]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/vmscan.c
block: return the correct bvec when checking for gaps
[mirror_ubuntu-jammy-kernel.git] / mm / vmscan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
58
59 #include "internal.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
63
64 struct scan_control {
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
68 /*
69 * Nodemask of nodes allowed by the caller. If NULL, all nodes
70 * are scanned.
71 */
72 nodemask_t *nodemask;
73
74 /*
75 * The memory cgroup that hit its limit and as a result is the
76 * primary target of this reclaim invocation.
77 */
78 struct mem_cgroup *target_mem_cgroup;
79
80 /*
81 * Scan pressure balancing between anon and file LRUs
82 */
83 unsigned long anon_cost;
84 unsigned long file_cost;
85
86 /* Can active pages be deactivated as part of reclaim? */
87 #define DEACTIVATE_ANON 1
88 #define DEACTIVATE_FILE 2
89 unsigned int may_deactivate:2;
90 unsigned int force_deactivate:1;
91 unsigned int skipped_deactivate:1;
92
93 /* Writepage batching in laptop mode; RECLAIM_WRITE */
94 unsigned int may_writepage:1;
95
96 /* Can mapped pages be reclaimed? */
97 unsigned int may_unmap:1;
98
99 /* Can pages be swapped as part of reclaim? */
100 unsigned int may_swap:1;
101
102 /*
103 * Cgroups are not reclaimed below their configured memory.low,
104 * unless we threaten to OOM. If any cgroups are skipped due to
105 * memory.low and nothing was reclaimed, go back for memory.low.
106 */
107 unsigned int memcg_low_reclaim:1;
108 unsigned int memcg_low_skipped:1;
109
110 unsigned int hibernation_mode:1;
111
112 /* One of the zones is ready for compaction */
113 unsigned int compaction_ready:1;
114
115 /* There is easily reclaimable cold cache in the current node */
116 unsigned int cache_trim_mode:1;
117
118 /* The file pages on the current node are dangerously low */
119 unsigned int file_is_tiny:1;
120
121 /* Allocation order */
122 s8 order;
123
124 /* Scan (total_size >> priority) pages at once */
125 s8 priority;
126
127 /* The highest zone to isolate pages for reclaim from */
128 s8 reclaim_idx;
129
130 /* This context's GFP mask */
131 gfp_t gfp_mask;
132
133 /* Incremented by the number of inactive pages that were scanned */
134 unsigned long nr_scanned;
135
136 /* Number of pages freed so far during a call to shrink_zones() */
137 unsigned long nr_reclaimed;
138
139 struct {
140 unsigned int dirty;
141 unsigned int unqueued_dirty;
142 unsigned int congested;
143 unsigned int writeback;
144 unsigned int immediate;
145 unsigned int file_taken;
146 unsigned int taken;
147 } nr;
148
149 /* for recording the reclaimed slab by now */
150 struct reclaim_state reclaim_state;
151 };
152
153 #ifdef ARCH_HAS_PREFETCHW
154 #define prefetchw_prev_lru_page(_page, _base, _field) \
155 do { \
156 if ((_page)->lru.prev != _base) { \
157 struct page *prev; \
158 \
159 prev = lru_to_page(&(_page->lru)); \
160 prefetchw(&prev->_field); \
161 } \
162 } while (0)
163 #else
164 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
165 #endif
166
167 /*
168 * From 0 .. 200. Higher means more swappy.
169 */
170 int vm_swappiness = 60;
171
172 static void set_task_reclaim_state(struct task_struct *task,
173 struct reclaim_state *rs)
174 {
175 /* Check for an overwrite */
176 WARN_ON_ONCE(rs && task->reclaim_state);
177
178 /* Check for the nulling of an already-nulled member */
179 WARN_ON_ONCE(!rs && !task->reclaim_state);
180
181 task->reclaim_state = rs;
182 }
183
184 static LIST_HEAD(shrinker_list);
185 static DECLARE_RWSEM(shrinker_rwsem);
186
187 #ifdef CONFIG_MEMCG
188 static int shrinker_nr_max;
189
190 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
191 static inline int shrinker_map_size(int nr_items)
192 {
193 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
194 }
195
196 static inline int shrinker_defer_size(int nr_items)
197 {
198 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
199 }
200
201 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
202 int nid)
203 {
204 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
205 lockdep_is_held(&shrinker_rwsem));
206 }
207
208 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
209 int map_size, int defer_size,
210 int old_map_size, int old_defer_size)
211 {
212 struct shrinker_info *new, *old;
213 struct mem_cgroup_per_node *pn;
214 int nid;
215 int size = map_size + defer_size;
216
217 for_each_node(nid) {
218 pn = memcg->nodeinfo[nid];
219 old = shrinker_info_protected(memcg, nid);
220 /* Not yet online memcg */
221 if (!old)
222 return 0;
223
224 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
225 if (!new)
226 return -ENOMEM;
227
228 new->nr_deferred = (atomic_long_t *)(new + 1);
229 new->map = (void *)new->nr_deferred + defer_size;
230
231 /* map: set all old bits, clear all new bits */
232 memset(new->map, (int)0xff, old_map_size);
233 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
234 /* nr_deferred: copy old values, clear all new values */
235 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
236 memset((void *)new->nr_deferred + old_defer_size, 0,
237 defer_size - old_defer_size);
238
239 rcu_assign_pointer(pn->shrinker_info, new);
240 kvfree_rcu(old, rcu);
241 }
242
243 return 0;
244 }
245
246 void free_shrinker_info(struct mem_cgroup *memcg)
247 {
248 struct mem_cgroup_per_node *pn;
249 struct shrinker_info *info;
250 int nid;
251
252 for_each_node(nid) {
253 pn = memcg->nodeinfo[nid];
254 info = rcu_dereference_protected(pn->shrinker_info, true);
255 kvfree(info);
256 rcu_assign_pointer(pn->shrinker_info, NULL);
257 }
258 }
259
260 int alloc_shrinker_info(struct mem_cgroup *memcg)
261 {
262 struct shrinker_info *info;
263 int nid, size, ret = 0;
264 int map_size, defer_size = 0;
265
266 down_write(&shrinker_rwsem);
267 map_size = shrinker_map_size(shrinker_nr_max);
268 defer_size = shrinker_defer_size(shrinker_nr_max);
269 size = map_size + defer_size;
270 for_each_node(nid) {
271 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
272 if (!info) {
273 free_shrinker_info(memcg);
274 ret = -ENOMEM;
275 break;
276 }
277 info->nr_deferred = (atomic_long_t *)(info + 1);
278 info->map = (void *)info->nr_deferred + defer_size;
279 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
280 }
281 up_write(&shrinker_rwsem);
282
283 return ret;
284 }
285
286 static inline bool need_expand(int nr_max)
287 {
288 return round_up(nr_max, BITS_PER_LONG) >
289 round_up(shrinker_nr_max, BITS_PER_LONG);
290 }
291
292 static int expand_shrinker_info(int new_id)
293 {
294 int ret = 0;
295 int new_nr_max = new_id + 1;
296 int map_size, defer_size = 0;
297 int old_map_size, old_defer_size = 0;
298 struct mem_cgroup *memcg;
299
300 if (!need_expand(new_nr_max))
301 goto out;
302
303 if (!root_mem_cgroup)
304 goto out;
305
306 lockdep_assert_held(&shrinker_rwsem);
307
308 map_size = shrinker_map_size(new_nr_max);
309 defer_size = shrinker_defer_size(new_nr_max);
310 old_map_size = shrinker_map_size(shrinker_nr_max);
311 old_defer_size = shrinker_defer_size(shrinker_nr_max);
312
313 memcg = mem_cgroup_iter(NULL, NULL, NULL);
314 do {
315 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
316 old_map_size, old_defer_size);
317 if (ret) {
318 mem_cgroup_iter_break(NULL, memcg);
319 goto out;
320 }
321 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
322 out:
323 if (!ret)
324 shrinker_nr_max = new_nr_max;
325
326 return ret;
327 }
328
329 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
330 {
331 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
332 struct shrinker_info *info;
333
334 rcu_read_lock();
335 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
336 /* Pairs with smp mb in shrink_slab() */
337 smp_mb__before_atomic();
338 set_bit(shrinker_id, info->map);
339 rcu_read_unlock();
340 }
341 }
342
343 static DEFINE_IDR(shrinker_idr);
344
345 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
346 {
347 int id, ret = -ENOMEM;
348
349 if (mem_cgroup_disabled())
350 return -ENOSYS;
351
352 down_write(&shrinker_rwsem);
353 /* This may call shrinker, so it must use down_read_trylock() */
354 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
355 if (id < 0)
356 goto unlock;
357
358 if (id >= shrinker_nr_max) {
359 if (expand_shrinker_info(id)) {
360 idr_remove(&shrinker_idr, id);
361 goto unlock;
362 }
363 }
364 shrinker->id = id;
365 ret = 0;
366 unlock:
367 up_write(&shrinker_rwsem);
368 return ret;
369 }
370
371 static void unregister_memcg_shrinker(struct shrinker *shrinker)
372 {
373 int id = shrinker->id;
374
375 BUG_ON(id < 0);
376
377 lockdep_assert_held(&shrinker_rwsem);
378
379 idr_remove(&shrinker_idr, id);
380 }
381
382 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
383 struct mem_cgroup *memcg)
384 {
385 struct shrinker_info *info;
386
387 info = shrinker_info_protected(memcg, nid);
388 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
389 }
390
391 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
392 struct mem_cgroup *memcg)
393 {
394 struct shrinker_info *info;
395
396 info = shrinker_info_protected(memcg, nid);
397 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
398 }
399
400 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
401 {
402 int i, nid;
403 long nr;
404 struct mem_cgroup *parent;
405 struct shrinker_info *child_info, *parent_info;
406
407 parent = parent_mem_cgroup(memcg);
408 if (!parent)
409 parent = root_mem_cgroup;
410
411 /* Prevent from concurrent shrinker_info expand */
412 down_read(&shrinker_rwsem);
413 for_each_node(nid) {
414 child_info = shrinker_info_protected(memcg, nid);
415 parent_info = shrinker_info_protected(parent, nid);
416 for (i = 0; i < shrinker_nr_max; i++) {
417 nr = atomic_long_read(&child_info->nr_deferred[i]);
418 atomic_long_add(nr, &parent_info->nr_deferred[i]);
419 }
420 }
421 up_read(&shrinker_rwsem);
422 }
423
424 static bool cgroup_reclaim(struct scan_control *sc)
425 {
426 return sc->target_mem_cgroup;
427 }
428
429 /**
430 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
431 * @sc: scan_control in question
432 *
433 * The normal page dirty throttling mechanism in balance_dirty_pages() is
434 * completely broken with the legacy memcg and direct stalling in
435 * shrink_page_list() is used for throttling instead, which lacks all the
436 * niceties such as fairness, adaptive pausing, bandwidth proportional
437 * allocation and configurability.
438 *
439 * This function tests whether the vmscan currently in progress can assume
440 * that the normal dirty throttling mechanism is operational.
441 */
442 static bool writeback_throttling_sane(struct scan_control *sc)
443 {
444 if (!cgroup_reclaim(sc))
445 return true;
446 #ifdef CONFIG_CGROUP_WRITEBACK
447 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
448 return true;
449 #endif
450 return false;
451 }
452 #else
453 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
454 {
455 return -ENOSYS;
456 }
457
458 static void unregister_memcg_shrinker(struct shrinker *shrinker)
459 {
460 }
461
462 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
463 struct mem_cgroup *memcg)
464 {
465 return 0;
466 }
467
468 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
469 struct mem_cgroup *memcg)
470 {
471 return 0;
472 }
473
474 static bool cgroup_reclaim(struct scan_control *sc)
475 {
476 return false;
477 }
478
479 static bool writeback_throttling_sane(struct scan_control *sc)
480 {
481 return true;
482 }
483 #endif
484
485 static long xchg_nr_deferred(struct shrinker *shrinker,
486 struct shrink_control *sc)
487 {
488 int nid = sc->nid;
489
490 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
491 nid = 0;
492
493 if (sc->memcg &&
494 (shrinker->flags & SHRINKER_MEMCG_AWARE))
495 return xchg_nr_deferred_memcg(nid, shrinker,
496 sc->memcg);
497
498 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
499 }
500
501
502 static long add_nr_deferred(long nr, struct shrinker *shrinker,
503 struct shrink_control *sc)
504 {
505 int nid = sc->nid;
506
507 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
508 nid = 0;
509
510 if (sc->memcg &&
511 (shrinker->flags & SHRINKER_MEMCG_AWARE))
512 return add_nr_deferred_memcg(nr, nid, shrinker,
513 sc->memcg);
514
515 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
516 }
517
518 /*
519 * This misses isolated pages which are not accounted for to save counters.
520 * As the data only determines if reclaim or compaction continues, it is
521 * not expected that isolated pages will be a dominating factor.
522 */
523 unsigned long zone_reclaimable_pages(struct zone *zone)
524 {
525 unsigned long nr;
526
527 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
528 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
529 if (get_nr_swap_pages() > 0)
530 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
531 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
532
533 return nr;
534 }
535
536 /**
537 * lruvec_lru_size - Returns the number of pages on the given LRU list.
538 * @lruvec: lru vector
539 * @lru: lru to use
540 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
541 */
542 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
543 int zone_idx)
544 {
545 unsigned long size = 0;
546 int zid;
547
548 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
549 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
550
551 if (!managed_zone(zone))
552 continue;
553
554 if (!mem_cgroup_disabled())
555 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
556 else
557 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
558 }
559 return size;
560 }
561
562 /*
563 * Add a shrinker callback to be called from the vm.
564 */
565 int prealloc_shrinker(struct shrinker *shrinker)
566 {
567 unsigned int size;
568 int err;
569
570 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
571 err = prealloc_memcg_shrinker(shrinker);
572 if (err != -ENOSYS)
573 return err;
574
575 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
576 }
577
578 size = sizeof(*shrinker->nr_deferred);
579 if (shrinker->flags & SHRINKER_NUMA_AWARE)
580 size *= nr_node_ids;
581
582 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
583 if (!shrinker->nr_deferred)
584 return -ENOMEM;
585
586 return 0;
587 }
588
589 void free_prealloced_shrinker(struct shrinker *shrinker)
590 {
591 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
592 down_write(&shrinker_rwsem);
593 unregister_memcg_shrinker(shrinker);
594 up_write(&shrinker_rwsem);
595 return;
596 }
597
598 kfree(shrinker->nr_deferred);
599 shrinker->nr_deferred = NULL;
600 }
601
602 void register_shrinker_prepared(struct shrinker *shrinker)
603 {
604 down_write(&shrinker_rwsem);
605 list_add_tail(&shrinker->list, &shrinker_list);
606 shrinker->flags |= SHRINKER_REGISTERED;
607 up_write(&shrinker_rwsem);
608 }
609
610 int register_shrinker(struct shrinker *shrinker)
611 {
612 int err = prealloc_shrinker(shrinker);
613
614 if (err)
615 return err;
616 register_shrinker_prepared(shrinker);
617 return 0;
618 }
619 EXPORT_SYMBOL(register_shrinker);
620
621 /*
622 * Remove one
623 */
624 void unregister_shrinker(struct shrinker *shrinker)
625 {
626 if (!(shrinker->flags & SHRINKER_REGISTERED))
627 return;
628
629 down_write(&shrinker_rwsem);
630 list_del(&shrinker->list);
631 shrinker->flags &= ~SHRINKER_REGISTERED;
632 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
633 unregister_memcg_shrinker(shrinker);
634 up_write(&shrinker_rwsem);
635
636 kfree(shrinker->nr_deferred);
637 shrinker->nr_deferred = NULL;
638 }
639 EXPORT_SYMBOL(unregister_shrinker);
640
641 #define SHRINK_BATCH 128
642
643 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
644 struct shrinker *shrinker, int priority)
645 {
646 unsigned long freed = 0;
647 unsigned long long delta;
648 long total_scan;
649 long freeable;
650 long nr;
651 long new_nr;
652 long batch_size = shrinker->batch ? shrinker->batch
653 : SHRINK_BATCH;
654 long scanned = 0, next_deferred;
655
656 freeable = shrinker->count_objects(shrinker, shrinkctl);
657 if (freeable == 0 || freeable == SHRINK_EMPTY)
658 return freeable;
659
660 /*
661 * copy the current shrinker scan count into a local variable
662 * and zero it so that other concurrent shrinker invocations
663 * don't also do this scanning work.
664 */
665 nr = xchg_nr_deferred(shrinker, shrinkctl);
666
667 if (shrinker->seeks) {
668 delta = freeable >> priority;
669 delta *= 4;
670 do_div(delta, shrinker->seeks);
671 } else {
672 /*
673 * These objects don't require any IO to create. Trim
674 * them aggressively under memory pressure to keep
675 * them from causing refetches in the IO caches.
676 */
677 delta = freeable / 2;
678 }
679
680 total_scan = nr >> priority;
681 total_scan += delta;
682 total_scan = min(total_scan, (2 * freeable));
683
684 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
685 freeable, delta, total_scan, priority);
686
687 /*
688 * Normally, we should not scan less than batch_size objects in one
689 * pass to avoid too frequent shrinker calls, but if the slab has less
690 * than batch_size objects in total and we are really tight on memory,
691 * we will try to reclaim all available objects, otherwise we can end
692 * up failing allocations although there are plenty of reclaimable
693 * objects spread over several slabs with usage less than the
694 * batch_size.
