]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/vmscan.c
Merge tag 'pm-turbostat-4.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
50
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
56
57 #include "internal.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
61
62 struct scan_control {
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
66 /* This context's GFP mask */
67 gfp_t gfp_mask;
68
69 /* Allocation order */
70 int order;
71
72 /*
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 * are scanned.
75 */
76 nodemask_t *nodemask;
77
78 /*
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
81 */
82 struct mem_cgroup *target_mem_cgroup;
83
84 /* Scan (total_size >> priority) pages at once */
85 int priority;
86
87 /* The highest zone to isolate pages for reclaim from */
88 enum zone_type reclaim_idx;
89
90 /* Writepage batching in laptop mode; RECLAIM_WRITE */
91 unsigned int may_writepage:1;
92
93 /* Can mapped pages be reclaimed? */
94 unsigned int may_unmap:1;
95
96 /* Can pages be swapped as part of reclaim? */
97 unsigned int may_swap:1;
98
99 /* Can cgroups be reclaimed below their normal consumption range? */
100 unsigned int may_thrash:1;
101
102 unsigned int hibernation_mode:1;
103
104 /* One of the zones is ready for compaction */
105 unsigned int compaction_ready:1;
106
107 /* Incremented by the number of inactive pages that were scanned */
108 unsigned long nr_scanned;
109
110 /* Number of pages freed so far during a call to shrink_zones() */
111 unsigned long nr_reclaimed;
112 };
113
114 #ifdef ARCH_HAS_PREFETCH
115 #define prefetch_prev_lru_page(_page, _base, _field) \
116 do { \
117 if ((_page)->lru.prev != _base) { \
118 struct page *prev; \
119 \
120 prev = lru_to_page(&(_page->lru)); \
121 prefetch(&prev->_field); \
122 } \
123 } while (0)
124 #else
125 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127
128 #ifdef ARCH_HAS_PREFETCHW
129 #define prefetchw_prev_lru_page(_page, _base, _field) \
130 do { \
131 if ((_page)->lru.prev != _base) { \
132 struct page *prev; \
133 \
134 prev = lru_to_page(&(_page->lru)); \
135 prefetchw(&prev->_field); \
136 } \
137 } while (0)
138 #else
139 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
140 #endif
141
142 /*
143 * From 0 .. 100. Higher means more swappy.
144 */
145 int vm_swappiness = 60;
146 /*
147 * The total number of pages which are beyond the high watermark within all
148 * zones.
149 */
150 unsigned long vm_total_pages;
151
152 static LIST_HEAD(shrinker_list);
153 static DECLARE_RWSEM(shrinker_rwsem);
154
155 #ifdef CONFIG_MEMCG
156 static bool global_reclaim(struct scan_control *sc)
157 {
158 return !sc->target_mem_cgroup;
159 }
160
161 /**
162 * sane_reclaim - is the usual dirty throttling mechanism operational?
163 * @sc: scan_control in question
164 *
165 * The normal page dirty throttling mechanism in balance_dirty_pages() is
166 * completely broken with the legacy memcg and direct stalling in
167 * shrink_page_list() is used for throttling instead, which lacks all the
168 * niceties such as fairness, adaptive pausing, bandwidth proportional
169 * allocation and configurability.
170 *
171 * This function tests whether the vmscan currently in progress can assume
172 * that the normal dirty throttling mechanism is operational.
173 */
174 static bool sane_reclaim(struct scan_control *sc)
175 {
176 struct mem_cgroup *memcg = sc->target_mem_cgroup;
177
178 if (!memcg)
179 return true;
180 #ifdef CONFIG_CGROUP_WRITEBACK
181 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
182 return true;
183 #endif
184 return false;
185 }
186 #else
187 static bool global_reclaim(struct scan_control *sc)
188 {
189 return true;
190 }
191
192 static bool sane_reclaim(struct scan_control *sc)
193 {
194 return true;
195 }
196 #endif
197
198 /*
199 * This misses isolated pages which are not accounted for to save counters.
200 * As the data only determines if reclaim or compaction continues, it is
201 * not expected that isolated pages will be a dominating factor.
202 */
203 unsigned long zone_reclaimable_pages(struct zone *zone)
204 {
205 unsigned long nr;
206
207 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
208 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
209 if (get_nr_swap_pages() > 0)
210 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
211 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
212
213 return nr;
214 }
215
216 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
217 {
218 unsigned long nr;
219
220 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
221 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
222 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
223
224 if (get_nr_swap_pages() > 0)
225 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
226 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
227 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
228
229 return nr;
230 }
231
232 bool pgdat_reclaimable(struct pglist_data *pgdat)
233 {
234 return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
235 pgdat_reclaimable_pages(pgdat) * 6;
236 }
237
238 /**
239 * lruvec_lru_size - Returns the number of pages on the given LRU list.
240 * @lruvec: lru vector
241 * @lru: lru to use
242 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
243 */
244 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
245 {
246 unsigned long lru_size;
247 int zid;
248
249 if (!mem_cgroup_disabled())
250 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
251 else
252 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
253
254 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
255 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
256 unsigned long size;
257
258 if (!managed_zone(zone))
259 continue;
260
261 if (!mem_cgroup_disabled())
262 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
263 else
264 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
265 NR_ZONE_LRU_BASE + lru);
266 lru_size -= min(size, lru_size);
267 }
268
269 return lru_size;
270
271 }
272
273 /*
274 * Add a shrinker callback to be called from the vm.
275 */
276 int register_shrinker(struct shrinker *shrinker)
277 {
278 size_t size = sizeof(*shrinker->nr_deferred);
279
280 if (shrinker->flags & SHRINKER_NUMA_AWARE)
281 size *= nr_node_ids;
282
283 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
284 if (!shrinker->nr_deferred)
285 return -ENOMEM;
286
287 down_write(&shrinker_rwsem);
288 list_add_tail(&shrinker->list, &shrinker_list);
289 up_write(&shrinker_rwsem);
290 return 0;
291 }
292 EXPORT_SYMBOL(register_shrinker);
293
294 /*
295 * Remove one
296 */
297 void unregister_shrinker(struct shrinker *shrinker)
298 {
299 down_write(&shrinker_rwsem);
300 list_del(&shrinker->list);
301 up_write(&shrinker_rwsem);
302 kfree(shrinker->nr_deferred);
303 }
304 EXPORT_SYMBOL(unregister_shrinker);
305
306 #define SHRINK_BATCH 128
307
308 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
309 struct shrinker *shrinker,
310 unsigned long nr_scanned,
311 unsigned long nr_eligible)
312 {
313 unsigned long freed = 0;
314 unsigned long long delta;
315 long total_scan;
316 long freeable;
317 long nr;
318 long new_nr;
319 int nid = shrinkctl->nid;
320 long batch_size = shrinker->batch ? shrinker->batch
321 : SHRINK_BATCH;
322 long scanned = 0, next_deferred;
323
324 freeable = shrinker->count_objects(shrinker, shrinkctl);
325 if (freeable == 0)
326 return 0;
327
328 /*
329 * copy the current shrinker scan count into a local variable
330 * and zero it so that other concurrent shrinker invocations
331 * don't also do this scanning work.
332 */
333 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
334
335 total_scan = nr;
336 delta = (4 * nr_scanned) / shrinker->seeks;
337 delta *= freeable;
338 do_div(delta, nr_eligible + 1);
339 total_scan += delta;
340 if (total_scan < 0) {
341 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
342 shrinker->scan_objects, total_scan);
343 total_scan = freeable;
344 next_deferred = nr;
345 } else
346 next_deferred = total_scan;
347
348 /*
349 * We need to avoid excessive windup on filesystem shrinkers
350 * due to large numbers of GFP_NOFS allocations causing the
351 * shrinkers to return -1 all the time. This results in a large
352 * nr being built up so when a shrink that can do some work
353 * comes along it empties the entire cache due to nr >>>
354 * freeable. This is bad for sustaining a working set in
355 * memory.
356 *
357 * Hence only allow the shrinker to scan the entire cache when
358 * a large delta change is calculated directly.
359 */
360 if (delta < freeable / 4)
361 total_scan = min(total_scan, freeable / 2);
362
363 /*
364 * Avoid risking looping forever due to too large nr value:
365 * never try to free more than twice the estimate number of
366 * freeable entries.
367 */
368 if (total_scan > freeable * 2)
369 total_scan = freeable * 2;
370
371 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
372 nr_scanned, nr_eligible,
373 freeable, delta, total_scan);
374
375 /*
376 * Normally, we should not scan less than batch_size objects in one
377 * pass to avoid too frequent shrinker calls, but if the slab has less
378 * than batch_size objects in total and we are really tight on memory,
379 * we will try to reclaim all available objects, otherwise we can end
380 * up failing allocations although there are plenty of reclaimable
381 * objects spread over several slabs with usage less than the
382 * batch_size.
383 *
384 * We detect the "tight on memory" situations by looking at the total
385 * number of objects we want to scan (total_scan). If it is greater
386 * than the total number of objects on slab (freeable), we must be
387 * scanning at high prio and therefore should try to reclaim as much as
388 * possible.
389 */
390 while (total_scan >= batch_size ||
391 total_scan >= freeable) {
392 unsigned long ret;
393 unsigned long nr_to_scan = min(batch_size, total_scan);
394
395 shrinkctl->nr_to_scan = nr_to_scan;
396 ret = shrinker->scan_objects(shrinker, shrinkctl);
397 if (ret == SHRINK_STOP)
398 break;
399 freed += ret;
400
401 count_vm_events(SLABS_SCANNED, nr_to_scan);
402 total_scan -= nr_to_scan;
403 scanned += nr_to_scan;
404
405 cond_resched();
406 }
407
408 if (next_deferred >= scanned)
409 next_deferred -= scanned;
410 else
411 next_deferred = 0;
412 /*
413 * move the unused scan count back into the shrinker in a
414 * manner that handles concurrent updates. If we exhausted the
415 * scan, there is no need to do an update.
416 */
417 if (next_deferred > 0)
418 new_nr = atomic_long_add_return(next_deferred,
419 &shrinker->nr_deferred[nid]);
420 else
421 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
422
423 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
424 return freed;
425 }
426
427 /**
428 * shrink_slab - shrink slab caches
429 * @gfp_mask: allocation context
430 * @nid: node whose slab caches to target
431 * @memcg: memory cgroup whose slab caches to target
432 * @nr_scanned: pressure numerator
433 * @nr_eligible: pressure denominator
434 *
435 * Call the shrink functions to age shrinkable caches.
436 *
437 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
438 * unaware shrinkers will receive a node id of 0 instead.
439 *
440 * @memcg specifies the memory cgroup to target. If it is not NULL,
441 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
442 * objects from the memory cgroup specified. Otherwise, only unaware
443 * shrinkers are called.
444 *
445 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
446 * the available objects should be scanned. Page reclaim for example
447 * passes the number of pages scanned and the number of pages on the
448 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
449 * when it encountered mapped pages. The ratio is further biased by
450 * the ->seeks setting of the shrink function, which indicates the
451 * cost to recreate an object relative to that of an LRU page.
452 *
453 * Returns the number of reclaimed slab objects.
454 */
455 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
456 struct mem_cgroup *memcg,
457 unsigned long nr_scanned,
458 unsigned long nr_eligible)
459 {
460 struct shrinker *shrinker;
461 unsigned long freed = 0;
462
463 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
464 return 0;
465
466 if (nr_scanned == 0)
467 nr_scanned = SWAP_CLUSTER_MAX;
468
469 if (!down_read_trylock(&shrinker_rwsem)) {
470 /*
471 * If we would return 0, our callers would understand that we
472 * have nothing else to shrink and give up trying. By returning
473 * 1 we keep it going and assume we'll be able to shrink next
474 * time.
475 */
476 freed = 1;
477 goto out;
478 }
479
480 list_for_each_entry(shrinker, &shrinker_list, list) {
481 struct shrink_control sc = {
482 .gfp_mask = gfp_mask,
483 .nid = nid,
484 .memcg = memcg,
485 };
486
487 /*
488 * If kernel memory accounting is disabled, we ignore
489 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
490 * passing NULL for memcg.
491 */
492 if (memcg_kmem_enabled() &&
493 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
494 continue;
495
496 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
497 sc.nid = 0;
498
499 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
500 }
501
502 up_read(&shrinker_rwsem);
503 out:
504 cond_resched();
505 return freed;
506 }
507
508 void drop_slab_node(int nid)
509 {
510 unsigned long freed;
511
512 do {
513 struct mem_cgroup *memcg = NULL;
514
515 freed = 0;
516 do {
517 freed += shrink_slab(GFP_KERNEL, nid, memcg,
518 1000, 1000);
519 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
520 } while (freed > 10);
521 }
522
523 void drop_slab(void)
524 {
525 int nid;
526
527 for_each_online_node(nid)
528 drop_slab_node(nid);
529 }
530
531 static inline int is_page_cache_freeable(struct page *page)
532 {
533 /*
534 * A freeable page cache page is referenced only by the caller
535 * that isolated the page, the page cache radix tree and
536 * optional buffer heads at page->private.
537 */
538 return page_count(page) - page_has_private(page) == 2;
539 }
540
541 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
542 {
543 if (current->flags & PF_SWAPWRITE)
544 return 1;
545 if (!inode_write_congested(inode))
546 return 1;
547 if (inode_to_bdi(inode) == current->backing_dev_info)
548 return 1;
549 return 0;
550 }
551
552 /*
553 * We detected a synchronous write error writing a page out. Probably
554 * -ENOSPC. We need to propagate that into the address_space for a subsequent
555 * fsync(), msync() or close().
556 *
557 * The tricky part is that after writepage we cannot touch the mapping: nothing
558 * prevents it from being freed up. But we have a ref on the page and once
559 * that page is locked, the mapping is pinned.
560 *
561 * We're allowed to run sleeping lock_page() here because we know the caller has
562 * __GFP_FS.
563 */
564 static void handle_write_error(struct address_space *mapping,
565 struct page *page, int error)
566 {
567 lock_page(page);
568 if (page_mapping(page) == mapping)
569 mapping_set_error(mapping, error);
570 unlock_page(page);
571 }
572
573 /* possible outcome of pageout() */
574 typedef enum {
575 /* failed to write page out, page is locked */
576 PAGE_KEEP,
577 /* move page to the active list, page is locked */
578 PAGE_ACTIVATE,
579 /* page has been sent to the disk successfully, page is unlocked */
580 PAGE_SUCCESS,
581 /* page is clean and locked */
582 PAGE_CLEAN,
583 } pageout_t;
584
585 /*
586 * pageout is called by shrink_page_list() for each dirty page.
587 * Calls ->writepage().
588 */
589 static pageout_t pageout(struct page *page, struct address_space *mapping,
590 struct scan_control *sc)
591 {
592 /*
593 * If the page is dirty, only perform writeback if that write
594 * will be non-blocking. To prevent this allocation from being
595 * stalled by pagecache activity. But note that there may be
596 * stalls if we need to run get_block(). We could test
597 * PagePrivate for that.
