]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/vmscan.c
dt-bindings: i2c: renesas,riic: Add interrupt-names
[mirror_ubuntu-jammy-kernel.git] / mm / vmscan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
58
59 #include "internal.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
63
64 struct scan_control {
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
68 /*
69 * Nodemask of nodes allowed by the caller. If NULL, all nodes
70 * are scanned.
71 */
72 nodemask_t *nodemask;
73
74 /*
75 * The memory cgroup that hit its limit and as a result is the
76 * primary target of this reclaim invocation.
77 */
78 struct mem_cgroup *target_mem_cgroup;
79
80 /*
81 * Scan pressure balancing between anon and file LRUs
82 */
83 unsigned long anon_cost;
84 unsigned long file_cost;
85
86 /* Can active pages be deactivated as part of reclaim? */
87 #define DEACTIVATE_ANON 1
88 #define DEACTIVATE_FILE 2
89 unsigned int may_deactivate:2;
90 unsigned int force_deactivate:1;
91 unsigned int skipped_deactivate:1;
92
93 /* Writepage batching in laptop mode; RECLAIM_WRITE */
94 unsigned int may_writepage:1;
95
96 /* Can mapped pages be reclaimed? */
97 unsigned int may_unmap:1;
98
99 /* Can pages be swapped as part of reclaim? */
100 unsigned int may_swap:1;
101
102 /*
103 * Cgroups are not reclaimed below their configured memory.low,
104 * unless we threaten to OOM. If any cgroups are skipped due to
105 * memory.low and nothing was reclaimed, go back for memory.low.
106 */
107 unsigned int memcg_low_reclaim:1;
108 unsigned int memcg_low_skipped:1;
109
110 unsigned int hibernation_mode:1;
111
112 /* One of the zones is ready for compaction */
113 unsigned int compaction_ready:1;
114
115 /* There is easily reclaimable cold cache in the current node */
116 unsigned int cache_trim_mode:1;
117
118 /* The file pages on the current node are dangerously low */
119 unsigned int file_is_tiny:1;
120
121 /* Allocation order */
122 s8 order;
123
124 /* Scan (total_size >> priority) pages at once */
125 s8 priority;
126
127 /* The highest zone to isolate pages for reclaim from */
128 s8 reclaim_idx;
129
130 /* This context's GFP mask */
131 gfp_t gfp_mask;
132
133 /* Incremented by the number of inactive pages that were scanned */
134 unsigned long nr_scanned;
135
136 /* Number of pages freed so far during a call to shrink_zones() */
137 unsigned long nr_reclaimed;
138
139 struct {
140 unsigned int dirty;
141 unsigned int unqueued_dirty;
142 unsigned int congested;
143 unsigned int writeback;
144 unsigned int immediate;
145 unsigned int file_taken;
146 unsigned int taken;
147 } nr;
148
149 /* for recording the reclaimed slab by now */
150 struct reclaim_state reclaim_state;
151 };
152
153 #ifdef ARCH_HAS_PREFETCHW
154 #define prefetchw_prev_lru_page(_page, _base, _field) \
155 do { \
156 if ((_page)->lru.prev != _base) { \
157 struct page *prev; \
158 \
159 prev = lru_to_page(&(_page->lru)); \
160 prefetchw(&prev->_field); \
161 } \
162 } while (0)
163 #else
164 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
165 #endif
166
167 /*
168 * From 0 .. 200. Higher means more swappy.
169 */
170 int vm_swappiness = 60;
171
172 static void set_task_reclaim_state(struct task_struct *task,
173 struct reclaim_state *rs)
174 {
175 /* Check for an overwrite */
176 WARN_ON_ONCE(rs && task->reclaim_state);
177
178 /* Check for the nulling of an already-nulled member */
179 WARN_ON_ONCE(!rs && !task->reclaim_state);
180
181 task->reclaim_state = rs;
182 }
183
184 static LIST_HEAD(shrinker_list);
185 static DECLARE_RWSEM(shrinker_rwsem);
186
187 #ifdef CONFIG_MEMCG
188 static int shrinker_nr_max;
189
190 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
191 static inline int shrinker_map_size(int nr_items)
192 {
193 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
194 }
195
196 static inline int shrinker_defer_size(int nr_items)
197 {
198 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
199 }
200
201 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
202 int nid)
203 {
204 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
205 lockdep_is_held(&shrinker_rwsem));
206 }
207
208 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
209 int map_size, int defer_size,
210 int old_map_size, int old_defer_size)
211 {
212 struct shrinker_info *new, *old;
213 struct mem_cgroup_per_node *pn;
214 int nid;
215 int size = map_size + defer_size;
216
217 for_each_node(nid) {
218 pn = memcg->nodeinfo[nid];
219 old = shrinker_info_protected(memcg, nid);
220 /* Not yet online memcg */
221 if (!old)
222 return 0;
223
224 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
225 if (!new)
226 return -ENOMEM;
227
228 new->nr_deferred = (atomic_long_t *)(new + 1);
229 new->map = (void *)new->nr_deferred + defer_size;
230
231 /* map: set all old bits, clear all new bits */
232 memset(new->map, (int)0xff, old_map_size);
233 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
234 /* nr_deferred: copy old values, clear all new values */
235 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
236 memset((void *)new->nr_deferred + old_defer_size, 0,
237 defer_size - old_defer_size);
238
239 rcu_assign_pointer(pn->shrinker_info, new);
240 kvfree_rcu(old, rcu);
241 }
242
243 return 0;
244 }
245
246 void free_shrinker_info(struct mem_cgroup *memcg)
247 {
248 struct mem_cgroup_per_node *pn;
249 struct shrinker_info *info;
250 int nid;
251
252 for_each_node(nid) {
253 pn = memcg->nodeinfo[nid];
254 info = rcu_dereference_protected(pn->shrinker_info, true);
255 kvfree(info);
256 rcu_assign_pointer(pn->shrinker_info, NULL);
257 }
258 }
259
260 int alloc_shrinker_info(struct mem_cgroup *memcg)
261 {
262 struct shrinker_info *info;
263 int nid, size, ret = 0;
264 int map_size, defer_size = 0;
265
266 down_write(&shrinker_rwsem);
267 map_size = shrinker_map_size(shrinker_nr_max);
268 defer_size = shrinker_defer_size(shrinker_nr_max);
269 size = map_size + defer_size;
270 for_each_node(nid) {
271 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
272 if (!info) {
273 free_shrinker_info(memcg);
274 ret = -ENOMEM;
275 break;
276 }
277 info->nr_deferred = (atomic_long_t *)(info + 1);
278 info->map = (void *)info->nr_deferred + defer_size;
279 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
280 }
281 up_write(&shrinker_rwsem);
282
283 return ret;
284 }
285
286 static inline bool need_expand(int nr_max)
287 {
288 return round_up(nr_max, BITS_PER_LONG) >
289 round_up(shrinker_nr_max, BITS_PER_LONG);
290 }
291
292 static int expand_shrinker_info(int new_id)
293 {
294 int ret = 0;
295 int new_nr_max = new_id + 1;
296 int map_size, defer_size = 0;
297 int old_map_size, old_defer_size = 0;
298 struct mem_cgroup *memcg;
299
300 if (!need_expand(new_nr_max))
301 goto out;
302
303 if (!root_mem_cgroup)
304 goto out;
305
306 lockdep_assert_held(&shrinker_rwsem);
307
308 map_size = shrinker_map_size(new_nr_max);
309 defer_size = shrinker_defer_size(new_nr_max);
310 old_map_size = shrinker_map_size(shrinker_nr_max);
311 old_defer_size = shrinker_defer_size(shrinker_nr_max);
312
313 memcg = mem_cgroup_iter(NULL, NULL, NULL);
314 do {
315 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
316 old_map_size, old_defer_size);
317 if (ret) {
318 mem_cgroup_iter_break(NULL, memcg);
319 goto out;
320 }
321 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
322 out:
323 if (!ret)
324 shrinker_nr_max = new_nr_max;
325
326 return ret;
327 }
328
329 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
330 {
331 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
332 struct shrinker_info *info;
333
334 rcu_read_lock();
335 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
336 /* Pairs with smp mb in shrink_slab() */
337 smp_mb__before_atomic();
338 set_bit(shrinker_id, info->map);
339 rcu_read_unlock();
340 }
341 }
342
343 static DEFINE_IDR(shrinker_idr);
344
345 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
346 {
347 int id, ret = -ENOMEM;
348
349 if (mem_cgroup_disabled())
350 return -ENOSYS;
351
352 down_write(&shrinker_rwsem);
353 /* This may call shrinker, so it must use down_read_trylock() */
354 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
355 if (id < 0)
356 goto unlock;
357
358 if (id >= shrinker_nr_max) {
359 if (expand_shrinker_info(id)) {
360 idr_remove(&shrinker_idr, id);
361 goto unlock;
362 }
363 }
364 shrinker->id = id;
365 ret = 0;
366 unlock:
367 up_write(&shrinker_rwsem);
368 return ret;
369 }
370
371 static void unregister_memcg_shrinker(struct shrinker *shrinker)
372 {
373 int id = shrinker->id;
374
375 BUG_ON(id < 0);
376
377 lockdep_assert_held(&shrinker_rwsem);
378
379 idr_remove(&shrinker_idr, id);
380 }
381
382 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
383 struct mem_cgroup *memcg)
384 {
385 struct shrinker_info *info;
386
387 info = shrinker_info_protected(memcg, nid);
388 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
389 }
390
391 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
392 struct mem_cgroup *memcg)
393 {
394 struct shrinker_info *info;
395
396 info = shrinker_info_protected(memcg, nid);
397 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
398 }
399
400 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
401 {
402 int i, nid;
403 long nr;
404 struct mem_cgroup *parent;
405 struct shrinker_info *child_info, *parent_info;
406
407 parent = parent_mem_cgroup(memcg);
408 if (!parent)
409 parent = root_mem_cgroup;
410
411 /* Prevent from concurrent shrinker_info expand */
412 down_read(&shrinker_rwsem);
413 for_each_node(nid) {
414 child_info = shrinker_info_protected(memcg, nid);
415 parent_info = shrinker_info_protected(parent, nid);
416 for (i = 0; i < shrinker_nr_max; i++) {
417 nr = atomic_long_read(&child_info->nr_deferred[i]);
418 atomic_long_add(nr, &parent_info->nr_deferred[i]);
419 }
420 }
421 up_read(&shrinker_rwsem);
422 }
423
424 static bool cgroup_reclaim(struct scan_control *sc)
425 {
426 return sc->target_mem_cgroup;
427 }
428
429 /**
430 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
431 * @sc: scan_control in question
432 *
433 * The normal page dirty throttling mechanism in balance_dirty_pages() is
434 * completely broken with the legacy memcg and direct stalling in
435 * shrink_page_list() is used for throttling instead, which lacks all the
436 * niceties such as fairness, adaptive pausing, bandwidth proportional
437 * allocation and configurability.
438 *
439 * This function tests whether the vmscan currently in progress can assume
440 * that the normal dirty throttling mechanism is operational.
441 */
442 static bool writeback_throttling_sane(struct scan_control *sc)
443 {
444 if (!cgroup_reclaim(sc))
445 return true;
446 #ifdef CONFIG_CGROUP_WRITEBACK
447 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
448 return true;
449 #endif
450 return false;
451 }
452 #else
453 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
454 {
455 return -ENOSYS;
456 }
457
458 static void unregister_memcg_shrinker(struct shrinker *shrinker)
459 {
460 }
461
462 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
463 struct mem_cgroup *memcg)
464 {
465 return 0;
466 }
467
468 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
469 struct mem_cgroup *memcg)
470 {
471 return 0;
472 }
473
474 static bool cgroup_reclaim(struct scan_control *sc)
475 {
476 return false;
477 }
478
479 static bool writeback_throttling_sane(struct scan_control *sc)
480 {
481 return true;
482 }
483 #endif
484
485 static long xchg_nr_deferred(struct shrinker *shrinker,
486 struct shrink_control *sc)
487 {
488 int nid = sc->nid;
489
490 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
491 nid = 0;
492
493 if (sc->memcg &&
494 (shrinker->flags & SHRINKER_MEMCG_AWARE))
495 return xchg_nr_deferred_memcg(nid, shrinker,
496 sc->memcg);
497
498 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
499 }
500
501
502 static long add_nr_deferred(long nr, struct shrinker *shrinker,
503 struct shrink_control *sc)
504 {
505 int nid = sc->nid;
506
507 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
508 nid = 0;
509
510 if (sc->memcg &&
511 (shrinker->flags & SHRINKER_MEMCG_AWARE))
512 return add_nr_deferred_memcg(nr, nid, shrinker,
513 sc->memcg);
514
515 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
516 }
517
518 /*
519 * This misses isolated pages which are not accounted for to save counters.
520 * As the data only determines if reclaim or compaction continues, it is
521 * not expected that isolated pages will be a dominating factor.
522 */
523 unsigned long zone_reclaimable_pages(struct zone *zone)
524 {
525 unsigned long nr;
526
527 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
528 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
529 if (get_nr_swap_pages() > 0)
530 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
531 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
532
533 return nr;
534 }
535
536 /**
537 * lruvec_lru_size - Returns the number of pages on the given LRU list.
538 * @lruvec: lru vector
539 * @lru: lru to use
540 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
541 */
542 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
543 int zone_idx)
544 {
545 unsigned long size = 0;
546 int zid;
547
548 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
549 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
550
551 if (!managed_zone(zone))
552 continue;
553
554 if (!mem_cgroup_disabled())
555 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
556 else
557 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
558 }
559 return size;
560 }
561
562 /*
563 * Add a shrinker callback to be called from the vm.
564 */
565 int prealloc_shrinker(struct shrinker *shrinker)
566 {
567 unsigned int size;
568 int err;
569
570 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
571 err = prealloc_memcg_shrinker(shrinker);
572 if (err != -ENOSYS)
573 return err;
574
575 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
576 }
577
578 size = sizeof(*shrinker->nr_deferred);
579 if (shrinker->flags & SHRINKER_NUMA_AWARE)
580 size *= nr_node_ids;
581
582 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
583 if (!shrinker->nr_deferred)
584 return -ENOMEM;
585
586 return 0;
587 }
588
589 void free_prealloced_shrinker(struct shrinker *shrinker)
590 {
591 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
592 down_write(&shrinker_rwsem);
593 unregister_memcg_shrinker(shrinker);
594 up_write(&shrinker_rwsem);
595 return;
596 }
597
598 kfree(shrinker->nr_deferred);
599 shrinker->nr_deferred = NULL;
600 }
601
602 void register_shrinker_prepared(struct shrinker *shrinker)
603 {
604 down_write(&shrinker_rwsem);
605 list_add_tail(&shrinker->list, &shrinker_list);
606 shrinker->flags |= SHRINKER_REGISTERED;
607 up_write(&shrinker_rwsem);
608 }
609
610 int register_shrinker(struct shrinker *shrinker)
611 {
612 int err = prealloc_shrinker(shrinker);
613
614 if (err)
615 return err;
616 register_shrinker_prepared(shrinker);
617 return 0;
618 }
619 EXPORT_SYMBOL(register_shrinker);
620
621 /*
622 * Remove one
623 */
624 void unregister_shrinker(struct shrinker *shrinker)
625 {
626 if (!(shrinker->flags & SHRINKER_REGISTERED))
627 return;
628
629 down_write(&shrinker_rwsem);
630 list_del(&shrinker->list);
631 shrinker->flags &= ~SHRINKER_REGISTERED;
632 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
633 unregister_memcg_shrinker(shrinker);
634 up_write(&shrinker_rwsem);
635
636 kfree(shrinker->nr_deferred);
637 shrinker->nr_deferred = NULL;
638 }
639 EXPORT_SYMBOL(unregister_shrinker);
640
641 #define SHRINK_BATCH 128
642
643 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
644 struct shrinker *shrinker, int priority)
645 {
646 unsigned long freed = 0;
647 unsigned long long delta;
648 long total_scan;
649 long freeable;
650 long nr;
651 long new_nr;
652 long batch_size = shrinker->batch ? shrinker->batch
653 : SHRINK_BATCH;
654 long scanned = 0, next_deferred;
655
656 freeable = shrinker->count_objects(shrinker, shrinkctl);
657 if (freeable == 0 || freeable == SHRINK_EMPTY)
658 return freeable;
659
660 /*
661 * copy the current shrinker scan count into a local variable
662 * and zero it so that other concurrent shrinker invocations
663 * don't also do this scanning work.
664 */
665 nr = xchg_nr_deferred(shrinker, shrinkctl);
666
667 if (shrinker->seeks) {
668 delta = freeable >> priority;
669 delta *= 4;
670 do_div(delta, shrinker->seeks);
671 } else {
672 /*
673 * These objects don't require any IO to create. Trim
674 * them aggressively under memory pressure to keep
675 * them from causing refetches in the IO caches.
676 */
677 delta = freeable / 2;
678 }
679
680 total_scan = nr >> priority;
681 total_scan += delta;
682 total_scan = min(total_scan, (2 * freeable));
683
684 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
685 freeable, delta, total_scan, priority);
686
687 /*
688 * Normally, we should not scan less than batch_size objects in one
689 * pass to avoid too frequent shrinker calls, but if the slab has less
690 * than batch_size objects in total and we are really tight on memory,
691 * we will try to reclaim all available objects, otherwise we can end
692 * up failing allocations although there are plenty of reclaimable
693 * objects spread over several slabs with usage less than the
694 * batch_size.
