]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/vmscan.c
Merge tag 'timers-urgent-2020-08-14' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / mm / vmscan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60
61 #include "internal.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65
66 struct scan_control {
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
69
70 /*
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 * are scanned.
73 */
74 nodemask_t *nodemask;
75
76 /*
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
79 */
80 struct mem_cgroup *target_mem_cgroup;
81
82 /*
83 * Scan pressure balancing between anon and file LRUs
84 */
85 unsigned long anon_cost;
86 unsigned long file_cost;
87
88 /* Can active pages be deactivated as part of reclaim? */
89 #define DEACTIVATE_ANON 1
90 #define DEACTIVATE_FILE 2
91 unsigned int may_deactivate:2;
92 unsigned int force_deactivate:1;
93 unsigned int skipped_deactivate:1;
94
95 /* Writepage batching in laptop mode; RECLAIM_WRITE */
96 unsigned int may_writepage:1;
97
98 /* Can mapped pages be reclaimed? */
99 unsigned int may_unmap:1;
100
101 /* Can pages be swapped as part of reclaim? */
102 unsigned int may_swap:1;
103
104 /*
105 * Cgroups are not reclaimed below their configured memory.low,
106 * unless we threaten to OOM. If any cgroups are skipped due to
107 * memory.low and nothing was reclaimed, go back for memory.low.
108 */
109 unsigned int memcg_low_reclaim:1;
110 unsigned int memcg_low_skipped:1;
111
112 unsigned int hibernation_mode:1;
113
114 /* One of the zones is ready for compaction */
115 unsigned int compaction_ready:1;
116
117 /* There is easily reclaimable cold cache in the current node */
118 unsigned int cache_trim_mode:1;
119
120 /* The file pages on the current node are dangerously low */
121 unsigned int file_is_tiny:1;
122
123 /* Allocation order */
124 s8 order;
125
126 /* Scan (total_size >> priority) pages at once */
127 s8 priority;
128
129 /* The highest zone to isolate pages for reclaim from */
130 s8 reclaim_idx;
131
132 /* This context's GFP mask */
133 gfp_t gfp_mask;
134
135 /* Incremented by the number of inactive pages that were scanned */
136 unsigned long nr_scanned;
137
138 /* Number of pages freed so far during a call to shrink_zones() */
139 unsigned long nr_reclaimed;
140
141 struct {
142 unsigned int dirty;
143 unsigned int unqueued_dirty;
144 unsigned int congested;
145 unsigned int writeback;
146 unsigned int immediate;
147 unsigned int file_taken;
148 unsigned int taken;
149 } nr;
150
151 /* for recording the reclaimed slab by now */
152 struct reclaim_state reclaim_state;
153 };
154
155 #ifdef ARCH_HAS_PREFETCHW
156 #define prefetchw_prev_lru_page(_page, _base, _field) \
157 do { \
158 if ((_page)->lru.prev != _base) { \
159 struct page *prev; \
160 \
161 prev = lru_to_page(&(_page->lru)); \
162 prefetchw(&prev->_field); \
163 } \
164 } while (0)
165 #else
166 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
167 #endif
168
169 /*
170 * From 0 .. 200. Higher means more swappy.
171 */
172 int vm_swappiness = 60;
173
174 static void set_task_reclaim_state(struct task_struct *task,
175 struct reclaim_state *rs)
176 {
177 /* Check for an overwrite */
178 WARN_ON_ONCE(rs && task->reclaim_state);
179
180 /* Check for the nulling of an already-nulled member */
181 WARN_ON_ONCE(!rs && !task->reclaim_state);
182
183 task->reclaim_state = rs;
184 }
185
186 static LIST_HEAD(shrinker_list);
187 static DECLARE_RWSEM(shrinker_rwsem);
188
189 #ifdef CONFIG_MEMCG
190 /*
191 * We allow subsystems to populate their shrinker-related
192 * LRU lists before register_shrinker_prepared() is called
193 * for the shrinker, since we don't want to impose
194 * restrictions on their internal registration order.
195 * In this case shrink_slab_memcg() may find corresponding
196 * bit is set in the shrinkers map.
197 *
198 * This value is used by the function to detect registering
199 * shrinkers and to skip do_shrink_slab() calls for them.
200 */
201 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
202
203 static DEFINE_IDR(shrinker_idr);
204 static int shrinker_nr_max;
205
206 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
207 {
208 int id, ret = -ENOMEM;
209
210 down_write(&shrinker_rwsem);
211 /* This may call shrinker, so it must use down_read_trylock() */
212 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
213 if (id < 0)
214 goto unlock;
215
216 if (id >= shrinker_nr_max) {
217 if (memcg_expand_shrinker_maps(id)) {
218 idr_remove(&shrinker_idr, id);
219 goto unlock;
220 }
221
222 shrinker_nr_max = id + 1;
223 }
224 shrinker->id = id;
225 ret = 0;
226 unlock:
227 up_write(&shrinker_rwsem);
228 return ret;
229 }
230
231 static void unregister_memcg_shrinker(struct shrinker *shrinker)
232 {
233 int id = shrinker->id;
234
235 BUG_ON(id < 0);
236
237 down_write(&shrinker_rwsem);
238 idr_remove(&shrinker_idr, id);
239 up_write(&shrinker_rwsem);
240 }
241
242 static bool cgroup_reclaim(struct scan_control *sc)
243 {
244 return sc->target_mem_cgroup;
245 }
246
247 /**
248 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
249 * @sc: scan_control in question
250 *
251 * The normal page dirty throttling mechanism in balance_dirty_pages() is
252 * completely broken with the legacy memcg and direct stalling in
253 * shrink_page_list() is used for throttling instead, which lacks all the
254 * niceties such as fairness, adaptive pausing, bandwidth proportional
255 * allocation and configurability.
256 *
257 * This function tests whether the vmscan currently in progress can assume
258 * that the normal dirty throttling mechanism is operational.
259 */
260 static bool writeback_throttling_sane(struct scan_control *sc)
261 {
262 if (!cgroup_reclaim(sc))
263 return true;
264 #ifdef CONFIG_CGROUP_WRITEBACK
265 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
266 return true;
267 #endif
268 return false;
269 }
270 #else
271 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
272 {
273 return 0;
274 }
275
276 static void unregister_memcg_shrinker(struct shrinker *shrinker)
277 {
278 }
279
280 static bool cgroup_reclaim(struct scan_control *sc)
281 {
282 return false;
283 }
284
285 static bool writeback_throttling_sane(struct scan_control *sc)
286 {
287 return true;
288 }
289 #endif
290
291 /*
292 * This misses isolated pages which are not accounted for to save counters.
293 * As the data only determines if reclaim or compaction continues, it is
294 * not expected that isolated pages will be a dominating factor.
295 */
296 unsigned long zone_reclaimable_pages(struct zone *zone)
297 {
298 unsigned long nr;
299
300 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
301 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
302 if (get_nr_swap_pages() > 0)
303 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
304 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
305
306 return nr;
307 }
308
309 /**
310 * lruvec_lru_size - Returns the number of pages on the given LRU list.
311 * @lruvec: lru vector
312 * @lru: lru to use
313 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
314 */
315 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
316 {
317 unsigned long size = 0;
318 int zid;
319
320 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
321 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
322
323 if (!managed_zone(zone))
324 continue;
325
326 if (!mem_cgroup_disabled())
327 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
328 else
329 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
330 }
331 return size;
332 }
333
334 /*
335 * Add a shrinker callback to be called from the vm.
336 */
337 int prealloc_shrinker(struct shrinker *shrinker)
338 {
339 unsigned int size = sizeof(*shrinker->nr_deferred);
340
341 if (shrinker->flags & SHRINKER_NUMA_AWARE)
342 size *= nr_node_ids;
343
344 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
345 if (!shrinker->nr_deferred)
346 return -ENOMEM;
347
348 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
349 if (prealloc_memcg_shrinker(shrinker))
350 goto free_deferred;
351 }
352
353 return 0;
354
355 free_deferred:
356 kfree(shrinker->nr_deferred);
357 shrinker->nr_deferred = NULL;
358 return -ENOMEM;
359 }
360
361 void free_prealloced_shrinker(struct shrinker *shrinker)
362 {
363 if (!shrinker->nr_deferred)
364 return;
365
366 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
367 unregister_memcg_shrinker(shrinker);
368
369 kfree(shrinker->nr_deferred);
370 shrinker->nr_deferred = NULL;
371 }
372
373 void register_shrinker_prepared(struct shrinker *shrinker)
374 {
375 down_write(&shrinker_rwsem);
376 list_add_tail(&shrinker->list, &shrinker_list);
377 #ifdef CONFIG_MEMCG
378 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
379 idr_replace(&shrinker_idr, shrinker, shrinker->id);
380 #endif
381 up_write(&shrinker_rwsem);
382 }
383
384 int register_shrinker(struct shrinker *shrinker)
385 {
386 int err = prealloc_shrinker(shrinker);
387
388 if (err)
389 return err;
390 register_shrinker_prepared(shrinker);
391 return 0;
392 }
393 EXPORT_SYMBOL(register_shrinker);
394
395 /*
396 * Remove one
397 */
398 void unregister_shrinker(struct shrinker *shrinker)
399 {
400 if (!shrinker->nr_deferred)
401 return;
402 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
403 unregister_memcg_shrinker(shrinker);
404 down_write(&shrinker_rwsem);
405 list_del(&shrinker->list);
406 up_write(&shrinker_rwsem);
407 kfree(shrinker->nr_deferred);
408 shrinker->nr_deferred = NULL;
409 }
410 EXPORT_SYMBOL(unregister_shrinker);
411
412 #define SHRINK_BATCH 128
413
414 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
415 struct shrinker *shrinker, int priority)
416 {
417 unsigned long freed = 0;
418 unsigned long long delta;
419 long total_scan;
420 long freeable;
421 long nr;
422 long new_nr;
423 int nid = shrinkctl->nid;
424 long batch_size = shrinker->batch ? shrinker->batch
425 : SHRINK_BATCH;
426 long scanned = 0, next_deferred;
427
428 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
429 nid = 0;
430
431 freeable = shrinker->count_objects(shrinker, shrinkctl);
432 if (freeable == 0 || freeable == SHRINK_EMPTY)
433 return freeable;
434
435 /*
436 * copy the current shrinker scan count into a local variable
437 * and zero it so that other concurrent shrinker invocations
438 * don't also do this scanning work.
439 */
440 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
441
442 total_scan = nr;
443 if (shrinker->seeks) {
444 delta = freeable >> priority;
445 delta *= 4;
446 do_div(delta, shrinker->seeks);
447 } else {
448 /*
449 * These objects don't require any IO to create. Trim
450 * them aggressively under memory pressure to keep
451 * them from causing refetches in the IO caches.
452 */
453 delta = freeable / 2;
454 }
455
456 total_scan += delta;
457 if (total_scan < 0) {
458 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
459 shrinker->scan_objects, total_scan);
460 total_scan = freeable;
461 next_deferred = nr;
462 } else
463 next_deferred = total_scan;
464
465 /*
466 * We need to avoid excessive windup on filesystem shrinkers
467 * due to large numbers of GFP_NOFS allocations causing the
468 * shrinkers to return -1 all the time. This results in a large
469 * nr being built up so when a shrink that can do some work
470 * comes along it empties the entire cache due to nr >>>
471 * freeable. This is bad for sustaining a working set in
472 * memory.
473 *
474 * Hence only allow the shrinker to scan the entire cache when
475 * a large delta change is calculated directly.
476 */
477 if (delta < freeable / 4)
478 total_scan = min(total_scan, freeable / 2);
479
480 /*
481 * Avoid risking looping forever due to too large nr value:
482 * never try to free more than twice the estimate number of
483 * freeable entries.
484 */
485 if (total_scan > freeable * 2)
486 total_scan = freeable * 2;
487
488 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
489 freeable, delta, total_scan, priority);
490
491 /*
492 * Normally, we should not scan less than batch_size objects in one
493 * pass to avoid too frequent shrinker calls, but if the slab has less
494 * than batch_size objects in total and we are really tight on memory,
495 * we will try to reclaim all available objects, otherwise we can end
496 * up failing allocations although there are plenty of reclaimable
497 * objects spread over several slabs with usage less than the
498 * batch_size.
499 *
500 * We detect the "tight on memory" situations by looking at the total
501 * number of objects we want to scan (total_scan). If it is greater
502 * than the total number of objects on slab (freeable), we must be
503 * scanning at high prio and therefore should try to reclaim as much as
504 * possible.
505 */
506 while (total_scan >= batch_size ||
507 total_scan >= freeable) {
508 unsigned long ret;
509 unsigned long nr_to_scan = min(batch_size, total_scan);
510
511 shrinkctl->nr_to_scan = nr_to_scan;
512 shrinkctl->nr_scanned = nr_to_scan;
513 ret = shrinker->scan_objects(shrinker, shrinkctl);
514 if (ret == SHRINK_STOP)
515 break;
516 freed += ret;
517
518 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
519 total_scan -= shrinkctl->nr_scanned;
520 scanned += shrinkctl->nr_scanned;
521
522 cond_resched();
523 }
524
525 if (next_deferred >= scanned)
526 next_deferred -= scanned;
527 else
528 next_deferred = 0;
529 /*
530 * move the unused scan count back into the shrinker in a
531 * manner that handles concurrent updates. If we exhausted the
532 * scan, there is no need to do an update.
533 */
534 if (next_deferred > 0)
535 new_nr = atomic_long_add_return(next_deferred,
536 &shrinker->nr_deferred[nid]);
537 else
538 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
539
540 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
541 return freed;
542 }
543
544 #ifdef CONFIG_MEMCG
545 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
546 struct mem_cgroup *memcg, int priority)
547 {
548 struct memcg_shrinker_map *map;
549 unsigned long ret, freed = 0;
550 int i;
551
552 if (!mem_cgroup_online(memcg))
553 return 0;
554
555 if (!down_read_trylock(&shrinker_rwsem))
556 return 0;
557
558 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
559 true);
560 if (unlikely(!map))
561 goto unlock;
562
563 for_each_set_bit(i, map->map, shrinker_nr_max) {
564 struct shrink_control sc = {
565 .gfp_mask = gfp_mask,
566 .nid = nid,
567 .memcg = memcg,
568 };
569 struct shrinker *shrinker;
570
571 shrinker = idr_find(&shrinker_idr, i);
572 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
573 if (!shrinker)
574 clear_bit(i, map->map);
575 continue;
576 }
577
578 /* Call non-slab shrinkers even though kmem is disabled */
579 if (!memcg_kmem_enabled() &&
580 !(shrinker->flags & SHRINKER_NONSLAB))
581 continue;
582
583 ret = do_shrink_slab(&sc, shrinker, priority);
584 if (ret == SHRINK_EMPTY) {
585 clear_bit(i, map->map);
586 /*
587 * After the shrinker reported that it had no objects to
588 * free, but before we cleared the corresponding bit in
589 * the memcg shrinker map, a new object might have been
590 * added. To make sure, we have the bit set in this
591 * case, we invoke the shrinker one more time and reset
592 * the bit if it reports that it is not empty anymore.
593 * The memory barrier here pairs with the barrier in
594 * memcg_set_shrinker_bit():
595 *
596 * list_lru_add() shrink_slab_memcg()
597 * list_add_tail() clear_bit()
598 * <MB> <MB>
599 * set_bit() do_shrink_slab()
600 */
601 smp_mb__after_atomic();
602 ret = do_shrink_slab(&sc, shrinker, priority);
603 if (ret == SHRINK_EMPTY)
604 ret = 0;
605 else
606 memcg_set_shrinker_bit(memcg, nid, i);
607 }
608 freed += ret;
609
610 if (rwsem_is_contended(&shrinker_rwsem)) {
611 freed = freed ? : 1;
612 break;
613 }
614 }
615 unlock:
616 up_read(&shrinker_rwsem);
617 return freed;
618 }
619 #else /* CONFIG_MEMCG */
620 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
621 struct mem_cgroup *memcg, int priority)
622 {
623 return 0;
624 }
625 #endif /* CONFIG_MEMCG */
626
627 /**
628 * shrink_slab - shrink slab caches
629 * @gfp_mask: allocation context
630 * @nid: node whose slab caches to target
631 * @memcg: memory cgroup whose slab caches to target
632 * @priority: the reclaim priority
633 *
634 * Call the shrink functions to age shrinkable caches.
635 *
636 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
637 * unaware shrinkers will receive a node id of 0 instead.
638 *
639 * @memcg specifies the memory cgroup to target. Unaware shrinkers
640 * are called only if it is the root cgroup.