598 *
599 * If this process is currently in __generic_file_write_iter() against
600 * this page's queue, we can perform writeback even if that
601 * will block.
602 *
603 * If the page is swapcache, write it back even if that would
604 * block, for some throttling. This happens by accident, because
605 * swap_backing_dev_info is bust: it doesn't reflect the
606 * congestion state of the swapdevs. Easy to fix, if needed.
607 */
608 if (!is_page_cache_freeable(page))
609 return PAGE_KEEP;
610 if (!mapping) {
611 /*
612 * Some data journaling orphaned pages can have
613 * page->mapping == NULL while being dirty with clean buffers.
614 */
615 if (page_has_private(page)) {
616 if (try_to_free_buffers(page)) {
617 ClearPageDirty(page);
618 pr_info("%s: orphaned page\n", __func__);
619 return PAGE_CLEAN;
620 }
621 }
622 return PAGE_KEEP;
623 }
624 if (mapping->a_ops->writepage == NULL)
625 return PAGE_ACTIVATE;
626 if (!may_write_to_inode(mapping->host, sc))
627 return PAGE_KEEP;
628
629 if (clear_page_dirty_for_io(page)) {
630 int res;
631 struct writeback_control wbc = {
632 .sync_mode = WB_SYNC_NONE,
633 .nr_to_write = SWAP_CLUSTER_MAX,
634 .range_start = 0,
635 .range_end = LLONG_MAX,
636 .for_reclaim = 1,
637 };
638
639 SetPageReclaim(page);
640 res = mapping->a_ops->writepage(page, &wbc);
641 if (res < 0)
642 handle_write_error(mapping, page, res);
643 if (res == AOP_WRITEPAGE_ACTIVATE) {
644 ClearPageReclaim(page);
645 return PAGE_ACTIVATE;
646 }
647
648 if (!PageWriteback(page)) {
649 /* synchronous write or broken a_ops? */
650 ClearPageReclaim(page);
651 }
652 trace_mm_vmscan_writepage(page);
653 inc_node_page_state(page, NR_VMSCAN_WRITE);
654 return PAGE_SUCCESS;
655 }
656
657 return PAGE_CLEAN;
658 }
659
660 /*
661 * Same as remove_mapping, but if the page is removed from the mapping, it
662 * gets returned with a refcount of 0.
663 */
664 static int __remove_mapping(struct address_space *mapping, struct page *page,
665 bool reclaimed)
666 {
667 unsigned long flags;
668
669 BUG_ON(!PageLocked(page));
670 BUG_ON(mapping != page_mapping(page));
671
672 spin_lock_irqsave(&mapping->tree_lock, flags);
673 /*
674 * The non racy check for a busy page.
675 *
676 * Must be careful with the order of the tests. When someone has
677 * a ref to the page, it may be possible that they dirty it then
678 * drop the reference. So if PageDirty is tested before page_count
679 * here, then the following race may occur:
680 *
681 * get_user_pages(&page);
682 * [user mapping goes away]
683 * write_to(page);
684 * !PageDirty(page) [good]
685 * SetPageDirty(page);
686 * put_page(page);
687 * !page_count(page) [good, discard it]
688 *
689 * [oops, our write_to data is lost]
690 *
691 * Reversing the order of the tests ensures such a situation cannot
692 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
693 * load is not satisfied before that of page->_refcount.
694 *
695 * Note that if SetPageDirty is always performed via set_page_dirty,
696 * and thus under tree_lock, then this ordering is not required.
697 */
698 if (!page_ref_freeze(page, 2))
699 goto cannot_free;
700 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
701 if (unlikely(PageDirty(page))) {
702 page_ref_unfreeze(page, 2);
703 goto cannot_free;
704 }
705
706 if (PageSwapCache(page)) {
707 swp_entry_t swap = { .val = page_private(page) };
708 mem_cgroup_swapout(page, swap);
709 __delete_from_swap_cache(page);
710 spin_unlock_irqrestore(&mapping->tree_lock, flags);
711 swapcache_free(swap);
712 } else {
713 void (*freepage)(struct page *);
714 void *shadow = NULL;
715
716 freepage = mapping->a_ops->freepage;
717 /*
718 * Remember a shadow entry for reclaimed file cache in
719 * order to detect refaults, thus thrashing, later on.
720 *
721 * But don't store shadows in an address space that is
722 * already exiting. This is not just an optizimation,
723 * inode reclaim needs to empty out the radix tree or
724 * the nodes are lost. Don't plant shadows behind its
725 * back.
726 *
727 * We also don't store shadows for DAX mappings because the
728 * only page cache pages found in these are zero pages
729 * covering holes, and because we don't want to mix DAX
730 * exceptional entries and shadow exceptional entries in the
731 * same page_tree.
732 */
733 if (reclaimed && page_is_file_cache(page) &&
734 !mapping_exiting(mapping) && !dax_mapping(mapping))
735 shadow = workingset_eviction(mapping, page);
736 __delete_from_page_cache(page, shadow);
737 spin_unlock_irqrestore(&mapping->tree_lock, flags);
738
739 if (freepage != NULL)
740 freepage(page);
741 }
742
743 return 1;
744
745 cannot_free:
746 spin_unlock_irqrestore(&mapping->tree_lock, flags);
747 return 0;
748 }
749
750 /*
751 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
752 * someone else has a ref on the page, abort and return 0. If it was
753 * successfully detached, return 1. Assumes the caller has a single ref on
754 * this page.
755 */
756 int remove_mapping(struct address_space *mapping, struct page *page)
757 {
758 if (__remove_mapping(mapping, page, false)) {
759 /*
760 * Unfreezing the refcount with 1 rather than 2 effectively
761 * drops the pagecache ref for us without requiring another
762 * atomic operation.
763 */
764 page_ref_unfreeze(page, 1);
765 return 1;
766 }
767 return 0;
768 }
769
770 /**
771 * putback_lru_page - put previously isolated page onto appropriate LRU list
772 * @page: page to be put back to appropriate lru list
773 *
774 * Add previously isolated @page to appropriate LRU list.
775 * Page may still be unevictable for other reasons.
776 *
777 * lru_lock must not be held, interrupts must be enabled.
778 */
779 void putback_lru_page(struct page *page)
780 {
781 bool is_unevictable;
782 int was_unevictable = PageUnevictable(page);
783
784 VM_BUG_ON_PAGE(PageLRU(page), page);
785
786 redo:
787 ClearPageUnevictable(page);
788
789 if (page_evictable(page)) {
790 /*
791 * For evictable pages, we can use the cache.
792 * In event of a race, worst case is we end up with an
793 * unevictable page on [in]active list.
794 * We know how to handle that.
795 */
796 is_unevictable = false;
797 lru_cache_add(page);
798 } else {
799 /*
800 * Put unevictable pages directly on zone's unevictable
801 * list.
802 */
803 is_unevictable = true;
804 add_page_to_unevictable_list(page);
805 /*
806 * When racing with an mlock or AS_UNEVICTABLE clearing
807 * (page is unlocked) make sure that if the other thread
808 * does not observe our setting of PG_lru and fails
809 * isolation/check_move_unevictable_pages,
810 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
811 * the page back to the evictable list.
812 *
813 * The other side is TestClearPageMlocked() or shmem_lock().
814 */
815 smp_mb();
816 }
817
818 /*
819 * page's status can change while we move it among lru. If an evictable
820 * page is on unevictable list, it never be freed. To avoid that,
821 * check after we added it to the list, again.
822 */
823 if (is_unevictable && page_evictable(page)) {
824 if (!isolate_lru_page(page)) {
825 put_page(page);
826 goto redo;
827 }
828 /* This means someone else dropped this page from LRU
829 * So, it will be freed or putback to LRU again. There is
830 * nothing to do here.
831 */
832 }
833
834 if (was_unevictable && !is_unevictable)
835 count_vm_event(UNEVICTABLE_PGRESCUED);
836 else if (!was_unevictable && is_unevictable)
837 count_vm_event(UNEVICTABLE_PGCULLED);
838
839 put_page(page); /* drop ref from isolate */
840 }
841
842 enum page_references {
843 PAGEREF_RECLAIM,
844 PAGEREF_RECLAIM_CLEAN,
845 PAGEREF_KEEP,
846 PAGEREF_ACTIVATE,
847 };
848
849 static enum page_references page_check_references(struct page *page,
850 struct scan_control *sc)
851 {
852 int referenced_ptes, referenced_page;
853 unsigned long vm_flags;
854
855 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
856 &vm_flags);
857 referenced_page = TestClearPageReferenced(page);
858
859 /*
860 * Mlock lost the isolation race with us. Let try_to_unmap()
861 * move the page to the unevictable list.
862 */
863 if (vm_flags & VM_LOCKED)
864 return PAGEREF_RECLAIM;
865
866 if (referenced_ptes) {
867 if (PageSwapBacked(page))
868 return PAGEREF_ACTIVATE;
869 /*
870 * All mapped pages start out with page table
871 * references from the instantiating fault, so we need
872 * to look twice if a mapped file page is used more
873 * than once.
874 *
875 * Mark it and spare it for another trip around the
876 * inactive list. Another page table reference will
877 * lead to its activation.
878 *
879 * Note: the mark is set for activated pages as well
880 * so that recently deactivated but used pages are
881 * quickly recovered.
882 */
883 SetPageReferenced(page);
884
885 if (referenced_page || referenced_ptes > 1)
886 return PAGEREF_ACTIVATE;
887
888 /*
889 * Activate file-backed executable pages after first usage.
890 */
891 if (vm_flags & VM_EXEC)
892 return PAGEREF_ACTIVATE;
893
894 return PAGEREF_KEEP;
895 }
896
897 /* Reclaim if clean, defer dirty pages to writeback */
898 if (referenced_page && !PageSwapBacked(page))
899 return PAGEREF_RECLAIM_CLEAN;
900
901 return PAGEREF_RECLAIM;
902 }
903
904 /* Check if a page is dirty or under writeback */
905 static void page_check_dirty_writeback(struct page *page,
906 bool *dirty, bool *writeback)
907 {
908 struct address_space *mapping;
909
910 /*
911 * Anonymous pages are not handled by flushers and must be written
912 * from reclaim context. Do not stall reclaim based on them
913 */
914 if (!page_is_file_cache(page)) {
915 *dirty = false;
916 *writeback = false;
917 return;
918 }
919
920 /* By default assume that the page flags are accurate */
921 *dirty = PageDirty(page);
922 *writeback = PageWriteback(page);
923
924 /* Verify dirty/writeback state if the filesystem supports it */
925 if (!page_has_private(page))
926 return;
927
928 mapping = page_mapping(page);
929 if (mapping && mapping->a_ops->is_dirty_writeback)
930 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
931 }
932
933 struct reclaim_stat {
934 unsigned nr_dirty;
935 unsigned nr_unqueued_dirty;
936 unsigned nr_congested;
937 unsigned nr_writeback;
938 unsigned nr_immediate;
939 unsigned nr_activate;
940 unsigned nr_ref_keep;
941 unsigned nr_unmap_fail;
942 };
943
944 /*
945 * shrink_page_list() returns the number of reclaimed pages
946 */
947 static unsigned long shrink_page_list(struct list_head *page_list,
948 struct pglist_data *pgdat,
949 struct scan_control *sc,
950 enum ttu_flags ttu_flags,
951 struct reclaim_stat *stat,
952 bool force_reclaim)
953 {
954 LIST_HEAD(ret_pages);
955 LIST_HEAD(free_pages);
956 int pgactivate = 0;
957 unsigned nr_unqueued_dirty = 0;
958 unsigned nr_dirty = 0;
959 unsigned nr_congested = 0;
960 unsigned nr_reclaimed = 0;
961 unsigned nr_writeback = 0;
962 unsigned nr_immediate = 0;
963 unsigned nr_ref_keep = 0;
964 unsigned nr_unmap_fail = 0;
965
966 cond_resched();
967
968 while (!list_empty(page_list)) {
969 struct address_space *mapping;
970 struct page *page;
971 int may_enter_fs;
972 enum page_references references = PAGEREF_RECLAIM_CLEAN;
973 bool dirty, writeback;
974 bool lazyfree = false;
975 int ret = SWAP_SUCCESS;
976
977 cond_resched();
978
979 page = lru_to_page(page_list);
980 list_del(&page->lru);
981
982 if (!trylock_page(page))
983 goto keep;
984
985 VM_BUG_ON_PAGE(PageActive(page), page);
986
987 sc->nr_scanned++;
988
989 if (unlikely(!page_evictable(page)))
990 goto cull_mlocked;
991
992 if (!sc->may_unmap && page_mapped(page))
993 goto keep_locked;
994
995 /* Double the slab pressure for mapped and swapcache pages */
996 if (page_mapped(page) || PageSwapCache(page))
997 sc->nr_scanned++;
998
999 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1000 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1001
1002 /*
1003 * The number of dirty pages determines if a zone is marked
1004 * reclaim_congested which affects wait_iff_congested. kswapd
1005 * will stall and start writing pages if the tail of the LRU
1006 * is all dirty unqueued pages.
1007 */
1008 page_check_dirty_writeback(page, &dirty, &writeback);
1009 if (dirty || writeback)
1010 nr_dirty++;
1011
1012 if (dirty && !writeback)
1013 nr_unqueued_dirty++;
1014
1015 /*
1016 * Treat this page as congested if the underlying BDI is or if
1017 * pages are cycling through the LRU so quickly that the
1018 * pages marked for immediate reclaim are making it to the
1019 * end of the LRU a second time.
1020 */
1021 mapping = page_mapping(page);
1022 if (((dirty || writeback) && mapping &&
1023 inode_write_congested(mapping->host)) ||
1024 (writeback && PageReclaim(page)))
1025 nr_congested++;
1026
1027 /*
1028 * If a page at the tail of the LRU is under writeback, there
1029 * are three cases to consider.
1030 *
1031 * 1) If reclaim is encountering an excessive number of pages
1032 * under writeback and this page is both under writeback and
1033 * PageReclaim then it indicates that pages are being queued
1034 * for IO but are being recycled through the LRU before the
1035 * IO can complete. Waiting on the page itself risks an
1036 * indefinite stall if it is impossible to writeback the
1037 * page due to IO error or disconnected storage so instead
1038 * note that the LRU is being scanned too quickly and the
1039 * caller can stall after page list has been processed.
1040 *
1041 * 2) Global or new memcg reclaim encounters a page that is
1042 * not marked for immediate reclaim, or the caller does not
1043 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1044 * not to fs). In this case mark the page for immediate
1045 * reclaim and continue scanning.
1046 *
1047 * Require may_enter_fs because we would wait on fs, which
1048 * may not have submitted IO yet. And the loop driver might
1049 * enter reclaim, and deadlock if it waits on a page for
1050 * which it is needed to do the write (loop masks off
1051 * __GFP_IO|__GFP_FS for this reason); but more thought
1052 * would probably show more reasons.