695 *
696 * We detect the "tight on memory" situations by looking at the total
697 * number of objects we want to scan (total_scan). If it is greater
698 * than the total number of objects on slab (freeable), we must be
699 * scanning at high prio and therefore should try to reclaim as much as
700 * possible.
701 */
702 while (total_scan >= batch_size ||
703 total_scan >= freeable) {
704 unsigned long ret;
705 unsigned long nr_to_scan = min(batch_size, total_scan);
706
707 shrinkctl->nr_to_scan = nr_to_scan;
708 shrinkctl->nr_scanned = nr_to_scan;
709 ret = shrinker->scan_objects(shrinker, shrinkctl);
710 if (ret == SHRINK_STOP)
711 break;
712 freed += ret;
713
714 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
715 total_scan -= shrinkctl->nr_scanned;
716 scanned += shrinkctl->nr_scanned;
717
718 cond_resched();
719 }
720
721 /*
722 * The deferred work is increased by any new work (delta) that wasn't
723 * done, decreased by old deferred work that was done now.
724 *
725 * And it is capped to two times of the freeable items.
726 */
727 next_deferred = max_t(long, (nr + delta - scanned), 0);
728 next_deferred = min(next_deferred, (2 * freeable));
729
730 /*
731 * move the unused scan count back into the shrinker in a
732 * manner that handles concurrent updates.
733 */
734 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
735
736 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
737 return freed;
738 }
739
740 #ifdef CONFIG_MEMCG
741 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
742 struct mem_cgroup *memcg, int priority)
743 {
744 struct shrinker_info *info;
745 unsigned long ret, freed = 0;
746 int i;
747
748 if (!mem_cgroup_online(memcg))
749 return 0;
750
751 if (!down_read_trylock(&shrinker_rwsem))
752 return 0;
753
754 info = shrinker_info_protected(memcg, nid);
755 if (unlikely(!info))
756 goto unlock;
757
758 for_each_set_bit(i, info->map, shrinker_nr_max) {
759 struct shrink_control sc = {
760 .gfp_mask = gfp_mask,
761 .nid = nid,
762 .memcg = memcg,
763 };
764 struct shrinker *shrinker;
765
766 shrinker = idr_find(&shrinker_idr, i);
767 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
768 if (!shrinker)
769 clear_bit(i, info->map);
770 continue;
771 }
772
773 /* Call non-slab shrinkers even though kmem is disabled */
774 if (!memcg_kmem_enabled() &&
775 !(shrinker->flags & SHRINKER_NONSLAB))
776 continue;
777
778 ret = do_shrink_slab(&sc, shrinker, priority);
779 if (ret == SHRINK_EMPTY) {
780 clear_bit(i, info->map);
781 /*
782 * After the shrinker reported that it had no objects to
783 * free, but before we cleared the corresponding bit in
784 * the memcg shrinker map, a new object might have been
785 * added. To make sure, we have the bit set in this
786 * case, we invoke the shrinker one more time and reset
787 * the bit if it reports that it is not empty anymore.
788 * The memory barrier here pairs with the barrier in
789 * set_shrinker_bit():
790 *
791 * list_lru_add() shrink_slab_memcg()
792 * list_add_tail() clear_bit()
793 * <MB> <MB>
794 * set_bit() do_shrink_slab()
795 */
796 smp_mb__after_atomic();
797 ret = do_shrink_slab(&sc, shrinker, priority);
798 if (ret == SHRINK_EMPTY)
799 ret = 0;
800 else
801 set_shrinker_bit(memcg, nid, i);
802 }
803 freed += ret;
804
805 if (rwsem_is_contended(&shrinker_rwsem)) {
806 freed = freed ? : 1;
807 break;
808 }
809 }
810 unlock:
811 up_read(&shrinker_rwsem);
812 return freed;
813 }
814 #else /* CONFIG_MEMCG */
815 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
816 struct mem_cgroup *memcg, int priority)
817 {
818 return 0;
819 }
820 #endif /* CONFIG_MEMCG */
821
822 /**
823 * shrink_slab - shrink slab caches
824 * @gfp_mask: allocation context
825 * @nid: node whose slab caches to target
826 * @memcg: memory cgroup whose slab caches to target
827 * @priority: the reclaim priority
828 *
829 * Call the shrink functions to age shrinkable caches.
830 *
831 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
832 * unaware shrinkers will receive a node id of 0 instead.
833 *
834 * @memcg specifies the memory cgroup to target. Unaware shrinkers
835 * are called only if it is the root cgroup.
836 *
837 * @priority is sc->priority, we take the number of objects and >> by priority
838 * in order to get the scan target.
839 *
840 * Returns the number of reclaimed slab objects.
841 */
842 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
843 struct mem_cgroup *memcg,
844 int priority)
845 {
846 unsigned long ret, freed = 0;
847 struct shrinker *shrinker;
848
849 /*
850 * The root memcg might be allocated even though memcg is disabled
851 * via "cgroup_disable=memory" boot parameter. This could make
852 * mem_cgroup_is_root() return false, then just run memcg slab
853 * shrink, but skip global shrink. This may result in premature
854 * oom.
855 */
856 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
857 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
858
859 if (!down_read_trylock(&shrinker_rwsem))
860 goto out;
861
862 list_for_each_entry(shrinker, &shrinker_list, list) {
863 struct shrink_control sc = {
864 .gfp_mask = gfp_mask,
865 .nid = nid,
866 .memcg = memcg,
867 };
868
869 ret = do_shrink_slab(&sc, shrinker, priority);
870 if (ret == SHRINK_EMPTY)
871 ret = 0;
872 freed += ret;
873 /*
874 * Bail out if someone want to register a new shrinker to
875 * prevent the registration from being stalled for long periods
876 * by parallel ongoing shrinking.
877 */
878 if (rwsem_is_contended(&shrinker_rwsem)) {
879 freed = freed ? : 1;
880 break;
881 }
882 }
883
884 up_read(&shrinker_rwsem);
885 out:
886 cond_resched();
887 return freed;
888 }
889
890 void drop_slab_node(int nid)
891 {
892 unsigned long freed;
893
894 do {
895 struct mem_cgroup *memcg = NULL;
896
897 if (fatal_signal_pending(current))
898 return;
899
900 freed = 0;
901 memcg = mem_cgroup_iter(NULL, NULL, NULL);
902 do {
903 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
904 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
905 } while (freed > 10);
906 }
907
908 void drop_slab(void)
909 {
910 int nid;
911
912 for_each_online_node(nid)
913 drop_slab_node(nid);
914 }
915
916 static inline int is_page_cache_freeable(struct page *page)
917 {
918 /*
919 * A freeable page cache page is referenced only by the caller
920 * that isolated the page, the page cache and optional buffer
921 * heads at page->private.
922 */
923 int page_cache_pins = thp_nr_pages(page);
924 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
925 }
926
927 static int may_write_to_inode(struct inode *inode)
928 {
929 if (current->flags & PF_SWAPWRITE)
930 return 1;
931 if (!inode_write_congested(inode))
932 return 1;
933 if (inode_to_bdi(inode) == current->backing_dev_info)
934 return 1;
935 return 0;
936 }
937
938 /*
939 * We detected a synchronous write error writing a page out. Probably
940 * -ENOSPC. We need to propagate that into the address_space for a subsequent
941 * fsync(), msync() or close().
942 *
943 * The tricky part is that after writepage we cannot touch the mapping: nothing
944 * prevents it from being freed up. But we have a ref on the page and once
945 * that page is locked, the mapping is pinned.
946 *
947 * We're allowed to run sleeping lock_page() here because we know the caller has
948 * __GFP_FS.
949 */
950 static void handle_write_error(struct address_space *mapping,
951 struct page *page, int error)
952 {
953 lock_page(page);
954 if (page_mapping(page) == mapping)
955 mapping_set_error(mapping, error);
956 unlock_page(page);
957 }
958
959 /* possible outcome of pageout() */
960 typedef enum {
961 /* failed to write page out, page is locked */
962 PAGE_KEEP,
963 /* move page to the active list, page is locked */
964 PAGE_ACTIVATE,
965 /* page has been sent to the disk successfully, page is unlocked */
966 PAGE_SUCCESS,
967 /* page is clean and locked */
968 PAGE_CLEAN,
969 } pageout_t;
970
971 /*
972 * pageout is called by shrink_page_list() for each dirty page.
973 * Calls ->writepage().
974 */
975 static pageout_t pageout(struct page *page, struct address_space *mapping)
976 {
977 /*
978 * If the page is dirty, only perform writeback if that write
979 * will be non-blocking. To prevent this allocation from being
980 * stalled by pagecache activity. But note that there may be
981 * stalls if we need to run get_block(). We could test
982 * PagePrivate for that.
983 *
984 * If this process is currently in __generic_file_write_iter() against
985 * this page's queue, we can perform writeback even if that
986 * will block.
987 *
988 * If the page is swapcache, write it back even if that would
989 * block, for some throttling. This happens by accident, because
990 * swap_backing_dev_info is bust: it doesn't reflect the
991 * congestion state of the swapdevs. Easy to fix, if needed.
992 */
993 if (!is_page_cache_freeable(page))
994 return PAGE_KEEP;
995 if (!mapping) {
996 /*
997 * Some data journaling orphaned pages can have
998 * page->mapping == NULL while being dirty with clean buffers.
999 */
1000 if (page_has_private(page)) {
1001 if (try_to_free_buffers(page)) {
1002 ClearPageDirty(page);
1003 pr_info("%s: orphaned page\n", __func__);
1004 return PAGE_CLEAN;
1005 }
1006 }
1007 return PAGE_KEEP;
1008 }
1009 if (mapping->a_ops->writepage == NULL)
1010 return PAGE_ACTIVATE;
1011 if (!may_write_to_inode(mapping->host))
1012 return PAGE_KEEP;
1013
1014 if (clear_page_dirty_for_io(page)) {
1015 int res;
1016 struct writeback_control wbc = {
1017 .sync_mode = WB_SYNC_NONE,
1018 .nr_to_write = SWAP_CLUSTER_MAX,
1019 .range_start = 0,
1020 .range_end = LLONG_MAX,
1021 .for_reclaim = 1,
1022 };
1023
1024 SetPageReclaim(page);
1025 res = mapping->a_ops->writepage(page, &wbc);
1026 if (res < 0)
1027 handle_write_error(mapping, page, res);
1028 if (res == AOP_WRITEPAGE_ACTIVATE) {
1029 ClearPageReclaim(page);
1030 return PAGE_ACTIVATE;
1031 }
1032
1033 if (!PageWriteback(page)) {
1034 /* synchronous write or broken a_ops? */
1035 ClearPageReclaim(page);
1036 }
1037 trace_mm_vmscan_writepage(page);
1038 inc_node_page_state(page, NR_VMSCAN_WRITE);
1039 return PAGE_SUCCESS;
1040 }
1041
1042 return PAGE_CLEAN;
1043 }
1044
1045 /*
1046 * Same as remove_mapping, but if the page is removed from the mapping, it
1047 * gets returned with a refcount of 0.
1048 */
1049 static int __remove_mapping(struct address_space *mapping, struct page *page,
1050 bool reclaimed, struct mem_cgroup *target_memcg)
1051 {
1052 unsigned long flags;
1053 int refcount;
1054 void *shadow = NULL;
1055
1056 BUG_ON(!PageLocked(page));
1057 BUG_ON(mapping != page_mapping(page));
1058
1059 xa_lock_irqsave(&mapping->i_pages, flags);
1060 /*
1061 * The non racy check for a busy page.
1062 *
1063 * Must be careful with the order of the tests. When someone has
1064 * a ref to the page, it may be possible that they dirty it then
1065 * drop the reference. So if PageDirty is tested before page_count
1066 * here, then the following race may occur:
1067 *
1068 * get_user_pages(&page);
1069 * [user mapping goes away]
1070 * write_to(page);
1071 * !PageDirty(page) [good]
1072 * SetPageDirty(page);
1073 * put_page(page);
1074 * !page_count(page) [good, discard it]
1075 *
1076 * [oops, our write_to data is lost]
1077 *
1078 * Reversing the order of the tests ensures such a situation cannot
1079 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1080 * load is not satisfied before that of page->_refcount.
1081 *
1082 * Note that if SetPageDirty is always performed via set_page_dirty,
1083 * and thus under the i_pages lock, then this ordering is not required.
1084 */
1085 refcount = 1 + compound_nr(page);
1086 if (!page_ref_freeze(page, refcount))
1087 goto cannot_free;
1088 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1089 if (unlikely(PageDirty(page))) {
1090 page_ref_unfreeze(page, refcount);
1091 goto cannot_free;
1092 }
1093
1094 if (PageSwapCache(page)) {
1095 swp_entry_t swap = { .val = page_private(page) };
1096 mem_cgroup_swapout(page, swap);
1097 if (reclaimed && !mapping_exiting(mapping))
1098 shadow = workingset_eviction(page, target_memcg);
1099 __delete_from_swap_cache(page, swap, shadow);
1100 xa_unlock_irqrestore(&mapping->i_pages, flags);
1101 put_swap_page(page, swap);
1102 } else {
1103 void (*freepage)(struct page *);
1104
1105 freepage = mapping->a_ops->freepage;
1106 /*
1107 * Remember a shadow entry for reclaimed file cache in
1108 * order to detect refaults, thus thrashing, later on.
1109 *
1110 * But don't store shadows in an address space that is
1111 * already exiting. This is not just an optimization,
1112 * inode reclaim needs to empty out the radix tree or
1113 * the nodes are lost. Don't plant shadows behind its
1114 * back.
1115 *
1116 * We also don't store shadows for DAX mappings because the
1117 * only page cache pages found in these are zero pages
1118 * covering holes, and because we don't want to mix DAX
1119 * exceptional entries and shadow exceptional entries in the
1120 * same address_space.
1121 */
1122 if (reclaimed && page_is_file_lru(page) &&
1123 !mapping_exiting(mapping) && !dax_mapping(mapping))
1124 shadow = workingset_eviction(page, target_memcg);
1125 __delete_from_page_cache(page, shadow);
1126 xa_unlock_irqrestore(&mapping->i_pages, flags);
1127
1128 if (freepage != NULL)
1129 freepage(page);
1130 }
1131
1132 return 1;
1133
1134 cannot_free:
1135 xa_unlock_irqrestore(&mapping->i_pages, flags);
1136 return 0;
1137 }
1138
1139 /*
1140 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
1141 * someone else has a ref on the page, abort and return 0. If it was
1142 * successfully detached, return 1. Assumes the caller has a single ref on
1143 * this page.
1144 */
1145 int remove_mapping(struct address_space *mapping, struct page *page)
1146 {
1147 if (__remove_mapping(mapping, page, false, NULL)) {
1148 /*
1149 * Unfreezing the refcount with 1 rather than 2 effectively
1150 * drops the pagecache ref for us without requiring another
1151 * atomic operation.
1152 */
1153 page_ref_unfreeze(page, 1);
1154 return 1;
1155 }
1156 return 0;
1157 }
1158
1159 /**
1160 * putback_lru_page - put previously isolated page onto appropriate LRU list
1161 * @page: page to be put back to appropriate lru list
1162 *
1163 * Add previously isolated @page to appropriate LRU list.
1164 * Page may still be unevictable for other reasons.
1165 *
1166 * lru_lock must not be held, interrupts must be enabled.
1167 */
1168 void putback_lru_page(struct page *page)
1169 {
1170 lru_cache_add(page);
1171 put_page(page); /* drop ref from isolate */
1172 }
1173
1174 enum page_references {
1175 PAGEREF_RECLAIM,
1176 PAGEREF_RECLAIM_CLEAN,
1177 PAGEREF_KEEP,
1178 PAGEREF_ACTIVATE,
1179 };
1180
1181 static enum page_references page_check_references(struct page *page,
1182 struct scan_control *sc)
1183 {
1184 int referenced_ptes, referenced_page;
1185 unsigned long vm_flags;
1186
1187 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1188 &vm_flags);
1189 referenced_page = TestClearPageReferenced(page);
1190
1191 /*
1192 * Mlock lost the isolation race with us. Let try_to_unmap()
1193 * move the page to the unevictable list.
1194 */
1195 if (vm_flags & VM_LOCKED)
1196 return PAGEREF_RECLAIM;
1197
1198 if (referenced_ptes) {
1199 /*
1200 * All mapped pages start out with page table
1201 * references from the instantiating fault, so we need
1202 * to look twice if a mapped file page is used more
1203 * than once.
1204 *
1205 * Mark it and spare it for another trip around the
1206 * inactive list. Another page table reference will
1207 * lead to its activation.
1208 *
1209 * Note: the mark is set for activated pages as well
1210 * so that recently deactivated but used pages are
1211 * quickly recovered.
1212 */
1213 SetPageReferenced(page);
1214
1215 if (referenced_page || referenced_ptes > 1)
1216 return PAGEREF_ACTIVATE;
1217
1218 /*
1219 * Activate file-backed executable pages after first usage.
