]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/vmscan.c
f2fs: replace congestion_wait() calls with io_schedule_timeout()
[mirror_ubuntu-kernels.git] / mm / vmscan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/migrate.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
59
60 #include "internal.h"
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/vmscan.h>
64
65 struct scan_control {
66 /* How many pages shrink_list() should reclaim */
67 unsigned long nr_to_reclaim;
68
69 /*
70 * Nodemask of nodes allowed by the caller. If NULL, all nodes
71 * are scanned.
72 */
73 nodemask_t *nodemask;
74
75 /*
76 * The memory cgroup that hit its limit and as a result is the
77 * primary target of this reclaim invocation.
78 */
79 struct mem_cgroup *target_mem_cgroup;
80
81 /*
82 * Scan pressure balancing between anon and file LRUs
83 */
84 unsigned long anon_cost;
85 unsigned long file_cost;
86
87 /* Can active pages be deactivated as part of reclaim? */
88 #define DEACTIVATE_ANON 1
89 #define DEACTIVATE_FILE 2
90 unsigned int may_deactivate:2;
91 unsigned int force_deactivate:1;
92 unsigned int skipped_deactivate:1;
93
94 /* Writepage batching in laptop mode; RECLAIM_WRITE */
95 unsigned int may_writepage:1;
96
97 /* Can mapped pages be reclaimed? */
98 unsigned int may_unmap:1;
99
100 /* Can pages be swapped as part of reclaim? */
101 unsigned int may_swap:1;
102
103 /*
104 * Cgroup memory below memory.low is protected as long as we
105 * don't threaten to OOM. If any cgroup is reclaimed at
106 * reduced force or passed over entirely due to its memory.low
107 * setting (memcg_low_skipped), and nothing is reclaimed as a
108 * result, then go back for one more cycle that reclaims the protected
109 * memory (memcg_low_reclaim) to avert OOM.
110 */
111 unsigned int memcg_low_reclaim:1;
112 unsigned int memcg_low_skipped:1;
113
114 unsigned int hibernation_mode:1;
115
116 /* One of the zones is ready for compaction */
117 unsigned int compaction_ready:1;
118
119 /* There is easily reclaimable cold cache in the current node */
120 unsigned int cache_trim_mode:1;
121
122 /* The file pages on the current node are dangerously low */
123 unsigned int file_is_tiny:1;
124
125 /* Always discard instead of demoting to lower tier memory */
126 unsigned int no_demotion:1;
127
128 /* Allocation order */
129 s8 order;
130
131 /* Scan (total_size >> priority) pages at once */
132 s8 priority;
133
134 /* The highest zone to isolate pages for reclaim from */
135 s8 reclaim_idx;
136
137 /* This context's GFP mask */
138 gfp_t gfp_mask;
139
140 /* Incremented by the number of inactive pages that were scanned */
141 unsigned long nr_scanned;
142
143 /* Number of pages freed so far during a call to shrink_zones() */
144 unsigned long nr_reclaimed;
145
146 struct {
147 unsigned int dirty;
148 unsigned int unqueued_dirty;
149 unsigned int congested;
150 unsigned int writeback;
151 unsigned int immediate;
152 unsigned int file_taken;
153 unsigned int taken;
154 } nr;
155
156 /* for recording the reclaimed slab by now */
157 struct reclaim_state reclaim_state;
158 };
159
160 #ifdef ARCH_HAS_PREFETCHW
161 #define prefetchw_prev_lru_page(_page, _base, _field) \
162 do { \
163 if ((_page)->lru.prev != _base) { \
164 struct page *prev; \
165 \
166 prev = lru_to_page(&(_page->lru)); \
167 prefetchw(&prev->_field); \
168 } \
169 } while (0)
170 #else
171 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
172 #endif
173
174 /*
175 * From 0 .. 200. Higher means more swappy.
176 */
177 int vm_swappiness = 60;
178
179 static void set_task_reclaim_state(struct task_struct *task,
180 struct reclaim_state *rs)
181 {
182 /* Check for an overwrite */
183 WARN_ON_ONCE(rs && task->reclaim_state);
184
185 /* Check for the nulling of an already-nulled member */
186 WARN_ON_ONCE(!rs && !task->reclaim_state);
187
188 task->reclaim_state = rs;
189 }
190
191 static LIST_HEAD(shrinker_list);
192 static DECLARE_RWSEM(shrinker_rwsem);
193
194 #ifdef CONFIG_MEMCG
195 static int shrinker_nr_max;
196
197 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
198 static inline int shrinker_map_size(int nr_items)
199 {
200 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
201 }
202
203 static inline int shrinker_defer_size(int nr_items)
204 {
205 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
206 }
207
208 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
209 int nid)
210 {
211 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
212 lockdep_is_held(&shrinker_rwsem));
213 }
214
215 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
216 int map_size, int defer_size,
217 int old_map_size, int old_defer_size)
218 {
219 struct shrinker_info *new, *old;
220 struct mem_cgroup_per_node *pn;
221 int nid;
222 int size = map_size + defer_size;
223
224 for_each_node(nid) {
225 pn = memcg->nodeinfo[nid];
226 old = shrinker_info_protected(memcg, nid);
227 /* Not yet online memcg */
228 if (!old)
229 return 0;
230
231 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
232 if (!new)
233 return -ENOMEM;
234
235 new->nr_deferred = (atomic_long_t *)(new + 1);
236 new->map = (void *)new->nr_deferred + defer_size;
237
238 /* map: set all old bits, clear all new bits */
239 memset(new->map, (int)0xff, old_map_size);
240 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
241 /* nr_deferred: copy old values, clear all new values */
242 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
243 memset((void *)new->nr_deferred + old_defer_size, 0,
244 defer_size - old_defer_size);
245
246 rcu_assign_pointer(pn->shrinker_info, new);
247 kvfree_rcu(old, rcu);
248 }
249
250 return 0;
251 }
252
253 void free_shrinker_info(struct mem_cgroup *memcg)
254 {
255 struct mem_cgroup_per_node *pn;
256 struct shrinker_info *info;
257 int nid;
258
259 for_each_node(nid) {
260 pn = memcg->nodeinfo[nid];
261 info = rcu_dereference_protected(pn->shrinker_info, true);
262 kvfree(info);
263 rcu_assign_pointer(pn->shrinker_info, NULL);
264 }
265 }
266
267 int alloc_shrinker_info(struct mem_cgroup *memcg)
268 {
269 struct shrinker_info *info;
270 int nid, size, ret = 0;
271 int map_size, defer_size = 0;
272
273 down_write(&shrinker_rwsem);
274 map_size = shrinker_map_size(shrinker_nr_max);
275 defer_size = shrinker_defer_size(shrinker_nr_max);
276 size = map_size + defer_size;
277 for_each_node(nid) {
278 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
279 if (!info) {
280 free_shrinker_info(memcg);
281 ret = -ENOMEM;
282 break;
283 }
284 info->nr_deferred = (atomic_long_t *)(info + 1);
285 info->map = (void *)info->nr_deferred + defer_size;
286 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
287 }
288 up_write(&shrinker_rwsem);
289
290 return ret;
291 }
292
293 static inline bool need_expand(int nr_max)
294 {
295 return round_up(nr_max, BITS_PER_LONG) >
296 round_up(shrinker_nr_max, BITS_PER_LONG);
297 }
298
299 static int expand_shrinker_info(int new_id)
300 {
301 int ret = 0;
302 int new_nr_max = new_id + 1;
303 int map_size, defer_size = 0;
304 int old_map_size, old_defer_size = 0;
305 struct mem_cgroup *memcg;
306
307 if (!need_expand(new_nr_max))
308 goto out;
309
310 if (!root_mem_cgroup)
311 goto out;
312
313 lockdep_assert_held(&shrinker_rwsem);
314
315 map_size = shrinker_map_size(new_nr_max);
316 defer_size = shrinker_defer_size(new_nr_max);
317 old_map_size = shrinker_map_size(shrinker_nr_max);
318 old_defer_size = shrinker_defer_size(shrinker_nr_max);
319
320 memcg = mem_cgroup_iter(NULL, NULL, NULL);
321 do {
322 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
323 old_map_size, old_defer_size);
324 if (ret) {
325 mem_cgroup_iter_break(NULL, memcg);
326 goto out;
327 }
328 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
329 out:
330 if (!ret)
331 shrinker_nr_max = new_nr_max;
332
333 return ret;
334 }
335
336 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
337 {
338 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
339 struct shrinker_info *info;
340
341 rcu_read_lock();
342 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
343 /* Pairs with smp mb in shrink_slab() */
344 smp_mb__before_atomic();
345 set_bit(shrinker_id, info->map);
346 rcu_read_unlock();
347 }
348 }
349
350 static DEFINE_IDR(shrinker_idr);
351
352 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
353 {
354 int id, ret = -ENOMEM;
355
356 if (mem_cgroup_disabled())
357 return -ENOSYS;
358
359 down_write(&shrinker_rwsem);
360 /* This may call shrinker, so it must use down_read_trylock() */
361 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
362 if (id < 0)
363 goto unlock;
364
365 if (id >= shrinker_nr_max) {
366 if (expand_shrinker_info(id)) {
367 idr_remove(&shrinker_idr, id);
368 goto unlock;
369 }
370 }
371 shrinker->id = id;
372 ret = 0;
373 unlock:
374 up_write(&shrinker_rwsem);
375 return ret;
376 }
377
378 static void unregister_memcg_shrinker(struct shrinker *shrinker)
379 {
380 int id = shrinker->id;
381
382 BUG_ON(id < 0);
383
384 lockdep_assert_held(&shrinker_rwsem);
385
386 idr_remove(&shrinker_idr, id);
387 }
388
389 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
390 struct mem_cgroup *memcg)
391 {
392 struct shrinker_info *info;
393
394 info = shrinker_info_protected(memcg, nid);
395 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
396 }
397
398 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
399 struct mem_cgroup *memcg)
400 {
401 struct shrinker_info *info;
402
403 info = shrinker_info_protected(memcg, nid);
404 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
405 }
406
407 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
408 {
409 int i, nid;
410 long nr;
411 struct mem_cgroup *parent;
412 struct shrinker_info *child_info, *parent_info;
413
414 parent = parent_mem_cgroup(memcg);
415 if (!parent)
416 parent = root_mem_cgroup;
417
418 /* Prevent from concurrent shrinker_info expand */
419 down_read(&shrinker_rwsem);
420 for_each_node(nid) {
421 child_info = shrinker_info_protected(memcg, nid);
422 parent_info = shrinker_info_protected(parent, nid);
423 for (i = 0; i < shrinker_nr_max; i++) {
424 nr = atomic_long_read(&child_info->nr_deferred[i]);
425 atomic_long_add(nr, &parent_info->nr_deferred[i]);
426 }
427 }
428 up_read(&shrinker_rwsem);
429 }
430
431 static bool cgroup_reclaim(struct scan_control *sc)
432 {
433 return sc->target_mem_cgroup;
434 }
435
436 /**
437 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
438 * @sc: scan_control in question
439 *
440 * The normal page dirty throttling mechanism in balance_dirty_pages() is
441 * completely broken with the legacy memcg and direct stalling in
442 * shrink_page_list() is used for throttling instead, which lacks all the
443 * niceties such as fairness, adaptive pausing, bandwidth proportional
444 * allocation and configurability.
445 *
446 * This function tests whether the vmscan currently in progress can assume
447 * that the normal dirty throttling mechanism is operational.
448 */
449 static bool writeback_throttling_sane(struct scan_control *sc)
450 {
451 if (!cgroup_reclaim(sc))
452 return true;
453 #ifdef CONFIG_CGROUP_WRITEBACK
454 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
455 return true;
456 #endif
457 return false;
458 }
459 #else
460 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
461 {
462 return -ENOSYS;
463 }
464
465 static void unregister_memcg_shrinker(struct shrinker *shrinker)
466 {
467 }
468
469 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
470 struct mem_cgroup *memcg)
471 {
472 return 0;
473 }
474
475 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
476 struct mem_cgroup *memcg)
477 {
478 return 0;
479 }
480
481 static bool cgroup_reclaim(struct scan_control *sc)
482 {
483 return false;
484 }
485
486 static bool writeback_throttling_sane(struct scan_control *sc)
487 {
488 return true;
489 }
490 #endif
491
492 static long xchg_nr_deferred(struct shrinker *shrinker,
493 struct shrink_control *sc)
494 {
495 int nid = sc->nid;
496
497 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
498 nid = 0;
499
500 if (sc->memcg &&
501 (shrinker->flags & SHRINKER_MEMCG_AWARE))
502 return xchg_nr_deferred_memcg(nid, shrinker,
503 sc->memcg);
504
505 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
506 }
507
508
509 static long add_nr_deferred(long nr, struct shrinker *shrinker,
510 struct shrink_control *sc)
511 {
512 int nid = sc->nid;
513
514 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
515 nid = 0;
516
517 if (sc->memcg &&
518 (shrinker->flags & SHRINKER_MEMCG_AWARE))
519 return add_nr_deferred_memcg(nr, nid, shrinker,
520 sc->memcg);
521
522 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
523 }
524
525 static bool can_demote(int nid, struct scan_control *sc)
526 {
527 if (!numa_demotion_enabled)
528 return false;
529 if (sc) {
530 if (sc->no_demotion)
531 return false;
532 /* It is pointless to do demotion in memcg reclaim */
533 if (cgroup_reclaim(sc))
534 return false;
535 }
536 if (next_demotion_node(nid) == NUMA_NO_NODE)
537 return false;
538
539 return true;
540 }
541
542 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
543 int nid,
544 struct scan_control *sc)
545 {
546 if (memcg == NULL) {
547 /*
548 * For non-memcg reclaim, is there
549 * space in any swap device?
550 */
551 if (get_nr_swap_pages() > 0)
552 return true;
553 } else {
554 /* Is the memcg below its swap limit? */
555 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
556 return true;
557 }
558
559 /*
560 * The page can not be swapped.
561 *
562 * Can it be reclaimed from this node via demotion?
563 */
564 return can_demote(nid, sc);
565 }
566
567 /*
568 * This misses isolated pages which are not accounted for to save counters.
569 * As the data only determines if reclaim or compaction continues, it is
570 * not expected that isolated pages will be a dominating factor.
571 */
572 unsigned long zone_reclaimable_pages(struct zone *zone)
573 {
574 unsigned long nr;
575
576 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
577 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
578 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
579 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
580 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
581
582 return nr;
583 }
584
585 /**
586 * lruvec_lru_size - Returns the number of pages on the given LRU list.
587 * @lruvec: lru vector
588 * @lru: lru to use
589 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
590 */
591 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
592 int zone_idx)
593 {
594 unsigned long size = 0;
595 int zid;
596
597 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
598 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
599
600 if (!managed_zone(zone))
601 continue;
602
603 if (!mem_cgroup_disabled())
604 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
605 else
606 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
607 }
608 return size;
609 }
610
611 /*
612 * Add a shrinker callback to be called from the vm.
613 */
614 int prealloc_shrinker(struct shrinker *shrinker)
615 {
616 unsigned int size;
617 int err;
618
619 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
620 err = prealloc_memcg_shrinker(shrinker);
621 if (err != -ENOSYS)
622 return err;
623
624 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
625 }
626
627 size = sizeof(*shrinker->nr_deferred);
628 if (shrinker->flags & SHRINKER_NUMA_AWARE)
629 size *= nr_node_ids;
630
631 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
632 if (!shrinker->nr_deferred)
633 return -ENOMEM;
634
635 return 0;
636 }
637
638 void free_prealloced_shrinker(struct shrinker *shrinker)
639 {
640 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
641 down_write(&shrinker_rwsem);
642 unregister_memcg_shrinker(shrinker);
643 up_write(&shrinker_rwsem);
644 return;
645 }
646
647 kfree(shrinker->nr_deferred);
648 shrinker->nr_deferred = NULL;
649 }
650
651 void register_shrinker_prepared(struct shrinker *shrinker)
652 {
653 down_write(&shrinker_rwsem);
654 list_add_tail(&shrinker->list, &shrinker_list);
655 shrinker->flags |= SHRINKER_REGISTERED;
656 up_write(&shrinker_rwsem);
657 }
658
659 int register_shrinker(struct shrinker *shrinker)
660 {
661 int err = prealloc_shrinker(shrinker);
662
663 if (err)
664 return err;
665 register_shrinker_prepared(shrinker);
666 return 0;
667 }
668 EXPORT_SYMBOL(register_shrinker);
669
670 /*
671 * Remove one
672 */
673 void unregister_shrinker(struct shrinker *shrinker)
674 {
675 if (!(shrinker->flags & SHRINKER_REGISTERED))
676 return;
677
678 down_write(&shrinker_rwsem);
679 list_del(&shrinker->list);
680 shrinker->flags &= ~SHRINKER_REGISTERED;
681 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
682 unregister_memcg_shrinker(shrinker);
683 up_write(&shrinker_rwsem);
684
685 kfree(shrinker->nr_deferred);
686 shrinker->nr_deferred = NULL;
687 }
688 EXPORT_SYMBOL(unregister_shrinker);
689
690 /**
691 * synchronize_shrinkers - Wait for all running shrinkers to complete.
692 *
693 * This is equivalent to calling unregister_shrink() and register_shrinker(),
694 * but atomically and with less overhead. This is useful to guarantee that all
695 * shrinker invocations have seen an update, before freeing memory, similar to
696 * rcu.
697 */
698 void synchronize_shrinkers(void)
699 {
700 down_write(&shrinker_rwsem);
701 up_write(&shrinker_rwsem);
702 }
703 EXPORT_SYMBOL(synchronize_shrinkers);
704
705 #define SHRINK_BATCH 128
706
707 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
708 struct shrinker *shrinker, int priority)
709 {
710 unsigned long freed = 0;
711 unsigned long long delta;
712 long total_scan;
713 long freeable;
714 long nr;
715 long new_nr;
716 long batch_size = shrinker->batch ? shrinker->batch
717 : SHRINK_BATCH;
718 long scanned = 0, next_deferred;
719
720 freeable = shrinker->count_objects(shrinker, shrinkctl);
721 if (freeable == 0 || freeable == SHRINK_EMPTY)
722 return freeable;
723
724 /*
725 * copy the current shrinker scan count into a local variable
726 * and zero it so that other concurrent shrinker invocations
727 * don't also do this scanning work.
728 */
729 nr = xchg_nr_deferred(shrinker, shrinkctl);
730
731 if (shrinker->seeks) {
732 delta = freeable >> priority;
733 delta *= 4;
734 do_div(delta, shrinker->seeks);
735 } else {
736 /*
737 * These objects don't require any IO to create. Trim
738 * them aggressively under memory pressure to keep
739 * them from causing refetches in the IO caches.