641 *
642 * @priority is sc->priority, we take the number of objects and >> by priority
643 * in order to get the scan target.
644 *
645 * Returns the number of reclaimed slab objects.
646 */
647 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
648 struct mem_cgroup *memcg,
649 int priority)
650 {
651 unsigned long ret, freed = 0;
652 struct shrinker *shrinker;
653
654 /*
655 * The root memcg might be allocated even though memcg is disabled
656 * via "cgroup_disable=memory" boot parameter. This could make
657 * mem_cgroup_is_root() return false, then just run memcg slab
658 * shrink, but skip global shrink. This may result in premature
659 * oom.
660 */
661 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
662 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
663
664 if (!down_read_trylock(&shrinker_rwsem))
665 goto out;
666
667 list_for_each_entry(shrinker, &shrinker_list, list) {
668 struct shrink_control sc = {
669 .gfp_mask = gfp_mask,
670 .nid = nid,
671 .memcg = memcg,
672 };
673
674 ret = do_shrink_slab(&sc, shrinker, priority);
675 if (ret == SHRINK_EMPTY)
676 ret = 0;
677 freed += ret;
678 /*
679 * Bail out if someone want to register a new shrinker to
680 * prevent the registration from being stalled for long periods
681 * by parallel ongoing shrinking.
682 */
683 if (rwsem_is_contended(&shrinker_rwsem)) {
684 freed = freed ? : 1;
685 break;
686 }
687 }
688
689 up_read(&shrinker_rwsem);
690 out:
691 cond_resched();
692 return freed;
693 }
694
695 void drop_slab_node(int nid)
696 {
697 unsigned long freed;
698
699 do {
700 struct mem_cgroup *memcg = NULL;
701
702 freed = 0;
703 memcg = mem_cgroup_iter(NULL, NULL, NULL);
704 do {
705 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
706 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
707 } while (freed > 10);
708 }
709
710 void drop_slab(void)
711 {
712 int nid;
713
714 for_each_online_node(nid)
715 drop_slab_node(nid);
716 }
717
718 static inline int is_page_cache_freeable(struct page *page)
719 {
720 /*
721 * A freeable page cache page is referenced only by the caller
722 * that isolated the page, the page cache and optional buffer
723 * heads at page->private.
724 */
725 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
726 HPAGE_PMD_NR : 1;
727 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
728 }
729
730 static int may_write_to_inode(struct inode *inode)
731 {
732 if (current->flags & PF_SWAPWRITE)
733 return 1;
734 if (!inode_write_congested(inode))
735 return 1;
736 if (inode_to_bdi(inode) == current->backing_dev_info)
737 return 1;
738 return 0;
739 }
740
741 /*
742 * We detected a synchronous write error writing a page out. Probably
743 * -ENOSPC. We need to propagate that into the address_space for a subsequent
744 * fsync(), msync() or close().
745 *
746 * The tricky part is that after writepage we cannot touch the mapping: nothing
747 * prevents it from being freed up. But we have a ref on the page and once
748 * that page is locked, the mapping is pinned.
749 *
750 * We're allowed to run sleeping lock_page() here because we know the caller has
751 * __GFP_FS.
752 */
753 static void handle_write_error(struct address_space *mapping,
754 struct page *page, int error)
755 {
756 lock_page(page);
757 if (page_mapping(page) == mapping)
758 mapping_set_error(mapping, error);
759 unlock_page(page);
760 }
761
762 /* possible outcome of pageout() */
763 typedef enum {
764 /* failed to write page out, page is locked */
765 PAGE_KEEP,
766 /* move page to the active list, page is locked */
767 PAGE_ACTIVATE,
768 /* page has been sent to the disk successfully, page is unlocked */
769 PAGE_SUCCESS,
770 /* page is clean and locked */
771 PAGE_CLEAN,
772 } pageout_t;
773
774 /*
775 * pageout is called by shrink_page_list() for each dirty page.
776 * Calls ->writepage().
777 */
778 static pageout_t pageout(struct page *page, struct address_space *mapping)
779 {
780 /*
781 * If the page is dirty, only perform writeback if that write
782 * will be non-blocking. To prevent this allocation from being
783 * stalled by pagecache activity. But note that there may be
784 * stalls if we need to run get_block(). We could test
785 * PagePrivate for that.
786 *
787 * If this process is currently in __generic_file_write_iter() against
788 * this page's queue, we can perform writeback even if that
789 * will block.
790 *
791 * If the page is swapcache, write it back even if that would
792 * block, for some throttling. This happens by accident, because
793 * swap_backing_dev_info is bust: it doesn't reflect the
794 * congestion state of the swapdevs. Easy to fix, if needed.
795 */
796 if (!is_page_cache_freeable(page))
797 return PAGE_KEEP;
798 if (!mapping) {
799 /*
800 * Some data journaling orphaned pages can have
801 * page->mapping == NULL while being dirty with clean buffers.
802 */
803 if (page_has_private(page)) {
804 if (try_to_free_buffers(page)) {
805 ClearPageDirty(page);
806 pr_info("%s: orphaned page\n", __func__);
807 return PAGE_CLEAN;
808 }
809 }
810 return PAGE_KEEP;
811 }
812 if (mapping->a_ops->writepage == NULL)
813 return PAGE_ACTIVATE;
814 if (!may_write_to_inode(mapping->host))
815 return PAGE_KEEP;
816
817 if (clear_page_dirty_for_io(page)) {
818 int res;
819 struct writeback_control wbc = {
820 .sync_mode = WB_SYNC_NONE,
821 .nr_to_write = SWAP_CLUSTER_MAX,
822 .range_start = 0,
823 .range_end = LLONG_MAX,
824 .for_reclaim = 1,
825 };
826
827 SetPageReclaim(page);
828 res = mapping->a_ops->writepage(page, &wbc);
829 if (res < 0)
830 handle_write_error(mapping, page, res);
831 if (res == AOP_WRITEPAGE_ACTIVATE) {
832 ClearPageReclaim(page);
833 return PAGE_ACTIVATE;
834 }
835
836 if (!PageWriteback(page)) {
837 /* synchronous write or broken a_ops? */
838 ClearPageReclaim(page);
839 }
840 trace_mm_vmscan_writepage(page);
841 inc_node_page_state(page, NR_VMSCAN_WRITE);
842 return PAGE_SUCCESS;
843 }
844
845 return PAGE_CLEAN;
846 }
847
848 /*
849 * Same as remove_mapping, but if the page is removed from the mapping, it
850 * gets returned with a refcount of 0.
851 */
852 static int __remove_mapping(struct address_space *mapping, struct page *page,
853 bool reclaimed, struct mem_cgroup *target_memcg)
854 {
855 unsigned long flags;
856 int refcount;
857 void *shadow = NULL;
858
859 BUG_ON(!PageLocked(page));
860 BUG_ON(mapping != page_mapping(page));
861
862 xa_lock_irqsave(&mapping->i_pages, flags);
863 /*
864 * The non racy check for a busy page.
865 *
866 * Must be careful with the order of the tests. When someone has
867 * a ref to the page, it may be possible that they dirty it then
868 * drop the reference. So if PageDirty is tested before page_count
869 * here, then the following race may occur:
870 *
871 * get_user_pages(&page);
872 * [user mapping goes away]
873 * write_to(page);
874 * !PageDirty(page) [good]
875 * SetPageDirty(page);
876 * put_page(page);
877 * !page_count(page) [good, discard it]
878 *
879 * [oops, our write_to data is lost]
880 *
881 * Reversing the order of the tests ensures such a situation cannot
882 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
883 * load is not satisfied before that of page->_refcount.
884 *
885 * Note that if SetPageDirty is always performed via set_page_dirty,
886 * and thus under the i_pages lock, then this ordering is not required.
887 */
888 refcount = 1 + compound_nr(page);
889 if (!page_ref_freeze(page, refcount))
890 goto cannot_free;
891 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
892 if (unlikely(PageDirty(page))) {
893 page_ref_unfreeze(page, refcount);
894 goto cannot_free;
895 }
896
897 if (PageSwapCache(page)) {
898 swp_entry_t swap = { .val = page_private(page) };
899 mem_cgroup_swapout(page, swap);
900 if (reclaimed && !mapping_exiting(mapping))
901 shadow = workingset_eviction(page, target_memcg);
902 __delete_from_swap_cache(page, swap, shadow);
903 xa_unlock_irqrestore(&mapping->i_pages, flags);
904 put_swap_page(page, swap);
905 } else {
906 void (*freepage)(struct page *);
907
908 freepage = mapping->a_ops->freepage;
909 /*
910 * Remember a shadow entry for reclaimed file cache in
911 * order to detect refaults, thus thrashing, later on.
912 *
913 * But don't store shadows in an address space that is
914 * already exiting. This is not just an optimization,
915 * inode reclaim needs to empty out the radix tree or
916 * the nodes are lost. Don't plant shadows behind its
917 * back.
918 *
919 * We also don't store shadows for DAX mappings because the
920 * only page cache pages found in these are zero pages
921 * covering holes, and because we don't want to mix DAX
922 * exceptional entries and shadow exceptional entries in the
923 * same address_space.
924 */
925 if (reclaimed && page_is_file_lru(page) &&
926 !mapping_exiting(mapping) && !dax_mapping(mapping))
927 shadow = workingset_eviction(page, target_memcg);
928 __delete_from_page_cache(page, shadow);
929 xa_unlock_irqrestore(&mapping->i_pages, flags);
930
931 if (freepage != NULL)
932 freepage(page);
933 }
934
935 return 1;
936
937 cannot_free:
938 xa_unlock_irqrestore(&mapping->i_pages, flags);
939 return 0;
940 }
941
942 /*
943 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
944 * someone else has a ref on the page, abort and return 0. If it was
945 * successfully detached, return 1. Assumes the caller has a single ref on
946 * this page.
947 */
948 int remove_mapping(struct address_space *mapping, struct page *page)
949 {
950 if (__remove_mapping(mapping, page, false, NULL)) {
951 /*
952 * Unfreezing the refcount with 1 rather than 2 effectively
953 * drops the pagecache ref for us without requiring another
954 * atomic operation.
955 */
956 page_ref_unfreeze(page, 1);
957 return 1;
958 }
959 return 0;
960 }
961
962 /**
963 * putback_lru_page - put previously isolated page onto appropriate LRU list
964 * @page: page to be put back to appropriate lru list
965 *
966 * Add previously isolated @page to appropriate LRU list.
967 * Page may still be unevictable for other reasons.
968 *
969 * lru_lock must not be held, interrupts must be enabled.
970 */
971 void putback_lru_page(struct page *page)
972 {
973 lru_cache_add(page);
974 put_page(page); /* drop ref from isolate */
975 }
976
977 enum page_references {
978 PAGEREF_RECLAIM,
979 PAGEREF_RECLAIM_CLEAN,
980 PAGEREF_KEEP,
981 PAGEREF_ACTIVATE,
982 };
983
984 static enum page_references page_check_references(struct page *page,
985 struct scan_control *sc)
986 {
987 int referenced_ptes, referenced_page;
988 unsigned long vm_flags;
989
990 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
991 &vm_flags);
992 referenced_page = TestClearPageReferenced(page);
993
994 /*
995 * Mlock lost the isolation race with us. Let try_to_unmap()
996 * move the page to the unevictable list.
997 */
998 if (vm_flags & VM_LOCKED)
999 return PAGEREF_RECLAIM;
1000
1001 if (referenced_ptes) {
1002 /*
1003 * All mapped pages start out with page table
1004 * references from the instantiating fault, so we need
1005 * to look twice if a mapped file page is used more
1006 * than once.
1007 *
1008 * Mark it and spare it for another trip around the
1009 * inactive list. Another page table reference will
1010 * lead to its activation.
1011 *
1012 * Note: the mark is set for activated pages as well
1013 * so that recently deactivated but used pages are
1014 * quickly recovered.
1015 */
1016 SetPageReferenced(page);
1017
1018 if (referenced_page || referenced_ptes > 1)
1019 return PAGEREF_ACTIVATE;
1020
1021 /*
1022 * Activate file-backed executable pages after first usage.
1023 */
1024 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1025 return PAGEREF_ACTIVATE;
1026
1027 return PAGEREF_KEEP;
1028 }
1029
1030 /* Reclaim if clean, defer dirty pages to writeback */
1031 if (referenced_page && !PageSwapBacked(page))
1032 return PAGEREF_RECLAIM_CLEAN;
1033
1034 return PAGEREF_RECLAIM;
1035 }
1036
1037 /* Check if a page is dirty or under writeback */
1038 static void page_check_dirty_writeback(struct page *page,
1039 bool *dirty, bool *writeback)
1040 {
1041 struct address_space *mapping;
1042
1043 /*
1044 * Anonymous pages are not handled by flushers and must be written
1045 * from reclaim context. Do not stall reclaim based on them
1046 */
1047 if (!page_is_file_lru(page) ||
1048 (PageAnon(page) && !PageSwapBacked(page))) {
1049 *dirty = false;
1050 *writeback = false;
1051 return;
1052 }
1053
1054 /* By default assume that the page flags are accurate */
1055 *dirty = PageDirty(page);
1056 *writeback = PageWriteback(page);
1057
1058 /* Verify dirty/writeback state if the filesystem supports it */
1059 if (!page_has_private(page))
1060 return;
1061
1062 mapping = page_mapping(page);
1063 if (mapping && mapping->a_ops->is_dirty_writeback)
1064 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1065 }
1066
1067 /*
1068 * shrink_page_list() returns the number of reclaimed pages
1069 */
1070 static unsigned int shrink_page_list(struct list_head *page_list,
1071 struct pglist_data *pgdat,
1072 struct scan_control *sc,
1073 enum ttu_flags ttu_flags,
1074 struct reclaim_stat *stat,
1075 bool ignore_references)
1076 {
1077 LIST_HEAD(ret_pages);
1078 LIST_HEAD(free_pages);
1079 unsigned int nr_reclaimed = 0;
1080 unsigned int pgactivate = 0;
1081
1082 memset(stat, 0, sizeof(*stat));
1083 cond_resched();
1084
1085 while (!list_empty(page_list)) {
1086 struct address_space *mapping;
1087 struct page *page;
1088 enum page_references references = PAGEREF_RECLAIM;
1089 bool dirty, writeback, may_enter_fs;
1090 unsigned int nr_pages;
1091
1092 cond_resched();
1093
1094 page = lru_to_page(page_list);
1095 list_del(&page->lru);
1096
1097 if (!trylock_page(page))
1098 goto keep;
1099
1100 VM_BUG_ON_PAGE(PageActive(page), page);
1101
1102 nr_pages = compound_nr(page);
1103
1104 /* Account the number of base pages even though THP */
1105 sc->nr_scanned += nr_pages;
1106
1107 if (unlikely(!page_evictable(page)))
1108 goto activate_locked;
1109
1110 if (!sc->may_unmap && page_mapped(page))
1111 goto keep_locked;
1112
1113 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1114 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1115
1116 /*
1117 * The number of dirty pages determines if a node is marked
1118 * reclaim_congested which affects wait_iff_congested. kswapd
1119 * will stall and start writing pages if the tail of the LRU
1120 * is all dirty unqueued pages.
1121 */
1122 page_check_dirty_writeback(page, &dirty, &writeback);
1123 if (dirty || writeback)
1124 stat->nr_dirty++;
1125
1126 if (dirty && !writeback)
1127 stat->nr_unqueued_dirty++;
1128
1129 /*
1130 * Treat this page as congested if the underlying BDI is or if
1131 * pages are cycling through the LRU so quickly that the
1132 * pages marked for immediate reclaim are making it to the
1133 * end of the LRU a second time.
1134 */
1135 mapping = page_mapping(page);
1136 if (((dirty || writeback) && mapping &&
1137 inode_write_congested(mapping->host)) ||
1138 (writeback && PageReclaim(page)))
1139 stat->nr_congested++;
1140
1141 /*
1142 * If a page at the tail of the LRU is under writeback, there
1143 * are three cases to consider.
1144 *
1145 * 1) If reclaim is encountering an excessive number of pages
1146 * under writeback and this page is both under writeback and
1147 * PageReclaim then it indicates that pages are being queued
1148 * for IO but are being recycled through the LRU before the
1149 * IO can complete. Waiting on the page itself risks an
1150 * indefinite stall if it is impossible to writeback the
1151 * page due to IO error or disconnected storage so instead
1152 * note that the LRU is being scanned too quickly and the
1153 * caller can stall after page list has been processed.
