone grows beyond this percentage then
4075 * slab reclaim needs to occur.
4076 */
4077 int sysctl_min_slab_ratio = 5;
4078
4079 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4080 {
4081 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4082 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4083 node_page_state(pgdat, NR_ACTIVE_FILE);
4084
4085 /*
4086 * It's possible for there to be more file mapped pages than
4087 * accounted for by the pages on the file LRU lists because
4088 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4089 */
4090 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4091 }
4092
4093 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4094 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4095 {
4096 unsigned long nr_pagecache_reclaimable;
4097 unsigned long delta = 0;
4098
4099 /*
4100 * If RECLAIM_UNMAP is set, then all file pages are considered
4101 * potentially reclaimable. Otherwise, we have to worry about
4102 * pages like swapcache and node_unmapped_file_pages() provides
4103 * a better estimate
4104 */
4105 if (node_reclaim_mode & RECLAIM_UNMAP)
4106 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4107 else
4108 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4109
4110 /* If we can't clean pages, remove dirty pages from consideration */
4111 if (!(node_reclaim_mode & RECLAIM_WRITE))
4112 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4113
4114 /* Watch for any possible underflows due to delta */
4115 if (unlikely(delta > nr_pagecache_reclaimable))
4116 delta = nr_pagecache_reclaimable;
4117
4118 return nr_pagecache_reclaimable - delta;
4119 }
4120
4121 /*
4122 * Try to free up some pages from this node through reclaim.
4123 */
4124 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4125 {
4126 /* Minimum pages needed in order to stay on node */
4127 const unsigned long nr_pages = 1 << order;
4128 struct task_struct *p = current;
4129 unsigned int noreclaim_flag;
4130 struct scan_control sc = {
4131 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4132 .gfp_mask = current_gfp_context(gfp_mask),
4133 .order = order,
4134 .priority = NODE_RECLAIM_PRIORITY,
4135 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4136 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4137 .may_swap = 1,
4138 .reclaim_idx = gfp_zone(gfp_mask),
4139 };
4140
4141 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4142 sc.gfp_mask);
4143
4144 cond_resched();
4145 fs_reclaim_acquire(sc.gfp_mask);
4146 /*
4147 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4148 * and we also need to be able to write out pages for RECLAIM_WRITE
4149 * and RECLAIM_UNMAP.
4150 */
4151 noreclaim_flag = memalloc_noreclaim_save();
4152 p->flags |= PF_SWAPWRITE;
4153 set_task_reclaim_state(p, &sc.reclaim_state);
4154
4155 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4156 /*
4157 * Free memory by calling shrink node with increasing
4158 * priorities until we have enough memory freed.
4159 */
4160 do {
4161 shrink_node(pgdat, &sc);
4162 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4163 }
4164
4165 set_task_reclaim_state(p, NULL);
4166 current->flags &= ~PF_SWAPWRITE;
4167 memalloc_noreclaim_restore(noreclaim_flag);
4168 fs_reclaim_release(sc.gfp_mask);
4169
4170 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4171
4172 return sc.nr_reclaimed >= nr_pages;
4173 }
4174
4175 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4176 {
4177 int ret;
4178
4179 /*
4180 * Node reclaim reclaims unmapped file backed pages and
4181 * slab pages if we are over the defined limits.
4182 *
4183 * A small portion of unmapped file backed pages is needed for
4184 * file I/O otherwise pages read by file I/O will be immediately
4185 * thrown out if the node is overallocated. So we do not reclaim
4186 * if less than a specified percentage of the node is used by
4187 * unmapped file backed pages.
4188 */
4189 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4190 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4191 return NODE_RECLAIM_FULL;
4192
4193 /*
4194 * Do not scan if the allocation should not be delayed.
4195 */
4196 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4197 return NODE_RECLAIM_NOSCAN;
4198
4199 /*
4200 * Only run node reclaim on the local node or on nodes that do not
4201 * have associated processors. This will favor the local processor
4202 * over remote processors and spread off node memory allocations
4203 * as wide as possible.
4204 */
4205 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4206 return NODE_RECLAIM_NOSCAN;
4207
4208 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4209 return NODE_RECLAIM_NOSCAN;
4210
4211 ret = __node_reclaim(pgdat, gfp_mask, order);
4212 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4213
4214 if (!ret)
4215 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4216
4217 return ret;
4218 }
4219 #endif
4220
4221 /*
4222 * page_evictable - test whether a page is evictable
4223 * @page: the page to test
4224 *
4225 * Test whether page is evictable--i.e., should be placed on active/inactive
4226 * lists vs unevictable list.
4227 *
4228 * Reasons page might not be evictable:
4229 * (1) page's mapping marked unevictable
4230 * (2) page is part of an mlocked VMA
4231 *
4232 */
4233 int page_evictable(struct page *page)
4234 {
4235 int ret;
4236
4237 /* Prevent address_space of inode and swap cache from being freed */
4238 rcu_read_lock();
4239 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4240 rcu_read_unlock();
4241 return ret;
4242 }
4243
4244 /**
4245 * check_move_unevictable_pages - check pages for evictability and move to
4246 * appropriate zone lru list
4247 * @pvec: pagevec with lru pages to check
4248 *
4249 * Checks pages for evictability, if an evictable page is in the unevictable
4250 * lru list, moves it to the appropriate evictable lru list. This function
4251 * should be only used for lru pages.
4252 */
4253 void check_move_unevictable_pages(struct pagevec *pvec)
4254 {
4255 struct lruvec *lruvec;
4256 struct pglist_data *pgdat = NULL;
4257 int pgscanned = 0;
4258 int pgrescued = 0;
4259 int i;
4260
4261 for (i = 0; i < pvec->nr; i++) {
4262 struct page *page = pvec->pages[i];
4263 struct pglist_data *pagepgdat = page_pgdat(page);
4264
4265 pgscanned++;
4266 if (pagepgdat != pgdat) {
4267 if (pgdat)
4268 spin_unlock_irq(&pgdat->lru_lock);
4269 pgdat = pagepgdat;
4270 spin_lock_irq(&pgdat->lru_lock);
4271 }
4272 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4273
4274 if (!PageLRU(page) || !PageUnevictable(page))
4275 continue;
4276
4277 if (page_evictable(page)) {
4278 enum lru_list lru = page_lru_base_type(page);
4279
4280 VM_BUG_ON_PAGE(PageActive(page), page);
4281 ClearPageUnevictable(page);
4282 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4283 add_page_to_lru_list(page, lruvec, lru);
4284 pgrescued++;
4285 }
4286 }
4287
4288 if (pgdat) {
4289 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4290 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4291 spin_unlock_irq(&pgdat->lru_lock);
4292 }
4293 }
4294 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);