740 */
741 delta = freeable / 2;
742 }
743
744 total_scan = nr >> priority;
745 total_scan += delta;
746 total_scan = min(total_scan, (2 * freeable));
747
748 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
749 freeable, delta, total_scan, priority);
750
751 /*
752 * Normally, we should not scan less than batch_size objects in one
753 * pass to avoid too frequent shrinker calls, but if the slab has less
754 * than batch_size objects in total and we are really tight on memory,
755 * we will try to reclaim all available objects, otherwise we can end
756 * up failing allocations although there are plenty of reclaimable
757 * objects spread over several slabs with usage less than the
758 * batch_size.
759 *
760 * We detect the "tight on memory" situations by looking at the total
761 * number of objects we want to scan (total_scan). If it is greater
762 * than the total number of objects on slab (freeable), we must be
763 * scanning at high prio and therefore should try to reclaim as much as
764 * possible.
765 */
766 while (total_scan >= batch_size ||
767 total_scan >= freeable) {
768 unsigned long ret;
769 unsigned long nr_to_scan = min(batch_size, total_scan);
770
771 shrinkctl->nr_to_scan = nr_to_scan;
772 shrinkctl->nr_scanned = nr_to_scan;
773 ret = shrinker->scan_objects(shrinker, shrinkctl);
774 if (ret == SHRINK_STOP)
775 break;
776 freed += ret;
777
778 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
779 total_scan -= shrinkctl->nr_scanned;
780 scanned += shrinkctl->nr_scanned;
781
782 cond_resched();
783 }
784
785 /*
786 * The deferred work is increased by any new work (delta) that wasn't
787 * done, decreased by old deferred work that was done now.
788 *
789 * And it is capped to two times of the freeable items.
790 */
791 next_deferred = max_t(long, (nr + delta - scanned), 0);
792 next_deferred = min(next_deferred, (2 * freeable));
793
794 /*
795 * move the unused scan count back into the shrinker in a
796 * manner that handles concurrent updates.
797 */
798 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
799
800 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
801 return freed;
802 }
803
804 #ifdef CONFIG_MEMCG
805 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
806 struct mem_cgroup *memcg, int priority)
807 {
808 struct shrinker_info *info;
809 unsigned long ret, freed = 0;
810 int i;
811
812 if (!mem_cgroup_online(memcg))
813 return 0;
814
815 if (!down_read_trylock(&shrinker_rwsem))
816 return 0;
817
818 info = shrinker_info_protected(memcg, nid);
819 if (unlikely(!info))
820 goto unlock;
821
822 for_each_set_bit(i, info->map, shrinker_nr_max) {
823 struct shrink_control sc = {
824 .gfp_mask = gfp_mask,
825 .nid = nid,
826 .memcg = memcg,
827 };
828 struct shrinker *shrinker;
829
830 shrinker = idr_find(&shrinker_idr, i);
831 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
832 if (!shrinker)
833 clear_bit(i, info->map);
834 continue;
835 }
836
837 /* Call non-slab shrinkers even though kmem is disabled */
838 if (!memcg_kmem_enabled() &&
839 !(shrinker->flags & SHRINKER_NONSLAB))
840 continue;
841
842 ret = do_shrink_slab(&sc, shrinker, priority);
843 if (ret == SHRINK_EMPTY) {
844 clear_bit(i, info->map);
845 /*
846 * After the shrinker reported that it had no objects to
847 * free, but before we cleared the corresponding bit in
848 * the memcg shrinker map, a new object might have been
849 * added. To make sure, we have the bit set in this
850 * case, we invoke the shrinker one more time and reset
851 * the bit if it reports that it is not empty anymore.
852 * The memory barrier here pairs with the barrier in
853 * set_shrinker_bit():
854 *
855 * list_lru_add() shrink_slab_memcg()
856 * list_add_tail() clear_bit()
857 * <MB> <MB>
858 * set_bit() do_shrink_slab()
859 */
860 smp_mb__after_atomic();
861 ret = do_shrink_slab(&sc, shrinker, priority);
862 if (ret == SHRINK_EMPTY)
863 ret = 0;
864 else
865 set_shrinker_bit(memcg, nid, i);
866 }
867 freed += ret;
868
869 if (rwsem_is_contended(&shrinker_rwsem)) {
870 freed = freed ? : 1;
871 break;
872 }
873 }
874 unlock:
875 up_read(&shrinker_rwsem);
876 return freed;
877 }
878 #else /* CONFIG_MEMCG */
879 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
880 struct mem_cgroup *memcg, int priority)
881 {
882 return 0;
883 }
884 #endif /* CONFIG_MEMCG */
885
886 /**
887 * shrink_slab - shrink slab caches
888 * @gfp_mask: allocation context
889 * @nid: node whose slab caches to target
890 * @memcg: memory cgroup whose slab caches to target
891 * @priority: the reclaim priority
892 *
893 * Call the shrink functions to age shrinkable caches.
894 *
895 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
896 * unaware shrinkers will receive a node id of 0 instead.
897 *
898 * @memcg specifies the memory cgroup to target. Unaware shrinkers
899 * are called only if it is the root cgroup.
900 *
901 * @priority is sc->priority, we take the number of objects and >> by priority
902 * in order to get the scan target.
903 *
904 * Returns the number of reclaimed slab objects.
905 */
906 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
907 struct mem_cgroup *memcg,
908 int priority)
909 {
910 unsigned long ret, freed = 0;
911 struct shrinker *shrinker;
912
913 /*
914 * The root memcg might be allocated even though memcg is disabled
915 * via "cgroup_disable=memory" boot parameter. This could make
916 * mem_cgroup_is_root() return false, then just run memcg slab
917 * shrink, but skip global shrink. This may result in premature
918 * oom.
919 */
920 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
921 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
922
923 if (!down_read_trylock(&shrinker_rwsem))
924 goto out;
925
926 list_for_each_entry(shrinker, &shrinker_list, list) {
927 struct shrink_control sc = {
928 .gfp_mask = gfp_mask,
929 .nid = nid,
930 .memcg = memcg,
931 };
932
933 ret = do_shrink_slab(&sc, shrinker, priority);
934 if (ret == SHRINK_EMPTY)
935 ret = 0;
936 freed += ret;
937 /*
938 * Bail out if someone want to register a new shrinker to
939 * prevent the registration from being stalled for long periods
940 * by parallel ongoing shrinking.
941 */
942 if (rwsem_is_contended(&shrinker_rwsem)) {
943 freed = freed ? : 1;
944 break;
945 }
946 }
947
948 up_read(&shrinker_rwsem);
949 out:
950 cond_resched();
951 return freed;
952 }
953
954 static void drop_slab_node(int nid)
955 {
956 unsigned long freed;
957 int shift = 0;
958
959 do {
960 struct mem_cgroup *memcg = NULL;
961
962 if (fatal_signal_pending(current))
963 return;
964
965 freed = 0;
966 memcg = mem_cgroup_iter(NULL, NULL, NULL);
967 do {
968 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
969 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
970 } while ((freed >> shift++) > 1);
971 }
972
973 void drop_slab(void)
974 {
975 int nid;
976
977 for_each_online_node(nid)
978 drop_slab_node(nid);
979 }
980
981 static inline int is_page_cache_freeable(struct page *page)
982 {
983 /*
984 * A freeable page cache page is referenced only by the caller
985 * that isolated the page, the page cache and optional buffer
986 * heads at page->private.
987 */
988 int page_cache_pins = thp_nr_pages(page);
989 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
990 }
991
992 /*
993 * We detected a synchronous write error writing a page out. Probably
994 * -ENOSPC. We need to propagate that into the address_space for a subsequent
995 * fsync(), msync() or close().
996 *
997 * The tricky part is that after writepage we cannot touch the mapping: nothing
998 * prevents it from being freed up. But we have a ref on the page and once
999 * that page is locked, the mapping is pinned.
1000 *
1001 * We're allowed to run sleeping lock_page() here because we know the caller has
1002 * __GFP_FS.
1003 */
1004 static void handle_write_error(struct address_space *mapping,
1005 struct page *page, int error)
1006 {
1007 lock_page(page);
1008 if (page_mapping(page) == mapping)
1009 mapping_set_error(mapping, error);
1010 unlock_page(page);
1011 }
1012
1013 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1014 {
1015 int reclaimable = 0, write_pending = 0;
1016 int i;
1017
1018 /*
1019 * If kswapd is disabled, reschedule if necessary but do not
1020 * throttle as the system is likely near OOM.
1021 */
1022 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1023 return true;
1024
1025 /*
1026 * If there are a lot of dirty/writeback pages then do not
1027 * throttle as throttling will occur when the pages cycle
1028 * towards the end of the LRU if still under writeback.
1029 */
1030 for (i = 0; i < MAX_NR_ZONES; i++) {
1031 struct zone *zone = pgdat->node_zones + i;
1032
1033 if (!populated_zone(zone))
1034 continue;
1035
1036 reclaimable += zone_reclaimable_pages(zone);
1037 write_pending += zone_page_state_snapshot(zone,
1038 NR_ZONE_WRITE_PENDING);
1039 }
1040 if (2 * write_pending <= reclaimable)
1041 return true;
1042
1043 return false;
1044 }
1045
1046 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1047 {
1048 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1049 long timeout, ret;
1050 DEFINE_WAIT(wait);
1051
1052 /*
1053 * Do not throttle IO workers, kthreads other than kswapd or
1054 * workqueues. They may be required for reclaim to make
1055 * forward progress (e.g. journalling workqueues or kthreads).
1056 */
1057 if (!current_is_kswapd() &&
1058 current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1059 cond_resched();
1060 return;
1061 }
1062
1063 /*
1064 * These figures are pulled out of thin air.
1065 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1066 * parallel reclaimers which is a short-lived event so the timeout is
1067 * short. Failing to make progress or waiting on writeback are
1068 * potentially long-lived events so use a longer timeout. This is shaky
1069 * logic as a failure to make progress could be due to anything from
1070 * writeback to a slow device to excessive references pages at the tail
1071 * of the inactive LRU.
1072 */
1073 switch(reason) {
1074 case VMSCAN_THROTTLE_WRITEBACK:
1075 timeout = HZ/10;
1076
1077 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1078 WRITE_ONCE(pgdat->nr_reclaim_start,
1079 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1080 }
1081
1082 break;
1083 case VMSCAN_THROTTLE_CONGESTED:
1084 fallthrough;
1085 case VMSCAN_THROTTLE_NOPROGRESS:
1086 if (skip_throttle_noprogress(pgdat)) {
1087 cond_resched();
1088 return;
1089 }
1090
1091 timeout = 1;
1092
1093 break;
1094 case VMSCAN_THROTTLE_ISOLATED:
1095 timeout = HZ/50;
1096 break;
1097 default:
1098 WARN_ON_ONCE(1);
1099 timeout = HZ;
1100 break;
1101 }
1102
1103 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1104 ret = schedule_timeout(timeout);
1105 finish_wait(wqh, &wait);
1106
1107 if (reason == VMSCAN_THROTTLE_WRITEBACK)
1108 atomic_dec(&pgdat->nr_writeback_throttled);
1109
1110 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1111 jiffies_to_usecs(timeout - ret),
1112 reason);
1113 }
1114
1115 /*
1116 * Account for pages written if tasks are throttled waiting on dirty
1117 * pages to clean. If enough pages have been cleaned since throttling
1118 * started then wakeup the throttled tasks.
1119 */
1120 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1121 int nr_throttled)
1122 {
1123 unsigned long nr_written;
1124
1125 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1126
1127 /*
1128 * This is an inaccurate read as the per-cpu deltas may not
1129 * be synchronised. However, given that the system is
1130 * writeback throttled, it is not worth taking the penalty
1131 * of getting an accurate count. At worst, the throttle
1132 * timeout guarantees forward progress.
1133 */
1134 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1135 READ_ONCE(pgdat->nr_reclaim_start);
1136
1137 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1138 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1139 }
1140
1141 /* possible outcome of pageout() */
1142 typedef enum {
1143 /* failed to write page out, page is locked */
1144 PAGE_KEEP,
1145 /* move page to the active list, page is locked */
1146 PAGE_ACTIVATE,
1147 /* page has been sent to the disk successfully, page is unlocked */
1148 PAGE_SUCCESS,
1149 /* page is clean and locked */
1150 PAGE_CLEAN,
1151 } pageout_t;
1152
1153 /*
1154 * pageout is called by shrink_page_list() for each dirty page.
1155 * Calls ->writepage().
1156 */
1157 static pageout_t pageout(struct page *page, struct address_space *mapping)
1158 {
1159 /*
1160 * If the page is dirty, only perform writeback if that write
1161 * will be non-blocking. To prevent this allocation from being
1162 * stalled by pagecache activity. But note that there may be
1163 * stalls if we need to run get_block(). We could test
1164 * PagePrivate for that.
1165 *
1166 * If this process is currently in __generic_file_write_iter() against
1167 * this page's queue, we can perform writeback even if that
1168 * will block.
1169 *
1170 * If the page is swapcache, write it back even if that would
1171 * block, for some throttling. This happens by accident, because
1172 * swap_backing_dev_info is bust: it doesn't reflect the
1173 * congestion state of the swapdevs. Easy to fix, if needed.
1174 */
1175 if (!is_page_cache_freeable(page))
1176 return PAGE_KEEP;
1177 if (!mapping) {
1178 /*
1179 * Some data journaling orphaned pages can have
1180 * page->mapping == NULL while being dirty with clean buffers.
1181 */
1182 if (page_has_private(page)) {
1183 if (try_to_free_buffers(page)) {
1184 ClearPageDirty(page);
1185 pr_info("%s: orphaned page\n", __func__);
1186 return PAGE_CLEAN;
1187 }
1188 }
1189 return PAGE_KEEP;
1190 }
1191 if (mapping->a_ops->writepage == NULL)
1192 return PAGE_ACTIVATE;
1193
1194 if (clear_page_dirty_for_io(page)) {
1195 int res;
1196 struct writeback_control wbc = {
1197 .sync_mode = WB_SYNC_NONE,
1198 .nr_to_write = SWAP_CLUSTER_MAX,
1199 .range_start = 0,
1200 .range_end = LLONG_MAX,
1201 .for_reclaim = 1,
1202 };
1203
1204 SetPageReclaim(page);
1205 res = mapping->a_ops->writepage(page, &wbc);
1206 if (res < 0)
1207 handle_write_error(mapping, page, res);
1208 if (res == AOP_WRITEPAGE_ACTIVATE) {
1209 ClearPageReclaim(page);
1210 return PAGE_ACTIVATE;
1211 }
1212
1213 if (!PageWriteback(page)) {
1214 /* synchronous write or broken a_ops? */
1215 ClearPageReclaim(page);
1216 }
1217 trace_mm_vmscan_writepage(page);
1218 inc_node_page_state(page, NR_VMSCAN_WRITE);
1219 return PAGE_SUCCESS;
1220 }
1221
1222 return PAGE_CLEAN;
1223 }
1224
1225 /*
1226 * Same as remove_mapping, but if the page is removed from the mapping, it
1227 * gets returned with a refcount of 0.
1228 */
1229 static int __remove_mapping(struct address_space *mapping, struct page *page,
1230 bool reclaimed, struct mem_cgroup *target_memcg)
1231 {
1232 int refcount;
1233 void *shadow = NULL;
1234
1235 BUG_ON(!PageLocked(page));
1236 BUG_ON(mapping != page_mapping(page));
1237
1238 if (!PageSwapCache(page))
1239 spin_lock(&mapping->host->i_lock);
1240 xa_lock_irq(&mapping->i_pages);
1241 /*
1242 * The non racy check for a busy page.
1243 *
1244 * Must be careful with the order of the tests. When someone has
1245 * a ref to the page, it may be possible that they dirty it then
1246 * drop the reference. So if PageDirty is tested before page_count
1247 * here, then the following race may occur:
1248 *
1249 * get_user_pages(&page);
1250 * [user mapping goes away]
1251 * write_to(page);
1252 * !PageDirty(page) [good]
1253 * SetPageDirty(page);
1254 * put_page(page);
1255 * !page_count(page) [good, discard it]
1256 *
1257 * [oops, our write_to data is lost]
1258 *
1259 * Reversing the order of the tests ensures such a situation cannot
1260 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1261 * load is not satisfied before that of page->_refcount.
1262 *
1263 * Note that if SetPageDirty is always performed via set_page_dirty,
1264 * and thus under the i_pages lock, then this ordering is not required.
1265 */
1266 refcount = 1 + compound_nr(page);
1267 if (!page_ref_freeze(page, refcount))
1268 goto cannot_free;
1269 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1270 if (unlikely(PageDirty(page))) {
1271 page_ref_unfreeze(page, refcount);
1272 goto cannot_free;
1273 }
1274
1275 if (PageSwapCache(page)) {
1276 swp_entry_t swap = { .val = page_private(page) };
1277 mem_cgroup_swapout(page, swap);
1278 if (reclaimed && !mapping_exiting(mapping))
1279 shadow = workingset_eviction(page, target_memcg);
1280 __delete_from_swap_cache(page, swap, shadow);
1281 xa_unlock_irq(&mapping->i_pages);
1282 put_swap_page(page, swap);
1283 } else {
1284 void (*freepage)(struct page *);
1285
1286 freepage = mapping->a_ops->freepage;
1287 /*
1288 * Remember a shadow entry for reclaimed file cache in
1289 * order to detect refaults, thus thrashing, later on.
1290 *
1291 * But don't store shadows in an address space that is
1292 * already exiting. This is not just an optimization,
1293 * inode reclaim needs to empty out the radix tree or
1294 * the nodes are lost. Don't plant shadows behind its
1295 * back.
1296 *
1297 * We also don't store shadows for DAX mappings because the
1298 * only page cache pages found in these are zero pages
1299 * covering holes, and because we don't want to mix DAX
1300 * exceptional entries and shadow exceptional entries in the
1301 * same address_space.
1302 */
1303 if (reclaimed && page_is_file_lru(page) &&
1304 !mapping_exiting(mapping) && !dax_mapping(mapping))
1305 shadow = workingset_eviction(page, target_memcg);
1306 __delete_from_page_cache(page, shadow);
1307 xa_unlock_irq(&mapping->i_pages);
1308 if (mapping_shrinkable(mapping))
1309 inode_add_lru(mapping->host);
1310 spin_unlock(&mapping->host->i_lock);
1311
1312 if (freepage != NULL)
1313 freepage(page);
1314 }
1315
1316 return 1;
1317
1318 cannot_free:
1319 xa_unlock_irq(&mapping->i_pages);
1320 if (!PageSwapCache(page))
1321 spin_unlock(&mapping->host->i_lock);
1322 return 0;
1323 }
1324
1325 /*
1326 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
1327 * someone else has a ref on the page, abort and return 0. If it was
1328 * successfully detached, return 1. Assumes the caller has a single ref on
1329 * this page.