1154 *
1155 * 2) Global or new memcg reclaim encounters a page that is
1156 * not marked for immediate reclaim, or the caller does not
1157 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1158 * not to fs). In this case mark the page for immediate
1159 * reclaim and continue scanning.
1160 *
1161 * Require may_enter_fs because we would wait on fs, which
1162 * may not have submitted IO yet. And the loop driver might
1163 * enter reclaim, and deadlock if it waits on a page for
1164 * which it is needed to do the write (loop masks off
1165 * __GFP_IO|__GFP_FS for this reason); but more thought
1166 * would probably show more reasons.
1167 *
1168 * 3) Legacy memcg encounters a page that is already marked
1169 * PageReclaim. memcg does not have any dirty pages
1170 * throttling so we could easily OOM just because too many
1171 * pages are in writeback and there is nothing else to
1172 * reclaim. Wait for the writeback to complete.
1173 *
1174 * In cases 1) and 2) we activate the pages to get them out of
1175 * the way while we continue scanning for clean pages on the
1176 * inactive list and refilling from the active list. The
1177 * observation here is that waiting for disk writes is more
1178 * expensive than potentially causing reloads down the line.
1179 * Since they're marked for immediate reclaim, they won't put
1180 * memory pressure on the cache working set any longer than it
1181 * takes to write them to disk.
1182 */
1183 if (PageWriteback(page)) {
1184 /* Case 1 above */
1185 if (current_is_kswapd() &&
1186 PageReclaim(page) &&
1187 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1188 stat->nr_immediate++;
1189 goto activate_locked;
1190
1191 /* Case 2 above */
1192 } else if (writeback_throttling_sane(sc) ||
1193 !PageReclaim(page) || !may_enter_fs) {
1194 /*
1195 * This is slightly racy - end_page_writeback()
1196 * might have just cleared PageReclaim, then
1197 * setting PageReclaim here end up interpreted
1198 * as PageReadahead - but that does not matter
1199 * enough to care. What we do want is for this
1200 * page to have PageReclaim set next time memcg
1201 * reclaim reaches the tests above, so it will
1202 * then wait_on_page_writeback() to avoid OOM;
1203 * and it's also appropriate in global reclaim.
1204 */
1205 SetPageReclaim(page);
1206 stat->nr_writeback++;
1207 goto activate_locked;
1208
1209 /* Case 3 above */
1210 } else {
1211 unlock_page(page);
1212 wait_on_page_writeback(page);
1213 /* then go back and try same page again */
1214 list_add_tail(&page->lru, page_list);
1215 continue;
1216 }
1217 }
1218
1219 if (!ignore_references)
1220 references = page_check_references(page, sc);
1221
1222 switch (references) {
1223 case PAGEREF_ACTIVATE:
1224 goto activate_locked;
1225 case PAGEREF_KEEP:
1226 stat->nr_ref_keep += nr_pages;
1227 goto keep_locked;
1228 case PAGEREF_RECLAIM:
1229 case PAGEREF_RECLAIM_CLEAN:
1230 ; /* try to reclaim the page below */
1231 }
1232
1233 /*
1234 * Anonymous process memory has backing store?
1235 * Try to allocate it some swap space here.
1236 * Lazyfree page could be freed directly
1237 */
1238 if (PageAnon(page) && PageSwapBacked(page)) {
1239 if (!PageSwapCache(page)) {
1240 if (!(sc->gfp_mask & __GFP_IO))
1241 goto keep_locked;
1242 if (PageTransHuge(page)) {
1243 /* cannot split THP, skip it */
1244 if (!can_split_huge_page(page, NULL))
1245 goto activate_locked;
1246 /*
1247 * Split pages without a PMD map right
1248 * away. Chances are some or all of the
1249 * tail pages can be freed without IO.
1250 */
1251 if (!compound_mapcount(page) &&
1252 split_huge_page_to_list(page,
1253 page_list))
1254 goto activate_locked;
1255 }
1256 if (!add_to_swap(page)) {
1257 if (!PageTransHuge(page))
1258 goto activate_locked_split;
1259 /* Fallback to swap normal pages */
1260 if (split_huge_page_to_list(page,
1261 page_list))
1262 goto activate_locked;
1263 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1264 count_vm_event(THP_SWPOUT_FALLBACK);
1265 #endif
1266 if (!add_to_swap(page))
1267 goto activate_locked_split;
1268 }
1269
1270 may_enter_fs = true;
1271
1272 /* Adding to swap updated mapping */
1273 mapping = page_mapping(page);
1274 }
1275 } else if (unlikely(PageTransHuge(page))) {
1276 /* Split file THP */
1277 if (split_huge_page_to_list(page, page_list))
1278 goto keep_locked;
1279 }
1280
1281 /*
1282 * THP may get split above, need minus tail pages and update
1283 * nr_pages to avoid accounting tail pages twice.
1284 *
1285 * The tail pages that are added into swap cache successfully
1286 * reach here.
1287 */
1288 if ((nr_pages > 1) && !PageTransHuge(page)) {
1289 sc->nr_scanned -= (nr_pages - 1);
1290 nr_pages = 1;
1291 }
1292
1293 /*
1294 * The page is mapped into the page tables of one or more
1295 * processes. Try to unmap it here.
1296 */
1297 if (page_mapped(page)) {
1298 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1299 bool was_swapbacked = PageSwapBacked(page);
1300
1301 if (unlikely(PageTransHuge(page)))
1302 flags |= TTU_SPLIT_HUGE_PMD;
1303
1304 if (!try_to_unmap(page, flags)) {
1305 stat->nr_unmap_fail += nr_pages;
1306 if (!was_swapbacked && PageSwapBacked(page))
1307 stat->nr_lazyfree_fail += nr_pages;
1308 goto activate_locked;
1309 }
1310 }
1311
1312 if (PageDirty(page)) {
1313 /*
1314 * Only kswapd can writeback filesystem pages
1315 * to avoid risk of stack overflow. But avoid
1316 * injecting inefficient single-page IO into
1317 * flusher writeback as much as possible: only
1318 * write pages when we've encountered many
1319 * dirty pages, and when we've already scanned
1320 * the rest of the LRU for clean pages and see
1321 * the same dirty pages again (PageReclaim).
1322 */
1323 if (page_is_file_lru(page) &&
1324 (!current_is_kswapd() || !PageReclaim(page) ||
1325 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1326 /*
1327 * Immediately reclaim when written back.
1328 * Similar in principal to deactivate_page()
1329 * except we already have the page isolated
1330 * and know it's dirty
1331 */
1332 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1333 SetPageReclaim(page);
1334
1335 goto activate_locked;
1336 }
1337
1338 if (references == PAGEREF_RECLAIM_CLEAN)
1339 goto keep_locked;
1340 if (!may_enter_fs)
1341 goto keep_locked;
1342 if (!sc->may_writepage)
1343 goto keep_locked;
1344
1345 /*
1346 * Page is dirty. Flush the TLB if a writable entry
1347 * potentially exists to avoid CPU writes after IO
1348 * starts and then write it out here.
1349 */
1350 try_to_unmap_flush_dirty();
1351 switch (pageout(page, mapping)) {
1352 case PAGE_KEEP:
1353 goto keep_locked;
1354 case PAGE_ACTIVATE:
1355 goto activate_locked;
1356 case PAGE_SUCCESS:
1357 stat->nr_pageout += hpage_nr_pages(page);
1358
1359 if (PageWriteback(page))
1360 goto keep;
1361 if (PageDirty(page))
1362 goto keep;
1363
1364 /*
1365 * A synchronous write - probably a ramdisk. Go
1366 * ahead and try to reclaim the page.
1367 */
1368 if (!trylock_page(page))
1369 goto keep;
1370 if (PageDirty(page) || PageWriteback(page))
1371 goto keep_locked;
1372 mapping = page_mapping(page);
1373 case PAGE_CLEAN:
1374 ; /* try to free the page below */
1375 }
1376 }
1377
1378 /*
1379 * If the page has buffers, try to free the buffer mappings
1380 * associated with this page. If we succeed we try to free
1381 * the page as well.
1382 *
1383 * We do this even if the page is PageDirty().
1384 * try_to_release_page() does not perform I/O, but it is
1385 * possible for a page to have PageDirty set, but it is actually
1386 * clean (all its buffers are clean). This happens if the
1387 * buffers were written out directly, with submit_bh(). ext3
1388 * will do this, as well as the blockdev mapping.
1389 * try_to_release_page() will discover that cleanness and will
1390 * drop the buffers and mark the page clean - it can be freed.
1391 *
1392 * Rarely, pages can have buffers and no ->mapping. These are
1393 * the pages which were not successfully invalidated in
1394 * truncate_complete_page(). We try to drop those buffers here
1395 * and if that worked, and the page is no longer mapped into
1396 * process address space (page_count == 1) it can be freed.
1397 * Otherwise, leave the page on the LRU so it is swappable.
1398 */
1399 if (page_has_private(page)) {
1400 if (!try_to_release_page(page, sc->gfp_mask))
1401 goto activate_locked;
1402 if (!mapping && page_count(page) == 1) {
1403 unlock_page(page);
1404 if (put_page_testzero(page))
1405 goto free_it;
1406 else {
1407 /*
1408 * rare race with speculative reference.
1409 * the speculative reference will free
1410 * this page shortly, so we may
1411 * increment nr_reclaimed here (and
1412 * leave it off the LRU).
1413 */
1414 nr_reclaimed++;
1415 continue;
1416 }
1417 }
1418 }
1419
1420 if (PageAnon(page) && !PageSwapBacked(page)) {
1421 /* follow __remove_mapping for reference */
1422 if (!page_ref_freeze(page, 1))
1423 goto keep_locked;
1424 if (PageDirty(page)) {
1425 page_ref_unfreeze(page, 1);
1426 goto keep_locked;
1427 }
1428
1429 count_vm_event(PGLAZYFREED);
1430 count_memcg_page_event(page, PGLAZYFREED);
1431 } else if (!mapping || !__remove_mapping(mapping, page, true,
1432 sc->target_mem_cgroup))
1433 goto keep_locked;
1434
1435 unlock_page(page);
1436 free_it:
1437 /*
1438 * THP may get swapped out in a whole, need account
1439 * all base pages.
1440 */
1441 nr_reclaimed += nr_pages;
1442
1443 /*
1444 * Is there need to periodically free_page_list? It would
1445 * appear not as the counts should be low
1446 */
1447 if (unlikely(PageTransHuge(page)))
1448 destroy_compound_page(page);
1449 else
1450 list_add(&page->lru, &free_pages);
1451 continue;
1452
1453 activate_locked_split:
1454 /*
1455 * The tail pages that are failed to add into swap cache
1456 * reach here. Fixup nr_scanned and nr_pages.
1457 */
1458 if (nr_pages > 1) {
1459 sc->nr_scanned -= (nr_pages - 1);
1460 nr_pages = 1;
1461 }
1462 activate_locked:
1463 /* Not a candidate for swapping, so reclaim swap space. */
1464 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1465 PageMlocked(page)))
1466 try_to_free_swap(page);
1467 VM_BUG_ON_PAGE(PageActive(page), page);
1468 if (!PageMlocked(page)) {
1469 int type = page_is_file_lru(page);
1470 SetPageActive(page);
1471 stat->nr_activate[type] += nr_pages;
1472 count_memcg_page_event(page, PGACTIVATE);
1473 }
1474 keep_locked:
1475 unlock_page(page);
1476 keep:
1477 list_add(&page->lru, &ret_pages);
1478 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1479 }
1480
1481 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1482
1483 mem_cgroup_uncharge_list(&free_pages);
1484 try_to_unmap_flush();
1485 free_unref_page_list(&free_pages);
1486
1487 list_splice(&ret_pages, page_list);
1488 count_vm_events(PGACTIVATE, pgactivate);
1489
1490 return nr_reclaimed;
1491 }
1492
1493 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1494 struct list_head *page_list)
1495 {
1496 struct scan_control sc = {
1497 .gfp_mask = GFP_KERNEL,
1498 .priority = DEF_PRIORITY,
1499 .may_unmap = 1,
1500 };
1501 struct reclaim_stat stat;
1502 unsigned int nr_reclaimed;
1503 struct page *page, *next;
1504 LIST_HEAD(clean_pages);
1505
1506 list_for_each_entry_safe(page, next, page_list, lru) {
1507 if (page_is_file_lru(page) && !PageDirty(page) &&
1508 !__PageMovable(page) && !PageUnevictable(page)) {
1509 ClearPageActive(page);
1510 list_move(&page->lru, &clean_pages);
1511 }
1512 }
1513
1514 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1515 TTU_IGNORE_ACCESS, &stat, true);
1516 list_splice(&clean_pages, page_list);
1517 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -nr_reclaimed);
1518 /*
1519 * Since lazyfree pages are isolated from file LRU from the beginning,
1520 * they will rotate back to anonymous LRU in the end if it failed to
1521 * discard so isolated count will be mismatched.
1522 * Compensate the isolated count for both LRU lists.
1523 */
1524 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1525 stat.nr_lazyfree_fail);
1526 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1527 -stat.nr_lazyfree_fail);
1528 return nr_reclaimed;
1529 }
1530
1531 /*
1532 * Attempt to remove the specified page from its LRU. Only take this page
1533 * if it is of the appropriate PageActive status. Pages which are being
1534 * freed elsewhere are also ignored.
1535 *
1536 * page: page to consider
1537 * mode: one of the LRU isolation modes defined above
1538 *
1539 * returns 0 on success, -ve errno on failure.
1540 */
1541 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1542 {
1543 int ret = -EINVAL;
1544
1545 /* Only take pages on the LRU. */
1546 if (!PageLRU(page))
1547 return ret;
1548
1549 /* Compaction should not handle unevictable pages but CMA can do so */
1550 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1551 return ret;
1552
1553 ret = -EBUSY;
1554
1555 /*
1556 * To minimise LRU disruption, the caller can indicate that it only
1557 * wants to isolate pages it will be able to operate on without
1558 * blocking - clean pages for the most part.
1559 *
1560 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1561 * that it is possible to migrate without blocking
1562 */
1563 if (mode & ISOLATE_ASYNC_MIGRATE) {
1564 /* All the caller can do on PageWriteback is block */
1565 if (PageWriteback(page))
1566 return ret;
1567
1568 if (PageDirty(page)) {
1569 struct address_space *mapping;
1570 bool migrate_dirty;
1571
1572 /*
1573 * Only pages without mappings or that have a
1574 * ->migratepage callback are possible to migrate
1575 * without blocking. However, we can be racing with
1576 * truncation so it's necessary to lock the page
1577 * to stabilise the mapping as truncation holds
1578 * the page lock until after the page is removed
1579 * from the page cache.
1580 */
1581 if (!trylock_page(page))
1582 return ret;
1583
1584 mapping = page_mapping(page);
1585 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1586 unlock_page(page);
1587 if (!migrate_dirty)
1588 return ret;
1589 }
1590 }
1591
1592 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1593 return ret;
1594
1595 if (likely(get_page_unless_zero(page))) {
1596 /*
1597 * Be careful not to clear PageLRU until after we're
1598 * sure the page is not being freed elsewhere -- the
1599 * page release code relies on it.
1600 */
1601 ClearPageLRU(page);
1602 ret = 0;
1603 }
1604
1605 return ret;
1606 }
1607
1608
1609 /*
1610 * Update LRU sizes after isolating pages. The LRU size updates must
1611 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1612 */
1613 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1614 enum lru_list lru, unsigned long *nr_zone_taken)
1615 {
1616 int zid;
1617
1618 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1619 if (!nr_zone_taken[zid])
1620 continue;
1621
1622 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1623 }
1624
1625 }
1626
1627 /**
1628 * pgdat->lru_lock is heavily contended. Some of the functions that
1629 * shrink the lists perform better by taking out a batch of pages
1630 * and working on them outside the LRU lock.
1631 *
1632 * For pagecache intensive workloads, this function is the hottest
1633 * spot in the kernel (apart from copy_*_user functions).
1634 *
1635 * Appropriate locks must be held before calling this function.
1636 *
1637 * @nr_to_scan: The number of eligible pages to look through on the list.
1638 * @lruvec: The LRU vector to pull pages from.
1639 * @dst: The temp list to put pages on to.
1640 * @nr_scanned: The number of pages that were scanned.
1641 * @sc: The scan_control struct for this reclaim session
1642 * @lru: LRU list id for isolating
1643 *
1644 * returns how many pages were moved onto *@dst.