1220 */
1221 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1222 return PAGEREF_ACTIVATE;
1223
1224 return PAGEREF_KEEP;
1225 }
1226
1227 /* Reclaim if clean, defer dirty pages to writeback */
1228 if (referenced_page && !PageSwapBacked(page))
1229 return PAGEREF_RECLAIM_CLEAN;
1230
1231 return PAGEREF_RECLAIM;
1232 }
1233
1234 /* Check if a page is dirty or under writeback */
1235 static void page_check_dirty_writeback(struct page *page,
1236 bool *dirty, bool *writeback)
1237 {
1238 struct address_space *mapping;
1239
1240 /*
1241 * Anonymous pages are not handled by flushers and must be written
1242 * from reclaim context. Do not stall reclaim based on them
1243 */
1244 if (!page_is_file_lru(page) ||
1245 (PageAnon(page) && !PageSwapBacked(page))) {
1246 *dirty = false;
1247 *writeback = false;
1248 return;
1249 }
1250
1251 /* By default assume that the page flags are accurate */
1252 *dirty = PageDirty(page);
1253 *writeback = PageWriteback(page);
1254
1255 /* Verify dirty/writeback state if the filesystem supports it */
1256 if (!page_has_private(page))
1257 return;
1258
1259 mapping = page_mapping(page);
1260 if (mapping && mapping->a_ops->is_dirty_writeback)
1261 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1262 }
1263
1264 /*
1265 * shrink_page_list() returns the number of reclaimed pages
1266 */
1267 static unsigned int shrink_page_list(struct list_head *page_list,
1268 struct pglist_data *pgdat,
1269 struct scan_control *sc,
1270 struct reclaim_stat *stat,
1271 bool ignore_references)
1272 {
1273 LIST_HEAD(ret_pages);
1274 LIST_HEAD(free_pages);
1275 unsigned int nr_reclaimed = 0;
1276 unsigned int pgactivate = 0;
1277
1278 memset(stat, 0, sizeof(*stat));
1279 cond_resched();
1280
1281 while (!list_empty(page_list)) {
1282 struct address_space *mapping;
1283 struct page *page;
1284 enum page_references references = PAGEREF_RECLAIM;
1285 bool dirty, writeback, may_enter_fs;
1286 unsigned int nr_pages;
1287
1288 cond_resched();
1289
1290 page = lru_to_page(page_list);
1291 list_del(&page->lru);
1292
1293 if (!trylock_page(page))
1294 goto keep;
1295
1296 VM_BUG_ON_PAGE(PageActive(page), page);
1297
1298 nr_pages = compound_nr(page);
1299
1300 /* Account the number of base pages even though THP */
1301 sc->nr_scanned += nr_pages;
1302
1303 if (unlikely(!page_evictable(page)))
1304 goto activate_locked;
1305
1306 if (!sc->may_unmap && page_mapped(page))
1307 goto keep_locked;
1308
1309 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1310 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1311
1312 /*
1313 * The number of dirty pages determines if a node is marked
1314 * reclaim_congested which affects wait_iff_congested. kswapd
1315 * will stall and start writing pages if the tail of the LRU
1316 * is all dirty unqueued pages.
1317 */
1318 page_check_dirty_writeback(page, &dirty, &writeback);
1319 if (dirty || writeback)
1320 stat->nr_dirty++;
1321
1322 if (dirty && !writeback)
1323 stat->nr_unqueued_dirty++;
1324
1325 /*
1326 * Treat this page as congested if the underlying BDI is or if
1327 * pages are cycling through the LRU so quickly that the
1328 * pages marked for immediate reclaim are making it to the
1329 * end of the LRU a second time.
1330 */
1331 mapping = page_mapping(page);
1332 if (((dirty || writeback) && mapping &&
1333 inode_write_congested(mapping->host)) ||
1334 (writeback && PageReclaim(page)))
1335 stat->nr_congested++;
1336
1337 /*
1338 * If a page at the tail of the LRU is under writeback, there
1339 * are three cases to consider.
1340 *
1341 * 1) If reclaim is encountering an excessive number of pages
1342 * under writeback and this page is both under writeback and
1343 * PageReclaim then it indicates that pages are being queued
1344 * for IO but are being recycled through the LRU before the
1345 * IO can complete. Waiting on the page itself risks an
1346 * indefinite stall if it is impossible to writeback the
1347 * page due to IO error or disconnected storage so instead
1348 * note that the LRU is being scanned too quickly and the
1349 * caller can stall after page list has been processed.
1350 *
1351 * 2) Global or new memcg reclaim encounters a page that is
1352 * not marked for immediate reclaim, or the caller does not
1353 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1354 * not to fs). In this case mark the page for immediate
1355 * reclaim and continue scanning.
1356 *
1357 * Require may_enter_fs because we would wait on fs, which
1358 * may not have submitted IO yet. And the loop driver might
1359 * enter reclaim, and deadlock if it waits on a page for
1360 * which it is needed to do the write (loop masks off
1361 * __GFP_IO|__GFP_FS for this reason); but more thought
1362 * would probably show more reasons.
1363 *
1364 * 3) Legacy memcg encounters a page that is already marked
1365 * PageReclaim. memcg does not have any dirty pages
1366 * throttling so we could easily OOM just because too many
1367 * pages are in writeback and there is nothing else to
1368 * reclaim. Wait for the writeback to complete.
1369 *
1370 * In cases 1) and 2) we activate the pages to get them out of
1371 * the way while we continue scanning for clean pages on the
1372 * inactive list and refilling from the active list. The
1373 * observation here is that waiting for disk writes is more
1374 * expensive than potentially causing reloads down the line.
1375 * Since they're marked for immediate reclaim, they won't put
1376 * memory pressure on the cache working set any longer than it
1377 * takes to write them to disk.
1378 */
1379 if (PageWriteback(page)) {
1380 /* Case 1 above */
1381 if (current_is_kswapd() &&
1382 PageReclaim(page) &&
1383 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1384 stat->nr_immediate++;
1385 goto activate_locked;
1386
1387 /* Case 2 above */
1388 } else if (writeback_throttling_sane(sc) ||
1389 !PageReclaim(page) || !may_enter_fs) {
1390 /*
1391 * This is slightly racy - end_page_writeback()
1392 * might have just cleared PageReclaim, then
1393 * setting PageReclaim here end up interpreted
1394 * as PageReadahead - but that does not matter
1395 * enough to care. What we do want is for this
1396 * page to have PageReclaim set next time memcg
1397 * reclaim reaches the tests above, so it will
1398 * then wait_on_page_writeback() to avoid OOM;
1399 * and it's also appropriate in global reclaim.
1400 */
1401 SetPageReclaim(page);
1402 stat->nr_writeback++;
1403 goto activate_locked;
1404
1405 /* Case 3 above */
1406 } else {
1407 unlock_page(page);
1408 wait_on_page_writeback(page);
1409 /* then go back and try same page again */
1410 list_add_tail(&page->lru, page_list);
1411 continue;
1412 }
1413 }
1414
1415 if (!ignore_references)
1416 references = page_check_references(page, sc);
1417
1418 switch (references) {
1419 case PAGEREF_ACTIVATE:
1420 goto activate_locked;
1421 case PAGEREF_KEEP:
1422 stat->nr_ref_keep += nr_pages;
1423 goto keep_locked;
1424 case PAGEREF_RECLAIM:
1425 case PAGEREF_RECLAIM_CLEAN:
1426 ; /* try to reclaim the page below */
1427 }
1428
1429 /*
1430 * Anonymous process memory has backing store?
1431 * Try to allocate it some swap space here.
1432 * Lazyfree page could be freed directly
1433 */
1434 if (PageAnon(page) && PageSwapBacked(page)) {
1435 if (!PageSwapCache(page)) {
1436 if (!(sc->gfp_mask & __GFP_IO))
1437 goto keep_locked;
1438 if (page_maybe_dma_pinned(page))
1439 goto keep_locked;
1440 if (PageTransHuge(page)) {
1441 /* cannot split THP, skip it */
1442 if (!can_split_huge_page(page, NULL))
1443 goto activate_locked;
1444 /*
1445 * Split pages without a PMD map right
1446 * away. Chances are some or all of the
1447 * tail pages can be freed without IO.
1448 */
1449 if (!compound_mapcount(page) &&
1450 split_huge_page_to_list(page,
1451 page_list))
1452 goto activate_locked;
1453 }
1454 if (!add_to_swap(page)) {
1455 if (!PageTransHuge(page))
1456 goto activate_locked_split;
1457 /* Fallback to swap normal pages */
1458 if (split_huge_page_to_list(page,
1459 page_list))
1460 goto activate_locked;
1461 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1462 count_vm_event(THP_SWPOUT_FALLBACK);
1463 #endif
1464 if (!add_to_swap(page))
1465 goto activate_locked_split;
1466 }
1467
1468 may_enter_fs = true;
1469
1470 /* Adding to swap updated mapping */
1471 mapping = page_mapping(page);
1472 }
1473 } else if (unlikely(PageTransHuge(page))) {
1474 /* Split file THP */
1475 if (split_huge_page_to_list(page, page_list))
1476 goto keep_locked;
1477 }
1478
1479 /*
1480 * THP may get split above, need minus tail pages and update
1481 * nr_pages to avoid accounting tail pages twice.
1482 *
1483 * The tail pages that are added into swap cache successfully
1484 * reach here.
1485 */
1486 if ((nr_pages > 1) && !PageTransHuge(page)) {
1487 sc->nr_scanned -= (nr_pages - 1);
1488 nr_pages = 1;
1489 }
1490
1491 /*
1492 * The page is mapped into the page tables of one or more
1493 * processes. Try to unmap it here.
1494 */
1495 if (page_mapped(page)) {
1496 enum ttu_flags flags = TTU_BATCH_FLUSH;
1497 bool was_swapbacked = PageSwapBacked(page);
1498
1499 if (unlikely(PageTransHuge(page)))
1500 flags |= TTU_SPLIT_HUGE_PMD;
1501
1502 try_to_unmap(page, flags);
1503 if (page_mapped(page)) {
1504 stat->nr_unmap_fail += nr_pages;
1505 if (!was_swapbacked && PageSwapBacked(page))
1506 stat->nr_lazyfree_fail += nr_pages;
1507 goto activate_locked;
1508 }
1509 }
1510
1511 if (PageDirty(page)) {
1512 /*
1513 * Only kswapd can writeback filesystem pages
1514 * to avoid risk of stack overflow. But avoid
1515 * injecting inefficient single-page IO into
1516 * flusher writeback as much as possible: only
1517 * write pages when we've encountered many
1518 * dirty pages, and when we've already scanned
1519 * the rest of the LRU for clean pages and see
1520 * the same dirty pages again (PageReclaim).
1521 */
1522 if (page_is_file_lru(page) &&
1523 (!current_is_kswapd() || !PageReclaim(page) ||
1524 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1525 /*
1526 * Immediately reclaim when written back.
1527 * Similar in principal to deactivate_page()
1528 * except we already have the page isolated
1529 * and know it's dirty
1530 */
1531 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1532 SetPageReclaim(page);
1533
1534 goto activate_locked;
1535 }
1536
1537 if (references == PAGEREF_RECLAIM_CLEAN)
1538 goto keep_locked;
1539 if (!may_enter_fs)
1540 goto keep_locked;
1541 if (!sc->may_writepage)
1542 goto keep_locked;
1543
1544 /*
1545 * Page is dirty. Flush the TLB if a writable entry
1546 * potentially exists to avoid CPU writes after IO
1547 * starts and then write it out here.
1548 */
1549 try_to_unmap_flush_dirty();
1550 switch (pageout(page, mapping)) {
1551 case PAGE_KEEP:
1552 goto keep_locked;
1553 case PAGE_ACTIVATE:
1554 goto activate_locked;
1555 case PAGE_SUCCESS:
1556 stat->nr_pageout += thp_nr_pages(page);
1557
1558 if (PageWriteback(page))
1559 goto keep;
1560 if (PageDirty(page))
1561 goto keep;
1562
1563 /*
1564 * A synchronous write - probably a ramdisk. Go
1565 * ahead and try to reclaim the page.
1566 */
1567 if (!trylock_page(page))
1568 goto keep;
1569 if (PageDirty(page) || PageWriteback(page))
1570 goto keep_locked;
1571 mapping = page_mapping(page);
1572 fallthrough;
1573 case PAGE_CLEAN:
1574 ; /* try to free the page below */
1575 }
1576 }
1577
1578 /*
1579 * If the page has buffers, try to free the buffer mappings
1580 * associated with this page. If we succeed we try to free
1581 * the page as well.
1582 *
1583 * We do this even if the page is PageDirty().
1584 * try_to_release_page() does not perform I/O, but it is
1585 * possible for a page to have PageDirty set, but it is actually
1586 * clean (all its buffers are clean). This happens if the
1587 * buffers were written out directly, with submit_bh(). ext3
1588 * will do this, as well as the blockdev mapping.
1589 * try_to_release_page() will discover that cleanness and will
1590 * drop the buffers and mark the page clean - it can be freed.
1591 *
1592 * Rarely, pages can have buffers and no ->mapping. These are
1593 * the pages which were not successfully invalidated in
1594 * truncate_cleanup_page(). We try to drop those buffers here
1595 * and if that worked, and the page is no longer mapped into
1596 * process address space (page_count == 1) it can be freed.
1597 * Otherwise, leave the page on the LRU so it is swappable.
1598 */
1599 if (page_has_private(page)) {
1600 if (!try_to_release_page(page, sc->gfp_mask))
1601 goto activate_locked;
1602 if (!mapping && page_count(page) == 1) {
1603 unlock_page(page);
1604 if (put_page_testzero(page))
1605 goto free_it;
1606 else {
1607 /*
1608 * rare race with speculative reference.
1609 * the speculative reference will free
1610 * this page shortly, so we may
1611 * increment nr_reclaimed here (and
1612 * leave it off the LRU).
1613 */
1614 nr_reclaimed++;
1615 continue;
1616 }
1617 }
1618 }
1619
1620 if (PageAnon(page) && !PageSwapBacked(page)) {
1621 /* follow __remove_mapping for reference */
1622 if (!page_ref_freeze(page, 1))
1623 goto keep_locked;
1624 if (PageDirty(page)) {
1625 page_ref_unfreeze(page, 1);
1626 goto keep_locked;
1627 }
1628
1629 count_vm_event(PGLAZYFREED);
1630 count_memcg_page_event(page, PGLAZYFREED);
1631 } else if (!mapping || !__remove_mapping(mapping, page, true,
1632 sc->target_mem_cgroup))
1633 goto keep_locked;
1634
1635 unlock_page(page);
1636 free_it:
1637 /*
1638 * THP may get swapped out in a whole, need account
1639 * all base pages.
1640 */
1641 nr_reclaimed += nr_pages;
1642
1643 /*
1644 * Is there need to periodically free_page_list? It would
1645 * appear not as the counts should be low
1646 */
1647 if (unlikely(PageTransHuge(page)))
1648 destroy_compound_page(page);
1649 else
1650 list_add(&page->lru, &free_pages);
1651 continue;
1652
1653 activate_locked_split:
1654 /*
1655 * The tail pages that are failed to add into swap cache
1656 * reach here. Fixup nr_scanned and nr_pages.
1657 */
1658 if (nr_pages > 1) {
1659 sc->nr_scanned -= (nr_pages - 1);
1660 nr_pages = 1;
1661 }
1662 activate_locked:
1663 /* Not a candidate for swapping, so reclaim swap space. */
1664 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1665 PageMlocked(page)))
1666 try_to_free_swap(page);
1667 VM_BUG_ON_PAGE(PageActive(page), page);
1668 if (!PageMlocked(page)) {
1669 int type = page_is_file_lru(page);
1670 SetPageActive(page);
1671 stat->nr_activate[type] += nr_pages;
1672 count_memcg_page_event(page, PGACTIVATE);
1673 }
1674 keep_locked:
1675 unlock_page(page);
1676 keep:
1677 list_add(&page->lru, &ret_pages);
1678 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1679 }
1680
1681 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1682
1683 mem_cgroup_uncharge_list(&free_pages);
1684 try_to_unmap_flush();
1685 free_unref_page_list(&free_pages);
1686
1687 list_splice(&ret_pages, page_list);
1688 count_vm_events(PGACTIVATE, pgactivate);
1689
1690 return nr_reclaimed;
1691 }
1692
1693 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1694 struct list_head *page_list)
1695 {
1696 struct scan_control sc = {
1697 .gfp_mask = GFP_KERNEL,
1698 .priority = DEF_PRIORITY,
1699 .may_unmap = 1,
1700 };
1701 struct reclaim_stat stat;
1702 unsigned int nr_reclaimed;
1703 struct page *page, *next;
1704 LIST_HEAD(clean_pages);
1705 unsigned int noreclaim_flag;
1706
1707 list_for_each_entry_safe(page, next, page_list, lru) {
1708 if (!PageHuge(page) && page_is_file_lru(page) &&
1709 !PageDirty(page) && !__PageMovable(page) &&
1710 !PageUnevictable(page)) {
1711 ClearPageActive(page);
1712 list_move(&page->lru, &clean_pages);
1713 }
1714 }
1715
1716 /*
1717 * We should be safe here since we are only dealing with file pages and
1718 * we are not kswapd and therefore cannot write dirty file pages. But
1719 * call memalloc_noreclaim_save() anyway, just in case these conditions
1720 * change in the future.
1721 */
1722 noreclaim_flag = memalloc_noreclaim_save();
1723 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1724 &stat, true);
1725 memalloc_noreclaim_restore(noreclaim_flag);
1726
1727 list_splice(&clean_pages, page_list);
1728 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1729 -(long)nr_reclaimed);
1730 /*
1731 * Since lazyfree pages are isolated from file LRU from the beginning,
1732 * they will rotate back to anonymous LRU in the end if it failed to
1733 * discard so isolated count will be mismatched.
1734 * Compensate the isolated count for both LRU lists.