1330 */
1331 int remove_mapping(struct address_space *mapping, struct page *page)
1332 {
1333 if (__remove_mapping(mapping, page, false, NULL)) {
1334 /*
1335 * Unfreezing the refcount with 1 rather than 2 effectively
1336 * drops the pagecache ref for us without requiring another
1337 * atomic operation.
1338 */
1339 page_ref_unfreeze(page, 1);
1340 return 1;
1341 }
1342 return 0;
1343 }
1344
1345 /**
1346 * putback_lru_page - put previously isolated page onto appropriate LRU list
1347 * @page: page to be put back to appropriate lru list
1348 *
1349 * Add previously isolated @page to appropriate LRU list.
1350 * Page may still be unevictable for other reasons.
1351 *
1352 * lru_lock must not be held, interrupts must be enabled.
1353 */
1354 void putback_lru_page(struct page *page)
1355 {
1356 lru_cache_add(page);
1357 put_page(page); /* drop ref from isolate */
1358 }
1359
1360 enum page_references {
1361 PAGEREF_RECLAIM,
1362 PAGEREF_RECLAIM_CLEAN,
1363 PAGEREF_KEEP,
1364 PAGEREF_ACTIVATE,
1365 };
1366
1367 static enum page_references page_check_references(struct page *page,
1368 struct scan_control *sc)
1369 {
1370 int referenced_ptes, referenced_page;
1371 unsigned long vm_flags;
1372
1373 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1374 &vm_flags);
1375 referenced_page = TestClearPageReferenced(page);
1376
1377 /*
1378 * Mlock lost the isolation race with us. Let try_to_unmap()
1379 * move the page to the unevictable list.
1380 */
1381 if (vm_flags & VM_LOCKED)
1382 return PAGEREF_RECLAIM;
1383
1384 if (referenced_ptes) {
1385 /*
1386 * All mapped pages start out with page table
1387 * references from the instantiating fault, so we need
1388 * to look twice if a mapped file page is used more
1389 * than once.
1390 *
1391 * Mark it and spare it for another trip around the
1392 * inactive list. Another page table reference will
1393 * lead to its activation.
1394 *
1395 * Note: the mark is set for activated pages as well
1396 * so that recently deactivated but used pages are
1397 * quickly recovered.
1398 */
1399 SetPageReferenced(page);
1400
1401 if (referenced_page || referenced_ptes > 1)
1402 return PAGEREF_ACTIVATE;
1403
1404 /*
1405 * Activate file-backed executable pages after first usage.
1406 */
1407 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1408 return PAGEREF_ACTIVATE;
1409
1410 return PAGEREF_KEEP;
1411 }
1412
1413 /* Reclaim if clean, defer dirty pages to writeback */
1414 if (referenced_page && !PageSwapBacked(page))
1415 return PAGEREF_RECLAIM_CLEAN;
1416
1417 return PAGEREF_RECLAIM;
1418 }
1419
1420 /* Check if a page is dirty or under writeback */
1421 static void page_check_dirty_writeback(struct page *page,
1422 bool *dirty, bool *writeback)
1423 {
1424 struct address_space *mapping;
1425
1426 /*
1427 * Anonymous pages are not handled by flushers and must be written
1428 * from reclaim context. Do not stall reclaim based on them
1429 */
1430 if (!page_is_file_lru(page) ||
1431 (PageAnon(page) && !PageSwapBacked(page))) {
1432 *dirty = false;
1433 *writeback = false;
1434 return;
1435 }
1436
1437 /* By default assume that the page flags are accurate */
1438 *dirty = PageDirty(page);
1439 *writeback = PageWriteback(page);
1440
1441 /* Verify dirty/writeback state if the filesystem supports it */
1442 if (!page_has_private(page))
1443 return;
1444
1445 mapping = page_mapping(page);
1446 if (mapping && mapping->a_ops->is_dirty_writeback)
1447 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1448 }
1449
1450 static struct page *alloc_demote_page(struct page *page, unsigned long node)
1451 {
1452 struct migration_target_control mtc = {
1453 /*
1454 * Allocate from 'node', or fail quickly and quietly.
1455 * When this happens, 'page' will likely just be discarded
1456 * instead of migrated.
1457 */
1458 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1459 __GFP_THISNODE | __GFP_NOWARN |
1460 __GFP_NOMEMALLOC | GFP_NOWAIT,
1461 .nid = node
1462 };
1463
1464 return alloc_migration_target(page, (unsigned long)&mtc);
1465 }
1466
1467 /*
1468 * Take pages on @demote_list and attempt to demote them to
1469 * another node. Pages which are not demoted are left on
1470 * @demote_pages.
1471 */
1472 static unsigned int demote_page_list(struct list_head *demote_pages,
1473 struct pglist_data *pgdat)
1474 {
1475 int target_nid = next_demotion_node(pgdat->node_id);
1476 unsigned int nr_succeeded;
1477
1478 if (list_empty(demote_pages))
1479 return 0;
1480
1481 if (target_nid == NUMA_NO_NODE)
1482 return 0;
1483
1484 /* Demotion ignores all cpuset and mempolicy settings */
1485 migrate_pages(demote_pages, alloc_demote_page, NULL,
1486 target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1487 &nr_succeeded);
1488
1489 if (current_is_kswapd())
1490 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1491 else
1492 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1493
1494 return nr_succeeded;
1495 }
1496
1497 /*
1498 * shrink_page_list() returns the number of reclaimed pages
1499 */
1500 static unsigned int shrink_page_list(struct list_head *page_list,
1501 struct pglist_data *pgdat,
1502 struct scan_control *sc,
1503 struct reclaim_stat *stat,
1504 bool ignore_references)
1505 {
1506 LIST_HEAD(ret_pages);
1507 LIST_HEAD(free_pages);
1508 LIST_HEAD(demote_pages);
1509 unsigned int nr_reclaimed = 0;
1510 unsigned int pgactivate = 0;
1511 bool do_demote_pass;
1512
1513 memset(stat, 0, sizeof(*stat));
1514 cond_resched();
1515 do_demote_pass = can_demote(pgdat->node_id, sc);
1516
1517 retry:
1518 while (!list_empty(page_list)) {
1519 struct address_space *mapping;
1520 struct page *page;
1521 enum page_references references = PAGEREF_RECLAIM;
1522 bool dirty, writeback, may_enter_fs;
1523 unsigned int nr_pages;
1524
1525 cond_resched();
1526
1527 page = lru_to_page(page_list);
1528 list_del(&page->lru);
1529
1530 if (!trylock_page(page))
1531 goto keep;
1532
1533 VM_BUG_ON_PAGE(PageActive(page), page);
1534
1535 nr_pages = compound_nr(page);
1536
1537 /* Account the number of base pages even though THP */
1538 sc->nr_scanned += nr_pages;
1539
1540 if (unlikely(!page_evictable(page)))
1541 goto activate_locked;
1542
1543 if (!sc->may_unmap && page_mapped(page))
1544 goto keep_locked;
1545
1546 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1547 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1548
1549 /*
1550 * The number of dirty pages determines if a node is marked
1551 * reclaim_congested. kswapd will stall and start writing
1552 * pages if the tail of the LRU is all dirty unqueued pages.
1553 */
1554 page_check_dirty_writeback(page, &dirty, &writeback);
1555 if (dirty || writeback)
1556 stat->nr_dirty++;
1557
1558 if (dirty && !writeback)
1559 stat->nr_unqueued_dirty++;
1560
1561 /*
1562 * Treat this page as congested if the underlying BDI is or if
1563 * pages are cycling through the LRU so quickly that the
1564 * pages marked for immediate reclaim are making it to the
1565 * end of the LRU a second time.
1566 */
1567 mapping = page_mapping(page);
1568 if (writeback && PageReclaim(page))
1569 stat->nr_congested++;
1570
1571 /*
1572 * If a page at the tail of the LRU is under writeback, there
1573 * are three cases to consider.
1574 *
1575 * 1) If reclaim is encountering an excessive number of pages
1576 * under writeback and this page is both under writeback and
1577 * PageReclaim then it indicates that pages are being queued
1578 * for IO but are being recycled through the LRU before the
1579 * IO can complete. Waiting on the page itself risks an
1580 * indefinite stall if it is impossible to writeback the
1581 * page due to IO error or disconnected storage so instead
1582 * note that the LRU is being scanned too quickly and the
1583 * caller can stall after page list has been processed.
1584 *
1585 * 2) Global or new memcg reclaim encounters a page that is
1586 * not marked for immediate reclaim, or the caller does not
1587 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1588 * not to fs). In this case mark the page for immediate
1589 * reclaim and continue scanning.
1590 *
1591 * Require may_enter_fs because we would wait on fs, which
1592 * may not have submitted IO yet. And the loop driver might
1593 * enter reclaim, and deadlock if it waits on a page for
1594 * which it is needed to do the write (loop masks off
1595 * __GFP_IO|__GFP_FS for this reason); but more thought
1596 * would probably show more reasons.
1597 *
1598 * 3) Legacy memcg encounters a page that is already marked
1599 * PageReclaim. memcg does not have any dirty pages
1600 * throttling so we could easily OOM just because too many
1601 * pages are in writeback and there is nothing else to
1602 * reclaim. Wait for the writeback to complete.
1603 *
1604 * In cases 1) and 2) we activate the pages to get them out of
1605 * the way while we continue scanning for clean pages on the
1606 * inactive list and refilling from the active list. The
1607 * observation here is that waiting for disk writes is more
1608 * expensive than potentially causing reloads down the line.
1609 * Since they're marked for immediate reclaim, they won't put
1610 * memory pressure on the cache working set any longer than it
1611 * takes to write them to disk.
1612 */
1613 if (PageWriteback(page)) {
1614 /* Case 1 above */
1615 if (current_is_kswapd() &&
1616 PageReclaim(page) &&
1617 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1618 stat->nr_immediate++;
1619 goto activate_locked;
1620
1621 /* Case 2 above */
1622 } else if (writeback_throttling_sane(sc) ||
1623 !PageReclaim(page) || !may_enter_fs) {
1624 /*
1625 * This is slightly racy - end_page_writeback()
1626 * might have just cleared PageReclaim, then
1627 * setting PageReclaim here end up interpreted
1628 * as PageReadahead - but that does not matter
1629 * enough to care. What we do want is for this
1630 * page to have PageReclaim set next time memcg
1631 * reclaim reaches the tests above, so it will
1632 * then wait_on_page_writeback() to avoid OOM;
1633 * and it's also appropriate in global reclaim.
1634 */
1635 SetPageReclaim(page);
1636 stat->nr_writeback++;
1637 goto activate_locked;
1638
1639 /* Case 3 above */
1640 } else {
1641 unlock_page(page);
1642 wait_on_page_writeback(page);
1643 /* then go back and try same page again */
1644 list_add_tail(&page->lru, page_list);
1645 continue;
1646 }
1647 }
1648
1649 if (!ignore_references)
1650 references = page_check_references(page, sc);
1651
1652 switch (references) {
1653 case PAGEREF_ACTIVATE:
1654 goto activate_locked;
1655 case PAGEREF_KEEP:
1656 stat->nr_ref_keep += nr_pages;
1657 goto keep_locked;
1658 case PAGEREF_RECLAIM:
1659 case PAGEREF_RECLAIM_CLEAN:
1660 ; /* try to reclaim the page below */
1661 }
1662
1663 /*
1664 * Before reclaiming the page, try to relocate
1665 * its contents to another node.
1666 */
1667 if (do_demote_pass &&
1668 (thp_migration_supported() || !PageTransHuge(page))) {
1669 list_add(&page->lru, &demote_pages);
1670 unlock_page(page);
1671 continue;
1672 }
1673
1674 /*
1675 * Anonymous process memory has backing store?
1676 * Try to allocate it some swap space here.
1677 * Lazyfree page could be freed directly
1678 */
1679 if (PageAnon(page) && PageSwapBacked(page)) {
1680 if (!PageSwapCache(page)) {
1681 if (!(sc->gfp_mask & __GFP_IO))
1682 goto keep_locked;
1683 if (page_maybe_dma_pinned(page))
1684 goto keep_locked;
1685 if (PageTransHuge(page)) {
1686 /* cannot split THP, skip it */
1687 if (!can_split_huge_page(page, NULL))
1688 goto activate_locked;
1689 /*
1690 * Split pages without a PMD map right
1691 * away. Chances are some or all of the
1692 * tail pages can be freed without IO.
1693 */
1694 if (!compound_mapcount(page) &&
1695 split_huge_page_to_list(page,
1696 page_list))
1697 goto activate_locked;
1698 }
1699 if (!add_to_swap(page)) {
1700 if (!PageTransHuge(page))
1701 goto activate_locked_split;
1702 /* Fallback to swap normal pages */
1703 if (split_huge_page_to_list(page,
1704 page_list))
1705 goto activate_locked;
1706 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1707 count_vm_event(THP_SWPOUT_FALLBACK);
1708 #endif
1709 if (!add_to_swap(page))
1710 goto activate_locked_split;
1711 }
1712
1713 may_enter_fs = true;
1714
1715 /* Adding to swap updated mapping */
1716 mapping = page_mapping(page);
1717 }
1718 } else if (unlikely(PageTransHuge(page))) {
1719 /* Split file THP */
1720 if (split_huge_page_to_list(page, page_list))
1721 goto keep_locked;
1722 }
1723
1724 /*
1725 * THP may get split above, need minus tail pages and update
1726 * nr_pages to avoid accounting tail pages twice.
1727 *
1728 * The tail pages that are added into swap cache successfully
1729 * reach here.
1730 */
1731 if ((nr_pages > 1) && !PageTransHuge(page)) {
1732 sc->nr_scanned -= (nr_pages - 1);
1733 nr_pages = 1;
1734 }
1735
1736 /*
1737 * The page is mapped into the page tables of one or more
1738 * processes. Try to unmap it here.
1739 */
1740 if (page_mapped(page)) {
1741 enum ttu_flags flags = TTU_BATCH_FLUSH;
1742 bool was_swapbacked = PageSwapBacked(page);
1743
1744 if (unlikely(PageTransHuge(page)))
1745 flags |= TTU_SPLIT_HUGE_PMD;
1746
1747 try_to_unmap(page, flags);
1748 if (page_mapped(page)) {
1749 stat->nr_unmap_fail += nr_pages;
1750 if (!was_swapbacked && PageSwapBacked(page))
1751 stat->nr_lazyfree_fail += nr_pages;
1752 goto activate_locked;
1753 }
1754 }
1755
1756 if (PageDirty(page)) {
1757 /*
1758 * Only kswapd can writeback filesystem pages
1759 * to avoid risk of stack overflow. But avoid
1760 * injecting inefficient single-page IO into
1761 * flusher writeback as much as possible: only
1762 * write pages when we've encountered many
1763 * dirty pages, and when we've already scanned
1764 * the rest of the LRU for clean pages and see
1765 * the same dirty pages again (PageReclaim).
1766 */
1767 if (page_is_file_lru(page) &&
1768 (!current_is_kswapd() || !PageReclaim(page) ||
1769 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1770 /*
1771 * Immediately reclaim when written back.
1772 * Similar in principal to deactivate_page()
1773 * except we already have the page isolated
1774 * and know it's dirty
1775 */
1776 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1777 SetPageReclaim(page);
1778
1779 goto activate_locked;
1780 }
1781
1782 if (references == PAGEREF_RECLAIM_CLEAN)
1783 goto keep_locked;
1784 if (!may_enter_fs)
1785 goto keep_locked;
1786 if (!sc->may_writepage)
1787 goto keep_locked;
1788
1789 /*
1790 * Page is dirty. Flush the TLB if a writable entry
1791 * potentially exists to avoid CPU writes after IO
1792 * starts and then write it out here.
1793 */
1794 try_to_unmap_flush_dirty();
1795 switch (pageout(page, mapping)) {
1796 case PAGE_KEEP:
1797 goto keep_locked;
1798 case PAGE_ACTIVATE:
1799 goto activate_locked;
1800 case PAGE_SUCCESS:
1801 stat->nr_pageout += thp_nr_pages(page);
1802
1803 if (PageWriteback(page))
1804 goto keep;
1805 if (PageDirty(page))
1806 goto keep;
1807
1808 /*
1809 * A synchronous write - probably a ramdisk. Go
1810 * ahead and try to reclaim the page.
1811 */
1812 if (!trylock_page(page))
1813 goto keep;
1814 if (PageDirty(page) || PageWriteback(page))
1815 goto keep_locked;
1816 mapping = page_mapping(page);
1817 fallthrough;
1818 case PAGE_CLEAN:
1819 ; /* try to free the page below */
1820 }
1821 }
1822
1823 /*
1824 * If the page has buffers, try to free the buffer mappings
1825 * associated with this page. If we succeed we try to free
1826 * the page as well.
1827 *
1828 * We do this even if the page is PageDirty().
1829 * try_to_release_page() does not perform I/O, but it is
1830 * possible for a page to have PageDirty set, but it is actually
1831 * clean (all its buffers are clean). This happens if the
1832 * buffers were written out directly, with submit_bh(). ext3
1833 * will do this, as well as the blockdev mapping.
1834 * try_to_release_page() will discover that cleanness and will
1835 * drop the buffers and mark the page clean - it can be freed.
1836 *
1837 * Rarely, pages can have buffers and no ->mapping. These are
1838 * the pages which were not successfully invalidated in
1839 * truncate_cleanup_page(). We try to drop those buffers here
1840 * and if that worked, and the page is no longer mapped into
1841 * process address space (page_count == 1) it can be freed.
1842 * Otherwise, leave the page on the LRU so it is swappable.
1843 */
1844 if (page_has_private(page)) {
1845 if (!try_to_release_page(page, sc->gfp_mask))
1846 goto activate_locked;
1847 if (!mapping && page_count(page) == 1) {
1848 unlock_page(page);
1849 if (put_page_testzero(page))
1850 goto free_it;
1851 else {
1852 /*
1853 * rare race with speculative reference.
1854 * the speculative reference will free
1855 * this page shortly, so we may
1856 * increment nr_reclaimed here (and
1857 * leave it off the LRU).
1858 */
1859 nr_reclaimed++;
1860 continue;
1861 }
1862 }
1863 }
1864
1865 if (PageAnon(page) && !PageSwapBacked(page)) {
1866 /* follow __remove_mapping for reference */
1867 if (!page_ref_freeze(page, 1))
1868 goto keep_locked;
1869 /*
1870 * The page has only one reference left, which is
1871 * from the isolation. After the caller puts the
1872 * page back on lru and drops the reference, the
1873 * page will be freed anyway. It doesn't matter
1874 * which lru it goes. So we don't bother checking
1875 * PageDirty here.