1645 */
1646 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1647 struct lruvec *lruvec, struct list_head *dst,
1648 unsigned long *nr_scanned, struct scan_control *sc,
1649 enum lru_list lru)
1650 {
1651 struct list_head *src = &lruvec->lists[lru];
1652 unsigned long nr_taken = 0;
1653 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1654 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1655 unsigned long skipped = 0;
1656 unsigned long scan, total_scan, nr_pages;
1657 LIST_HEAD(pages_skipped);
1658 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1659
1660 total_scan = 0;
1661 scan = 0;
1662 while (scan < nr_to_scan && !list_empty(src)) {
1663 struct page *page;
1664
1665 page = lru_to_page(src);
1666 prefetchw_prev_lru_page(page, src, flags);
1667
1668 VM_BUG_ON_PAGE(!PageLRU(page), page);
1669
1670 nr_pages = compound_nr(page);
1671 total_scan += nr_pages;
1672
1673 if (page_zonenum(page) > sc->reclaim_idx) {
1674 list_move(&page->lru, &pages_skipped);
1675 nr_skipped[page_zonenum(page)] += nr_pages;
1676 continue;
1677 }
1678
1679 /*
1680 * Do not count skipped pages because that makes the function
1681 * return with no isolated pages if the LRU mostly contains
1682 * ineligible pages. This causes the VM to not reclaim any
1683 * pages, triggering a premature OOM.
1684 *
1685 * Account all tail pages of THP. This would not cause
1686 * premature OOM since __isolate_lru_page() returns -EBUSY
1687 * only when the page is being freed somewhere else.
1688 */
1689 scan += nr_pages;
1690 switch (__isolate_lru_page(page, mode)) {
1691 case 0:
1692 nr_taken += nr_pages;
1693 nr_zone_taken[page_zonenum(page)] += nr_pages;
1694 list_move(&page->lru, dst);
1695 break;
1696
1697 case -EBUSY:
1698 /* else it is being freed elsewhere */
1699 list_move(&page->lru, src);
1700 continue;
1701
1702 default:
1703 BUG();
1704 }
1705 }
1706
1707 /*
1708 * Splice any skipped pages to the start of the LRU list. Note that
1709 * this disrupts the LRU order when reclaiming for lower zones but
1710 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1711 * scanning would soon rescan the same pages to skip and put the
1712 * system at risk of premature OOM.
1713 */
1714 if (!list_empty(&pages_skipped)) {
1715 int zid;
1716
1717 list_splice(&pages_skipped, src);
1718 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1719 if (!nr_skipped[zid])
1720 continue;
1721
1722 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1723 skipped += nr_skipped[zid];
1724 }
1725 }
1726 *nr_scanned = total_scan;
1727 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1728 total_scan, skipped, nr_taken, mode, lru);
1729 update_lru_sizes(lruvec, lru, nr_zone_taken);
1730 return nr_taken;
1731 }
1732
1733 /**
1734 * isolate_lru_page - tries to isolate a page from its LRU list
1735 * @page: page to isolate from its LRU list
1736 *
1737 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1738 * vmstat statistic corresponding to whatever LRU list the page was on.
1739 *
1740 * Returns 0 if the page was removed from an LRU list.
1741 * Returns -EBUSY if the page was not on an LRU list.
1742 *
1743 * The returned page will have PageLRU() cleared. If it was found on
1744 * the active list, it will have PageActive set. If it was found on
1745 * the unevictable list, it will have the PageUnevictable bit set. That flag
1746 * may need to be cleared by the caller before letting the page go.
1747 *
1748 * The vmstat statistic corresponding to the list on which the page was
1749 * found will be decremented.
1750 *
1751 * Restrictions:
1752 *
1753 * (1) Must be called with an elevated refcount on the page. This is a
1754 * fundamentnal difference from isolate_lru_pages (which is called
1755 * without a stable reference).
1756 * (2) the lru_lock must not be held.
1757 * (3) interrupts must be enabled.
1758 */
1759 int isolate_lru_page(struct page *page)
1760 {
1761 int ret = -EBUSY;
1762
1763 VM_BUG_ON_PAGE(!page_count(page), page);
1764 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1765
1766 if (PageLRU(page)) {
1767 pg_data_t *pgdat = page_pgdat(page);
1768 struct lruvec *lruvec;
1769
1770 spin_lock_irq(&pgdat->lru_lock);
1771 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1772 if (PageLRU(page)) {
1773 int lru = page_lru(page);
1774 get_page(page);
1775 ClearPageLRU(page);
1776 del_page_from_lru_list(page, lruvec, lru);
1777 ret = 0;
1778 }
1779 spin_unlock_irq(&pgdat->lru_lock);
1780 }
1781 return ret;
1782 }
1783
1784 /*
1785 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1786 * then get rescheduled. When there are massive number of tasks doing page
1787 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1788 * the LRU list will go small and be scanned faster than necessary, leading to
1789 * unnecessary swapping, thrashing and OOM.
1790 */
1791 static int too_many_isolated(struct pglist_data *pgdat, int file,
1792 struct scan_control *sc)
1793 {
1794 unsigned long inactive, isolated;
1795
1796 if (current_is_kswapd())
1797 return 0;
1798
1799 if (!writeback_throttling_sane(sc))
1800 return 0;
1801
1802 if (file) {
1803 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1804 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1805 } else {
1806 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1807 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1808 }
1809
1810 /*
1811 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1812 * won't get blocked by normal direct-reclaimers, forming a circular
1813 * deadlock.
1814 */
1815 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1816 inactive >>= 3;
1817
1818 return isolated > inactive;
1819 }
1820
1821 /*
1822 * This moves pages from @list to corresponding LRU list.
1823 *
1824 * We move them the other way if the page is referenced by one or more
1825 * processes, from rmap.
1826 *
1827 * If the pages are mostly unmapped, the processing is fast and it is
1828 * appropriate to hold zone_lru_lock across the whole operation. But if
1829 * the pages are mapped, the processing is slow (page_referenced()) so we
1830 * should drop zone_lru_lock around each page. It's impossible to balance
1831 * this, so instead we remove the pages from the LRU while processing them.
1832 * It is safe to rely on PG_active against the non-LRU pages in here because
1833 * nobody will play with that bit on a non-LRU page.
1834 *
1835 * The downside is that we have to touch page->_refcount against each page.
1836 * But we had to alter page->flags anyway.
1837 *
1838 * Returns the number of pages moved to the given lruvec.
1839 */
1840
1841 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1842 struct list_head *list)
1843 {
1844 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1845 int nr_pages, nr_moved = 0;
1846 LIST_HEAD(pages_to_free);
1847 struct page *page;
1848 enum lru_list lru;
1849
1850 while (!list_empty(list)) {
1851 page = lru_to_page(list);
1852 VM_BUG_ON_PAGE(PageLRU(page), page);
1853 if (unlikely(!page_evictable(page))) {
1854 list_del(&page->lru);
1855 spin_unlock_irq(&pgdat->lru_lock);
1856 putback_lru_page(page);
1857 spin_lock_irq(&pgdat->lru_lock);
1858 continue;
1859 }
1860 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1861
1862 SetPageLRU(page);
1863 lru = page_lru(page);
1864
1865 nr_pages = hpage_nr_pages(page);
1866 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1867 list_move(&page->lru, &lruvec->lists[lru]);
1868
1869 if (put_page_testzero(page)) {
1870 __ClearPageLRU(page);
1871 __ClearPageActive(page);
1872 del_page_from_lru_list(page, lruvec, lru);
1873
1874 if (unlikely(PageCompound(page))) {
1875 spin_unlock_irq(&pgdat->lru_lock);
1876 destroy_compound_page(page);
1877 spin_lock_irq(&pgdat->lru_lock);
1878 } else
1879 list_add(&page->lru, &pages_to_free);
1880 } else {
1881 nr_moved += nr_pages;
1882 if (PageActive(page))
1883 workingset_age_nonresident(lruvec, nr_pages);
1884 }
1885 }
1886
1887 /*
1888 * To save our caller's stack, now use input list for pages to free.
1889 */
1890 list_splice(&pages_to_free, list);
1891
1892 return nr_moved;
1893 }
1894
1895 /*
1896 * If a kernel thread (such as nfsd for loop-back mounts) services
1897 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
1898 * In that case we should only throttle if the backing device it is
1899 * writing to is congested. In other cases it is safe to throttle.
1900 */
1901 static int current_may_throttle(void)
1902 {
1903 return !(current->flags & PF_LOCAL_THROTTLE) ||
1904 current->backing_dev_info == NULL ||
1905 bdi_write_congested(current->backing_dev_info);
1906 }
1907
1908 /*
1909 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1910 * of reclaimed pages
1911 */
1912 static noinline_for_stack unsigned long
1913 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1914 struct scan_control *sc, enum lru_list lru)
1915 {
1916 LIST_HEAD(page_list);
1917 unsigned long nr_scanned;
1918 unsigned int nr_reclaimed = 0;
1919 unsigned long nr_taken;
1920 struct reclaim_stat stat;
1921 bool file = is_file_lru(lru);
1922 enum vm_event_item item;
1923 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1924 bool stalled = false;
1925
1926 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1927 if (stalled)
1928 return 0;
1929
1930 /* wait a bit for the reclaimer. */
1931 msleep(100);
1932 stalled = true;
1933
1934 /* We are about to die and free our memory. Return now. */
1935 if (fatal_signal_pending(current))
1936 return SWAP_CLUSTER_MAX;
1937 }
1938
1939 lru_add_drain();
1940
1941 spin_lock_irq(&pgdat->lru_lock);
1942
1943 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1944 &nr_scanned, sc, lru);
1945
1946 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1947 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1948 if (!cgroup_reclaim(sc))
1949 __count_vm_events(item, nr_scanned);
1950 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1951 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
1952
1953 spin_unlock_irq(&pgdat->lru_lock);
1954
1955 if (nr_taken == 0)
1956 return 0;
1957
1958 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1959 &stat, false);
1960
1961 spin_lock_irq(&pgdat->lru_lock);
1962
1963 move_pages_to_lru(lruvec, &page_list);
1964
1965 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1966 lru_note_cost(lruvec, file, stat.nr_pageout);
1967 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1968 if (!cgroup_reclaim(sc))
1969 __count_vm_events(item, nr_reclaimed);
1970 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1971 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1972
1973 spin_unlock_irq(&pgdat->lru_lock);
1974
1975 mem_cgroup_uncharge_list(&page_list);
1976 free_unref_page_list(&page_list);
1977
1978 /*
1979 * If dirty pages are scanned that are not queued for IO, it
1980 * implies that flushers are not doing their job. This can
1981 * happen when memory pressure pushes dirty pages to the end of
1982 * the LRU before the dirty limits are breached and the dirty
1983 * data has expired. It can also happen when the proportion of
1984 * dirty pages grows not through writes but through memory
1985 * pressure reclaiming all the clean cache. And in some cases,
1986 * the flushers simply cannot keep up with the allocation
1987 * rate. Nudge the flusher threads in case they are asleep.
1988 */
1989 if (stat.nr_unqueued_dirty == nr_taken)
1990 wakeup_flusher_threads(WB_REASON_VMSCAN);
1991
1992 sc->nr.dirty += stat.nr_dirty;
1993 sc->nr.congested += stat.nr_congested;
1994 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1995 sc->nr.writeback += stat.nr_writeback;
1996 sc->nr.immediate += stat.nr_immediate;
1997 sc->nr.taken += nr_taken;
1998 if (file)
1999 sc->nr.file_taken += nr_taken;
2000
2001 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2002 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2003 return nr_reclaimed;
2004 }
2005
2006 static void shrink_active_list(unsigned long nr_to_scan,
2007 struct lruvec *lruvec,
2008 struct scan_control *sc,
2009 enum lru_list lru)
2010 {
2011 unsigned long nr_taken;
2012 unsigned long nr_scanned;
2013 unsigned long vm_flags;
2014 LIST_HEAD(l_hold); /* The pages which were snipped off */
2015 LIST_HEAD(l_active);
2016 LIST_HEAD(l_inactive);
2017 struct page *page;
2018 unsigned nr_deactivate, nr_activate;
2019 unsigned nr_rotated = 0;
2020 int file = is_file_lru(lru);
2021 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2022
2023 lru_add_drain();
2024
2025 spin_lock_irq(&pgdat->lru_lock);
2026
2027 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2028 &nr_scanned, sc, lru);
2029
2030 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2031
2032 if (!cgroup_reclaim(sc))
2033 __count_vm_events(PGREFILL, nr_scanned);
2034 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2035
2036 spin_unlock_irq(&pgdat->lru_lock);
2037
2038 while (!list_empty(&l_hold)) {
2039 cond_resched();
2040 page = lru_to_page(&l_hold);
2041 list_del(&page->lru);
2042
2043 if (unlikely(!page_evictable(page))) {
2044 putback_lru_page(page);
2045 continue;
2046 }
2047
2048 if (unlikely(buffer_heads_over_limit)) {
2049 if (page_has_private(page) && trylock_page(page)) {
2050 if (page_has_private(page))
2051 try_to_release_page(page, 0);
2052 unlock_page(page);
2053 }
2054 }
2055
2056 if (page_referenced(page, 0, sc->target_mem_cgroup,
2057 &vm_flags)) {
2058 /*
2059 * Identify referenced, file-backed active pages and
2060 * give them one more trip around the active list. So
2061 * that executable code get better chances to stay in
2062 * memory under moderate memory pressure. Anon pages
2063 * are not likely to be evicted by use-once streaming
2064 * IO, plus JVM can create lots of anon VM_EXEC pages,
2065 * so we ignore them here.
2066 */
2067 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2068 nr_rotated += hpage_nr_pages(page);
2069 list_add(&page->lru, &l_active);
2070 continue;
2071 }
2072 }
2073
2074 ClearPageActive(page); /* we are de-activating */
2075 SetPageWorkingset(page);
2076 list_add(&page->lru, &l_inactive);
2077 }
2078
2079 /*
2080 * Move pages back to the lru list.
2081 */
2082 spin_lock_irq(&pgdat->lru_lock);
2083
2084 nr_activate = move_pages_to_lru(lruvec, &l_active);
2085 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2086 /* Keep all free pages in l_active list */
2087 list_splice(&l_inactive, &l_active);
2088
2089 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2090 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2091
2092 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2093 spin_unlock_irq(&pgdat->lru_lock);
2094
2095 mem_cgroup_uncharge_list(&l_active);
2096 free_unref_page_list(&l_active);
2097 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2098 nr_deactivate, nr_rotated, sc->priority, file);
2099 }
2100
2101 unsigned long reclaim_pages(struct list_head *page_list)
2102 {
2103 int nid = NUMA_NO_NODE;
2104 unsigned int nr_reclaimed = 0;
2105 LIST_HEAD(node_page_list);
2106 struct reclaim_stat dummy_stat;
2107 struct page *page;
2108 struct scan_control sc = {
2109 .gfp_mask = GFP_KERNEL,
2110 .priority = DEF_PRIORITY,
2111 .may_writepage = 1,
2112 .may_unmap = 1,
2113 .may_swap = 1,
2114 };
2115
2116 while (!list_empty(page_list)) {
2117 page = lru_to_page(page_list);
2118 if (nid == NUMA_NO_NODE) {
2119 nid = page_to_nid(page);
2120 INIT_LIST_HEAD(&node_page_list);
2121 }
2122
2123 if (nid == page_to_nid(page)) {
2124 ClearPageActive(page);
2125 list_move(&page->lru, &node_page_list);
2126 continue;
2127 }
2128
2129 nr_reclaimed += shrink_page_list(&node_page_list,
2130 NODE_DATA(nid),
2131 &sc, 0,
2132 &dummy_stat, false);
2133 while (!list_empty(&node_page_list)) {
2134 page = lru_to_page(&node_page_list);
2135 list_del(&page->lru);
2136 putback_lru_page(page);
2137 }
2138
2139 nid = NUMA_NO_NODE;
2140 }
2141
2142 if (!list_empty(&node_page_list)) {
2143 nr_reclaimed += shrink_page_list(&node_page_list,
2144 NODE_DATA(nid),
2145 &sc, 0,
2146 &dummy_stat, false);
2147 while (!list_empty(&node_page_list)) {
2148 page = lru_to_page(&node_page_list);
2149 list_del(&page->lru);
2150 putback_lru_page(page);
2151 }
2152 }
2153
2154 return nr_reclaimed;
2155 }
2156
2157 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2158 struct lruvec *lruvec, struct scan_control *sc)
2159 {
2160 if (is_active_lru(lru)) {
2161 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2162 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2163 else
2164 sc->skipped_deactivate = 1;
2165 return 0;
2166 }
2167
2168 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2169 }
2170
2171 /*
2172 * The inactive anon list should be small enough that the VM never has
2173 * to do too much work.