1735 */
1736 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1737 stat.nr_lazyfree_fail);
1738 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1739 -(long)stat.nr_lazyfree_fail);
1740 return nr_reclaimed;
1741 }
1742
1743 /*
1744 * Attempt to remove the specified page from its LRU. Only take this page
1745 * if it is of the appropriate PageActive status. Pages which are being
1746 * freed elsewhere are also ignored.
1747 *
1748 * page: page to consider
1749 * mode: one of the LRU isolation modes defined above
1750 *
1751 * returns true on success, false on failure.
1752 */
1753 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
1754 {
1755 /* Only take pages on the LRU. */
1756 if (!PageLRU(page))
1757 return false;
1758
1759 /* Compaction should not handle unevictable pages but CMA can do so */
1760 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1761 return false;
1762
1763 /*
1764 * To minimise LRU disruption, the caller can indicate that it only
1765 * wants to isolate pages it will be able to operate on without
1766 * blocking - clean pages for the most part.
1767 *
1768 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1769 * that it is possible to migrate without blocking
1770 */
1771 if (mode & ISOLATE_ASYNC_MIGRATE) {
1772 /* All the caller can do on PageWriteback is block */
1773 if (PageWriteback(page))
1774 return false;
1775
1776 if (PageDirty(page)) {
1777 struct address_space *mapping;
1778 bool migrate_dirty;
1779
1780 /*
1781 * Only pages without mappings or that have a
1782 * ->migratepage callback are possible to migrate
1783 * without blocking. However, we can be racing with
1784 * truncation so it's necessary to lock the page
1785 * to stabilise the mapping as truncation holds
1786 * the page lock until after the page is removed
1787 * from the page cache.
1788 */
1789 if (!trylock_page(page))
1790 return false;
1791
1792 mapping = page_mapping(page);
1793 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1794 unlock_page(page);
1795 if (!migrate_dirty)
1796 return false;
1797 }
1798 }
1799
1800 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1801 return false;
1802
1803 return true;
1804 }
1805
1806 /*
1807 * Update LRU sizes after isolating pages. The LRU size updates must
1808 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1809 */
1810 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1811 enum lru_list lru, unsigned long *nr_zone_taken)
1812 {
1813 int zid;
1814
1815 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1816 if (!nr_zone_taken[zid])
1817 continue;
1818
1819 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1820 }
1821
1822 }
1823
1824 /*
1825 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1826 *
1827 * lruvec->lru_lock is heavily contended. Some of the functions that
1828 * shrink the lists perform better by taking out a batch of pages
1829 * and working on them outside the LRU lock.
1830 *
1831 * For pagecache intensive workloads, this function is the hottest
1832 * spot in the kernel (apart from copy_*_user functions).
1833 *
1834 * Lru_lock must be held before calling this function.
1835 *
1836 * @nr_to_scan: The number of eligible pages to look through on the list.
1837 * @lruvec: The LRU vector to pull pages from.
1838 * @dst: The temp list to put pages on to.
1839 * @nr_scanned: The number of pages that were scanned.
1840 * @sc: The scan_control struct for this reclaim session
1841 * @lru: LRU list id for isolating
1842 *
1843 * returns how many pages were moved onto *@dst.
1844 */
1845 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1846 struct lruvec *lruvec, struct list_head *dst,
1847 unsigned long *nr_scanned, struct scan_control *sc,
1848 enum lru_list lru)
1849 {
1850 struct list_head *src = &lruvec->lists[lru];
1851 unsigned long nr_taken = 0;
1852 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1853 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1854 unsigned long skipped = 0;
1855 unsigned long scan, total_scan, nr_pages;
1856 LIST_HEAD(pages_skipped);
1857 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1858
1859 total_scan = 0;
1860 scan = 0;
1861 while (scan < nr_to_scan && !list_empty(src)) {
1862 struct page *page;
1863
1864 page = lru_to_page(src);
1865 prefetchw_prev_lru_page(page, src, flags);
1866
1867 nr_pages = compound_nr(page);
1868 total_scan += nr_pages;
1869
1870 if (page_zonenum(page) > sc->reclaim_idx) {
1871 list_move(&page->lru, &pages_skipped);
1872 nr_skipped[page_zonenum(page)] += nr_pages;
1873 continue;
1874 }
1875
1876 /*
1877 * Do not count skipped pages because that makes the function
1878 * return with no isolated pages if the LRU mostly contains
1879 * ineligible pages. This causes the VM to not reclaim any
1880 * pages, triggering a premature OOM.
1881 *
1882 * Account all tail pages of THP. This would not cause
1883 * premature OOM since __isolate_lru_page() returns -EBUSY
1884 * only when the page is being freed somewhere else.
1885 */
1886 scan += nr_pages;
1887 if (!__isolate_lru_page_prepare(page, mode)) {
1888 /* It is being freed elsewhere */
1889 list_move(&page->lru, src);
1890 continue;
1891 }
1892 /*
1893 * Be careful not to clear PageLRU until after we're
1894 * sure the page is not being freed elsewhere -- the
1895 * page release code relies on it.
1896 */
1897 if (unlikely(!get_page_unless_zero(page))) {
1898 list_move(&page->lru, src);
1899 continue;
1900 }
1901
1902 if (!TestClearPageLRU(page)) {
1903 /* Another thread is already isolating this page */
1904 put_page(page);
1905 list_move(&page->lru, src);
1906 continue;
1907 }
1908
1909 nr_taken += nr_pages;
1910 nr_zone_taken[page_zonenum(page)] += nr_pages;
1911 list_move(&page->lru, dst);
1912 }
1913
1914 /*
1915 * Splice any skipped pages to the start of the LRU list. Note that
1916 * this disrupts the LRU order when reclaiming for lower zones but
1917 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1918 * scanning would soon rescan the same pages to skip and put the
1919 * system at risk of premature OOM.
1920 */
1921 if (!list_empty(&pages_skipped)) {
1922 int zid;
1923
1924 list_splice(&pages_skipped, src);
1925 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1926 if (!nr_skipped[zid])
1927 continue;
1928
1929 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1930 skipped += nr_skipped[zid];
1931 }
1932 }
1933 *nr_scanned = total_scan;
1934 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1935 total_scan, skipped, nr_taken, mode, lru);
1936 update_lru_sizes(lruvec, lru, nr_zone_taken);
1937 return nr_taken;
1938 }
1939
1940 /**
1941 * isolate_lru_page - tries to isolate a page from its LRU list
1942 * @page: page to isolate from its LRU list
1943 *
1944 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1945 * vmstat statistic corresponding to whatever LRU list the page was on.
1946 *
1947 * Returns 0 if the page was removed from an LRU list.
1948 * Returns -EBUSY if the page was not on an LRU list.
1949 *
1950 * The returned page will have PageLRU() cleared. If it was found on
1951 * the active list, it will have PageActive set. If it was found on
1952 * the unevictable list, it will have the PageUnevictable bit set. That flag
1953 * may need to be cleared by the caller before letting the page go.
1954 *
1955 * The vmstat statistic corresponding to the list on which the page was
1956 * found will be decremented.
1957 *
1958 * Restrictions:
1959 *
1960 * (1) Must be called with an elevated refcount on the page. This is a
1961 * fundamental difference from isolate_lru_pages (which is called
1962 * without a stable reference).
1963 * (2) the lru_lock must not be held.
1964 * (3) interrupts must be enabled.
1965 */
1966 int isolate_lru_page(struct page *page)
1967 {
1968 int ret = -EBUSY;
1969
1970 VM_BUG_ON_PAGE(!page_count(page), page);
1971 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1972
1973 if (TestClearPageLRU(page)) {
1974 struct lruvec *lruvec;
1975
1976 get_page(page);
1977 lruvec = lock_page_lruvec_irq(page);
1978 del_page_from_lru_list(page, lruvec);
1979 unlock_page_lruvec_irq(lruvec);
1980 ret = 0;
1981 }
1982
1983 return ret;
1984 }
1985
1986 /*
1987 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1988 * then get rescheduled. When there are massive number of tasks doing page
1989 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1990 * the LRU list will go small and be scanned faster than necessary, leading to
1991 * unnecessary swapping, thrashing and OOM.
1992 */
1993 static int too_many_isolated(struct pglist_data *pgdat, int file,
1994 struct scan_control *sc)
1995 {
1996 unsigned long inactive, isolated;
1997
1998 if (current_is_kswapd())
1999 return 0;
2000
2001 if (!writeback_throttling_sane(sc))
2002 return 0;
2003
2004 if (file) {
2005 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2006 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2007 } else {
2008 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2009 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2010 }
2011
2012 /*
2013 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2014 * won't get blocked by normal direct-reclaimers, forming a circular
2015 * deadlock.
2016 */
2017 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2018 inactive >>= 3;
2019
2020 return isolated > inactive;
2021 }
2022
2023 /*
2024 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2025 * On return, @list is reused as a list of pages to be freed by the caller.
2026 *
2027 * Returns the number of pages moved to the given lruvec.
2028 */
2029 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2030 struct list_head *list)
2031 {
2032 int nr_pages, nr_moved = 0;
2033 LIST_HEAD(pages_to_free);
2034 struct page *page;
2035
2036 while (!list_empty(list)) {
2037 page = lru_to_page(list);
2038 VM_BUG_ON_PAGE(PageLRU(page), page);
2039 list_del(&page->lru);
2040 if (unlikely(!page_evictable(page))) {
2041 spin_unlock_irq(&lruvec->lru_lock);
2042 putback_lru_page(page);
2043 spin_lock_irq(&lruvec->lru_lock);
2044 continue;
2045 }
2046
2047 /*
2048 * The SetPageLRU needs to be kept here for list integrity.
2049 * Otherwise:
2050 * #0 move_pages_to_lru #1 release_pages
2051 * if !put_page_testzero
2052 * if (put_page_testzero())
2053 * !PageLRU //skip lru_lock
2054 * SetPageLRU()
2055 * list_add(&page->lru,)
2056 * list_add(&page->lru,)
2057 */
2058 SetPageLRU(page);
2059
2060 if (unlikely(put_page_testzero(page))) {
2061 __clear_page_lru_flags(page);
2062
2063 if (unlikely(PageCompound(page))) {
2064 spin_unlock_irq(&lruvec->lru_lock);
2065 destroy_compound_page(page);
2066 spin_lock_irq(&lruvec->lru_lock);
2067 } else
2068 list_add(&page->lru, &pages_to_free);
2069
2070 continue;
2071 }
2072
2073 /*
2074 * All pages were isolated from the same lruvec (and isolation
2075 * inhibits memcg migration).
2076 */
2077 VM_BUG_ON_PAGE(!page_matches_lruvec(page, lruvec), page);
2078 add_page_to_lru_list(page, lruvec);
2079 nr_pages = thp_nr_pages(page);
2080 nr_moved += nr_pages;
2081 if (PageActive(page))
2082 workingset_age_nonresident(lruvec, nr_pages);
2083 }
2084
2085 /*
2086 * To save our caller's stack, now use input list for pages to free.
2087 */
2088 list_splice(&pages_to_free, list);
2089
2090 return nr_moved;
2091 }
2092
2093 /*
2094 * If a kernel thread (such as nfsd for loop-back mounts) services
2095 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
2096 * In that case we should only throttle if the backing device it is
2097 * writing to is congested. In other cases it is safe to throttle.
2098 */
2099 static int current_may_throttle(void)
2100 {
2101 return !(current->flags & PF_LOCAL_THROTTLE) ||
2102 current->backing_dev_info == NULL ||
2103 bdi_write_congested(current->backing_dev_info);
2104 }
2105
2106 /*
2107 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
2108 * of reclaimed pages
2109 */
2110 static unsigned long
2111 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2112 struct scan_control *sc, enum lru_list lru)
2113 {
2114 LIST_HEAD(page_list);
2115 unsigned long nr_scanned;
2116 unsigned int nr_reclaimed = 0;
2117 unsigned long nr_taken;
2118 struct reclaim_stat stat;
2119 bool file = is_file_lru(lru);
2120 enum vm_event_item item;
2121 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2122 bool stalled = false;
2123
2124 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2125 if (stalled)
2126 return 0;
2127
2128 /* wait a bit for the reclaimer. */
2129 msleep(100);
2130 stalled = true;
2131
2132 /* We are about to die and free our memory. Return now. */
2133 if (fatal_signal_pending(current))
2134 return SWAP_CLUSTER_MAX;
2135 }
2136
2137 lru_add_drain();
2138
2139 spin_lock_irq(&lruvec->lru_lock);
2140
2141 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2142 &nr_scanned, sc, lru);
2143
2144 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2145 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2146 if (!cgroup_reclaim(sc))
2147 __count_vm_events(item, nr_scanned);
2148 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2149 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2150
2151 spin_unlock_irq(&lruvec->lru_lock);
2152
2153 if (nr_taken == 0)
2154 return 0;
2155
2156 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2157
2158 spin_lock_irq(&lruvec->lru_lock);
2159 move_pages_to_lru(lruvec, &page_list);
2160
2161 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2162 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2163 if (!cgroup_reclaim(sc))
2164 __count_vm_events(item, nr_reclaimed);
2165 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2166 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2167 spin_unlock_irq(&lruvec->lru_lock);
2168
2169 lru_note_cost(lruvec, file, stat.nr_pageout);
2170 mem_cgroup_uncharge_list(&page_list);
2171 free_unref_page_list(&page_list);
2172
2173 /*
2174 * If dirty pages are scanned that are not queued for IO, it
2175 * implies that flushers are not doing their job. This can
2176 * happen when memory pressure pushes dirty pages to the end of
2177 * the LRU before the dirty limits are breached and the dirty
2178 * data has expired. It can also happen when the proportion of
2179 * dirty pages grows not through writes but through memory
2180 * pressure reclaiming all the clean cache. And in some cases,
2181 * the flushers simply cannot keep up with the allocation
2182 * rate. Nudge the flusher threads in case they are asleep.
2183 */
2184 if (stat.nr_unqueued_dirty == nr_taken)
2185 wakeup_flusher_threads(WB_REASON_VMSCAN);
2186
2187 sc->nr.dirty += stat.nr_dirty;
2188 sc->nr.congested += stat.nr_congested;
2189 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2190 sc->nr.writeback += stat.nr_writeback;
2191 sc->nr.immediate += stat.nr_immediate;
2192 sc->nr.taken += nr_taken;
2193 if (file)
2194 sc->nr.file_taken += nr_taken;
2195
2196 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2197 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2198 return nr_reclaimed;
2199 }
2200
2201 /*
2202 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2203 *
2204 * We move them the other way if the page is referenced by one or more
2205 * processes.
2206 *
2207 * If the pages are mostly unmapped, the processing is fast and it is
2208 * appropriate to hold lru_lock across the whole operation. But if
2209 * the pages are mapped, the processing is slow (page_referenced()), so
2210 * we should drop lru_lock around each page. It's impossible to balance
2211 * this, so instead we remove the pages from the LRU while processing them.
2212 * It is safe to rely on PG_active against the non-LRU pages in here because
2213 * nobody will play with that bit on a non-LRU page.
2214 *
2215 * The downside is that we have to touch page->_refcount against each page.
2216 * But we had to alter page->flags anyway.
2217 */
2218 static void shrink_active_list(unsigned long nr_to_scan,
2219 struct lruvec *lruvec,
2220 struct scan_control *sc,
2221 enum lru_list lru)
2222 {
2223 unsigned long nr_taken;
2224 unsigned long nr_scanned;
2225 unsigned long vm_flags;
2226 LIST_HEAD(l_hold); /* The pages which were snipped off */
2227 LIST_HEAD(l_active);
2228 LIST_HEAD(l_inactive);
2229 struct page *page;
2230 unsigned nr_deactivate, nr_activate;
2231 unsigned nr_rotated = 0;
2232 int file = is_file_lru(lru);
2233 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2234
2235 lru_add_drain();
2236
2237 spin_lock_irq(&lruvec->lru_lock);
2238
2239 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2240 &nr_scanned, sc, lru);
2241
2242 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2243
2244 if (!cgroup_reclaim(sc))
2245 __count_vm_events(PGREFILL, nr_scanned);
2246 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2247
2248 spin_unlock_irq(&lruvec->lru_lock);
2249
2250 while (!list_empty(&l_hold)) {
2251 cond_resched();
2252 page = lru_to_page(&l_hold);
2253 list_del(&page->lru);
2254
2255 if (unlikely(!page_evictable(page))) {
2256 putback_lru_page(page);
2257 continue;
2258 }
2259
2260 if (unlikely(buffer_heads_over_limit)) {
2261 if (page_has_private(page) && trylock_page(page)) {
2262 if (page_has_private(page))
2263 try_to_release_page(page, 0);
2264 unlock_page(page);
2265 }
2266 }
2267
2268 if (page_referenced(page, 0, sc->target_mem_cgroup,
2269 &vm_flags)) {
2270 /*
2271 * Identify referenced, file-backed active pages and
2272 * give them one more trip around the active list. So
2273 * that executable code get better chances to stay in
2274 * memory under moderate memory pressure. Anon pages
2275 * are not likely to be evicted by use-once streaming
2276 * IO, plus JVM can create lots of anon VM_EXEC pages,
2277 * so we ignore them here.
2278 */
2279 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2280 nr_rotated += thp_nr_pages(page);
2281 list_add(&page->lru, &l_active);
2282 continue;
2283 }
2284 }
2285
2286 ClearPageActive(page); /* we are de-activating */
2287 SetPageWorkingset(page);
2288 list_add(&page->lru, &l_inactive);
2289 }
2290
2291 /*
2292 * Move pages back to the lru list.