1053 *
1054 * 3) Legacy memcg encounters a page that is already marked
1055 * PageReclaim. memcg does not have any dirty pages
1056 * throttling so we could easily OOM just because too many
1057 * pages are in writeback and there is nothing else to
1058 * reclaim. Wait for the writeback to complete.
1059 *
1060 * In cases 1) and 2) we activate the pages to get them out of
1061 * the way while we continue scanning for clean pages on the
1062 * inactive list and refilling from the active list. The
1063 * observation here is that waiting for disk writes is more
1064 * expensive than potentially causing reloads down the line.
1065 * Since they're marked for immediate reclaim, they won't put
1066 * memory pressure on the cache working set any longer than it
1067 * takes to write them to disk.
1068 */
1069 if (PageWriteback(page)) {
1070 /* Case 1 above */
1071 if (current_is_kswapd() &&
1072 PageReclaim(page) &&
1073 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1074 nr_immediate++;
1075 goto activate_locked;
1076
1077 /* Case 2 above */
1078 } else if (sane_reclaim(sc) ||
1079 !PageReclaim(page) || !may_enter_fs) {
1080 /*
1081 * This is slightly racy - end_page_writeback()
1082 * might have just cleared PageReclaim, then
1083 * setting PageReclaim here end up interpreted
1084 * as PageReadahead - but that does not matter
1085 * enough to care. What we do want is for this
1086 * page to have PageReclaim set next time memcg
1087 * reclaim reaches the tests above, so it will
1088 * then wait_on_page_writeback() to avoid OOM;
1089 * and it's also appropriate in global reclaim.
1090 */
1091 SetPageReclaim(page);
1092 nr_writeback++;
1093 goto activate_locked;
1094
1095 /* Case 3 above */
1096 } else {
1097 unlock_page(page);
1098 wait_on_page_writeback(page);
1099 /* then go back and try same page again */
1100 list_add_tail(&page->lru, page_list);
1101 continue;
1102 }
1103 }
1104
1105 if (!force_reclaim)
1106 references = page_check_references(page, sc);
1107
1108 switch (references) {
1109 case PAGEREF_ACTIVATE:
1110 goto activate_locked;
1111 case PAGEREF_KEEP:
1112 nr_ref_keep++;
1113 goto keep_locked;
1114 case PAGEREF_RECLAIM:
1115 case PAGEREF_RECLAIM_CLEAN:
1116 ; /* try to reclaim the page below */
1117 }
1118
1119 /*
1120 * Anonymous process memory has backing store?
1121 * Try to allocate it some swap space here.
1122 */
1123 if (PageAnon(page) && !PageSwapCache(page)) {
1124 if (!(sc->gfp_mask & __GFP_IO))
1125 goto keep_locked;
1126 if (!add_to_swap(page, page_list))
1127 goto activate_locked;
1128 lazyfree = true;
1129 may_enter_fs = 1;
1130
1131 /* Adding to swap updated mapping */
1132 mapping = page_mapping(page);
1133 } else if (unlikely(PageTransHuge(page))) {
1134 /* Split file THP */
1135 if (split_huge_page_to_list(page, page_list))
1136 goto keep_locked;
1137 }
1138
1139 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1140
1141 /*
1142 * The page is mapped into the page tables of one or more
1143 * processes. Try to unmap it here.
1144 */
1145 if (page_mapped(page) && mapping) {
1146 switch (ret = try_to_unmap(page, lazyfree ?
1147 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1148 (ttu_flags | TTU_BATCH_FLUSH))) {
1149 case SWAP_FAIL:
1150 nr_unmap_fail++;
1151 goto activate_locked;
1152 case SWAP_AGAIN:
1153 goto keep_locked;
1154 case SWAP_MLOCK:
1155 goto cull_mlocked;
1156 case SWAP_LZFREE:
1157 goto lazyfree;
1158 case SWAP_SUCCESS:
1159 ; /* try to free the page below */
1160 }
1161 }
1162
1163 if (PageDirty(page)) {
1164 /*
1165 * Only kswapd can writeback filesystem pages
1166 * to avoid risk of stack overflow. But avoid
1167 * injecting inefficient single-page IO into
1168 * flusher writeback as much as possible: only
1169 * write pages when we've encountered many
1170 * dirty pages, and when we've already scanned
1171 * the rest of the LRU for clean pages and see
1172 * the same dirty pages again (PageReclaim).
1173 */
1174 if (page_is_file_cache(page) &&
1175 (!current_is_kswapd() || !PageReclaim(page) ||
1176 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1177 /*
1178 * Immediately reclaim when written back.
1179 * Similar in principal to deactivate_page()
1180 * except we already have the page isolated
1181 * and know it's dirty
1182 */
1183 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1184 SetPageReclaim(page);
1185
1186 goto activate_locked;
1187 }
1188
1189 if (references == PAGEREF_RECLAIM_CLEAN)
1190 goto keep_locked;
1191 if (!may_enter_fs)
1192 goto keep_locked;
1193 if (!sc->may_writepage)
1194 goto keep_locked;
1195
1196 /*
1197 * Page is dirty. Flush the TLB if a writable entry
1198 * potentially exists to avoid CPU writes after IO
1199 * starts and then write it out here.
1200 */
1201 try_to_unmap_flush_dirty();
1202 switch (pageout(page, mapping, sc)) {
1203 case PAGE_KEEP:
1204 goto keep_locked;
1205 case PAGE_ACTIVATE:
1206 goto activate_locked;
1207 case PAGE_SUCCESS:
1208 if (PageWriteback(page))
1209 goto keep;
1210 if (PageDirty(page))
1211 goto keep;
1212
1213 /*
1214 * A synchronous write - probably a ramdisk. Go
1215 * ahead and try to reclaim the page.
1216 */
1217 if (!trylock_page(page))
1218 goto keep;
1219 if (PageDirty(page) || PageWriteback(page))
1220 goto keep_locked;
1221 mapping = page_mapping(page);
1222 case PAGE_CLEAN:
1223 ; /* try to free the page below */
1224 }
1225 }
1226
1227 /*
1228 * If the page has buffers, try to free the buffer mappings
1229 * associated with this page. If we succeed we try to free
1230 * the page as well.
1231 *
1232 * We do this even if the page is PageDirty().
1233 * try_to_release_page() does not perform I/O, but it is
1234 * possible for a page to have PageDirty set, but it is actually
1235 * clean (all its buffers are clean). This happens if the
1236 * buffers were written out directly, with submit_bh(). ext3
1237 * will do this, as well as the blockdev mapping.
1238 * try_to_release_page() will discover that cleanness and will
1239 * drop the buffers and mark the page clean - it can be freed.
1240 *
1241 * Rarely, pages can have buffers and no ->mapping. These are
1242 * the pages which were not successfully invalidated in
1243 * truncate_complete_page(). We try to drop those buffers here
1244 * and if that worked, and the page is no longer mapped into
1245 * process address space (page_count == 1) it can be freed.
1246 * Otherwise, leave the page on the LRU so it is swappable.
1247 */
1248 if (page_has_private(page)) {
1249 if (!try_to_release_page(page, sc->gfp_mask))
1250 goto activate_locked;
1251 if (!mapping && page_count(page) == 1) {
1252 unlock_page(page);
1253 if (put_page_testzero(page))
1254 goto free_it;
1255 else {
1256 /*
1257 * rare race with speculative reference.
1258 * the speculative reference will free
1259 * this page shortly, so we may
1260 * increment nr_reclaimed here (and
1261 * leave it off the LRU).
1262 */
1263 nr_reclaimed++;
1264 continue;
1265 }
1266 }
1267 }
1268
1269 lazyfree:
1270 if (!mapping || !__remove_mapping(mapping, page, true))
1271 goto keep_locked;
1272
1273 /*
1274 * At this point, we have no other references and there is
1275 * no way to pick any more up (removed from LRU, removed
1276 * from pagecache). Can use non-atomic bitops now (and
1277 * we obviously don't have to worry about waking up a process
1278 * waiting on the page lock, because there are no references.
1279 */
1280 __ClearPageLocked(page);
1281 free_it:
1282 if (ret == SWAP_LZFREE)
1283 count_vm_event(PGLAZYFREED);
1284
1285 nr_reclaimed++;
1286
1287 /*
1288 * Is there need to periodically free_page_list? It would
1289 * appear not as the counts should be low
1290 */
1291 list_add(&page->lru, &free_pages);
1292 continue;
1293
1294 cull_mlocked:
1295 if (PageSwapCache(page))
1296 try_to_free_swap(page);
1297 unlock_page(page);
1298 list_add(&page->lru, &ret_pages);
1299 continue;
1300
1301 activate_locked:
1302 /* Not a candidate for swapping, so reclaim swap space. */
1303 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1304 try_to_free_swap(page);
1305 VM_BUG_ON_PAGE(PageActive(page), page);
1306 SetPageActive(page);
1307 pgactivate++;
1308 keep_locked:
1309 unlock_page(page);
1310 keep:
1311 list_add(&page->lru, &ret_pages);
1312 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1313 }
1314
1315 mem_cgroup_uncharge_list(&free_pages);
1316 try_to_unmap_flush();
1317 free_hot_cold_page_list(&free_pages, true);
1318
1319 list_splice(&ret_pages, page_list);
1320 count_vm_events(PGACTIVATE, pgactivate);
1321
1322 if (stat) {
1323 stat->nr_dirty = nr_dirty;
1324 stat->nr_congested = nr_congested;
1325 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1326 stat->nr_writeback = nr_writeback;
1327 stat->nr_immediate = nr_immediate;
1328 stat->nr_activate = pgactivate;
1329 stat->nr_ref_keep = nr_ref_keep;
1330 stat->nr_unmap_fail = nr_unmap_fail;
1331 }
1332 return nr_reclaimed;
1333 }
1334
1335 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1336 struct list_head *page_list)
1337 {
1338 struct scan_control sc = {
1339 .gfp_mask = GFP_KERNEL,
1340 .priority = DEF_PRIORITY,
1341 .may_unmap = 1,
1342 };
1343 unsigned long ret;
1344 struct page *page, *next;
1345 LIST_HEAD(clean_pages);
1346
1347 list_for_each_entry_safe(page, next, page_list, lru) {
1348 if (page_is_file_cache(page) && !PageDirty(page) &&
1349 !__PageMovable(page)) {
1350 ClearPageActive(page);
1351 list_move(&page->lru, &clean_pages);
1352 }
1353 }
1354
1355 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1356 TTU_UNMAP|TTU_IGNORE_ACCESS, NULL, true);
1357 list_splice(&clean_pages, page_list);
1358 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1359 return ret;
1360 }
1361
1362 /*
1363 * Attempt to remove the specified page from its LRU. Only take this page
1364 * if it is of the appropriate PageActive status. Pages which are being
1365 * freed elsewhere are also ignored.
1366 *
1367 * page: page to consider
1368 * mode: one of the LRU isolation modes defined above
1369 *
1370 * returns 0 on success, -ve errno on failure.
1371 */
1372 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1373 {
1374 int ret = -EINVAL;
1375
1376 /* Only take pages on the LRU. */
1377 if (!PageLRU(page))
1378 return ret;
1379
1380 /* Compaction should not handle unevictable pages but CMA can do so */
1381 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1382 return ret;
1383
1384 ret = -EBUSY;
1385
1386 /*
1387 * To minimise LRU disruption, the caller can indicate that it only
1388 * wants to isolate pages it will be able to operate on without
1389 * blocking - clean pages for the most part.
1390 *
1391 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1392 * that it is possible to migrate without blocking
1393 */
1394 if (mode & ISOLATE_ASYNC_MIGRATE) {
1395 /* All the caller can do on PageWriteback is block */
1396 if (PageWriteback(page))
1397 return ret;
1398
1399 if (PageDirty(page)) {
1400 struct address_space *mapping;
1401
1402 /*
1403 * Only pages without mappings or that have a
1404 * ->migratepage callback are possible to migrate
1405 * without blocking
1406 */
1407 mapping = page_mapping(page);
1408 if (mapping && !mapping->a_ops->migratepage)
1409 return ret;
1410 }
1411 }
1412
1413 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1414 return ret;
1415
1416 if (likely(get_page_unless_zero(page))) {
1417 /*
1418 * Be careful not to clear PageLRU until after we're
1419 * sure the page is not being freed elsewhere -- the
1420 * page release code relies on it.
1421 */
1422 ClearPageLRU(page);
1423 ret = 0;
1424 }
1425
1426 return ret;
1427 }
1428
1429
1430 /*
1431 * Update LRU sizes after isolating pages. The LRU size updates must
1432 * be complete before mem_cgroup_update_lru_size due to a santity check.
1433 */
1434 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1435 enum lru_list lru, unsigned long *nr_zone_taken)
1436 {
1437 int zid;
1438
1439 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1440 if (!nr_zone_taken[zid])
1441 continue;
1442
1443 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1444 #ifdef CONFIG_MEMCG
1445 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1446 #endif
1447 }
1448
1449 }
1450
1451 /*
1452 * zone_lru_lock is heavily contended. Some of the functions that
1453 * shrink the lists perform better by taking out a batch of pages
1454 * and working on them outside the LRU lock.
1455 *
1456 * For pagecache intensive workloads, this function is the hottest
1457 * spot in the kernel (apart from copy_*_user functions).
1458 *
1459 * Appropriate locks must be held before calling this function.
1460 *
1461 * @nr_to_scan: The number of pages to look through on the list.
1462 * @lruvec: The LRU vector to pull pages from.
1463 * @dst: The temp list to put pages on to.
1464 * @nr_scanned: The number of pages that were scanned.
1465 * @sc: The scan_control struct for this reclaim session
1466 * @mode: One of the LRU isolation modes
1467 * @lru: LRU list id for isolating
1468 *
1469 * returns how many pages were moved onto *@dst.
1470 */
1471 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1472 struct lruvec *lruvec, struct list_head *dst,
1473 unsigned long *nr_scanned, struct scan_control *sc,
1474 isolate_mode_t mode, enum lru_list lru)
1475 {
1476 struct list_head *src = &lruvec->lists[lru];
1477 unsigned long nr_taken = 0;
1478 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1479 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1480 unsigned long skipped = 0, total_skipped = 0;
1481 unsigned long scan, nr_pages;
1482 LIST_HEAD(pages_skipped);
1483
1484 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1485 !list_empty(src);) {
1486 struct page *page;
1487
1488 page = lru_to_page(src);
1489 prefetchw_prev_lru_page(page, src, flags);
1490
1491 VM_BUG_ON_PAGE(!PageLRU(page), page);
1492
1493 if (page_zonenum(page) > sc->reclaim_idx) {
1494 list_move(&page->lru, &pages_skipped);
1495 nr_skipped[page_zonenum(page)]++;
1496 continue;
1497 }
1498
1499 /*
1500 * Account for scanned and skipped separetly to avoid the pgdat
1501 * being prematurely marked unreclaimable by pgdat_reclaimable.