1876 */
1877 count_vm_event(PGLAZYFREED);
1878 count_memcg_page_event(page, PGLAZYFREED);
1879 } else if (!mapping || !__remove_mapping(mapping, page, true,
1880 sc->target_mem_cgroup))
1881 goto keep_locked;
1882
1883 unlock_page(page);
1884 free_it:
1885 /*
1886 * THP may get swapped out in a whole, need account
1887 * all base pages.
1888 */
1889 nr_reclaimed += nr_pages;
1890
1891 /*
1892 * Is there need to periodically free_page_list? It would
1893 * appear not as the counts should be low
1894 */
1895 if (unlikely(PageTransHuge(page)))
1896 destroy_compound_page(page);
1897 else
1898 list_add(&page->lru, &free_pages);
1899 continue;
1900
1901 activate_locked_split:
1902 /*
1903 * The tail pages that are failed to add into swap cache
1904 * reach here. Fixup nr_scanned and nr_pages.
1905 */
1906 if (nr_pages > 1) {
1907 sc->nr_scanned -= (nr_pages - 1);
1908 nr_pages = 1;
1909 }
1910 activate_locked:
1911 /* Not a candidate for swapping, so reclaim swap space. */
1912 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1913 PageMlocked(page)))
1914 try_to_free_swap(page);
1915 VM_BUG_ON_PAGE(PageActive(page), page);
1916 if (!PageMlocked(page)) {
1917 int type = page_is_file_lru(page);
1918 SetPageActive(page);
1919 stat->nr_activate[type] += nr_pages;
1920 count_memcg_page_event(page, PGACTIVATE);
1921 }
1922 keep_locked:
1923 unlock_page(page);
1924 keep:
1925 list_add(&page->lru, &ret_pages);
1926 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1927 }
1928 /* 'page_list' is always empty here */
1929
1930 /* Migrate pages selected for demotion */
1931 nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1932 /* Pages that could not be demoted are still in @demote_pages */
1933 if (!list_empty(&demote_pages)) {
1934 /* Pages which failed to demoted go back on @page_list for retry: */
1935 list_splice_init(&demote_pages, page_list);
1936 do_demote_pass = false;
1937 goto retry;
1938 }
1939
1940 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1941
1942 mem_cgroup_uncharge_list(&free_pages);
1943 try_to_unmap_flush();
1944 free_unref_page_list(&free_pages);
1945
1946 list_splice(&ret_pages, page_list);
1947 count_vm_events(PGACTIVATE, pgactivate);
1948
1949 return nr_reclaimed;
1950 }
1951
1952 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1953 struct list_head *page_list)
1954 {
1955 struct scan_control sc = {
1956 .gfp_mask = GFP_KERNEL,
1957 .may_unmap = 1,
1958 };
1959 struct reclaim_stat stat;
1960 unsigned int nr_reclaimed;
1961 struct page *page, *next;
1962 LIST_HEAD(clean_pages);
1963 unsigned int noreclaim_flag;
1964
1965 list_for_each_entry_safe(page, next, page_list, lru) {
1966 if (!PageHuge(page) && page_is_file_lru(page) &&
1967 !PageDirty(page) && !__PageMovable(page) &&
1968 !PageUnevictable(page)) {
1969 ClearPageActive(page);
1970 list_move(&page->lru, &clean_pages);
1971 }
1972 }
1973
1974 /*
1975 * We should be safe here since we are only dealing with file pages and
1976 * we are not kswapd and therefore cannot write dirty file pages. But
1977 * call memalloc_noreclaim_save() anyway, just in case these conditions
1978 * change in the future.
1979 */
1980 noreclaim_flag = memalloc_noreclaim_save();
1981 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1982 &stat, true);
1983 memalloc_noreclaim_restore(noreclaim_flag);
1984
1985 list_splice(&clean_pages, page_list);
1986 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1987 -(long)nr_reclaimed);
1988 /*
1989 * Since lazyfree pages are isolated from file LRU from the beginning,
1990 * they will rotate back to anonymous LRU in the end if it failed to
1991 * discard so isolated count will be mismatched.
1992 * Compensate the isolated count for both LRU lists.
1993 */
1994 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1995 stat.nr_lazyfree_fail);
1996 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1997 -(long)stat.nr_lazyfree_fail);
1998 return nr_reclaimed;
1999 }
2000
2001 /*
2002 * Attempt to remove the specified page from its LRU. Only take this page
2003 * if it is of the appropriate PageActive status. Pages which are being
2004 * freed elsewhere are also ignored.
2005 *
2006 * page: page to consider
2007 * mode: one of the LRU isolation modes defined above
2008 *
2009 * returns true on success, false on failure.
2010 */
2011 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
2012 {
2013 /* Only take pages on the LRU. */
2014 if (!PageLRU(page))
2015 return false;
2016
2017 /* Compaction should not handle unevictable pages but CMA can do so */
2018 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
2019 return false;
2020
2021 /*
2022 * To minimise LRU disruption, the caller can indicate that it only
2023 * wants to isolate pages it will be able to operate on without
2024 * blocking - clean pages for the most part.
2025 *
2026 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
2027 * that it is possible to migrate without blocking
2028 */
2029 if (mode & ISOLATE_ASYNC_MIGRATE) {
2030 /* All the caller can do on PageWriteback is block */
2031 if (PageWriteback(page))
2032 return false;
2033
2034 if (PageDirty(page)) {
2035 struct address_space *mapping;
2036 bool migrate_dirty;
2037
2038 /*
2039 * Only pages without mappings or that have a
2040 * ->migratepage callback are possible to migrate
2041 * without blocking. However, we can be racing with
2042 * truncation so it's necessary to lock the page
2043 * to stabilise the mapping as truncation holds
2044 * the page lock until after the page is removed
2045 * from the page cache.
2046 */
2047 if (!trylock_page(page))
2048 return false;
2049
2050 mapping = page_mapping(page);
2051 migrate_dirty = !mapping || mapping->a_ops->migratepage;
2052 unlock_page(page);
2053 if (!migrate_dirty)
2054 return false;
2055 }
2056 }
2057
2058 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
2059 return false;
2060
2061 return true;
2062 }
2063
2064 /*
2065 * Update LRU sizes after isolating pages. The LRU size updates must
2066 * be complete before mem_cgroup_update_lru_size due to a sanity check.
2067 */
2068 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2069 enum lru_list lru, unsigned long *nr_zone_taken)
2070 {
2071 int zid;
2072
2073 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2074 if (!nr_zone_taken[zid])
2075 continue;
2076
2077 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2078 }
2079
2080 }
2081
2082 /*
2083 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2084 *
2085 * lruvec->lru_lock is heavily contended. Some of the functions that
2086 * shrink the lists perform better by taking out a batch of pages
2087 * and working on them outside the LRU lock.
2088 *
2089 * For pagecache intensive workloads, this function is the hottest
2090 * spot in the kernel (apart from copy_*_user functions).
2091 *
2092 * Lru_lock must be held before calling this function.
2093 *
2094 * @nr_to_scan: The number of eligible pages to look through on the list.
2095 * @lruvec: The LRU vector to pull pages from.
2096 * @dst: The temp list to put pages on to.
2097 * @nr_scanned: The number of pages that were scanned.
2098 * @sc: The scan_control struct for this reclaim session
2099 * @lru: LRU list id for isolating
2100 *
2101 * returns how many pages were moved onto *@dst.
2102 */
2103 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
2104 struct lruvec *lruvec, struct list_head *dst,
2105 unsigned long *nr_scanned, struct scan_control *sc,
2106 enum lru_list lru)
2107 {
2108 struct list_head *src = &lruvec->lists[lru];
2109 unsigned long nr_taken = 0;
2110 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2111 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2112 unsigned long skipped = 0;
2113 unsigned long scan, total_scan, nr_pages;
2114 LIST_HEAD(pages_skipped);
2115 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
2116
2117 total_scan = 0;
2118 scan = 0;
2119 while (scan < nr_to_scan && !list_empty(src)) {
2120 struct page *page;
2121
2122 page = lru_to_page(src);
2123 prefetchw_prev_lru_page(page, src, flags);
2124
2125 nr_pages = compound_nr(page);
2126 total_scan += nr_pages;
2127
2128 if (page_zonenum(page) > sc->reclaim_idx) {
2129 list_move(&page->lru, &pages_skipped);
2130 nr_skipped[page_zonenum(page)] += nr_pages;
2131 continue;
2132 }
2133
2134 /*
2135 * Do not count skipped pages because that makes the function
2136 * return with no isolated pages if the LRU mostly contains
2137 * ineligible pages. This causes the VM to not reclaim any
2138 * pages, triggering a premature OOM.
2139 *
2140 * Account all tail pages of THP. This would not cause
2141 * premature OOM since __isolate_lru_page() returns -EBUSY
2142 * only when the page is being freed somewhere else.
2143 */
2144 scan += nr_pages;
2145 if (!__isolate_lru_page_prepare(page, mode)) {
2146 /* It is being freed elsewhere */
2147 list_move(&page->lru, src);
2148 continue;
2149 }
2150 /*
2151 * Be careful not to clear PageLRU until after we're
2152 * sure the page is not being freed elsewhere -- the
2153 * page release code relies on it.
2154 */
2155 if (unlikely(!get_page_unless_zero(page))) {
2156 list_move(&page->lru, src);
2157 continue;
2158 }
2159
2160 if (!TestClearPageLRU(page)) {
2161 /* Another thread is already isolating this page */
2162 put_page(page);
2163 list_move(&page->lru, src);
2164 continue;
2165 }
2166
2167 nr_taken += nr_pages;
2168 nr_zone_taken[page_zonenum(page)] += nr_pages;
2169 list_move(&page->lru, dst);
2170 }
2171
2172 /*
2173 * Splice any skipped pages to the start of the LRU list. Note that
2174 * this disrupts the LRU order when reclaiming for lower zones but
2175 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2176 * scanning would soon rescan the same pages to skip and put the
2177 * system at risk of premature OOM.
2178 */
2179 if (!list_empty(&pages_skipped)) {
2180 int zid;
2181
2182 list_splice(&pages_skipped, src);
2183 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2184 if (!nr_skipped[zid])
2185 continue;
2186
2187 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2188 skipped += nr_skipped[zid];
2189 }
2190 }
2191 *nr_scanned = total_scan;
2192 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2193 total_scan, skipped, nr_taken, mode, lru);
2194 update_lru_sizes(lruvec, lru, nr_zone_taken);
2195 return nr_taken;
2196 }
2197
2198 /**
2199 * isolate_lru_page - tries to isolate a page from its LRU list
2200 * @page: page to isolate from its LRU list
2201 *
2202 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
2203 * vmstat statistic corresponding to whatever LRU list the page was on.
2204 *
2205 * Returns 0 if the page was removed from an LRU list.
2206 * Returns -EBUSY if the page was not on an LRU list.
2207 *
2208 * The returned page will have PageLRU() cleared. If it was found on
2209 * the active list, it will have PageActive set. If it was found on
2210 * the unevictable list, it will have the PageUnevictable bit set. That flag
2211 * may need to be cleared by the caller before letting the page go.
2212 *
2213 * The vmstat statistic corresponding to the list on which the page was
2214 * found will be decremented.
2215 *
2216 * Restrictions:
2217 *
2218 * (1) Must be called with an elevated refcount on the page. This is a
2219 * fundamental difference from isolate_lru_pages (which is called
2220 * without a stable reference).
2221 * (2) the lru_lock must not be held.
2222 * (3) interrupts must be enabled.
2223 */
2224 int isolate_lru_page(struct page *page)
2225 {
2226 struct folio *folio = page_folio(page);
2227 int ret = -EBUSY;
2228
2229 VM_BUG_ON_PAGE(!page_count(page), page);
2230 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
2231
2232 if (TestClearPageLRU(page)) {
2233 struct lruvec *lruvec;
2234
2235 get_page(page);
2236 lruvec = folio_lruvec_lock_irq(folio);
2237 del_page_from_lru_list(page, lruvec);
2238 unlock_page_lruvec_irq(lruvec);
2239 ret = 0;
2240 }
2241
2242 return ret;
2243 }
2244
2245 /*
2246 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2247 * then get rescheduled. When there are massive number of tasks doing page
2248 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2249 * the LRU list will go small and be scanned faster than necessary, leading to
2250 * unnecessary swapping, thrashing and OOM.
2251 */
2252 static int too_many_isolated(struct pglist_data *pgdat, int file,
2253 struct scan_control *sc)
2254 {
2255 unsigned long inactive, isolated;
2256 bool too_many;
2257
2258 if (current_is_kswapd())
2259 return 0;
2260
2261 if (!writeback_throttling_sane(sc))
2262 return 0;
2263
2264 if (file) {
2265 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2266 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2267 } else {
2268 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2269 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2270 }
2271
2272 /*
2273 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2274 * won't get blocked by normal direct-reclaimers, forming a circular
2275 * deadlock.
2276 */
2277 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2278 inactive >>= 3;
2279
2280 too_many = isolated > inactive;
2281
2282 /* Wake up tasks throttled due to too_many_isolated. */
2283 if (!too_many)
2284 wake_throttle_isolated(pgdat);
2285
2286 return too_many;
2287 }
2288
2289 /*
2290 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2291 * On return, @list is reused as a list of pages to be freed by the caller.
2292 *
2293 * Returns the number of pages moved to the given lruvec.
2294 */
2295 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2296 struct list_head *list)
2297 {
2298 int nr_pages, nr_moved = 0;
2299 LIST_HEAD(pages_to_free);
2300 struct page *page;
2301
2302 while (!list_empty(list)) {
2303 page = lru_to_page(list);
2304 VM_BUG_ON_PAGE(PageLRU(page), page);
2305 list_del(&page->lru);
2306 if (unlikely(!page_evictable(page))) {
2307 spin_unlock_irq(&lruvec->lru_lock);
2308 putback_lru_page(page);
2309 spin_lock_irq(&lruvec->lru_lock);
2310 continue;
2311 }
2312
2313 /*
2314 * The SetPageLRU needs to be kept here for list integrity.
2315 * Otherwise:
2316 * #0 move_pages_to_lru #1 release_pages
2317 * if !put_page_testzero
2318 * if (put_page_testzero())
2319 * !PageLRU //skip lru_lock
2320 * SetPageLRU()
2321 * list_add(&page->lru,)
2322 * list_add(&page->lru,)
2323 */
2324 SetPageLRU(page);
2325
2326 if (unlikely(put_page_testzero(page))) {
2327 __clear_page_lru_flags(page);
2328
2329 if (unlikely(PageCompound(page))) {
2330 spin_unlock_irq(&lruvec->lru_lock);
2331 destroy_compound_page(page);
2332 spin_lock_irq(&lruvec->lru_lock);
2333 } else
2334 list_add(&page->lru, &pages_to_free);
2335
2336 continue;
2337 }
2338
2339 /*
2340 * All pages were isolated from the same lruvec (and isolation
2341 * inhibits memcg migration).
2342 */
2343 VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
2344 add_page_to_lru_list(page, lruvec);
2345 nr_pages = thp_nr_pages(page);
2346 nr_moved += nr_pages;
2347 if (PageActive(page))
2348 workingset_age_nonresident(lruvec, nr_pages);
2349 }
2350
2351 /*
2352 * To save our caller's stack, now use input list for pages to free.
2353 */
2354 list_splice(&pages_to_free, list);
2355
2356 return nr_moved;
2357 }
2358
2359 /*
2360 * If a kernel thread (such as nfsd for loop-back mounts) services
2361 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
2362 * In that case we should only throttle if the backing device it is
2363 * writing to is congested. In other cases it is safe to throttle.
2364 */
2365 static int current_may_throttle(void)
2366 {
2367 return !(current->flags & PF_LOCAL_THROTTLE);
2368 }
2369
2370 /*
2371 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
2372 * of reclaimed pages
2373 */
2374 static unsigned long
2375 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2376 struct scan_control *sc, enum lru_list lru)
2377 {
2378 LIST_HEAD(page_list);
2379 unsigned long nr_scanned;
2380 unsigned int nr_reclaimed = 0;
2381 unsigned long nr_taken;
2382 struct reclaim_stat stat;
2383 bool file = is_file_lru(lru);
2384 enum vm_event_item item;
2385 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2386 bool stalled = false;
2387
2388 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2389 if (stalled)
2390 return 0;
2391
2392 /* wait a bit for the reclaimer. */
2393 stalled = true;
2394 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2395
2396 /* We are about to die and free our memory. Return now. */
2397 if (fatal_signal_pending(current))
2398 return SWAP_CLUSTER_MAX;
2399 }
2400
2401 lru_add_drain();
2402
2403 spin_lock_irq(&lruvec->lru_lock);
2404
2405 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2406 &nr_scanned, sc, lru);
2407
2408 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2409 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2410 if (!cgroup_reclaim(sc))
2411 __count_vm_events(item, nr_scanned);
2412 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2413 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2414
2415 spin_unlock_irq(&lruvec->lru_lock);
2416
2417 if (nr_taken == 0)
2418 return 0;
2419
2420 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2421
2422 spin_lock_irq(&lruvec->lru_lock);
2423 move_pages_to_lru(lruvec, &page_list);
2424
2425 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2426 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2427 if (!cgroup_reclaim(sc))
2428 __count_vm_events(item, nr_reclaimed);
2429 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2430 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2431 spin_unlock_irq(&lruvec->lru_lock);
2432
2433 lru_note_cost(lruvec, file, stat.nr_pageout);
2434 mem_cgroup_uncharge_list(&page_list);
2435 free_unref_page_list(&page_list);
2436
2437 /*
2438 * If dirty pages are scanned that are not queued for IO, it
2439 * implies that flushers are not doing their job. This can
2440 * happen when memory pressure pushes dirty pages to the end of
2441 * the LRU before the dirty limits are breached and the dirty
2442 * data has expired. It can also happen when the proportion of
2443 * dirty pages grows not through writes but through memory
2444 * pressure reclaiming all the clean cache. And in some cases,
2445 * the flushers simply cannot keep up with the allocation
2446 * rate. Nudge the flusher threads in case they are asleep.
2447 */
2448 if (stat.nr_unqueued_dirty == nr_taken)
2449 wakeup_flusher_threads(WB_REASON_VMSCAN);
2450
2451 sc->nr.dirty += stat.nr_dirty;
2452 sc->nr.congested += stat.nr_congested;
2453 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2454 sc->nr.writeback += stat.nr_writeback;
2455 sc->nr.immediate += stat.nr_immediate;
2456 sc->nr.taken += nr_taken;
2457 if (file)
2458 sc->nr.file_taken += nr_taken;
2459
2460 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2461 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2462 return nr_reclaimed;
2463 }
2464
2465 /*
2466 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2467 *
2468 * We move them the other way if the page is referenced by one or more
2469 * processes.