2293 */
2294 spin_lock_irq(&lruvec->lru_lock);
2295
2296 nr_activate = move_pages_to_lru(lruvec, &l_active);
2297 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2298 /* Keep all free pages in l_active list */
2299 list_splice(&l_inactive, &l_active);
2300
2301 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2302 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2303
2304 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2305 spin_unlock_irq(&lruvec->lru_lock);
2306
2307 mem_cgroup_uncharge_list(&l_active);
2308 free_unref_page_list(&l_active);
2309 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2310 nr_deactivate, nr_rotated, sc->priority, file);
2311 }
2312
2313 unsigned long reclaim_pages(struct list_head *page_list)
2314 {
2315 int nid = NUMA_NO_NODE;
2316 unsigned int nr_reclaimed = 0;
2317 LIST_HEAD(node_page_list);
2318 struct reclaim_stat dummy_stat;
2319 struct page *page;
2320 unsigned int noreclaim_flag;
2321 struct scan_control sc = {
2322 .gfp_mask = GFP_KERNEL,
2323 .priority = DEF_PRIORITY,
2324 .may_writepage = 1,
2325 .may_unmap = 1,
2326 .may_swap = 1,
2327 };
2328
2329 noreclaim_flag = memalloc_noreclaim_save();
2330
2331 while (!list_empty(page_list)) {
2332 page = lru_to_page(page_list);
2333 if (nid == NUMA_NO_NODE) {
2334 nid = page_to_nid(page);
2335 INIT_LIST_HEAD(&node_page_list);
2336 }
2337
2338 if (nid == page_to_nid(page)) {
2339 ClearPageActive(page);
2340 list_move(&page->lru, &node_page_list);
2341 continue;
2342 }
2343
2344 nr_reclaimed += shrink_page_list(&node_page_list,
2345 NODE_DATA(nid),
2346 &sc, &dummy_stat, false);
2347 while (!list_empty(&node_page_list)) {
2348 page = lru_to_page(&node_page_list);
2349 list_del(&page->lru);
2350 putback_lru_page(page);
2351 }
2352
2353 nid = NUMA_NO_NODE;
2354 }
2355
2356 if (!list_empty(&node_page_list)) {
2357 nr_reclaimed += shrink_page_list(&node_page_list,
2358 NODE_DATA(nid),
2359 &sc, &dummy_stat, false);
2360 while (!list_empty(&node_page_list)) {
2361 page = lru_to_page(&node_page_list);
2362 list_del(&page->lru);
2363 putback_lru_page(page);
2364 }
2365 }
2366
2367 memalloc_noreclaim_restore(noreclaim_flag);
2368
2369 return nr_reclaimed;
2370 }
2371
2372 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2373 struct lruvec *lruvec, struct scan_control *sc)
2374 {
2375 if (is_active_lru(lru)) {
2376 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2377 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2378 else
2379 sc->skipped_deactivate = 1;
2380 return 0;
2381 }
2382
2383 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2384 }
2385
2386 /*
2387 * The inactive anon list should be small enough that the VM never has
2388 * to do too much work.
2389 *
2390 * The inactive file list should be small enough to leave most memory
2391 * to the established workingset on the scan-resistant active list,
2392 * but large enough to avoid thrashing the aggregate readahead window.
2393 *
2394 * Both inactive lists should also be large enough that each inactive
2395 * page has a chance to be referenced again before it is reclaimed.
2396 *
2397 * If that fails and refaulting is observed, the inactive list grows.
2398 *
2399 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2400 * on this LRU, maintained by the pageout code. An inactive_ratio
2401 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2402 *
2403 * total target max
2404 * memory ratio inactive
2405 * -------------------------------------
2406 * 10MB 1 5MB
2407 * 100MB 1 50MB
2408 * 1GB 3 250MB
2409 * 10GB 10 0.9GB
2410 * 100GB 31 3GB
2411 * 1TB 101 10GB
2412 * 10TB 320 32GB
2413 */
2414 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2415 {
2416 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2417 unsigned long inactive, active;
2418 unsigned long inactive_ratio;
2419 unsigned long gb;
2420
2421 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2422 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2423
2424 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2425 if (gb)
2426 inactive_ratio = int_sqrt(10 * gb);
2427 else
2428 inactive_ratio = 1;
2429
2430 return inactive * inactive_ratio < active;
2431 }
2432
2433 enum scan_balance {
2434 SCAN_EQUAL,
2435 SCAN_FRACT,
2436 SCAN_ANON,
2437 SCAN_FILE,
2438 };
2439
2440 /*
2441 * Determine how aggressively the anon and file LRU lists should be
2442 * scanned. The relative value of each set of LRU lists is determined
2443 * by looking at the fraction of the pages scanned we did rotate back
2444 * onto the active list instead of evict.
2445 *
2446 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2447 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2448 */
2449 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2450 unsigned long *nr)
2451 {
2452 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2453 unsigned long anon_cost, file_cost, total_cost;
2454 int swappiness = mem_cgroup_swappiness(memcg);
2455 u64 fraction[ANON_AND_FILE];
2456 u64 denominator = 0; /* gcc */
2457 enum scan_balance scan_balance;
2458 unsigned long ap, fp;
2459 enum lru_list lru;
2460
2461 /* If we have no swap space, do not bother scanning anon pages. */
2462 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2463 scan_balance = SCAN_FILE;
2464 goto out;
2465 }
2466
2467 /*
2468 * Global reclaim will swap to prevent OOM even with no
2469 * swappiness, but memcg users want to use this knob to
2470 * disable swapping for individual groups completely when
2471 * using the memory controller's swap limit feature would be
2472 * too expensive.
2473 */
2474 if (cgroup_reclaim(sc) && !swappiness) {
2475 scan_balance = SCAN_FILE;
2476 goto out;
2477 }
2478
2479 /*
2480 * Do not apply any pressure balancing cleverness when the
2481 * system is close to OOM, scan both anon and file equally
2482 * (unless the swappiness setting disagrees with swapping).
2483 */
2484 if (!sc->priority && swappiness) {
2485 scan_balance = SCAN_EQUAL;
2486 goto out;
2487 }
2488
2489 /*
2490 * If the system is almost out of file pages, force-scan anon.
2491 */
2492 if (sc->file_is_tiny) {
2493 scan_balance = SCAN_ANON;
2494 goto out;
2495 }
2496
2497 /*
2498 * If there is enough inactive page cache, we do not reclaim
2499 * anything from the anonymous working right now.
2500 */
2501 if (sc->cache_trim_mode) {
2502 scan_balance = SCAN_FILE;
2503 goto out;
2504 }
2505
2506 scan_balance = SCAN_FRACT;
2507 /*
2508 * Calculate the pressure balance between anon and file pages.
2509 *
2510 * The amount of pressure we put on each LRU is inversely
2511 * proportional to the cost of reclaiming each list, as
2512 * determined by the share of pages that are refaulting, times
2513 * the relative IO cost of bringing back a swapped out
2514 * anonymous page vs reloading a filesystem page (swappiness).
2515 *
2516 * Although we limit that influence to ensure no list gets
2517 * left behind completely: at least a third of the pressure is
2518 * applied, before swappiness.
2519 *
2520 * With swappiness at 100, anon and file have equal IO cost.
2521 */
2522 total_cost = sc->anon_cost + sc->file_cost;
2523 anon_cost = total_cost + sc->anon_cost;
2524 file_cost = total_cost + sc->file_cost;
2525 total_cost = anon_cost + file_cost;
2526
2527 ap = swappiness * (total_cost + 1);
2528 ap /= anon_cost + 1;
2529
2530 fp = (200 - swappiness) * (total_cost + 1);
2531 fp /= file_cost + 1;
2532
2533 fraction[0] = ap;
2534 fraction[1] = fp;
2535 denominator = ap + fp;
2536 out:
2537 for_each_evictable_lru(lru) {
2538 int file = is_file_lru(lru);
2539 unsigned long lruvec_size;
2540 unsigned long scan;
2541 unsigned long protection;
2542
2543 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2544 protection = mem_cgroup_protection(sc->target_mem_cgroup,
2545 memcg,
2546 sc->memcg_low_reclaim);
2547
2548 if (protection) {
2549 /*
2550 * Scale a cgroup's reclaim pressure by proportioning
2551 * its current usage to its memory.low or memory.min
2552 * setting.
2553 *
2554 * This is important, as otherwise scanning aggression
2555 * becomes extremely binary -- from nothing as we
2556 * approach the memory protection threshold, to totally
2557 * nominal as we exceed it. This results in requiring
2558 * setting extremely liberal protection thresholds. It
2559 * also means we simply get no protection at all if we
2560 * set it too low, which is not ideal.
2561 *
2562 * If there is any protection in place, we reduce scan
2563 * pressure by how much of the total memory used is
2564 * within protection thresholds.
2565 *
2566 * There is one special case: in the first reclaim pass,
2567 * we skip over all groups that are within their low
2568 * protection. If that fails to reclaim enough pages to
2569 * satisfy the reclaim goal, we come back and override
2570 * the best-effort low protection. However, we still
2571 * ideally want to honor how well-behaved groups are in
2572 * that case instead of simply punishing them all
2573 * equally. As such, we reclaim them based on how much
2574 * memory they are using, reducing the scan pressure
2575 * again by how much of the total memory used is under
2576 * hard protection.
2577 */
2578 unsigned long cgroup_size = mem_cgroup_size(memcg);
2579
2580 /* Avoid TOCTOU with earlier protection check */
2581 cgroup_size = max(cgroup_size, protection);
2582
2583 scan = lruvec_size - lruvec_size * protection /
2584 cgroup_size;
2585
2586 /*
2587 * Minimally target SWAP_CLUSTER_MAX pages to keep
2588 * reclaim moving forwards, avoiding decrementing
2589 * sc->priority further than desirable.
2590 */
2591 scan = max(scan, SWAP_CLUSTER_MAX);
2592 } else {
2593 scan = lruvec_size;
2594 }
2595
2596 scan >>= sc->priority;
2597
2598 /*
2599 * If the cgroup's already been deleted, make sure to
2600 * scrape out the remaining cache.
2601 */
2602 if (!scan && !mem_cgroup_online(memcg))
2603 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2604
2605 switch (scan_balance) {
2606 case SCAN_EQUAL:
2607 /* Scan lists relative to size */
2608 break;
2609 case SCAN_FRACT:
2610 /*
2611 * Scan types proportional to swappiness and
2612 * their relative recent reclaim efficiency.
2613 * Make sure we don't miss the last page on
2614 * the offlined memory cgroups because of a
2615 * round-off error.
2616 */
2617 scan = mem_cgroup_online(memcg) ?
2618 div64_u64(scan * fraction[file], denominator) :
2619 DIV64_U64_ROUND_UP(scan * fraction[file],
2620 denominator);
2621 break;
2622 case SCAN_FILE:
2623 case SCAN_ANON:
2624 /* Scan one type exclusively */
2625 if ((scan_balance == SCAN_FILE) != file)
2626 scan = 0;
2627 break;
2628 default:
2629 /* Look ma, no brain */
2630 BUG();
2631 }
2632
2633 nr[lru] = scan;
2634 }
2635 }
2636
2637 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2638 {
2639 unsigned long nr[NR_LRU_LISTS];
2640 unsigned long targets[NR_LRU_LISTS];
2641 unsigned long nr_to_scan;
2642 enum lru_list lru;
2643 unsigned long nr_reclaimed = 0;
2644 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2645 struct blk_plug plug;
2646 bool scan_adjusted;
2647
2648 get_scan_count(lruvec, sc, nr);
2649
2650 /* Record the original scan target for proportional adjustments later */
2651 memcpy(targets, nr, sizeof(nr));
2652
2653 /*
2654 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2655 * event that can occur when there is little memory pressure e.g.
2656 * multiple streaming readers/writers. Hence, we do not abort scanning
2657 * when the requested number of pages are reclaimed when scanning at
2658 * DEF_PRIORITY on the assumption that the fact we are direct
2659 * reclaiming implies that kswapd is not keeping up and it is best to
2660 * do a batch of work at once. For memcg reclaim one check is made to
2661 * abort proportional reclaim if either the file or anon lru has already
2662 * dropped to zero at the first pass.
2663 */
2664 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2665 sc->priority == DEF_PRIORITY);
2666
2667 blk_start_plug(&plug);
2668 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2669 nr[LRU_INACTIVE_FILE]) {
2670 unsigned long nr_anon, nr_file, percentage;
2671 unsigned long nr_scanned;
2672
2673 for_each_evictable_lru(lru) {
2674 if (nr[lru]) {
2675 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2676 nr[lru] -= nr_to_scan;
2677
2678 nr_reclaimed += shrink_list(lru, nr_to_scan,
2679 lruvec, sc);
2680 }
2681 }
2682
2683 cond_resched();
2684
2685 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2686 continue;
2687
2688 /*
2689 * For kswapd and memcg, reclaim at least the number of pages
2690 * requested. Ensure that the anon and file LRUs are scanned
2691 * proportionally what was requested by get_scan_count(). We
2692 * stop reclaiming one LRU and reduce the amount scanning
2693 * proportional to the original scan target.
2694 */
2695 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2696 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2697
2698 /*
2699 * It's just vindictive to attack the larger once the smaller
2700 * has gone to zero. And given the way we stop scanning the
2701 * smaller below, this makes sure that we only make one nudge
2702 * towards proportionality once we've got nr_to_reclaim.
2703 */
2704 if (!nr_file || !nr_anon)
2705 break;
2706
2707 if (nr_file > nr_anon) {
2708 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2709 targets[LRU_ACTIVE_ANON] + 1;
2710 lru = LRU_BASE;
2711 percentage = nr_anon * 100 / scan_target;
2712 } else {
2713 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2714 targets[LRU_ACTIVE_FILE] + 1;
2715 lru = LRU_FILE;
2716 percentage = nr_file * 100 / scan_target;
2717 }
2718
2719 /* Stop scanning the smaller of the LRU */
2720 nr[lru] = 0;
2721 nr[lru + LRU_ACTIVE] = 0;
2722
2723 /*
2724 * Recalculate the other LRU scan count based on its original
2725 * scan target and the percentage scanning already complete
2726 */
2727 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2728 nr_scanned = targets[lru] - nr[lru];
2729 nr[lru] = targets[lru] * (100 - percentage) / 100;
2730 nr[lru] -= min(nr[lru], nr_scanned);
2731
2732 lru += LRU_ACTIVE;
2733 nr_scanned = targets[lru] - nr[lru];
2734 nr[lru] = targets[lru] * (100 - percentage) / 100;
2735 nr[lru] -= min(nr[lru], nr_scanned);
2736
2737 scan_adjusted = true;
2738 }
2739 blk_finish_plug(&plug);
2740 sc->nr_reclaimed += nr_reclaimed;
2741
2742 /*
2743 * Even if we did not try to evict anon pages at all, we want to
2744 * rebalance the anon lru active/inactive ratio.
2745 */
2746 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2747 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2748 sc, LRU_ACTIVE_ANON);
2749 }
2750
2751 /* Use reclaim/compaction for costly allocs or under memory pressure */
2752 static bool in_reclaim_compaction(struct scan_control *sc)
2753 {
2754 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2755 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2756 sc->priority < DEF_PRIORITY - 2))
2757 return true;
2758
2759 return false;
2760 }
2761
2762 /*
2763 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2764 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2765 * true if more pages should be reclaimed such that when the page allocator
2766 * calls try_to_compact_pages() that it will have enough free pages to succeed.
2767 * It will give up earlier than that if there is difficulty reclaiming pages.
2768 */
2769 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2770 unsigned long nr_reclaimed,
2771 struct scan_control *sc)
2772 {
2773 unsigned long pages_for_compaction;
2774 unsigned long inactive_lru_pages;
2775 int z;
2776
2777 /* If not in reclaim/compaction mode, stop */
2778 if (!in_reclaim_compaction(sc))
2779 return false;
2780
2781 /*
2782 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2783 * number of pages that were scanned. This will return to the caller
2784 * with the risk reclaim/compaction and the resulting allocation attempt
2785 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2786 * allocations through requiring that the full LRU list has been scanned
2787 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2788 * scan, but that approximation was wrong, and there were corner cases
2789 * where always a non-zero amount of pages were scanned.
2790 */
2791 if (!nr_reclaimed)
2792 return false;
2793
2794 /* If compaction would go ahead or the allocation would succeed, stop */
2795 for (z = 0; z <= sc->reclaim_idx; z++) {
2796 struct zone *zone = &pgdat->node_zones[z];
2797 if (!managed_zone(zone))
2798 continue;
2799
2800 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2801 case COMPACT_SUCCESS:
2802 case COMPACT_CONTINUE:
2803 return false;
2804 default:
2805 /* check next zone */
2806 ;
2807 }
2808 }
2809
2810 /*
2811 * If we have not reclaimed enough pages for compaction and the
2812 * inactive lists are large enough, continue reclaiming
2813 */
2814 pages_for_compaction = compact_gap(sc->order);
2815 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2816 if (get_nr_swap_pages() > 0)
2817 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2818
2819 return inactive_lru_pages > pages_for_compaction;
2820 }
2821
2822 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2823 {
2824 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2825 struct mem_cgroup *memcg;
2826
2827 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2828 do {
2829 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2830 unsigned long reclaimed;
2831 unsigned long scanned;
2832
2833 /*
2834 * This loop can become CPU-bound when target memcgs
2835 * aren't eligible for reclaim - either because they
2836 * don't have any reclaimable pages, or because their
2837 * memory is explicitly protected. Avoid soft lockups.