1502 */
1503 scan++;
1504
1505 switch (__isolate_lru_page(page, mode)) {
1506 case 0:
1507 nr_pages = hpage_nr_pages(page);
1508 nr_taken += nr_pages;
1509 nr_zone_taken[page_zonenum(page)] += nr_pages;
1510 list_move(&page->lru, dst);
1511 break;
1512
1513 case -EBUSY:
1514 /* else it is being freed elsewhere */
1515 list_move(&page->lru, src);
1516 continue;
1517
1518 default:
1519 BUG();
1520 }
1521 }
1522
1523 /*
1524 * Splice any skipped pages to the start of the LRU list. Note that
1525 * this disrupts the LRU order when reclaiming for lower zones but
1526 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1527 * scanning would soon rescan the same pages to skip and put the
1528 * system at risk of premature OOM.
1529 */
1530 if (!list_empty(&pages_skipped)) {
1531 int zid;
1532
1533 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1534 if (!nr_skipped[zid])
1535 continue;
1536
1537 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1538 skipped += nr_skipped[zid];
1539 }
1540
1541 /*
1542 * Account skipped pages as a partial scan as the pgdat may be
1543 * close to unreclaimable. If the LRU list is empty, account
1544 * skipped pages as a full scan.
1545 */
1546 total_skipped = list_empty(src) ? skipped : skipped >> 2;
1547
1548 list_splice(&pages_skipped, src);
1549 }
1550 *nr_scanned = scan + total_skipped;
1551 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1552 scan, skipped, nr_taken, mode, lru);
1553 update_lru_sizes(lruvec, lru, nr_zone_taken);
1554 return nr_taken;
1555 }
1556
1557 /**
1558 * isolate_lru_page - tries to isolate a page from its LRU list
1559 * @page: page to isolate from its LRU list
1560 *
1561 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1562 * vmstat statistic corresponding to whatever LRU list the page was on.
1563 *
1564 * Returns 0 if the page was removed from an LRU list.
1565 * Returns -EBUSY if the page was not on an LRU list.
1566 *
1567 * The returned page will have PageLRU() cleared. If it was found on
1568 * the active list, it will have PageActive set. If it was found on
1569 * the unevictable list, it will have the PageUnevictable bit set. That flag
1570 * may need to be cleared by the caller before letting the page go.
1571 *
1572 * The vmstat statistic corresponding to the list on which the page was
1573 * found will be decremented.
1574 *
1575 * Restrictions:
1576 * (1) Must be called with an elevated refcount on the page. This is a
1577 * fundamentnal difference from isolate_lru_pages (which is called
1578 * without a stable reference).
1579 * (2) the lru_lock must not be held.
1580 * (3) interrupts must be enabled.
1581 */
1582 int isolate_lru_page(struct page *page)
1583 {
1584 int ret = -EBUSY;
1585
1586 VM_BUG_ON_PAGE(!page_count(page), page);
1587 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1588
1589 if (PageLRU(page)) {
1590 struct zone *zone = page_zone(page);
1591 struct lruvec *lruvec;
1592
1593 spin_lock_irq(zone_lru_lock(zone));
1594 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1595 if (PageLRU(page)) {
1596 int lru = page_lru(page);
1597 get_page(page);
1598 ClearPageLRU(page);
1599 del_page_from_lru_list(page, lruvec, lru);
1600 ret = 0;
1601 }
1602 spin_unlock_irq(zone_lru_lock(zone));
1603 }
1604 return ret;
1605 }
1606
1607 /*
1608 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1609 * then get resheduled. When there are massive number of tasks doing page
1610 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1611 * the LRU list will go small and be scanned faster than necessary, leading to
1612 * unnecessary swapping, thrashing and OOM.
1613 */
1614 static int too_many_isolated(struct pglist_data *pgdat, int file,
1615 struct scan_control *sc)
1616 {
1617 unsigned long inactive, isolated;
1618
1619 if (current_is_kswapd())
1620 return 0;
1621
1622 if (!sane_reclaim(sc))
1623 return 0;
1624
1625 if (file) {
1626 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1627 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1628 } else {
1629 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1630 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1631 }
1632
1633 /*
1634 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1635 * won't get blocked by normal direct-reclaimers, forming a circular
1636 * deadlock.
1637 */
1638 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1639 inactive >>= 3;
1640
1641 return isolated > inactive;
1642 }
1643
1644 static noinline_for_stack void
1645 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1646 {
1647 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1648 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1649 LIST_HEAD(pages_to_free);
1650
1651 /*
1652 * Put back any unfreeable pages.
1653 */
1654 while (!list_empty(page_list)) {
1655 struct page *page = lru_to_page(page_list);
1656 int lru;
1657
1658 VM_BUG_ON_PAGE(PageLRU(page), page);
1659 list_del(&page->lru);
1660 if (unlikely(!page_evictable(page))) {
1661 spin_unlock_irq(&pgdat->lru_lock);
1662 putback_lru_page(page);
1663 spin_lock_irq(&pgdat->lru_lock);
1664 continue;
1665 }
1666
1667 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1668
1669 SetPageLRU(page);
1670 lru = page_lru(page);
1671 add_page_to_lru_list(page, lruvec, lru);
1672
1673 if (is_active_lru(lru)) {
1674 int file = is_file_lru(lru);
1675 int numpages = hpage_nr_pages(page);
1676 reclaim_stat->recent_rotated[file] += numpages;
1677 }
1678 if (put_page_testzero(page)) {
1679 __ClearPageLRU(page);
1680 __ClearPageActive(page);
1681 del_page_from_lru_list(page, lruvec, lru);
1682
1683 if (unlikely(PageCompound(page))) {
1684 spin_unlock_irq(&pgdat->lru_lock);
1685 mem_cgroup_uncharge(page);
1686 (*get_compound_page_dtor(page))(page);
1687 spin_lock_irq(&pgdat->lru_lock);
1688 } else
1689 list_add(&page->lru, &pages_to_free);
1690 }
1691 }
1692
1693 /*
1694 * To save our caller's stack, now use input list for pages to free.
1695 */
1696 list_splice(&pages_to_free, page_list);
1697 }
1698
1699 /*
1700 * If a kernel thread (such as nfsd for loop-back mounts) services
1701 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1702 * In that case we should only throttle if the backing device it is
1703 * writing to is congested. In other cases it is safe to throttle.
1704 */
1705 static int current_may_throttle(void)
1706 {
1707 return !(current->flags & PF_LESS_THROTTLE) ||
1708 current->backing_dev_info == NULL ||
1709 bdi_write_congested(current->backing_dev_info);
1710 }
1711
1712 /*
1713 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1714 * of reclaimed pages
1715 */
1716 static noinline_for_stack unsigned long
1717 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1718 struct scan_control *sc, enum lru_list lru)
1719 {
1720 LIST_HEAD(page_list);
1721 unsigned long nr_scanned;
1722 unsigned long nr_reclaimed = 0;
1723 unsigned long nr_taken;
1724 struct reclaim_stat stat = {};
1725 isolate_mode_t isolate_mode = 0;
1726 int file = is_file_lru(lru);
1727 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1728 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1729
1730 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1731 congestion_wait(BLK_RW_ASYNC, HZ/10);
1732
1733 /* We are about to die and free our memory. Return now. */
1734 if (fatal_signal_pending(current))
1735 return SWAP_CLUSTER_MAX;
1736 }
1737
1738 lru_add_drain();
1739
1740 if (!sc->may_unmap)
1741 isolate_mode |= ISOLATE_UNMAPPED;
1742
1743 spin_lock_irq(&pgdat->lru_lock);
1744
1745 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1746 &nr_scanned, sc, isolate_mode, lru);
1747
1748 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1749 reclaim_stat->recent_scanned[file] += nr_taken;
1750
1751 if (global_reclaim(sc)) {
1752 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1753 if (current_is_kswapd())
1754 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1755 else
1756 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1757 }
1758 spin_unlock_irq(&pgdat->lru_lock);
1759
1760 if (nr_taken == 0)
1761 return 0;
1762
1763 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1764 &stat, false);
1765
1766 spin_lock_irq(&pgdat->lru_lock);
1767
1768 if (global_reclaim(sc)) {
1769 if (current_is_kswapd())
1770 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1771 else
1772 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1773 }
1774
1775 putback_inactive_pages(lruvec, &page_list);
1776
1777 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1778
1779 spin_unlock_irq(&pgdat->lru_lock);
1780
1781 mem_cgroup_uncharge_list(&page_list);
1782 free_hot_cold_page_list(&page_list, true);
1783
1784 /*
1785 * If reclaim is isolating dirty pages under writeback, it implies
1786 * that the long-lived page allocation rate is exceeding the page
1787 * laundering rate. Either the global limits are not being effective
1788 * at throttling processes due to the page distribution throughout
1789 * zones or there is heavy usage of a slow backing device. The
1790 * only option is to throttle from reclaim context which is not ideal
1791 * as there is no guarantee the dirtying process is throttled in the
1792 * same way balance_dirty_pages() manages.
1793 *
1794 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1795 * of pages under pages flagged for immediate reclaim and stall if any
1796 * are encountered in the nr_immediate check below.
1797 */
1798 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1799 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1800
1801 /*
1802 * Legacy memcg will stall in page writeback so avoid forcibly
1803 * stalling here.
1804 */
1805 if (sane_reclaim(sc)) {
1806 /*
1807 * Tag a zone as congested if all the dirty pages scanned were
1808 * backed by a congested BDI and wait_iff_congested will stall.
1809 */
1810 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1811 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1812
1813 /*
1814 * If dirty pages are scanned that are not queued for IO, it
1815 * implies that flushers are not doing their job. This can
1816 * happen when memory pressure pushes dirty pages to the end of
1817 * the LRU before the dirty limits are breached and the dirty
1818 * data has expired. It can also happen when the proportion of
1819 * dirty pages grows not through writes but through memory
1820 * pressure reclaiming all the clean cache. And in some cases,
1821 * the flushers simply cannot keep up with the allocation
1822 * rate. Nudge the flusher threads in case they are asleep, but
1823 * also allow kswapd to start writing pages during reclaim.
1824 */
1825 if (stat.nr_unqueued_dirty == nr_taken) {
1826 wakeup_flusher_threads(0, WB_REASON_VMSCAN);
1827 set_bit(PGDAT_DIRTY, &pgdat->flags);
1828 }
1829
1830 /*
1831 * If kswapd scans pages marked marked for immediate
1832 * reclaim and under writeback (nr_immediate), it implies
1833 * that pages are cycling through the LRU faster than
1834 * they are written so also forcibly stall.
1835 */
1836 if (stat.nr_immediate && current_may_throttle())
1837 congestion_wait(BLK_RW_ASYNC, HZ/10);
1838 }
1839
1840 /*
1841 * Stall direct reclaim for IO completions if underlying BDIs or zone
1842 * is congested. Allow kswapd to continue until it starts encountering
1843 * unqueued dirty pages or cycling through the LRU too quickly.
1844 */
1845 if (!sc->hibernation_mode && !current_is_kswapd() &&
1846 current_may_throttle())
1847 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1848
1849 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1850 nr_scanned, nr_reclaimed,
1851 stat.nr_dirty, stat.nr_writeback,
1852 stat.nr_congested, stat.nr_immediate,
1853 stat.nr_activate, stat.nr_ref_keep,
1854 stat.nr_unmap_fail,
1855 sc->priority, file);
1856 return nr_reclaimed;
1857 }
1858
1859 /*
1860 * This moves pages from the active list to the inactive list.
1861 *
1862 * We move them the other way if the page is referenced by one or more
1863 * processes, from rmap.
1864 *
1865 * If the pages are mostly unmapped, the processing is fast and it is
1866 * appropriate to hold zone_lru_lock across the whole operation. But if
1867 * the pages are mapped, the processing is slow (page_referenced()) so we
1868 * should drop zone_lru_lock around each page. It's impossible to balance
1869 * this, so instead we remove the pages from the LRU while processing them.
1870 * It is safe to rely on PG_active against the non-LRU pages in here because
1871 * nobody will play with that bit on a non-LRU page.
1872 *
1873 * The downside is that we have to touch page->_refcount against each page.
1874 * But we had to alter page->flags anyway.
1875 *
1876 * Returns the number of pages moved to the given lru.
1877 */
1878
1879 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1880 struct list_head *list,
1881 struct list_head *pages_to_free,
1882 enum lru_list lru)
1883 {
1884 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1885 struct page *page;
1886 int nr_pages;
1887 int nr_moved = 0;
1888
1889 while (!list_empty(list)) {
1890 page = lru_to_page(list);
1891 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1892
1893 VM_BUG_ON_PAGE(PageLRU(page), page);
1894 SetPageLRU(page);
1895
1896 nr_pages = hpage_nr_pages(page);
1897 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1898 list_move(&page->lru, &lruvec->lists[lru]);
1899
1900 if (put_page_testzero(page)) {
1901 __ClearPageLRU(page);
1902 __ClearPageActive(page);
1903 del_page_from_lru_list(page, lruvec, lru);
1904
1905 if (unlikely(PageCompound(page))) {
1906 spin_unlock_irq(&pgdat->lru_lock);
1907 mem_cgroup_uncharge(page);
1908 (*get_compound_page_dtor(page))(page);
1909 spin_lock_irq(&pgdat->lru_lock);
1910 } else
1911 list_add(&page->lru, pages_to_free);
1912 } else {
1913 nr_moved += nr_pages;
1914 }
1915 }
1916
1917 if (!is_active_lru(lru))
1918 __count_vm_events(PGDEACTIVATE, nr_moved);
1919
1920 return nr_moved;
1921 }
1922
1923 static void shrink_active_list(unsigned long nr_to_scan,
1924 struct lruvec *lruvec,
1925 struct scan_control *sc,
1926 enum lru_list lru)
1927 {
1928 unsigned long nr_taken;
1929 unsigned long nr_scanned;
1930 unsigned long vm_flags;
1931 LIST_HEAD(l_hold); /* The pages which were snipped off */
1932 LIST_HEAD(l_active);
1933 LIST_HEAD(l_inactive);
1934 struct page *page;
1935 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1936 unsigned nr_deactivate, nr_activate;
1937 unsigned nr_rotated = 0;
1938 isolate_mode_t isolate_mode = 0;
1939 int file = is_file_lru(lru);
1940 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1941
1942 lru_add_drain();
1943
1944 if (!sc->may_unmap)
1945 isolate_mode |= ISOLATE_UNMAPPED;
1946
1947 spin_lock_irq(&pgdat->lru_lock);
1948
1949 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1950 &nr_scanned, sc, isolate_mode, lru);
1951
1952 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1953 reclaim_stat->recent_scanned[file] += nr_taken;
1954
1955 if (global_reclaim(sc))
1956 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1957 __count_vm_events(PGREFILL, nr_scanned);
1958
1959 spin_unlock_irq(&pgdat->lru_lock);
1960
1961 while (!list_empty(&l_hold)) {
1962 cond_resched();
1963 page = lru_to_page(&l_hold);
1964 list_del(&page->lru);
1965
1966 if (unlikely(!page_evictable(page))) {
1967 putback_lru_page(page);
1968 continue;
1969 }
1970
1971 if (unlikely(buffer_heads_over_limit)) {
1972 if (page_has_private(page) && trylock_page(page)) {
1973 if (page_has_private(page))
1974 try_to_release_page(page, 0);
1975 unlock_page(page);
1976 }
1977 }
1978
1979 if (page_referenced(page, 0, sc->target_mem_cgroup,
1980 &vm_flags)) {
1981 nr_rotated += hpage_nr_pages(page);
1982 /*
1983 * Identify referenced, file-backed active pages and
1984 * give them one more trip around the active list. So
1985 * that executable code get better chances to stay in
1986 * memory under moderate memory pressure. Anon pages
1987 * are not likely to be evicted by use-once streaming
1988 * IO, plus JVM can create lots of anon VM_EXEC pages,
1989 * so we ignore them here.