695 *
696 * We detect the "tight on memory" situations by looking at the total
697 * number of objects we want to scan (total_scan). If it is greater
698 * than the total number of objects on slab (freeable), we must be
699 * scanning at high prio and therefore should try to reclaim as much as
700 * possible.
701 */
702 while (total_scan >= batch_size ||
703 total_scan >= freeable) {
704 unsigned long ret;
705 unsigned long nr_to_scan = min(batch_size, total_scan);
706
707 shrinkctl->nr_to_scan = nr_to_scan;
708 shrinkctl->nr_scanned = nr_to_scan;
709 ret = shrinker->scan_objects(shrinker, shrinkctl);
710 if (ret == SHRINK_STOP)
711 break;
712 freed += ret;
713
714 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
715 total_scan -= shrinkctl->nr_scanned;
716 scanned += shrinkctl->nr_scanned;
717
718 cond_resched();
719 }
720
721 /*
722 * The deferred work is increased by any new work (delta) that wasn't
723 * done, decreased by old deferred work that was done now.
724 *
725 * And it is capped to two times of the freeable items.
726 */
727 next_deferred = max_t(long, (nr + delta - scanned), 0);
728 next_deferred = min(next_deferred, (2 * freeable));
729
730 /*
731 * move the unused scan count back into the shrinker in a
732 * manner that handles concurrent updates.
733 */
734 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
735
736 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
737 return freed;
738 }
739
740 #ifdef CONFIG_MEMCG
741 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
742 struct mem_cgroup *memcg, int priority)
743 {
744 struct shrinker_info *info;
745 unsigned long ret, freed = 0;
746 int i;
747
748 if (!mem_cgroup_online(memcg))
749 return 0;
750
751 if (!down_read_trylock(&shrinker_rwsem))
752 return 0;
753
754 info = shrinker_info_protected(memcg, nid);
755 if (unlikely(!info))
756 goto unlock;
757
758 for_each_set_bit(i, info->map, shrinker_nr_max) {
759 struct shrink_control sc = {
760 .gfp_mask = gfp_mask,
761 .nid = nid,
762 .memcg = memcg,
763 };
764 struct shrinker *shrinker;
765
766 shrinker = idr_find(&shrinker_idr, i);
767 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
768 if (!shrinker)
769 clear_bit(i, info->map);
770 continue;
771 }
772
773 /* Call non-slab shrinkers even though kmem is disabled */
774 if (!memcg_kmem_enabled() &&
775 !(shrinker->flags & SHRINKER_NONSLAB))
776 continue;
777
778 ret = do_shrink_slab(&sc, shrinker, priority);
779 if (ret == SHRINK_EMPTY) {
780 clear_bit(i, info->map);
781 /*
782 * After the shrinker reported that it had no objects to
783 * free, but before we cleared the corresponding bit in
784 * the memcg shrinker map, a new object might have been
785 * added. To make sure, we have the bit set in this
786 * case, we invoke the shrinker one more time and reset
787 * the bit if it reports that it is not empty anymore.
788 * The memory barrier here pairs with the barrier in
789 * set_shrinker_bit():
790 *
791 * list_lru_add() shrink_slab_memcg()
792 * list_add_tail() clear_bit()
793 * <MB> <MB>
794 * set_bit() do_shrink_slab()
795 */
796 smp_mb__after_atomic();
797 ret = do_shrink_slab(&sc, shrinker, priority);
798 if (ret == SHRINK_EMPTY)
799 ret = 0;
800 else
801 set_shrinker_bit(memcg, nid, i);
802 }
803 freed += ret;
804
805 if (rwsem_is_contended(&shrinker_rwsem)) {
806 freed = freed ? : 1;
807 break;
808 }
809 }
810 unlock:
811 up_read(&shrinker_rwsem);
812 return freed;
813 }
814 #else /* CONFIG_MEMCG */
815 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
816 struct mem_cgroup *memcg, int priority)
817 {
818 return 0;
819 }
820 #endif /* CONFIG_MEMCG */
821
822 /**
823 * shrink_slab - shrink slab caches
824 * @gfp_mask: allocation context
825 * @nid: node whose slab caches to target
826 * @memcg: memory cgroup whose slab caches to target
827 * @priority: the reclaim priority
828 *
829 * Call the shrink functions to age shrinkable caches.
830 *
831 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
832 * unaware shrinkers will receive a node id of 0 instead.
833 *
834 * @memcg specifies the memory cgroup to target. Unaware shrinkers
835 * are called only if it is the root cgroup.
836 *
837 * @priority is sc->priority, we take the number of objects and >> by priority
838 * in order to get the scan target.
839 *
840 * Returns the number of reclaimed slab objects.
841 */
842 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
843 struct mem_cgroup *memcg,
844 int priority)
845 {
846 unsigned long ret, freed = 0;
847 struct shrinker *shrinker;
848
849 /*
850 * The root memcg might be allocated even though memcg is disabled
851 * via "cgroup_disable=memory" boot parameter. This could make
852 * mem_cgroup_is_root() return false, then just run memcg slab
853 * shrink, but skip global shrink. This may result in premature
854 * oom.
855 */
856 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
857 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
858
859 if (!down_read_trylock(&shrinker_rwsem))
860 goto out;
861
862 list_for_each_entry(shrinker, &shrinker_list, list) {
863 struct shrink_control sc = {
864 .gfp_mask = gfp_mask,
865 .nid = nid,
866 .memcg = memcg,
867 };
868
869 ret = do_shrink_slab(&sc, shrinker, priority);
870 if (ret == SHRINK_EMPTY)
871 ret = 0;
872 freed += ret;
873 /*
874 * Bail out if someone want to register a new shrinker to
875 * prevent the registration from being stalled for long periods
876 * by parallel ongoing shrinking.
877 */
878 if (rwsem_is_contended(&shrinker_rwsem)) {
879 freed = freed ? : 1;
880 break;
881 }
882 }
883
884 up_read(&shrinker_rwsem);
885 out:
886 cond_resched();
887 return freed;
888 }
889
890 void drop_slab_node(int nid)
891 {
892 unsigned long freed;
893
894 do {
895 struct mem_cgroup *memcg = NULL;
896
897 if (fatal_signal_pending(current))
898 return;
899
900 freed = 0;
901 memcg = mem_cgroup_iter(NULL, NULL, NULL);
902 do {
903 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
904 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
905 } while (freed > 10);
906 }
907
908 void drop_slab(void)
909 {
910 int nid;
911
912 for_each_online_node(nid)
913 drop_slab_node(nid);
914 }
915
916 static inline int is_page_cache_freeable(struct page *page)
917 {
918 /*
919 * A freeable page cache page is referenced only by the caller
920 * that isolated the page, the page cache and optional buffer
921 * heads at page->private.
922 */
923 int page_cache_pins = thp_nr_pages(page);
924 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
925 }
926
927 static int may_write_to_inode(struct inode *inode)
928 {
929 if (current->flags & PF_SWAPWRITE)
930 return 1;
931 if (!inode_write_congested(inode))
932 return 1;
933 if (inode_to_bdi(inode) == current->backing_dev_info)
934 return 1;
935 return 0;
936 }
937
938 /*
939 * We detected a synchronous write error writing a page out. Probably
940 * -ENOSPC. We need to propagate that into the address_space for a subsequent
941 * fsync(), msync() or close().
942 *
943 * The tricky part is that after writepage we cannot touch the mapping: nothing
944 * prevents it from being freed up. But we have a ref on the page and once
945 * that page is locked, the mapping is pinned.
946 *
947 * We're allowed to run sleeping lock_page() here because we know the caller has
948 * __GFP_FS.
949 */
950 static void handle_write_error(struct address_space *mapping,
951 struct page *page, int error)
952 {
953 lock_page(page);
954 if (page_mapping(page) == mapping)
955 mapping_set_error(mapping, error);
956 unlock_page(page);
957 }
958
959 /* possible outcome of pageout() */
960 typedef enum {
961 /* failed to write page out, page is locked */
962 PAGE_KEEP,
963 /* move page to the active list, page is locked */
964 PAGE_ACTIVATE,
965 /* page has been sent to the disk successfully, page is unlocked */
966 PAGE_SUCCESS,
967 /* page is clean and locked */
968 PAGE_CLEAN,
969 } pageout_t;
970
971 /*
972 * pageout is called by shrink_page_list() for each dirty page.
973 * Calls ->writepage().
974 */
975 static pageout_t pageout(struct page *page, struct address_space *mapping)
976 {
977 /*
978 * If the page is dirty, only perform writeback if that write
979 * will be non-blocking. To prevent this allocation from being
980 * stalled by pagecache activity. But note that there may be
981 * stalls if we need to run get_block(). We could test
982 * PagePrivate for that.
983 *
984 * If this process is currently in __generic_file_write_iter() against
985 * this page's queue, we can perform writeback even if that
986 * will block.
987 *
988 * If the page is swapcache, write it back even if that would
989 * block, for some throttling. This happens by accident, because
990 * swap_backing_dev_info is bust: it doesn't reflect the
991 * congestion state of the swapdevs. Easy to fix, if needed.
992 */
993 if (!is_page_cache_freeable(page))
994 return PAGE_KEEP;
995 if (!mapping) {
996 /*
997 * Some data journaling orphaned pages can have
998 * page->mapping == NULL while being dirty with clean buffers.
999 */
1000 if (page_has_private(page)) {
1001 if (try_to_free_buffers(page)) {
1002 ClearPageDirty(page);
1003 pr_info("%s: orphaned page\n", __func__);
1004 return PAGE_CLEAN;
1005 }
1006 }
1007 return PAGE_KEEP;
1008 }
1009 if (mapping->a_ops->writepage == NULL)
1010 return PAGE_ACTIVATE;
1011 if (!may_write_to_inode(mapping->host))
1012 return PAGE_KEEP;
1013
1014 if (clear_page_dirty_for_io(page)) {
1015 int res;
1016 struct writeback_control wbc = {
1017 .sync_mode = WB_SYNC_NONE,
1018 .nr_to_write = SWAP_CLUSTER_MAX,
1019 .range_start = 0,
1020 .range_end = LLONG_MAX,
1021 .for_reclaim = 1,
1022 };
1023
1024 SetPageReclaim(page);
1025 res = mapping->a_ops->writepage(page, &wbc);
1026 if (res < 0)
1027 handle_write_error(mapping, page, res);
1028 if (res == AOP_WRITEPAGE_ACTIVATE) {
1029 ClearPageReclaim(page);
1030 return PAGE_ACTIVATE;
1031 }
1032
1033 if (!PageWriteback(page)) {
1034 /* synchronous write or broken a_ops? */
1035 ClearPageReclaim(page);
1036 }
1037 trace_mm_vmscan_writepage(page);
1038 inc_node_page_state(page, NR_VMSCAN_WRITE);
1039 return PAGE_SUCCESS;
1040 }
1041
1042 return PAGE_CLEAN;
1043 }
1044
1045 /*
1046 * Same as remove_mapping, but if the page is removed from the mapping, it
1047 * gets returned with a refcount of 0.
1048 */
1049 static int __remove_mapping(struct address_space *mapping, struct page *page,
1050 bool reclaimed, struct mem_cgroup *target_memcg)
1051 {
1052 unsigned long flags;
1053 int refcount;
1054 void *shadow = NULL;
1055
1056 BUG_ON(!PageLocked(page));
1057 BUG_ON(mapping != page_mapping(page));
1058
1059 xa_lock_irqsave(&mapping->i_pages, flags);
1060 /*
1061 * The non racy check for a busy page.
1062 *
1063 * Must be careful with the order of the tests. When someone has
1064 * a ref to the page, it may be possible that they dirty it then
1065 * drop the reference. So if PageDirty is tested before page_count
1066 * here, then the following race may occur:
1067 *
1068 * get_user_pages(&page);
1069 * [user mapping goes away]
1070 * write_to(page);
1071 * !PageDirty(page) [good]
1072 * SetPageDirty(page);
1073 * put_page(page);
1074 * !page_count(page) [good, discard it]
1075 *
1076 * [oops, our write_to data is lost]
1077 *
1078 * Reversing the order of the tests ensures such a situation cannot
1079 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1080 * load is not satisfied before that of page->_refcount.
1081 *
1082 * Note that if SetPageDirty is always performed via set_page_dirty,
1083 * and thus under the i_pages lock, then this ordering is not required.
1084 */
1085 refcount = 1 + compound_nr(page);
1086 if (!page_ref_freeze(page, refcount))
1087 goto cannot_free;
1088 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1089 if (unlikely(PageDirty(page))) {
1090 page_ref_unfreeze(page, refcount);
1091 goto cannot_free;
1092 }
1093
1094 if (PageSwapCache(page)) {
1095 swp_entry_t swap = { .val = page_private(page) };
1096 mem_cgroup_swapout(page, swap);
1097 if (reclaimed && !mapping_exiting(mapping))
1098 shadow = workingset_eviction(page, target_memcg);
1099 __delete_from_swap_cache(page, swap, shadow);
1100 xa_unlock_irqrestore(&mapping->i_pages, flags);
1101 put_swap_page(page, swap);
1102 } else {
1103 void (*freepage)(struct page *);
1104
1105 freepage = mapping->a_ops->freepage;
1106 /*
1107 * Remember a shadow entry for reclaimed file cache in
1108 * order to detect refaults, thus thrashing, later on.
1109 *
1110 * But don't store shadows in an address space that is
1111 * already exiting. This is not just an optimization,
1112 * inode reclaim needs to empty out the radix tree or
1113 * the nodes are lost. Don't plant shadows behind its
1114 * back.
1115 *
1116 * We also don't store shadows for DAX mappings because the
1117 * only page cache pages found in these are zero pages
1118 * covering holes, and because we don't want to mix DAX
1119 * exceptional entries and shadow exceptional entries in the
1120 * same address_space.
1121 */
1122 if (reclaimed && page_is_file_lru(page) &&
1123 !mapping_exiting(mapping) && !dax_mapping(mapping))
1124 shadow = workingset_eviction(page, target_memcg);
1125 __delete_from_page_cache(page, shadow);
1126 xa_unlock_irqrestore(&mapping->i_pages, flags);
1127
1128 if (freepage != NULL)
1129 freepage(page);
1130 }
1131
1132 return 1;
1133
1134 cannot_free:
1135 xa_unlock_irqrestore(&mapping->i_pages, flags);
1136 return 0;
1137 }
1138
1139 /*
1140 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
1141 * someone else has a ref on the page, abort and return 0. If it was
1142 * successfully detached, return 1. Assumes the caller has a single ref on
1143 * this page.
1144 */
1145 int remove_mapping(struct address_space *mapping, struct page *page)
1146 {
1147 if (__remove_mapping(mapping, page, false, NULL)) {
1148 /*
1149 * Unfreezing the refcount with 1 rather than 2 effectively
1150 * drops the pagecache ref for us without requiring another
1151 * atomic operation.
1152 */
1153 page_ref_unfreeze(page, 1);
1154 return 1;
1155 }
1156 return 0;
1157 }
1158
1159 /**
1160 * putback_lru_page - put previously isolated page onto appropriate LRU list
1161 * @page: page to be put back to appropriate lru list
1162 *
1163 * Add previously isolated @page to appropriate LRU list.
1164 * Page may still be unevictable for other reasons.
1165 *
1166 * lru_lock must not be held, interrupts must be enabled.
1167 */
1168 void putback_lru_page(struct page *page)
1169 {
1170 lru_cache_add(page);
1171 put_page(page); /* drop ref from isolate */
1172 }
1173
1174 enum page_references {
1175 PAGEREF_RECLAIM,
1176 PAGEREF_RECLAIM_CLEAN,
1177 PAGEREF_KEEP,
1178 PAGEREF_ACTIVATE,
1179 };
1180
1181 static enum page_references page_check_references(struct page *page,
1182 struct scan_control *sc)
1183 {
1184 int referenced_ptes, referenced_page;
1185 unsigned long vm_flags;
1186
1187 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1188 &vm_flags);
1189 referenced_page = TestClearPageReferenced(page);
1190
1191 /*
1192 * Mlock lost the isolation race with us. Let try_to_unmap()
1193 * move the page to the unevictable list.
1194 */
1195 if (vm_flags & VM_LOCKED)
1196 return PAGEREF_RECLAIM;
1197
1198 if (referenced_ptes) {
1199 /*
1200 * All mapped pages start out with page table
1201 * references from the instantiating fault, so we need
1202 * to look twice if a mapped file page is used more
1203 * than once.
1204 *
1205 * Mark it and spare it for another trip around the
1206 * inactive list. Another page table reference will
1207 * lead to its activation.
1208 *
1209 * Note: the mark is set for activated pages as well
1210 * so that recently deactivated but used pages are
1211 * quickly recovered.
1212 */
1213 SetPageReferenced(page);
1214
1215 if (referenced_page || referenced_ptes > 1)
1216 return PAGEREF_ACTIVATE;
1217
1218 /*
1219 * Activate file-backed executable pages after first usage.