2174 *
2175 * The inactive file list should be small enough to leave most memory
2176 * to the established workingset on the scan-resistant active list,
2177 * but large enough to avoid thrashing the aggregate readahead window.
2178 *
2179 * Both inactive lists should also be large enough that each inactive
2180 * page has a chance to be referenced again before it is reclaimed.
2181 *
2182 * If that fails and refaulting is observed, the inactive list grows.
2183 *
2184 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2185 * on this LRU, maintained by the pageout code. An inactive_ratio
2186 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2187 *
2188 * total target max
2189 * memory ratio inactive
2190 * -------------------------------------
2191 * 10MB 1 5MB
2192 * 100MB 1 50MB
2193 * 1GB 3 250MB
2194 * 10GB 10 0.9GB
2195 * 100GB 31 3GB
2196 * 1TB 101 10GB
2197 * 10TB 320 32GB
2198 */
2199 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2200 {
2201 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2202 unsigned long inactive, active;
2203 unsigned long inactive_ratio;
2204 unsigned long gb;
2205
2206 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2207 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2208
2209 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2210 if (gb)
2211 inactive_ratio = int_sqrt(10 * gb);
2212 else
2213 inactive_ratio = 1;
2214
2215 return inactive * inactive_ratio < active;
2216 }
2217
2218 enum scan_balance {
2219 SCAN_EQUAL,
2220 SCAN_FRACT,
2221 SCAN_ANON,
2222 SCAN_FILE,
2223 };
2224
2225 /*
2226 * Determine how aggressively the anon and file LRU lists should be
2227 * scanned. The relative value of each set of LRU lists is determined
2228 * by looking at the fraction of the pages scanned we did rotate back
2229 * onto the active list instead of evict.
2230 *
2231 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2232 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2233 */
2234 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2235 unsigned long *nr)
2236 {
2237 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2238 unsigned long anon_cost, file_cost, total_cost;
2239 int swappiness = mem_cgroup_swappiness(memcg);
2240 u64 fraction[2];
2241 u64 denominator = 0; /* gcc */
2242 enum scan_balance scan_balance;
2243 unsigned long ap, fp;
2244 enum lru_list lru;
2245
2246 /* If we have no swap space, do not bother scanning anon pages. */
2247 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2248 scan_balance = SCAN_FILE;
2249 goto out;
2250 }
2251
2252 /*
2253 * Global reclaim will swap to prevent OOM even with no
2254 * swappiness, but memcg users want to use this knob to
2255 * disable swapping for individual groups completely when
2256 * using the memory controller's swap limit feature would be
2257 * too expensive.
2258 */
2259 if (cgroup_reclaim(sc) && !swappiness) {
2260 scan_balance = SCAN_FILE;
2261 goto out;
2262 }
2263
2264 /*
2265 * Do not apply any pressure balancing cleverness when the
2266 * system is close to OOM, scan both anon and file equally
2267 * (unless the swappiness setting disagrees with swapping).
2268 */
2269 if (!sc->priority && swappiness) {
2270 scan_balance = SCAN_EQUAL;
2271 goto out;
2272 }
2273
2274 /*
2275 * If the system is almost out of file pages, force-scan anon.
2276 */
2277 if (sc->file_is_tiny) {
2278 scan_balance = SCAN_ANON;
2279 goto out;
2280 }
2281
2282 /*
2283 * If there is enough inactive page cache, we do not reclaim
2284 * anything from the anonymous working right now.
2285 */
2286 if (sc->cache_trim_mode) {
2287 scan_balance = SCAN_FILE;
2288 goto out;
2289 }
2290
2291 scan_balance = SCAN_FRACT;
2292 /*
2293 * Calculate the pressure balance between anon and file pages.
2294 *
2295 * The amount of pressure we put on each LRU is inversely
2296 * proportional to the cost of reclaiming each list, as
2297 * determined by the share of pages that are refaulting, times
2298 * the relative IO cost of bringing back a swapped out
2299 * anonymous page vs reloading a filesystem page (swappiness).
2300 *
2301 * Although we limit that influence to ensure no list gets
2302 * left behind completely: at least a third of the pressure is
2303 * applied, before swappiness.
2304 *
2305 * With swappiness at 100, anon and file have equal IO cost.
2306 */
2307 total_cost = sc->anon_cost + sc->file_cost;
2308 anon_cost = total_cost + sc->anon_cost;
2309 file_cost = total_cost + sc->file_cost;
2310 total_cost = anon_cost + file_cost;
2311
2312 ap = swappiness * (total_cost + 1);
2313 ap /= anon_cost + 1;
2314
2315 fp = (200 - swappiness) * (total_cost + 1);
2316 fp /= file_cost + 1;
2317
2318 fraction[0] = ap;
2319 fraction[1] = fp;
2320 denominator = ap + fp;
2321 out:
2322 for_each_evictable_lru(lru) {
2323 int file = is_file_lru(lru);
2324 unsigned long lruvec_size;
2325 unsigned long scan;
2326 unsigned long protection;
2327
2328 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2329 protection = mem_cgroup_protection(sc->target_mem_cgroup,
2330 memcg,
2331 sc->memcg_low_reclaim);
2332
2333 if (protection) {
2334 /*
2335 * Scale a cgroup's reclaim pressure by proportioning
2336 * its current usage to its memory.low or memory.min
2337 * setting.
2338 *
2339 * This is important, as otherwise scanning aggression
2340 * becomes extremely binary -- from nothing as we
2341 * approach the memory protection threshold, to totally
2342 * nominal as we exceed it. This results in requiring
2343 * setting extremely liberal protection thresholds. It
2344 * also means we simply get no protection at all if we
2345 * set it too low, which is not ideal.
2346 *
2347 * If there is any protection in place, we reduce scan
2348 * pressure by how much of the total memory used is
2349 * within protection thresholds.
2350 *
2351 * There is one special case: in the first reclaim pass,
2352 * we skip over all groups that are within their low
2353 * protection. If that fails to reclaim enough pages to
2354 * satisfy the reclaim goal, we come back and override
2355 * the best-effort low protection. However, we still
2356 * ideally want to honor how well-behaved groups are in
2357 * that case instead of simply punishing them all
2358 * equally. As such, we reclaim them based on how much
2359 * memory they are using, reducing the scan pressure
2360 * again by how much of the total memory used is under
2361 * hard protection.
2362 */
2363 unsigned long cgroup_size = mem_cgroup_size(memcg);
2364
2365 /* Avoid TOCTOU with earlier protection check */
2366 cgroup_size = max(cgroup_size, protection);
2367
2368 scan = lruvec_size - lruvec_size * protection /
2369 cgroup_size;
2370
2371 /*
2372 * Minimally target SWAP_CLUSTER_MAX pages to keep
2373 * reclaim moving forwards, avoiding decrementing
2374 * sc->priority further than desirable.
2375 */
2376 scan = max(scan, SWAP_CLUSTER_MAX);
2377 } else {
2378 scan = lruvec_size;
2379 }
2380
2381 scan >>= sc->priority;
2382
2383 /*
2384 * If the cgroup's already been deleted, make sure to
2385 * scrape out the remaining cache.
2386 */
2387 if (!scan && !mem_cgroup_online(memcg))
2388 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2389
2390 switch (scan_balance) {
2391 case SCAN_EQUAL:
2392 /* Scan lists relative to size */
2393 break;
2394 case SCAN_FRACT:
2395 /*
2396 * Scan types proportional to swappiness and
2397 * their relative recent reclaim efficiency.
2398 * Make sure we don't miss the last page on
2399 * the offlined memory cgroups because of a
2400 * round-off error.
2401 */
2402 scan = mem_cgroup_online(memcg) ?
2403 div64_u64(scan * fraction[file], denominator) :
2404 DIV64_U64_ROUND_UP(scan * fraction[file],
2405 denominator);
2406 break;
2407 case SCAN_FILE:
2408 case SCAN_ANON:
2409 /* Scan one type exclusively */
2410 if ((scan_balance == SCAN_FILE) != file)
2411 scan = 0;
2412 break;
2413 default:
2414 /* Look ma, no brain */
2415 BUG();
2416 }
2417
2418 nr[lru] = scan;
2419 }
2420 }
2421
2422 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2423 {
2424 unsigned long nr[NR_LRU_LISTS];
2425 unsigned long targets[NR_LRU_LISTS];
2426 unsigned long nr_to_scan;
2427 enum lru_list lru;
2428 unsigned long nr_reclaimed = 0;
2429 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2430 struct blk_plug plug;
2431 bool scan_adjusted;
2432
2433 get_scan_count(lruvec, sc, nr);
2434
2435 /* Record the original scan target for proportional adjustments later */
2436 memcpy(targets, nr, sizeof(nr));
2437
2438 /*
2439 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2440 * event that can occur when there is little memory pressure e.g.
2441 * multiple streaming readers/writers. Hence, we do not abort scanning
2442 * when the requested number of pages are reclaimed when scanning at
2443 * DEF_PRIORITY on the assumption that the fact we are direct
2444 * reclaiming implies that kswapd is not keeping up and it is best to
2445 * do a batch of work at once. For memcg reclaim one check is made to
2446 * abort proportional reclaim if either the file or anon lru has already
2447 * dropped to zero at the first pass.
2448 */
2449 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2450 sc->priority == DEF_PRIORITY);
2451
2452 blk_start_plug(&plug);
2453 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2454 nr[LRU_INACTIVE_FILE]) {
2455 unsigned long nr_anon, nr_file, percentage;
2456 unsigned long nr_scanned;
2457
2458 for_each_evictable_lru(lru) {
2459 if (nr[lru]) {
2460 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2461 nr[lru] -= nr_to_scan;
2462
2463 nr_reclaimed += shrink_list(lru, nr_to_scan,
2464 lruvec, sc);
2465 }
2466 }
2467
2468 cond_resched();
2469
2470 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2471 continue;
2472
2473 /*
2474 * For kswapd and memcg, reclaim at least the number of pages
2475 * requested. Ensure that the anon and file LRUs are scanned
2476 * proportionally what was requested by get_scan_count(). We
2477 * stop reclaiming one LRU and reduce the amount scanning
2478 * proportional to the original scan target.
2479 */
2480 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2481 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2482
2483 /*
2484 * It's just vindictive to attack the larger once the smaller
2485 * has gone to zero. And given the way we stop scanning the
2486 * smaller below, this makes sure that we only make one nudge
2487 * towards proportionality once we've got nr_to_reclaim.
2488 */
2489 if (!nr_file || !nr_anon)
2490 break;
2491
2492 if (nr_file > nr_anon) {
2493 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2494 targets[LRU_ACTIVE_ANON] + 1;
2495 lru = LRU_BASE;
2496 percentage = nr_anon * 100 / scan_target;
2497 } else {
2498 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2499 targets[LRU_ACTIVE_FILE] + 1;
2500 lru = LRU_FILE;
2501 percentage = nr_file * 100 / scan_target;
2502 }
2503
2504 /* Stop scanning the smaller of the LRU */
2505 nr[lru] = 0;
2506 nr[lru + LRU_ACTIVE] = 0;
2507
2508 /*
2509 * Recalculate the other LRU scan count based on its original
2510 * scan target and the percentage scanning already complete
2511 */
2512 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2513 nr_scanned = targets[lru] - nr[lru];
2514 nr[lru] = targets[lru] * (100 - percentage) / 100;
2515 nr[lru] -= min(nr[lru], nr_scanned);
2516
2517 lru += LRU_ACTIVE;
2518 nr_scanned = targets[lru] - nr[lru];
2519 nr[lru] = targets[lru] * (100 - percentage) / 100;
2520 nr[lru] -= min(nr[lru], nr_scanned);
2521
2522 scan_adjusted = true;
2523 }
2524 blk_finish_plug(&plug);
2525 sc->nr_reclaimed += nr_reclaimed;
2526
2527 /*
2528 * Even if we did not try to evict anon pages at all, we want to
2529 * rebalance the anon lru active/inactive ratio.
2530 */
2531 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2532 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2533 sc, LRU_ACTIVE_ANON);
2534 }
2535
2536 /* Use reclaim/compaction for costly allocs or under memory pressure */
2537 static bool in_reclaim_compaction(struct scan_control *sc)
2538 {
2539 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2540 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2541 sc->priority < DEF_PRIORITY - 2))
2542 return true;
2543
2544 return false;
2545 }
2546
2547 /*
2548 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2549 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2550 * true if more pages should be reclaimed such that when the page allocator
2551 * calls try_to_compact_pages() that it will have enough free pages to succeed.
2552 * It will give up earlier than that if there is difficulty reclaiming pages.
2553 */
2554 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2555 unsigned long nr_reclaimed,
2556 struct scan_control *sc)
2557 {
2558 unsigned long pages_for_compaction;
2559 unsigned long inactive_lru_pages;
2560 int z;
2561
2562 /* If not in reclaim/compaction mode, stop */
2563 if (!in_reclaim_compaction(sc))
2564 return false;
2565
2566 /*
2567 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2568 * number of pages that were scanned. This will return to the caller
2569 * with the risk reclaim/compaction and the resulting allocation attempt
2570 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2571 * allocations through requiring that the full LRU list has been scanned
2572 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2573 * scan, but that approximation was wrong, and there were corner cases
2574 * where always a non-zero amount of pages were scanned.
2575 */
2576 if (!nr_reclaimed)
2577 return false;
2578
2579 /* If compaction would go ahead or the allocation would succeed, stop */
2580 for (z = 0; z <= sc->reclaim_idx; z++) {
2581 struct zone *zone = &pgdat->node_zones[z];
2582 if (!managed_zone(zone))
2583 continue;
2584
2585 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2586 case COMPACT_SUCCESS:
2587 case COMPACT_CONTINUE:
2588 return false;
2589 default:
2590 /* check next zone */
2591 ;
2592 }
2593 }
2594
2595 /*
2596 * If we have not reclaimed enough pages for compaction and the
2597 * inactive lists are large enough, continue reclaiming
2598 */
2599 pages_for_compaction = compact_gap(sc->order);
2600 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2601 if (get_nr_swap_pages() > 0)
2602 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2603
2604 return inactive_lru_pages > pages_for_compaction;
2605 }
2606
2607 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2608 {
2609 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2610 struct mem_cgroup *memcg;
2611
2612 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2613 do {
2614 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2615 unsigned long reclaimed;
2616 unsigned long scanned;
2617
2618 mem_cgroup_calculate_protection(target_memcg, memcg);
2619
2620 if (mem_cgroup_below_min(memcg)) {
2621 /*
2622 * Hard protection.
2623 * If there is no reclaimable memory, OOM.
2624 */
2625 continue;
2626 } else if (mem_cgroup_below_low(memcg)) {
2627 /*
2628 * Soft protection.
2629 * Respect the protection only as long as
2630 * there is an unprotected supply
2631 * of reclaimable memory from other cgroups.
2632 */
2633 if (!sc->memcg_low_reclaim) {
2634 sc->memcg_low_skipped = 1;
2635 continue;
2636 }
2637 memcg_memory_event(memcg, MEMCG_LOW);
2638 }
2639
2640 reclaimed = sc->nr_reclaimed;
2641 scanned = sc->nr_scanned;
2642
2643 shrink_lruvec(lruvec, sc);
2644
2645 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2646 sc->priority);
2647
2648 /* Record the group's reclaim efficiency */
2649 vmpressure(sc->gfp_mask, memcg, false,
2650 sc->nr_scanned - scanned,
2651 sc->nr_reclaimed - reclaimed);
2652
2653 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2654 }
2655
2656 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2657 {
2658 struct reclaim_state *reclaim_state = current->reclaim_state;
2659 unsigned long nr_reclaimed, nr_scanned;
2660 struct lruvec *target_lruvec;
2661 bool reclaimable = false;
2662 unsigned long file;
2663
2664 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2665
2666 again:
2667 memset(&sc->nr, 0, sizeof(sc->nr));
2668
2669 nr_reclaimed = sc->nr_reclaimed;
2670 nr_scanned = sc->nr_scanned;
2671
2672 /*
2673 * Determine the scan balance between anon and file LRUs.
2674 */
2675 spin_lock_irq(&pgdat->lru_lock);
2676 sc->anon_cost = target_lruvec->anon_cost;
2677 sc->file_cost = target_lruvec->file_cost;
2678 spin_unlock_irq(&pgdat->lru_lock);
2679
2680 /*
2681 * Target desirable inactive:active list ratios for the anon
2682 * and file LRU lists.