1990 */
1991 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1992 list_add(&page->lru, &l_active);
1993 continue;
1994 }
1995 }
1996
1997 ClearPageActive(page); /* we are de-activating */
1998 list_add(&page->lru, &l_inactive);
1999 }
2000
2001 /*
2002 * Move pages back to the lru list.
2003 */
2004 spin_lock_irq(&pgdat->lru_lock);
2005 /*
2006 * Count referenced pages from currently used mappings as rotated,
2007 * even though only some of them are actually re-activated. This
2008 * helps balance scan pressure between file and anonymous pages in
2009 * get_scan_count.
2010 */
2011 reclaim_stat->recent_rotated[file] += nr_rotated;
2012
2013 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2014 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2015 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2016 spin_unlock_irq(&pgdat->lru_lock);
2017
2018 mem_cgroup_uncharge_list(&l_hold);
2019 free_hot_cold_page_list(&l_hold, true);
2020 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2021 nr_deactivate, nr_rotated, sc->priority, file);
2022 }
2023
2024 /*
2025 * The inactive anon list should be small enough that the VM never has
2026 * to do too much work.
2027 *
2028 * The inactive file list should be small enough to leave most memory
2029 * to the established workingset on the scan-resistant active list,
2030 * but large enough to avoid thrashing the aggregate readahead window.
2031 *
2032 * Both inactive lists should also be large enough that each inactive
2033 * page has a chance to be referenced again before it is reclaimed.
2034 *
2035 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2036 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2037 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2038 *
2039 * total target max
2040 * memory ratio inactive
2041 * -------------------------------------
2042 * 10MB 1 5MB
2043 * 100MB 1 50MB
2044 * 1GB 3 250MB
2045 * 10GB 10 0.9GB
2046 * 100GB 31 3GB
2047 * 1TB 101 10GB
2048 * 10TB 320 32GB
2049 */
2050 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2051 struct scan_control *sc, bool trace)
2052 {
2053 unsigned long inactive_ratio;
2054 unsigned long inactive, active;
2055 enum lru_list inactive_lru = file * LRU_FILE;
2056 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2057 unsigned long gb;
2058
2059 /*
2060 * If we don't have swap space, anonymous page deactivation
2061 * is pointless.
2062 */
2063 if (!file && !total_swap_pages)
2064 return false;
2065
2066 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2067 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2068
2069 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2070 if (gb)
2071 inactive_ratio = int_sqrt(10 * gb);
2072 else
2073 inactive_ratio = 1;
2074
2075 if (trace)
2076 trace_mm_vmscan_inactive_list_is_low(lruvec_pgdat(lruvec)->node_id,
2077 sc->reclaim_idx,
2078 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2079 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2080 inactive_ratio, file);
2081
2082 return inactive * inactive_ratio < active;
2083 }
2084
2085 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2086 struct lruvec *lruvec, struct scan_control *sc)
2087 {
2088 if (is_active_lru(lru)) {
2089 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2090 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2091 return 0;
2092 }
2093
2094 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2095 }
2096
2097 enum scan_balance {
2098 SCAN_EQUAL,
2099 SCAN_FRACT,
2100 SCAN_ANON,
2101 SCAN_FILE,
2102 };
2103
2104 /*
2105 * Determine how aggressively the anon and file LRU lists should be
2106 * scanned. The relative value of each set of LRU lists is determined
2107 * by looking at the fraction of the pages scanned we did rotate back
2108 * onto the active list instead of evict.
2109 *
2110 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2111 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2112 */
2113 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2114 struct scan_control *sc, unsigned long *nr,
2115 unsigned long *lru_pages)
2116 {
2117 int swappiness = mem_cgroup_swappiness(memcg);
2118 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2119 u64 fraction[2];
2120 u64 denominator = 0; /* gcc */
2121 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2122 unsigned long anon_prio, file_prio;
2123 enum scan_balance scan_balance;
2124 unsigned long anon, file;
2125 bool force_scan = false;
2126 unsigned long ap, fp;
2127 enum lru_list lru;
2128 bool some_scanned;
2129 int pass;
2130
2131 /*
2132 * If the zone or memcg is small, nr[l] can be 0. This
2133 * results in no scanning on this priority and a potential
2134 * priority drop. Global direct reclaim can go to the next
2135 * zone and tends to have no problems. Global kswapd is for
2136 * zone balancing and it needs to scan a minimum amount. When
2137 * reclaiming for a memcg, a priority drop can cause high
2138 * latencies, so it's better to scan a minimum amount there as
2139 * well.
2140 */
2141 if (current_is_kswapd()) {
2142 if (!pgdat_reclaimable(pgdat))
2143 force_scan = true;
2144 if (!mem_cgroup_online(memcg))
2145 force_scan = true;
2146 }
2147 if (!global_reclaim(sc))
2148 force_scan = true;
2149
2150 /* If we have no swap space, do not bother scanning anon pages. */
2151 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2152 scan_balance = SCAN_FILE;
2153 goto out;
2154 }
2155
2156 /*
2157 * Global reclaim will swap to prevent OOM even with no
2158 * swappiness, but memcg users want to use this knob to
2159 * disable swapping for individual groups completely when
2160 * using the memory controller's swap limit feature would be
2161 * too expensive.
2162 */
2163 if (!global_reclaim(sc) && !swappiness) {
2164 scan_balance = SCAN_FILE;
2165 goto out;
2166 }
2167
2168 /*
2169 * Do not apply any pressure balancing cleverness when the
2170 * system is close to OOM, scan both anon and file equally
2171 * (unless the swappiness setting disagrees with swapping).
2172 */
2173 if (!sc->priority && swappiness) {
2174 scan_balance = SCAN_EQUAL;
2175 goto out;
2176 }
2177
2178 /*
2179 * Prevent the reclaimer from falling into the cache trap: as
2180 * cache pages start out inactive, every cache fault will tip
2181 * the scan balance towards the file LRU. And as the file LRU
2182 * shrinks, so does the window for rotation from references.
2183 * This means we have a runaway feedback loop where a tiny
2184 * thrashing file LRU becomes infinitely more attractive than
2185 * anon pages. Try to detect this based on file LRU size.
2186 */
2187 if (global_reclaim(sc)) {
2188 unsigned long pgdatfile;
2189 unsigned long pgdatfree;
2190 int z;
2191 unsigned long total_high_wmark = 0;
2192
2193 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2194 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2195 node_page_state(pgdat, NR_INACTIVE_FILE);
2196
2197 for (z = 0; z < MAX_NR_ZONES; z++) {
2198 struct zone *zone = &pgdat->node_zones[z];
2199 if (!managed_zone(zone))
2200 continue;
2201
2202 total_high_wmark += high_wmark_pages(zone);
2203 }
2204
2205 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2206 scan_balance = SCAN_ANON;
2207 goto out;
2208 }
2209 }
2210
2211 /*
2212 * If there is enough inactive page cache, i.e. if the size of the
2213 * inactive list is greater than that of the active list *and* the
2214 * inactive list actually has some pages to scan on this priority, we
2215 * do not reclaim anything from the anonymous working set right now.
2216 * Without the second condition we could end up never scanning an
2217 * lruvec even if it has plenty of old anonymous pages unless the
2218 * system is under heavy pressure.
2219 */
2220 if (!inactive_list_is_low(lruvec, true, sc, false) &&
2221 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2222 scan_balance = SCAN_FILE;
2223 goto out;
2224 }
2225
2226 scan_balance = SCAN_FRACT;
2227
2228 /*
2229 * With swappiness at 100, anonymous and file have the same priority.
2230 * This scanning priority is essentially the inverse of IO cost.
2231 */
2232 anon_prio = swappiness;
2233 file_prio = 200 - anon_prio;
2234
2235 /*
2236 * OK, so we have swap space and a fair amount of page cache
2237 * pages. We use the recently rotated / recently scanned
2238 * ratios to determine how valuable each cache is.
2239 *
2240 * Because workloads change over time (and to avoid overflow)
2241 * we keep these statistics as a floating average, which ends
2242 * up weighing recent references more than old ones.
2243 *
2244 * anon in [0], file in [1]
2245 */
2246
2247 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2248 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2249 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2250 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2251
2252 spin_lock_irq(&pgdat->lru_lock);
2253 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2254 reclaim_stat->recent_scanned[0] /= 2;
2255 reclaim_stat->recent_rotated[0] /= 2;
2256 }
2257
2258 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2259 reclaim_stat->recent_scanned[1] /= 2;
2260 reclaim_stat->recent_rotated[1] /= 2;
2261 }
2262
2263 /*
2264 * The amount of pressure on anon vs file pages is inversely
2265 * proportional to the fraction of recently scanned pages on
2266 * each list that were recently referenced and in active use.
2267 */
2268 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2269 ap /= reclaim_stat->recent_rotated[0] + 1;
2270
2271 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2272 fp /= reclaim_stat->recent_rotated[1] + 1;
2273 spin_unlock_irq(&pgdat->lru_lock);
2274
2275 fraction[0] = ap;
2276 fraction[1] = fp;
2277 denominator = ap + fp + 1;
2278 out:
2279 some_scanned = false;
2280 /* Only use force_scan on second pass. */
2281 for (pass = 0; !some_scanned && pass < 2; pass++) {
2282 *lru_pages = 0;
2283 for_each_evictable_lru(lru) {
2284 int file = is_file_lru(lru);
2285 unsigned long size;
2286 unsigned long scan;
2287
2288 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2289 scan = size >> sc->priority;
2290
2291 if (!scan && pass && force_scan)
2292 scan = min(size, SWAP_CLUSTER_MAX);
2293
2294 switch (scan_balance) {
2295 case SCAN_EQUAL:
2296 /* Scan lists relative to size */
2297 break;
2298 case SCAN_FRACT:
2299 /*
2300 * Scan types proportional to swappiness and
2301 * their relative recent reclaim efficiency.
2302 */
2303 scan = div64_u64(scan * fraction[file],
2304 denominator);
2305 break;
2306 case SCAN_FILE:
2307 case SCAN_ANON:
2308 /* Scan one type exclusively */
2309 if ((scan_balance == SCAN_FILE) != file) {
2310 size = 0;
2311 scan = 0;
2312 }
2313 break;
2314 default:
2315 /* Look ma, no brain */
2316 BUG();
2317 }
2318
2319 *lru_pages += size;
2320 nr[lru] = scan;
2321
2322 /*
2323 * Skip the second pass and don't force_scan,
2324 * if we found something to scan.
2325 */
2326 some_scanned |= !!scan;
2327 }
2328 }
2329 }
2330
2331 /*
2332 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2333 */
2334 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2335 struct scan_control *sc, unsigned long *lru_pages)
2336 {
2337 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2338 unsigned long nr[NR_LRU_LISTS];
2339 unsigned long targets[NR_LRU_LISTS];
2340 unsigned long nr_to_scan;
2341 enum lru_list lru;
2342 unsigned long nr_reclaimed = 0;
2343 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2344 struct blk_plug plug;
2345 bool scan_adjusted;
2346
2347 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2348
2349 /* Record the original scan target for proportional adjustments later */
2350 memcpy(targets, nr, sizeof(nr));
2351
2352 /*
2353 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2354 * event that can occur when there is little memory pressure e.g.
2355 * multiple streaming readers/writers. Hence, we do not abort scanning
2356 * when the requested number of pages are reclaimed when scanning at
2357 * DEF_PRIORITY on the assumption that the fact we are direct
2358 * reclaiming implies that kswapd is not keeping up and it is best to
2359 * do a batch of work at once. For memcg reclaim one check is made to
2360 * abort proportional reclaim if either the file or anon lru has already
2361 * dropped to zero at the first pass.
2362 */
2363 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2364 sc->priority == DEF_PRIORITY);
2365
2366 blk_start_plug(&plug);
2367 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2368 nr[LRU_INACTIVE_FILE]) {
2369 unsigned long nr_anon, nr_file, percentage;
2370 unsigned long nr_scanned;
2371
2372 for_each_evictable_lru(lru) {
2373 if (nr[lru]) {
2374 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2375 nr[lru] -= nr_to_scan;
2376
2377 nr_reclaimed += shrink_list(lru, nr_to_scan,
2378 lruvec, sc);
2379 }
2380 }
2381
2382 cond_resched();
2383
2384 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2385 continue;
2386
2387 /*
2388 * For kswapd and memcg, reclaim at least the number of pages
2389 * requested. Ensure that the anon and file LRUs are scanned
2390 * proportionally what was requested by get_scan_count(). We
2391 * stop reclaiming one LRU and reduce the amount scanning
2392 * proportional to the original scan target.
2393 */
2394 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2395 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2396
2397 /*
2398 * It's just vindictive to attack the larger once the smaller
2399 * has gone to zero. And given the way we stop scanning the
2400 * smaller below, this makes sure that we only make one nudge
2401 * towards proportionality once we've got nr_to_reclaim.
2402 */
2403 if (!nr_file || !nr_anon)
2404 break;
2405
2406 if (nr_file > nr_anon) {
2407 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2408 targets[LRU_ACTIVE_ANON] + 1;
2409 lru = LRU_BASE;
2410 percentage = nr_anon * 100 / scan_target;
2411 } else {
2412 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2413 targets[LRU_ACTIVE_FILE] + 1;
2414 lru = LRU_FILE;
2415 percentage = nr_file * 100 / scan_target;
2416 }
2417
2418 /* Stop scanning the smaller of the LRU */
2419 nr[lru] = 0;
2420 nr[lru + LRU_ACTIVE] = 0;
2421
2422 /*
2423 * Recalculate the other LRU scan count based on its original
2424 * scan target and the percentage scanning already complete
2425 */
2426 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2427 nr_scanned = targets[lru] - nr[lru];
2428 nr[lru] = targets[lru] * (100 - percentage) / 100;
2429 nr[lru] -= min(nr[lru], nr_scanned);
2430
2431 lru += LRU_ACTIVE;
2432 nr_scanned = targets[lru] - nr[lru];
2433 nr[lru] = targets[lru] * (100 - percentage) / 100;
2434 nr[lru] -= min(nr[lru], nr_scanned);
2435
2436 scan_adjusted = true;
2437 }
2438 blk_finish_plug(&plug);
2439 sc->nr_reclaimed += nr_reclaimed;
2440
2441 /*
2442 * Even if we did not try to evict anon pages at all, we want to
2443 * rebalance the anon lru active/inactive ratio.