1220 */
1221 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1222 return PAGEREF_ACTIVATE;
1223
1224 return PAGEREF_KEEP;
1225 }
1226
1227 /* Reclaim if clean, defer dirty pages to writeback */
1228 if (referenced_page && !PageSwapBacked(page))
1229 return PAGEREF_RECLAIM_CLEAN;
1230
1231 return PAGEREF_RECLAIM;
1232 }
1233
1234 /* Check if a page is dirty or under writeback */
1235 static void page_check_dirty_writeback(struct page *page,
1236 bool *dirty, bool *writeback)
1237 {
1238 struct address_space *mapping;
1239
1240 /*
1241 * Anonymous pages are not handled by flushers and must be written
1242 * from reclaim context. Do not stall reclaim based on them
1243 */
1244 if (!page_is_file_lru(page) ||
1245 (PageAnon(page) && !PageSwapBacked(page))) {
1246 *dirty = false;
1247 *writeback = false;
1248 return;
1249 }
1250
1251 /* By default assume that the page flags are accurate */
1252 *dirty = PageDirty(page);
1253 *writeback = PageWriteback(page);
1254
1255 /* Verify dirty/writeback state if the filesystem supports it */
1256 if (!page_has_private(page))
1257 return;
1258
1259 mapping = page_mapping(page);
1260 if (mapping && mapping->a_ops->is_dirty_writeback)
1261 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1262 }
1263
1264 /*
1265 * shrink_page_list() returns the number of reclaimed pages
1266 */
1267 static unsigned int shrink_page_list(struct list_head *page_list,
1268 struct pglist_data *pgdat,
1269 struct scan_control *sc,
1270 struct reclaim_stat *stat,
1271 bool ignore_references)
1272 {
1273 LIST_HEAD(ret_pages);
1274 LIST_HEAD(free_pages);
1275 unsigned int nr_reclaimed = 0;
1276 unsigned int pgactivate = 0;
1277
1278 memset(stat, 0, sizeof(*stat));
1279 cond_resched();
1280
1281 while (!list_empty(page_list)) {
1282 struct address_space *mapping;
1283 struct page *page;
1284 enum page_references references = PAGEREF_RECLAIM;
1285 bool dirty, writeback, may_enter_fs;
1286 unsigned int nr_pages;
1287
1288 cond_resched();
1289
1290 page = lru_to_page(page_list);
1291 list_del(&page->lru);
1292
1293 if (!trylock_page(page))
1294 goto keep;
1295
1296 VM_BUG_ON_PAGE(PageActive(page), page);
1297
1298 nr_pages = compound_nr(page);
1299
1300 /* Account the number of base pages even though THP */
1301 sc->nr_scanned += nr_pages;
1302
1303 if (unlikely(!page_evictable(page)))
1304 goto activate_locked;
1305
1306 if (!sc->may_unmap && page_mapped(page))
1307 goto keep_locked;
1308
1309 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1310 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1311
1312 /*
1313 * The number of dirty pages determines if a node is marked
1314 * reclaim_congested which affects wait_iff_congested. kswapd
1315 * will stall and start writing pages if the tail of the LRU
1316 * is all dirty unqueued pages.
1317 */
1318 page_check_dirty_writeback(page, &dirty, &writeback);
1319 if (dirty || writeback)
1320 stat->nr_dirty++;
1321
1322 if (dirty && !writeback)
1323 stat->nr_unqueued_dirty++;
1324
1325 /*
1326 * Treat this page as congested if the underlying BDI is or if
1327 * pages are cycling through the LRU so quickly that the
1328 * pages marked for immediate reclaim are making it to the
1329 * end of the LRU a second time.
1330 */
1331 mapping = page_mapping(page);
1332 if (((dirty || writeback) && mapping &&
1333 inode_write_congested(mapping->host)) ||
1334 (writeback && PageReclaim(page)))
1335 stat->nr_congested++;
1336
1337 /*
1338 * If a page at the tail of the LRU is under writeback, there
1339 * are three cases to consider.
1340 *
1341 * 1) If reclaim is encountering an excessive number of pages
1342 * under writeback and this page is both under writeback and
1343 * PageReclaim then it indicates that pages are being queued
1344 * for IO but are being recycled through the LRU before the
1345 * IO can complete. Waiting on the page itself risks an
1346 * indefinite stall if it is impossible to writeback the
1347 * page due to IO error or disconnected storage so instead
1348 * note that the LRU is being scanned too quickly and the
1349 * caller can stall after page list has been processed.
1350 *
1351 * 2) Global or new memcg reclaim encounters a page that is
1352 * not marked for immediate reclaim, or the caller does not
1353 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1354 * not to fs). In this case mark the page for immediate
1355 * reclaim and continue scanning.
1356 *
1357 * Require may_enter_fs because we would wait on fs, which
1358 * may not have submitted IO yet. And the loop driver might
1359 * enter reclaim, and deadlock if it waits on a page for
1360 * which it is needed to do the write (loop masks off
1361 * __GFP_IO|__GFP_FS for this reason); but more thought
1362 * would probably show more reasons.
1363 *
1364 * 3) Legacy memcg encounters a page that is already marked
1365 * PageReclaim. memcg does not have any dirty pages
1366 * throttling so we could easily OOM just because too many
1367 * pages are in writeback and there is nothing else to
1368 * reclaim. Wait for the writeback to complete.
1369 *
1370 * In cases 1) and 2) we activate the pages to get them out of
1371 * the way while we continue scanning for clean pages on the
1372 * inactive list and refilling from the active list. The
1373 * observation here is that waiting for disk writes is more
1374 * expensive than potentially causing reloads down the line.
1375 * Since they're marked for immediate reclaim, they won't put
1376 * memory pressure on the cache working set any longer than it
1377 * takes to write them to disk.
1378 */
1379 if (PageWriteback(page)) {
1380 /* Case 1 above */
1381 if (current_is_kswapd() &&
1382 PageReclaim(page) &&
1383 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1384 stat->nr_immediate++;
1385 goto activate_locked;
1386
1387 /* Case 2 above */
1388 } else if (writeback_throttling_sane(sc) ||
1389 !PageReclaim(page) || !may_enter_fs) {
1390 /*
1391 * This is slightly racy - end_page_writeback()
1392 * might have just cleared PageReclaim, then
1393 * setting PageReclaim here end up interpreted
1394 * as PageReadahead - but that does not matter
1395 * enough to care. What we do want is for this
1396 * page to have PageReclaim set next time memcg
1397 * reclaim reaches the tests above, so it will
1398 * then wait_on_page_writeback() to avoid OOM;
1399 * and it's also appropriate in global reclaim.
1400 */
1401 SetPageReclaim(page);
1402 stat->nr_writeback++;
1403 goto activate_locked;
1404
1405 /* Case 3 above */
1406 } else {
1407 unlock_page(page);
1408 wait_on_page_writeback(page);
1409 /* then go back and try same page again */
1410 list_add_tail(&page->lru, page_list);
1411 continue;
1412 }
1413 }
1414
1415 if (!ignore_references)
1416 references = page_check_references(page, sc);
1417
1418 switch (references) {
1419 case PAGEREF_ACTIVATE:
1420 goto activate_locked;
1421 case PAGEREF_KEEP:
1422 stat->nr_ref_keep += nr_pages;
1423 goto keep_locked;
1424 case PAGEREF_RECLAIM:
1425 case PAGEREF_RECLAIM_CLEAN:
1426 ; /* try to reclaim the page below */
1427 }
1428
1429 /*
1430 * Anonymous process memory has backing store?
1431 * Try to allocate it some swap space here.
1432 * Lazyfree page could be freed directly
1433 */
1434 if (PageAnon(page) && PageSwapBacked(page)) {
1435 if (!PageSwapCache(page)) {
1436 if (!(sc->gfp_mask & __GFP_IO))
1437 goto keep_locked;
1438 if (page_maybe_dma_pinned(page))
1439 goto keep_locked;
1440 if (PageTransHuge(page)) {
1441 /* cannot split THP, skip it */
1442 if (!can_split_huge_page(page, NULL))
1443 goto activate_locked;
1444 /*
1445 * Split pages without a PMD map right
1446 * away. Chances are some or all of the
1447 * tail pages can be freed without IO.
1448 */
1449 if (!compound_mapcount(page) &&
1450 split_huge_page_to_list(page,
1451 page_list))
1452 goto activate_locked;
1453 }
1454 if (!add_to_swap(page)) {
1455 if (!PageTransHuge(page))
1456 goto activate_locked_split;
1457 /* Fallback to swap normal pages */
1458 if (split_huge_page_to_list(page,
1459 page_list))
1460 goto activate_locked;
1461 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1462 count_vm_event(THP_SWPOUT_FALLBACK);
1463 #endif
1464 if (!add_to_swap(page))
1465 goto activate_locked_split;
1466 }
1467
1468 may_enter_fs = true;
1469
1470 /* Adding to swap updated mapping */
1471 mapping = page_mapping(page);
1472 }
1473 } else if (unlikely(PageTransHuge(page))) {
1474 /* Split file THP */
1475 if (split_huge_page_to_list(page, page_list))
1476 goto keep_locked;
1477 }
1478
1479 /*
1480 * THP may get split above, need minus tail pages and update
1481 * nr_pages to avoid accounting tail pages twice.
1482 *
1483 * The tail pages that are added into swap cache successfully
1484 * reach here.
1485 */
1486 if ((nr_pages > 1) && !PageTransHuge(page)) {
1487 sc->nr_scanned -= (nr_pages - 1);
1488 nr_pages = 1;
1489 }
1490
1491 /*
1492 * The page is mapped into the page tables of one or more
1493 * processes. Try to unmap it here.
1494 */
1495 if (page_mapped(page)) {
1496 enum ttu_flags flags = TTU_BATCH_FLUSH;
1497 bool was_swapbacked = PageSwapBacked(page);
1498
1499 if (unlikely(PageTransHuge(page)))
1500 flags |= TTU_SPLIT_HUGE_PMD;
1501
1502 if (!try_to_unmap(page, flags)) {
1503 stat->nr_unmap_fail += nr_pages;
1504 if (!was_swapbacked && PageSwapBacked(page))
1505 stat->nr_lazyfree_fail += nr_pages;
1506 goto activate_locked;
1507 }
1508 }
1509
1510 if (PageDirty(page)) {
1511 /*
1512 * Only kswapd can writeback filesystem pages
1513 * to avoid risk of stack overflow. But avoid
1514 * injecting inefficient single-page IO into
1515 * flusher writeback as much as possible: only
1516 * write pages when we've encountered many
1517 * dirty pages, and when we've already scanned
1518 * the rest of the LRU for clean pages and see
1519 * the same dirty pages again (PageReclaim).
1520 */
1521 if (page_is_file_lru(page) &&
1522 (!current_is_kswapd() || !PageReclaim(page) ||
1523 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1524 /*
1525 * Immediately reclaim when written back.
1526 * Similar in principal to deactivate_page()
1527 * except we already have the page isolated
1528 * and know it's dirty
1529 */
1530 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1531 SetPageReclaim(page);
1532
1533 goto activate_locked;
1534 }
1535
1536 if (references == PAGEREF_RECLAIM_CLEAN)
1537 goto keep_locked;
1538 if (!may_enter_fs)
1539 goto keep_locked;
1540 if (!sc->may_writepage)
1541 goto keep_locked;
1542
1543 /*
1544 * Page is dirty. Flush the TLB if a writable entry
1545 * potentially exists to avoid CPU writes after IO
1546 * starts and then write it out here.
1547 */
1548 try_to_unmap_flush_dirty();
1549 switch (pageout(page, mapping)) {
1550 case PAGE_KEEP:
1551 goto keep_locked;
1552 case PAGE_ACTIVATE:
1553 goto activate_locked;
1554 case PAGE_SUCCESS:
1555 stat->nr_pageout += thp_nr_pages(page);
1556
1557 if (PageWriteback(page))
1558 goto keep;
1559 if (PageDirty(page))
1560 goto keep;
1561
1562 /*
1563 * A synchronous write - probably a ramdisk. Go
1564 * ahead and try to reclaim the page.
1565 */
1566 if (!trylock_page(page))
1567 goto keep;
1568 if (PageDirty(page) || PageWriteback(page))
1569 goto keep_locked;
1570 mapping = page_mapping(page);
1571 fallthrough;
1572 case PAGE_CLEAN:
1573 ; /* try to free the page below */
1574 }
1575 }
1576
1577 /*
1578 * If the page has buffers, try to free the buffer mappings
1579 * associated with this page. If we succeed we try to free
1580 * the page as well.
1581 *
1582 * We do this even if the page is PageDirty().
1583 * try_to_release_page() does not perform I/O, but it is
1584 * possible for a page to have PageDirty set, but it is actually
1585 * clean (all its buffers are clean). This happens if the
1586 * buffers were written out directly, with submit_bh(). ext3
1587 * will do this, as well as the blockdev mapping.
1588 * try_to_release_page() will discover that cleanness and will
1589 * drop the buffers and mark the page clean - it can be freed.
1590 *
1591 * Rarely, pages can have buffers and no ->mapping. These are
1592 * the pages which were not successfully invalidated in
1593 * truncate_cleanup_page(). We try to drop those buffers here
1594 * and if that worked, and the page is no longer mapped into
1595 * process address space (page_count == 1) it can be freed.
1596 * Otherwise, leave the page on the LRU so it is swappable.
1597 */
1598 if (page_has_private(page)) {
1599 if (!try_to_release_page(page, sc->gfp_mask))
1600 goto activate_locked;
1601 if (!mapping && page_count(page) == 1) {
1602 unlock_page(page);
1603 if (put_page_testzero(page))
1604 goto free_it;
1605 else {
1606 /*
1607 * rare race with speculative reference.
1608 * the speculative reference will free
1609 * this page shortly, so we may
1610 * increment nr_reclaimed here (and
1611 * leave it off the LRU).
1612 */
1613 nr_reclaimed++;
1614 continue;
1615 }
1616 }
1617 }
1618
1619 if (PageAnon(page) && !PageSwapBacked(page)) {
1620 /* follow __remove_mapping for reference */
1621 if (!page_ref_freeze(page, 1))
1622 goto keep_locked;
1623 if (PageDirty(page)) {
1624 page_ref_unfreeze(page, 1);
1625 goto keep_locked;
1626 }
1627
1628 count_vm_event(PGLAZYFREED);
1629 count_memcg_page_event(page, PGLAZYFREED);
1630 } else if (!mapping || !__remove_mapping(mapping, page, true,
1631 sc->target_mem_cgroup))
1632 goto keep_locked;
1633
1634 unlock_page(page);
1635 free_it:
1636 /*
1637 * THP may get swapped out in a whole, need account
1638 * all base pages.
1639 */
1640 nr_reclaimed += nr_pages;
1641
1642 /*
1643 * Is there need to periodically free_page_list? It would
1644 * appear not as the counts should be low
1645 */
1646 if (unlikely(PageTransHuge(page)))
1647 destroy_compound_page(page);
1648 else
1649 list_add(&page->lru, &free_pages);
1650 continue;
1651
1652 activate_locked_split:
1653 /*
1654 * The tail pages that are failed to add into swap cache
1655 * reach here. Fixup nr_scanned and nr_pages.
1656 */
1657 if (nr_pages > 1) {
1658 sc->nr_scanned -= (nr_pages - 1);
1659 nr_pages = 1;
1660 }
1661 activate_locked:
1662 /* Not a candidate for swapping, so reclaim swap space. */
1663 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1664 PageMlocked(page)))
1665 try_to_free_swap(page);
1666 VM_BUG_ON_PAGE(PageActive(page), page);
1667 if (!PageMlocked(page)) {
1668 int type = page_is_file_lru(page);
1669 SetPageActive(page);
1670 stat->nr_activate[type] += nr_pages;
1671 count_memcg_page_event(page, PGACTIVATE);
1672 }
1673 keep_locked:
1674 unlock_page(page);
1675 keep:
1676 list_add(&page->lru, &ret_pages);
1677 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1678 }
1679
1680 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1681
1682 mem_cgroup_uncharge_list(&free_pages);
1683 try_to_unmap_flush();
1684 free_unref_page_list(&free_pages);
1685
1686 list_splice(&ret_pages, page_list);
1687 count_vm_events(PGACTIVATE, pgactivate);
1688
1689 return nr_reclaimed;
1690 }
1691
1692 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1693 struct list_head *page_list)
1694 {
1695 struct scan_control sc = {
1696 .gfp_mask = GFP_KERNEL,
1697 .priority = DEF_PRIORITY,
1698 .may_unmap = 1,
1699 };
1700 struct reclaim_stat stat;
1701 unsigned int nr_reclaimed;
1702 struct page *page, *next;
1703 LIST_HEAD(clean_pages);
1704
1705 list_for_each_entry_safe(page, next, page_list, lru) {
1706 if (!PageHuge(page) && page_is_file_lru(page) &&
1707 !PageDirty(page) && !__PageMovable(page) &&
1708 !PageUnevictable(page)) {
1709 ClearPageActive(page);
1710 list_move(&page->lru, &clean_pages);
1711 }
1712 }
1713
1714 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1715 &stat, true);
1716 list_splice(&clean_pages, page_list);
1717 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1718 -(long)nr_reclaimed);
1719 /*
1720 * Since lazyfree pages are isolated from file LRU from the beginning,
1721 * they will rotate back to anonymous LRU in the end if it failed to
1722 * discard so isolated count will be mismatched.
1723 * Compensate the isolated count for both LRU lists.
