]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/vmscan.c
mm/vmscan: store "priority" in struct scan_control
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48
49 #include <linux/swapops.h>
50
51 #include "internal.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55
56 struct scan_control {
57 /* Incremented by the number of inactive pages that were scanned */
58 unsigned long nr_scanned;
59
60 /* Number of pages freed so far during a call to shrink_zones() */
61 unsigned long nr_reclaimed;
62
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
66 unsigned long hibernation_mode;
67
68 /* This context's GFP mask */
69 gfp_t gfp_mask;
70
71 int may_writepage;
72
73 /* Can mapped pages be reclaimed? */
74 int may_unmap;
75
76 /* Can pages be swapped as part of reclaim? */
77 int may_swap;
78
79 int order;
80
81 /* Scan (total_size >> priority) pages at once */
82 int priority;
83
84 /*
85 * The memory cgroup that hit its limit and as a result is the
86 * primary target of this reclaim invocation.
87 */
88 struct mem_cgroup *target_mem_cgroup;
89
90 /*
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 * are scanned.
93 */
94 nodemask_t *nodemask;
95 };
96
97 struct mem_cgroup_zone {
98 struct mem_cgroup *mem_cgroup;
99 struct zone *zone;
100 };
101
102 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
103
104 #ifdef ARCH_HAS_PREFETCH
105 #define prefetch_prev_lru_page(_page, _base, _field) \
106 do { \
107 if ((_page)->lru.prev != _base) { \
108 struct page *prev; \
109 \
110 prev = lru_to_page(&(_page->lru)); \
111 prefetch(&prev->_field); \
112 } \
113 } while (0)
114 #else
115 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
116 #endif
117
118 #ifdef ARCH_HAS_PREFETCHW
119 #define prefetchw_prev_lru_page(_page, _base, _field) \
120 do { \
121 if ((_page)->lru.prev != _base) { \
122 struct page *prev; \
123 \
124 prev = lru_to_page(&(_page->lru)); \
125 prefetchw(&prev->_field); \
126 } \
127 } while (0)
128 #else
129 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
131
132 /*
133 * From 0 .. 100. Higher means more swappy.
134 */
135 int vm_swappiness = 60;
136 long vm_total_pages; /* The total number of pages which the VM controls */
137
138 static LIST_HEAD(shrinker_list);
139 static DECLARE_RWSEM(shrinker_rwsem);
140
141 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
142 static bool global_reclaim(struct scan_control *sc)
143 {
144 return !sc->target_mem_cgroup;
145 }
146 #else
147 static bool global_reclaim(struct scan_control *sc)
148 {
149 return true;
150 }
151 #endif
152
153 static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
154 {
155 return &mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup)->reclaim_stat;
156 }
157
158 static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
159 enum lru_list lru)
160 {
161 if (!mem_cgroup_disabled())
162 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
163 zone_to_nid(mz->zone),
164 zone_idx(mz->zone),
165 BIT(lru));
166
167 return zone_page_state(mz->zone, NR_LRU_BASE + lru);
168 }
169
170
171 /*
172 * Add a shrinker callback to be called from the vm
173 */
174 void register_shrinker(struct shrinker *shrinker)
175 {
176 atomic_long_set(&shrinker->nr_in_batch, 0);
177 down_write(&shrinker_rwsem);
178 list_add_tail(&shrinker->list, &shrinker_list);
179 up_write(&shrinker_rwsem);
180 }
181 EXPORT_SYMBOL(register_shrinker);
182
183 /*
184 * Remove one
185 */
186 void unregister_shrinker(struct shrinker *shrinker)
187 {
188 down_write(&shrinker_rwsem);
189 list_del(&shrinker->list);
190 up_write(&shrinker_rwsem);
191 }
192 EXPORT_SYMBOL(unregister_shrinker);
193
194 static inline int do_shrinker_shrink(struct shrinker *shrinker,
195 struct shrink_control *sc,
196 unsigned long nr_to_scan)
197 {
198 sc->nr_to_scan = nr_to_scan;
199 return (*shrinker->shrink)(shrinker, sc);
200 }
201
202 #define SHRINK_BATCH 128
203 /*
204 * Call the shrink functions to age shrinkable caches
205 *
206 * Here we assume it costs one seek to replace a lru page and that it also
207 * takes a seek to recreate a cache object. With this in mind we age equal
208 * percentages of the lru and ageable caches. This should balance the seeks
209 * generated by these structures.
210 *
211 * If the vm encountered mapped pages on the LRU it increase the pressure on
212 * slab to avoid swapping.
213 *
214 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
215 *
216 * `lru_pages' represents the number of on-LRU pages in all the zones which
217 * are eligible for the caller's allocation attempt. It is used for balancing
218 * slab reclaim versus page reclaim.
219 *
220 * Returns the number of slab objects which we shrunk.
221 */
222 unsigned long shrink_slab(struct shrink_control *shrink,
223 unsigned long nr_pages_scanned,
224 unsigned long lru_pages)
225 {
226 struct shrinker *shrinker;
227 unsigned long ret = 0;
228
229 if (nr_pages_scanned == 0)
230 nr_pages_scanned = SWAP_CLUSTER_MAX;
231
232 if (!down_read_trylock(&shrinker_rwsem)) {
233 /* Assume we'll be able to shrink next time */
234 ret = 1;
235 goto out;
236 }
237
238 list_for_each_entry(shrinker, &shrinker_list, list) {
239 unsigned long long delta;
240 long total_scan;
241 long max_pass;
242 int shrink_ret = 0;
243 long nr;
244 long new_nr;
245 long batch_size = shrinker->batch ? shrinker->batch
246 : SHRINK_BATCH;
247
248 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
249 if (max_pass <= 0)
250 continue;
251
252 /*
253 * copy the current shrinker scan count into a local variable
254 * and zero it so that other concurrent shrinker invocations
255 * don't also do this scanning work.
256 */
257 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
258
259 total_scan = nr;
260 delta = (4 * nr_pages_scanned) / shrinker->seeks;
261 delta *= max_pass;
262 do_div(delta, lru_pages + 1);
263 total_scan += delta;
264 if (total_scan < 0) {
265 printk(KERN_ERR "shrink_slab: %pF negative objects to "
266 "delete nr=%ld\n",
267 shrinker->shrink, total_scan);
268 total_scan = max_pass;
269 }
270
271 /*
272 * We need to avoid excessive windup on filesystem shrinkers
273 * due to large numbers of GFP_NOFS allocations causing the
274 * shrinkers to return -1 all the time. This results in a large
275 * nr being built up so when a shrink that can do some work
276 * comes along it empties the entire cache due to nr >>>
277 * max_pass. This is bad for sustaining a working set in
278 * memory.
279 *
280 * Hence only allow the shrinker to scan the entire cache when
281 * a large delta change is calculated directly.
282 */
283 if (delta < max_pass / 4)
284 total_scan = min(total_scan, max_pass / 2);
285
286 /*
287 * Avoid risking looping forever due to too large nr value:
288 * never try to free more than twice the estimate number of
289 * freeable entries.
290 */
291 if (total_scan > max_pass * 2)
292 total_scan = max_pass * 2;
293
294 trace_mm_shrink_slab_start(shrinker, shrink, nr,
295 nr_pages_scanned, lru_pages,
296 max_pass, delta, total_scan);
297
298 while (total_scan >= batch_size) {
299 int nr_before;
300
301 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
302 shrink_ret = do_shrinker_shrink(shrinker, shrink,
303 batch_size);
304 if (shrink_ret == -1)
305 break;
306 if (shrink_ret < nr_before)
307 ret += nr_before - shrink_ret;
308 count_vm_events(SLABS_SCANNED, batch_size);
309 total_scan -= batch_size;
310
311 cond_resched();
312 }
313
314 /*
315 * move the unused scan count back into the shrinker in a
316 * manner that handles concurrent updates. If we exhausted the
317 * scan, there is no need to do an update.