2838 */
2839 cond_resched();
2840
2841 mem_cgroup_calculate_protection(target_memcg, memcg);
2842
2843 if (mem_cgroup_below_min(memcg)) {
2844 /*
2845 * Hard protection.
2846 * If there is no reclaimable memory, OOM.
2847 */
2848 continue;
2849 } else if (mem_cgroup_below_low(memcg)) {
2850 /*
2851 * Soft protection.
2852 * Respect the protection only as long as
2853 * there is an unprotected supply
2854 * of reclaimable memory from other cgroups.
2855 */
2856 if (!sc->memcg_low_reclaim) {
2857 sc->memcg_low_skipped = 1;
2858 continue;
2859 }
2860 memcg_memory_event(memcg, MEMCG_LOW);
2861 }
2862
2863 reclaimed = sc->nr_reclaimed;
2864 scanned = sc->nr_scanned;
2865
2866 shrink_lruvec(lruvec, sc);
2867
2868 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2869 sc->priority);
2870
2871 /* Record the group's reclaim efficiency */
2872 vmpressure(sc->gfp_mask, memcg, false,
2873 sc->nr_scanned - scanned,
2874 sc->nr_reclaimed - reclaimed);
2875
2876 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2877 }
2878
2879 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2880 {
2881 struct reclaim_state *reclaim_state = current->reclaim_state;
2882 unsigned long nr_reclaimed, nr_scanned;
2883 struct lruvec *target_lruvec;
2884 bool reclaimable = false;
2885 unsigned long file;
2886
2887 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2888
2889 again:
2890 memset(&sc->nr, 0, sizeof(sc->nr));
2891
2892 nr_reclaimed = sc->nr_reclaimed;
2893 nr_scanned = sc->nr_scanned;
2894
2895 /*
2896 * Determine the scan balance between anon and file LRUs.
2897 */
2898 spin_lock_irq(&target_lruvec->lru_lock);
2899 sc->anon_cost = target_lruvec->anon_cost;
2900 sc->file_cost = target_lruvec->file_cost;
2901 spin_unlock_irq(&target_lruvec->lru_lock);
2902
2903 /*
2904 * Target desirable inactive:active list ratios for the anon
2905 * and file LRU lists.
2906 */
2907 if (!sc->force_deactivate) {
2908 unsigned long refaults;
2909
2910 refaults = lruvec_page_state(target_lruvec,
2911 WORKINGSET_ACTIVATE_ANON);
2912 if (refaults != target_lruvec->refaults[0] ||
2913 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2914 sc->may_deactivate |= DEACTIVATE_ANON;
2915 else
2916 sc->may_deactivate &= ~DEACTIVATE_ANON;
2917
2918 /*
2919 * When refaults are being observed, it means a new
2920 * workingset is being established. Deactivate to get
2921 * rid of any stale active pages quickly.
2922 */
2923 refaults = lruvec_page_state(target_lruvec,
2924 WORKINGSET_ACTIVATE_FILE);
2925 if (refaults != target_lruvec->refaults[1] ||
2926 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2927 sc->may_deactivate |= DEACTIVATE_FILE;
2928 else
2929 sc->may_deactivate &= ~DEACTIVATE_FILE;
2930 } else
2931 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2932
2933 /*
2934 * If we have plenty of inactive file pages that aren't
2935 * thrashing, try to reclaim those first before touching
2936 * anonymous pages.
2937 */
2938 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2939 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2940 sc->cache_trim_mode = 1;
2941 else
2942 sc->cache_trim_mode = 0;
2943
2944 /*
2945 * Prevent the reclaimer from falling into the cache trap: as
2946 * cache pages start out inactive, every cache fault will tip
2947 * the scan balance towards the file LRU. And as the file LRU
2948 * shrinks, so does the window for rotation from references.
2949 * This means we have a runaway feedback loop where a tiny
2950 * thrashing file LRU becomes infinitely more attractive than
2951 * anon pages. Try to detect this based on file LRU size.
2952 */
2953 if (!cgroup_reclaim(sc)) {
2954 unsigned long total_high_wmark = 0;
2955 unsigned long free, anon;
2956 int z;
2957
2958 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2959 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2960 node_page_state(pgdat, NR_INACTIVE_FILE);
2961
2962 for (z = 0; z < MAX_NR_ZONES; z++) {
2963 struct zone *zone = &pgdat->node_zones[z];
2964 if (!managed_zone(zone))
2965 continue;
2966
2967 total_high_wmark += high_wmark_pages(zone);
2968 }
2969
2970 /*
2971 * Consider anon: if that's low too, this isn't a
2972 * runaway file reclaim problem, but rather just
2973 * extreme pressure. Reclaim as per usual then.
2974 */
2975 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2976
2977 sc->file_is_tiny =
2978 file + free <= total_high_wmark &&
2979 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2980 anon >> sc->priority;
2981 }
2982
2983 shrink_node_memcgs(pgdat, sc);
2984
2985 if (reclaim_state) {
2986 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2987 reclaim_state->reclaimed_slab = 0;
2988 }
2989
2990 /* Record the subtree's reclaim efficiency */
2991 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2992 sc->nr_scanned - nr_scanned,
2993 sc->nr_reclaimed - nr_reclaimed);
2994
2995 if (sc->nr_reclaimed - nr_reclaimed)
2996 reclaimable = true;
2997
2998 if (current_is_kswapd()) {
2999 /*
3000 * If reclaim is isolating dirty pages under writeback,
3001 * it implies that the long-lived page allocation rate
3002 * is exceeding the page laundering rate. Either the
3003 * global limits are not being effective at throttling
3004 * processes due to the page distribution throughout
3005 * zones or there is heavy usage of a slow backing
3006 * device. The only option is to throttle from reclaim
3007 * context which is not ideal as there is no guarantee
3008 * the dirtying process is throttled in the same way
3009 * balance_dirty_pages() manages.
3010 *
3011 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3012 * count the number of pages under pages flagged for
3013 * immediate reclaim and stall if any are encountered
3014 * in the nr_immediate check below.
3015 */
3016 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3017 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3018
3019 /* Allow kswapd to start writing pages during reclaim.*/
3020 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3021 set_bit(PGDAT_DIRTY, &pgdat->flags);
3022
3023 /*
3024 * If kswapd scans pages marked for immediate
3025 * reclaim and under writeback (nr_immediate), it
3026 * implies that pages are cycling through the LRU
3027 * faster than they are written so also forcibly stall.
3028 */
3029 if (sc->nr.immediate)
3030 congestion_wait(BLK_RW_ASYNC, HZ/10);
3031 }
3032
3033 /*
3034 * Tag a node/memcg as congested if all the dirty pages
3035 * scanned were backed by a congested BDI and
3036 * wait_iff_congested will stall.
3037 *
3038 * Legacy memcg will stall in page writeback so avoid forcibly
3039 * stalling in wait_iff_congested().
3040 */
3041 if ((current_is_kswapd() ||
3042 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3043 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3044 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3045
3046 /*
3047 * Stall direct reclaim for IO completions if underlying BDIs
3048 * and node is congested. Allow kswapd to continue until it
3049 * starts encountering unqueued dirty pages or cycling through
3050 * the LRU too quickly.
3051 */
3052 if (!current_is_kswapd() && current_may_throttle() &&
3053 !sc->hibernation_mode &&
3054 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3055 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
3056
3057 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3058 sc))
3059 goto again;
3060
3061 /*
3062 * Kswapd gives up on balancing particular nodes after too
3063 * many failures to reclaim anything from them and goes to
3064 * sleep. On reclaim progress, reset the failure counter. A
3065 * successful direct reclaim run will revive a dormant kswapd.
3066 */
3067 if (reclaimable)
3068 pgdat->kswapd_failures = 0;
3069 }
3070
3071 /*
3072 * Returns true if compaction should go ahead for a costly-order request, or
3073 * the allocation would already succeed without compaction. Return false if we
3074 * should reclaim first.
3075 */
3076 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3077 {
3078 unsigned long watermark;
3079 enum compact_result suitable;
3080
3081 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3082 if (suitable == COMPACT_SUCCESS)
3083 /* Allocation should succeed already. Don't reclaim. */
3084 return true;
3085 if (suitable == COMPACT_SKIPPED)
3086 /* Compaction cannot yet proceed. Do reclaim. */
3087 return false;
3088
3089 /*
3090 * Compaction is already possible, but it takes time to run and there
3091 * are potentially other callers using the pages just freed. So proceed
3092 * with reclaim to make a buffer of free pages available to give
3093 * compaction a reasonable chance of completing and allocating the page.
3094 * Note that we won't actually reclaim the whole buffer in one attempt
3095 * as the target watermark in should_continue_reclaim() is lower. But if
3096 * we are already above the high+gap watermark, don't reclaim at all.
3097 */
3098 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3099
3100 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3101 }
3102
3103 /*
3104 * This is the direct reclaim path, for page-allocating processes. We only
3105 * try to reclaim pages from zones which will satisfy the caller's allocation
3106 * request.
3107 *
3108 * If a zone is deemed to be full of pinned pages then just give it a light
3109 * scan then give up on it.
3110 */
3111 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3112 {
3113 struct zoneref *z;
3114 struct zone *zone;
3115 unsigned long nr_soft_reclaimed;
3116 unsigned long nr_soft_scanned;
3117 gfp_t orig_mask;
3118 pg_data_t *last_pgdat = NULL;
3119
3120 /*
3121 * If the number of buffer_heads in the machine exceeds the maximum
3122 * allowed level, force direct reclaim to scan the highmem zone as
3123 * highmem pages could be pinning lowmem pages storing buffer_heads
3124 */
3125 orig_mask = sc->gfp_mask;
3126 if (buffer_heads_over_limit) {
3127 sc->gfp_mask |= __GFP_HIGHMEM;
3128 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3129 }
3130
3131 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3132 sc->reclaim_idx, sc->nodemask) {
3133 /*
3134 * Take care memory controller reclaiming has small influence
3135 * to global LRU.
3136 */
3137 if (!cgroup_reclaim(sc)) {
3138 if (!cpuset_zone_allowed(zone,
3139 GFP_KERNEL | __GFP_HARDWALL))
3140 continue;
3141
3142 /*
3143 * If we already have plenty of memory free for
3144 * compaction in this zone, don't free any more.
3145 * Even though compaction is invoked for any
3146 * non-zero order, only frequent costly order
3147 * reclamation is disruptive enough to become a
3148 * noticeable problem, like transparent huge
3149 * page allocations.
3150 */
3151 if (IS_ENABLED(CONFIG_COMPACTION) &&
3152 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3153 compaction_ready(zone, sc)) {
3154 sc->compaction_ready = true;
3155 continue;
3156 }
3157
3158 /*
3159 * Shrink each node in the zonelist once. If the
3160 * zonelist is ordered by zone (not the default) then a
3161 * node may be shrunk multiple times but in that case
3162 * the user prefers lower zones being preserved.
3163 */
3164 if (zone->zone_pgdat == last_pgdat)
3165 continue;
3166
3167 /*
3168 * This steals pages from memory cgroups over softlimit
3169 * and returns the number of reclaimed pages and
3170 * scanned pages. This works for global memory pressure
3171 * and balancing, not for a memcg's limit.
3172 */
3173 nr_soft_scanned = 0;
3174 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3175 sc->order, sc->gfp_mask,
3176 &nr_soft_scanned);
3177 sc->nr_reclaimed += nr_soft_reclaimed;
3178 sc->nr_scanned += nr_soft_scanned;
3179 /* need some check for avoid more shrink_zone() */
3180 }
3181
3182 /* See comment about same check for global reclaim above */
3183 if (zone->zone_pgdat == last_pgdat)
3184 continue;
3185 last_pgdat = zone->zone_pgdat;
3186 shrink_node(zone->zone_pgdat, sc);
3187 }
3188
3189 /*
3190 * Restore to original mask to avoid the impact on the caller if we
3191 * promoted it to __GFP_HIGHMEM.
3192 */
3193 sc->gfp_mask = orig_mask;
3194 }
3195
3196 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3197 {
3198 struct lruvec *target_lruvec;
3199 unsigned long refaults;
3200
3201 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3202 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3203 target_lruvec->refaults[0] = refaults;
3204 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3205 target_lruvec->refaults[1] = refaults;
3206 }
3207
3208 /*
3209 * This is the main entry point to direct page reclaim.
3210 *
3211 * If a full scan of the inactive list fails to free enough memory then we
3212 * are "out of memory" and something needs to be killed.
3213 *
3214 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3215 * high - the zone may be full of dirty or under-writeback pages, which this
3216 * caller can't do much about. We kick the writeback threads and take explicit
3217 * naps in the hope that some of these pages can be written. But if the
3218 * allocating task holds filesystem locks which prevent writeout this might not
3219 * work, and the allocation attempt will fail.
3220 *
3221 * returns: 0, if no pages reclaimed
3222 * else, the number of pages reclaimed
3223 */
3224 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3225 struct scan_control *sc)
3226 {
3227 int initial_priority = sc->priority;
3228 pg_data_t *last_pgdat;
3229 struct zoneref *z;
3230 struct zone *zone;
3231 retry:
3232 delayacct_freepages_start();
3233
3234 if (!cgroup_reclaim(sc))
3235 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3236
3237 do {
3238 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3239 sc->priority);
3240 sc->nr_scanned = 0;
3241 shrink_zones(zonelist, sc);
3242
3243 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3244 break;
3245
3246 if (sc->compaction_ready)
3247 break;
3248
3249 /*
3250 * If we're getting trouble reclaiming, start doing
3251 * writepage even in laptop mode.
3252 */
3253 if (sc->priority < DEF_PRIORITY - 2)
3254 sc->may_writepage = 1;
3255 } while (--sc->priority >= 0);
3256
3257 last_pgdat = NULL;
3258 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3259 sc->nodemask) {
3260 if (zone->zone_pgdat == last_pgdat)
3261 continue;
3262 last_pgdat = zone->zone_pgdat;
3263
3264 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3265
3266 if (cgroup_reclaim(sc)) {
3267 struct lruvec *lruvec;
3268
3269 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3270 zone->zone_pgdat);
3271 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3272 }
3273 }
3274
3275 delayacct_freepages_end();
3276
3277 if (sc->nr_reclaimed)
3278 return sc->nr_reclaimed;
3279
3280 /* Aborted reclaim to try compaction? don't OOM, then */
3281 if (sc->compaction_ready)
3282 return 1;
3283
3284 /*
3285 * We make inactive:active ratio decisions based on the node's
3286 * composition of memory, but a restrictive reclaim_idx or a
3287 * memory.low cgroup setting can exempt large amounts of
3288 * memory from reclaim. Neither of which are very common, so
3289 * instead of doing costly eligibility calculations of the
3290 * entire cgroup subtree up front, we assume the estimates are
3291 * good, and retry with forcible deactivation if that fails.
3292 */
3293 if (sc->skipped_deactivate) {
3294 sc->priority = initial_priority;
3295 sc->force_deactivate = 1;
3296 sc->skipped_deactivate = 0;
3297 goto retry;
3298 }
3299
3300 /* Untapped cgroup reserves? Don't OOM, retry. */
3301 if (sc->memcg_low_skipped) {
3302 sc->priority = initial_priority;
3303 sc->force_deactivate = 0;
3304 sc->memcg_low_reclaim = 1;
3305 sc->memcg_low_skipped = 0;
3306 goto retry;
3307 }
3308
3309 return 0;
3310 }
3311
3312 static bool allow_direct_reclaim(pg_data_t *pgdat)
3313 {
3314 struct zone *zone;
3315 unsigned long pfmemalloc_reserve = 0;
3316 unsigned long free_pages = 0;
3317 int i;
3318 bool wmark_ok;
3319
3320 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3321 return true;
3322
3323 for (i = 0; i <= ZONE_NORMAL; i++) {
3324 zone = &pgdat->node_zones[i];
3325 if (!managed_zone(zone))
3326 continue;
3327
3328 if (!zone_reclaimable_pages(zone))
3329 continue;
3330
3331 pfmemalloc_reserve += min_wmark_pages(zone);
3332 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3333 }
3334
3335 /* If there are no reserves (unexpected config) then do not throttle */
3336 if (!pfmemalloc_reserve)
3337 return true;
3338
3339 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3340
3341 /* kswapd must be awake if processes are being throttled */
3342 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3343 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3344 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3345
3346 wake_up_interruptible(&pgdat->kswapd_wait);
3347 }
3348
3349 return wmark_ok;
3350 }
3351
3352 /*
3353 * Throttle direct reclaimers if backing storage is backed by the network
3354 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3355 * depleted. kswapd will continue to make progress and wake the processes
3356 * when the low watermark is reached.
3357 *
3358 * Returns true if a fatal signal was delivered during throttling. If this
3359 * happens, the page allocator should not consider triggering the OOM killer.
3360 */
3361 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3362 nodemask_t *nodemask)
3363 {
3364 struct zoneref *z;
3365 struct zone *zone;
3366 pg_data_t *pgdat = NULL;
3367
3368 /*
3369 * Kernel threads should not be throttled as they may be indirectly
3370 * responsible for cleaning pages necessary for reclaim to make forward
3371 * progress. kjournald for example may enter direct reclaim while
3372 * committing a transaction where throttling it could forcing other
3373 * processes to block on log_wait_commit().
3374 */
3375 if (current->flags & PF_KTHREAD)
3376 goto out;
3377
3378 /*
3379 * If a fatal signal is pending, this process should not throttle.