1724 */
1725 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1726 stat.nr_lazyfree_fail);
1727 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1728 -(long)stat.nr_lazyfree_fail);
1729 return nr_reclaimed;
1730 }
1731
1732 /*
1733 * Attempt to remove the specified page from its LRU. Only take this page
1734 * if it is of the appropriate PageActive status. Pages which are being
1735 * freed elsewhere are also ignored.
1736 *
1737 * page: page to consider
1738 * mode: one of the LRU isolation modes defined above
1739 *
1740 * returns true on success, false on failure.
1741 */
1742 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
1743 {
1744 /* Only take pages on the LRU. */
1745 if (!PageLRU(page))
1746 return false;
1747
1748 /* Compaction should not handle unevictable pages but CMA can do so */
1749 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1750 return false;
1751
1752 /*
1753 * To minimise LRU disruption, the caller can indicate that it only
1754 * wants to isolate pages it will be able to operate on without
1755 * blocking - clean pages for the most part.
1756 *
1757 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1758 * that it is possible to migrate without blocking
1759 */
1760 if (mode & ISOLATE_ASYNC_MIGRATE) {
1761 /* All the caller can do on PageWriteback is block */
1762 if (PageWriteback(page))
1763 return false;
1764
1765 if (PageDirty(page)) {
1766 struct address_space *mapping;
1767 bool migrate_dirty;
1768
1769 /*
1770 * Only pages without mappings or that have a
1771 * ->migratepage callback are possible to migrate
1772 * without blocking. However, we can be racing with
1773 * truncation so it's necessary to lock the page
1774 * to stabilise the mapping as truncation holds
1775 * the page lock until after the page is removed
1776 * from the page cache.
1777 */
1778 if (!trylock_page(page))
1779 return false;
1780
1781 mapping = page_mapping(page);
1782 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1783 unlock_page(page);
1784 if (!migrate_dirty)
1785 return false;
1786 }
1787 }
1788
1789 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1790 return false;
1791
1792 return true;
1793 }
1794
1795 /*
1796 * Update LRU sizes after isolating pages. The LRU size updates must
1797 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1798 */
1799 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1800 enum lru_list lru, unsigned long *nr_zone_taken)
1801 {
1802 int zid;
1803
1804 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1805 if (!nr_zone_taken[zid])
1806 continue;
1807
1808 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1809 }
1810
1811 }
1812
1813 /**
1814 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1815 *
1816 * lruvec->lru_lock is heavily contended. Some of the functions that
1817 * shrink the lists perform better by taking out a batch of pages
1818 * and working on them outside the LRU lock.
1819 *
1820 * For pagecache intensive workloads, this function is the hottest
1821 * spot in the kernel (apart from copy_*_user functions).
1822 *
1823 * Lru_lock must be held before calling this function.
1824 *
1825 * @nr_to_scan: The number of eligible pages to look through on the list.
1826 * @lruvec: The LRU vector to pull pages from.
1827 * @dst: The temp list to put pages on to.
1828 * @nr_scanned: The number of pages that were scanned.
1829 * @sc: The scan_control struct for this reclaim session
1830 * @lru: LRU list id for isolating
1831 *
1832 * returns how many pages were moved onto *@dst.
1833 */
1834 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1835 struct lruvec *lruvec, struct list_head *dst,
1836 unsigned long *nr_scanned, struct scan_control *sc,
1837 enum lru_list lru)
1838 {
1839 struct list_head *src = &lruvec->lists[lru];
1840 unsigned long nr_taken = 0;
1841 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1842 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1843 unsigned long skipped = 0;
1844 unsigned long scan, total_scan, nr_pages;
1845 LIST_HEAD(pages_skipped);
1846 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1847
1848 total_scan = 0;
1849 scan = 0;
1850 while (scan < nr_to_scan && !list_empty(src)) {
1851 struct page *page;
1852
1853 page = lru_to_page(src);
1854 prefetchw_prev_lru_page(page, src, flags);
1855
1856 nr_pages = compound_nr(page);
1857 total_scan += nr_pages;
1858
1859 if (page_zonenum(page) > sc->reclaim_idx) {
1860 list_move(&page->lru, &pages_skipped);
1861 nr_skipped[page_zonenum(page)] += nr_pages;
1862 continue;
1863 }
1864
1865 /*
1866 * Do not count skipped pages because that makes the function
1867 * return with no isolated pages if the LRU mostly contains
1868 * ineligible pages. This causes the VM to not reclaim any
1869 * pages, triggering a premature OOM.
1870 *
1871 * Account all tail pages of THP. This would not cause
1872 * premature OOM since __isolate_lru_page() returns -EBUSY
1873 * only when the page is being freed somewhere else.
1874 */
1875 scan += nr_pages;
1876 if (!__isolate_lru_page_prepare(page, mode)) {
1877 /* It is being freed elsewhere */
1878 list_move(&page->lru, src);
1879 continue;
1880 }
1881 /*
1882 * Be careful not to clear PageLRU until after we're
1883 * sure the page is not being freed elsewhere -- the
1884 * page release code relies on it.
1885 */
1886 if (unlikely(!get_page_unless_zero(page))) {
1887 list_move(&page->lru, src);
1888 continue;
1889 }
1890
1891 if (!TestClearPageLRU(page)) {
1892 /* Another thread is already isolating this page */
1893 put_page(page);
1894 list_move(&page->lru, src);
1895 continue;
1896 }
1897
1898 nr_taken += nr_pages;
1899 nr_zone_taken[page_zonenum(page)] += nr_pages;
1900 list_move(&page->lru, dst);
1901 }
1902
1903 /*
1904 * Splice any skipped pages to the start of the LRU list. Note that
1905 * this disrupts the LRU order when reclaiming for lower zones but
1906 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1907 * scanning would soon rescan the same pages to skip and put the
1908 * system at risk of premature OOM.
1909 */
1910 if (!list_empty(&pages_skipped)) {
1911 int zid;
1912
1913 list_splice(&pages_skipped, src);
1914 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1915 if (!nr_skipped[zid])
1916 continue;
1917
1918 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1919 skipped += nr_skipped[zid];
1920 }
1921 }
1922 *nr_scanned = total_scan;
1923 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1924 total_scan, skipped, nr_taken, mode, lru);
1925 update_lru_sizes(lruvec, lru, nr_zone_taken);
1926 return nr_taken;
1927 }
1928
1929 /**
1930 * isolate_lru_page - tries to isolate a page from its LRU list
1931 * @page: page to isolate from its LRU list
1932 *
1933 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1934 * vmstat statistic corresponding to whatever LRU list the page was on.
1935 *
1936 * Returns 0 if the page was removed from an LRU list.
1937 * Returns -EBUSY if the page was not on an LRU list.
1938 *
1939 * The returned page will have PageLRU() cleared. If it was found on
1940 * the active list, it will have PageActive set. If it was found on
1941 * the unevictable list, it will have the PageUnevictable bit set. That flag
1942 * may need to be cleared by the caller before letting the page go.
1943 *
1944 * The vmstat statistic corresponding to the list on which the page was
1945 * found will be decremented.
1946 *
1947 * Restrictions:
1948 *
1949 * (1) Must be called with an elevated refcount on the page. This is a
1950 * fundamental difference from isolate_lru_pages (which is called
1951 * without a stable reference).
1952 * (2) the lru_lock must not be held.
1953 * (3) interrupts must be enabled.
1954 */
1955 int isolate_lru_page(struct page *page)
1956 {
1957 int ret = -EBUSY;
1958
1959 VM_BUG_ON_PAGE(!page_count(page), page);
1960 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1961
1962 if (TestClearPageLRU(page)) {
1963 struct lruvec *lruvec;
1964
1965 get_page(page);
1966 lruvec = lock_page_lruvec_irq(page);
1967 del_page_from_lru_list(page, lruvec);
1968 unlock_page_lruvec_irq(lruvec);
1969 ret = 0;
1970 }
1971
1972 return ret;
1973 }
1974
1975 /*
1976 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1977 * then get rescheduled. When there are massive number of tasks doing page
1978 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1979 * the LRU list will go small and be scanned faster than necessary, leading to
1980 * unnecessary swapping, thrashing and OOM.
1981 */
1982 static int too_many_isolated(struct pglist_data *pgdat, int file,
1983 struct scan_control *sc)
1984 {
1985 unsigned long inactive, isolated;
1986
1987 if (current_is_kswapd())
1988 return 0;
1989
1990 if (!writeback_throttling_sane(sc))
1991 return 0;
1992
1993 if (file) {
1994 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1995 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1996 } else {
1997 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1998 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1999 }
2000
2001 /*
2002 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2003 * won't get blocked by normal direct-reclaimers, forming a circular
2004 * deadlock.
2005 */
2006 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2007 inactive >>= 3;
2008
2009 return isolated > inactive;
2010 }
2011
2012 /*
2013 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2014 * On return, @list is reused as a list of pages to be freed by the caller.
2015 *
2016 * Returns the number of pages moved to the given lruvec.
2017 */
2018 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
2019 struct list_head *list)
2020 {
2021 int nr_pages, nr_moved = 0;
2022 LIST_HEAD(pages_to_free);
2023 struct page *page;
2024
2025 while (!list_empty(list)) {
2026 page = lru_to_page(list);
2027 VM_BUG_ON_PAGE(PageLRU(page), page);
2028 list_del(&page->lru);
2029 if (unlikely(!page_evictable(page))) {
2030 spin_unlock_irq(&lruvec->lru_lock);
2031 putback_lru_page(page);
2032 spin_lock_irq(&lruvec->lru_lock);
2033 continue;
2034 }
2035
2036 /*
2037 * The SetPageLRU needs to be kept here for list integrity.
2038 * Otherwise:
2039 * #0 move_pages_to_lru #1 release_pages
2040 * if !put_page_testzero
2041 * if (put_page_testzero())
2042 * !PageLRU //skip lru_lock
2043 * SetPageLRU()
2044 * list_add(&page->lru,)
2045 * list_add(&page->lru,)
2046 */
2047 SetPageLRU(page);
2048
2049 if (unlikely(put_page_testzero(page))) {
2050 __clear_page_lru_flags(page);
2051
2052 if (unlikely(PageCompound(page))) {
2053 spin_unlock_irq(&lruvec->lru_lock);
2054 destroy_compound_page(page);
2055 spin_lock_irq(&lruvec->lru_lock);
2056 } else
2057 list_add(&page->lru, &pages_to_free);
2058
2059 continue;
2060 }
2061
2062 /*
2063 * All pages were isolated from the same lruvec (and isolation
2064 * inhibits memcg migration).
2065 */
2066 VM_BUG_ON_PAGE(!lruvec_holds_page_lru_lock(page, lruvec), page);
2067 add_page_to_lru_list(page, lruvec);
2068 nr_pages = thp_nr_pages(page);
2069 nr_moved += nr_pages;
2070 if (PageActive(page))
2071 workingset_age_nonresident(lruvec, nr_pages);
2072 }
2073
2074 /*
2075 * To save our caller's stack, now use input list for pages to free.
2076 */
2077 list_splice(&pages_to_free, list);
2078
2079 return nr_moved;
2080 }
2081
2082 /*
2083 * If a kernel thread (such as nfsd for loop-back mounts) services
2084 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
2085 * In that case we should only throttle if the backing device it is
2086 * writing to is congested. In other cases it is safe to throttle.
2087 */
2088 static int current_may_throttle(void)
2089 {
2090 return !(current->flags & PF_LOCAL_THROTTLE) ||
2091 current->backing_dev_info == NULL ||
2092 bdi_write_congested(current->backing_dev_info);
2093 }
2094
2095 /*
2096 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
2097 * of reclaimed pages
2098 */
2099 static noinline_for_stack unsigned long
2100 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2101 struct scan_control *sc, enum lru_list lru)
2102 {
2103 LIST_HEAD(page_list);
2104 unsigned long nr_scanned;
2105 unsigned int nr_reclaimed = 0;
2106 unsigned long nr_taken;
2107 struct reclaim_stat stat;
2108 bool file = is_file_lru(lru);
2109 enum vm_event_item item;
2110 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2111 bool stalled = false;
2112
2113 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2114 if (stalled)
2115 return 0;
2116
2117 /* wait a bit for the reclaimer. */
2118 msleep(100);
2119 stalled = true;
2120
2121 /* We are about to die and free our memory. Return now. */
2122 if (fatal_signal_pending(current))
2123 return SWAP_CLUSTER_MAX;
2124 }
2125
2126 lru_add_drain();
2127
2128 spin_lock_irq(&lruvec->lru_lock);
2129
2130 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2131 &nr_scanned, sc, lru);
2132
2133 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2134 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2135 if (!cgroup_reclaim(sc))
2136 __count_vm_events(item, nr_scanned);
2137 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2138 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2139
2140 spin_unlock_irq(&lruvec->lru_lock);
2141
2142 if (nr_taken == 0)
2143 return 0;
2144
2145 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2146
2147 spin_lock_irq(&lruvec->lru_lock);
2148 move_pages_to_lru(lruvec, &page_list);
2149
2150 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2151 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2152 if (!cgroup_reclaim(sc))
2153 __count_vm_events(item, nr_reclaimed);
2154 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2155 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2156 spin_unlock_irq(&lruvec->lru_lock);
2157
2158 lru_note_cost(lruvec, file, stat.nr_pageout);
2159 mem_cgroup_uncharge_list(&page_list);
2160 free_unref_page_list(&page_list);
2161
2162 /*
2163 * If dirty pages are scanned that are not queued for IO, it
2164 * implies that flushers are not doing their job. This can
2165 * happen when memory pressure pushes dirty pages to the end of
2166 * the LRU before the dirty limits are breached and the dirty
2167 * data has expired. It can also happen when the proportion of
2168 * dirty pages grows not through writes but through memory
2169 * pressure reclaiming all the clean cache. And in some cases,
2170 * the flushers simply cannot keep up with the allocation
2171 * rate. Nudge the flusher threads in case they are asleep.
2172 */
2173 if (stat.nr_unqueued_dirty == nr_taken)
2174 wakeup_flusher_threads(WB_REASON_VMSCAN);
2175
2176 sc->nr.dirty += stat.nr_dirty;
2177 sc->nr.congested += stat.nr_congested;
2178 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2179 sc->nr.writeback += stat.nr_writeback;
2180 sc->nr.immediate += stat.nr_immediate;
2181 sc->nr.taken += nr_taken;
2182 if (file)
2183 sc->nr.file_taken += nr_taken;
2184
2185 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2186 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2187 return nr_reclaimed;
2188 }
2189
2190 /*
2191 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2192 *
2193 * We move them the other way if the page is referenced by one or more
2194 * processes.
2195 *
2196 * If the pages are mostly unmapped, the processing is fast and it is
2197 * appropriate to hold lru_lock across the whole operation. But if
2198 * the pages are mapped, the processing is slow (page_referenced()), so
2199 * we should drop lru_lock around each page. It's impossible to balance
2200 * this, so instead we remove the pages from the LRU while processing them.
2201 * It is safe to rely on PG_active against the non-LRU pages in here because
2202 * nobody will play with that bit on a non-LRU page.
2203 *
2204 * The downside is that we have to touch page->_refcount against each page.
2205 * But we had to alter page->flags anyway.
2206 */
2207 static void shrink_active_list(unsigned long nr_to_scan,
2208 struct lruvec *lruvec,
2209 struct scan_control *sc,
2210 enum lru_list lru)
2211 {
2212 unsigned long nr_taken;
2213 unsigned long nr_scanned;
2214 unsigned long vm_flags;
2215 LIST_HEAD(l_hold); /* The pages which were snipped off */
2216 LIST_HEAD(l_active);
2217 LIST_HEAD(l_inactive);
2218 struct page *page;
2219 unsigned nr_deactivate, nr_activate;
2220 unsigned nr_rotated = 0;
2221 int file = is_file_lru(lru);
2222 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2223
2224 lru_add_drain();
2225
2226 spin_lock_irq(&lruvec->lru_lock);
2227
2228 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2229 &nr_scanned, sc, lru);
2230
2231 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2232
2233 if (!cgroup_reclaim(sc))
2234 __count_vm_events(PGREFILL, nr_scanned);
2235 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2236
2237 spin_unlock_irq(&lruvec->lru_lock);
2238
2239 while (!list_empty(&l_hold)) {
2240 cond_resched();
2241 page = lru_to_page(&l_hold);
2242 list_del(&page->lru);
2243
2244 if (unlikely(!page_evictable(page))) {
2245 putback_lru_page(page);
2246 continue;
2247 }
2248
2249 if (unlikely(buffer_heads_over_limit)) {
2250 if (page_has_private(page) && trylock_page(page)) {
2251 if (page_has_private(page))
2252 try_to_release_page(page, 0);
2253 unlock_page(page);
2254 }
2255 }
2256
2257 if (page_referenced(page, 0, sc->target_mem_cgroup,
2258 &vm_flags)) {
2259 /*
2260 * Identify referenced, file-backed active pages and
2261 * give them one more trip around the active list. So
2262 * that executable code get better chances to stay in
2263 * memory under moderate memory pressure. Anon pages
2264 * are not likely to be evicted by use-once streaming
2265 * IO, plus JVM can create lots of anon VM_EXEC pages,
2266 * so we ignore them here.