318 */
319 if (total_scan > 0)
320 new_nr = atomic_long_add_return(total_scan,
321 &shrinker->nr_in_batch);
322 else
323 new_nr = atomic_long_read(&shrinker->nr_in_batch);
324
325 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
326 }
327 up_read(&shrinker_rwsem);
328 out:
329 cond_resched();
330 return ret;
331 }
332
333 static inline int is_page_cache_freeable(struct page *page)
334 {
335 /*
336 * A freeable page cache page is referenced only by the caller
337 * that isolated the page, the page cache radix tree and
338 * optional buffer heads at page->private.
339 */
340 return page_count(page) - page_has_private(page) == 2;
341 }
342
343 static int may_write_to_queue(struct backing_dev_info *bdi,
344 struct scan_control *sc)
345 {
346 if (current->flags & PF_SWAPWRITE)
347 return 1;
348 if (!bdi_write_congested(bdi))
349 return 1;
350 if (bdi == current->backing_dev_info)
351 return 1;
352 return 0;
353 }
354
355 /*
356 * We detected a synchronous write error writing a page out. Probably
357 * -ENOSPC. We need to propagate that into the address_space for a subsequent
358 * fsync(), msync() or close().
359 *
360 * The tricky part is that after writepage we cannot touch the mapping: nothing
361 * prevents it from being freed up. But we have a ref on the page and once
362 * that page is locked, the mapping is pinned.
363 *
364 * We're allowed to run sleeping lock_page() here because we know the caller has
365 * __GFP_FS.
366 */
367 static void handle_write_error(struct address_space *mapping,
368 struct page *page, int error)
369 {
370 lock_page(page);
371 if (page_mapping(page) == mapping)
372 mapping_set_error(mapping, error);
373 unlock_page(page);
374 }
375
376 /* possible outcome of pageout() */
377 typedef enum {
378 /* failed to write page out, page is locked */
379 PAGE_KEEP,
380 /* move page to the active list, page is locked */
381 PAGE_ACTIVATE,
382 /* page has been sent to the disk successfully, page is unlocked */
383 PAGE_SUCCESS,
384 /* page is clean and locked */
385 PAGE_CLEAN,
386 } pageout_t;
387
388 /*
389 * pageout is called by shrink_page_list() for each dirty page.
390 * Calls ->writepage().
391 */
392 static pageout_t pageout(struct page *page, struct address_space *mapping,
393 struct scan_control *sc)
394 {
395 /*
396 * If the page is dirty, only perform writeback if that write
397 * will be non-blocking. To prevent this allocation from being
398 * stalled by pagecache activity. But note that there may be
399 * stalls if we need to run get_block(). We could test
400 * PagePrivate for that.
401 *
402 * If this process is currently in __generic_file_aio_write() against
403 * this page's queue, we can perform writeback even if that
404 * will block.
405 *
406 * If the page is swapcache, write it back even if that would
407 * block, for some throttling. This happens by accident, because
408 * swap_backing_dev_info is bust: it doesn't reflect the
409 * congestion state of the swapdevs. Easy to fix, if needed.
410 */
411 if (!is_page_cache_freeable(page))
412 return PAGE_KEEP;
413 if (!mapping) {
414 /*
415 * Some data journaling orphaned pages can have
416 * page->mapping == NULL while being dirty with clean buffers.
417 */
418 if (page_has_private(page)) {
419 if (try_to_free_buffers(page)) {
420 ClearPageDirty(page);
421 printk("%s: orphaned page\n", __func__);
422 return PAGE_CLEAN;
423 }
424 }
425 return PAGE_KEEP;
426 }
427 if (mapping->a_ops->writepage == NULL)
428 return PAGE_ACTIVATE;
429 if (!may_write_to_queue(mapping->backing_dev_info, sc))
430 return PAGE_KEEP;
431
432 if (clear_page_dirty_for_io(page)) {
433 int res;
434 struct writeback_control wbc = {
435 .sync_mode = WB_SYNC_NONE,
436 .nr_to_write = SWAP_CLUSTER_MAX,
437 .range_start = 0,
438 .range_end = LLONG_MAX,
439 .for_reclaim = 1,
440 };
441
442 SetPageReclaim(page);
443 res = mapping->a_ops->writepage(page, &wbc);
444 if (res < 0)
445 handle_write_error(mapping, page, res);
446 if (res == AOP_WRITEPAGE_ACTIVATE) {
447 ClearPageReclaim(page);
448 return PAGE_ACTIVATE;
449 }
450
451 if (!PageWriteback(page)) {
452 /* synchronous write or broken a_ops? */
453 ClearPageReclaim(page);
454 }
455 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
456 inc_zone_page_state(page, NR_VMSCAN_WRITE);
457 return PAGE_SUCCESS;
458 }
459
460 return PAGE_CLEAN;
461 }
462
463 /*
464 * Same as remove_mapping, but if the page is removed from the mapping, it
465 * gets returned with a refcount of 0.
466 */
467 static int __remove_mapping(struct address_space *mapping, struct page *page)
468 {
469 BUG_ON(!PageLocked(page));
470 BUG_ON(mapping != page_mapping(page));
471
472 spin_lock_irq(&mapping->tree_lock);
473 /*
474 * The non racy check for a busy page.
475 *
476 * Must be careful with the order of the tests. When someone has
477 * a ref to the page, it may be possible that they dirty it then
478 * drop the reference. So if PageDirty is tested before page_count
479 * here, then the following race may occur:
480 *
481 * get_user_pages(&page);
482 * [user mapping goes away]
483 * write_to(page);
484 * !PageDirty(page) [good]
485 * SetPageDirty(page);
486 * put_page(page);
487 * !page_count(page) [good, discard it]
488 *
489 * [oops, our write_to data is lost]
490 *
491 * Reversing the order of the tests ensures such a situation cannot
492 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
493 * load is not satisfied before that of page->_count.
494 *
495 * Note that if SetPageDirty is always performed via set_page_dirty,
496 * and thus under tree_lock, then this ordering is not required.
497 */
498 if (!page_freeze_refs(page, 2))
499 goto cannot_free;
500 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
501 if (unlikely(PageDirty(page))) {
502 page_unfreeze_refs(page, 2);
503 goto cannot_free;
504 }
505
506 if (PageSwapCache(page)) {
507 swp_entry_t swap = { .val = page_private(page) };
508 __delete_from_swap_cache(page);
509 spin_unlock_irq(&mapping->tree_lock);
510 swapcache_free(swap, page);
511 } else {
512 void (*freepage)(struct page *);
513
514 freepage = mapping->a_ops->freepage;
515
516 __delete_from_page_cache(page);
517 spin_unlock_irq(&mapping->tree_lock);
518 mem_cgroup_uncharge_cache_page(page);
519
520 if (freepage != NULL)
521 freepage(page);
522 }
523
524 return 1;
525
526 cannot_free:
527 spin_unlock_irq(&mapping->tree_lock);
528 return 0;
529 }
530
531 /*
532 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
533 * someone else has a ref on the page, abort and return 0. If it was
534 * successfully detached, return 1. Assumes the caller has a single ref on
535 * this page.
536 */
537 int remove_mapping(struct address_space *mapping, struct page *page)
538 {
539 if (__remove_mapping(mapping, page)) {
540 /*
541 * Unfreezing the refcount with 1 rather than 2 effectively
542 * drops the pagecache ref for us without requiring another
543 * atomic operation.