2444 */
2445 if (inactive_list_is_low(lruvec, false, sc, true))
2446 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2447 sc, LRU_ACTIVE_ANON);
2448 }
2449
2450 /* Use reclaim/compaction for costly allocs or under memory pressure */
2451 static bool in_reclaim_compaction(struct scan_control *sc)
2452 {
2453 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2454 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2455 sc->priority < DEF_PRIORITY - 2))
2456 return true;
2457
2458 return false;
2459 }
2460
2461 /*
2462 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2463 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2464 * true if more pages should be reclaimed such that when the page allocator
2465 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2466 * It will give up earlier than that if there is difficulty reclaiming pages.
2467 */
2468 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2469 unsigned long nr_reclaimed,
2470 unsigned long nr_scanned,
2471 struct scan_control *sc)
2472 {
2473 unsigned long pages_for_compaction;
2474 unsigned long inactive_lru_pages;
2475 int z;
2476
2477 /* If not in reclaim/compaction mode, stop */
2478 if (!in_reclaim_compaction(sc))
2479 return false;
2480
2481 /* Consider stopping depending on scan and reclaim activity */
2482 if (sc->gfp_mask & __GFP_REPEAT) {
2483 /*
2484 * For __GFP_REPEAT allocations, stop reclaiming if the
2485 * full LRU list has been scanned and we are still failing
2486 * to reclaim pages. This full LRU scan is potentially
2487 * expensive but a __GFP_REPEAT caller really wants to succeed
2488 */
2489 if (!nr_reclaimed && !nr_scanned)
2490 return false;
2491 } else {
2492 /*
2493 * For non-__GFP_REPEAT allocations which can presumably
2494 * fail without consequence, stop if we failed to reclaim
2495 * any pages from the last SWAP_CLUSTER_MAX number of
2496 * pages that were scanned. This will return to the
2497 * caller faster at the risk reclaim/compaction and
2498 * the resulting allocation attempt fails
2499 */
2500 if (!nr_reclaimed)
2501 return false;
2502 }
2503
2504 /*
2505 * If we have not reclaimed enough pages for compaction and the
2506 * inactive lists are large enough, continue reclaiming
2507 */
2508 pages_for_compaction = compact_gap(sc->order);
2509 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2510 if (get_nr_swap_pages() > 0)
2511 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2512 if (sc->nr_reclaimed < pages_for_compaction &&
2513 inactive_lru_pages > pages_for_compaction)
2514 return true;
2515
2516 /* If compaction would go ahead or the allocation would succeed, stop */
2517 for (z = 0; z <= sc->reclaim_idx; z++) {
2518 struct zone *zone = &pgdat->node_zones[z];
2519 if (!managed_zone(zone))
2520 continue;
2521
2522 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2523 case COMPACT_SUCCESS:
2524 case COMPACT_CONTINUE:
2525 return false;
2526 default:
2527 /* check next zone */
2528 ;
2529 }
2530 }
2531 return true;
2532 }
2533
2534 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2535 {
2536 struct reclaim_state *reclaim_state = current->reclaim_state;
2537 unsigned long nr_reclaimed, nr_scanned;
2538 bool reclaimable = false;
2539
2540 do {
2541 struct mem_cgroup *root = sc->target_mem_cgroup;
2542 struct mem_cgroup_reclaim_cookie reclaim = {
2543 .pgdat = pgdat,
2544 .priority = sc->priority,
2545 };
2546 unsigned long node_lru_pages = 0;
2547 struct mem_cgroup *memcg;
2548
2549 nr_reclaimed = sc->nr_reclaimed;
2550 nr_scanned = sc->nr_scanned;
2551
2552 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2553 do {
2554 unsigned long lru_pages;
2555 unsigned long reclaimed;
2556 unsigned long scanned;
2557
2558 if (mem_cgroup_low(root, memcg)) {
2559 if (!sc->may_thrash)
2560 continue;
2561 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2562 }
2563
2564 reclaimed = sc->nr_reclaimed;
2565 scanned = sc->nr_scanned;
2566
2567 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2568 node_lru_pages += lru_pages;
2569
2570 if (memcg)
2571 shrink_slab(sc->gfp_mask, pgdat->node_id,
2572 memcg, sc->nr_scanned - scanned,
2573 lru_pages);
2574
2575 /* Record the group's reclaim efficiency */
2576 vmpressure(sc->gfp_mask, memcg, false,
2577 sc->nr_scanned - scanned,
2578 sc->nr_reclaimed - reclaimed);
2579
2580 /*
2581 * Direct reclaim and kswapd have to scan all memory
2582 * cgroups to fulfill the overall scan target for the
2583 * node.
2584 *
2585 * Limit reclaim, on the other hand, only cares about
2586 * nr_to_reclaim pages to be reclaimed and it will
2587 * retry with decreasing priority if one round over the
2588 * whole hierarchy is not sufficient.
2589 */
2590 if (!global_reclaim(sc) &&
2591 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2592 mem_cgroup_iter_break(root, memcg);
2593 break;
2594 }
2595 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2596
2597 /*
2598 * Shrink the slab caches in the same proportion that
2599 * the eligible LRU pages were scanned.
2600 */
2601 if (global_reclaim(sc))
2602 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2603 sc->nr_scanned - nr_scanned,
2604 node_lru_pages);
2605
2606 if (reclaim_state) {
2607 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2608 reclaim_state->reclaimed_slab = 0;
2609 }
2610
2611 /* Record the subtree's reclaim efficiency */
2612 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2613 sc->nr_scanned - nr_scanned,
2614 sc->nr_reclaimed - nr_reclaimed);
2615
2616 if (sc->nr_reclaimed - nr_reclaimed)
2617 reclaimable = true;
2618
2619 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2620 sc->nr_scanned - nr_scanned, sc));
2621
2622 return reclaimable;
2623 }
2624
2625 /*
2626 * Returns true if compaction should go ahead for a costly-order request, or
2627 * the allocation would already succeed without compaction. Return false if we
2628 * should reclaim first.
2629 */
2630 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2631 {
2632 unsigned long watermark;
2633 enum compact_result suitable;
2634
2635 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2636 if (suitable == COMPACT_SUCCESS)
2637 /* Allocation should succeed already. Don't reclaim. */
2638 return true;
2639 if (suitable == COMPACT_SKIPPED)
2640 /* Compaction cannot yet proceed. Do reclaim. */
2641 return false;
2642
2643 /*
2644 * Compaction is already possible, but it takes time to run and there
2645 * are potentially other callers using the pages just freed. So proceed
2646 * with reclaim to make a buffer of free pages available to give
2647 * compaction a reasonable chance of completing and allocating the page.
2648 * Note that we won't actually reclaim the whole buffer in one attempt
2649 * as the target watermark in should_continue_reclaim() is lower. But if
2650 * we are already above the high+gap watermark, don't reclaim at all.
2651 */
2652 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2653
2654 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2655 }
2656
2657 /*
2658 * This is the direct reclaim path, for page-allocating processes. We only
2659 * try to reclaim pages from zones which will satisfy the caller's allocation
2660 * request.
2661 *
2662 * If a zone is deemed to be full of pinned pages then just give it a light
2663 * scan then give up on it.
2664 */
2665 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2666 {
2667 struct zoneref *z;
2668 struct zone *zone;
2669 unsigned long nr_soft_reclaimed;
2670 unsigned long nr_soft_scanned;
2671 gfp_t orig_mask;
2672 pg_data_t *last_pgdat = NULL;
2673
2674 /*
2675 * If the number of buffer_heads in the machine exceeds the maximum
2676 * allowed level, force direct reclaim to scan the highmem zone as
2677 * highmem pages could be pinning lowmem pages storing buffer_heads
2678 */
2679 orig_mask = sc->gfp_mask;
2680 if (buffer_heads_over_limit) {
2681 sc->gfp_mask |= __GFP_HIGHMEM;
2682 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2683 }
2684
2685 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2686 sc->reclaim_idx, sc->nodemask) {
2687 /*
2688 * Take care memory controller reclaiming has small influence
2689 * to global LRU.
2690 */
2691 if (global_reclaim(sc)) {
2692 if (!cpuset_zone_allowed(zone,
2693 GFP_KERNEL | __GFP_HARDWALL))
2694 continue;
2695
2696 if (sc->priority != DEF_PRIORITY &&
2697 !pgdat_reclaimable(zone->zone_pgdat))
2698 continue; /* Let kswapd poll it */
2699
2700 /*
2701 * If we already have plenty of memory free for
2702 * compaction in this zone, don't free any more.
2703 * Even though compaction is invoked for any
2704 * non-zero order, only frequent costly order
2705 * reclamation is disruptive enough to become a
2706 * noticeable problem, like transparent huge
2707 * page allocations.
2708 */
2709 if (IS_ENABLED(CONFIG_COMPACTION) &&
2710 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2711 compaction_ready(zone, sc)) {
2712 sc->compaction_ready = true;
2713 continue;
2714 }
2715
2716 /*
2717 * Shrink each node in the zonelist once. If the
2718 * zonelist is ordered by zone (not the default) then a
2719 * node may be shrunk multiple times but in that case
2720 * the user prefers lower zones being preserved.
2721 */
2722 if (zone->zone_pgdat == last_pgdat)
2723 continue;
2724
2725 /*
2726 * This steals pages from memory cgroups over softlimit
2727 * and returns the number of reclaimed pages and
2728 * scanned pages. This works for global memory pressure
2729 * and balancing, not for a memcg's limit.
2730 */
2731 nr_soft_scanned = 0;
2732 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2733 sc->order, sc->gfp_mask,
2734 &nr_soft_scanned);
2735 sc->nr_reclaimed += nr_soft_reclaimed;
2736 sc->nr_scanned += nr_soft_scanned;
2737 /* need some check for avoid more shrink_zone() */
2738 }
2739
2740 /* See comment about same check for global reclaim above */
2741 if (zone->zone_pgdat == last_pgdat)
2742 continue;
2743 last_pgdat = zone->zone_pgdat;
2744 shrink_node(zone->zone_pgdat, sc);
2745 }
2746
2747 /*
2748 * Restore to original mask to avoid the impact on the caller if we
2749 * promoted it to __GFP_HIGHMEM.
2750 */
2751 sc->gfp_mask = orig_mask;
2752 }
2753
2754 /*
2755 * This is the main entry point to direct page reclaim.
2756 *
2757 * If a full scan of the inactive list fails to free enough memory then we
2758 * are "out of memory" and something needs to be killed.
2759 *
2760 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2761 * high - the zone may be full of dirty or under-writeback pages, which this
2762 * caller can't do much about. We kick the writeback threads and take explicit
2763 * naps in the hope that some of these pages can be written. But if the
2764 * allocating task holds filesystem locks which prevent writeout this might not
2765 * work, and the allocation attempt will fail.
2766 *
2767 * returns: 0, if no pages reclaimed
2768 * else, the number of pages reclaimed
2769 */
2770 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2771 struct scan_control *sc)
2772 {
2773 int initial_priority = sc->priority;
2774 retry:
2775 delayacct_freepages_start();
2776
2777 if (global_reclaim(sc))
2778 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2779
2780 do {
2781 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2782 sc->priority);
2783 sc->nr_scanned = 0;
2784 shrink_zones(zonelist, sc);
2785
2786 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2787 break;
2788
2789 if (sc->compaction_ready)
2790 break;
2791
2792 /*
2793 * If we're getting trouble reclaiming, start doing
2794 * writepage even in laptop mode.
2795 */
2796 if (sc->priority < DEF_PRIORITY - 2)
2797 sc->may_writepage = 1;
2798 } while (--sc->priority >= 0);
2799
2800 delayacct_freepages_end();
2801
2802 if (sc->nr_reclaimed)
2803 return sc->nr_reclaimed;
2804
2805 /* Aborted reclaim to try compaction? don't OOM, then */
2806 if (sc->compaction_ready)
2807 return 1;
2808
2809 /* Untapped cgroup reserves? Don't OOM, retry. */
2810 if (!sc->may_thrash) {
2811 sc->priority = initial_priority;
2812 sc->may_thrash = 1;
2813 goto retry;
2814 }
2815
2816 return 0;
2817 }
2818
2819 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2820 {
2821 struct zone *zone;
2822 unsigned long pfmemalloc_reserve = 0;
2823 unsigned long free_pages = 0;
2824 int i;
2825 bool wmark_ok;
2826
2827 for (i = 0; i <= ZONE_NORMAL; i++) {
2828 zone = &pgdat->node_zones[i];
2829 if (!managed_zone(zone) ||
2830 pgdat_reclaimable_pages(pgdat) == 0)
2831 continue;
2832
2833 pfmemalloc_reserve += min_wmark_pages(zone);
2834 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2835 }
2836
2837 /* If there are no reserves (unexpected config) then do not throttle */
2838 if (!pfmemalloc_reserve)
2839 return true;
2840
2841 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2842
2843 /* kswapd must be awake if processes are being throttled */
2844 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2845 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2846 (enum zone_type)ZONE_NORMAL);
2847 wake_up_interruptible(&pgdat->kswapd_wait);
2848 }
2849
2850 return wmark_ok;
2851 }
2852
2853 /*
2854 * Throttle direct reclaimers if backing storage is backed by the network
2855 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2856 * depleted. kswapd will continue to make progress and wake the processes
2857 * when the low watermark is reached.
2858 *
2859 * Returns true if a fatal signal was delivered during throttling. If this
2860 * happens, the page allocator should not consider triggering the OOM killer.
2861 */
2862 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2863 nodemask_t *nodemask)
2864 {
2865 struct zoneref *z;
2866 struct zone *zone;
2867 pg_data_t *pgdat = NULL;
2868
2869 /*
2870 * Kernel threads should not be throttled as they may be indirectly
2871 * responsible for cleaning pages necessary for reclaim to make forward
2872 * progress. kjournald for example may enter direct reclaim while
2873 * committing a transaction where throttling it could forcing other
2874 * processes to block on log_wait_commit().
2875 */
2876 if (current->flags & PF_KTHREAD)
2877 goto out;
2878
2879 /*
2880 * If a fatal signal is pending, this process should not throttle.
2881 * It should return quickly so it can exit and free its memory
2882 */
2883 if (fatal_signal_pending(current))
2884 goto out;
2885
2886 /*
2887 * Check if the pfmemalloc reserves are ok by finding the first node
2888 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2889 * GFP_KERNEL will be required for allocating network buffers when
2890 * swapping over the network so ZONE_HIGHMEM is unusable.