2470 *
2471 * If the pages are mostly unmapped, the processing is fast and it is
2472 * appropriate to hold lru_lock across the whole operation. But if
2473 * the pages are mapped, the processing is slow (page_referenced()), so
2474 * we should drop lru_lock around each page. It's impossible to balance
2475 * this, so instead we remove the pages from the LRU while processing them.
2476 * It is safe to rely on PG_active against the non-LRU pages in here because
2477 * nobody will play with that bit on a non-LRU page.
2478 *
2479 * The downside is that we have to touch page->_refcount against each page.
2480 * But we had to alter page->flags anyway.
2481 */
2482 static void shrink_active_list(unsigned long nr_to_scan,
2483 struct lruvec *lruvec,
2484 struct scan_control *sc,
2485 enum lru_list lru)
2486 {
2487 unsigned long nr_taken;
2488 unsigned long nr_scanned;
2489 unsigned long vm_flags;
2490 LIST_HEAD(l_hold); /* The pages which were snipped off */
2491 LIST_HEAD(l_active);
2492 LIST_HEAD(l_inactive);
2493 struct page *page;
2494 unsigned nr_deactivate, nr_activate;
2495 unsigned nr_rotated = 0;
2496 int file = is_file_lru(lru);
2497 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2498
2499 lru_add_drain();
2500
2501 spin_lock_irq(&lruvec->lru_lock);
2502
2503 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2504 &nr_scanned, sc, lru);
2505
2506 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2507
2508 if (!cgroup_reclaim(sc))
2509 __count_vm_events(PGREFILL, nr_scanned);
2510 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2511
2512 spin_unlock_irq(&lruvec->lru_lock);
2513
2514 while (!list_empty(&l_hold)) {
2515 cond_resched();
2516 page = lru_to_page(&l_hold);
2517 list_del(&page->lru);
2518
2519 if (unlikely(!page_evictable(page))) {
2520 putback_lru_page(page);
2521 continue;
2522 }
2523
2524 if (unlikely(buffer_heads_over_limit)) {
2525 if (page_has_private(page) && trylock_page(page)) {
2526 if (page_has_private(page))
2527 try_to_release_page(page, 0);
2528 unlock_page(page);
2529 }
2530 }
2531
2532 if (page_referenced(page, 0, sc->target_mem_cgroup,
2533 &vm_flags)) {
2534 /*
2535 * Identify referenced, file-backed active pages and
2536 * give them one more trip around the active list. So
2537 * that executable code get better chances to stay in
2538 * memory under moderate memory pressure. Anon pages
2539 * are not likely to be evicted by use-once streaming
2540 * IO, plus JVM can create lots of anon VM_EXEC pages,
2541 * so we ignore them here.
2542 */
2543 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2544 nr_rotated += thp_nr_pages(page);
2545 list_add(&page->lru, &l_active);
2546 continue;
2547 }
2548 }
2549
2550 ClearPageActive(page); /* we are de-activating */
2551 SetPageWorkingset(page);
2552 list_add(&page->lru, &l_inactive);
2553 }
2554
2555 /*
2556 * Move pages back to the lru list.
2557 */
2558 spin_lock_irq(&lruvec->lru_lock);
2559
2560 nr_activate = move_pages_to_lru(lruvec, &l_active);
2561 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2562 /* Keep all free pages in l_active list */
2563 list_splice(&l_inactive, &l_active);
2564
2565 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2566 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2567
2568 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2569 spin_unlock_irq(&lruvec->lru_lock);
2570
2571 mem_cgroup_uncharge_list(&l_active);
2572 free_unref_page_list(&l_active);
2573 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2574 nr_deactivate, nr_rotated, sc->priority, file);
2575 }
2576
2577 unsigned long reclaim_pages(struct list_head *page_list)
2578 {
2579 int nid = NUMA_NO_NODE;
2580 unsigned int nr_reclaimed = 0;
2581 LIST_HEAD(node_page_list);
2582 struct reclaim_stat dummy_stat;
2583 struct page *page;
2584 unsigned int noreclaim_flag;
2585 struct scan_control sc = {
2586 .gfp_mask = GFP_KERNEL,
2587 .may_writepage = 1,
2588 .may_unmap = 1,
2589 .may_swap = 1,
2590 .no_demotion = 1,
2591 };
2592
2593 noreclaim_flag = memalloc_noreclaim_save();
2594
2595 while (!list_empty(page_list)) {
2596 page = lru_to_page(page_list);
2597 if (nid == NUMA_NO_NODE) {
2598 nid = page_to_nid(page);
2599 INIT_LIST_HEAD(&node_page_list);
2600 }
2601
2602 if (nid == page_to_nid(page)) {
2603 ClearPageActive(page);
2604 list_move(&page->lru, &node_page_list);
2605 continue;
2606 }
2607
2608 nr_reclaimed += shrink_page_list(&node_page_list,
2609 NODE_DATA(nid),
2610 &sc, &dummy_stat, false);
2611 while (!list_empty(&node_page_list)) {
2612 page = lru_to_page(&node_page_list);
2613 list_del(&page->lru);
2614 putback_lru_page(page);
2615 }
2616
2617 nid = NUMA_NO_NODE;
2618 }
2619
2620 if (!list_empty(&node_page_list)) {
2621 nr_reclaimed += shrink_page_list(&node_page_list,
2622 NODE_DATA(nid),
2623 &sc, &dummy_stat, false);
2624 while (!list_empty(&node_page_list)) {
2625 page = lru_to_page(&node_page_list);
2626 list_del(&page->lru);
2627 putback_lru_page(page);
2628 }
2629 }
2630
2631 memalloc_noreclaim_restore(noreclaim_flag);
2632
2633 return nr_reclaimed;
2634 }
2635
2636 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2637 struct lruvec *lruvec, struct scan_control *sc)
2638 {
2639 if (is_active_lru(lru)) {
2640 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2641 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2642 else
2643 sc->skipped_deactivate = 1;
2644 return 0;
2645 }
2646
2647 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2648 }
2649
2650 /*
2651 * The inactive anon list should be small enough that the VM never has
2652 * to do too much work.
2653 *
2654 * The inactive file list should be small enough to leave most memory
2655 * to the established workingset on the scan-resistant active list,
2656 * but large enough to avoid thrashing the aggregate readahead window.
2657 *
2658 * Both inactive lists should also be large enough that each inactive
2659 * page has a chance to be referenced again before it is reclaimed.
2660 *
2661 * If that fails and refaulting is observed, the inactive list grows.
2662 *
2663 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2664 * on this LRU, maintained by the pageout code. An inactive_ratio
2665 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2666 *
2667 * total target max
2668 * memory ratio inactive
2669 * -------------------------------------
2670 * 10MB 1 5MB
2671 * 100MB 1 50MB
2672 * 1GB 3 250MB
2673 * 10GB 10 0.9GB
2674 * 100GB 31 3GB
2675 * 1TB 101 10GB
2676 * 10TB 320 32GB
2677 */
2678 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2679 {
2680 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2681 unsigned long inactive, active;
2682 unsigned long inactive_ratio;
2683 unsigned long gb;
2684
2685 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2686 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2687
2688 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2689 if (gb)
2690 inactive_ratio = int_sqrt(10 * gb);
2691 else
2692 inactive_ratio = 1;
2693
2694 return inactive * inactive_ratio < active;
2695 }
2696
2697 enum scan_balance {
2698 SCAN_EQUAL,
2699 SCAN_FRACT,
2700 SCAN_ANON,
2701 SCAN_FILE,
2702 };
2703
2704 /*
2705 * Determine how aggressively the anon and file LRU lists should be
2706 * scanned. The relative value of each set of LRU lists is determined
2707 * by looking at the fraction of the pages scanned we did rotate back
2708 * onto the active list instead of evict.
2709 *
2710 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2711 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2712 */
2713 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2714 unsigned long *nr)
2715 {
2716 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2717 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2718 unsigned long anon_cost, file_cost, total_cost;
2719 int swappiness = mem_cgroup_swappiness(memcg);
2720 u64 fraction[ANON_AND_FILE];
2721 u64 denominator = 0; /* gcc */
2722 enum scan_balance scan_balance;
2723 unsigned long ap, fp;
2724 enum lru_list lru;
2725
2726 /* If we have no swap space, do not bother scanning anon pages. */
2727 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2728 scan_balance = SCAN_FILE;
2729 goto out;
2730 }
2731
2732 /*
2733 * Global reclaim will swap to prevent OOM even with no
2734 * swappiness, but memcg users want to use this knob to
2735 * disable swapping for individual groups completely when
2736 * using the memory controller's swap limit feature would be
2737 * too expensive.
2738 */
2739 if (cgroup_reclaim(sc) && !swappiness) {
2740 scan_balance = SCAN_FILE;
2741 goto out;
2742 }
2743
2744 /*
2745 * Do not apply any pressure balancing cleverness when the
2746 * system is close to OOM, scan both anon and file equally
2747 * (unless the swappiness setting disagrees with swapping).
2748 */
2749 if (!sc->priority && swappiness) {
2750 scan_balance = SCAN_EQUAL;
2751 goto out;
2752 }
2753
2754 /*
2755 * If the system is almost out of file pages, force-scan anon.
2756 */
2757 if (sc->file_is_tiny) {
2758 scan_balance = SCAN_ANON;
2759 goto out;
2760 }
2761
2762 /*
2763 * If there is enough inactive page cache, we do not reclaim
2764 * anything from the anonymous working right now.
2765 */
2766 if (sc->cache_trim_mode) {
2767 scan_balance = SCAN_FILE;
2768 goto out;
2769 }
2770
2771 scan_balance = SCAN_FRACT;
2772 /*
2773 * Calculate the pressure balance between anon and file pages.
2774 *
2775 * The amount of pressure we put on each LRU is inversely
2776 * proportional to the cost of reclaiming each list, as
2777 * determined by the share of pages that are refaulting, times
2778 * the relative IO cost of bringing back a swapped out
2779 * anonymous page vs reloading a filesystem page (swappiness).
2780 *
2781 * Although we limit that influence to ensure no list gets
2782 * left behind completely: at least a third of the pressure is
2783 * applied, before swappiness.
2784 *
2785 * With swappiness at 100, anon and file have equal IO cost.
2786 */
2787 total_cost = sc->anon_cost + sc->file_cost;
2788 anon_cost = total_cost + sc->anon_cost;
2789 file_cost = total_cost + sc->file_cost;
2790 total_cost = anon_cost + file_cost;
2791
2792 ap = swappiness * (total_cost + 1);
2793 ap /= anon_cost + 1;
2794
2795 fp = (200 - swappiness) * (total_cost + 1);
2796 fp /= file_cost + 1;
2797
2798 fraction[0] = ap;
2799 fraction[1] = fp;
2800 denominator = ap + fp;
2801 out:
2802 for_each_evictable_lru(lru) {
2803 int file = is_file_lru(lru);
2804 unsigned long lruvec_size;
2805 unsigned long low, min;
2806 unsigned long scan;
2807
2808 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2809 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2810 &min, &low);
2811
2812 if (min || low) {
2813 /*
2814 * Scale a cgroup's reclaim pressure by proportioning
2815 * its current usage to its memory.low or memory.min
2816 * setting.
2817 *
2818 * This is important, as otherwise scanning aggression
2819 * becomes extremely binary -- from nothing as we
2820 * approach the memory protection threshold, to totally
2821 * nominal as we exceed it. This results in requiring
2822 * setting extremely liberal protection thresholds. It
2823 * also means we simply get no protection at all if we
2824 * set it too low, which is not ideal.
2825 *
2826 * If there is any protection in place, we reduce scan
2827 * pressure by how much of the total memory used is
2828 * within protection thresholds.
2829 *
2830 * There is one special case: in the first reclaim pass,
2831 * we skip over all groups that are within their low
2832 * protection. If that fails to reclaim enough pages to
2833 * satisfy the reclaim goal, we come back and override
2834 * the best-effort low protection. However, we still
2835 * ideally want to honor how well-behaved groups are in
2836 * that case instead of simply punishing them all
2837 * equally. As such, we reclaim them based on how much
2838 * memory they are using, reducing the scan pressure
2839 * again by how much of the total memory used is under
2840 * hard protection.
2841 */
2842 unsigned long cgroup_size = mem_cgroup_size(memcg);
2843 unsigned long protection;
2844
2845 /* memory.low scaling, make sure we retry before OOM */
2846 if (!sc->memcg_low_reclaim && low > min) {
2847 protection = low;
2848 sc->memcg_low_skipped = 1;
2849 } else {
2850 protection = min;
2851 }
2852
2853 /* Avoid TOCTOU with earlier protection check */
2854 cgroup_size = max(cgroup_size, protection);
2855
2856 scan = lruvec_size - lruvec_size * protection /
2857 (cgroup_size + 1);
2858
2859 /*
2860 * Minimally target SWAP_CLUSTER_MAX pages to keep
2861 * reclaim moving forwards, avoiding decrementing
2862 * sc->priority further than desirable.
2863 */
2864 scan = max(scan, SWAP_CLUSTER_MAX);
2865 } else {
2866 scan = lruvec_size;
2867 }
2868
2869 scan >>= sc->priority;
2870
2871 /*
2872 * If the cgroup's already been deleted, make sure to
2873 * scrape out the remaining cache.
2874 */
2875 if (!scan && !mem_cgroup_online(memcg))
2876 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2877
2878 switch (scan_balance) {
2879 case SCAN_EQUAL:
2880 /* Scan lists relative to size */
2881 break;
2882 case SCAN_FRACT:
2883 /*
2884 * Scan types proportional to swappiness and
2885 * their relative recent reclaim efficiency.
2886 * Make sure we don't miss the last page on
2887 * the offlined memory cgroups because of a
2888 * round-off error.
2889 */
2890 scan = mem_cgroup_online(memcg) ?
2891 div64_u64(scan * fraction[file], denominator) :
2892 DIV64_U64_ROUND_UP(scan * fraction[file],
2893 denominator);
2894 break;
2895 case SCAN_FILE:
2896 case SCAN_ANON:
2897 /* Scan one type exclusively */
2898 if ((scan_balance == SCAN_FILE) != file)
2899 scan = 0;
2900 break;
2901 default:
2902 /* Look ma, no brain */
2903 BUG();
2904 }
2905
2906 nr[lru] = scan;
2907 }
2908 }
2909
2910 /*
2911 * Anonymous LRU management is a waste if there is
2912 * ultimately no way to reclaim the memory.
2913 */
2914 static bool can_age_anon_pages(struct pglist_data *pgdat,
2915 struct scan_control *sc)
2916 {
2917 /* Aging the anon LRU is valuable if swap is present: */
2918 if (total_swap_pages > 0)
2919 return true;
2920
2921 /* Also valuable if anon pages can be demoted: */
2922 return can_demote(pgdat->node_id, sc);
2923 }
2924
2925 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2926 {
2927 unsigned long nr[NR_LRU_LISTS];
2928 unsigned long targets[NR_LRU_LISTS];
2929 unsigned long nr_to_scan;
2930 enum lru_list lru;
2931 unsigned long nr_reclaimed = 0;
2932 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2933 struct blk_plug plug;
2934 bool scan_adjusted;
2935
2936 get_scan_count(lruvec, sc, nr);
2937
2938 /* Record the original scan target for proportional adjustments later */
2939 memcpy(targets, nr, sizeof(nr));
2940
2941 /*
2942 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2943 * event that can occur when there is little memory pressure e.g.
2944 * multiple streaming readers/writers. Hence, we do not abort scanning
2945 * when the requested number of pages are reclaimed when scanning at
2946 * DEF_PRIORITY on the assumption that the fact we are direct
2947 * reclaiming implies that kswapd is not keeping up and it is best to
2948 * do a batch of work at once. For memcg reclaim one check is made to
2949 * abort proportional reclaim if either the file or anon lru has already
2950 * dropped to zero at the first pass.
2951 */
2952 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2953 sc->priority == DEF_PRIORITY);
2954
2955 blk_start_plug(&plug);
2956 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2957 nr[LRU_INACTIVE_FILE]) {
2958 unsigned long nr_anon, nr_file, percentage;
2959 unsigned long nr_scanned;
2960
2961 for_each_evictable_lru(lru) {
2962 if (nr[lru]) {
2963 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2964 nr[lru] -= nr_to_scan;
2965
2966 nr_reclaimed += shrink_list(lru, nr_to_scan,
2967 lruvec, sc);
2968 }
2969 }
2970
2971 cond_resched();
2972
2973 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2974 continue;
2975
2976 /*
2977 * For kswapd and memcg, reclaim at least the number of pages
2978 * requested. Ensure that the anon and file LRUs are scanned
2979 * proportionally what was requested by get_scan_count(). We
2980 * stop reclaiming one LRU and reduce the amount scanning
2981 * proportional to the original scan target.
2982 */
2983 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2984 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2985
2986 /*
2987 * It's just vindictive to attack the larger once the smaller
2988 * has gone to zero. And given the way we stop scanning the
2989 * smaller below, this makes sure that we only make one nudge
2990 * towards proportionality once we've got nr_to_reclaim.
2991 */
2992 if (!nr_file || !nr_anon)
2993 break;
2994
2995 if (nr_file > nr_anon) {
2996 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2997 targets[LRU_ACTIVE_ANON] + 1;
2998 lru = LRU_BASE;
2999 percentage = nr_anon * 100 / scan_target;
3000 } else {
3001 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
3002 targets[LRU_ACTIVE_FILE] + 1;
3003 lru = LRU_FILE;
3004 percentage = nr_file * 100 / scan_target;
3005 }
3006
3007 /* Stop scanning the smaller of the LRU */
3008 nr[lru] = 0;
3009 nr[lru + LRU_ACTIVE] = 0;
3010
3011 /*
3012 * Recalculate the other LRU scan count based on its original
3013 * scan target and the percentage scanning already complete
3014 */
3015 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
3016 nr_scanned = targets[lru] - nr[lru];
3017 nr[lru] = targets[lru] * (100 - percentage) / 100;
3018 nr[lru] -= min(nr[lru], nr_scanned);
3019
3020 lru += LRU_ACTIVE;
3021 nr_scanned = targets[lru] - nr[lru];
3022 nr[lru] = targets[lru] * (100 - percentage) / 100;
3023 nr[lru] -= min(nr[lru], nr_scanned);
3024
3025 scan_adjusted = true;
3026 }
3027 blk_finish_plug(&plug);
3028 sc->nr_reclaimed += nr_reclaimed;
3029
3030 /*
3031 * Even if we did not try to evict anon pages at all, we want to
3032 * rebalance the anon lru active/inactive ratio.