2683 */
2684 if (!sc->force_deactivate) {
2685 unsigned long refaults;
2686
2687 refaults = lruvec_page_state(target_lruvec,
2688 WORKINGSET_ACTIVATE_ANON);
2689 if (refaults != target_lruvec->refaults[0] ||
2690 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2691 sc->may_deactivate |= DEACTIVATE_ANON;
2692 else
2693 sc->may_deactivate &= ~DEACTIVATE_ANON;
2694
2695 /*
2696 * When refaults are being observed, it means a new
2697 * workingset is being established. Deactivate to get
2698 * rid of any stale active pages quickly.
2699 */
2700 refaults = lruvec_page_state(target_lruvec,
2701 WORKINGSET_ACTIVATE_FILE);
2702 if (refaults != target_lruvec->refaults[1] ||
2703 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2704 sc->may_deactivate |= DEACTIVATE_FILE;
2705 else
2706 sc->may_deactivate &= ~DEACTIVATE_FILE;
2707 } else
2708 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2709
2710 /*
2711 * If we have plenty of inactive file pages that aren't
2712 * thrashing, try to reclaim those first before touching
2713 * anonymous pages.
2714 */
2715 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2716 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2717 sc->cache_trim_mode = 1;
2718 else
2719 sc->cache_trim_mode = 0;
2720
2721 /*
2722 * Prevent the reclaimer from falling into the cache trap: as
2723 * cache pages start out inactive, every cache fault will tip
2724 * the scan balance towards the file LRU. And as the file LRU
2725 * shrinks, so does the window for rotation from references.
2726 * This means we have a runaway feedback loop where a tiny
2727 * thrashing file LRU becomes infinitely more attractive than
2728 * anon pages. Try to detect this based on file LRU size.
2729 */
2730 if (!cgroup_reclaim(sc)) {
2731 unsigned long total_high_wmark = 0;
2732 unsigned long free, anon;
2733 int z;
2734
2735 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2736 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2737 node_page_state(pgdat, NR_INACTIVE_FILE);
2738
2739 for (z = 0; z < MAX_NR_ZONES; z++) {
2740 struct zone *zone = &pgdat->node_zones[z];
2741 if (!managed_zone(zone))
2742 continue;
2743
2744 total_high_wmark += high_wmark_pages(zone);
2745 }
2746
2747 /*
2748 * Consider anon: if that's low too, this isn't a
2749 * runaway file reclaim problem, but rather just
2750 * extreme pressure. Reclaim as per usual then.
2751 */
2752 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2753
2754 sc->file_is_tiny =
2755 file + free <= total_high_wmark &&
2756 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2757 anon >> sc->priority;
2758 }
2759
2760 shrink_node_memcgs(pgdat, sc);
2761
2762 if (reclaim_state) {
2763 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2764 reclaim_state->reclaimed_slab = 0;
2765 }
2766
2767 /* Record the subtree's reclaim efficiency */
2768 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2769 sc->nr_scanned - nr_scanned,
2770 sc->nr_reclaimed - nr_reclaimed);
2771
2772 if (sc->nr_reclaimed - nr_reclaimed)
2773 reclaimable = true;
2774
2775 if (current_is_kswapd()) {
2776 /*
2777 * If reclaim is isolating dirty pages under writeback,
2778 * it implies that the long-lived page allocation rate
2779 * is exceeding the page laundering rate. Either the
2780 * global limits are not being effective at throttling
2781 * processes due to the page distribution throughout
2782 * zones or there is heavy usage of a slow backing
2783 * device. The only option is to throttle from reclaim
2784 * context which is not ideal as there is no guarantee
2785 * the dirtying process is throttled in the same way
2786 * balance_dirty_pages() manages.
2787 *
2788 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2789 * count the number of pages under pages flagged for
2790 * immediate reclaim and stall if any are encountered
2791 * in the nr_immediate check below.
2792 */
2793 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2794 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2795
2796 /* Allow kswapd to start writing pages during reclaim.*/
2797 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2798 set_bit(PGDAT_DIRTY, &pgdat->flags);
2799
2800 /*
2801 * If kswapd scans pages marked for immediate
2802 * reclaim and under writeback (nr_immediate), it
2803 * implies that pages are cycling through the LRU
2804 * faster than they are written so also forcibly stall.
2805 */
2806 if (sc->nr.immediate)
2807 congestion_wait(BLK_RW_ASYNC, HZ/10);
2808 }
2809
2810 /*
2811 * Tag a node/memcg as congested if all the dirty pages
2812 * scanned were backed by a congested BDI and
2813 * wait_iff_congested will stall.
2814 *
2815 * Legacy memcg will stall in page writeback so avoid forcibly
2816 * stalling in wait_iff_congested().
2817 */
2818 if ((current_is_kswapd() ||
2819 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2820 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2821 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2822
2823 /*
2824 * Stall direct reclaim for IO completions if underlying BDIs
2825 * and node is congested. Allow kswapd to continue until it
2826 * starts encountering unqueued dirty pages or cycling through
2827 * the LRU too quickly.
2828 */
2829 if (!current_is_kswapd() && current_may_throttle() &&
2830 !sc->hibernation_mode &&
2831 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2832 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2833
2834 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2835 sc))
2836 goto again;
2837
2838 /*
2839 * Kswapd gives up on balancing particular nodes after too
2840 * many failures to reclaim anything from them and goes to
2841 * sleep. On reclaim progress, reset the failure counter. A
2842 * successful direct reclaim run will revive a dormant kswapd.
2843 */
2844 if (reclaimable)
2845 pgdat->kswapd_failures = 0;
2846 }
2847
2848 /*
2849 * Returns true if compaction should go ahead for a costly-order request, or
2850 * the allocation would already succeed without compaction. Return false if we
2851 * should reclaim first.
2852 */
2853 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2854 {
2855 unsigned long watermark;
2856 enum compact_result suitable;
2857
2858 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2859 if (suitable == COMPACT_SUCCESS)
2860 /* Allocation should succeed already. Don't reclaim. */
2861 return true;
2862 if (suitable == COMPACT_SKIPPED)
2863 /* Compaction cannot yet proceed. Do reclaim. */
2864 return false;
2865
2866 /*
2867 * Compaction is already possible, but it takes time to run and there
2868 * are potentially other callers using the pages just freed. So proceed
2869 * with reclaim to make a buffer of free pages available to give
2870 * compaction a reasonable chance of completing and allocating the page.
2871 * Note that we won't actually reclaim the whole buffer in one attempt
2872 * as the target watermark in should_continue_reclaim() is lower. But if
2873 * we are already above the high+gap watermark, don't reclaim at all.
2874 */
2875 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2876
2877 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2878 }
2879
2880 /*
2881 * This is the direct reclaim path, for page-allocating processes. We only
2882 * try to reclaim pages from zones which will satisfy the caller's allocation
2883 * request.
2884 *
2885 * If a zone is deemed to be full of pinned pages then just give it a light
2886 * scan then give up on it.
2887 */
2888 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2889 {
2890 struct zoneref *z;
2891 struct zone *zone;
2892 unsigned long nr_soft_reclaimed;
2893 unsigned long nr_soft_scanned;
2894 gfp_t orig_mask;
2895 pg_data_t *last_pgdat = NULL;
2896
2897 /*
2898 * If the number of buffer_heads in the machine exceeds the maximum
2899 * allowed level, force direct reclaim to scan the highmem zone as
2900 * highmem pages could be pinning lowmem pages storing buffer_heads
2901 */
2902 orig_mask = sc->gfp_mask;
2903 if (buffer_heads_over_limit) {
2904 sc->gfp_mask |= __GFP_HIGHMEM;
2905 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2906 }
2907
2908 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2909 sc->reclaim_idx, sc->nodemask) {
2910 /*
2911 * Take care memory controller reclaiming has small influence
2912 * to global LRU.
2913 */
2914 if (!cgroup_reclaim(sc)) {
2915 if (!cpuset_zone_allowed(zone,
2916 GFP_KERNEL | __GFP_HARDWALL))
2917 continue;
2918
2919 /*
2920 * If we already have plenty of memory free for
2921 * compaction in this zone, don't free any more.
2922 * Even though compaction is invoked for any
2923 * non-zero order, only frequent costly order
2924 * reclamation is disruptive enough to become a
2925 * noticeable problem, like transparent huge
2926 * page allocations.
2927 */
2928 if (IS_ENABLED(CONFIG_COMPACTION) &&
2929 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2930 compaction_ready(zone, sc)) {
2931 sc->compaction_ready = true;
2932 continue;
2933 }
2934
2935 /*
2936 * Shrink each node in the zonelist once. If the
2937 * zonelist is ordered by zone (not the default) then a
2938 * node may be shrunk multiple times but in that case
2939 * the user prefers lower zones being preserved.
2940 */
2941 if (zone->zone_pgdat == last_pgdat)
2942 continue;
2943
2944 /*
2945 * This steals pages from memory cgroups over softlimit
2946 * and returns the number of reclaimed pages and
2947 * scanned pages. This works for global memory pressure
2948 * and balancing, not for a memcg's limit.
2949 */
2950 nr_soft_scanned = 0;
2951 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2952 sc->order, sc->gfp_mask,
2953 &nr_soft_scanned);
2954 sc->nr_reclaimed += nr_soft_reclaimed;
2955 sc->nr_scanned += nr_soft_scanned;
2956 /* need some check for avoid more shrink_zone() */
2957 }
2958
2959 /* See comment about same check for global reclaim above */
2960 if (zone->zone_pgdat == last_pgdat)
2961 continue;
2962 last_pgdat = zone->zone_pgdat;
2963 shrink_node(zone->zone_pgdat, sc);
2964 }
2965
2966 /*
2967 * Restore to original mask to avoid the impact on the caller if we
2968 * promoted it to __GFP_HIGHMEM.
2969 */
2970 sc->gfp_mask = orig_mask;
2971 }
2972
2973 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2974 {
2975 struct lruvec *target_lruvec;
2976 unsigned long refaults;
2977
2978 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
2979 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
2980 target_lruvec->refaults[0] = refaults;
2981 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
2982 target_lruvec->refaults[1] = refaults;
2983 }
2984
2985 /*
2986 * This is the main entry point to direct page reclaim.
2987 *
2988 * If a full scan of the inactive list fails to free enough memory then we
2989 * are "out of memory" and something needs to be killed.
2990 *
2991 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2992 * high - the zone may be full of dirty or under-writeback pages, which this
2993 * caller can't do much about. We kick the writeback threads and take explicit
2994 * naps in the hope that some of these pages can be written. But if the
2995 * allocating task holds filesystem locks which prevent writeout this might not
2996 * work, and the allocation attempt will fail.
2997 *
2998 * returns: 0, if no pages reclaimed
2999 * else, the number of pages reclaimed
3000 */
3001 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3002 struct scan_control *sc)
3003 {
3004 int initial_priority = sc->priority;
3005 pg_data_t *last_pgdat;
3006 struct zoneref *z;
3007 struct zone *zone;
3008 retry:
3009 delayacct_freepages_start();
3010
3011 if (!cgroup_reclaim(sc))
3012 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3013
3014 do {
3015 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3016 sc->priority);
3017 sc->nr_scanned = 0;
3018 shrink_zones(zonelist, sc);
3019
3020 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3021 break;
3022
3023 if (sc->compaction_ready)
3024 break;
3025
3026 /*
3027 * If we're getting trouble reclaiming, start doing
3028 * writepage even in laptop mode.
3029 */
3030 if (sc->priority < DEF_PRIORITY - 2)
3031 sc->may_writepage = 1;
3032 } while (--sc->priority >= 0);
3033
3034 last_pgdat = NULL;
3035 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3036 sc->nodemask) {
3037 if (zone->zone_pgdat == last_pgdat)
3038 continue;
3039 last_pgdat = zone->zone_pgdat;
3040
3041 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3042
3043 if (cgroup_reclaim(sc)) {
3044 struct lruvec *lruvec;
3045
3046 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3047 zone->zone_pgdat);
3048 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3049 }
3050 }
3051
3052 delayacct_freepages_end();
3053
3054 if (sc->nr_reclaimed)
3055 return sc->nr_reclaimed;
3056
3057 /* Aborted reclaim to try compaction? don't OOM, then */
3058 if (sc->compaction_ready)
3059 return 1;
3060
3061 /*
3062 * We make inactive:active ratio decisions based on the node's
3063 * composition of memory, but a restrictive reclaim_idx or a
3064 * memory.low cgroup setting can exempt large amounts of
3065 * memory from reclaim. Neither of which are very common, so
3066 * instead of doing costly eligibility calculations of the
3067 * entire cgroup subtree up front, we assume the estimates are
3068 * good, and retry with forcible deactivation if that fails.
3069 */
3070 if (sc->skipped_deactivate) {
3071 sc->priority = initial_priority;
3072 sc->force_deactivate = 1;
3073 sc->skipped_deactivate = 0;
3074 goto retry;
3075 }
3076
3077 /* Untapped cgroup reserves? Don't OOM, retry. */
3078 if (sc->memcg_low_skipped) {
3079 sc->priority = initial_priority;
3080 sc->force_deactivate = 0;
3081 sc->memcg_low_reclaim = 1;
3082 sc->memcg_low_skipped = 0;
3083 goto retry;
3084 }
3085
3086 return 0;
3087 }
3088
3089 static bool allow_direct_reclaim(pg_data_t *pgdat)
3090 {
3091 struct zone *zone;
3092 unsigned long pfmemalloc_reserve = 0;
3093 unsigned long free_pages = 0;
3094 int i;
3095 bool wmark_ok;
3096
3097 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3098 return true;
3099
3100 for (i = 0; i <= ZONE_NORMAL; i++) {
3101 zone = &pgdat->node_zones[i];
3102 if (!managed_zone(zone))
3103 continue;
3104
3105 if (!zone_reclaimable_pages(zone))
3106 continue;
3107
3108 pfmemalloc_reserve += min_wmark_pages(zone);
3109 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3110 }
3111
3112 /* If there are no reserves (unexpected config) then do not throttle */
3113 if (!pfmemalloc_reserve)
3114 return true;
3115
3116 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3117
3118 /* kswapd must be awake if processes are being throttled */
3119 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3120 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3121 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3122
3123 wake_up_interruptible(&pgdat->kswapd_wait);
3124 }
3125
3126 return wmark_ok;
3127 }
3128
3129 /*
3130 * Throttle direct reclaimers if backing storage is backed by the network
3131 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3132 * depleted. kswapd will continue to make progress and wake the processes
3133 * when the low watermark is reached.
3134 *
3135 * Returns true if a fatal signal was delivered during throttling. If this
3136 * happens, the page allocator should not consider triggering the OOM killer.
3137 */
3138 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3139 nodemask_t *nodemask)
3140 {
3141 struct zoneref *z;
3142 struct zone *zone;
3143 pg_data_t *pgdat = NULL;
3144
3145 /*
3146 * Kernel threads should not be throttled as they may be indirectly
3147 * responsible for cleaning pages necessary for reclaim to make forward
3148 * progress. kjournald for example may enter direct reclaim while
3149 * committing a transaction where throttling it could forcing other
3150 * processes to block on log_wait_commit().
3151 */
3152 if (current->flags & PF_KTHREAD)
3153 goto out;
3154
3155 /*
3156 * If a fatal signal is pending, this process should not throttle.
3157 * It should return quickly so it can exit and free its memory
3158 */
3159 if (fatal_signal_pending(current))
3160 goto out;
3161
3162 /*
3163 * Check if the pfmemalloc reserves are ok by finding the first node
3164 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3165 * GFP_KERNEL will be required for allocating network buffers when
3166 * swapping over the network so ZONE_HIGHMEM is unusable.
3167 *
3168 * Throttling is based on the first usable node and throttled processes
3169 * wait on a queue until kswapd makes progress and wakes them. There
3170 * is an affinity then between processes waking up and where reclaim
3171 * progress has been made assuming the process wakes on the same node.
3172 * More importantly, processes running on remote nodes will not compete
3173 * for remote pfmemalloc reserves and processes on different nodes
3174 * should make reasonable progress.
3175 */
3176 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3177 gfp_zone(gfp_mask), nodemask) {
3178 if (zone_idx(zone) > ZONE_NORMAL)
3179 continue;
3180
3181 /* Throttle based on the first usable node */
3182 pgdat = zone->zone_pgdat;
3183 if (allow_direct_reclaim(pgdat))
3184 goto out;
3185 break;
3186 }
3187
3188 /* If no zone was usable by the allocation flags then do not throttle */
3189 if (!pgdat)
3190 goto out;
3191
3192 /* Account for the throttling */
3193 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3194
3195 /*
3196 * If the caller cannot enter the filesystem, it's possible that it
3197 * is due to the caller holding an FS lock or performing a journal
3198 * transaction in the case of a filesystem like ext[3|4]. In this case,
3199 * it is not safe to block on pfmemalloc_wait as kswapd could be
3200 * blocked waiting on the same lock. Instead, throttle for up to a
3201 * second before continuing.