3380 * It should return quickly so it can exit and free its memory
3381 */
3382 if (fatal_signal_pending(current))
3383 goto out;
3384
3385 /*
3386 * Check if the pfmemalloc reserves are ok by finding the first node
3387 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3388 * GFP_KERNEL will be required for allocating network buffers when
3389 * swapping over the network so ZONE_HIGHMEM is unusable.
3390 *
3391 * Throttling is based on the first usable node and throttled processes
3392 * wait on a queue until kswapd makes progress and wakes them. There
3393 * is an affinity then between processes waking up and where reclaim
3394 * progress has been made assuming the process wakes on the same node.
3395 * More importantly, processes running on remote nodes will not compete
3396 * for remote pfmemalloc reserves and processes on different nodes
3397 * should make reasonable progress.
3398 */
3399 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3400 gfp_zone(gfp_mask), nodemask) {
3401 if (zone_idx(zone) > ZONE_NORMAL)
3402 continue;
3403
3404 /* Throttle based on the first usable node */
3405 pgdat = zone->zone_pgdat;
3406 if (allow_direct_reclaim(pgdat))
3407 goto out;
3408 break;
3409 }
3410
3411 /* If no zone was usable by the allocation flags then do not throttle */
3412 if (!pgdat)
3413 goto out;
3414
3415 /* Account for the throttling */
3416 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3417
3418 /*
3419 * If the caller cannot enter the filesystem, it's possible that it
3420 * is due to the caller holding an FS lock or performing a journal
3421 * transaction in the case of a filesystem like ext[3|4]. In this case,
3422 * it is not safe to block on pfmemalloc_wait as kswapd could be
3423 * blocked waiting on the same lock. Instead, throttle for up to a
3424 * second before continuing.
3425 */
3426 if (!(gfp_mask & __GFP_FS)) {
3427 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3428 allow_direct_reclaim(pgdat), HZ);
3429
3430 goto check_pending;
3431 }
3432
3433 /* Throttle until kswapd wakes the process */
3434 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3435 allow_direct_reclaim(pgdat));
3436
3437 check_pending:
3438 if (fatal_signal_pending(current))
3439 return true;
3440
3441 out:
3442 return false;
3443 }
3444
3445 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3446 gfp_t gfp_mask, nodemask_t *nodemask)
3447 {
3448 unsigned long nr_reclaimed;
3449 struct scan_control sc = {
3450 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3451 .gfp_mask = current_gfp_context(gfp_mask),
3452 .reclaim_idx = gfp_zone(gfp_mask),
3453 .order = order,
3454 .nodemask = nodemask,
3455 .priority = DEF_PRIORITY,
3456 .may_writepage = !laptop_mode,
3457 .may_unmap = 1,
3458 .may_swap = 1,
3459 };
3460
3461 /*
3462 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3463 * Confirm they are large enough for max values.
3464 */
3465 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3466 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3467 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3468
3469 /*
3470 * Do not enter reclaim if fatal signal was delivered while throttled.
3471 * 1 is returned so that the page allocator does not OOM kill at this
3472 * point.
3473 */
3474 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3475 return 1;
3476
3477 set_task_reclaim_state(current, &sc.reclaim_state);
3478 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3479
3480 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3481
3482 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3483 set_task_reclaim_state(current, NULL);
3484
3485 return nr_reclaimed;
3486 }
3487
3488 #ifdef CONFIG_MEMCG
3489
3490 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3491 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3492 gfp_t gfp_mask, bool noswap,
3493 pg_data_t *pgdat,
3494 unsigned long *nr_scanned)
3495 {
3496 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3497 struct scan_control sc = {
3498 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3499 .target_mem_cgroup = memcg,
3500 .may_writepage = !laptop_mode,
3501 .may_unmap = 1,
3502 .reclaim_idx = MAX_NR_ZONES - 1,
3503 .may_swap = !noswap,
3504 };
3505
3506 WARN_ON_ONCE(!current->reclaim_state);
3507
3508 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3509 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3510
3511 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3512 sc.gfp_mask);
3513
3514 /*
3515 * NOTE: Although we can get the priority field, using it
3516 * here is not a good idea, since it limits the pages we can scan.
3517 * if we don't reclaim here, the shrink_node from balance_pgdat
3518 * will pick up pages from other mem cgroup's as well. We hack
3519 * the priority and make it zero.
3520 */
3521 shrink_lruvec(lruvec, &sc);
3522
3523 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3524
3525 *nr_scanned = sc.nr_scanned;
3526
3527 return sc.nr_reclaimed;
3528 }
3529
3530 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3531 unsigned long nr_pages,
3532 gfp_t gfp_mask,
3533 bool may_swap)
3534 {
3535 unsigned long nr_reclaimed;
3536 unsigned int noreclaim_flag;
3537 struct scan_control sc = {
3538 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3539 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3540 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3541 .reclaim_idx = MAX_NR_ZONES - 1,
3542 .target_mem_cgroup = memcg,
3543 .priority = DEF_PRIORITY,
3544 .may_writepage = !laptop_mode,
3545 .may_unmap = 1,
3546 .may_swap = may_swap,
3547 };
3548 /*
3549 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3550 * equal pressure on all the nodes. This is based on the assumption that
3551 * the reclaim does not bail out early.
3552 */
3553 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3554
3555 set_task_reclaim_state(current, &sc.reclaim_state);
3556 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3557 noreclaim_flag = memalloc_noreclaim_save();
3558
3559 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3560
3561 memalloc_noreclaim_restore(noreclaim_flag);
3562 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3563 set_task_reclaim_state(current, NULL);
3564
3565 return nr_reclaimed;
3566 }
3567 #endif
3568
3569 static void age_active_anon(struct pglist_data *pgdat,
3570 struct scan_control *sc)
3571 {
3572 struct mem_cgroup *memcg;
3573 struct lruvec *lruvec;
3574
3575 if (!total_swap_pages)
3576 return;
3577
3578 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3579 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3580 return;
3581
3582 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3583 do {
3584 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3585 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3586 sc, LRU_ACTIVE_ANON);
3587 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3588 } while (memcg);
3589 }
3590
3591 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3592 {
3593 int i;
3594 struct zone *zone;
3595
3596 /*
3597 * Check for watermark boosts top-down as the higher zones
3598 * are more likely to be boosted. Both watermarks and boosts
3599 * should not be checked at the same time as reclaim would
3600 * start prematurely when there is no boosting and a lower
3601 * zone is balanced.
3602 */
3603 for (i = highest_zoneidx; i >= 0; i--) {
3604 zone = pgdat->node_zones + i;
3605 if (!managed_zone(zone))
3606 continue;
3607
3608 if (zone->watermark_boost)
3609 return true;
3610 }
3611
3612 return false;
3613 }
3614
3615 /*
3616 * Returns true if there is an eligible zone balanced for the request order
3617 * and highest_zoneidx
3618 */
3619 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3620 {
3621 int i;
3622 unsigned long mark = -1;
3623 struct zone *zone;
3624
3625 /*
3626 * Check watermarks bottom-up as lower zones are more likely to
3627 * meet watermarks.
3628 */
3629 for (i = 0; i <= highest_zoneidx; i++) {
3630 zone = pgdat->node_zones + i;
3631
3632 if (!managed_zone(zone))
3633 continue;
3634
3635 mark = high_wmark_pages(zone);
3636 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3637 return true;
3638 }
3639
3640 /*
3641 * If a node has no populated zone within highest_zoneidx, it does not
3642 * need balancing by definition. This can happen if a zone-restricted
3643 * allocation tries to wake a remote kswapd.
3644 */
3645 if (mark == -1)
3646 return true;
3647
3648 return false;
3649 }
3650
3651 /* Clear pgdat state for congested, dirty or under writeback. */
3652 static void clear_pgdat_congested(pg_data_t *pgdat)
3653 {
3654 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3655
3656 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3657 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3658 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3659 }
3660
3661 /*
3662 * Prepare kswapd for sleeping. This verifies that there are no processes
3663 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3664 *
3665 * Returns true if kswapd is ready to sleep
3666 */
3667 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3668 int highest_zoneidx)
3669 {
3670 /*
3671 * The throttled processes are normally woken up in balance_pgdat() as
3672 * soon as allow_direct_reclaim() is true. But there is a potential
3673 * race between when kswapd checks the watermarks and a process gets
3674 * throttled. There is also a potential race if processes get
3675 * throttled, kswapd wakes, a large process exits thereby balancing the
3676 * zones, which causes kswapd to exit balance_pgdat() before reaching
3677 * the wake up checks. If kswapd is going to sleep, no process should
3678 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3679 * the wake up is premature, processes will wake kswapd and get
3680 * throttled again. The difference from wake ups in balance_pgdat() is
3681 * that here we are under prepare_to_wait().
3682 */
3683 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3684 wake_up_all(&pgdat->pfmemalloc_wait);
3685
3686 /* Hopeless node, leave it to direct reclaim */
3687 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3688 return true;
3689
3690 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3691 clear_pgdat_congested(pgdat);
3692 return true;
3693 }
3694
3695 return false;
3696 }
3697
3698 /*
3699 * kswapd shrinks a node of pages that are at or below the highest usable
3700 * zone that is currently unbalanced.
3701 *
3702 * Returns true if kswapd scanned at least the requested number of pages to
3703 * reclaim or if the lack of progress was due to pages under writeback.
3704 * This is used to determine if the scanning priority needs to be raised.
3705 */
3706 static bool kswapd_shrink_node(pg_data_t *pgdat,
3707 struct scan_control *sc)
3708 {
3709 struct zone *zone;
3710 int z;
3711
3712 /* Reclaim a number of pages proportional to the number of zones */
3713 sc->nr_to_reclaim = 0;
3714 for (z = 0; z <= sc->reclaim_idx; z++) {
3715 zone = pgdat->node_zones + z;
3716 if (!managed_zone(zone))
3717 continue;
3718
3719 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3720 }
3721
3722 /*
3723 * Historically care was taken to put equal pressure on all zones but
3724 * now pressure is applied based on node LRU order.
3725 */
3726 shrink_node(pgdat, sc);
3727
3728 /*
3729 * Fragmentation may mean that the system cannot be rebalanced for
3730 * high-order allocations. If twice the allocation size has been
3731 * reclaimed then recheck watermarks only at order-0 to prevent
3732 * excessive reclaim. Assume that a process requested a high-order
3733 * can direct reclaim/compact.
3734 */
3735 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3736 sc->order = 0;
3737
3738 return sc->nr_scanned >= sc->nr_to_reclaim;
3739 }
3740
3741 /* Page allocator PCP high watermark is lowered if reclaim is active. */
3742 static inline void
3743 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
3744 {
3745 int i;
3746 struct zone *zone;
3747
3748 for (i = 0; i <= highest_zoneidx; i++) {
3749 zone = pgdat->node_zones + i;
3750
3751 if (!managed_zone(zone))
3752 continue;
3753
3754 if (active)
3755 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
3756 else
3757 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
3758 }
3759 }
3760
3761 static inline void
3762 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
3763 {
3764 update_reclaim_active(pgdat, highest_zoneidx, true);
3765 }
3766
3767 static inline void
3768 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
3769 {
3770 update_reclaim_active(pgdat, highest_zoneidx, false);
3771 }
3772
3773 /*
3774 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3775 * that are eligible for use by the caller until at least one zone is
3776 * balanced.
3777 *
3778 * Returns the order kswapd finished reclaiming at.
3779 *
3780 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3781 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3782 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3783 * or lower is eligible for reclaim until at least one usable zone is
3784 * balanced.
3785 */
3786 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3787 {
3788 int i;
3789 unsigned long nr_soft_reclaimed;
3790 unsigned long nr_soft_scanned;
3791 unsigned long pflags;
3792 unsigned long nr_boost_reclaim;
3793 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3794 bool boosted;
3795 struct zone *zone;
3796 struct scan_control sc = {
3797 .gfp_mask = GFP_KERNEL,
3798 .order = order,
3799 .may_unmap = 1,
3800 };
3801
3802 set_task_reclaim_state(current, &sc.reclaim_state);
3803 psi_memstall_enter(&pflags);
3804 __fs_reclaim_acquire();
3805
3806 count_vm_event(PAGEOUTRUN);
3807
3808 /*
3809 * Account for the reclaim boost. Note that the zone boost is left in
3810 * place so that parallel allocations that are near the watermark will
3811 * stall or direct reclaim until kswapd is finished.
3812 */
3813 nr_boost_reclaim = 0;
3814 for (i = 0; i <= highest_zoneidx; i++) {
3815 zone = pgdat->node_zones + i;
3816 if (!managed_zone(zone))
3817 continue;
3818
3819 nr_boost_reclaim += zone->watermark_boost;
3820 zone_boosts[i] = zone->watermark_boost;
3821 }
3822 boosted = nr_boost_reclaim;
3823
3824 restart:
3825 set_reclaim_active(pgdat, highest_zoneidx);
3826 sc.priority = DEF_PRIORITY;
3827 do {
3828 unsigned long nr_reclaimed = sc.nr_reclaimed;
3829 bool raise_priority = true;
3830 bool balanced;
3831 bool ret;
3832
3833 sc.reclaim_idx = highest_zoneidx;
3834
3835 /*
3836 * If the number of buffer_heads exceeds the maximum allowed
3837 * then consider reclaiming from all zones. This has a dual
3838 * purpose -- on 64-bit systems it is expected that
3839 * buffer_heads are stripped during active rotation. On 32-bit
3840 * systems, highmem pages can pin lowmem memory and shrinking
3841 * buffers can relieve lowmem pressure. Reclaim may still not
3842 * go ahead if all eligible zones for the original allocation
3843 * request are balanced to avoid excessive reclaim from kswapd.
3844 */
3845 if (buffer_heads_over_limit) {
3846 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3847 zone = pgdat->node_zones + i;
3848 if (!managed_zone(zone))
3849 continue;
3850
3851 sc.reclaim_idx = i;
3852 break;
3853 }
3854 }
3855
3856 /*
3857 * If the pgdat is imbalanced then ignore boosting and preserve
3858 * the watermarks for a later time and restart. Note that the
3859 * zone watermarks will be still reset at the end of balancing
3860 * on the grounds that the normal reclaim should be enough to
3861 * re-evaluate if boosting is required when kswapd next wakes.
3862 */
3863 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3864 if (!balanced && nr_boost_reclaim) {
3865 nr_boost_reclaim = 0;
3866 goto restart;
3867 }
3868
3869 /*
3870 * If boosting is not active then only reclaim if there are no
3871 * eligible zones. Note that sc.reclaim_idx is not used as
3872 * buffer_heads_over_limit may have adjusted it.
3873 */
3874 if (!nr_boost_reclaim && balanced)
3875 goto out;
3876
3877 /* Limit the priority of boosting to avoid reclaim writeback */
3878 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3879 raise_priority = false;
3880
3881 /*
3882 * Do not writeback or swap pages for boosted reclaim. The
3883 * intent is to relieve pressure not issue sub-optimal IO
3884 * from reclaim context. If no pages are reclaimed, the
3885 * reclaim will be aborted.
3886 */
3887 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3888 sc.may_swap = !nr_boost_reclaim;
3889
3890 /*
3891 * Do some background aging of the anon list, to give
3892 * pages a chance to be referenced before reclaiming. All
3893 * pages are rotated regardless of classzone as this is
3894 * about consistent aging.
3895 */
3896 age_active_anon(pgdat, &sc);
3897
3898 /*
3899 * If we're getting trouble reclaiming, start doing writepage
3900 * even in laptop mode.
3901 */
3902 if (sc.priority < DEF_PRIORITY - 2)
3903 sc.may_writepage = 1;
3904
3905 /* Call soft limit reclaim before calling shrink_node. */
3906 sc.nr_scanned = 0;
3907 nr_soft_scanned = 0;
3908 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3909 sc.gfp_mask, &nr_soft_scanned);
3910 sc.nr_reclaimed += nr_soft_reclaimed;
3911
3912 /*
3913 * There should be no need to raise the scanning priority if
3914 * enough pages are already being scanned that that high
3915 * watermark would be met at 100% efficiency.
3916 */
3917 if (kswapd_shrink_node(pgdat, &sc))
3918 raise_priority = false;
3919
3920 /*
3921 * If the low watermark is met there is no need for processes
3922 * to be throttled on pfmemalloc_wait as they should not be
3923 * able to safely make forward progress. Wake them
3924 */
3925 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3926 allow_direct_reclaim(pgdat))
3927 wake_up_all(&pgdat->pfmemalloc_wait);
3928
3929 /* Check if kswapd should be suspending */
3930 __fs_reclaim_release();
3931 ret = try_to_freeze();
3932 __fs_reclaim_acquire();
3933 if (ret || kthread_should_stop())
3934 break;
3935
3936 /*
3937 * Raise priority if scanning rate is too low or there was no
3938 * progress in reclaiming pages
3939 */
3940 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3941 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3942
3943 /*
3944 * If reclaim made no progress for a boost, stop reclaim as
3945 * IO cannot be queued and it could be an infinite loop in
3946 * extreme circumstances.