3033 */
3034 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
3035 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3036 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3037 sc, LRU_ACTIVE_ANON);
3038 }
3039
3040 /* Use reclaim/compaction for costly allocs or under memory pressure */
3041 static bool in_reclaim_compaction(struct scan_control *sc)
3042 {
3043 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3044 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
3045 sc->priority < DEF_PRIORITY - 2))
3046 return true;
3047
3048 return false;
3049 }
3050
3051 /*
3052 * Reclaim/compaction is used for high-order allocation requests. It reclaims
3053 * order-0 pages before compacting the zone. should_continue_reclaim() returns
3054 * true if more pages should be reclaimed such that when the page allocator
3055 * calls try_to_compact_pages() that it will have enough free pages to succeed.
3056 * It will give up earlier than that if there is difficulty reclaiming pages.
3057 */
3058 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3059 unsigned long nr_reclaimed,
3060 struct scan_control *sc)
3061 {
3062 unsigned long pages_for_compaction;
3063 unsigned long inactive_lru_pages;
3064 int z;
3065
3066 /* If not in reclaim/compaction mode, stop */
3067 if (!in_reclaim_compaction(sc))
3068 return false;
3069
3070 /*
3071 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3072 * number of pages that were scanned. This will return to the caller
3073 * with the risk reclaim/compaction and the resulting allocation attempt
3074 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3075 * allocations through requiring that the full LRU list has been scanned
3076 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3077 * scan, but that approximation was wrong, and there were corner cases
3078 * where always a non-zero amount of pages were scanned.
3079 */
3080 if (!nr_reclaimed)
3081 return false;
3082
3083 /* If compaction would go ahead or the allocation would succeed, stop */
3084 for (z = 0; z <= sc->reclaim_idx; z++) {
3085 struct zone *zone = &pgdat->node_zones[z];
3086 if (!managed_zone(zone))
3087 continue;
3088
3089 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
3090 case COMPACT_SUCCESS:
3091 case COMPACT_CONTINUE:
3092 return false;
3093 default:
3094 /* check next zone */
3095 ;
3096 }
3097 }
3098
3099 /*
3100 * If we have not reclaimed enough pages for compaction and the
3101 * inactive lists are large enough, continue reclaiming
3102 */
3103 pages_for_compaction = compact_gap(sc->order);
3104 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
3105 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3106 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3107
3108 return inactive_lru_pages > pages_for_compaction;
3109 }
3110
3111 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
3112 {
3113 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
3114 struct mem_cgroup *memcg;
3115
3116 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
3117 do {
3118 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3119 unsigned long reclaimed;
3120 unsigned long scanned;
3121
3122 /*
3123 * This loop can become CPU-bound when target memcgs
3124 * aren't eligible for reclaim - either because they
3125 * don't have any reclaimable pages, or because their
3126 * memory is explicitly protected. Avoid soft lockups.
3127 */
3128 cond_resched();
3129
3130 mem_cgroup_calculate_protection(target_memcg, memcg);
3131
3132 if (mem_cgroup_below_min(memcg)) {
3133 /*
3134 * Hard protection.
3135 * If there is no reclaimable memory, OOM.
3136 */
3137 continue;
3138 } else if (mem_cgroup_below_low(memcg)) {
3139 /*
3140 * Soft protection.
3141 * Respect the protection only as long as
3142 * there is an unprotected supply
3143 * of reclaimable memory from other cgroups.
3144 */
3145 if (!sc->memcg_low_reclaim) {
3146 sc->memcg_low_skipped = 1;
3147 continue;
3148 }
3149 memcg_memory_event(memcg, MEMCG_LOW);
3150 }
3151
3152 reclaimed = sc->nr_reclaimed;
3153 scanned = sc->nr_scanned;
3154
3155 shrink_lruvec(lruvec, sc);
3156
3157 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3158 sc->priority);
3159
3160 /* Record the group's reclaim efficiency */
3161 vmpressure(sc->gfp_mask, memcg, false,
3162 sc->nr_scanned - scanned,
3163 sc->nr_reclaimed - reclaimed);
3164
3165 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3166 }
3167
3168 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
3169 {
3170 struct reclaim_state *reclaim_state = current->reclaim_state;
3171 unsigned long nr_reclaimed, nr_scanned;
3172 struct lruvec *target_lruvec;
3173 bool reclaimable = false;
3174 unsigned long file;
3175
3176 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3177
3178 again:
3179 /*
3180 * Flush the memory cgroup stats, so that we read accurate per-memcg
3181 * lruvec stats for heuristics.
3182 */
3183 mem_cgroup_flush_stats();
3184
3185 memset(&sc->nr, 0, sizeof(sc->nr));
3186
3187 nr_reclaimed = sc->nr_reclaimed;
3188 nr_scanned = sc->nr_scanned;
3189
3190 /*
3191 * Determine the scan balance between anon and file LRUs.
3192 */
3193 spin_lock_irq(&target_lruvec->lru_lock);
3194 sc->anon_cost = target_lruvec->anon_cost;
3195 sc->file_cost = target_lruvec->file_cost;
3196 spin_unlock_irq(&target_lruvec->lru_lock);
3197
3198 /*
3199 * Target desirable inactive:active list ratios for the anon
3200 * and file LRU lists.
3201 */
3202 if (!sc->force_deactivate) {
3203 unsigned long refaults;
3204
3205 refaults = lruvec_page_state(target_lruvec,
3206 WORKINGSET_ACTIVATE_ANON);
3207 if (refaults != target_lruvec->refaults[0] ||
3208 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
3209 sc->may_deactivate |= DEACTIVATE_ANON;
3210 else
3211 sc->may_deactivate &= ~DEACTIVATE_ANON;
3212
3213 /*
3214 * When refaults are being observed, it means a new
3215 * workingset is being established. Deactivate to get
3216 * rid of any stale active pages quickly.
3217 */
3218 refaults = lruvec_page_state(target_lruvec,
3219 WORKINGSET_ACTIVATE_FILE);
3220 if (refaults != target_lruvec->refaults[1] ||
3221 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3222 sc->may_deactivate |= DEACTIVATE_FILE;
3223 else
3224 sc->may_deactivate &= ~DEACTIVATE_FILE;
3225 } else
3226 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3227
3228 /*
3229 * If we have plenty of inactive file pages that aren't
3230 * thrashing, try to reclaim those first before touching
3231 * anonymous pages.
3232 */
3233 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3234 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3235 sc->cache_trim_mode = 1;
3236 else
3237 sc->cache_trim_mode = 0;
3238
3239 /*
3240 * Prevent the reclaimer from falling into the cache trap: as
3241 * cache pages start out inactive, every cache fault will tip
3242 * the scan balance towards the file LRU. And as the file LRU
3243 * shrinks, so does the window for rotation from references.
3244 * This means we have a runaway feedback loop where a tiny
3245 * thrashing file LRU becomes infinitely more attractive than
3246 * anon pages. Try to detect this based on file LRU size.
3247 */
3248 if (!cgroup_reclaim(sc)) {
3249 unsigned long total_high_wmark = 0;
3250 unsigned long free, anon;
3251 int z;
3252
3253 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3254 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3255 node_page_state(pgdat, NR_INACTIVE_FILE);
3256
3257 for (z = 0; z < MAX_NR_ZONES; z++) {
3258 struct zone *zone = &pgdat->node_zones[z];
3259 if (!managed_zone(zone))
3260 continue;
3261
3262 total_high_wmark += high_wmark_pages(zone);
3263 }
3264
3265 /*
3266 * Consider anon: if that's low too, this isn't a
3267 * runaway file reclaim problem, but rather just
3268 * extreme pressure. Reclaim as per usual then.
3269 */
3270 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3271
3272 sc->file_is_tiny =
3273 file + free <= total_high_wmark &&
3274 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3275 anon >> sc->priority;
3276 }
3277
3278 shrink_node_memcgs(pgdat, sc);
3279
3280 if (reclaim_state) {
3281 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3282 reclaim_state->reclaimed_slab = 0;
3283 }
3284
3285 /* Record the subtree's reclaim efficiency */
3286 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3287 sc->nr_scanned - nr_scanned,
3288 sc->nr_reclaimed - nr_reclaimed);
3289
3290 if (sc->nr_reclaimed - nr_reclaimed)
3291 reclaimable = true;
3292
3293 if (current_is_kswapd()) {
3294 /*
3295 * If reclaim is isolating dirty pages under writeback,
3296 * it implies that the long-lived page allocation rate
3297 * is exceeding the page laundering rate. Either the
3298 * global limits are not being effective at throttling
3299 * processes due to the page distribution throughout
3300 * zones or there is heavy usage of a slow backing
3301 * device. The only option is to throttle from reclaim
3302 * context which is not ideal as there is no guarantee
3303 * the dirtying process is throttled in the same way
3304 * balance_dirty_pages() manages.
3305 *
3306 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3307 * count the number of pages under pages flagged for
3308 * immediate reclaim and stall if any are encountered
3309 * in the nr_immediate check below.
3310 */
3311 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3312 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3313
3314 /* Allow kswapd to start writing pages during reclaim.*/
3315 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3316 set_bit(PGDAT_DIRTY, &pgdat->flags);
3317
3318 /*
3319 * If kswapd scans pages marked for immediate
3320 * reclaim and under writeback (nr_immediate), it
3321 * implies that pages are cycling through the LRU
3322 * faster than they are written so forcibly stall
3323 * until some pages complete writeback.
3324 */
3325 if (sc->nr.immediate)
3326 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
3327 }
3328
3329 /*
3330 * Tag a node/memcg as congested if all the dirty pages were marked
3331 * for writeback and immediate reclaim (counted in nr.congested).
3332 *
3333 * Legacy memcg will stall in page writeback so avoid forcibly
3334 * stalling in reclaim_throttle().
3335 */
3336 if ((current_is_kswapd() ||
3337 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3338 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3339 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3340
3341 /*
3342 * Stall direct reclaim for IO completions if the lruvec is
3343 * node is congested. Allow kswapd to continue until it
3344 * starts encountering unqueued dirty pages or cycling through
3345 * the LRU too quickly.
3346 */
3347 if (!current_is_kswapd() && current_may_throttle() &&
3348 !sc->hibernation_mode &&
3349 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3350 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
3351
3352 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3353 sc))
3354 goto again;
3355
3356 /*
3357 * Kswapd gives up on balancing particular nodes after too
3358 * many failures to reclaim anything from them and goes to
3359 * sleep. On reclaim progress, reset the failure counter. A
3360 * successful direct reclaim run will revive a dormant kswapd.
3361 */
3362 if (reclaimable)
3363 pgdat->kswapd_failures = 0;
3364 }
3365
3366 /*
3367 * Returns true if compaction should go ahead for a costly-order request, or
3368 * the allocation would already succeed without compaction. Return false if we
3369 * should reclaim first.
3370 */
3371 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3372 {
3373 unsigned long watermark;
3374 enum compact_result suitable;
3375
3376 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3377 if (suitable == COMPACT_SUCCESS)
3378 /* Allocation should succeed already. Don't reclaim. */
3379 return true;
3380 if (suitable == COMPACT_SKIPPED)
3381 /* Compaction cannot yet proceed. Do reclaim. */
3382 return false;
3383
3384 /*
3385 * Compaction is already possible, but it takes time to run and there
3386 * are potentially other callers using the pages just freed. So proceed
3387 * with reclaim to make a buffer of free pages available to give
3388 * compaction a reasonable chance of completing and allocating the page.
3389 * Note that we won't actually reclaim the whole buffer in one attempt
3390 * as the target watermark in should_continue_reclaim() is lower. But if
3391 * we are already above the high+gap watermark, don't reclaim at all.
3392 */
3393 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3394
3395 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3396 }
3397
3398 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3399 {
3400 /*
3401 * If reclaim is making progress greater than 12% efficiency then
3402 * wake all the NOPROGRESS throttled tasks.
3403 */
3404 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
3405 wait_queue_head_t *wqh;
3406
3407 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3408 if (waitqueue_active(wqh))
3409 wake_up(wqh);
3410
3411 return;
3412 }
3413
3414 /*
3415 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
3416 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
3417 * under writeback and marked for immediate reclaim at the tail of the
3418 * LRU.
3419 */
3420 if (current_is_kswapd() || cgroup_reclaim(sc))
3421 return;
3422
3423 /* Throttle if making no progress at high prioities. */
3424 if (sc->priority == 1 && !sc->nr_reclaimed)
3425 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
3426 }
3427
3428 /*
3429 * This is the direct reclaim path, for page-allocating processes. We only
3430 * try to reclaim pages from zones which will satisfy the caller's allocation
3431 * request.
3432 *
3433 * If a zone is deemed to be full of pinned pages then just give it a light
3434 * scan then give up on it.
3435 */
3436 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3437 {
3438 struct zoneref *z;
3439 struct zone *zone;
3440 unsigned long nr_soft_reclaimed;
3441 unsigned long nr_soft_scanned;
3442 gfp_t orig_mask;
3443 pg_data_t *last_pgdat = NULL;
3444 pg_data_t *first_pgdat = NULL;
3445
3446 /*
3447 * If the number of buffer_heads in the machine exceeds the maximum
3448 * allowed level, force direct reclaim to scan the highmem zone as
3449 * highmem pages could be pinning lowmem pages storing buffer_heads
3450 */
3451 orig_mask = sc->gfp_mask;
3452 if (buffer_heads_over_limit) {
3453 sc->gfp_mask |= __GFP_HIGHMEM;
3454 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3455 }
3456
3457 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3458 sc->reclaim_idx, sc->nodemask) {
3459 /*
3460 * Take care memory controller reclaiming has small influence
3461 * to global LRU.
3462 */
3463 if (!cgroup_reclaim(sc)) {
3464 if (!cpuset_zone_allowed(zone,
3465 GFP_KERNEL | __GFP_HARDWALL))
3466 continue;
3467
3468 /*
3469 * If we already have plenty of memory free for
3470 * compaction in this zone, don't free any more.
3471 * Even though compaction is invoked for any
3472 * non-zero order, only frequent costly order
3473 * reclamation is disruptive enough to become a
3474 * noticeable problem, like transparent huge
3475 * page allocations.
3476 */
3477 if (IS_ENABLED(CONFIG_COMPACTION) &&
3478 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3479 compaction_ready(zone, sc)) {
3480 sc->compaction_ready = true;
3481 continue;
3482 }
3483
3484 /*
3485 * Shrink each node in the zonelist once. If the
3486 * zonelist is ordered by zone (not the default) then a
3487 * node may be shrunk multiple times but in that case
3488 * the user prefers lower zones being preserved.
3489 */
3490 if (zone->zone_pgdat == last_pgdat)
3491 continue;
3492
3493 /*
3494 * This steals pages from memory cgroups over softlimit
3495 * and returns the number of reclaimed pages and
3496 * scanned pages. This works for global memory pressure
3497 * and balancing, not for a memcg's limit.
3498 */
3499 nr_soft_scanned = 0;
3500 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3501 sc->order, sc->gfp_mask,
3502 &nr_soft_scanned);
3503 sc->nr_reclaimed += nr_soft_reclaimed;
3504 sc->nr_scanned += nr_soft_scanned;
3505 /* need some check for avoid more shrink_zone() */
3506 }
3507
3508 if (!first_pgdat)
3509 first_pgdat = zone->zone_pgdat;
3510
3511 /* See comment about same check for global reclaim above */
3512 if (zone->zone_pgdat == last_pgdat)
3513 continue;
3514 last_pgdat = zone->zone_pgdat;
3515 shrink_node(zone->zone_pgdat, sc);
3516 }
3517
3518 if (first_pgdat)
3519 consider_reclaim_throttle(first_pgdat, sc);
3520
3521 /*
3522 * Restore to original mask to avoid the impact on the caller if we
3523 * promoted it to __GFP_HIGHMEM.
3524 */
3525 sc->gfp_mask = orig_mask;
3526 }
3527
3528 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3529 {
3530 struct lruvec *target_lruvec;
3531 unsigned long refaults;
3532
3533 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3534 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3535 target_lruvec->refaults[0] = refaults;
3536 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3537 target_lruvec->refaults[1] = refaults;
3538 }
3539
3540 /*
3541 * This is the main entry point to direct page reclaim.
3542 *
3543 * If a full scan of the inactive list fails to free enough memory then we
3544 * are "out of memory" and something needs to be killed.
3545 *
3546 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3547 * high - the zone may be full of dirty or under-writeback pages, which this
3548 * caller can't do much about. We kick the writeback threads and take explicit
3549 * naps in the hope that some of these pages can be written. But if the
3550 * allocating task holds filesystem locks which prevent writeout this might not
3551 * work, and the allocation attempt will fail.
3552 *
3553 * returns: 0, if no pages reclaimed
3554 * else, the number of pages reclaimed
3555 */
3556 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3557 struct scan_control *sc)
3558 {
3559 int initial_priority = sc->priority;
3560 pg_data_t *last_pgdat;
3561 struct zoneref *z;
3562 struct zone *zone;
3563 retry:
3564 delayacct_freepages_start();
3565
3566 if (!cgroup_reclaim(sc))
3567 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3568
3569 do {
3570 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3571 sc->priority);
3572 sc->nr_scanned = 0;
3573 shrink_zones(zonelist, sc);
3574
3575 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3576 break;
3577
3578 if (sc->compaction_ready)
3579 break;
3580
3581 /*
3582 * If we're getting trouble reclaiming, start doing
3583 * writepage even in laptop mode.
3584 */
3585 if (sc->priority < DEF_PRIORITY - 2)
3586 sc->may_writepage = 1;
3587 } while (--sc->priority >= 0);
3588
3589 last_pgdat = NULL;
3590 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3591 sc->nodemask) {
3592 if (zone->zone_pgdat == last_pgdat)
3593 continue;
3594 last_pgdat = zone->zone_pgdat;
3595
3596 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3597
3598 if (cgroup_reclaim(sc)) {
3599 struct lruvec *lruvec;
3600
3601 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3602 zone->zone_pgdat);
3603 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3604 }
3605 }
3606
3607 delayacct_freepages_end();
3608
3609 if (sc->nr_reclaimed)
3610 return sc->nr_reclaimed;
3611
3612 /* Aborted reclaim to try compaction? don't OOM, then */
3613 if (sc->compaction_ready)
3614 return 1;
3615
3616 /*
3617 * We make inactive:active ratio decisions based on the node's
3618 * composition of memory, but a restrictive reclaim_idx or a
3619 * memory.low cgroup setting can exempt large amounts of
3620 * memory from reclaim. Neither of which are very common, so
3621 * instead of doing costly eligibility calculations of the
3622 * entire cgroup subtree up front, we assume the estimates are
3623 * good, and retry with forcible deactivation if that fails.