544 */
545 page_unfreeze_refs(page, 1);
546 return 1;
547 }
548 return 0;
549 }
550
551 /**
552 * putback_lru_page - put previously isolated page onto appropriate LRU list
553 * @page: page to be put back to appropriate lru list
554 *
555 * Add previously isolated @page to appropriate LRU list.
556 * Page may still be unevictable for other reasons.
557 *
558 * lru_lock must not be held, interrupts must be enabled.
559 */
560 void putback_lru_page(struct page *page)
561 {
562 int lru;
563 int active = !!TestClearPageActive(page);
564 int was_unevictable = PageUnevictable(page);
565
566 VM_BUG_ON(PageLRU(page));
567
568 redo:
569 ClearPageUnevictable(page);
570
571 if (page_evictable(page, NULL)) {
572 /*
573 * For evictable pages, we can use the cache.
574 * In event of a race, worst case is we end up with an
575 * unevictable page on [in]active list.
576 * We know how to handle that.
577 */
578 lru = active + page_lru_base_type(page);
579 lru_cache_add_lru(page, lru);
580 } else {
581 /*
582 * Put unevictable pages directly on zone's unevictable
583 * list.
584 */
585 lru = LRU_UNEVICTABLE;
586 add_page_to_unevictable_list(page);
587 /*
588 * When racing with an mlock or AS_UNEVICTABLE clearing
589 * (page is unlocked) make sure that if the other thread
590 * does not observe our setting of PG_lru and fails
591 * isolation/check_move_unevictable_pages,
592 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
593 * the page back to the evictable list.
594 *
595 * The other side is TestClearPageMlocked() or shmem_lock().
596 */
597 smp_mb();
598 }
599
600 /*
601 * page's status can change while we move it among lru. If an evictable
602 * page is on unevictable list, it never be freed. To avoid that,
603 * check after we added it to the list, again.
604 */
605 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
606 if (!isolate_lru_page(page)) {
607 put_page(page);
608 goto redo;
609 }
610 /* This means someone else dropped this page from LRU
611 * So, it will be freed or putback to LRU again. There is
612 * nothing to do here.
613 */
614 }
615
616 if (was_unevictable && lru != LRU_UNEVICTABLE)
617 count_vm_event(UNEVICTABLE_PGRESCUED);
618 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
619 count_vm_event(UNEVICTABLE_PGCULLED);
620
621 put_page(page); /* drop ref from isolate */
622 }
623
624 enum page_references {
625 PAGEREF_RECLAIM,
626 PAGEREF_RECLAIM_CLEAN,
627 PAGEREF_KEEP,
628 PAGEREF_ACTIVATE,
629 };
630
631 static enum page_references page_check_references(struct page *page,
632 struct mem_cgroup_zone *mz,
633 struct scan_control *sc)
634 {
635 int referenced_ptes, referenced_page;
636 unsigned long vm_flags;
637
638 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
639 &vm_flags);
640 referenced_page = TestClearPageReferenced(page);
641
642 /*
643 * Mlock lost the isolation race with us. Let try_to_unmap()
644 * move the page to the unevictable list.
645 */
646 if (vm_flags & VM_LOCKED)
647 return PAGEREF_RECLAIM;
648
649 if (referenced_ptes) {
650 if (PageSwapBacked(page))
651 return PAGEREF_ACTIVATE;
652 /*
653 * All mapped pages start out with page table
654 * references from the instantiating fault, so we need
655 * to look twice if a mapped file page is used more
656 * than once.
657 *
658 * Mark it and spare it for another trip around the
659 * inactive list. Another page table reference will
660 * lead to its activation.
661 *
662 * Note: the mark is set for activated pages as well
663 * so that recently deactivated but used pages are
664 * quickly recovered.
665 */
666 SetPageReferenced(page);
667
668 if (referenced_page || referenced_ptes > 1)
669 return PAGEREF_ACTIVATE;
670
671 /*
672 * Activate file-backed executable pages after first usage.
673 */
674 if (vm_flags & VM_EXEC)
675 return PAGEREF_ACTIVATE;
676
677 return PAGEREF_KEEP;
678 }
679
680 /* Reclaim if clean, defer dirty pages to writeback */
681 if (referenced_page && !PageSwapBacked(page))
682 return PAGEREF_RECLAIM_CLEAN;
683
684 return PAGEREF_RECLAIM;
685 }
686
687 /*
688 * shrink_page_list() returns the number of reclaimed pages
689 */
690 static unsigned long shrink_page_list(struct list_head *page_list,
691 struct mem_cgroup_zone *mz,
692 struct scan_control *sc,
693 unsigned long *ret_nr_dirty,
694 unsigned long *ret_nr_writeback)
695 {
696 LIST_HEAD(ret_pages);
697 LIST_HEAD(free_pages);
698 int pgactivate = 0;
699 unsigned long nr_dirty = 0;
700 unsigned long nr_congested = 0;
701 unsigned long nr_reclaimed = 0;
702 unsigned long nr_writeback = 0;
703
704 cond_resched();
705
706 while (!list_empty(page_list)) {
707 enum page_references references;
708 struct address_space *mapping;
709 struct page *page;
710 int may_enter_fs;
711
712 cond_resched();
713
714 page = lru_to_page(page_list);
715 list_del(&page->lru);
716
717 if (!trylock_page(page))
718 goto keep;
719
720 VM_BUG_ON(PageActive(page));
721 VM_BUG_ON(page_zone(page) != mz->zone);
722
723 sc->nr_scanned++;
724
725 if (unlikely(!page_evictable(page, NULL)))
726 goto cull_mlocked;
727
728 if (!sc->may_unmap && page_mapped(page))
729 goto keep_locked;
730
731 /* Double the slab pressure for mapped and swapcache pages */
732 if (page_mapped(page) || PageSwapCache(page))
733 sc->nr_scanned++;
734
735 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
736 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
737
738 if (PageWriteback(page)) {
739 nr_writeback++;
740 unlock_page(page);
741 goto keep;
742 }
743
744 references = page_check_references(page, mz, sc);
745 switch (references) {
746 case PAGEREF_ACTIVATE:
747 goto activate_locked;
748 case PAGEREF_KEEP:
749 goto keep_locked;
750 case PAGEREF_RECLAIM:
751 case PAGEREF_RECLAIM_CLEAN:
752 ; /* try to reclaim the page below */
753 }
754
755 /*
756 * Anonymous process memory has backing store?
757 * Try to allocate it some swap space here.
758 */
759 if (PageAnon(page) && !PageSwapCache(page)) {
760 if (!(sc->gfp_mask & __GFP_IO))
761 goto keep_locked;
762 if (!add_to_swap(page))
763 goto activate_locked;
764 may_enter_fs = 1;
765 }
766
767 mapping = page_mapping(page);
768
769 /*
770 * The page is mapped into the page tables of one or more
771 * processes. Try to unmap it here.
772 */
773 if (page_mapped(page) && mapping) {
774 switch (try_to_unmap(page, TTU_UNMAP)) {
775 case SWAP_FAIL:
776 goto activate_locked;
777 case SWAP_AGAIN:
778 goto keep_locked;
779 case SWAP_MLOCK:
780 goto cull_mlocked;
781 case SWAP_SUCCESS:
782 ; /* try to free the page below */
783 }
784 }
785
786 if (PageDirty(page)) {
787 nr_dirty++;
788
789 /*
790 * Only kswapd can writeback filesystem pages to
791 * avoid risk of stack overflow but do not writeback
792 * unless under significant pressure.
793 */
794 if (page_is_file_cache(page) &&
795 (!current_is_kswapd() ||
796 sc->priority >= DEF_PRIORITY - 2)) {
797 /*
798 * Immediately reclaim when written back.