2267 */
2268 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2269 nr_rotated += thp_nr_pages(page);
2270 list_add(&page->lru, &l_active);
2271 continue;
2272 }
2273 }
2274
2275 ClearPageActive(page); /* we are de-activating */
2276 SetPageWorkingset(page);
2277 list_add(&page->lru, &l_inactive);
2278 }
2279
2280 /*
2281 * Move pages back to the lru list.
2282 */
2283 spin_lock_irq(&lruvec->lru_lock);
2284
2285 nr_activate = move_pages_to_lru(lruvec, &l_active);
2286 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2287 /* Keep all free pages in l_active list */
2288 list_splice(&l_inactive, &l_active);
2289
2290 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2291 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2292
2293 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2294 spin_unlock_irq(&lruvec->lru_lock);
2295
2296 mem_cgroup_uncharge_list(&l_active);
2297 free_unref_page_list(&l_active);
2298 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2299 nr_deactivate, nr_rotated, sc->priority, file);
2300 }
2301
2302 unsigned long reclaim_pages(struct list_head *page_list)
2303 {
2304 int nid = NUMA_NO_NODE;
2305 unsigned int nr_reclaimed = 0;
2306 LIST_HEAD(node_page_list);
2307 struct reclaim_stat dummy_stat;
2308 struct page *page;
2309 struct scan_control sc = {
2310 .gfp_mask = GFP_KERNEL,
2311 .priority = DEF_PRIORITY,
2312 .may_writepage = 1,
2313 .may_unmap = 1,
2314 .may_swap = 1,
2315 };
2316
2317 while (!list_empty(page_list)) {
2318 page = lru_to_page(page_list);
2319 if (nid == NUMA_NO_NODE) {
2320 nid = page_to_nid(page);
2321 INIT_LIST_HEAD(&node_page_list);
2322 }
2323
2324 if (nid == page_to_nid(page)) {
2325 ClearPageActive(page);
2326 list_move(&page->lru, &node_page_list);
2327 continue;
2328 }
2329
2330 nr_reclaimed += shrink_page_list(&node_page_list,
2331 NODE_DATA(nid),
2332 &sc, &dummy_stat, false);
2333 while (!list_empty(&node_page_list)) {
2334 page = lru_to_page(&node_page_list);
2335 list_del(&page->lru);
2336 putback_lru_page(page);
2337 }
2338
2339 nid = NUMA_NO_NODE;
2340 }
2341
2342 if (!list_empty(&node_page_list)) {
2343 nr_reclaimed += shrink_page_list(&node_page_list,
2344 NODE_DATA(nid),
2345 &sc, &dummy_stat, false);
2346 while (!list_empty(&node_page_list)) {
2347 page = lru_to_page(&node_page_list);
2348 list_del(&page->lru);
2349 putback_lru_page(page);
2350 }
2351 }
2352
2353 return nr_reclaimed;
2354 }
2355
2356 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2357 struct lruvec *lruvec, struct scan_control *sc)
2358 {
2359 if (is_active_lru(lru)) {
2360 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2361 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2362 else
2363 sc->skipped_deactivate = 1;
2364 return 0;
2365 }
2366
2367 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2368 }
2369
2370 /*
2371 * The inactive anon list should be small enough that the VM never has
2372 * to do too much work.
2373 *
2374 * The inactive file list should be small enough to leave most memory
2375 * to the established workingset on the scan-resistant active list,
2376 * but large enough to avoid thrashing the aggregate readahead window.
2377 *
2378 * Both inactive lists should also be large enough that each inactive
2379 * page has a chance to be referenced again before it is reclaimed.
2380 *
2381 * If that fails and refaulting is observed, the inactive list grows.
2382 *
2383 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2384 * on this LRU, maintained by the pageout code. An inactive_ratio
2385 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2386 *
2387 * total target max
2388 * memory ratio inactive
2389 * -------------------------------------
2390 * 10MB 1 5MB
2391 * 100MB 1 50MB
2392 * 1GB 3 250MB
2393 * 10GB 10 0.9GB
2394 * 100GB 31 3GB
2395 * 1TB 101 10GB
2396 * 10TB 320 32GB
2397 */
2398 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2399 {
2400 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2401 unsigned long inactive, active;
2402 unsigned long inactive_ratio;
2403 unsigned long gb;
2404
2405 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2406 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2407
2408 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2409 if (gb)
2410 inactive_ratio = int_sqrt(10 * gb);
2411 else
2412 inactive_ratio = 1;
2413
2414 return inactive * inactive_ratio < active;
2415 }
2416
2417 enum scan_balance {
2418 SCAN_EQUAL,
2419 SCAN_FRACT,
2420 SCAN_ANON,
2421 SCAN_FILE,
2422 };
2423
2424 /*
2425 * Determine how aggressively the anon and file LRU lists should be
2426 * scanned. The relative value of each set of LRU lists is determined
2427 * by looking at the fraction of the pages scanned we did rotate back
2428 * onto the active list instead of evict.
2429 *
2430 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2431 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2432 */
2433 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2434 unsigned long *nr)
2435 {
2436 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2437 unsigned long anon_cost, file_cost, total_cost;
2438 int swappiness = mem_cgroup_swappiness(memcg);
2439 u64 fraction[ANON_AND_FILE];
2440 u64 denominator = 0; /* gcc */
2441 enum scan_balance scan_balance;
2442 unsigned long ap, fp;
2443 enum lru_list lru;
2444
2445 /* If we have no swap space, do not bother scanning anon pages. */
2446 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2447 scan_balance = SCAN_FILE;
2448 goto out;
2449 }
2450
2451 /*
2452 * Global reclaim will swap to prevent OOM even with no
2453 * swappiness, but memcg users want to use this knob to
2454 * disable swapping for individual groups completely when
2455 * using the memory controller's swap limit feature would be
2456 * too expensive.
2457 */
2458 if (cgroup_reclaim(sc) && !swappiness) {
2459 scan_balance = SCAN_FILE;
2460 goto out;
2461 }
2462
2463 /*
2464 * Do not apply any pressure balancing cleverness when the
2465 * system is close to OOM, scan both anon and file equally
2466 * (unless the swappiness setting disagrees with swapping).
2467 */
2468 if (!sc->priority && swappiness) {
2469 scan_balance = SCAN_EQUAL;
2470 goto out;
2471 }
2472
2473 /*
2474 * If the system is almost out of file pages, force-scan anon.
2475 */
2476 if (sc->file_is_tiny) {
2477 scan_balance = SCAN_ANON;
2478 goto out;
2479 }
2480
2481 /*
2482 * If there is enough inactive page cache, we do not reclaim
2483 * anything from the anonymous working right now.
2484 */
2485 if (sc->cache_trim_mode) {
2486 scan_balance = SCAN_FILE;
2487 goto out;
2488 }
2489
2490 scan_balance = SCAN_FRACT;
2491 /*
2492 * Calculate the pressure balance between anon and file pages.
2493 *
2494 * The amount of pressure we put on each LRU is inversely
2495 * proportional to the cost of reclaiming each list, as
2496 * determined by the share of pages that are refaulting, times
2497 * the relative IO cost of bringing back a swapped out
2498 * anonymous page vs reloading a filesystem page (swappiness).
2499 *
2500 * Although we limit that influence to ensure no list gets
2501 * left behind completely: at least a third of the pressure is
2502 * applied, before swappiness.
2503 *
2504 * With swappiness at 100, anon and file have equal IO cost.
2505 */
2506 total_cost = sc->anon_cost + sc->file_cost;
2507 anon_cost = total_cost + sc->anon_cost;
2508 file_cost = total_cost + sc->file_cost;
2509 total_cost = anon_cost + file_cost;
2510
2511 ap = swappiness * (total_cost + 1);
2512 ap /= anon_cost + 1;
2513
2514 fp = (200 - swappiness) * (total_cost + 1);
2515 fp /= file_cost + 1;
2516
2517 fraction[0] = ap;
2518 fraction[1] = fp;
2519 denominator = ap + fp;
2520 out:
2521 for_each_evictable_lru(lru) {
2522 int file = is_file_lru(lru);
2523 unsigned long lruvec_size;
2524 unsigned long scan;
2525 unsigned long protection;
2526
2527 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2528 protection = mem_cgroup_protection(sc->target_mem_cgroup,
2529 memcg,
2530 sc->memcg_low_reclaim);
2531
2532 if (protection) {
2533 /*
2534 * Scale a cgroup's reclaim pressure by proportioning
2535 * its current usage to its memory.low or memory.min
2536 * setting.
2537 *
2538 * This is important, as otherwise scanning aggression
2539 * becomes extremely binary -- from nothing as we
2540 * approach the memory protection threshold, to totally
2541 * nominal as we exceed it. This results in requiring
2542 * setting extremely liberal protection thresholds. It
2543 * also means we simply get no protection at all if we
2544 * set it too low, which is not ideal.
2545 *
2546 * If there is any protection in place, we reduce scan
2547 * pressure by how much of the total memory used is
2548 * within protection thresholds.
2549 *
2550 * There is one special case: in the first reclaim pass,
2551 * we skip over all groups that are within their low
2552 * protection. If that fails to reclaim enough pages to
2553 * satisfy the reclaim goal, we come back and override
2554 * the best-effort low protection. However, we still
2555 * ideally want to honor how well-behaved groups are in
2556 * that case instead of simply punishing them all
2557 * equally. As such, we reclaim them based on how much
2558 * memory they are using, reducing the scan pressure
2559 * again by how much of the total memory used is under
2560 * hard protection.
2561 */
2562 unsigned long cgroup_size = mem_cgroup_size(memcg);
2563
2564 /* Avoid TOCTOU with earlier protection check */
2565 cgroup_size = max(cgroup_size, protection);
2566
2567 scan = lruvec_size - lruvec_size * protection /
2568 cgroup_size;
2569
2570 /*
2571 * Minimally target SWAP_CLUSTER_MAX pages to keep
2572 * reclaim moving forwards, avoiding decrementing
2573 * sc->priority further than desirable.
2574 */
2575 scan = max(scan, SWAP_CLUSTER_MAX);
2576 } else {
2577 scan = lruvec_size;
2578 }
2579
2580 scan >>= sc->priority;
2581
2582 /*
2583 * If the cgroup's already been deleted, make sure to
2584 * scrape out the remaining cache.
2585 */
2586 if (!scan && !mem_cgroup_online(memcg))
2587 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2588
2589 switch (scan_balance) {
2590 case SCAN_EQUAL:
2591 /* Scan lists relative to size */
2592 break;
2593 case SCAN_FRACT:
2594 /*
2595 * Scan types proportional to swappiness and
2596 * their relative recent reclaim efficiency.
2597 * Make sure we don't miss the last page on
2598 * the offlined memory cgroups because of a
2599 * round-off error.
2600 */
2601 scan = mem_cgroup_online(memcg) ?
2602 div64_u64(scan * fraction[file], denominator) :
2603 DIV64_U64_ROUND_UP(scan * fraction[file],
2604 denominator);
2605 break;
2606 case SCAN_FILE:
2607 case SCAN_ANON:
2608 /* Scan one type exclusively */
2609 if ((scan_balance == SCAN_FILE) != file)
2610 scan = 0;
2611 break;
2612 default:
2613 /* Look ma, no brain */
2614 BUG();
2615 }
2616
2617 nr[lru] = scan;
2618 }
2619 }
2620
2621 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2622 {
2623 unsigned long nr[NR_LRU_LISTS];
2624 unsigned long targets[NR_LRU_LISTS];
2625 unsigned long nr_to_scan;
2626 enum lru_list lru;
2627 unsigned long nr_reclaimed = 0;
2628 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2629 struct blk_plug plug;
2630 bool scan_adjusted;
2631
2632 get_scan_count(lruvec, sc, nr);
2633
2634 /* Record the original scan target for proportional adjustments later */
2635 memcpy(targets, nr, sizeof(nr));
2636
2637 /*
2638 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2639 * event that can occur when there is little memory pressure e.g.
2640 * multiple streaming readers/writers. Hence, we do not abort scanning
2641 * when the requested number of pages are reclaimed when scanning at
2642 * DEF_PRIORITY on the assumption that the fact we are direct
2643 * reclaiming implies that kswapd is not keeping up and it is best to
2644 * do a batch of work at once. For memcg reclaim one check is made to
2645 * abort proportional reclaim if either the file or anon lru has already
2646 * dropped to zero at the first pass.
2647 */
2648 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2649 sc->priority == DEF_PRIORITY);
2650
2651 blk_start_plug(&plug);
2652 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2653 nr[LRU_INACTIVE_FILE]) {
2654 unsigned long nr_anon, nr_file, percentage;
2655 unsigned long nr_scanned;
2656
2657 for_each_evictable_lru(lru) {
2658 if (nr[lru]) {
2659 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2660 nr[lru] -= nr_to_scan;
2661
2662 nr_reclaimed += shrink_list(lru, nr_to_scan,
2663 lruvec, sc);
2664 }
2665 }
2666
2667 cond_resched();
2668
2669 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2670 continue;
2671
2672 /*
2673 * For kswapd and memcg, reclaim at least the number of pages
2674 * requested. Ensure that the anon and file LRUs are scanned
2675 * proportionally what was requested by get_scan_count(). We
2676 * stop reclaiming one LRU and reduce the amount scanning
2677 * proportional to the original scan target.
2678 */
2679 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2680 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2681
2682 /*
2683 * It's just vindictive to attack the larger once the smaller
2684 * has gone to zero. And given the way we stop scanning the
2685 * smaller below, this makes sure that we only make one nudge
2686 * towards proportionality once we've got nr_to_reclaim.
2687 */
2688 if (!nr_file || !nr_anon)
2689 break;
2690
2691 if (nr_file > nr_anon) {
2692 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2693 targets[LRU_ACTIVE_ANON] + 1;
2694 lru = LRU_BASE;
2695 percentage = nr_anon * 100 / scan_target;
2696 } else {
2697 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2698 targets[LRU_ACTIVE_FILE] + 1;
2699 lru = LRU_FILE;
2700 percentage = nr_file * 100 / scan_target;
2701 }
2702
2703 /* Stop scanning the smaller of the LRU */
2704 nr[lru] = 0;
2705 nr[lru + LRU_ACTIVE] = 0;
2706
2707 /*
2708 * Recalculate the other LRU scan count based on its original
2709 * scan target and the percentage scanning already complete
2710 */
2711 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2712 nr_scanned = targets[lru] - nr[lru];
2713 nr[lru] = targets[lru] * (100 - percentage) / 100;
2714 nr[lru] -= min(nr[lru], nr_scanned);
2715
2716 lru += LRU_ACTIVE;
2717 nr_scanned = targets[lru] - nr[lru];
2718 nr[lru] = targets[lru] * (100 - percentage) / 100;
2719 nr[lru] -= min(nr[lru], nr_scanned);
2720
2721 scan_adjusted = true;
2722 }
2723 blk_finish_plug(&plug);
2724 sc->nr_reclaimed += nr_reclaimed;
2725
2726 /*
2727 * Even if we did not try to evict anon pages at all, we want to
2728 * rebalance the anon lru active/inactive ratio.
2729 */
2730 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2731 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2732 sc, LRU_ACTIVE_ANON);
2733 }
2734
2735 /* Use reclaim/compaction for costly allocs or under memory pressure */
2736 static bool in_reclaim_compaction(struct scan_control *sc)
2737 {
2738 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2739 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2740 sc->priority < DEF_PRIORITY - 2))
2741 return true;
2742
2743 return false;
2744 }
2745
2746 /*
2747 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2748 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2749 * true if more pages should be reclaimed such that when the page allocator
2750 * calls try_to_compact_pages() that it will have enough free pages to succeed.
2751 * It will give up earlier than that if there is difficulty reclaiming pages.
2752 */
2753 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2754 unsigned long nr_reclaimed,
2755 struct scan_control *sc)
2756 {
2757 unsigned long pages_for_compaction;
2758 unsigned long inactive_lru_pages;
2759 int z;
2760
2761 /* If not in reclaim/compaction mode, stop */
2762 if (!in_reclaim_compaction(sc))
2763 return false;
2764
2765 /*
2766 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2767 * number of pages that were scanned. This will return to the caller
2768 * with the risk reclaim/compaction and the resulting allocation attempt
2769 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2770 * allocations through requiring that the full LRU list has been scanned
2771 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2772 * scan, but that approximation was wrong, and there were corner cases
2773 * where always a non-zero amount of pages were scanned.
2774 */
2775 if (!nr_reclaimed)
2776 return false;
2777
2778 /* If compaction would go ahead or the allocation would succeed, stop */
2779 for (z = 0; z <= sc->reclaim_idx; z++) {
2780 struct zone *zone = &pgdat->node_zones[z];
2781 if (!managed_zone(zone))
2782 continue;
2783
2784 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2785 case COMPACT_SUCCESS:
2786 case COMPACT_CONTINUE:
2787 return false;
2788 default:
2789 /* check next zone */
2790 ;
2791 }
2792 }
2793
2794 /*
2795 * If we have not reclaimed enough pages for compaction and the
2796 * inactive lists are large enough, continue reclaiming
2797 */
2798 pages_for_compaction = compact_gap(sc->order);
2799 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2800 if (get_nr_swap_pages() > 0)
2801 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2802
2803 return inactive_lru_pages > pages_for_compaction;
2804 }
2805
2806 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2807 {
2808 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2809 struct mem_cgroup *memcg;
2810
2811 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2812 do {
2813 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2814 unsigned long reclaimed;
2815 unsigned long scanned;
2816
2817 /*
2818 * This loop can become CPU-bound when target memcgs
2819 * aren't eligible for reclaim - either because they
2820 * don't have any reclaimable pages, or because their
2821 * memory is explicitly protected. Avoid soft lockups.