2891 *
2892 * Throttling is based on the first usable node and throttled processes
2893 * wait on a queue until kswapd makes progress and wakes them. There
2894 * is an affinity then between processes waking up and where reclaim
2895 * progress has been made assuming the process wakes on the same node.
2896 * More importantly, processes running on remote nodes will not compete
2897 * for remote pfmemalloc reserves and processes on different nodes
2898 * should make reasonable progress.
2899 */
2900 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2901 gfp_zone(gfp_mask), nodemask) {
2902 if (zone_idx(zone) > ZONE_NORMAL)
2903 continue;
2904
2905 /* Throttle based on the first usable node */
2906 pgdat = zone->zone_pgdat;
2907 if (pfmemalloc_watermark_ok(pgdat))
2908 goto out;
2909 break;
2910 }
2911
2912 /* If no zone was usable by the allocation flags then do not throttle */
2913 if (!pgdat)
2914 goto out;
2915
2916 /* Account for the throttling */
2917 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2918
2919 /*
2920 * If the caller cannot enter the filesystem, it's possible that it
2921 * is due to the caller holding an FS lock or performing a journal
2922 * transaction in the case of a filesystem like ext[3|4]. In this case,
2923 * it is not safe to block on pfmemalloc_wait as kswapd could be
2924 * blocked waiting on the same lock. Instead, throttle for up to a
2925 * second before continuing.
2926 */
2927 if (!(gfp_mask & __GFP_FS)) {
2928 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2929 pfmemalloc_watermark_ok(pgdat), HZ);
2930
2931 goto check_pending;
2932 }
2933
2934 /* Throttle until kswapd wakes the process */
2935 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2936 pfmemalloc_watermark_ok(pgdat));
2937
2938 check_pending:
2939 if (fatal_signal_pending(current))
2940 return true;
2941
2942 out:
2943 return false;
2944 }
2945
2946 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2947 gfp_t gfp_mask, nodemask_t *nodemask)
2948 {
2949 unsigned long nr_reclaimed;
2950 struct scan_control sc = {
2951 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2952 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2953 .reclaim_idx = gfp_zone(gfp_mask),
2954 .order = order,
2955 .nodemask = nodemask,
2956 .priority = DEF_PRIORITY,
2957 .may_writepage = !laptop_mode,
2958 .may_unmap = 1,
2959 .may_swap = 1,
2960 };
2961
2962 /*
2963 * Do not enter reclaim if fatal signal was delivered while throttled.
2964 * 1 is returned so that the page allocator does not OOM kill at this
2965 * point.
2966 */
2967 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2968 return 1;
2969
2970 trace_mm_vmscan_direct_reclaim_begin(order,
2971 sc.may_writepage,
2972 gfp_mask,
2973 sc.reclaim_idx);
2974
2975 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2976
2977 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2978
2979 return nr_reclaimed;
2980 }
2981
2982 #ifdef CONFIG_MEMCG
2983
2984 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2985 gfp_t gfp_mask, bool noswap,
2986 pg_data_t *pgdat,
2987 unsigned long *nr_scanned)
2988 {
2989 struct scan_control sc = {
2990 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2991 .target_mem_cgroup = memcg,
2992 .may_writepage = !laptop_mode,
2993 .may_unmap = 1,
2994 .reclaim_idx = MAX_NR_ZONES - 1,
2995 .may_swap = !noswap,
2996 };
2997 unsigned long lru_pages;
2998
2999 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3000 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3001
3002 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3003 sc.may_writepage,
3004 sc.gfp_mask,
3005 sc.reclaim_idx);
3006
3007 /*
3008 * NOTE: Although we can get the priority field, using it
3009 * here is not a good idea, since it limits the pages we can scan.
3010 * if we don't reclaim here, the shrink_node from balance_pgdat
3011 * will pick up pages from other mem cgroup's as well. We hack
3012 * the priority and make it zero.
3013 */
3014 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3015
3016 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3017
3018 *nr_scanned = sc.nr_scanned;
3019 return sc.nr_reclaimed;
3020 }
3021
3022 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3023 unsigned long nr_pages,
3024 gfp_t gfp_mask,
3025 bool may_swap)
3026 {
3027 struct zonelist *zonelist;
3028 unsigned long nr_reclaimed;
3029 int nid;
3030 struct scan_control sc = {
3031 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3032 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3033 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3034 .reclaim_idx = MAX_NR_ZONES - 1,
3035 .target_mem_cgroup = memcg,
3036 .priority = DEF_PRIORITY,
3037 .may_writepage = !laptop_mode,
3038 .may_unmap = 1,
3039 .may_swap = may_swap,
3040 };
3041
3042 /*
3043 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3044 * take care of from where we get pages. So the node where we start the
3045 * scan does not need to be the current node.
3046 */
3047 nid = mem_cgroup_select_victim_node(memcg);
3048
3049 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3050
3051 trace_mm_vmscan_memcg_reclaim_begin(0,
3052 sc.may_writepage,
3053 sc.gfp_mask,
3054 sc.reclaim_idx);
3055
3056 current->flags |= PF_MEMALLOC;
3057 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3058 current->flags &= ~PF_MEMALLOC;
3059
3060 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3061
3062 return nr_reclaimed;
3063 }
3064 #endif
3065
3066 static void age_active_anon(struct pglist_data *pgdat,
3067 struct scan_control *sc)
3068 {
3069 struct mem_cgroup *memcg;
3070
3071 if (!total_swap_pages)
3072 return;
3073
3074 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3075 do {
3076 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3077
3078 if (inactive_list_is_low(lruvec, false, sc, true))
3079 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3080 sc, LRU_ACTIVE_ANON);
3081
3082 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3083 } while (memcg);
3084 }
3085
3086 static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3087 {
3088 unsigned long mark = high_wmark_pages(zone);
3089
3090 if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3091 return false;
3092
3093 /*
3094 * If any eligible zone is balanced then the node is not considered
3095 * to be congested or dirty
3096 */
3097 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3098 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3099 clear_bit(PGDAT_WRITEBACK, &zone->zone_pgdat->flags);
3100
3101 return true;
3102 }
3103
3104 /*
3105 * Prepare kswapd for sleeping. This verifies that there are no processes
3106 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3107 *
3108 * Returns true if kswapd is ready to sleep
3109 */
3110 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3111 {
3112 int i;
3113
3114 /*
3115 * The throttled processes are normally woken up in balance_pgdat() as
3116 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3117 * race between when kswapd checks the watermarks and a process gets
3118 * throttled. There is also a potential race if processes get
3119 * throttled, kswapd wakes, a large process exits thereby balancing the
3120 * zones, which causes kswapd to exit balance_pgdat() before reaching
3121 * the wake up checks. If kswapd is going to sleep, no process should
3122 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3123 * the wake up is premature, processes will wake kswapd and get
3124 * throttled again. The difference from wake ups in balance_pgdat() is
3125 * that here we are under prepare_to_wait().
3126 */
3127 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3128 wake_up_all(&pgdat->pfmemalloc_wait);
3129
3130 for (i = 0; i <= classzone_idx; i++) {
3131 struct zone *zone = pgdat->node_zones + i;
3132
3133 if (!managed_zone(zone))
3134 continue;
3135
3136 if (!zone_balanced(zone, order, classzone_idx))
3137 return false;
3138 }
3139
3140 return true;
3141 }
3142
3143 /*
3144 * kswapd shrinks a node of pages that are at or below the highest usable
3145 * zone that is currently unbalanced.
3146 *
3147 * Returns true if kswapd scanned at least the requested number of pages to
3148 * reclaim or if the lack of progress was due to pages under writeback.
3149 * This is used to determine if the scanning priority needs to be raised.
3150 */
3151 static bool kswapd_shrink_node(pg_data_t *pgdat,
3152 struct scan_control *sc)
3153 {
3154 struct zone *zone;
3155 int z;
3156
3157 /* Reclaim a number of pages proportional to the number of zones */
3158 sc->nr_to_reclaim = 0;
3159 for (z = 0; z <= sc->reclaim_idx; z++) {
3160 zone = pgdat->node_zones + z;
3161 if (!managed_zone(zone))
3162 continue;
3163
3164 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3165 }
3166
3167 /*
3168 * Historically care was taken to put equal pressure on all zones but
3169 * now pressure is applied based on node LRU order.
3170 */
3171 shrink_node(pgdat, sc);
3172
3173 /*
3174 * Fragmentation may mean that the system cannot be rebalanced for
3175 * high-order allocations. If twice the allocation size has been
3176 * reclaimed then recheck watermarks only at order-0 to prevent
3177 * excessive reclaim. Assume that a process requested a high-order
3178 * can direct reclaim/compact.
3179 */
3180 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3181 sc->order = 0;
3182
3183 return sc->nr_scanned >= sc->nr_to_reclaim;
3184 }
3185
3186 /*
3187 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3188 * that are eligible for use by the caller until at least one zone is
3189 * balanced.
3190 *
3191 * Returns the order kswapd finished reclaiming at.
3192 *
3193 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3194 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3195 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3196 * or lower is eligible for reclaim until at least one usable zone is
3197 * balanced.
3198 */
3199 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3200 {
3201 int i;
3202 unsigned long nr_soft_reclaimed;
3203 unsigned long nr_soft_scanned;
3204 struct zone *zone;
3205 struct scan_control sc = {
3206 .gfp_mask = GFP_KERNEL,
3207 .order = order,
3208 .priority = DEF_PRIORITY,
3209 .may_writepage = !laptop_mode,
3210 .may_unmap = 1,
3211 .may_swap = 1,
3212 };
3213 count_vm_event(PAGEOUTRUN);
3214
3215 do {
3216 bool raise_priority = true;
3217
3218 sc.nr_reclaimed = 0;
3219 sc.reclaim_idx = classzone_idx;
3220
3221 /*
3222 * If the number of buffer_heads exceeds the maximum allowed
3223 * then consider reclaiming from all zones. This has a dual
3224 * purpose -- on 64-bit systems it is expected that
3225 * buffer_heads are stripped during active rotation. On 32-bit
3226 * systems, highmem pages can pin lowmem memory and shrinking
3227 * buffers can relieve lowmem pressure. Reclaim may still not
3228 * go ahead if all eligible zones for the original allocation
3229 * request are balanced to avoid excessive reclaim from kswapd.
3230 */
3231 if (buffer_heads_over_limit) {
3232 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3233 zone = pgdat->node_zones + i;
3234 if (!managed_zone(zone))
3235 continue;
3236
3237 sc.reclaim_idx = i;
3238 break;
3239 }
3240 }
3241
3242 /*
3243 * Only reclaim if there are no eligible zones. Check from
3244 * high to low zone as allocations prefer higher zones.
3245 * Scanning from low to high zone would allow congestion to be
3246 * cleared during a very small window when a small low
3247 * zone was balanced even under extreme pressure when the
3248 * overall node may be congested. Note that sc.reclaim_idx
3249 * is not used as buffer_heads_over_limit may have adjusted
3250 * it.
3251 */
3252 for (i = classzone_idx; i >= 0; i--) {
3253 zone = pgdat->node_zones + i;
3254 if (!managed_zone(zone))
3255 continue;
3256
3257 if (zone_balanced(zone, sc.order, classzone_idx))
3258 goto out;
3259 }
3260
3261 /*
3262 * Do some background aging of the anon list, to give
3263 * pages a chance to be referenced before reclaiming. All
3264 * pages are rotated regardless of classzone as this is
3265 * about consistent aging.
3266 */
3267 age_active_anon(pgdat, &sc);
3268
3269 /*
3270 * If we're getting trouble reclaiming, start doing writepage
3271 * even in laptop mode.
3272 */
3273 if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3274 sc.may_writepage = 1;
3275
3276 /* Call soft limit reclaim before calling shrink_node. */
3277 sc.nr_scanned = 0;
3278 nr_soft_scanned = 0;
3279 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3280 sc.gfp_mask, &nr_soft_scanned);
3281 sc.nr_reclaimed += nr_soft_reclaimed;
3282
3283 /*
3284 * There should be no need to raise the scanning priority if
3285 * enough pages are already being scanned that that high
3286 * watermark would be met at 100% efficiency.
3287 */
3288 if (kswapd_shrink_node(pgdat, &sc))
3289 raise_priority = false;
3290
3291 /*
3292 * If the low watermark is met there is no need for processes
3293 * to be throttled on pfmemalloc_wait as they should not be
3294 * able to safely make forward progress. Wake them
3295 */
3296 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3297 pfmemalloc_watermark_ok(pgdat))
3298 wake_up_all(&pgdat->pfmemalloc_wait);
3299
3300 /* Check if kswapd should be suspending */
3301 if (try_to_freeze() || kthread_should_stop())
3302 break;
3303
3304 /*
3305 * Raise priority if scanning rate is too low or there was no
3306 * progress in reclaiming pages
3307 */
3308 if (raise_priority || !sc.nr_reclaimed)
3309 sc.priority--;
3310 } while (sc.priority >= 1);
3311
3312 out:
3313 /*
3314 * Return the order kswapd stopped reclaiming at as
3315 * prepare_kswapd_sleep() takes it into account. If another caller
3316 * entered the allocator slow path while kswapd was awake, order will
3317 * remain at the higher level.
3318 */
3319 return sc.order;
3320 }
3321
3322 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3323 unsigned int classzone_idx)
3324 {
3325 long remaining = 0;
3326 DEFINE_WAIT(wait);
3327
3328 if (freezing(current) || kthread_should_stop())
3329 return;
3330
3331 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3332
3333 /* Try to sleep for a short interval */
3334 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3335 /*
3336 * Compaction records what page blocks it recently failed to
3337 * isolate pages from and skips them in the future scanning.
3338 * When kswapd is going to sleep, it is reasonable to assume
3339 * that pages and compaction may succeed so reset the cache.
3340 */
3341 reset_isolation_suitable(pgdat);
3342
3343 /*
3344 * We have freed the memory, now we should compact it to make
3345 * allocation of the requested order possible.
3346 */
3347 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3348
3349 remaining = schedule_timeout(HZ/10);
3350
3351 /*
3352 * If woken prematurely then reset kswapd_classzone_idx and
3353 * order. The values will either be from a wakeup request or
3354 * the previous request that slept prematurely.
3355 */
3356 if (remaining) {
3357 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3358 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3359 }
3360
3361 finish_wait(&pgdat->kswapd_wait, &wait);
3362 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3363 }
3364
3365 /*
3366 * After a short sleep, check if it was a premature sleep. If not, then
3367 * go fully to sleep until explicitly woken up.
3368 */
3369 if (!remaining &&
3370 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3371 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3372
3373 /*
3374 * vmstat counters are not perfectly accurate and the estimated
3375 * value for counters such as NR_FREE_PAGES can deviate from the
3376 * true value by nr_online_cpus * threshold. To avoid the zone
3377 * watermarks being breached while under pressure, we reduce the
3378 * per-cpu vmstat threshold while kswapd is awake and restore
3379 * them before going back to sleep.