799 * Similar in principal to deactivate_page()
800 * except we already have the page isolated
801 * and know it's dirty
802 */
803 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
804 SetPageReclaim(page);
805
806 goto keep_locked;
807 }
808
809 if (references == PAGEREF_RECLAIM_CLEAN)
810 goto keep_locked;
811 if (!may_enter_fs)
812 goto keep_locked;
813 if (!sc->may_writepage)
814 goto keep_locked;
815
816 /* Page is dirty, try to write it out here */
817 switch (pageout(page, mapping, sc)) {
818 case PAGE_KEEP:
819 nr_congested++;
820 goto keep_locked;
821 case PAGE_ACTIVATE:
822 goto activate_locked;
823 case PAGE_SUCCESS:
824 if (PageWriteback(page))
825 goto keep;
826 if (PageDirty(page))
827 goto keep;
828
829 /*
830 * A synchronous write - probably a ramdisk. Go
831 * ahead and try to reclaim the page.
832 */
833 if (!trylock_page(page))
834 goto keep;
835 if (PageDirty(page) || PageWriteback(page))
836 goto keep_locked;
837 mapping = page_mapping(page);
838 case PAGE_CLEAN:
839 ; /* try to free the page below */
840 }
841 }
842
843 /*
844 * If the page has buffers, try to free the buffer mappings
845 * associated with this page. If we succeed we try to free
846 * the page as well.
847 *
848 * We do this even if the page is PageDirty().
849 * try_to_release_page() does not perform I/O, but it is
850 * possible for a page to have PageDirty set, but it is actually
851 * clean (all its buffers are clean). This happens if the
852 * buffers were written out directly, with submit_bh(). ext3
853 * will do this, as well as the blockdev mapping.
854 * try_to_release_page() will discover that cleanness and will
855 * drop the buffers and mark the page clean - it can be freed.
856 *
857 * Rarely, pages can have buffers and no ->mapping. These are
858 * the pages which were not successfully invalidated in
859 * truncate_complete_page(). We try to drop those buffers here
860 * and if that worked, and the page is no longer mapped into
861 * process address space (page_count == 1) it can be freed.
862 * Otherwise, leave the page on the LRU so it is swappable.
863 */
864 if (page_has_private(page)) {
865 if (!try_to_release_page(page, sc->gfp_mask))
866 goto activate_locked;
867 if (!mapping && page_count(page) == 1) {
868 unlock_page(page);
869 if (put_page_testzero(page))
870 goto free_it;
871 else {
872 /*
873 * rare race with speculative reference.
874 * the speculative reference will free
875 * this page shortly, so we may
876 * increment nr_reclaimed here (and
877 * leave it off the LRU).
878 */
879 nr_reclaimed++;
880 continue;
881 }
882 }
883 }
884
885 if (!mapping || !__remove_mapping(mapping, page))
886 goto keep_locked;
887
888 /*
889 * At this point, we have no other references and there is
890 * no way to pick any more up (removed from LRU, removed
891 * from pagecache). Can use non-atomic bitops now (and
892 * we obviously don't have to worry about waking up a process
893 * waiting on the page lock, because there are no references.
894 */
895 __clear_page_locked(page);
896 free_it:
897 nr_reclaimed++;
898
899 /*
900 * Is there need to periodically free_page_list? It would
901 * appear not as the counts should be low
902 */
903 list_add(&page->lru, &free_pages);
904 continue;
905
906 cull_mlocked:
907 if (PageSwapCache(page))
908 try_to_free_swap(page);
909 unlock_page(page);
910 putback_lru_page(page);
911 continue;
912
913 activate_locked:
914 /* Not a candidate for swapping, so reclaim swap space. */
915 if (PageSwapCache(page) && vm_swap_full())
916 try_to_free_swap(page);
917 VM_BUG_ON(PageActive(page));
918 SetPageActive(page);
919 pgactivate++;
920 keep_locked:
921 unlock_page(page);
922 keep:
923 list_add(&page->lru, &ret_pages);
924 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
925 }
926
927 /*
928 * Tag a zone as congested if all the dirty pages encountered were
929 * backed by a congested BDI. In this case, reclaimers should just
930 * back off and wait for congestion to clear because further reclaim
931 * will encounter the same problem
932 */
933 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
934 zone_set_flag(mz->zone, ZONE_CONGESTED);
935
936 free_hot_cold_page_list(&free_pages, 1);
937
938 list_splice(&ret_pages, page_list);
939 count_vm_events(PGACTIVATE, pgactivate);
940 *ret_nr_dirty += nr_dirty;
941 *ret_nr_writeback += nr_writeback;
942 return nr_reclaimed;
943 }
944
945 /*
946 * Attempt to remove the specified page from its LRU. Only take this page
947 * if it is of the appropriate PageActive status. Pages which are being
948 * freed elsewhere are also ignored.
949 *
950 * page: page to consider
951 * mode: one of the LRU isolation modes defined above
952 *
953 * returns 0 on success, -ve errno on failure.
954 */
955 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
956 {
957 int ret = -EINVAL;
958
959 /* Only take pages on the LRU. */
960 if (!PageLRU(page))
961 return ret;
962
963 /* Do not give back unevictable pages for compaction */
964 if (PageUnevictable(page))
965 return ret;
966
967 ret = -EBUSY;
968
969 /*
970 * To minimise LRU disruption, the caller can indicate that it only
971 * wants to isolate pages it will be able to operate on without
972 * blocking - clean pages for the most part.
973 *
974 * ISOLATE_CLEAN means that only clean pages should be isolated. This
975 * is used by reclaim when it is cannot write to backing storage
976 *
977 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
978 * that it is possible to migrate without blocking
979 */
980 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
981 /* All the caller can do on PageWriteback is block */
982 if (PageWriteback(page))
983 return ret;
984
985 if (PageDirty(page)) {
986 struct address_space *mapping;
987
988 /* ISOLATE_CLEAN means only clean pages */
989 if (mode & ISOLATE_CLEAN)
990 return ret;
991
992 /*
993 * Only pages without mappings or that have a
994 * ->migratepage callback are possible to migrate
995 * without blocking
996 */
997 mapping = page_mapping(page);
998 if (mapping && !mapping->a_ops->migratepage)
999 return ret;
1000 }
1001 }
1002
1003 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1004 return ret;
1005
1006 if (likely(get_page_unless_zero(page))) {
1007 /*
1008 * Be careful not to clear PageLRU until after we're
1009 * sure the page is not being freed elsewhere -- the
1010 * page release code relies on it.
1011 */
1012 ClearPageLRU(page);
1013 ret = 0;
1014 }
1015
1016 return ret;
1017 }
1018
1019 /*
1020 * zone->lru_lock is heavily contended. Some of the functions that
1021 * shrink the lists perform better by taking out a batch of pages
1022 * and working on them outside the LRU lock.
1023 *
1024 * For pagecache intensive workloads, this function is the hottest
1025 * spot in the kernel (apart from copy_*_user functions).
1026 *
1027 * Appropriate locks must be held before calling this function.
1028 *
1029 * @nr_to_scan: The number of pages to look through on the list.
1030 * @mz: The mem_cgroup_zone to pull pages from.
1031 * @dst: The temp list to put pages on to.
1032 * @nr_scanned: The number of pages that were scanned.
1033 * @sc: The scan_control struct for this reclaim session
1034 * @mode: One of the LRU isolation modes
1035 * @lru: LRU list id for isolating
1036 *
1037 * returns how many pages were moved onto *@dst.