3624 */
3625 if (sc->skipped_deactivate) {
3626 sc->priority = initial_priority;
3627 sc->force_deactivate = 1;
3628 sc->skipped_deactivate = 0;
3629 goto retry;
3630 }
3631
3632 /* Untapped cgroup reserves? Don't OOM, retry. */
3633 if (sc->memcg_low_skipped) {
3634 sc->priority = initial_priority;
3635 sc->force_deactivate = 0;
3636 sc->memcg_low_reclaim = 1;
3637 sc->memcg_low_skipped = 0;
3638 goto retry;
3639 }
3640
3641 return 0;
3642 }
3643
3644 static bool allow_direct_reclaim(pg_data_t *pgdat)
3645 {
3646 struct zone *zone;
3647 unsigned long pfmemalloc_reserve = 0;
3648 unsigned long free_pages = 0;
3649 int i;
3650 bool wmark_ok;
3651
3652 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3653 return true;
3654
3655 for (i = 0; i <= ZONE_NORMAL; i++) {
3656 zone = &pgdat->node_zones[i];
3657 if (!managed_zone(zone))
3658 continue;
3659
3660 if (!zone_reclaimable_pages(zone))
3661 continue;
3662
3663 pfmemalloc_reserve += min_wmark_pages(zone);
3664 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3665 }
3666
3667 /* If there are no reserves (unexpected config) then do not throttle */
3668 if (!pfmemalloc_reserve)
3669 return true;
3670
3671 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3672
3673 /* kswapd must be awake if processes are being throttled */
3674 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3675 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3676 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3677
3678 wake_up_interruptible(&pgdat->kswapd_wait);
3679 }
3680
3681 return wmark_ok;
3682 }
3683
3684 /*
3685 * Throttle direct reclaimers if backing storage is backed by the network
3686 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3687 * depleted. kswapd will continue to make progress and wake the processes
3688 * when the low watermark is reached.
3689 *
3690 * Returns true if a fatal signal was delivered during throttling. If this
3691 * happens, the page allocator should not consider triggering the OOM killer.
3692 */
3693 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3694 nodemask_t *nodemask)
3695 {
3696 struct zoneref *z;
3697 struct zone *zone;
3698 pg_data_t *pgdat = NULL;
3699
3700 /*
3701 * Kernel threads should not be throttled as they may be indirectly
3702 * responsible for cleaning pages necessary for reclaim to make forward
3703 * progress. kjournald for example may enter direct reclaim while
3704 * committing a transaction where throttling it could forcing other
3705 * processes to block on log_wait_commit().
3706 */
3707 if (current->flags & PF_KTHREAD)
3708 goto out;
3709
3710 /*
3711 * If a fatal signal is pending, this process should not throttle.
3712 * It should return quickly so it can exit and free its memory
3713 */
3714 if (fatal_signal_pending(current))
3715 goto out;
3716
3717 /*
3718 * Check if the pfmemalloc reserves are ok by finding the first node
3719 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3720 * GFP_KERNEL will be required for allocating network buffers when
3721 * swapping over the network so ZONE_HIGHMEM is unusable.
3722 *
3723 * Throttling is based on the first usable node and throttled processes
3724 * wait on a queue until kswapd makes progress and wakes them. There
3725 * is an affinity then between processes waking up and where reclaim
3726 * progress has been made assuming the process wakes on the same node.
3727 * More importantly, processes running on remote nodes will not compete
3728 * for remote pfmemalloc reserves and processes on different nodes
3729 * should make reasonable progress.
3730 */
3731 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3732 gfp_zone(gfp_mask), nodemask) {
3733 if (zone_idx(zone) > ZONE_NORMAL)
3734 continue;
3735
3736 /* Throttle based on the first usable node */
3737 pgdat = zone->zone_pgdat;
3738 if (allow_direct_reclaim(pgdat))
3739 goto out;
3740 break;
3741 }
3742
3743 /* If no zone was usable by the allocation flags then do not throttle */
3744 if (!pgdat)
3745 goto out;
3746
3747 /* Account for the throttling */
3748 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3749
3750 /*
3751 * If the caller cannot enter the filesystem, it's possible that it
3752 * is due to the caller holding an FS lock or performing a journal
3753 * transaction in the case of a filesystem like ext[3|4]. In this case,
3754 * it is not safe to block on pfmemalloc_wait as kswapd could be
3755 * blocked waiting on the same lock. Instead, throttle for up to a
3756 * second before continuing.
3757 */
3758 if (!(gfp_mask & __GFP_FS))
3759 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3760 allow_direct_reclaim(pgdat), HZ);
3761 else
3762 /* Throttle until kswapd wakes the process */
3763 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3764 allow_direct_reclaim(pgdat));
3765
3766 if (fatal_signal_pending(current))
3767 return true;
3768
3769 out:
3770 return false;
3771 }
3772
3773 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3774 gfp_t gfp_mask, nodemask_t *nodemask)
3775 {
3776 unsigned long nr_reclaimed;
3777 struct scan_control sc = {
3778 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3779 .gfp_mask = current_gfp_context(gfp_mask),
3780 .reclaim_idx = gfp_zone(gfp_mask),
3781 .order = order,
3782 .nodemask = nodemask,
3783 .priority = DEF_PRIORITY,
3784 .may_writepage = !laptop_mode,
3785 .may_unmap = 1,
3786 .may_swap = 1,
3787 };
3788
3789 /*
3790 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3791 * Confirm they are large enough for max values.
3792 */
3793 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3794 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3795 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3796
3797 /*
3798 * Do not enter reclaim if fatal signal was delivered while throttled.
3799 * 1 is returned so that the page allocator does not OOM kill at this
3800 * point.
3801 */
3802 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3803 return 1;
3804
3805 set_task_reclaim_state(current, &sc.reclaim_state);
3806 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3807
3808 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3809
3810 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3811 set_task_reclaim_state(current, NULL);
3812
3813 return nr_reclaimed;
3814 }
3815
3816 #ifdef CONFIG_MEMCG
3817
3818 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3819 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3820 gfp_t gfp_mask, bool noswap,
3821 pg_data_t *pgdat,
3822 unsigned long *nr_scanned)
3823 {
3824 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3825 struct scan_control sc = {
3826 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3827 .target_mem_cgroup = memcg,
3828 .may_writepage = !laptop_mode,
3829 .may_unmap = 1,
3830 .reclaim_idx = MAX_NR_ZONES - 1,
3831 .may_swap = !noswap,
3832 };
3833
3834 WARN_ON_ONCE(!current->reclaim_state);
3835
3836 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3837 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3838
3839 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3840 sc.gfp_mask);
3841
3842 /*
3843 * NOTE: Although we can get the priority field, using it
3844 * here is not a good idea, since it limits the pages we can scan.
3845 * if we don't reclaim here, the shrink_node from balance_pgdat
3846 * will pick up pages from other mem cgroup's as well. We hack
3847 * the priority and make it zero.
3848 */
3849 shrink_lruvec(lruvec, &sc);
3850
3851 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3852
3853 *nr_scanned = sc.nr_scanned;
3854
3855 return sc.nr_reclaimed;
3856 }
3857
3858 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3859 unsigned long nr_pages,
3860 gfp_t gfp_mask,
3861 bool may_swap)
3862 {
3863 unsigned long nr_reclaimed;
3864 unsigned int noreclaim_flag;
3865 struct scan_control sc = {
3866 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3867 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3868 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3869 .reclaim_idx = MAX_NR_ZONES - 1,
3870 .target_mem_cgroup = memcg,
3871 .priority = DEF_PRIORITY,
3872 .may_writepage = !laptop_mode,
3873 .may_unmap = 1,
3874 .may_swap = may_swap,
3875 };
3876 /*
3877 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3878 * equal pressure on all the nodes. This is based on the assumption that
3879 * the reclaim does not bail out early.
3880 */
3881 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3882
3883 set_task_reclaim_state(current, &sc.reclaim_state);
3884 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3885 noreclaim_flag = memalloc_noreclaim_save();
3886
3887 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3888
3889 memalloc_noreclaim_restore(noreclaim_flag);
3890 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3891 set_task_reclaim_state(current, NULL);
3892
3893 return nr_reclaimed;
3894 }
3895 #endif
3896
3897 static void age_active_anon(struct pglist_data *pgdat,
3898 struct scan_control *sc)
3899 {
3900 struct mem_cgroup *memcg;
3901 struct lruvec *lruvec;
3902
3903 if (!can_age_anon_pages(pgdat, sc))
3904 return;
3905
3906 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3907 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3908 return;
3909
3910 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3911 do {
3912 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3913 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3914 sc, LRU_ACTIVE_ANON);
3915 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3916 } while (memcg);
3917 }
3918
3919 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3920 {
3921 int i;
3922 struct zone *zone;
3923
3924 /*
3925 * Check for watermark boosts top-down as the higher zones
3926 * are more likely to be boosted. Both watermarks and boosts
3927 * should not be checked at the same time as reclaim would
3928 * start prematurely when there is no boosting and a lower
3929 * zone is balanced.
3930 */
3931 for (i = highest_zoneidx; i >= 0; i--) {
3932 zone = pgdat->node_zones + i;
3933 if (!managed_zone(zone))
3934 continue;
3935
3936 if (zone->watermark_boost)
3937 return true;
3938 }
3939
3940 return false;
3941 }
3942
3943 /*
3944 * Returns true if there is an eligible zone balanced for the request order
3945 * and highest_zoneidx
3946 */
3947 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3948 {
3949 int i;
3950 unsigned long mark = -1;
3951 struct zone *zone;
3952
3953 /*
3954 * Check watermarks bottom-up as lower zones are more likely to
3955 * meet watermarks.
3956 */
3957 for (i = 0; i <= highest_zoneidx; i++) {
3958 zone = pgdat->node_zones + i;
3959
3960 if (!managed_zone(zone))
3961 continue;
3962
3963 mark = high_wmark_pages(zone);
3964 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3965 return true;
3966 }
3967
3968 /*
3969 * If a node has no populated zone within highest_zoneidx, it does not
3970 * need balancing by definition. This can happen if a zone-restricted
3971 * allocation tries to wake a remote kswapd.
3972 */
3973 if (mark == -1)
3974 return true;
3975
3976 return false;
3977 }
3978
3979 /* Clear pgdat state for congested, dirty or under writeback. */
3980 static void clear_pgdat_congested(pg_data_t *pgdat)
3981 {
3982 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3983
3984 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3985 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3986 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3987 }
3988
3989 /*
3990 * Prepare kswapd for sleeping. This verifies that there are no processes
3991 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3992 *
3993 * Returns true if kswapd is ready to sleep
3994 */
3995 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3996 int highest_zoneidx)
3997 {
3998 /*
3999 * The throttled processes are normally woken up in balance_pgdat() as
4000 * soon as allow_direct_reclaim() is true. But there is a potential
4001 * race between when kswapd checks the watermarks and a process gets
4002 * throttled. There is also a potential race if processes get
4003 * throttled, kswapd wakes, a large process exits thereby balancing the
4004 * zones, which causes kswapd to exit balance_pgdat() before reaching
4005 * the wake up checks. If kswapd is going to sleep, no process should
4006 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
4007 * the wake up is premature, processes will wake kswapd and get
4008 * throttled again. The difference from wake ups in balance_pgdat() is
4009 * that here we are under prepare_to_wait().
4010 */
4011 if (waitqueue_active(&pgdat->pfmemalloc_wait))
4012 wake_up_all(&pgdat->pfmemalloc_wait);
4013
4014 /* Hopeless node, leave it to direct reclaim */
4015 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
4016 return true;
4017
4018 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
4019 clear_pgdat_congested(pgdat);
4020 return true;
4021 }
4022
4023 return false;
4024 }
4025
4026 /*
4027 * kswapd shrinks a node of pages that are at or below the highest usable
4028 * zone that is currently unbalanced.
4029 *
4030 * Returns true if kswapd scanned at least the requested number of pages to
4031 * reclaim or if the lack of progress was due to pages under writeback.
4032 * This is used to determine if the scanning priority needs to be raised.
4033 */
4034 static bool kswapd_shrink_node(pg_data_t *pgdat,
4035 struct scan_control *sc)
4036 {
4037 struct zone *zone;
4038 int z;
4039
4040 /* Reclaim a number of pages proportional to the number of zones */
4041 sc->nr_to_reclaim = 0;
4042 for (z = 0; z <= sc->reclaim_idx; z++) {
4043 zone = pgdat->node_zones + z;
4044 if (!managed_zone(zone))
4045 continue;
4046
4047 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
4048 }
4049
4050 /*
4051 * Historically care was taken to put equal pressure on all zones but
4052 * now pressure is applied based on node LRU order.
4053 */
4054 shrink_node(pgdat, sc);
4055
4056 /*
4057 * Fragmentation may mean that the system cannot be rebalanced for
4058 * high-order allocations. If twice the allocation size has been
4059 * reclaimed then recheck watermarks only at order-0 to prevent
4060 * excessive reclaim. Assume that a process requested a high-order
4061 * can direct reclaim/compact.
4062 */
4063 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
4064 sc->order = 0;
4065
4066 return sc->nr_scanned >= sc->nr_to_reclaim;
4067 }
4068
4069 /* Page allocator PCP high watermark is lowered if reclaim is active. */
4070 static inline void
4071 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4072 {
4073 int i;
4074 struct zone *zone;
4075
4076 for (i = 0; i <= highest_zoneidx; i++) {
4077 zone = pgdat->node_zones + i;
4078
4079 if (!managed_zone(zone))
4080 continue;
4081
4082 if (active)
4083 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4084 else
4085 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4086 }
4087 }
4088
4089 static inline void
4090 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4091 {
4092 update_reclaim_active(pgdat, highest_zoneidx, true);
4093 }
4094
4095 static inline void
4096 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4097 {
4098 update_reclaim_active(pgdat, highest_zoneidx, false);
4099 }
4100
4101 /*
4102 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4103 * that are eligible for use by the caller until at least one zone is
4104 * balanced.
4105 *
4106 * Returns the order kswapd finished reclaiming at.
4107 *
4108 * kswapd scans the zones in the highmem->normal->dma direction. It skips
4109 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
4110 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
4111 * or lower is eligible for reclaim until at least one usable zone is
4112 * balanced.
4113 */
4114 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
4115 {
4116 int i;
4117 unsigned long nr_soft_reclaimed;
4118 unsigned long nr_soft_scanned;
4119 unsigned long pflags;
4120 unsigned long nr_boost_reclaim;
4121 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4122 bool boosted;
4123 struct zone *zone;
4124 struct scan_control sc = {
4125 .gfp_mask = GFP_KERNEL,
4126 .order = order,
4127 .may_unmap = 1,
4128 };
4129
4130 set_task_reclaim_state(current, &sc.reclaim_state);
4131 psi_memstall_enter(&pflags);
4132 __fs_reclaim_acquire(_THIS_IP_);
4133
4134 count_vm_event(PAGEOUTRUN);
4135
4136 /*
4137 * Account for the reclaim boost. Note that the zone boost is left in
4138 * place so that parallel allocations that are near the watermark will
4139 * stall or direct reclaim until kswapd is finished.
4140 */
4141 nr_boost_reclaim = 0;
4142 for (i = 0; i <= highest_zoneidx; i++) {
4143 zone = pgdat->node_zones + i;
4144 if (!managed_zone(zone))
4145 continue;
4146
4147 nr_boost_reclaim += zone->watermark_boost;
4148 zone_boosts[i] = zone->watermark_boost;
4149 }
4150 boosted = nr_boost_reclaim;
4151
4152 restart:
4153 set_reclaim_active(pgdat, highest_zoneidx);
4154 sc.priority = DEF_PRIORITY;
4155 do {
4156 unsigned long nr_reclaimed = sc.nr_reclaimed;
4157 bool raise_priority = true;
4158 bool balanced;
4159 bool ret;
4160
4161 sc.reclaim_idx = highest_zoneidx;
4162
4163 /*
4164 * If the number of buffer_heads exceeds the maximum allowed
4165 * then consider reclaiming from all zones. This has a dual
4166 * purpose -- on 64-bit systems it is expected that
4167 * buffer_heads are stripped during active rotation. On 32-bit
4168 * systems, highmem pages can pin lowmem memory and shrinking
4169 * buffers can relieve lowmem pressure. Reclaim may still not
4170 * go ahead if all eligible zones for the original allocation
4171 * request are balanced to avoid excessive reclaim from kswapd.
4172 */
4173 if (buffer_heads_over_limit) {
4174 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4175 zone = pgdat->node_zones + i;
4176 if (!managed_zone(zone))
4177 continue;
4178
4179 sc.reclaim_idx = i;
4180 break;
4181 }
4182 }
4183
4184 /*
4185 * If the pgdat is imbalanced then ignore boosting and preserve
4186 * the watermarks for a later time and restart. Note that the
4187 * zone watermarks will be still reset at the end of balancing
4188 * on the grounds that the normal reclaim should be enough to
4189 * re-evaluate if boosting is required when kswapd next wakes.
4190 */
4191 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
4192 if (!balanced && nr_boost_reclaim) {
4193 nr_boost_reclaim = 0;
4194 goto restart;
4195 }
4196
4197 /*
4198 * If boosting is not active then only reclaim if there are no
4199 * eligible zones. Note that sc.reclaim_idx is not used as
4200 * buffer_heads_over_limit may have adjusted it.
4201 */
4202 if (!nr_boost_reclaim && balanced)
4203 goto out;
4204
4205 /* Limit the priority of boosting to avoid reclaim writeback */
4206 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4207 raise_priority = false;
4208
4209 /*
4210 * Do not writeback or swap pages for boosted reclaim. The
4211 * intent is to relieve pressure not issue sub-optimal IO
4212 * from reclaim context. If no pages are reclaimed, the
4213 * reclaim will be aborted.
4214 */
4215 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4216 sc.may_swap = !nr_boost_reclaim;
4217
4218 /*
4219 * Do some background aging of the anon list, to give
4220 * pages a chance to be referenced before reclaiming. All
4221 * pages are rotated regardless of classzone as this is
4222 * about consistent aging.
4223 */
4224 age_active_anon(pgdat, &sc);
4225
4226 /*
4227 * If we're getting trouble reclaiming, start doing writepage
4228 * even in laptop mode.
4229 */
4230 if (sc.priority < DEF_PRIORITY - 2)
4231 sc.may_writepage = 1;
4232
4233 /* Call soft limit reclaim before calling shrink_node. */
4234 sc.nr_scanned = 0;
4235 nr_soft_scanned = 0;
4236 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
4237 sc.gfp_mask, &nr_soft_scanned);
4238 sc.nr_reclaimed += nr_soft_reclaimed;
4239
4240 /*
4241 * There should be no need to raise the scanning priority if
4242 * enough pages are already being scanned that that high
4243 * watermark would be met at 100% efficiency.