2822 */
2823 cond_resched();
2824
2825 mem_cgroup_calculate_protection(target_memcg, memcg);
2826
2827 if (mem_cgroup_below_min(memcg)) {
2828 /*
2829 * Hard protection.
2830 * If there is no reclaimable memory, OOM.
2831 */
2832 continue;
2833 } else if (mem_cgroup_below_low(memcg)) {
2834 /*
2835 * Soft protection.
2836 * Respect the protection only as long as
2837 * there is an unprotected supply
2838 * of reclaimable memory from other cgroups.
2839 */
2840 if (!sc->memcg_low_reclaim) {
2841 sc->memcg_low_skipped = 1;
2842 continue;
2843 }
2844 memcg_memory_event(memcg, MEMCG_LOW);
2845 }
2846
2847 reclaimed = sc->nr_reclaimed;
2848 scanned = sc->nr_scanned;
2849
2850 shrink_lruvec(lruvec, sc);
2851
2852 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2853 sc->priority);
2854
2855 /* Record the group's reclaim efficiency */
2856 vmpressure(sc->gfp_mask, memcg, false,
2857 sc->nr_scanned - scanned,
2858 sc->nr_reclaimed - reclaimed);
2859
2860 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2861 }
2862
2863 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2864 {
2865 struct reclaim_state *reclaim_state = current->reclaim_state;
2866 unsigned long nr_reclaimed, nr_scanned;
2867 struct lruvec *target_lruvec;
2868 bool reclaimable = false;
2869 unsigned long file;
2870
2871 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2872
2873 again:
2874 memset(&sc->nr, 0, sizeof(sc->nr));
2875
2876 nr_reclaimed = sc->nr_reclaimed;
2877 nr_scanned = sc->nr_scanned;
2878
2879 /*
2880 * Determine the scan balance between anon and file LRUs.
2881 */
2882 spin_lock_irq(&target_lruvec->lru_lock);
2883 sc->anon_cost = target_lruvec->anon_cost;
2884 sc->file_cost = target_lruvec->file_cost;
2885 spin_unlock_irq(&target_lruvec->lru_lock);
2886
2887 /*
2888 * Target desirable inactive:active list ratios for the anon
2889 * and file LRU lists.
2890 */
2891 if (!sc->force_deactivate) {
2892 unsigned long refaults;
2893
2894 refaults = lruvec_page_state(target_lruvec,
2895 WORKINGSET_ACTIVATE_ANON);
2896 if (refaults != target_lruvec->refaults[0] ||
2897 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2898 sc->may_deactivate |= DEACTIVATE_ANON;
2899 else
2900 sc->may_deactivate &= ~DEACTIVATE_ANON;
2901
2902 /*
2903 * When refaults are being observed, it means a new
2904 * workingset is being established. Deactivate to get
2905 * rid of any stale active pages quickly.
2906 */
2907 refaults = lruvec_page_state(target_lruvec,
2908 WORKINGSET_ACTIVATE_FILE);
2909 if (refaults != target_lruvec->refaults[1] ||
2910 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2911 sc->may_deactivate |= DEACTIVATE_FILE;
2912 else
2913 sc->may_deactivate &= ~DEACTIVATE_FILE;
2914 } else
2915 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2916
2917 /*
2918 * If we have plenty of inactive file pages that aren't
2919 * thrashing, try to reclaim those first before touching
2920 * anonymous pages.
2921 */
2922 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2923 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2924 sc->cache_trim_mode = 1;
2925 else
2926 sc->cache_trim_mode = 0;
2927
2928 /*
2929 * Prevent the reclaimer from falling into the cache trap: as
2930 * cache pages start out inactive, every cache fault will tip
2931 * the scan balance towards the file LRU. And as the file LRU
2932 * shrinks, so does the window for rotation from references.
2933 * This means we have a runaway feedback loop where a tiny
2934 * thrashing file LRU becomes infinitely more attractive than
2935 * anon pages. Try to detect this based on file LRU size.
2936 */
2937 if (!cgroup_reclaim(sc)) {
2938 unsigned long total_high_wmark = 0;
2939 unsigned long free, anon;
2940 int z;
2941
2942 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2943 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2944 node_page_state(pgdat, NR_INACTIVE_FILE);
2945
2946 for (z = 0; z < MAX_NR_ZONES; z++) {
2947 struct zone *zone = &pgdat->node_zones[z];
2948 if (!managed_zone(zone))
2949 continue;
2950
2951 total_high_wmark += high_wmark_pages(zone);
2952 }
2953
2954 /*
2955 * Consider anon: if that's low too, this isn't a
2956 * runaway file reclaim problem, but rather just
2957 * extreme pressure. Reclaim as per usual then.
2958 */
2959 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2960
2961 sc->file_is_tiny =
2962 file + free <= total_high_wmark &&
2963 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2964 anon >> sc->priority;
2965 }
2966
2967 shrink_node_memcgs(pgdat, sc);
2968
2969 if (reclaim_state) {
2970 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2971 reclaim_state->reclaimed_slab = 0;
2972 }
2973
2974 /* Record the subtree's reclaim efficiency */
2975 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2976 sc->nr_scanned - nr_scanned,
2977 sc->nr_reclaimed - nr_reclaimed);
2978
2979 if (sc->nr_reclaimed - nr_reclaimed)
2980 reclaimable = true;
2981
2982 if (current_is_kswapd()) {
2983 /*
2984 * If reclaim is isolating dirty pages under writeback,
2985 * it implies that the long-lived page allocation rate
2986 * is exceeding the page laundering rate. Either the
2987 * global limits are not being effective at throttling
2988 * processes due to the page distribution throughout
2989 * zones or there is heavy usage of a slow backing
2990 * device. The only option is to throttle from reclaim
2991 * context which is not ideal as there is no guarantee
2992 * the dirtying process is throttled in the same way
2993 * balance_dirty_pages() manages.
2994 *
2995 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2996 * count the number of pages under pages flagged for
2997 * immediate reclaim and stall if any are encountered
2998 * in the nr_immediate check below.
2999 */
3000 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3001 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3002
3003 /* Allow kswapd to start writing pages during reclaim.*/
3004 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3005 set_bit(PGDAT_DIRTY, &pgdat->flags);
3006
3007 /*
3008 * If kswapd scans pages marked for immediate
3009 * reclaim and under writeback (nr_immediate), it
3010 * implies that pages are cycling through the LRU
3011 * faster than they are written so also forcibly stall.
3012 */
3013 if (sc->nr.immediate)
3014 congestion_wait(BLK_RW_ASYNC, HZ/10);
3015 }
3016
3017 /*
3018 * Tag a node/memcg as congested if all the dirty pages
3019 * scanned were backed by a congested BDI and
3020 * wait_iff_congested will stall.
3021 *
3022 * Legacy memcg will stall in page writeback so avoid forcibly
3023 * stalling in wait_iff_congested().
3024 */
3025 if ((current_is_kswapd() ||
3026 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3027 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3028 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3029
3030 /*
3031 * Stall direct reclaim for IO completions if underlying BDIs
3032 * and node is congested. Allow kswapd to continue until it
3033 * starts encountering unqueued dirty pages or cycling through
3034 * the LRU too quickly.
3035 */
3036 if (!current_is_kswapd() && current_may_throttle() &&
3037 !sc->hibernation_mode &&
3038 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3039 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
3040
3041 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3042 sc))
3043 goto again;
3044
3045 /*
3046 * Kswapd gives up on balancing particular nodes after too
3047 * many failures to reclaim anything from them and goes to
3048 * sleep. On reclaim progress, reset the failure counter. A
3049 * successful direct reclaim run will revive a dormant kswapd.
3050 */
3051 if (reclaimable)
3052 pgdat->kswapd_failures = 0;
3053 }
3054
3055 /*
3056 * Returns true if compaction should go ahead for a costly-order request, or
3057 * the allocation would already succeed without compaction. Return false if we
3058 * should reclaim first.
3059 */
3060 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3061 {
3062 unsigned long watermark;
3063 enum compact_result suitable;
3064
3065 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3066 if (suitable == COMPACT_SUCCESS)
3067 /* Allocation should succeed already. Don't reclaim. */
3068 return true;
3069 if (suitable == COMPACT_SKIPPED)
3070 /* Compaction cannot yet proceed. Do reclaim. */
3071 return false;
3072
3073 /*
3074 * Compaction is already possible, but it takes time to run and there
3075 * are potentially other callers using the pages just freed. So proceed
3076 * with reclaim to make a buffer of free pages available to give
3077 * compaction a reasonable chance of completing and allocating the page.
3078 * Note that we won't actually reclaim the whole buffer in one attempt
3079 * as the target watermark in should_continue_reclaim() is lower. But if
3080 * we are already above the high+gap watermark, don't reclaim at all.
3081 */
3082 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3083
3084 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3085 }
3086
3087 /*
3088 * This is the direct reclaim path, for page-allocating processes. We only
3089 * try to reclaim pages from zones which will satisfy the caller's allocation
3090 * request.
3091 *
3092 * If a zone is deemed to be full of pinned pages then just give it a light
3093 * scan then give up on it.
3094 */
3095 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3096 {
3097 struct zoneref *z;
3098 struct zone *zone;
3099 unsigned long nr_soft_reclaimed;
3100 unsigned long nr_soft_scanned;
3101 gfp_t orig_mask;
3102 pg_data_t *last_pgdat = NULL;
3103
3104 /*
3105 * If the number of buffer_heads in the machine exceeds the maximum
3106 * allowed level, force direct reclaim to scan the highmem zone as
3107 * highmem pages could be pinning lowmem pages storing buffer_heads
3108 */
3109 orig_mask = sc->gfp_mask;
3110 if (buffer_heads_over_limit) {
3111 sc->gfp_mask |= __GFP_HIGHMEM;
3112 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3113 }
3114
3115 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3116 sc->reclaim_idx, sc->nodemask) {
3117 /*
3118 * Take care memory controller reclaiming has small influence
3119 * to global LRU.
3120 */
3121 if (!cgroup_reclaim(sc)) {
3122 if (!cpuset_zone_allowed(zone,
3123 GFP_KERNEL | __GFP_HARDWALL))
3124 continue;
3125
3126 /*
3127 * If we already have plenty of memory free for
3128 * compaction in this zone, don't free any more.
3129 * Even though compaction is invoked for any
3130 * non-zero order, only frequent costly order
3131 * reclamation is disruptive enough to become a
3132 * noticeable problem, like transparent huge
3133 * page allocations.
3134 */
3135 if (IS_ENABLED(CONFIG_COMPACTION) &&
3136 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3137 compaction_ready(zone, sc)) {
3138 sc->compaction_ready = true;
3139 continue;
3140 }
3141
3142 /*
3143 * Shrink each node in the zonelist once. If the
3144 * zonelist is ordered by zone (not the default) then a
3145 * node may be shrunk multiple times but in that case
3146 * the user prefers lower zones being preserved.
3147 */
3148 if (zone->zone_pgdat == last_pgdat)
3149 continue;
3150
3151 /*
3152 * This steals pages from memory cgroups over softlimit
3153 * and returns the number of reclaimed pages and
3154 * scanned pages. This works for global memory pressure
3155 * and balancing, not for a memcg's limit.
3156 */
3157 nr_soft_scanned = 0;
3158 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3159 sc->order, sc->gfp_mask,
3160 &nr_soft_scanned);
3161 sc->nr_reclaimed += nr_soft_reclaimed;
3162 sc->nr_scanned += nr_soft_scanned;
3163 /* need some check for avoid more shrink_zone() */
3164 }
3165
3166 /* See comment about same check for global reclaim above */
3167 if (zone->zone_pgdat == last_pgdat)
3168 continue;
3169 last_pgdat = zone->zone_pgdat;
3170 shrink_node(zone->zone_pgdat, sc);
3171 }
3172
3173 /*
3174 * Restore to original mask to avoid the impact on the caller if we
3175 * promoted it to __GFP_HIGHMEM.
3176 */
3177 sc->gfp_mask = orig_mask;
3178 }
3179
3180 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3181 {
3182 struct lruvec *target_lruvec;
3183 unsigned long refaults;
3184
3185 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3186 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3187 target_lruvec->refaults[0] = refaults;
3188 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3189 target_lruvec->refaults[1] = refaults;
3190 }
3191
3192 /*
3193 * This is the main entry point to direct page reclaim.
3194 *
3195 * If a full scan of the inactive list fails to free enough memory then we
3196 * are "out of memory" and something needs to be killed.
3197 *
3198 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3199 * high - the zone may be full of dirty or under-writeback pages, which this
3200 * caller can't do much about. We kick the writeback threads and take explicit
3201 * naps in the hope that some of these pages can be written. But if the
3202 * allocating task holds filesystem locks which prevent writeout this might not
3203 * work, and the allocation attempt will fail.
3204 *
3205 * returns: 0, if no pages reclaimed
3206 * else, the number of pages reclaimed
3207 */
3208 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3209 struct scan_control *sc)
3210 {
3211 int initial_priority = sc->priority;
3212 pg_data_t *last_pgdat;
3213 struct zoneref *z;
3214 struct zone *zone;
3215 retry:
3216 delayacct_freepages_start();
3217
3218 if (!cgroup_reclaim(sc))
3219 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3220
3221 do {
3222 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3223 sc->priority);
3224 sc->nr_scanned = 0;
3225 shrink_zones(zonelist, sc);
3226
3227 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3228 break;
3229
3230 if (sc->compaction_ready)
3231 break;
3232
3233 /*
3234 * If we're getting trouble reclaiming, start doing
3235 * writepage even in laptop mode.
3236 */
3237 if (sc->priority < DEF_PRIORITY - 2)
3238 sc->may_writepage = 1;
3239 } while (--sc->priority >= 0);
3240
3241 last_pgdat = NULL;
3242 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3243 sc->nodemask) {
3244 if (zone->zone_pgdat == last_pgdat)
3245 continue;
3246 last_pgdat = zone->zone_pgdat;
3247
3248 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3249
3250 if (cgroup_reclaim(sc)) {
3251 struct lruvec *lruvec;
3252
3253 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3254 zone->zone_pgdat);
3255 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3256 }
3257 }
3258
3259 delayacct_freepages_end();
3260
3261 if (sc->nr_reclaimed)
3262 return sc->nr_reclaimed;
3263
3264 /* Aborted reclaim to try compaction? don't OOM, then */
3265 if (sc->compaction_ready)
3266 return 1;
3267
3268 /*
3269 * We make inactive:active ratio decisions based on the node's
3270 * composition of memory, but a restrictive reclaim_idx or a
3271 * memory.low cgroup setting can exempt large amounts of
3272 * memory from reclaim. Neither of which are very common, so
3273 * instead of doing costly eligibility calculations of the
3274 * entire cgroup subtree up front, we assume the estimates are
3275 * good, and retry with forcible deactivation if that fails.
3276 */
3277 if (sc->skipped_deactivate) {
3278 sc->priority = initial_priority;
3279 sc->force_deactivate = 1;
3280 sc->skipped_deactivate = 0;
3281 goto retry;
3282 }
3283
3284 /* Untapped cgroup reserves? Don't OOM, retry. */
3285 if (sc->memcg_low_skipped) {
3286 sc->priority = initial_priority;
3287 sc->force_deactivate = 0;
3288 sc->memcg_low_reclaim = 1;
3289 sc->memcg_low_skipped = 0;
3290 goto retry;
3291 }
3292
3293 return 0;
3294 }
3295
3296 static bool allow_direct_reclaim(pg_data_t *pgdat)
3297 {
3298 struct zone *zone;
3299 unsigned long pfmemalloc_reserve = 0;
3300 unsigned long free_pages = 0;
3301 int i;
3302 bool wmark_ok;
3303
3304 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3305 return true;
3306
3307 for (i = 0; i <= ZONE_NORMAL; i++) {
3308 zone = &pgdat->node_zones[i];
3309 if (!managed_zone(zone))
3310 continue;
3311
3312 if (!zone_reclaimable_pages(zone))
3313 continue;
3314
3315 pfmemalloc_reserve += min_wmark_pages(zone);
3316 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3317 }
3318
3319 /* If there are no reserves (unexpected config) then do not throttle */
3320 if (!pfmemalloc_reserve)
3321 return true;
3322
3323 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3324
3325 /* kswapd must be awake if processes are being throttled */
3326 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3327 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3328 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3329
3330 wake_up_interruptible(&pgdat->kswapd_wait);
3331 }
3332
3333 return wmark_ok;
3334 }
3335
3336 /*
3337 * Throttle direct reclaimers if backing storage is backed by the network
3338 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3339 * depleted. kswapd will continue to make progress and wake the processes
3340 * when the low watermark is reached.
3341 *
3342 * Returns true if a fatal signal was delivered during throttling. If this
3343 * happens, the page allocator should not consider triggering the OOM killer.