3202 */
3203 if (!(gfp_mask & __GFP_FS)) {
3204 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3205 allow_direct_reclaim(pgdat), HZ);
3206
3207 goto check_pending;
3208 }
3209
3210 /* Throttle until kswapd wakes the process */
3211 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3212 allow_direct_reclaim(pgdat));
3213
3214 check_pending:
3215 if (fatal_signal_pending(current))
3216 return true;
3217
3218 out:
3219 return false;
3220 }
3221
3222 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3223 gfp_t gfp_mask, nodemask_t *nodemask)
3224 {
3225 unsigned long nr_reclaimed;
3226 struct scan_control sc = {
3227 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3228 .gfp_mask = current_gfp_context(gfp_mask),
3229 .reclaim_idx = gfp_zone(gfp_mask),
3230 .order = order,
3231 .nodemask = nodemask,
3232 .priority = DEF_PRIORITY,
3233 .may_writepage = !laptop_mode,
3234 .may_unmap = 1,
3235 .may_swap = 1,
3236 };
3237
3238 /*
3239 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3240 * Confirm they are large enough for max values.
3241 */
3242 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3243 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3244 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3245
3246 /*
3247 * Do not enter reclaim if fatal signal was delivered while throttled.
3248 * 1 is returned so that the page allocator does not OOM kill at this
3249 * point.
3250 */
3251 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3252 return 1;
3253
3254 set_task_reclaim_state(current, &sc.reclaim_state);
3255 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3256
3257 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3258
3259 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3260 set_task_reclaim_state(current, NULL);
3261
3262 return nr_reclaimed;
3263 }
3264
3265 #ifdef CONFIG_MEMCG
3266
3267 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3268 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3269 gfp_t gfp_mask, bool noswap,
3270 pg_data_t *pgdat,
3271 unsigned long *nr_scanned)
3272 {
3273 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3274 struct scan_control sc = {
3275 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3276 .target_mem_cgroup = memcg,
3277 .may_writepage = !laptop_mode,
3278 .may_unmap = 1,
3279 .reclaim_idx = MAX_NR_ZONES - 1,
3280 .may_swap = !noswap,
3281 };
3282
3283 WARN_ON_ONCE(!current->reclaim_state);
3284
3285 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3286 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3287
3288 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3289 sc.gfp_mask);
3290
3291 /*
3292 * NOTE: Although we can get the priority field, using it
3293 * here is not a good idea, since it limits the pages we can scan.
3294 * if we don't reclaim here, the shrink_node from balance_pgdat
3295 * will pick up pages from other mem cgroup's as well. We hack
3296 * the priority and make it zero.
3297 */
3298 shrink_lruvec(lruvec, &sc);
3299
3300 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3301
3302 *nr_scanned = sc.nr_scanned;
3303
3304 return sc.nr_reclaimed;
3305 }
3306
3307 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3308 unsigned long nr_pages,
3309 gfp_t gfp_mask,
3310 bool may_swap)
3311 {
3312 unsigned long nr_reclaimed;
3313 unsigned int noreclaim_flag;
3314 struct scan_control sc = {
3315 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3316 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3317 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3318 .reclaim_idx = MAX_NR_ZONES - 1,
3319 .target_mem_cgroup = memcg,
3320 .priority = DEF_PRIORITY,
3321 .may_writepage = !laptop_mode,
3322 .may_unmap = 1,
3323 .may_swap = may_swap,
3324 };
3325 /*
3326 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3327 * equal pressure on all the nodes. This is based on the assumption that
3328 * the reclaim does not bail out early.
3329 */
3330 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3331
3332 set_task_reclaim_state(current, &sc.reclaim_state);
3333 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3334 noreclaim_flag = memalloc_noreclaim_save();
3335
3336 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3337
3338 memalloc_noreclaim_restore(noreclaim_flag);
3339 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3340 set_task_reclaim_state(current, NULL);
3341
3342 return nr_reclaimed;
3343 }
3344 #endif
3345
3346 static void age_active_anon(struct pglist_data *pgdat,
3347 struct scan_control *sc)
3348 {
3349 struct mem_cgroup *memcg;
3350 struct lruvec *lruvec;
3351
3352 if (!total_swap_pages)
3353 return;
3354
3355 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3356 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3357 return;
3358
3359 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3360 do {
3361 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3362 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3363 sc, LRU_ACTIVE_ANON);
3364 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3365 } while (memcg);
3366 }
3367
3368 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3369 {
3370 int i;
3371 struct zone *zone;
3372
3373 /*
3374 * Check for watermark boosts top-down as the higher zones
3375 * are more likely to be boosted. Both watermarks and boosts
3376 * should not be checked at the same time as reclaim would
3377 * start prematurely when there is no boosting and a lower
3378 * zone is balanced.
3379 */
3380 for (i = highest_zoneidx; i >= 0; i--) {
3381 zone = pgdat->node_zones + i;
3382 if (!managed_zone(zone))
3383 continue;
3384
3385 if (zone->watermark_boost)
3386 return true;
3387 }
3388
3389 return false;
3390 }
3391
3392 /*
3393 * Returns true if there is an eligible zone balanced for the request order
3394 * and highest_zoneidx
3395 */
3396 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3397 {
3398 int i;
3399 unsigned long mark = -1;
3400 struct zone *zone;
3401
3402 /*
3403 * Check watermarks bottom-up as lower zones are more likely to
3404 * meet watermarks.
3405 */
3406 for (i = 0; i <= highest_zoneidx; i++) {
3407 zone = pgdat->node_zones + i;
3408
3409 if (!managed_zone(zone))
3410 continue;
3411
3412 mark = high_wmark_pages(zone);
3413 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3414 return true;
3415 }
3416
3417 /*
3418 * If a node has no populated zone within highest_zoneidx, it does not
3419 * need balancing by definition. This can happen if a zone-restricted
3420 * allocation tries to wake a remote kswapd.
3421 */
3422 if (mark == -1)
3423 return true;
3424
3425 return false;
3426 }
3427
3428 /* Clear pgdat state for congested, dirty or under writeback. */
3429 static void clear_pgdat_congested(pg_data_t *pgdat)
3430 {
3431 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3432
3433 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3434 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3435 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3436 }
3437
3438 /*
3439 * Prepare kswapd for sleeping. This verifies that there are no processes
3440 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3441 *
3442 * Returns true if kswapd is ready to sleep
3443 */
3444 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3445 int highest_zoneidx)
3446 {
3447 /*
3448 * The throttled processes are normally woken up in balance_pgdat() as
3449 * soon as allow_direct_reclaim() is true. But there is a potential
3450 * race between when kswapd checks the watermarks and a process gets
3451 * throttled. There is also a potential race if processes get
3452 * throttled, kswapd wakes, a large process exits thereby balancing the
3453 * zones, which causes kswapd to exit balance_pgdat() before reaching
3454 * the wake up checks. If kswapd is going to sleep, no process should
3455 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3456 * the wake up is premature, processes will wake kswapd and get
3457 * throttled again. The difference from wake ups in balance_pgdat() is
3458 * that here we are under prepare_to_wait().
3459 */
3460 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3461 wake_up_all(&pgdat->pfmemalloc_wait);
3462
3463 /* Hopeless node, leave it to direct reclaim */
3464 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3465 return true;
3466
3467 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3468 clear_pgdat_congested(pgdat);
3469 return true;
3470 }
3471
3472 return false;
3473 }
3474
3475 /*
3476 * kswapd shrinks a node of pages that are at or below the highest usable
3477 * zone that is currently unbalanced.
3478 *
3479 * Returns true if kswapd scanned at least the requested number of pages to
3480 * reclaim or if the lack of progress was due to pages under writeback.
3481 * This is used to determine if the scanning priority needs to be raised.
3482 */
3483 static bool kswapd_shrink_node(pg_data_t *pgdat,
3484 struct scan_control *sc)
3485 {
3486 struct zone *zone;
3487 int z;
3488
3489 /* Reclaim a number of pages proportional to the number of zones */
3490 sc->nr_to_reclaim = 0;
3491 for (z = 0; z <= sc->reclaim_idx; z++) {
3492 zone = pgdat->node_zones + z;
3493 if (!managed_zone(zone))
3494 continue;
3495
3496 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3497 }
3498
3499 /*
3500 * Historically care was taken to put equal pressure on all zones but
3501 * now pressure is applied based on node LRU order.
3502 */
3503 shrink_node(pgdat, sc);
3504
3505 /*
3506 * Fragmentation may mean that the system cannot be rebalanced for
3507 * high-order allocations. If twice the allocation size has been
3508 * reclaimed then recheck watermarks only at order-0 to prevent
3509 * excessive reclaim. Assume that a process requested a high-order
3510 * can direct reclaim/compact.
3511 */
3512 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3513 sc->order = 0;
3514
3515 return sc->nr_scanned >= sc->nr_to_reclaim;
3516 }
3517
3518 /*
3519 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3520 * that are eligible for use by the caller until at least one zone is
3521 * balanced.
3522 *
3523 * Returns the order kswapd finished reclaiming at.
3524 *
3525 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3526 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3527 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3528 * or lower is eligible for reclaim until at least one usable zone is
3529 * balanced.
3530 */
3531 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3532 {
3533 int i;
3534 unsigned long nr_soft_reclaimed;
3535 unsigned long nr_soft_scanned;
3536 unsigned long pflags;
3537 unsigned long nr_boost_reclaim;
3538 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3539 bool boosted;
3540 struct zone *zone;
3541 struct scan_control sc = {
3542 .gfp_mask = GFP_KERNEL,
3543 .order = order,
3544 .may_unmap = 1,
3545 };
3546
3547 set_task_reclaim_state(current, &sc.reclaim_state);
3548 psi_memstall_enter(&pflags);
3549 __fs_reclaim_acquire();
3550
3551 count_vm_event(PAGEOUTRUN);
3552
3553 /*
3554 * Account for the reclaim boost. Note that the zone boost is left in
3555 * place so that parallel allocations that are near the watermark will
3556 * stall or direct reclaim until kswapd is finished.
3557 */
3558 nr_boost_reclaim = 0;
3559 for (i = 0; i <= highest_zoneidx; i++) {
3560 zone = pgdat->node_zones + i;
3561 if (!managed_zone(zone))
3562 continue;
3563
3564 nr_boost_reclaim += zone->watermark_boost;
3565 zone_boosts[i] = zone->watermark_boost;
3566 }
3567 boosted = nr_boost_reclaim;
3568
3569 restart:
3570 sc.priority = DEF_PRIORITY;
3571 do {
3572 unsigned long nr_reclaimed = sc.nr_reclaimed;
3573 bool raise_priority = true;
3574 bool balanced;
3575 bool ret;
3576
3577 sc.reclaim_idx = highest_zoneidx;
3578
3579 /*
3580 * If the number of buffer_heads exceeds the maximum allowed
3581 * then consider reclaiming from all zones. This has a dual
3582 * purpose -- on 64-bit systems it is expected that
3583 * buffer_heads are stripped during active rotation. On 32-bit
3584 * systems, highmem pages can pin lowmem memory and shrinking
3585 * buffers can relieve lowmem pressure. Reclaim may still not
3586 * go ahead if all eligible zones for the original allocation
3587 * request are balanced to avoid excessive reclaim from kswapd.
3588 */
3589 if (buffer_heads_over_limit) {
3590 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3591 zone = pgdat->node_zones + i;
3592 if (!managed_zone(zone))
3593 continue;
3594
3595 sc.reclaim_idx = i;
3596 break;
3597 }
3598 }
3599
3600 /*
3601 * If the pgdat is imbalanced then ignore boosting and preserve
3602 * the watermarks for a later time and restart. Note that the
3603 * zone watermarks will be still reset at the end of balancing
3604 * on the grounds that the normal reclaim should be enough to
3605 * re-evaluate if boosting is required when kswapd next wakes.
3606 */
3607 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3608 if (!balanced && nr_boost_reclaim) {
3609 nr_boost_reclaim = 0;
3610 goto restart;
3611 }
3612
3613 /*
3614 * If boosting is not active then only reclaim if there are no
3615 * eligible zones. Note that sc.reclaim_idx is not used as
3616 * buffer_heads_over_limit may have adjusted it.
3617 */
3618 if (!nr_boost_reclaim && balanced)
3619 goto out;
3620
3621 /* Limit the priority of boosting to avoid reclaim writeback */
3622 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3623 raise_priority = false;
3624
3625 /*
3626 * Do not writeback or swap pages for boosted reclaim. The
3627 * intent is to relieve pressure not issue sub-optimal IO
3628 * from reclaim context. If no pages are reclaimed, the
3629 * reclaim will be aborted.
3630 */
3631 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3632 sc.may_swap = !nr_boost_reclaim;
3633
3634 /*
3635 * Do some background aging of the anon list, to give
3636 * pages a chance to be referenced before reclaiming. All
3637 * pages are rotated regardless of classzone as this is
3638 * about consistent aging.
3639 */
3640 age_active_anon(pgdat, &sc);
3641
3642 /*
3643 * If we're getting trouble reclaiming, start doing writepage
3644 * even in laptop mode.
3645 */
3646 if (sc.priority < DEF_PRIORITY - 2)
3647 sc.may_writepage = 1;
3648
3649 /* Call soft limit reclaim before calling shrink_node. */
3650 sc.nr_scanned = 0;
3651 nr_soft_scanned = 0;
3652 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3653 sc.gfp_mask, &nr_soft_scanned);
3654 sc.nr_reclaimed += nr_soft_reclaimed;
3655
3656 /*
3657 * There should be no need to raise the scanning priority if
3658 * enough pages are already being scanned that that high
3659 * watermark would be met at 100% efficiency.
3660 */
3661 if (kswapd_shrink_node(pgdat, &sc))
3662 raise_priority = false;
3663
3664 /*
3665 * If the low watermark is met there is no need for processes
3666 * to be throttled on pfmemalloc_wait as they should not be
3667 * able to safely make forward progress. Wake them
3668 */
3669 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3670 allow_direct_reclaim(pgdat))
3671 wake_up_all(&pgdat->pfmemalloc_wait);
3672
3673 /* Check if kswapd should be suspending */
3674 __fs_reclaim_release();
3675 ret = try_to_freeze();
3676 __fs_reclaim_acquire();
3677 if (ret || kthread_should_stop())
3678 break;
3679
3680 /*
3681 * Raise priority if scanning rate is too low or there was no
3682 * progress in reclaiming pages
3683 */
3684 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3685 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3686
3687 /*
3688 * If reclaim made no progress for a boost, stop reclaim as
3689 * IO cannot be queued and it could be an infinite loop in
3690 * extreme circumstances.
3691 */
3692 if (nr_boost_reclaim && !nr_reclaimed)
3693 break;
3694
3695 if (raise_priority || !nr_reclaimed)
3696 sc.priority--;
3697 } while (sc.priority >= 1);
3698
3699 if (!sc.nr_reclaimed)
3700 pgdat->kswapd_failures++;
3701
3702 out:
3703 /* If reclaim was boosted, account for the reclaim done in this pass */
3704 if (boosted) {
3705 unsigned long flags;
3706
3707 for (i = 0; i <= highest_zoneidx; i++) {
3708 if (!zone_boosts[i])
3709 continue;
3710
3711 /* Increments are under the zone lock */
3712 zone = pgdat->node_zones + i;
3713 spin_lock_irqsave(&zone->lock, flags);
3714 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3715 spin_unlock_irqrestore(&zone->lock, flags);
3716 }
3717
3718 /*
3719 * As there is now likely space, wakeup kcompact to defragment
3720 * pageblocks.
3721 */
3722 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3723 }
3724
3725 snapshot_refaults(NULL, pgdat);
3726 __fs_reclaim_release();
3727 psi_memstall_leave(&pflags);
3728 set_task_reclaim_state(current, NULL);
3729
3730 /*
3731 * Return the order kswapd stopped reclaiming at as
3732 * prepare_kswapd_sleep() takes it into account. If another caller
3733 * entered the allocator slow path while kswapd was awake, order will
3734 * remain at the higher level.