1038 */
1039 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1040 struct mem_cgroup_zone *mz, struct list_head *dst,
1041 unsigned long *nr_scanned, struct scan_control *sc,
1042 isolate_mode_t mode, enum lru_list lru)
1043 {
1044 struct lruvec *lruvec;
1045 struct list_head *src;
1046 unsigned long nr_taken = 0;
1047 unsigned long scan;
1048 int file = is_file_lru(lru);
1049
1050 lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1051 src = &lruvec->lists[lru];
1052
1053 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1054 struct page *page;
1055
1056 page = lru_to_page(src);
1057 prefetchw_prev_lru_page(page, src, flags);
1058
1059 VM_BUG_ON(!PageLRU(page));
1060
1061 switch (__isolate_lru_page(page, mode)) {
1062 case 0:
1063 mem_cgroup_lru_del_list(page, lru);
1064 list_move(&page->lru, dst);
1065 nr_taken += hpage_nr_pages(page);
1066 break;
1067
1068 case -EBUSY:
1069 /* else it is being freed elsewhere */
1070 list_move(&page->lru, src);
1071 continue;
1072
1073 default:
1074 BUG();
1075 }
1076 }
1077
1078 *nr_scanned = scan;
1079
1080 trace_mm_vmscan_lru_isolate(sc->order,
1081 nr_to_scan, scan,
1082 nr_taken,
1083 mode, file);
1084 return nr_taken;
1085 }
1086
1087 /**
1088 * isolate_lru_page - tries to isolate a page from its LRU list
1089 * @page: page to isolate from its LRU list
1090 *
1091 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1092 * vmstat statistic corresponding to whatever LRU list the page was on.
1093 *
1094 * Returns 0 if the page was removed from an LRU list.
1095 * Returns -EBUSY if the page was not on an LRU list.
1096 *
1097 * The returned page will have PageLRU() cleared. If it was found on
1098 * the active list, it will have PageActive set. If it was found on
1099 * the unevictable list, it will have the PageUnevictable bit set. That flag
1100 * may need to be cleared by the caller before letting the page go.
1101 *
1102 * The vmstat statistic corresponding to the list on which the page was
1103 * found will be decremented.
1104 *
1105 * Restrictions:
1106 * (1) Must be called with an elevated refcount on the page. This is a
1107 * fundamentnal difference from isolate_lru_pages (which is called
1108 * without a stable reference).
1109 * (2) the lru_lock must not be held.
1110 * (3) interrupts must be enabled.
1111 */
1112 int isolate_lru_page(struct page *page)
1113 {
1114 int ret = -EBUSY;
1115
1116 VM_BUG_ON(!page_count(page));
1117
1118 if (PageLRU(page)) {
1119 struct zone *zone = page_zone(page);
1120
1121 spin_lock_irq(&zone->lru_lock);
1122 if (PageLRU(page)) {
1123 int lru = page_lru(page);
1124 ret = 0;
1125 get_page(page);
1126 ClearPageLRU(page);
1127
1128 del_page_from_lru_list(zone, page, lru);
1129 }
1130 spin_unlock_irq(&zone->lru_lock);
1131 }
1132 return ret;
1133 }
1134
1135 /*
1136 * Are there way too many processes in the direct reclaim path already?
1137 */
1138 static int too_many_isolated(struct zone *zone, int file,
1139 struct scan_control *sc)
1140 {
1141 unsigned long inactive, isolated;
1142
1143 if (current_is_kswapd())
1144 return 0;
1145
1146 if (!global_reclaim(sc))
1147 return 0;
1148
1149 if (file) {
1150 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1151 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1152 } else {
1153 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1154 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1155 }
1156
1157 return isolated > inactive;
1158 }
1159
1160 static noinline_for_stack void
1161 putback_inactive_pages(struct mem_cgroup_zone *mz,
1162 struct list_head *page_list)
1163 {
1164 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1165 struct zone *zone = mz->zone;
1166 LIST_HEAD(pages_to_free);
1167
1168 /*
1169 * Put back any unfreeable pages.
1170 */
1171 while (!list_empty(page_list)) {
1172 struct page *page = lru_to_page(page_list);
1173 int lru;
1174
1175 VM_BUG_ON(PageLRU(page));
1176 list_del(&page->lru);
1177 if (unlikely(!page_evictable(page, NULL))) {
1178 spin_unlock_irq(&zone->lru_lock);
1179 putback_lru_page(page);
1180 spin_lock_irq(&zone->lru_lock);
1181 continue;
1182 }
1183 SetPageLRU(page);
1184 lru = page_lru(page);
1185 add_page_to_lru_list(zone, page, lru);
1186 if (is_active_lru(lru)) {
1187 int file = is_file_lru(lru);
1188 int numpages = hpage_nr_pages(page);
1189 reclaim_stat->recent_rotated[file] += numpages;
1190 }
1191 if (put_page_testzero(page)) {
1192 __ClearPageLRU(page);
1193 __ClearPageActive(page);
1194 del_page_from_lru_list(zone, page, lru);
1195
1196 if (unlikely(PageCompound(page))) {
1197 spin_unlock_irq(&zone->lru_lock);
1198 (*get_compound_page_dtor(page))(page);
1199 spin_lock_irq(&zone->lru_lock);
1200 } else
1201 list_add(&page->lru, &pages_to_free);
1202 }
1203 }
1204
1205 /*
1206 * To save our caller's stack, now use input list for pages to free.
1207 */
1208 list_splice(&pages_to_free, page_list);
1209 }
1210
1211 static noinline_for_stack void
1212 update_isolated_counts(struct mem_cgroup_zone *mz,
1213 struct list_head *page_list,
1214 unsigned long *nr_anon,
1215 unsigned long *nr_file)
1216 {
1217 struct zone *zone = mz->zone;
1218 unsigned int count[NR_LRU_LISTS] = { 0, };
1219 unsigned long nr_active = 0;
1220 struct page *page;
1221 int lru;
1222
1223 /*
1224 * Count pages and clear active flags
1225 */
1226 list_for_each_entry(page, page_list, lru) {
1227 int numpages = hpage_nr_pages(page);
1228 lru = page_lru_base_type(page);
1229 if (PageActive(page)) {
1230 lru += LRU_ACTIVE;
1231 ClearPageActive(page);
1232 nr_active += numpages;
1233 }
1234 count[lru] += numpages;
1235 }
1236
1237 preempt_disable();
1238 __count_vm_events(PGDEACTIVATE, nr_active);
1239
1240 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1241 -count[LRU_ACTIVE_FILE]);
1242 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1243 -count[LRU_INACTIVE_FILE]);
1244 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1245 -count[LRU_ACTIVE_ANON]);
1246 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1247 -count[LRU_INACTIVE_ANON]);
1248
1249 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1250 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1251
1252 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1253 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1254 preempt_enable();
1255 }
1256
1257 /*
1258 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1259 * of reclaimed pages
1260 */
1261 static noinline_for_stack unsigned long
1262 shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1263 struct scan_control *sc, enum lru_list lru)
1264 {
1265 LIST_HEAD(page_list);
1266 unsigned long nr_scanned;
1267 unsigned long nr_reclaimed = 0;
1268 unsigned long nr_taken;
1269 unsigned long nr_anon;
1270 unsigned long nr_file;
1271 unsigned long nr_dirty = 0;
1272 unsigned long nr_writeback = 0;
1273 isolate_mode_t isolate_mode = 0;
1274 int file = is_file_lru(lru);
1275 struct zone *zone = mz->zone;
1276 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1277
1278 while (unlikely(too_many_isolated(zone, file, sc))) {
1279 congestion_wait(BLK_RW_ASYNC, HZ/10);
1280
1281 /* We are about to die and free our memory. Return now. */
1282 if (fatal_signal_pending(current))
1283 return SWAP_CLUSTER_MAX;
1284 }
1285
1286 lru_add_drain();
1287
1288 if (!sc->may_unmap)
1289 isolate_mode |= ISOLATE_UNMAPPED;
1290 if (!sc->may_writepage)
1291 isolate_mode |= ISOLATE_CLEAN;
1292
1293 spin_lock_irq(&zone->lru_lock);
1294
1295 nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list, &nr_scanned,
1296 sc, isolate_mode, lru);
1297 if (global_reclaim(sc)) {
1298 zone->pages_scanned += nr_scanned;
1299 if (current_is_kswapd())
1300 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1301 nr_scanned);
1302 else
1303 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1304 nr_scanned);
1305 }
1306 spin_unlock_irq(&zone->lru_lock);
1307
1308 if (nr_taken == 0)
1309 return 0;
1310
1311 update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);
1312
1313 nr_reclaimed = shrink_page_list(&page_list, mz, sc,
1314 &nr_dirty, &nr_writeback);
1315
1316 spin_lock_irq(&zone->lru_lock);
1317
1318 reclaim_stat->recent_scanned[0] += nr_anon;
1319 reclaim_stat->recent_scanned[1] += nr_file;
1320
1321 if (global_reclaim(sc)) {
1322 if (current_is_kswapd())
1323 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1324 nr_reclaimed);
1325 else
1326 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1327 nr_reclaimed);
1328 }
1329
1330 putback_inactive_pages(mz, &page_list);
1331
1332 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1333 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1334
1335 spin_unlock_irq(&zone->lru_lock);
1336
1337 free_hot_cold_page_list(&page_list, 1);
1338
1339 /*
1340 * If reclaim is isolating dirty pages under writeback, it implies
1341 * that the long-lived page allocation rate is exceeding the page
1342 * laundering rate. Either the global limits are not being effective
1343 * at throttling processes due to the page distribution throughout
1344 * zones or there is heavy usage of a slow backing device. The
1345 * only option is to throttle from reclaim context which is not ideal
1346 * as there is no guarantee the dirtying process is throttled in the
1347 * same way balance_dirty_pages() manages.