4244 */
4245 if (kswapd_shrink_node(pgdat, &sc))
4246 raise_priority = false;
4247
4248 /*
4249 * If the low watermark is met there is no need for processes
4250 * to be throttled on pfmemalloc_wait as they should not be
4251 * able to safely make forward progress. Wake them
4252 */
4253 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
4254 allow_direct_reclaim(pgdat))
4255 wake_up_all(&pgdat->pfmemalloc_wait);
4256
4257 /* Check if kswapd should be suspending */
4258 __fs_reclaim_release(_THIS_IP_);
4259 ret = try_to_freeze();
4260 __fs_reclaim_acquire(_THIS_IP_);
4261 if (ret || kthread_should_stop())
4262 break;
4263
4264 /*
4265 * Raise priority if scanning rate is too low or there was no
4266 * progress in reclaiming pages
4267 */
4268 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
4269 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4270
4271 /*
4272 * If reclaim made no progress for a boost, stop reclaim as
4273 * IO cannot be queued and it could be an infinite loop in
4274 * extreme circumstances.
4275 */
4276 if (nr_boost_reclaim && !nr_reclaimed)
4277 break;
4278
4279 if (raise_priority || !nr_reclaimed)
4280 sc.priority--;
4281 } while (sc.priority >= 1);
4282
4283 if (!sc.nr_reclaimed)
4284 pgdat->kswapd_failures++;
4285
4286 out:
4287 clear_reclaim_active(pgdat, highest_zoneidx);
4288
4289 /* If reclaim was boosted, account for the reclaim done in this pass */
4290 if (boosted) {
4291 unsigned long flags;
4292
4293 for (i = 0; i <= highest_zoneidx; i++) {
4294 if (!zone_boosts[i])
4295 continue;
4296
4297 /* Increments are under the zone lock */
4298 zone = pgdat->node_zones + i;
4299 spin_lock_irqsave(&zone->lock, flags);
4300 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4301 spin_unlock_irqrestore(&zone->lock, flags);
4302 }
4303
4304 /*
4305 * As there is now likely space, wakeup kcompact to defragment
4306 * pageblocks.
4307 */
4308 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
4309 }
4310
4311 snapshot_refaults(NULL, pgdat);
4312 __fs_reclaim_release(_THIS_IP_);
4313 psi_memstall_leave(&pflags);
4314 set_task_reclaim_state(current, NULL);
4315
4316 /*
4317 * Return the order kswapd stopped reclaiming at as
4318 * prepare_kswapd_sleep() takes it into account. If another caller
4319 * entered the allocator slow path while kswapd was awake, order will
4320 * remain at the higher level.
4321 */
4322 return sc.order;
4323 }
4324
4325 /*
4326 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4327 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4328 * not a valid index then either kswapd runs for first time or kswapd couldn't
4329 * sleep after previous reclaim attempt (node is still unbalanced). In that
4330 * case return the zone index of the previous kswapd reclaim cycle.
4331 */
4332 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4333 enum zone_type prev_highest_zoneidx)
4334 {
4335 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4336
4337 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4338 }
4339
4340 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4341 unsigned int highest_zoneidx)
4342 {
4343 long remaining = 0;
4344 DEFINE_WAIT(wait);
4345
4346 if (freezing(current) || kthread_should_stop())
4347 return;
4348
4349 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4350
4351 /*
4352 * Try to sleep for a short interval. Note that kcompactd will only be
4353 * woken if it is possible to sleep for a short interval. This is
4354 * deliberate on the assumption that if reclaim cannot keep an
4355 * eligible zone balanced that it's also unlikely that compaction will
4356 * succeed.
4357 */
4358 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4359 /*
4360 * Compaction records what page blocks it recently failed to
4361 * isolate pages from and skips them in the future scanning.
4362 * When kswapd is going to sleep, it is reasonable to assume
4363 * that pages and compaction may succeed so reset the cache.
4364 */
4365 reset_isolation_suitable(pgdat);
4366
4367 /*
4368 * We have freed the memory, now we should compact it to make
4369 * allocation of the requested order possible.
4370 */
4371 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4372
4373 remaining = schedule_timeout(HZ/10);
4374
4375 /*
4376 * If woken prematurely then reset kswapd_highest_zoneidx and
4377 * order. The values will either be from a wakeup request or
4378 * the previous request that slept prematurely.
4379 */
4380 if (remaining) {
4381 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4382 kswapd_highest_zoneidx(pgdat,
4383 highest_zoneidx));
4384
4385 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4386 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4387 }
4388
4389 finish_wait(&pgdat->kswapd_wait, &wait);
4390 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4391 }
4392
4393 /*
4394 * After a short sleep, check if it was a premature sleep. If not, then
4395 * go fully to sleep until explicitly woken up.
4396 */
4397 if (!remaining &&
4398 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4399 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4400
4401 /*
4402 * vmstat counters are not perfectly accurate and the estimated
4403 * value for counters such as NR_FREE_PAGES can deviate from the
4404 * true value by nr_online_cpus * threshold. To avoid the zone
4405 * watermarks being breached while under pressure, we reduce the
4406 * per-cpu vmstat threshold while kswapd is awake and restore
4407 * them before going back to sleep.
4408 */
4409 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4410
4411 if (!kthread_should_stop())
4412 schedule();
4413
4414 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4415 } else {
4416 if (remaining)
4417 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4418 else
4419 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4420 }
4421 finish_wait(&pgdat->kswapd_wait, &wait);
4422 }
4423
4424 /*
4425 * The background pageout daemon, started as a kernel thread
4426 * from the init process.
4427 *
4428 * This basically trickles out pages so that we have _some_
4429 * free memory available even if there is no other activity
4430 * that frees anything up. This is needed for things like routing
4431 * etc, where we otherwise might have all activity going on in
4432 * asynchronous contexts that cannot page things out.
4433 *
4434 * If there are applications that are active memory-allocators
4435 * (most normal use), this basically shouldn't matter.
4436 */
4437 static int kswapd(void *p)
4438 {
4439 unsigned int alloc_order, reclaim_order;
4440 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4441 pg_data_t *pgdat = (pg_data_t *)p;
4442 struct task_struct *tsk = current;
4443 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4444
4445 if (!cpumask_empty(cpumask))
4446 set_cpus_allowed_ptr(tsk, cpumask);
4447
4448 /*
4449 * Tell the memory management that we're a "memory allocator",
4450 * and that if we need more memory we should get access to it
4451 * regardless (see "__alloc_pages()"). "kswapd" should
4452 * never get caught in the normal page freeing logic.
4453 *
4454 * (Kswapd normally doesn't need memory anyway, but sometimes
4455 * you need a small amount of memory in order to be able to
4456 * page out something else, and this flag essentially protects
4457 * us from recursively trying to free more memory as we're
4458 * trying to free the first piece of memory in the first place).
4459 */
4460 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
4461 set_freezable();
4462
4463 WRITE_ONCE(pgdat->kswapd_order, 0);
4464 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4465 atomic_set(&pgdat->nr_writeback_throttled, 0);
4466 for ( ; ; ) {
4467 bool ret;
4468
4469 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4470 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4471 highest_zoneidx);
4472
4473 kswapd_try_sleep:
4474 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4475 highest_zoneidx);
4476
4477 /* Read the new order and highest_zoneidx */
4478 alloc_order = READ_ONCE(pgdat->kswapd_order);
4479 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4480 highest_zoneidx);
4481 WRITE_ONCE(pgdat->kswapd_order, 0);
4482 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4483
4484 ret = try_to_freeze();
4485 if (kthread_should_stop())
4486 break;
4487
4488 /*
4489 * We can speed up thawing tasks if we don't call balance_pgdat
4490 * after returning from the refrigerator
4491 */
4492 if (ret)
4493 continue;
4494
4495 /*
4496 * Reclaim begins at the requested order but if a high-order
4497 * reclaim fails then kswapd falls back to reclaiming for
4498 * order-0. If that happens, kswapd will consider sleeping
4499 * for the order it finished reclaiming at (reclaim_order)
4500 * but kcompactd is woken to compact for the original
4501 * request (alloc_order).
4502 */
4503 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4504 alloc_order);
4505 reclaim_order = balance_pgdat(pgdat, alloc_order,
4506 highest_zoneidx);
4507 if (reclaim_order < alloc_order)
4508 goto kswapd_try_sleep;
4509 }
4510
4511 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
4512
4513 return 0;
4514 }
4515
4516 /*
4517 * A zone is low on free memory or too fragmented for high-order memory. If
4518 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4519 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4520 * has failed or is not needed, still wake up kcompactd if only compaction is
4521 * needed.
4522 */
4523 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4524 enum zone_type highest_zoneidx)
4525 {
4526 pg_data_t *pgdat;
4527 enum zone_type curr_idx;
4528
4529 if (!managed_zone(zone))
4530 return;
4531
4532 if (!cpuset_zone_allowed(zone, gfp_flags))
4533 return;
4534
4535 pgdat = zone->zone_pgdat;
4536 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4537
4538 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4539 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4540
4541 if (READ_ONCE(pgdat->kswapd_order) < order)
4542 WRITE_ONCE(pgdat->kswapd_order, order);
4543
4544 if (!waitqueue_active(&pgdat->kswapd_wait))
4545 return;
4546
4547 /* Hopeless node, leave it to direct reclaim if possible */
4548 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4549 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4550 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4551 /*
4552 * There may be plenty of free memory available, but it's too
4553 * fragmented for high-order allocations. Wake up kcompactd
4554 * and rely on compaction_suitable() to determine if it's
4555 * needed. If it fails, it will defer subsequent attempts to
4556 * ratelimit its work.
4557 */
4558 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4559 wakeup_kcompactd(pgdat, order, highest_zoneidx);
4560 return;
4561 }
4562
4563 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4564 gfp_flags);
4565 wake_up_interruptible(&pgdat->kswapd_wait);
4566 }
4567
4568 #ifdef CONFIG_HIBERNATION
4569 /*
4570 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4571 * freed pages.
4572 *
4573 * Rather than trying to age LRUs the aim is to preserve the overall
4574 * LRU order by reclaiming preferentially
4575 * inactive > active > active referenced > active mapped
4576 */
4577 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4578 {
4579 struct scan_control sc = {
4580 .nr_to_reclaim = nr_to_reclaim,
4581 .gfp_mask = GFP_HIGHUSER_MOVABLE,
4582 .reclaim_idx = MAX_NR_ZONES - 1,
4583 .priority = DEF_PRIORITY,
4584 .may_writepage = 1,
4585 .may_unmap = 1,
4586 .may_swap = 1,
4587 .hibernation_mode = 1,
4588 };
4589 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4590 unsigned long nr_reclaimed;
4591 unsigned int noreclaim_flag;
4592
4593 fs_reclaim_acquire(sc.gfp_mask);
4594 noreclaim_flag = memalloc_noreclaim_save();
4595 set_task_reclaim_state(current, &sc.reclaim_state);
4596
4597 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4598
4599 set_task_reclaim_state(current, NULL);
4600 memalloc_noreclaim_restore(noreclaim_flag);
4601 fs_reclaim_release(sc.gfp_mask);
4602
4603 return nr_reclaimed;
4604 }
4605 #endif /* CONFIG_HIBERNATION */
4606
4607 /*
4608 * This kswapd start function will be called by init and node-hot-add.
4609 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4610 */
4611 void kswapd_run(int nid)
4612 {
4613 pg_data_t *pgdat = NODE_DATA(nid);
4614
4615 if (pgdat->kswapd)
4616 return;
4617
4618 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4619 if (IS_ERR(pgdat->kswapd)) {
4620 /* failure at boot is fatal */
4621 BUG_ON(system_state < SYSTEM_RUNNING);
4622 pr_err("Failed to start kswapd on node %d\n", nid);
4623 pgdat->kswapd = NULL;
4624 }
4625 }
4626
4627 /*
4628 * Called by memory hotplug when all memory in a node is offlined. Caller must
4629 * hold mem_hotplug_begin/end().
4630 */
4631 void kswapd_stop(int nid)
4632 {
4633 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4634
4635 if (kswapd) {
4636 kthread_stop(kswapd);
4637 NODE_DATA(nid)->kswapd = NULL;
4638 }
4639 }
4640
4641 static int __init kswapd_init(void)
4642 {
4643 int nid;
4644
4645 swap_setup();
4646 for_each_node_state(nid, N_MEMORY)
4647 kswapd_run(nid);
4648 return 0;
4649 }
4650
4651 module_init(kswapd_init)
4652
4653 #ifdef CONFIG_NUMA
4654 /*
4655 * Node reclaim mode
4656 *
4657 * If non-zero call node_reclaim when the number of free pages falls below
4658 * the watermarks.
4659 */
4660 int node_reclaim_mode __read_mostly;
4661
4662 /*
4663 * Priority for NODE_RECLAIM. This determines the fraction of pages
4664 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4665 * a zone.
4666 */
4667 #define NODE_RECLAIM_PRIORITY 4
4668
4669 /*
4670 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4671 * occur.
4672 */
4673 int sysctl_min_unmapped_ratio = 1;
4674
4675 /*
4676 * If the number of slab pages in a zone grows beyond this percentage then
4677 * slab reclaim needs to occur.
4678 */
4679 int sysctl_min_slab_ratio = 5;
4680
4681 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4682 {
4683 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4684 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4685 node_page_state(pgdat, NR_ACTIVE_FILE);
4686
4687 /*
4688 * It's possible for there to be more file mapped pages than
4689 * accounted for by the pages on the file LRU lists because
4690 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4691 */
4692 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4693 }
4694
4695 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4696 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4697 {
4698 unsigned long nr_pagecache_reclaimable;
4699 unsigned long delta = 0;
4700
4701 /*
4702 * If RECLAIM_UNMAP is set, then all file pages are considered
4703 * potentially reclaimable. Otherwise, we have to worry about
4704 * pages like swapcache and node_unmapped_file_pages() provides
4705 * a better estimate
4706 */
4707 if (node_reclaim_mode & RECLAIM_UNMAP)
4708 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4709 else
4710 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4711
4712 /* If we can't clean pages, remove dirty pages from consideration */
4713 if (!(node_reclaim_mode & RECLAIM_WRITE))
4714 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4715
4716 /* Watch for any possible underflows due to delta */
4717 if (unlikely(delta > nr_pagecache_reclaimable))
4718 delta = nr_pagecache_reclaimable;
4719
4720 return nr_pagecache_reclaimable - delta;
4721 }
4722
4723 /*
4724 * Try to free up some pages from this node through reclaim.
4725 */
4726 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4727 {
4728 /* Minimum pages needed in order to stay on node */
4729 const unsigned long nr_pages = 1 << order;
4730 struct task_struct *p = current;
4731 unsigned int noreclaim_flag;
4732 struct scan_control sc = {
4733 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4734 .gfp_mask = current_gfp_context(gfp_mask),
4735 .order = order,
4736 .priority = NODE_RECLAIM_PRIORITY,
4737 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4738 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4739 .may_swap = 1,
4740 .reclaim_idx = gfp_zone(gfp_mask),
4741 };
4742 unsigned long pflags;
4743
4744 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4745 sc.gfp_mask);
4746
4747 cond_resched();
4748 psi_memstall_enter(&pflags);
4749 fs_reclaim_acquire(sc.gfp_mask);
4750 /*
4751 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4752 * and we also need to be able to write out pages for RECLAIM_WRITE
4753 * and RECLAIM_UNMAP.
4754 */
4755 noreclaim_flag = memalloc_noreclaim_save();
4756 p->flags |= PF_SWAPWRITE;
4757 set_task_reclaim_state(p, &sc.reclaim_state);
4758
4759 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4760 /*
4761 * Free memory by calling shrink node with increasing
4762 * priorities until we have enough memory freed.
4763 */
4764 do {
4765 shrink_node(pgdat, &sc);
4766 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4767 }
4768
4769 set_task_reclaim_state(p, NULL);
4770 current->flags &= ~PF_SWAPWRITE;
4771 memalloc_noreclaim_restore(noreclaim_flag);
4772 fs_reclaim_release(sc.gfp_mask);
4773 psi_memstall_leave(&pflags);
4774
4775 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4776
4777 return sc.nr_reclaimed >= nr_pages;
4778 }
4779
4780 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4781 {
4782 int ret;
4783
4784 /*
4785 * Node reclaim reclaims unmapped file backed pages and
4786 * slab pages if we are over the defined limits.
4787 *
4788 * A small portion of unmapped file backed pages is needed for
4789 * file I/O otherwise pages read by file I/O will be immediately
4790 * thrown out if the node is overallocated. So we do not reclaim
4791 * if less than a specified percentage of the node is used by
4792 * unmapped file backed pages.
4793 */
4794 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4795 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4796 pgdat->min_slab_pages)
4797 return NODE_RECLAIM_FULL;
4798
4799 /*
4800 * Do not scan if the allocation should not be delayed.
4801 */
4802 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4803 return NODE_RECLAIM_NOSCAN;
4804
4805 /*
4806 * Only run node reclaim on the local node or on nodes that do not
4807 * have associated processors. This will favor the local processor
4808 * over remote processors and spread off node memory allocations
4809 * as wide as possible.
4810 */
4811 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4812 return NODE_RECLAIM_NOSCAN;
4813
4814 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4815 return NODE_RECLAIM_NOSCAN;
4816
4817 ret = __node_reclaim(pgdat, gfp_mask, order);
4818 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4819
4820 if (!ret)
4821 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4822
4823 return ret;
4824 }
4825 #endif
4826
4827 /**
4828 * check_move_unevictable_pages - check pages for evictability and move to
4829 * appropriate zone lru list
4830 * @pvec: pagevec with lru pages to check
4831 *
4832 * Checks pages for evictability, if an evictable page is in the unevictable
4833 * lru list, moves it to the appropriate evictable lru list. This function
4834 * should be only used for lru pages.
4835 */
4836 void check_move_unevictable_pages(struct pagevec *pvec)
4837 {
4838 struct lruvec *lruvec = NULL;
4839 int pgscanned = 0;
4840 int pgrescued = 0;
4841 int i;
4842
4843 for (i = 0; i < pvec->nr; i++) {
4844 struct page *page = pvec->pages[i];
4845 struct folio *folio = page_folio(page);
4846 int nr_pages;
4847
4848 if (PageTransTail(page))
4849 continue;
4850
4851 nr_pages = thp_nr_pages(page);
4852 pgscanned += nr_pages;
4853
4854 /* block memcg migration during page moving between lru */
4855 if (!TestClearPageLRU(page))
4856 continue;
4857
4858 lruvec = folio_lruvec_relock_irq(folio, lruvec);
4859 if (page_evictable(page) && PageUnevictable(page)) {
4860 del_page_from_lru_list(page, lruvec);
4861 ClearPageUnevictable(page);
4862 add_page_to_lru_list(page, lruvec);
4863 pgrescued += nr_pages;
4864 }
4865 SetPageLRU(page);
4866 }
4867
4868 if (lruvec) {
4869 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4870 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4871 unlock_page_lruvec_irq(lruvec);
4872 } else if (pgscanned) {
4873 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4874 }
4875 }
4876 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);