3735 */
3736 return sc.order;
3737 }
3738
3739 /*
3740 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3741 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3742 * not a valid index then either kswapd runs for first time or kswapd couldn't
3743 * sleep after previous reclaim attempt (node is still unbalanced). In that
3744 * case return the zone index of the previous kswapd reclaim cycle.
3745 */
3746 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3747 enum zone_type prev_highest_zoneidx)
3748 {
3749 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3750
3751 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
3752 }
3753
3754 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3755 unsigned int highest_zoneidx)
3756 {
3757 long remaining = 0;
3758 DEFINE_WAIT(wait);
3759
3760 if (freezing(current) || kthread_should_stop())
3761 return;
3762
3763 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3764
3765 /*
3766 * Try to sleep for a short interval. Note that kcompactd will only be
3767 * woken if it is possible to sleep for a short interval. This is
3768 * deliberate on the assumption that if reclaim cannot keep an
3769 * eligible zone balanced that it's also unlikely that compaction will
3770 * succeed.
3771 */
3772 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3773 /*
3774 * Compaction records what page blocks it recently failed to
3775 * isolate pages from and skips them in the future scanning.
3776 * When kswapd is going to sleep, it is reasonable to assume
3777 * that pages and compaction may succeed so reset the cache.
3778 */
3779 reset_isolation_suitable(pgdat);
3780
3781 /*
3782 * We have freed the memory, now we should compact it to make
3783 * allocation of the requested order possible.
3784 */
3785 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
3786
3787 remaining = schedule_timeout(HZ/10);
3788
3789 /*
3790 * If woken prematurely then reset kswapd_highest_zoneidx and
3791 * order. The values will either be from a wakeup request or
3792 * the previous request that slept prematurely.
3793 */
3794 if (remaining) {
3795 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3796 kswapd_highest_zoneidx(pgdat,
3797 highest_zoneidx));
3798
3799 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3800 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3801 }
3802
3803 finish_wait(&pgdat->kswapd_wait, &wait);
3804 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3805 }
3806
3807 /*
3808 * After a short sleep, check if it was a premature sleep. If not, then
3809 * go fully to sleep until explicitly woken up.
3810 */
3811 if (!remaining &&
3812 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3813 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3814
3815 /*
3816 * vmstat counters are not perfectly accurate and the estimated
3817 * value for counters such as NR_FREE_PAGES can deviate from the
3818 * true value by nr_online_cpus * threshold. To avoid the zone
3819 * watermarks being breached while under pressure, we reduce the
3820 * per-cpu vmstat threshold while kswapd is awake and restore
3821 * them before going back to sleep.
3822 */
3823 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3824
3825 if (!kthread_should_stop())
3826 schedule();
3827
3828 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3829 } else {
3830 if (remaining)
3831 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3832 else
3833 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3834 }
3835 finish_wait(&pgdat->kswapd_wait, &wait);
3836 }
3837
3838 /*
3839 * The background pageout daemon, started as a kernel thread
3840 * from the init process.
3841 *
3842 * This basically trickles out pages so that we have _some_
3843 * free memory available even if there is no other activity
3844 * that frees anything up. This is needed for things like routing
3845 * etc, where we otherwise might have all activity going on in
3846 * asynchronous contexts that cannot page things out.
3847 *
3848 * If there are applications that are active memory-allocators
3849 * (most normal use), this basically shouldn't matter.
3850 */
3851 static int kswapd(void *p)
3852 {
3853 unsigned int alloc_order, reclaim_order;
3854 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
3855 pg_data_t *pgdat = (pg_data_t*)p;
3856 struct task_struct *tsk = current;
3857 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3858
3859 if (!cpumask_empty(cpumask))
3860 set_cpus_allowed_ptr(tsk, cpumask);
3861
3862 /*
3863 * Tell the memory management that we're a "memory allocator",
3864 * and that if we need more memory we should get access to it
3865 * regardless (see "__alloc_pages()"). "kswapd" should
3866 * never get caught in the normal page freeing logic.
3867 *
3868 * (Kswapd normally doesn't need memory anyway, but sometimes
3869 * you need a small amount of memory in order to be able to
3870 * page out something else, and this flag essentially protects
3871 * us from recursively trying to free more memory as we're
3872 * trying to free the first piece of memory in the first place).
3873 */
3874 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3875 set_freezable();
3876
3877 WRITE_ONCE(pgdat->kswapd_order, 0);
3878 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3879 for ( ; ; ) {
3880 bool ret;
3881
3882 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3883 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3884 highest_zoneidx);
3885
3886 kswapd_try_sleep:
3887 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3888 highest_zoneidx);
3889
3890 /* Read the new order and highest_zoneidx */
3891 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3892 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3893 highest_zoneidx);
3894 WRITE_ONCE(pgdat->kswapd_order, 0);
3895 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3896
3897 ret = try_to_freeze();
3898 if (kthread_should_stop())
3899 break;
3900
3901 /*
3902 * We can speed up thawing tasks if we don't call balance_pgdat
3903 * after returning from the refrigerator
3904 */
3905 if (ret)
3906 continue;
3907
3908 /*
3909 * Reclaim begins at the requested order but if a high-order
3910 * reclaim fails then kswapd falls back to reclaiming for
3911 * order-0. If that happens, kswapd will consider sleeping
3912 * for the order it finished reclaiming at (reclaim_order)
3913 * but kcompactd is woken to compact for the original
3914 * request (alloc_order).
3915 */
3916 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
3917 alloc_order);
3918 reclaim_order = balance_pgdat(pgdat, alloc_order,
3919 highest_zoneidx);
3920 if (reclaim_order < alloc_order)
3921 goto kswapd_try_sleep;
3922 }
3923
3924 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3925
3926 return 0;
3927 }
3928
3929 /*
3930 * A zone is low on free memory or too fragmented for high-order memory. If
3931 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3932 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3933 * has failed or is not needed, still wake up kcompactd if only compaction is
3934 * needed.
3935 */
3936 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3937 enum zone_type highest_zoneidx)
3938 {
3939 pg_data_t *pgdat;
3940 enum zone_type curr_idx;
3941
3942 if (!managed_zone(zone))
3943 return;
3944
3945 if (!cpuset_zone_allowed(zone, gfp_flags))
3946 return;
3947
3948 pgdat = zone->zone_pgdat;
3949 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3950
3951 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
3952 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
3953
3954 if (READ_ONCE(pgdat->kswapd_order) < order)
3955 WRITE_ONCE(pgdat->kswapd_order, order);
3956
3957 if (!waitqueue_active(&pgdat->kswapd_wait))
3958 return;
3959
3960 /* Hopeless node, leave it to direct reclaim if possible */
3961 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3962 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
3963 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
3964 /*
3965 * There may be plenty of free memory available, but it's too
3966 * fragmented for high-order allocations. Wake up kcompactd
3967 * and rely on compaction_suitable() to determine if it's
3968 * needed. If it fails, it will defer subsequent attempts to
3969 * ratelimit its work.
3970 */
3971 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3972 wakeup_kcompactd(pgdat, order, highest_zoneidx);
3973 return;
3974 }
3975
3976 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
3977 gfp_flags);
3978 wake_up_interruptible(&pgdat->kswapd_wait);
3979 }
3980
3981 #ifdef CONFIG_HIBERNATION
3982 /*
3983 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3984 * freed pages.
3985 *
3986 * Rather than trying to age LRUs the aim is to preserve the overall
3987 * LRU order by reclaiming preferentially
3988 * inactive > active > active referenced > active mapped
3989 */
3990 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3991 {
3992 struct scan_control sc = {
3993 .nr_to_reclaim = nr_to_reclaim,
3994 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3995 .reclaim_idx = MAX_NR_ZONES - 1,
3996 .priority = DEF_PRIORITY,
3997 .may_writepage = 1,
3998 .may_unmap = 1,
3999 .may_swap = 1,
4000 .hibernation_mode = 1,
4001 };
4002 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4003 unsigned long nr_reclaimed;
4004 unsigned int noreclaim_flag;
4005
4006 fs_reclaim_acquire(sc.gfp_mask);
4007 noreclaim_flag = memalloc_noreclaim_save();
4008 set_task_reclaim_state(current, &sc.reclaim_state);
4009
4010 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4011
4012 set_task_reclaim_state(current, NULL);
4013 memalloc_noreclaim_restore(noreclaim_flag);
4014 fs_reclaim_release(sc.gfp_mask);
4015
4016 return nr_reclaimed;
4017 }
4018 #endif /* CONFIG_HIBERNATION */
4019
4020 /*
4021 * This kswapd start function will be called by init and node-hot-add.
4022 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4023 */
4024 int kswapd_run(int nid)
4025 {
4026 pg_data_t *pgdat = NODE_DATA(nid);
4027 int ret = 0;
4028
4029 if (pgdat->kswapd)
4030 return 0;
4031
4032 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4033 if (IS_ERR(pgdat->kswapd)) {
4034 /* failure at boot is fatal */
4035 BUG_ON(system_state < SYSTEM_RUNNING);
4036 pr_err("Failed to start kswapd on node %d\n", nid);
4037 ret = PTR_ERR(pgdat->kswapd);
4038 pgdat->kswapd = NULL;
4039 }
4040 return ret;
4041 }
4042
4043 /*
4044 * Called by memory hotplug when all memory in a node is offlined. Caller must
4045 * hold mem_hotplug_begin/end().
4046 */
4047 void kswapd_stop(int nid)
4048 {
4049 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4050
4051 if (kswapd) {
4052 kthread_stop(kswapd);
4053 NODE_DATA(nid)->kswapd = NULL;
4054 }
4055 }
4056
4057 static int __init kswapd_init(void)
4058 {
4059 int nid;
4060
4061 swap_setup();
4062 for_each_node_state(nid, N_MEMORY)
4063 kswapd_run(nid);
4064 return 0;
4065 }
4066
4067 module_init(kswapd_init)
4068
4069 #ifdef CONFIG_NUMA
4070 /*
4071 * Node reclaim mode
4072 *
4073 * If non-zero call node_reclaim when the number of free pages falls below
4074 * the watermarks.
4075 */
4076 int node_reclaim_mode __read_mostly;
4077
4078 #define RECLAIM_WRITE (1<<0) /* Writeout pages during reclaim */
4079 #define RECLAIM_UNMAP (1<<1) /* Unmap pages during reclaim */
4080
4081 /*
4082 * Priority for NODE_RECLAIM. This determines the fraction of pages
4083 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4084 * a zone.
4085 */
4086 #define NODE_RECLAIM_PRIORITY 4
4087
4088 /*
4089 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4090 * occur.
4091 */
4092 int sysctl_min_unmapped_ratio = 1;
4093
4094 /*
4095 * If the number of slab pages in a zone grows beyond this percentage then
4096 * slab reclaim needs to occur.
4097 */
4098 int sysctl_min_slab_ratio = 5;
4099
4100 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4101 {
4102 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4103 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4104 node_page_state(pgdat, NR_ACTIVE_FILE);
4105
4106 /*
4107 * It's possible for there to be more file mapped pages than
4108 * accounted for by the pages on the file LRU lists because
4109 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4110 */
4111 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4112 }
4113
4114 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4115 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4116 {
4117 unsigned long nr_pagecache_reclaimable;
4118 unsigned long delta = 0;
4119
4120 /*
4121 * If RECLAIM_UNMAP is set, then all file pages are considered
4122 * potentially reclaimable. Otherwise, we have to worry about
4123 * pages like swapcache and node_unmapped_file_pages() provides
4124 * a better estimate
4125 */
4126 if (node_reclaim_mode & RECLAIM_UNMAP)
4127 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4128 else
4129 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4130
4131 /* If we can't clean pages, remove dirty pages from consideration */
4132 if (!(node_reclaim_mode & RECLAIM_WRITE))
4133 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4134
4135 /* Watch for any possible underflows due to delta */
4136 if (unlikely(delta > nr_pagecache_reclaimable))
4137 delta = nr_pagecache_reclaimable;
4138
4139 return nr_pagecache_reclaimable - delta;
4140 }
4141
4142 /*
4143 * Try to free up some pages from this node through reclaim.
4144 */
4145 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4146 {
4147 /* Minimum pages needed in order to stay on node */
4148 const unsigned long nr_pages = 1 << order;
4149 struct task_struct *p = current;
4150 unsigned int noreclaim_flag;
4151 struct scan_control sc = {
4152 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4153 .gfp_mask = current_gfp_context(gfp_mask),
4154 .order = order,
4155 .priority = NODE_RECLAIM_PRIORITY,
4156 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4157 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4158 .may_swap = 1,
4159 .reclaim_idx = gfp_zone(gfp_mask),
4160 };
4161
4162 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4163 sc.gfp_mask);
4164
4165 cond_resched();
4166 fs_reclaim_acquire(sc.gfp_mask);
4167 /*
4168 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4169 * and we also need to be able to write out pages for RECLAIM_WRITE
4170 * and RECLAIM_UNMAP.
4171 */
4172 noreclaim_flag = memalloc_noreclaim_save();
4173 p->flags |= PF_SWAPWRITE;
4174 set_task_reclaim_state(p, &sc.reclaim_state);
4175
4176 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4177 /*
4178 * Free memory by calling shrink node with increasing
4179 * priorities until we have enough memory freed.
4180 */
4181 do {
4182 shrink_node(pgdat, &sc);
4183 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4184 }
4185
4186 set_task_reclaim_state(p, NULL);
4187 current->flags &= ~PF_SWAPWRITE;
4188 memalloc_noreclaim_restore(noreclaim_flag);
4189 fs_reclaim_release(sc.gfp_mask);
4190
4191 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4192
4193 return sc.nr_reclaimed >= nr_pages;
4194 }
4195
4196 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4197 {
4198 int ret;
4199
4200 /*
4201 * Node reclaim reclaims unmapped file backed pages and
4202 * slab pages if we are over the defined limits.
4203 *
4204 * A small portion of unmapped file backed pages is needed for
4205 * file I/O otherwise pages read by file I/O will be immediately
4206 * thrown out if the node is overallocated. So we do not reclaim
4207 * if less than a specified percentage of the node is used by
4208 * unmapped file backed pages.
4209 */
4210 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4211 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4212 pgdat->min_slab_pages)
4213 return NODE_RECLAIM_FULL;
4214
4215 /*
4216 * Do not scan if the allocation should not be delayed.
4217 */
4218 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4219 return NODE_RECLAIM_NOSCAN;
4220
4221 /*
4222 * Only run node reclaim on the local node or on nodes that do not
4223 * have associated processors. This will favor the local processor
4224 * over remote processors and spread off node memory allocations
4225 * as wide as possible.
4226 */
4227 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4228 return NODE_RECLAIM_NOSCAN;
4229
4230 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4231 return NODE_RECLAIM_NOSCAN;
4232
4233 ret = __node_reclaim(pgdat, gfp_mask, order);
4234 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4235
4236 if (!ret)
4237 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4238
4239 return ret;
4240 }
4241 #endif
4242
4243 /**
4244 * check_move_unevictable_pages - check pages for evictability and move to
4245 * appropriate zone lru list
4246 * @pvec: pagevec with lru pages to check
4247 *
4248 * Checks pages for evictability, if an evictable page is in the unevictable
4249 * lru list, moves it to the appropriate evictable lru list. This function
4250 * should be only used for lru pages.
4251 */
4252 void check_move_unevictable_pages(struct pagevec *pvec)
4253 {
4254 struct lruvec *lruvec;
4255 struct pglist_data *pgdat = NULL;
4256 int pgscanned = 0;
4257 int pgrescued = 0;
4258 int i;
4259
4260 for (i = 0; i < pvec->nr; i++) {
4261 struct page *page = pvec->pages[i];
4262 struct pglist_data *pagepgdat = page_pgdat(page);
4263
4264 pgscanned++;
4265 if (pagepgdat != pgdat) {
4266 if (pgdat)
4267 spin_unlock_irq(&pgdat->lru_lock);
4268 pgdat = pagepgdat;
4269 spin_lock_irq(&pgdat->lru_lock);
4270 }
4271 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4272
4273 if (!PageLRU(page) || !PageUnevictable(page))
4274 continue;
4275
4276 if (page_evictable(page)) {
4277 enum lru_list lru = page_lru_base_type(page);
4278
4279 VM_BUG_ON_PAGE(PageActive(page), page);
4280 ClearPageUnevictable(page);
4281 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4282 add_page_to_lru_list(page, lruvec, lru);
4283 pgrescued++;
4284 }
4285 }
4286
4287 if (pgdat) {
4288 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4289 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4290 spin_unlock_irq(&pgdat->lru_lock);
4291 }
4292 }
4293 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);