1348 *
1349 * This scales the number of dirty pages that must be under writeback
1350 * before throttling depending on priority. It is a simple backoff
1351 * function that has the most effect in the range DEF_PRIORITY to
1352 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1353 * in trouble and reclaim is considered to be in trouble.
1354 *
1355 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1356 * DEF_PRIORITY-1 50% must be PageWriteback
1357 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1358 * ...
1359 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1360 * isolated page is PageWriteback
1361 */
1362 if (nr_writeback && nr_writeback >=
1363 (nr_taken >> (DEF_PRIORITY - sc->priority)))
1364 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1365
1366 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1367 zone_idx(zone),
1368 nr_scanned, nr_reclaimed,
1369 sc->priority,
1370 trace_shrink_flags(file));
1371 return nr_reclaimed;
1372 }
1373
1374 /*
1375 * This moves pages from the active list to the inactive list.
1376 *
1377 * We move them the other way if the page is referenced by one or more
1378 * processes, from rmap.
1379 *
1380 * If the pages are mostly unmapped, the processing is fast and it is
1381 * appropriate to hold zone->lru_lock across the whole operation. But if
1382 * the pages are mapped, the processing is slow (page_referenced()) so we
1383 * should drop zone->lru_lock around each page. It's impossible to balance
1384 * this, so instead we remove the pages from the LRU while processing them.
1385 * It is safe to rely on PG_active against the non-LRU pages in here because
1386 * nobody will play with that bit on a non-LRU page.
1387 *
1388 * The downside is that we have to touch page->_count against each page.
1389 * But we had to alter page->flags anyway.
1390 */
1391
1392 static void move_active_pages_to_lru(struct zone *zone,
1393 struct list_head *list,
1394 struct list_head *pages_to_free,
1395 enum lru_list lru)
1396 {
1397 unsigned long pgmoved = 0;
1398 struct page *page;
1399
1400 while (!list_empty(list)) {
1401 struct lruvec *lruvec;
1402
1403 page = lru_to_page(list);
1404
1405 VM_BUG_ON(PageLRU(page));
1406 SetPageLRU(page);
1407
1408 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1409 list_move(&page->lru, &lruvec->lists[lru]);
1410 pgmoved += hpage_nr_pages(page);
1411
1412 if (put_page_testzero(page)) {
1413 __ClearPageLRU(page);
1414 __ClearPageActive(page);
1415 del_page_from_lru_list(zone, page, lru);
1416
1417 if (unlikely(PageCompound(page))) {
1418 spin_unlock_irq(&zone->lru_lock);
1419 (*get_compound_page_dtor(page))(page);
1420 spin_lock_irq(&zone->lru_lock);
1421 } else
1422 list_add(&page->lru, pages_to_free);
1423 }
1424 }
1425 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1426 if (!is_active_lru(lru))
1427 __count_vm_events(PGDEACTIVATE, pgmoved);
1428 }
1429
1430 static void shrink_active_list(unsigned long nr_to_scan,
1431 struct mem_cgroup_zone *mz,
1432 struct scan_control *sc,
1433 enum lru_list lru)
1434 {
1435 unsigned long nr_taken;
1436 unsigned long nr_scanned;
1437 unsigned long vm_flags;
1438 LIST_HEAD(l_hold); /* The pages which were snipped off */
1439 LIST_HEAD(l_active);
1440 LIST_HEAD(l_inactive);
1441 struct page *page;
1442 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1443 unsigned long nr_rotated = 0;
1444 isolate_mode_t isolate_mode = 0;
1445 int file = is_file_lru(lru);
1446 struct zone *zone = mz->zone;
1447
1448 lru_add_drain();
1449
1450 if (!sc->may_unmap)
1451 isolate_mode |= ISOLATE_UNMAPPED;
1452 if (!sc->may_writepage)
1453 isolate_mode |= ISOLATE_CLEAN;
1454
1455 spin_lock_irq(&zone->lru_lock);
1456
1457 nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold, &nr_scanned, sc,
1458 isolate_mode, lru);
1459 if (global_reclaim(sc))
1460 zone->pages_scanned += nr_scanned;
1461
1462 reclaim_stat->recent_scanned[file] += nr_taken;
1463
1464 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1465 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1466 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1467 spin_unlock_irq(&zone->lru_lock);
1468
1469 while (!list_empty(&l_hold)) {
1470 cond_resched();
1471 page = lru_to_page(&l_hold);
1472 list_del(&page->lru);
1473
1474 if (unlikely(!page_evictable(page, NULL))) {
1475 putback_lru_page(page);
1476 continue;
1477 }
1478
1479 if (unlikely(buffer_heads_over_limit)) {
1480 if (page_has_private(page) && trylock_page(page)) {
1481 if (page_has_private(page))
1482 try_to_release_page(page, 0);
1483 unlock_page(page);
1484 }
1485 }
1486
1487 if (page_referenced(page, 0, sc->target_mem_cgroup,
1488 &vm_flags)) {
1489 nr_rotated += hpage_nr_pages(page);
1490 /*
1491 * Identify referenced, file-backed active pages and
1492 * give them one more trip around the active list. So
1493 * that executable code get better chances to stay in
1494 * memory under moderate memory pressure. Anon pages
1495 * are not likely to be evicted by use-once streaming
1496 * IO, plus JVM can create lots of anon VM_EXEC pages,
1497 * so we ignore them here.
1498 */
1499 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1500 list_add(&page->lru, &l_active);
1501 continue;
1502 }
1503 }
1504
1505 ClearPageActive(page); /* we are de-activating */
1506 list_add(&page->lru, &l_inactive);
1507 }
1508
1509 /*
1510 * Move pages back to the lru list.
1511 */
1512 spin_lock_irq(&zone->lru_lock);
1513 /*
1514 * Count referenced pages from currently used mappings as rotated,
1515 * even though only some of them are actually re-activated. This
1516 * helps balance scan pressure between file and anonymous pages in
1517 * get_scan_ratio.