3380 */
3381 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3382
3383 if (!kthread_should_stop())
3384 schedule();
3385
3386 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3387 } else {
3388 if (remaining)
3389 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3390 else
3391 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3392 }
3393 finish_wait(&pgdat->kswapd_wait, &wait);
3394 }
3395
3396 /*
3397 * The background pageout daemon, started as a kernel thread
3398 * from the init process.
3399 *
3400 * This basically trickles out pages so that we have _some_
3401 * free memory available even if there is no other activity
3402 * that frees anything up. This is needed for things like routing
3403 * etc, where we otherwise might have all activity going on in
3404 * asynchronous contexts that cannot page things out.
3405 *
3406 * If there are applications that are active memory-allocators
3407 * (most normal use), this basically shouldn't matter.
3408 */
3409 static int kswapd(void *p)
3410 {
3411 unsigned int alloc_order, reclaim_order, classzone_idx;
3412 pg_data_t *pgdat = (pg_data_t*)p;
3413 struct task_struct *tsk = current;
3414
3415 struct reclaim_state reclaim_state = {
3416 .reclaimed_slab = 0,
3417 };
3418 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3419
3420 lockdep_set_current_reclaim_state(GFP_KERNEL);
3421
3422 if (!cpumask_empty(cpumask))
3423 set_cpus_allowed_ptr(tsk, cpumask);
3424 current->reclaim_state = &reclaim_state;
3425
3426 /*
3427 * Tell the memory management that we're a "memory allocator",
3428 * and that if we need more memory we should get access to it
3429 * regardless (see "__alloc_pages()"). "kswapd" should
3430 * never get caught in the normal page freeing logic.
3431 *
3432 * (Kswapd normally doesn't need memory anyway, but sometimes
3433 * you need a small amount of memory in order to be able to
3434 * page out something else, and this flag essentially protects
3435 * us from recursively trying to free more memory as we're
3436 * trying to free the first piece of memory in the first place).
3437 */
3438 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3439 set_freezable();
3440
3441 pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3442 pgdat->kswapd_classzone_idx = classzone_idx = 0;
3443 for ( ; ; ) {
3444 bool ret;
3445
3446 kswapd_try_sleep:
3447 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3448 classzone_idx);
3449
3450 /* Read the new order and classzone_idx */
3451 alloc_order = reclaim_order = pgdat->kswapd_order;
3452 classzone_idx = pgdat->kswapd_classzone_idx;
3453 pgdat->kswapd_order = 0;
3454 pgdat->kswapd_classzone_idx = 0;
3455
3456 ret = try_to_freeze();
3457 if (kthread_should_stop())
3458 break;
3459
3460 /*
3461 * We can speed up thawing tasks if we don't call balance_pgdat
3462 * after returning from the refrigerator
3463 */
3464 if (ret)
3465 continue;
3466
3467 /*
3468 * Reclaim begins at the requested order but if a high-order
3469 * reclaim fails then kswapd falls back to reclaiming for
3470 * order-0. If that happens, kswapd will consider sleeping
3471 * for the order it finished reclaiming at (reclaim_order)
3472 * but kcompactd is woken to compact for the original
3473 * request (alloc_order).
3474 */
3475 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3476 alloc_order);
3477 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3478 if (reclaim_order < alloc_order)
3479 goto kswapd_try_sleep;
3480
3481 alloc_order = reclaim_order = pgdat->kswapd_order;
3482 classzone_idx = pgdat->kswapd_classzone_idx;
3483 }
3484
3485 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3486 current->reclaim_state = NULL;
3487 lockdep_clear_current_reclaim_state();
3488
3489 return 0;
3490 }
3491
3492 /*
3493 * A zone is low on free memory, so wake its kswapd task to service it.
3494 */
3495 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3496 {
3497 pg_data_t *pgdat;
3498 int z;
3499
3500 if (!managed_zone(zone))
3501 return;
3502
3503 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3504 return;
3505 pgdat = zone->zone_pgdat;
3506 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3507 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3508 if (!waitqueue_active(&pgdat->kswapd_wait))
3509 return;
3510
3511 /* Only wake kswapd if all zones are unbalanced */
3512 for (z = 0; z <= classzone_idx; z++) {
3513 zone = pgdat->node_zones + z;
3514 if (!managed_zone(zone))
3515 continue;
3516
3517 if (zone_balanced(zone, order, classzone_idx))
3518 return;
3519 }
3520
3521 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3522 wake_up_interruptible(&pgdat->kswapd_wait);
3523 }
3524
3525 #ifdef CONFIG_HIBERNATION
3526 /*
3527 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3528 * freed pages.
3529 *
3530 * Rather than trying to age LRUs the aim is to preserve the overall
3531 * LRU order by reclaiming preferentially
3532 * inactive > active > active referenced > active mapped
3533 */
3534 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3535 {
3536 struct reclaim_state reclaim_state;
3537 struct scan_control sc = {
3538 .nr_to_reclaim = nr_to_reclaim,
3539 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3540 .reclaim_idx = MAX_NR_ZONES - 1,
3541 .priority = DEF_PRIORITY,
3542 .may_writepage = 1,
3543 .may_unmap = 1,
3544 .may_swap = 1,
3545 .hibernation_mode = 1,
3546 };
3547 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3548 struct task_struct *p = current;
3549 unsigned long nr_reclaimed;
3550
3551 p->flags |= PF_MEMALLOC;
3552 lockdep_set_current_reclaim_state(sc.gfp_mask);
3553 reclaim_state.reclaimed_slab = 0;
3554 p->reclaim_state = &reclaim_state;
3555
3556 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3557
3558 p->reclaim_state = NULL;
3559 lockdep_clear_current_reclaim_state();
3560 p->flags &= ~PF_MEMALLOC;
3561
3562 return nr_reclaimed;
3563 }
3564 #endif /* CONFIG_HIBERNATION */
3565
3566 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3567 not required for correctness. So if the last cpu in a node goes
3568 away, we get changed to run anywhere: as the first one comes back,
3569 restore their cpu bindings. */
3570 static int kswapd_cpu_online(unsigned int cpu)
3571 {
3572 int nid;
3573
3574 for_each_node_state(nid, N_MEMORY) {
3575 pg_data_t *pgdat = NODE_DATA(nid);
3576 const struct cpumask *mask;
3577
3578 mask = cpumask_of_node(pgdat->node_id);
3579
3580 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3581 /* One of our CPUs online: restore mask */
3582 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3583 }
3584 return 0;
3585 }
3586
3587 /*
3588 * This kswapd start function will be called by init and node-hot-add.
3589 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3590 */
3591 int kswapd_run(int nid)
3592 {
3593 pg_data_t *pgdat = NODE_DATA(nid);
3594 int ret = 0;
3595
3596 if (pgdat->kswapd)
3597 return 0;
3598
3599 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3600 if (IS_ERR(pgdat->kswapd)) {
3601 /* failure at boot is fatal */
3602 BUG_ON(system_state == SYSTEM_BOOTING);
3603 pr_err("Failed to start kswapd on node %d\n", nid);
3604 ret = PTR_ERR(pgdat->kswapd);
3605 pgdat->kswapd = NULL;
3606 }
3607 return ret;
3608 }
3609
3610 /*
3611 * Called by memory hotplug when all memory in a node is offlined. Caller must
3612 * hold mem_hotplug_begin/end().
3613 */
3614 void kswapd_stop(int nid)
3615 {
3616 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3617
3618 if (kswapd) {
3619 kthread_stop(kswapd);
3620 NODE_DATA(nid)->kswapd = NULL;
3621 }
3622 }
3623
3624 static int __init kswapd_init(void)
3625 {
3626 int nid, ret;
3627
3628 swap_setup();
3629 for_each_node_state(nid, N_MEMORY)
3630 kswapd_run(nid);
3631 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3632 "mm/vmscan:online", kswapd_cpu_online,
3633 NULL);
3634 WARN_ON(ret < 0);
3635 return 0;
3636 }
3637
3638 module_init(kswapd_init)
3639
3640 #ifdef CONFIG_NUMA
3641 /*
3642 * Node reclaim mode
3643 *
3644 * If non-zero call node_reclaim when the number of free pages falls below
3645 * the watermarks.
3646 */
3647 int node_reclaim_mode __read_mostly;
3648
3649 #define RECLAIM_OFF 0
3650 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3651 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3652 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3653
3654 /*
3655 * Priority for NODE_RECLAIM. This determines the fraction of pages
3656 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3657 * a zone.
3658 */
3659 #define NODE_RECLAIM_PRIORITY 4
3660
3661 /*
3662 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3663 * occur.
3664 */
3665 int sysctl_min_unmapped_ratio = 1;
3666
3667 /*
3668 * If the number of slab pages in a zone grows beyond this percentage then
3669 * slab reclaim needs to occur.
3670 */
3671 int sysctl_min_slab_ratio = 5;
3672
3673 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3674 {
3675 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3676 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3677 node_page_state(pgdat, NR_ACTIVE_FILE);
3678
3679 /*
3680 * It's possible for there to be more file mapped pages than
3681 * accounted for by the pages on the file LRU lists because
3682 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3683 */
3684 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3685 }
3686
3687 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3688 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3689 {
3690 unsigned long nr_pagecache_reclaimable;
3691 unsigned long delta = 0;
3692
3693 /*
3694 * If RECLAIM_UNMAP is set, then all file pages are considered
3695 * potentially reclaimable. Otherwise, we have to worry about
3696 * pages like swapcache and node_unmapped_file_pages() provides
3697 * a better estimate
3698 */
3699 if (node_reclaim_mode & RECLAIM_UNMAP)
3700 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3701 else
3702 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3703
3704 /* If we can't clean pages, remove dirty pages from consideration */
3705 if (!(node_reclaim_mode & RECLAIM_WRITE))
3706 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3707
3708 /* Watch for any possible underflows due to delta */
3709 if (unlikely(delta > nr_pagecache_reclaimable))
3710 delta = nr_pagecache_reclaimable;
3711
3712 return nr_pagecache_reclaimable - delta;
3713 }
3714
3715 /*
3716 * Try to free up some pages from this node through reclaim.
3717 */
3718 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3719 {
3720 /* Minimum pages needed in order to stay on node */
3721 const unsigned long nr_pages = 1 << order;
3722 struct task_struct *p = current;
3723 struct reclaim_state reclaim_state;
3724 int classzone_idx = gfp_zone(gfp_mask);
3725 struct scan_control sc = {
3726 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3727 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3728 .order = order,
3729 .priority = NODE_RECLAIM_PRIORITY,
3730 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3731 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3732 .may_swap = 1,
3733 .reclaim_idx = classzone_idx,
3734 };
3735
3736 cond_resched();
3737 /*
3738 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3739 * and we also need to be able to write out pages for RECLAIM_WRITE
3740 * and RECLAIM_UNMAP.
3741 */
3742 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3743 lockdep_set_current_reclaim_state(gfp_mask);
3744 reclaim_state.reclaimed_slab = 0;
3745 p->reclaim_state = &reclaim_state;
3746
3747 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3748 /*
3749 * Free memory by calling shrink zone with increasing
3750 * priorities until we have enough memory freed.
3751 */
3752 do {
3753 shrink_node(pgdat, &sc);
3754 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3755 }
3756
3757 p->reclaim_state = NULL;
3758 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3759 lockdep_clear_current_reclaim_state();
3760 return sc.nr_reclaimed >= nr_pages;
3761 }
3762
3763 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3764 {
3765 int ret;
3766
3767 /*
3768 * Node reclaim reclaims unmapped file backed pages and
3769 * slab pages if we are over the defined limits.
3770 *
3771 * A small portion of unmapped file backed pages is needed for
3772 * file I/O otherwise pages read by file I/O will be immediately
3773 * thrown out if the node is overallocated. So we do not reclaim
3774 * if less than a specified percentage of the node is used by
3775 * unmapped file backed pages.
3776 */
3777 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3778 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3779 return NODE_RECLAIM_FULL;
3780
3781 if (!pgdat_reclaimable(pgdat))
3782 return NODE_RECLAIM_FULL;
3783
3784 /*
3785 * Do not scan if the allocation should not be delayed.
3786 */
3787 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3788 return NODE_RECLAIM_NOSCAN;
3789
3790 /*
3791 * Only run node reclaim on the local node or on nodes that do not
3792 * have associated processors. This will favor the local processor
3793 * over remote processors and spread off node memory allocations
3794 * as wide as possible.
3795 */
3796 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3797 return NODE_RECLAIM_NOSCAN;
3798
3799 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3800 return NODE_RECLAIM_NOSCAN;
3801
3802 ret = __node_reclaim(pgdat, gfp_mask, order);
3803 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3804
3805 if (!ret)
3806 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3807
3808 return ret;
3809 }
3810 #endif
3811
3812 /*
3813 * page_evictable - test whether a page is evictable
3814 * @page: the page to test
3815 *
3816 * Test whether page is evictable--i.e., should be placed on active/inactive
3817 * lists vs unevictable list.
3818 *
3819 * Reasons page might not be evictable:
3820 * (1) page's mapping marked unevictable
3821 * (2) page is part of an mlocked VMA
3822 *
3823 */
3824 int page_evictable(struct page *page)
3825 {
3826 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3827 }
3828
3829 #ifdef CONFIG_SHMEM
3830 /**
3831 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3832 * @pages: array of pages to check
3833 * @nr_pages: number of pages to check
3834 *
3835 * Checks pages for evictability and moves them to the appropriate lru list.
3836 *
3837 * This function is only used for SysV IPC SHM_UNLOCK.
3838 */
3839 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3840 {
3841 struct lruvec *lruvec;
3842 struct pglist_data *pgdat = NULL;
3843 int pgscanned = 0;
3844 int pgrescued = 0;
3845 int i;
3846
3847 for (i = 0; i < nr_pages; i++) {
3848 struct page *page = pages[i];
3849 struct pglist_data *pagepgdat = page_pgdat(page);
3850
3851 pgscanned++;
3852 if (pagepgdat != pgdat) {
3853 if (pgdat)
3854 spin_unlock_irq(&pgdat->lru_lock);
3855 pgdat = pagepgdat;
3856 spin_lock_irq(&pgdat->lru_lock);
3857 }
3858 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3859
3860 if (!PageLRU(page) || !PageUnevictable(page))
3861 continue;
3862
3863 if (page_evictable(page)) {
3864 enum lru_list lru = page_lru_base_type(page);
3865
3866 VM_BUG_ON_PAGE(PageActive(page), page);
3867 ClearPageUnevictable(page);
3868 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3869 add_page_to_lru_list(page, lruvec, lru);
3870 pgrescued++;
3871 }
3872 }
3873
3874 if (pgdat) {
3875 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3876 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3877 spin_unlock_irq(&pgdat->lru_lock);
3878 }
3879 }
3880 #endif /* CONFIG_SHMEM */