3344 */
3345 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3346 nodemask_t *nodemask)
3347 {
3348 struct zoneref *z;
3349 struct zone *zone;
3350 pg_data_t *pgdat = NULL;
3351
3352 /*
3353 * Kernel threads should not be throttled as they may be indirectly
3354 * responsible for cleaning pages necessary for reclaim to make forward
3355 * progress. kjournald for example may enter direct reclaim while
3356 * committing a transaction where throttling it could forcing other
3357 * processes to block on log_wait_commit().
3358 */
3359 if (current->flags & PF_KTHREAD)
3360 goto out;
3361
3362 /*
3363 * If a fatal signal is pending, this process should not throttle.
3364 * It should return quickly so it can exit and free its memory
3365 */
3366 if (fatal_signal_pending(current))
3367 goto out;
3368
3369 /*
3370 * Check if the pfmemalloc reserves are ok by finding the first node
3371 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3372 * GFP_KERNEL will be required for allocating network buffers when
3373 * swapping over the network so ZONE_HIGHMEM is unusable.
3374 *
3375 * Throttling is based on the first usable node and throttled processes
3376 * wait on a queue until kswapd makes progress and wakes them. There
3377 * is an affinity then between processes waking up and where reclaim
3378 * progress has been made assuming the process wakes on the same node.
3379 * More importantly, processes running on remote nodes will not compete
3380 * for remote pfmemalloc reserves and processes on different nodes
3381 * should make reasonable progress.
3382 */
3383 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3384 gfp_zone(gfp_mask), nodemask) {
3385 if (zone_idx(zone) > ZONE_NORMAL)
3386 continue;
3387
3388 /* Throttle based on the first usable node */
3389 pgdat = zone->zone_pgdat;
3390 if (allow_direct_reclaim(pgdat))
3391 goto out;
3392 break;
3393 }
3394
3395 /* If no zone was usable by the allocation flags then do not throttle */
3396 if (!pgdat)
3397 goto out;
3398
3399 /* Account for the throttling */
3400 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3401
3402 /*
3403 * If the caller cannot enter the filesystem, it's possible that it
3404 * is due to the caller holding an FS lock or performing a journal
3405 * transaction in the case of a filesystem like ext[3|4]. In this case,
3406 * it is not safe to block on pfmemalloc_wait as kswapd could be
3407 * blocked waiting on the same lock. Instead, throttle for up to a
3408 * second before continuing.
3409 */
3410 if (!(gfp_mask & __GFP_FS)) {
3411 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3412 allow_direct_reclaim(pgdat), HZ);
3413
3414 goto check_pending;
3415 }
3416
3417 /* Throttle until kswapd wakes the process */
3418 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3419 allow_direct_reclaim(pgdat));
3420
3421 check_pending:
3422 if (fatal_signal_pending(current))
3423 return true;
3424
3425 out:
3426 return false;
3427 }
3428
3429 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3430 gfp_t gfp_mask, nodemask_t *nodemask)
3431 {
3432 unsigned long nr_reclaimed;
3433 struct scan_control sc = {
3434 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3435 .gfp_mask = current_gfp_context(gfp_mask),
3436 .reclaim_idx = gfp_zone(gfp_mask),
3437 .order = order,
3438 .nodemask = nodemask,
3439 .priority = DEF_PRIORITY,
3440 .may_writepage = !laptop_mode,
3441 .may_unmap = 1,
3442 .may_swap = 1,
3443 };
3444
3445 /*
3446 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3447 * Confirm they are large enough for max values.
3448 */
3449 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3450 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3451 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3452
3453 /*
3454 * Do not enter reclaim if fatal signal was delivered while throttled.
3455 * 1 is returned so that the page allocator does not OOM kill at this
3456 * point.
3457 */
3458 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3459 return 1;
3460
3461 set_task_reclaim_state(current, &sc.reclaim_state);
3462 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3463
3464 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3465
3466 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3467 set_task_reclaim_state(current, NULL);
3468
3469 return nr_reclaimed;
3470 }
3471
3472 #ifdef CONFIG_MEMCG
3473
3474 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3475 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3476 gfp_t gfp_mask, bool noswap,
3477 pg_data_t *pgdat,
3478 unsigned long *nr_scanned)
3479 {
3480 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3481 struct scan_control sc = {
3482 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3483 .target_mem_cgroup = memcg,
3484 .may_writepage = !laptop_mode,
3485 .may_unmap = 1,
3486 .reclaim_idx = MAX_NR_ZONES - 1,
3487 .may_swap = !noswap,
3488 };
3489
3490 WARN_ON_ONCE(!current->reclaim_state);
3491
3492 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3493 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3494
3495 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3496 sc.gfp_mask);
3497
3498 /*
3499 * NOTE: Although we can get the priority field, using it
3500 * here is not a good idea, since it limits the pages we can scan.
3501 * if we don't reclaim here, the shrink_node from balance_pgdat
3502 * will pick up pages from other mem cgroup's as well. We hack
3503 * the priority and make it zero.
3504 */
3505 shrink_lruvec(lruvec, &sc);
3506
3507 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3508
3509 *nr_scanned = sc.nr_scanned;
3510
3511 return sc.nr_reclaimed;
3512 }
3513
3514 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3515 unsigned long nr_pages,
3516 gfp_t gfp_mask,
3517 bool may_swap)
3518 {
3519 unsigned long nr_reclaimed;
3520 unsigned int noreclaim_flag;
3521 struct scan_control sc = {
3522 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3523 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3524 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3525 .reclaim_idx = MAX_NR_ZONES - 1,
3526 .target_mem_cgroup = memcg,
3527 .priority = DEF_PRIORITY,
3528 .may_writepage = !laptop_mode,
3529 .may_unmap = 1,
3530 .may_swap = may_swap,
3531 };
3532 /*
3533 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3534 * equal pressure on all the nodes. This is based on the assumption that
3535 * the reclaim does not bail out early.
3536 */
3537 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3538
3539 set_task_reclaim_state(current, &sc.reclaim_state);
3540 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3541 noreclaim_flag = memalloc_noreclaim_save();
3542
3543 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3544
3545 memalloc_noreclaim_restore(noreclaim_flag);
3546 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3547 set_task_reclaim_state(current, NULL);
3548
3549 return nr_reclaimed;
3550 }
3551 #endif
3552
3553 static void age_active_anon(struct pglist_data *pgdat,
3554 struct scan_control *sc)
3555 {
3556 struct mem_cgroup *memcg;
3557 struct lruvec *lruvec;
3558
3559 if (!total_swap_pages)
3560 return;
3561
3562 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3563 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3564 return;
3565
3566 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3567 do {
3568 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3569 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3570 sc, LRU_ACTIVE_ANON);
3571 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3572 } while (memcg);
3573 }
3574
3575 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3576 {
3577 int i;
3578 struct zone *zone;
3579
3580 /*
3581 * Check for watermark boosts top-down as the higher zones
3582 * are more likely to be boosted. Both watermarks and boosts
3583 * should not be checked at the same time as reclaim would
3584 * start prematurely when there is no boosting and a lower
3585 * zone is balanced.
3586 */
3587 for (i = highest_zoneidx; i >= 0; i--) {
3588 zone = pgdat->node_zones + i;
3589 if (!managed_zone(zone))
3590 continue;
3591
3592 if (zone->watermark_boost)
3593 return true;
3594 }
3595
3596 return false;
3597 }
3598
3599 /*
3600 * Returns true if there is an eligible zone balanced for the request order
3601 * and highest_zoneidx
3602 */
3603 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3604 {
3605 int i;
3606 unsigned long mark = -1;
3607 struct zone *zone;
3608
3609 /*
3610 * Check watermarks bottom-up as lower zones are more likely to
3611 * meet watermarks.
3612 */
3613 for (i = 0; i <= highest_zoneidx; i++) {
3614 zone = pgdat->node_zones + i;
3615
3616 if (!managed_zone(zone))
3617 continue;
3618
3619 mark = high_wmark_pages(zone);
3620 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3621 return true;
3622 }
3623
3624 /*
3625 * If a node has no populated zone within highest_zoneidx, it does not
3626 * need balancing by definition. This can happen if a zone-restricted
3627 * allocation tries to wake a remote kswapd.
3628 */
3629 if (mark == -1)
3630 return true;
3631
3632 return false;
3633 }
3634
3635 /* Clear pgdat state for congested, dirty or under writeback. */
3636 static void clear_pgdat_congested(pg_data_t *pgdat)
3637 {
3638 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3639
3640 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3641 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3642 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3643 }
3644
3645 /*
3646 * Prepare kswapd for sleeping. This verifies that there are no processes
3647 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3648 *
3649 * Returns true if kswapd is ready to sleep
3650 */
3651 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3652 int highest_zoneidx)
3653 {
3654 /*
3655 * The throttled processes are normally woken up in balance_pgdat() as
3656 * soon as allow_direct_reclaim() is true. But there is a potential
3657 * race between when kswapd checks the watermarks and a process gets
3658 * throttled. There is also a potential race if processes get
3659 * throttled, kswapd wakes, a large process exits thereby balancing the
3660 * zones, which causes kswapd to exit balance_pgdat() before reaching
3661 * the wake up checks. If kswapd is going to sleep, no process should
3662 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3663 * the wake up is premature, processes will wake kswapd and get
3664 * throttled again. The difference from wake ups in balance_pgdat() is
3665 * that here we are under prepare_to_wait().
3666 */
3667 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3668 wake_up_all(&pgdat->pfmemalloc_wait);
3669
3670 /* Hopeless node, leave it to direct reclaim */
3671 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3672 return true;
3673
3674 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3675 clear_pgdat_congested(pgdat);
3676 return true;
3677 }
3678
3679 return false;
3680 }
3681
3682 /*
3683 * kswapd shrinks a node of pages that are at or below the highest usable
3684 * zone that is currently unbalanced.
3685 *
3686 * Returns true if kswapd scanned at least the requested number of pages to
3687 * reclaim or if the lack of progress was due to pages under writeback.
3688 * This is used to determine if the scanning priority needs to be raised.
3689 */
3690 static bool kswapd_shrink_node(pg_data_t *pgdat,
3691 struct scan_control *sc)
3692 {
3693 struct zone *zone;
3694 int z;
3695
3696 /* Reclaim a number of pages proportional to the number of zones */
3697 sc->nr_to_reclaim = 0;
3698 for (z = 0; z <= sc->reclaim_idx; z++) {
3699 zone = pgdat->node_zones + z;
3700 if (!managed_zone(zone))
3701 continue;
3702
3703 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3704 }
3705
3706 /*
3707 * Historically care was taken to put equal pressure on all zones but
3708 * now pressure is applied based on node LRU order.
3709 */
3710 shrink_node(pgdat, sc);
3711
3712 /*
3713 * Fragmentation may mean that the system cannot be rebalanced for
3714 * high-order allocations. If twice the allocation size has been
3715 * reclaimed then recheck watermarks only at order-0 to prevent
3716 * excessive reclaim. Assume that a process requested a high-order
3717 * can direct reclaim/compact.
3718 */
3719 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3720 sc->order = 0;
3721
3722 return sc->nr_scanned >= sc->nr_to_reclaim;
3723 }
3724
3725 /*
3726 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3727 * that are eligible for use by the caller until at least one zone is
3728 * balanced.
3729 *
3730 * Returns the order kswapd finished reclaiming at.
3731 *
3732 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3733 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3734 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3735 * or lower is eligible for reclaim until at least one usable zone is
3736 * balanced.
3737 */
3738 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3739 {
3740 int i;
3741 unsigned long nr_soft_reclaimed;
3742 unsigned long nr_soft_scanned;
3743 unsigned long pflags;
3744 unsigned long nr_boost_reclaim;
3745 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3746 bool boosted;
3747 struct zone *zone;
3748 struct scan_control sc = {
3749 .gfp_mask = GFP_KERNEL,
3750 .order = order,
3751 .may_unmap = 1,
3752 };
3753
3754 set_task_reclaim_state(current, &sc.reclaim_state);
3755 psi_memstall_enter(&pflags);
3756 __fs_reclaim_acquire();
3757
3758 count_vm_event(PAGEOUTRUN);
3759
3760 /*
3761 * Account for the reclaim boost. Note that the zone boost is left in
3762 * place so that parallel allocations that are near the watermark will
3763 * stall or direct reclaim until kswapd is finished.
3764 */
3765 nr_boost_reclaim = 0;
3766 for (i = 0; i <= highest_zoneidx; i++) {
3767 zone = pgdat->node_zones + i;
3768 if (!managed_zone(zone))
3769 continue;
3770
3771 nr_boost_reclaim += zone->watermark_boost;
3772 zone_boosts[i] = zone->watermark_boost;
3773 }
3774 boosted = nr_boost_reclaim;
3775
3776 restart:
3777 sc.priority = DEF_PRIORITY;
3778 do {
3779 unsigned long nr_reclaimed = sc.nr_reclaimed;
3780 bool raise_priority = true;
3781 bool balanced;
3782 bool ret;
3783
3784 sc.reclaim_idx = highest_zoneidx;
3785
3786 /*
3787 * If the number of buffer_heads exceeds the maximum allowed
3788 * then consider reclaiming from all zones. This has a dual
3789 * purpose -- on 64-bit systems it is expected that
3790 * buffer_heads are stripped during active rotation. On 32-bit
3791 * systems, highmem pages can pin lowmem memory and shrinking
3792 * buffers can relieve lowmem pressure. Reclaim may still not
3793 * go ahead if all eligible zones for the original allocation
3794 * request are balanced to avoid excessive reclaim from kswapd.
3795 */
3796 if (buffer_heads_over_limit) {
3797 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3798 zone = pgdat->node_zones + i;
3799 if (!managed_zone(zone))
3800 continue;
3801
3802 sc.reclaim_idx = i;
3803 break;
3804 }
3805 }
3806
3807 /*
3808 * If the pgdat is imbalanced then ignore boosting and preserve
3809 * the watermarks for a later time and restart. Note that the
3810 * zone watermarks will be still reset at the end of balancing
3811 * on the grounds that the normal reclaim should be enough to
3812 * re-evaluate if boosting is required when kswapd next wakes.
3813 */
3814 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3815 if (!balanced && nr_boost_reclaim) {
3816 nr_boost_reclaim = 0;
3817 goto restart;
3818 }
3819
3820 /*
3821 * If boosting is not active then only reclaim if there are no
3822 * eligible zones. Note that sc.reclaim_idx is not used as
3823 * buffer_heads_over_limit may have adjusted it.
3824 */
3825 if (!nr_boost_reclaim && balanced)
3826 goto out;
3827
3828 /* Limit the priority of boosting to avoid reclaim writeback */
3829 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3830 raise_priority = false;
3831
3832 /*
3833 * Do not writeback or swap pages for boosted reclaim. The
3834 * intent is to relieve pressure not issue sub-optimal IO
3835 * from reclaim context. If no pages are reclaimed, the
3836 * reclaim will be aborted.
3837 */
3838 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3839 sc.may_swap = !nr_boost_reclaim;
3840
3841 /*
3842 * Do some background aging of the anon list, to give
3843 * pages a chance to be referenced before reclaiming. All
3844 * pages are rotated regardless of classzone as this is
3845 * about consistent aging.
3846 */
3847 age_active_anon(pgdat, &sc);
3848
3849 /*
3850 * If we're getting trouble reclaiming, start doing writepage
3851 * even in laptop mode.
3852 */
3853 if (sc.priority < DEF_PRIORITY - 2)
3854 sc.may_writepage = 1;
3855
3856 /* Call soft limit reclaim before calling shrink_node. */
3857 sc.nr_scanned = 0;
3858 nr_soft_scanned = 0;
3859 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3860 sc.gfp_mask, &nr_soft_scanned);
3861 sc.nr_reclaimed += nr_soft_reclaimed;
3862
3863 /*
3864 * There should be no need to raise the scanning priority if
3865 * enough pages are already being scanned that that high
3866 * watermark would be met at 100% efficiency.
3867 */
3868 if (kswapd_shrink_node(pgdat, &sc))
3869 raise_priority = false;
3870
3871 /*
3872 * If the low watermark is met there is no need for processes
3873 * to be throttled on pfmemalloc_wait as they should not be
3874 * able to safely make forward progress. Wake them
3875 */
3876 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3877 allow_direct_reclaim(pgdat))
3878 wake_up_all(&pgdat->pfmemalloc_wait);
3879
3880 /* Check if kswapd should be suspending */
3881 __fs_reclaim_release();
3882 ret = try_to_freeze();
3883 __fs_reclaim_acquire();
3884 if (ret || kthread_should_stop())
3885 break;
3886
3887 /*
3888 * Raise priority if scanning rate is too low or there was no
3889 * progress in reclaiming pages
3890 */
3891 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3892 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3893
3894 /*
3895 * If reclaim made no progress for a boost, stop reclaim as
3896 * IO cannot be queued and it could be an infinite loop in
3897 * extreme circumstances.
3898 */
3899 if (nr_boost_reclaim && !nr_reclaimed)
3900 break;
3901
3902 if (raise_priority || !nr_reclaimed)
3903 sc.priority--;
3904 } while (sc.priority >= 1);
3905
3906 if (!sc.nr_reclaimed)
3907 pgdat->kswapd_failures++;
3908
3909 out:
3910 /* If reclaim was boosted, account for the reclaim done in this pass */
3911 if (boosted) {
3912 unsigned long flags;
3913
3914 for (i = 0; i <= highest_zoneidx; i++) {
3915 if (!zone_boosts[i])
3916 continue;
3917
3918 /* Increments are under the zone lock */
3919 zone = pgdat->node_zones + i;
3920 spin_lock_irqsave(&zone->lock, flags);
3921 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3922 spin_unlock_irqrestore(&zone->lock, flags);
3923 }
3924
3925 /*
3926 * As there is now likely space, wakeup kcompact to defragment
3927 * pageblocks.