1518 */
1519 reclaim_stat->recent_rotated[file] += nr_rotated;
1520
1521 move_active_pages_to_lru(zone, &l_active, &l_hold, lru);
1522 move_active_pages_to_lru(zone, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1523 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1524 spin_unlock_irq(&zone->lru_lock);
1525
1526 free_hot_cold_page_list(&l_hold, 1);
1527 }
1528
1529 #ifdef CONFIG_SWAP
1530 static int inactive_anon_is_low_global(struct zone *zone)
1531 {
1532 unsigned long active, inactive;
1533
1534 active = zone_page_state(zone, NR_ACTIVE_ANON);
1535 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1536
1537 if (inactive * zone->inactive_ratio < active)
1538 return 1;
1539
1540 return 0;
1541 }
1542
1543 /**
1544 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1545 * @zone: zone to check
1546 * @sc: scan control of this context
1547 *
1548 * Returns true if the zone does not have enough inactive anon pages,
1549 * meaning some active anon pages need to be deactivated.
1550 */
1551 static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1552 {
1553 /*
1554 * If we don't have swap space, anonymous page deactivation
1555 * is pointless.
1556 */
1557 if (!total_swap_pages)
1558 return 0;
1559
1560 if (!mem_cgroup_disabled())
1561 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1562 mz->zone);
1563
1564 return inactive_anon_is_low_global(mz->zone);
1565 }
1566 #else
1567 static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1568 {
1569 return 0;
1570 }
1571 #endif
1572
1573 static int inactive_file_is_low_global(struct zone *zone)
1574 {
1575 unsigned long active, inactive;
1576
1577 active = zone_page_state(zone, NR_ACTIVE_FILE);
1578 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1579
1580 return (active > inactive);
1581 }
1582
1583 /**
1584 * inactive_file_is_low - check if file pages need to be deactivated
1585 * @mz: memory cgroup and zone to check
1586 *
1587 * When the system is doing streaming IO, memory pressure here
1588 * ensures that active file pages get deactivated, until more
1589 * than half of the file pages are on the inactive list.
1590 *
1591 * Once we get to that situation, protect the system's working
1592 * set from being evicted by disabling active file page aging.
1593 *
1594 * This uses a different ratio than the anonymous pages, because
1595 * the page cache uses a use-once replacement algorithm.
1596 */
1597 static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1598 {
1599 if (!mem_cgroup_disabled())
1600 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1601 mz->zone);
1602
1603 return inactive_file_is_low_global(mz->zone);
1604 }
1605
1606 static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1607 {
1608 if (file)
1609 return inactive_file_is_low(mz);
1610 else
1611 return inactive_anon_is_low(mz);
1612 }
1613
1614 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1615 struct mem_cgroup_zone *mz,
1616 struct scan_control *sc)
1617 {
1618 int file = is_file_lru(lru);
1619
1620 if (is_active_lru(lru)) {
1621 if (inactive_list_is_low(mz, file))
1622 shrink_active_list(nr_to_scan, mz, sc, lru);
1623 return 0;
1624 }
1625
1626 return shrink_inactive_list(nr_to_scan, mz, sc, lru);
1627 }
1628
1629 static int vmscan_swappiness(struct scan_control *sc)
1630 {
1631 if (global_reclaim(sc))
1632 return vm_swappiness;
1633 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1634 }
1635
1636 /*
1637 * Determine how aggressively the anon and file LRU lists should be
1638 * scanned. The relative value of each set of LRU lists is determined
1639 * by looking at the fraction of the pages scanned we did rotate back
1640 * onto the active list instead of evict.
1641 *
1642 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1643 */
1644 static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1645 unsigned long *nr)
1646 {
1647 unsigned long anon, file, free;
1648 unsigned long anon_prio, file_prio;
1649 unsigned long ap, fp;
1650 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1651 u64 fraction[2], denominator;
1652 enum lru_list lru;
1653 int noswap = 0;
1654 bool force_scan = false;
1655
1656 /*
1657 * If the zone or memcg is small, nr[l] can be 0. This
1658 * results in no scanning on this priority and a potential
1659 * priority drop. Global direct reclaim can go to the next
1660 * zone and tends to have no problems. Global kswapd is for
1661 * zone balancing and it needs to scan a minimum amount. When
1662 * reclaiming for a memcg, a priority drop can cause high
1663 * latencies, so it's better to scan a minimum amount there as
1664 * well.
1665 */
1666 if (current_is_kswapd() && mz->zone->all_unreclaimable)
1667 force_scan = true;
1668 if (!global_reclaim(sc))
1669 force_scan = true;
1670
1671 /* If we have no swap space, do not bother scanning anon pages. */
1672 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1673 noswap = 1;
1674 fraction[0] = 0;
1675 fraction[1] = 1;
1676 denominator = 1;
1677 goto out;
1678 }
1679
1680 anon = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1681 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1682 file = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1683 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1684
1685 if (global_reclaim(sc)) {
1686 free = zone_page_state(mz->zone, NR_FREE_PAGES);
1687 /* If we have very few page cache pages,
1688 force-scan anon pages. */
1689 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1690 fraction[0] = 1;
1691 fraction[1] = 0;
1692 denominator = 1;
1693 goto out;
1694 }
1695 }
1696
1697 /*
1698 * With swappiness at 100, anonymous and file have the same priority.
1699 * This scanning priority is essentially the inverse of IO cost.
1700 */
1701 anon_prio = vmscan_swappiness(sc);
1702 file_prio = 200 - vmscan_swappiness(sc);
1703
1704 /*
1705 * OK, so we have swap space and a fair amount of page cache
1706 * pages. We use the recently rotated / recently scanned
1707 * ratios to determine how valuable each cache is.
1708 *
1709 * Because workloads change over time (and to avoid overflow)
1710 * we keep these statistics as a floating average, which ends
1711 * up weighing recent references more than old ones.
1712 *
1713 * anon in [0], file in [1]
1714 */
1715 spin_lock_irq(&mz->zone->lru_lock);
1716 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1717 reclaim_stat->recent_scanned[0] /= 2;
1718 reclaim_stat->recent_rotated[0] /= 2;
1719 }
1720
1721 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1722 reclaim_stat->recent_scanned[1] /= 2;
1723 reclaim_stat->recent_rotated[1] /= 2;
1724 }
1725
1726 /*
1727 * The amount of pressure on anon vs file pages is inversely
1728 * proportional to the fraction of recently scanned pages on
1729 * each list that were recently referenced and in active use.
1730 */
1731 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1732 ap /= reclaim_stat->recent_rotated[0] + 1;
1733
1734 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1735 fp /= reclaim_stat->recent_rotated[1] + 1;
1736 spin_unlock_irq(&mz->zone->lru_lock);
1737
1738 fraction[0] = ap;
1739 fraction[1] = fp;
1740 denominator = ap + fp + 1;
1741 out:
1742 for_each_evictable_lru(lru) {
1743 int file = is_file_lru(lru);
1744 unsigned long scan;
1745
1746 scan = zone_nr_lru_pages(mz, lru);
1747 if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1748 scan >>= sc->priority;
1749 if (!scan && force_scan)
1750 scan = SWAP_CLUSTER_MAX;
1751 scan = div64_u64(scan * fraction[file], denominator);
1752 }
1753 nr[lru] = scan;
1754 }
1755 }
1756
1757 /* Use reclaim/compaction for costly allocs or under memory pressure */
1758 static bool in_reclaim_compaction(struct scan_control *sc)
1759 {
1760 if (COMPACTION_BUILD && sc->order &&
1761 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1762 sc->priority < DEF_PRIORITY - 2))
1763 return true;
1764
1765 return false;
1766 }
1767
1768 /*
1769 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1770 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1771 * true if more pages should be reclaimed such that when the page allocator
1772 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1773 * It will give up earlier than that if there is difficulty reclaiming pages.