3947 */
3948 if (nr_boost_reclaim && !nr_reclaimed)
3949 break;
3950
3951 if (raise_priority || !nr_reclaimed)
3952 sc.priority--;
3953 } while (sc.priority >= 1);
3954
3955 if (!sc.nr_reclaimed)
3956 pgdat->kswapd_failures++;
3957
3958 out:
3959 clear_reclaim_active(pgdat, highest_zoneidx);
3960
3961 /* If reclaim was boosted, account for the reclaim done in this pass */
3962 if (boosted) {
3963 unsigned long flags;
3964
3965 for (i = 0; i <= highest_zoneidx; i++) {
3966 if (!zone_boosts[i])
3967 continue;
3968
3969 /* Increments are under the zone lock */
3970 zone = pgdat->node_zones + i;
3971 spin_lock_irqsave(&zone->lock, flags);
3972 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3973 spin_unlock_irqrestore(&zone->lock, flags);
3974 }
3975
3976 /*
3977 * As there is now likely space, wakeup kcompact to defragment
3978 * pageblocks.
3979 */
3980 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3981 }
3982
3983 snapshot_refaults(NULL, pgdat);
3984 __fs_reclaim_release();
3985 psi_memstall_leave(&pflags);
3986 set_task_reclaim_state(current, NULL);
3987
3988 /*
3989 * Return the order kswapd stopped reclaiming at as
3990 * prepare_kswapd_sleep() takes it into account. If another caller
3991 * entered the allocator slow path while kswapd was awake, order will
3992 * remain at the higher level.
3993 */
3994 return sc.order;
3995 }
3996
3997 /*
3998 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3999 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4000 * not a valid index then either kswapd runs for first time or kswapd couldn't
4001 * sleep after previous reclaim attempt (node is still unbalanced). In that
4002 * case return the zone index of the previous kswapd reclaim cycle.
4003 */
4004 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4005 enum zone_type prev_highest_zoneidx)
4006 {
4007 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4008
4009 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4010 }
4011
4012 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4013 unsigned int highest_zoneidx)
4014 {
4015 long remaining = 0;
4016 DEFINE_WAIT(wait);
4017
4018 if (freezing(current) || kthread_should_stop())
4019 return;
4020
4021 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4022
4023 /*
4024 * Try to sleep for a short interval. Note that kcompactd will only be
4025 * woken if it is possible to sleep for a short interval. This is
4026 * deliberate on the assumption that if reclaim cannot keep an
4027 * eligible zone balanced that it's also unlikely that compaction will
4028 * succeed.
4029 */
4030 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4031 /*
4032 * Compaction records what page blocks it recently failed to
4033 * isolate pages from and skips them in the future scanning.
4034 * When kswapd is going to sleep, it is reasonable to assume
4035 * that pages and compaction may succeed so reset the cache.
4036 */
4037 reset_isolation_suitable(pgdat);
4038
4039 /*
4040 * We have freed the memory, now we should compact it to make
4041 * allocation of the requested order possible.
4042 */
4043 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4044
4045 remaining = schedule_timeout(HZ/10);
4046
4047 /*
4048 * If woken prematurely then reset kswapd_highest_zoneidx and
4049 * order. The values will either be from a wakeup request or
4050 * the previous request that slept prematurely.
4051 */
4052 if (remaining) {
4053 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4054 kswapd_highest_zoneidx(pgdat,
4055 highest_zoneidx));
4056
4057 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4058 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4059 }
4060
4061 finish_wait(&pgdat->kswapd_wait, &wait);
4062 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4063 }
4064
4065 /*
4066 * After a short sleep, check if it was a premature sleep. If not, then
4067 * go fully to sleep until explicitly woken up.
4068 */
4069 if (!remaining &&
4070 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4071 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4072
4073 /*
4074 * vmstat counters are not perfectly accurate and the estimated
4075 * value for counters such as NR_FREE_PAGES can deviate from the
4076 * true value by nr_online_cpus * threshold. To avoid the zone
4077 * watermarks being breached while under pressure, we reduce the
4078 * per-cpu vmstat threshold while kswapd is awake and restore
4079 * them before going back to sleep.
4080 */
4081 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4082
4083 if (!kthread_should_stop())
4084 schedule();
4085
4086 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4087 } else {
4088 if (remaining)
4089 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4090 else
4091 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4092 }
4093 finish_wait(&pgdat->kswapd_wait, &wait);
4094 }
4095
4096 /*
4097 * The background pageout daemon, started as a kernel thread
4098 * from the init process.
4099 *
4100 * This basically trickles out pages so that we have _some_
4101 * free memory available even if there is no other activity
4102 * that frees anything up. This is needed for things like routing
4103 * etc, where we otherwise might have all activity going on in
4104 * asynchronous contexts that cannot page things out.
4105 *
4106 * If there are applications that are active memory-allocators
4107 * (most normal use), this basically shouldn't matter.
4108 */
4109 static int kswapd(void *p)
4110 {
4111 unsigned int alloc_order, reclaim_order;
4112 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4113 pg_data_t *pgdat = (pg_data_t *)p;
4114 struct task_struct *tsk = current;
4115 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4116
4117 if (!cpumask_empty(cpumask))
4118 set_cpus_allowed_ptr(tsk, cpumask);
4119
4120 /*
4121 * Tell the memory management that we're a "memory allocator",
4122 * and that if we need more memory we should get access to it
4123 * regardless (see "__alloc_pages()"). "kswapd" should
4124 * never get caught in the normal page freeing logic.
4125 *
4126 * (Kswapd normally doesn't need memory anyway, but sometimes
4127 * you need a small amount of memory in order to be able to
4128 * page out something else, and this flag essentially protects
4129 * us from recursively trying to free more memory as we're
4130 * trying to free the first piece of memory in the first place).
4131 */
4132 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
4133 set_freezable();
4134
4135 WRITE_ONCE(pgdat->kswapd_order, 0);
4136 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4137 for ( ; ; ) {
4138 bool ret;
4139
4140 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4141 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4142 highest_zoneidx);
4143
4144 kswapd_try_sleep:
4145 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4146 highest_zoneidx);
4147
4148 /* Read the new order and highest_zoneidx */
4149 alloc_order = READ_ONCE(pgdat->kswapd_order);
4150 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4151 highest_zoneidx);
4152 WRITE_ONCE(pgdat->kswapd_order, 0);
4153 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4154
4155 ret = try_to_freeze();
4156 if (kthread_should_stop())
4157 break;
4158
4159 /*
4160 * We can speed up thawing tasks if we don't call balance_pgdat
4161 * after returning from the refrigerator
4162 */
4163 if (ret)
4164 continue;
4165
4166 /*
4167 * Reclaim begins at the requested order but if a high-order
4168 * reclaim fails then kswapd falls back to reclaiming for
4169 * order-0. If that happens, kswapd will consider sleeping
4170 * for the order it finished reclaiming at (reclaim_order)
4171 * but kcompactd is woken to compact for the original
4172 * request (alloc_order).
4173 */
4174 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4175 alloc_order);
4176 reclaim_order = balance_pgdat(pgdat, alloc_order,
4177 highest_zoneidx);
4178 if (reclaim_order < alloc_order)
4179 goto kswapd_try_sleep;
4180 }
4181
4182 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
4183
4184 return 0;
4185 }
4186
4187 /*
4188 * A zone is low on free memory or too fragmented for high-order memory. If
4189 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4190 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4191 * has failed or is not needed, still wake up kcompactd if only compaction is
4192 * needed.
4193 */
4194 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4195 enum zone_type highest_zoneidx)
4196 {
4197 pg_data_t *pgdat;
4198 enum zone_type curr_idx;
4199
4200 if (!managed_zone(zone))
4201 return;
4202
4203 if (!cpuset_zone_allowed(zone, gfp_flags))
4204 return;
4205
4206 pgdat = zone->zone_pgdat;
4207 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4208
4209 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4210 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4211
4212 if (READ_ONCE(pgdat->kswapd_order) < order)
4213 WRITE_ONCE(pgdat->kswapd_order, order);
4214
4215 if (!waitqueue_active(&pgdat->kswapd_wait))
4216 return;
4217
4218 /* Hopeless node, leave it to direct reclaim if possible */
4219 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4220 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4221 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4222 /*
4223 * There may be plenty of free memory available, but it's too
4224 * fragmented for high-order allocations. Wake up kcompactd
4225 * and rely on compaction_suitable() to determine if it's
4226 * needed. If it fails, it will defer subsequent attempts to
4227 * ratelimit its work.
4228 */
4229 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4230 wakeup_kcompactd(pgdat, order, highest_zoneidx);
4231 return;
4232 }
4233
4234 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4235 gfp_flags);
4236 wake_up_interruptible(&pgdat->kswapd_wait);
4237 }
4238
4239 #ifdef CONFIG_HIBERNATION
4240 /*
4241 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4242 * freed pages.
4243 *
4244 * Rather than trying to age LRUs the aim is to preserve the overall
4245 * LRU order by reclaiming preferentially
4246 * inactive > active > active referenced > active mapped
4247 */
4248 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4249 {
4250 struct scan_control sc = {
4251 .nr_to_reclaim = nr_to_reclaim,
4252 .gfp_mask = GFP_HIGHUSER_MOVABLE,
4253 .reclaim_idx = MAX_NR_ZONES - 1,
4254 .priority = DEF_PRIORITY,
4255 .may_writepage = 1,
4256 .may_unmap = 1,
4257 .may_swap = 1,
4258 .hibernation_mode = 1,
4259 };
4260 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4261 unsigned long nr_reclaimed;
4262 unsigned int noreclaim_flag;
4263
4264 fs_reclaim_acquire(sc.gfp_mask);
4265 noreclaim_flag = memalloc_noreclaim_save();
4266 set_task_reclaim_state(current, &sc.reclaim_state);
4267
4268 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4269
4270 set_task_reclaim_state(current, NULL);
4271 memalloc_noreclaim_restore(noreclaim_flag);
4272 fs_reclaim_release(sc.gfp_mask);
4273
4274 return nr_reclaimed;
4275 }
4276 #endif /* CONFIG_HIBERNATION */
4277
4278 /*
4279 * This kswapd start function will be called by init and node-hot-add.
4280 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4281 */
4282 int kswapd_run(int nid)
4283 {
4284 pg_data_t *pgdat = NODE_DATA(nid);
4285 int ret = 0;
4286
4287 if (pgdat->kswapd)
4288 return 0;
4289
4290 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4291 if (IS_ERR(pgdat->kswapd)) {
4292 /* failure at boot is fatal */
4293 BUG_ON(system_state < SYSTEM_RUNNING);
4294 pr_err("Failed to start kswapd on node %d\n", nid);
4295 ret = PTR_ERR(pgdat->kswapd);
4296 pgdat->kswapd = NULL;
4297 }
4298 return ret;
4299 }
4300
4301 /*
4302 * Called by memory hotplug when all memory in a node is offlined. Caller must
4303 * hold mem_hotplug_begin/end().
4304 */
4305 void kswapd_stop(int nid)
4306 {
4307 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4308
4309 if (kswapd) {
4310 kthread_stop(kswapd);
4311 NODE_DATA(nid)->kswapd = NULL;
4312 }
4313 }
4314
4315 static int __init kswapd_init(void)
4316 {
4317 int nid;
4318
4319 swap_setup();
4320 for_each_node_state(nid, N_MEMORY)
4321 kswapd_run(nid);
4322 return 0;
4323 }
4324
4325 module_init(kswapd_init)
4326
4327 #ifdef CONFIG_NUMA
4328 /*
4329 * Node reclaim mode
4330 *
4331 * If non-zero call node_reclaim when the number of free pages falls below
4332 * the watermarks.
4333 */
4334 int node_reclaim_mode __read_mostly;
4335
4336 /*
4337 * Priority for NODE_RECLAIM. This determines the fraction of pages
4338 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4339 * a zone.
4340 */
4341 #define NODE_RECLAIM_PRIORITY 4
4342
4343 /*
4344 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4345 * occur.
4346 */
4347 int sysctl_min_unmapped_ratio = 1;
4348
4349 /*
4350 * If the number of slab pages in a zone grows beyond this percentage then
4351 * slab reclaim needs to occur.
4352 */
4353 int sysctl_min_slab_ratio = 5;
4354
4355 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4356 {
4357 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4358 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4359 node_page_state(pgdat, NR_ACTIVE_FILE);
4360
4361 /*
4362 * It's possible for there to be more file mapped pages than
4363 * accounted for by the pages on the file LRU lists because
4364 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4365 */
4366 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4367 }
4368
4369 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4370 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4371 {
4372 unsigned long nr_pagecache_reclaimable;
4373 unsigned long delta = 0;
4374
4375 /*
4376 * If RECLAIM_UNMAP is set, then all file pages are considered
4377 * potentially reclaimable. Otherwise, we have to worry about
4378 * pages like swapcache and node_unmapped_file_pages() provides
4379 * a better estimate
4380 */
4381 if (node_reclaim_mode & RECLAIM_UNMAP)
4382 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4383 else
4384 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4385
4386 /* If we can't clean pages, remove dirty pages from consideration */
4387 if (!(node_reclaim_mode & RECLAIM_WRITE))
4388 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4389
4390 /* Watch for any possible underflows due to delta */
4391 if (unlikely(delta > nr_pagecache_reclaimable))
4392 delta = nr_pagecache_reclaimable;
4393
4394 return nr_pagecache_reclaimable - delta;
4395 }
4396
4397 /*
4398 * Try to free up some pages from this node through reclaim.
4399 */
4400 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4401 {
4402 /* Minimum pages needed in order to stay on node */
4403 const unsigned long nr_pages = 1 << order;
4404 struct task_struct *p = current;
4405 unsigned int noreclaim_flag;
4406 struct scan_control sc = {
4407 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4408 .gfp_mask = current_gfp_context(gfp_mask),
4409 .order = order,
4410 .priority = NODE_RECLAIM_PRIORITY,
4411 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4412 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4413 .may_swap = 1,
4414 .reclaim_idx = gfp_zone(gfp_mask),
4415 };
4416
4417 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4418 sc.gfp_mask);
4419
4420 cond_resched();
4421 fs_reclaim_acquire(sc.gfp_mask);
4422 /*
4423 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4424 * and we also need to be able to write out pages for RECLAIM_WRITE
4425 * and RECLAIM_UNMAP.
4426 */
4427 noreclaim_flag = memalloc_noreclaim_save();
4428 p->flags |= PF_SWAPWRITE;
4429 set_task_reclaim_state(p, &sc.reclaim_state);
4430
4431 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4432 /*
4433 * Free memory by calling shrink node with increasing
4434 * priorities until we have enough memory freed.
4435 */
4436 do {
4437 shrink_node(pgdat, &sc);
4438 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4439 }
4440
4441 set_task_reclaim_state(p, NULL);
4442 current->flags &= ~PF_SWAPWRITE;
4443 memalloc_noreclaim_restore(noreclaim_flag);
4444 fs_reclaim_release(sc.gfp_mask);
4445
4446 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4447
4448 return sc.nr_reclaimed >= nr_pages;
4449 }
4450
4451 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4452 {
4453 int ret;
4454
4455 /*
4456 * Node reclaim reclaims unmapped file backed pages and
4457 * slab pages if we are over the defined limits.
4458 *
4459 * A small portion of unmapped file backed pages is needed for
4460 * file I/O otherwise pages read by file I/O will be immediately
4461 * thrown out if the node is overallocated. So we do not reclaim
4462 * if less than a specified percentage of the node is used by
4463 * unmapped file backed pages.
4464 */
4465 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4466 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4467 pgdat->min_slab_pages)
4468 return NODE_RECLAIM_FULL;
4469
4470 /*
4471 * Do not scan if the allocation should not be delayed.
4472 */
4473 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4474 return NODE_RECLAIM_NOSCAN;
4475
4476 /*
4477 * Only run node reclaim on the local node or on nodes that do not
4478 * have associated processors. This will favor the local processor
4479 * over remote processors and spread off node memory allocations
4480 * as wide as possible.
4481 */
4482 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4483 return NODE_RECLAIM_NOSCAN;
4484
4485 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4486 return NODE_RECLAIM_NOSCAN;
4487
4488 ret = __node_reclaim(pgdat, gfp_mask, order);
4489 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4490
4491 if (!ret)
4492 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4493
4494 return ret;
4495 }
4496 #endif
4497
4498 /**
4499 * check_move_unevictable_pages - check pages for evictability and move to
4500 * appropriate zone lru list
4501 * @pvec: pagevec with lru pages to check
4502 *
4503 * Checks pages for evictability, if an evictable page is in the unevictable
4504 * lru list, moves it to the appropriate evictable lru list. This function
4505 * should be only used for lru pages.
4506 */
4507 void check_move_unevictable_pages(struct pagevec *pvec)
4508 {
4509 struct lruvec *lruvec = NULL;
4510 int pgscanned = 0;
4511 int pgrescued = 0;
4512 int i;
4513
4514 for (i = 0; i < pvec->nr; i++) {
4515 struct page *page = pvec->pages[i];
4516 int nr_pages;
4517
4518 if (PageTransTail(page))
4519 continue;
4520
4521 nr_pages = thp_nr_pages(page);
4522 pgscanned += nr_pages;
4523
4524 /* block memcg migration during page moving between lru */
4525 if (!TestClearPageLRU(page))
4526 continue;
4527
4528 lruvec = relock_page_lruvec_irq(page, lruvec);
4529 if (page_evictable(page) && PageUnevictable(page)) {
4530 del_page_from_lru_list(page, lruvec);
4531 ClearPageUnevictable(page);
4532 add_page_to_lru_list(page, lruvec);
4533 pgrescued += nr_pages;
4534 }
4535 SetPageLRU(page);
4536 }
4537
4538 if (lruvec) {
4539 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4540 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4541 unlock_page_lruvec_irq(lruvec);
4542 } else if (pgscanned) {
4543 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4544 }
4545 }
4546 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);