3928 */
3929 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3930 }
3931
3932 snapshot_refaults(NULL, pgdat);
3933 __fs_reclaim_release();
3934 psi_memstall_leave(&pflags);
3935 set_task_reclaim_state(current, NULL);
3936
3937 /*
3938 * Return the order kswapd stopped reclaiming at as
3939 * prepare_kswapd_sleep() takes it into account. If another caller
3940 * entered the allocator slow path while kswapd was awake, order will
3941 * remain at the higher level.
3942 */
3943 return sc.order;
3944 }
3945
3946 /*
3947 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3948 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3949 * not a valid index then either kswapd runs for first time or kswapd couldn't
3950 * sleep after previous reclaim attempt (node is still unbalanced). In that
3951 * case return the zone index of the previous kswapd reclaim cycle.
3952 */
3953 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3954 enum zone_type prev_highest_zoneidx)
3955 {
3956 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3957
3958 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
3959 }
3960
3961 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3962 unsigned int highest_zoneidx)
3963 {
3964 long remaining = 0;
3965 DEFINE_WAIT(wait);
3966
3967 if (freezing(current) || kthread_should_stop())
3968 return;
3969
3970 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3971
3972 /*
3973 * Try to sleep for a short interval. Note that kcompactd will only be
3974 * woken if it is possible to sleep for a short interval. This is
3975 * deliberate on the assumption that if reclaim cannot keep an
3976 * eligible zone balanced that it's also unlikely that compaction will
3977 * succeed.
3978 */
3979 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3980 /*
3981 * Compaction records what page blocks it recently failed to
3982 * isolate pages from and skips them in the future scanning.
3983 * When kswapd is going to sleep, it is reasonable to assume
3984 * that pages and compaction may succeed so reset the cache.
3985 */
3986 reset_isolation_suitable(pgdat);
3987
3988 /*
3989 * We have freed the memory, now we should compact it to make
3990 * allocation of the requested order possible.
3991 */
3992 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
3993
3994 remaining = schedule_timeout(HZ/10);
3995
3996 /*
3997 * If woken prematurely then reset kswapd_highest_zoneidx and
3998 * order. The values will either be from a wakeup request or
3999 * the previous request that slept prematurely.
4000 */
4001 if (remaining) {
4002 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4003 kswapd_highest_zoneidx(pgdat,
4004 highest_zoneidx));
4005
4006 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4007 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4008 }
4009
4010 finish_wait(&pgdat->kswapd_wait, &wait);
4011 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4012 }
4013
4014 /*
4015 * After a short sleep, check if it was a premature sleep. If not, then
4016 * go fully to sleep until explicitly woken up.
4017 */
4018 if (!remaining &&
4019 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4020 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4021
4022 /*
4023 * vmstat counters are not perfectly accurate and the estimated
4024 * value for counters such as NR_FREE_PAGES can deviate from the
4025 * true value by nr_online_cpus * threshold. To avoid the zone
4026 * watermarks being breached while under pressure, we reduce the
4027 * per-cpu vmstat threshold while kswapd is awake and restore
4028 * them before going back to sleep.
4029 */
4030 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4031
4032 if (!kthread_should_stop())
4033 schedule();
4034
4035 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4036 } else {
4037 if (remaining)
4038 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4039 else
4040 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4041 }
4042 finish_wait(&pgdat->kswapd_wait, &wait);
4043 }
4044
4045 /*
4046 * The background pageout daemon, started as a kernel thread
4047 * from the init process.
4048 *
4049 * This basically trickles out pages so that we have _some_
4050 * free memory available even if there is no other activity
4051 * that frees anything up. This is needed for things like routing
4052 * etc, where we otherwise might have all activity going on in
4053 * asynchronous contexts that cannot page things out.
4054 *
4055 * If there are applications that are active memory-allocators
4056 * (most normal use), this basically shouldn't matter.
4057 */
4058 static int kswapd(void *p)
4059 {
4060 unsigned int alloc_order, reclaim_order;
4061 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4062 pg_data_t *pgdat = (pg_data_t *)p;
4063 struct task_struct *tsk = current;
4064 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4065
4066 if (!cpumask_empty(cpumask))
4067 set_cpus_allowed_ptr(tsk, cpumask);
4068
4069 /*
4070 * Tell the memory management that we're a "memory allocator",
4071 * and that if we need more memory we should get access to it
4072 * regardless (see "__alloc_pages()"). "kswapd" should
4073 * never get caught in the normal page freeing logic.
4074 *
4075 * (Kswapd normally doesn't need memory anyway, but sometimes
4076 * you need a small amount of memory in order to be able to
4077 * page out something else, and this flag essentially protects
4078 * us from recursively trying to free more memory as we're
4079 * trying to free the first piece of memory in the first place).
4080 */
4081 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
4082 set_freezable();
4083
4084 WRITE_ONCE(pgdat->kswapd_order, 0);
4085 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4086 for ( ; ; ) {
4087 bool ret;
4088
4089 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4090 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4091 highest_zoneidx);
4092
4093 kswapd_try_sleep:
4094 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4095 highest_zoneidx);
4096
4097 /* Read the new order and highest_zoneidx */
4098 alloc_order = READ_ONCE(pgdat->kswapd_order);
4099 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4100 highest_zoneidx);
4101 WRITE_ONCE(pgdat->kswapd_order, 0);
4102 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4103
4104 ret = try_to_freeze();
4105 if (kthread_should_stop())
4106 break;
4107
4108 /*
4109 * We can speed up thawing tasks if we don't call balance_pgdat
4110 * after returning from the refrigerator
4111 */
4112 if (ret)
4113 continue;
4114
4115 /*
4116 * Reclaim begins at the requested order but if a high-order
4117 * reclaim fails then kswapd falls back to reclaiming for
4118 * order-0. If that happens, kswapd will consider sleeping
4119 * for the order it finished reclaiming at (reclaim_order)
4120 * but kcompactd is woken to compact for the original
4121 * request (alloc_order).
4122 */
4123 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4124 alloc_order);
4125 reclaim_order = balance_pgdat(pgdat, alloc_order,
4126 highest_zoneidx);
4127 if (reclaim_order < alloc_order)
4128 goto kswapd_try_sleep;
4129 }
4130
4131 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
4132
4133 return 0;
4134 }
4135
4136 /*
4137 * A zone is low on free memory or too fragmented for high-order memory. If
4138 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4139 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4140 * has failed or is not needed, still wake up kcompactd if only compaction is
4141 * needed.
4142 */
4143 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4144 enum zone_type highest_zoneidx)
4145 {
4146 pg_data_t *pgdat;
4147 enum zone_type curr_idx;
4148
4149 if (!managed_zone(zone))
4150 return;
4151
4152 if (!cpuset_zone_allowed(zone, gfp_flags))
4153 return;
4154
4155 pgdat = zone->zone_pgdat;
4156 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4157
4158 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4159 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4160
4161 if (READ_ONCE(pgdat->kswapd_order) < order)
4162 WRITE_ONCE(pgdat->kswapd_order, order);
4163
4164 if (!waitqueue_active(&pgdat->kswapd_wait))
4165 return;
4166
4167 /* Hopeless node, leave it to direct reclaim if possible */
4168 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4169 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4170 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4171 /*
4172 * There may be plenty of free memory available, but it's too
4173 * fragmented for high-order allocations. Wake up kcompactd
4174 * and rely on compaction_suitable() to determine if it's
4175 * needed. If it fails, it will defer subsequent attempts to
4176 * ratelimit its work.
4177 */
4178 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4179 wakeup_kcompactd(pgdat, order, highest_zoneidx);
4180 return;
4181 }
4182
4183 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4184 gfp_flags);
4185 wake_up_interruptible(&pgdat->kswapd_wait);
4186 }
4187
4188 #ifdef CONFIG_HIBERNATION
4189 /*
4190 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4191 * freed pages.
4192 *
4193 * Rather than trying to age LRUs the aim is to preserve the overall
4194 * LRU order by reclaiming preferentially
4195 * inactive > active > active referenced > active mapped
4196 */
4197 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4198 {
4199 struct scan_control sc = {
4200 .nr_to_reclaim = nr_to_reclaim,
4201 .gfp_mask = GFP_HIGHUSER_MOVABLE,
4202 .reclaim_idx = MAX_NR_ZONES - 1,
4203 .priority = DEF_PRIORITY,
4204 .may_writepage = 1,
4205 .may_unmap = 1,
4206 .may_swap = 1,
4207 .hibernation_mode = 1,
4208 };
4209 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4210 unsigned long nr_reclaimed;
4211 unsigned int noreclaim_flag;
4212
4213 fs_reclaim_acquire(sc.gfp_mask);
4214 noreclaim_flag = memalloc_noreclaim_save();
4215 set_task_reclaim_state(current, &sc.reclaim_state);
4216
4217 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4218
4219 set_task_reclaim_state(current, NULL);
4220 memalloc_noreclaim_restore(noreclaim_flag);
4221 fs_reclaim_release(sc.gfp_mask);
4222
4223 return nr_reclaimed;
4224 }
4225 #endif /* CONFIG_HIBERNATION */
4226
4227 /*
4228 * This kswapd start function will be called by init and node-hot-add.
4229 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4230 */
4231 int kswapd_run(int nid)
4232 {
4233 pg_data_t *pgdat = NODE_DATA(nid);
4234 int ret = 0;
4235
4236 if (pgdat->kswapd)
4237 return 0;
4238
4239 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4240 if (IS_ERR(pgdat->kswapd)) {
4241 /* failure at boot is fatal */
4242 BUG_ON(system_state < SYSTEM_RUNNING);
4243 pr_err("Failed to start kswapd on node %d\n", nid);
4244 ret = PTR_ERR(pgdat->kswapd);
4245 pgdat->kswapd = NULL;
4246 }
4247 return ret;
4248 }
4249
4250 /*
4251 * Called by memory hotplug when all memory in a node is offlined. Caller must
4252 * hold mem_hotplug_begin/end().
4253 */
4254 void kswapd_stop(int nid)
4255 {
4256 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4257
4258 if (kswapd) {
4259 kthread_stop(kswapd);
4260 NODE_DATA(nid)->kswapd = NULL;
4261 }
4262 }
4263
4264 static int __init kswapd_init(void)
4265 {
4266 int nid;
4267
4268 swap_setup();
4269 for_each_node_state(nid, N_MEMORY)
4270 kswapd_run(nid);
4271 return 0;
4272 }
4273
4274 module_init(kswapd_init)
4275
4276 #ifdef CONFIG_NUMA
4277 /*
4278 * Node reclaim mode
4279 *
4280 * If non-zero call node_reclaim when the number of free pages falls below
4281 * the watermarks.
4282 */
4283 int node_reclaim_mode __read_mostly;
4284
4285 /*
4286 * Priority for NODE_RECLAIM. This determines the fraction of pages
4287 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4288 * a zone.
4289 */
4290 #define NODE_RECLAIM_PRIORITY 4
4291
4292 /*
4293 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4294 * occur.
4295 */
4296 int sysctl_min_unmapped_ratio = 1;
4297
4298 /*
4299 * If the number of slab pages in a zone grows beyond this percentage then
4300 * slab reclaim needs to occur.
4301 */
4302 int sysctl_min_slab_ratio = 5;
4303
4304 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4305 {
4306 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4307 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4308 node_page_state(pgdat, NR_ACTIVE_FILE);
4309
4310 /*
4311 * It's possible for there to be more file mapped pages than
4312 * accounted for by the pages on the file LRU lists because
4313 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4314 */
4315 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4316 }
4317
4318 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4319 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4320 {
4321 unsigned long nr_pagecache_reclaimable;
4322 unsigned long delta = 0;
4323
4324 /*
4325 * If RECLAIM_UNMAP is set, then all file pages are considered
4326 * potentially reclaimable. Otherwise, we have to worry about
4327 * pages like swapcache and node_unmapped_file_pages() provides
4328 * a better estimate
4329 */
4330 if (node_reclaim_mode & RECLAIM_UNMAP)
4331 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4332 else
4333 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4334
4335 /* If we can't clean pages, remove dirty pages from consideration */
4336 if (!(node_reclaim_mode & RECLAIM_WRITE))
4337 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4338
4339 /* Watch for any possible underflows due to delta */
4340 if (unlikely(delta > nr_pagecache_reclaimable))
4341 delta = nr_pagecache_reclaimable;
4342
4343 return nr_pagecache_reclaimable - delta;
4344 }
4345
4346 /*
4347 * Try to free up some pages from this node through reclaim.
4348 */
4349 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4350 {
4351 /* Minimum pages needed in order to stay on node */
4352 const unsigned long nr_pages = 1 << order;
4353 struct task_struct *p = current;
4354 unsigned int noreclaim_flag;
4355 struct scan_control sc = {
4356 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4357 .gfp_mask = current_gfp_context(gfp_mask),
4358 .order = order,
4359 .priority = NODE_RECLAIM_PRIORITY,
4360 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4361 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4362 .may_swap = 1,
4363 .reclaim_idx = gfp_zone(gfp_mask),
4364 };
4365
4366 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4367 sc.gfp_mask);
4368
4369 cond_resched();
4370 fs_reclaim_acquire(sc.gfp_mask);
4371 /*
4372 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4373 * and we also need to be able to write out pages for RECLAIM_WRITE
4374 * and RECLAIM_UNMAP.
4375 */
4376 noreclaim_flag = memalloc_noreclaim_save();
4377 p->flags |= PF_SWAPWRITE;
4378 set_task_reclaim_state(p, &sc.reclaim_state);
4379
4380 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4381 /*
4382 * Free memory by calling shrink node with increasing
4383 * priorities until we have enough memory freed.
4384 */
4385 do {
4386 shrink_node(pgdat, &sc);
4387 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4388 }
4389
4390 set_task_reclaim_state(p, NULL);
4391 current->flags &= ~PF_SWAPWRITE;
4392 memalloc_noreclaim_restore(noreclaim_flag);
4393 fs_reclaim_release(sc.gfp_mask);
4394
4395 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4396
4397 return sc.nr_reclaimed >= nr_pages;
4398 }
4399
4400 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4401 {
4402 int ret;
4403
4404 /*
4405 * Node reclaim reclaims unmapped file backed pages and
4406 * slab pages if we are over the defined limits.
4407 *
4408 * A small portion of unmapped file backed pages is needed for
4409 * file I/O otherwise pages read by file I/O will be immediately
4410 * thrown out if the node is overallocated. So we do not reclaim
4411 * if less than a specified percentage of the node is used by
4412 * unmapped file backed pages.
4413 */
4414 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4415 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4416 pgdat->min_slab_pages)
4417 return NODE_RECLAIM_FULL;
4418
4419 /*
4420 * Do not scan if the allocation should not be delayed.
4421 */
4422 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4423 return NODE_RECLAIM_NOSCAN;
4424
4425 /*
4426 * Only run node reclaim on the local node or on nodes that do not
4427 * have associated processors. This will favor the local processor
4428 * over remote processors and spread off node memory allocations
4429 * as wide as possible.
4430 */
4431 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4432 return NODE_RECLAIM_NOSCAN;
4433
4434 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4435 return NODE_RECLAIM_NOSCAN;
4436
4437 ret = __node_reclaim(pgdat, gfp_mask, order);
4438 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4439
4440 if (!ret)
4441 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4442
4443 return ret;
4444 }
4445 #endif
4446
4447 /**
4448 * check_move_unevictable_pages - check pages for evictability and move to
4449 * appropriate zone lru list
4450 * @pvec: pagevec with lru pages to check
4451 *
4452 * Checks pages for evictability, if an evictable page is in the unevictable
4453 * lru list, moves it to the appropriate evictable lru list. This function
4454 * should be only used for lru pages.
4455 */
4456 void check_move_unevictable_pages(struct pagevec *pvec)
4457 {
4458 struct lruvec *lruvec = NULL;
4459 int pgscanned = 0;
4460 int pgrescued = 0;
4461 int i;
4462
4463 for (i = 0; i < pvec->nr; i++) {
4464 struct page *page = pvec->pages[i];
4465 int nr_pages;
4466
4467 if (PageTransTail(page))
4468 continue;
4469
4470 nr_pages = thp_nr_pages(page);
4471 pgscanned += nr_pages;
4472
4473 /* block memcg migration during page moving between lru */
4474 if (!TestClearPageLRU(page))
4475 continue;
4476
4477 lruvec = relock_page_lruvec_irq(page, lruvec);
4478 if (page_evictable(page) && PageUnevictable(page)) {
4479 del_page_from_lru_list(page, lruvec);
4480 ClearPageUnevictable(page);
4481 add_page_to_lru_list(page, lruvec);
4482 pgrescued += nr_pages;
4483 }
4484 SetPageLRU(page);
4485 }
4486
4487 if (lruvec) {
4488 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4489 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4490 unlock_page_lruvec_irq(lruvec);
4491 } else if (pgscanned) {
4492 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4493 }
4494 }
4495 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);