1774 */
1775 static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
1776 unsigned long nr_reclaimed,
1777 unsigned long nr_scanned,
1778 struct scan_control *sc)
1779 {
1780 unsigned long pages_for_compaction;
1781 unsigned long inactive_lru_pages;
1782
1783 /* If not in reclaim/compaction mode, stop */
1784 if (!in_reclaim_compaction(sc))
1785 return false;
1786
1787 /* Consider stopping depending on scan and reclaim activity */
1788 if (sc->gfp_mask & __GFP_REPEAT) {
1789 /*
1790 * For __GFP_REPEAT allocations, stop reclaiming if the
1791 * full LRU list has been scanned and we are still failing
1792 * to reclaim pages. This full LRU scan is potentially
1793 * expensive but a __GFP_REPEAT caller really wants to succeed
1794 */
1795 if (!nr_reclaimed && !nr_scanned)
1796 return false;
1797 } else {
1798 /*
1799 * For non-__GFP_REPEAT allocations which can presumably
1800 * fail without consequence, stop if we failed to reclaim
1801 * any pages from the last SWAP_CLUSTER_MAX number of
1802 * pages that were scanned. This will return to the
1803 * caller faster at the risk reclaim/compaction and
1804 * the resulting allocation attempt fails
1805 */
1806 if (!nr_reclaimed)
1807 return false;
1808 }
1809
1810 /*
1811 * If we have not reclaimed enough pages for compaction and the
1812 * inactive lists are large enough, continue reclaiming
1813 */
1814 pages_for_compaction = (2UL << sc->order);
1815 inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1816 if (nr_swap_pages > 0)
1817 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1818 if (sc->nr_reclaimed < pages_for_compaction &&
1819 inactive_lru_pages > pages_for_compaction)
1820 return true;
1821
1822 /* If compaction would go ahead or the allocation would succeed, stop */
1823 switch (compaction_suitable(mz->zone, sc->order)) {
1824 case COMPACT_PARTIAL:
1825 case COMPACT_CONTINUE:
1826 return false;
1827 default:
1828 return true;
1829 }
1830 }
1831
1832 /*
1833 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1834 */
1835 static void shrink_mem_cgroup_zone(struct mem_cgroup_zone *mz,
1836 struct scan_control *sc)
1837 {
1838 unsigned long nr[NR_LRU_LISTS];
1839 unsigned long nr_to_scan;
1840 enum lru_list lru;
1841 unsigned long nr_reclaimed, nr_scanned;
1842 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1843 struct blk_plug plug;
1844
1845 restart:
1846 nr_reclaimed = 0;
1847 nr_scanned = sc->nr_scanned;
1848 get_scan_count(mz, sc, nr);
1849
1850 blk_start_plug(&plug);
1851 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1852 nr[LRU_INACTIVE_FILE]) {
1853 for_each_evictable_lru(lru) {
1854 if (nr[lru]) {
1855 nr_to_scan = min_t(unsigned long,
1856 nr[lru], SWAP_CLUSTER_MAX);
1857 nr[lru] -= nr_to_scan;
1858
1859 nr_reclaimed += shrink_list(lru, nr_to_scan,
1860 mz, sc);
1861 }
1862 }
1863 /*
1864 * On large memory systems, scan >> priority can become
1865 * really large. This is fine for the starting priority;
1866 * we want to put equal scanning pressure on each zone.
1867 * However, if the VM has a harder time of freeing pages,
1868 * with multiple processes reclaiming pages, the total
1869 * freeing target can get unreasonably large.
1870 */
1871 if (nr_reclaimed >= nr_to_reclaim &&
1872 sc->priority < DEF_PRIORITY)
1873 break;
1874 }
1875 blk_finish_plug(&plug);
1876 sc->nr_reclaimed += nr_reclaimed;
1877
1878 /*
1879 * Even if we did not try to evict anon pages at all, we want to
1880 * rebalance the anon lru active/inactive ratio.
1881 */
1882 if (inactive_anon_is_low(mz))
1883 shrink_active_list(SWAP_CLUSTER_MAX, mz,
1884 sc, LRU_ACTIVE_ANON);
1885
1886 /* reclaim/compaction might need reclaim to continue */
1887 if (should_continue_reclaim(mz, nr_reclaimed,
1888 sc->nr_scanned - nr_scanned, sc))
1889 goto restart;
1890
1891 throttle_vm_writeout(sc->gfp_mask);
1892 }
1893
1894 static void shrink_zone(struct zone *zone, struct scan_control *sc)
1895 {
1896 struct mem_cgroup *root = sc->target_mem_cgroup;
1897 struct mem_cgroup_reclaim_cookie reclaim = {
1898 .zone = zone,
1899 .priority = sc->priority,
1900 };
1901 struct mem_cgroup *memcg;
1902
1903 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1904 do {
1905 struct mem_cgroup_zone mz = {
1906 .mem_cgroup = memcg,
1907 .zone = zone,
1908 };
1909
1910 shrink_mem_cgroup_zone(&mz, sc);
1911 /*
1912 * Limit reclaim has historically picked one memcg and
1913 * scanned it with decreasing priority levels until
1914 * nr_to_reclaim had been reclaimed. This priority
1915 * cycle is thus over after a single memcg.
1916 *
1917 * Direct reclaim and kswapd, on the other hand, have
1918 * to scan all memory cgroups to fulfill the overall
1919 * scan target for the zone.
1920 */
1921 if (!global_reclaim(sc)) {
1922 mem_cgroup_iter_break(root, memcg);
1923 break;
1924 }
1925 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1926 } while (memcg);
1927 }
1928
1929 /* Returns true if compaction should go ahead for a high-order request */
1930 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1931 {
1932 unsigned long balance_gap, watermark;
1933 bool watermark_ok;
1934
1935 /* Do not consider compaction for orders reclaim is meant to satisfy */
1936 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1937 return false;
1938
1939 /*
1940 * Compaction takes time to run and there are potentially other
1941 * callers using the pages just freed. Continue reclaiming until
1942 * there is a buffer of free pages available to give compaction
1943 * a reasonable chance of completing and allocating the page
1944 */
1945 balance_gap = min(low_wmark_pages(zone),
1946 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1947 KSWAPD_ZONE_BALANCE_GAP_RATIO);
1948 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1949 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1950
1951 /*
1952 * If compaction is deferred, reclaim up to a point where
1953 * compaction will have a chance of success when re-enabled
1954 */
1955 if (compaction_deferred(zone, sc->order))
1956 return watermark_ok;
1957
1958 /* If compaction is not ready to start, keep reclaiming */
1959 if (!compaction_suitable(zone, sc->order))
1960 return false;
1961
1962 return watermark_ok;
1963 }
1964
1965 /*
1966 * This is the direct reclaim path, for page-allocating processes. We only
1967 * try to reclaim pages from zones which will satisfy the caller's allocation
1968 * request.
1969 *
1970 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1971 * Because:
1972 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1973 * allocation or
1974 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1975 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1976 * zone defense algorithm.
1977 *
1978 * If a zone is deemed to be full of pinned pages then just give it a light
1979 * scan then give up on it.
1980 *
1981 * This function returns true if a zone is being reclaimed for a costly
1982 * high-order allocation and compaction is ready to begin. This indicates to
1983 * the caller that it should consider retrying the allocation instead of
1984 * further reclaim.
1985 */
1986 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1987 {
1988 struct zoneref *z;
1989 struct zone *zone;
1990 unsigned long nr_soft_reclaimed;
1991 unsigned long nr_soft_scanned;
1992 bool aborted_reclaim = false;
1993
1994 /*
1995 * If the number of buffer_heads in the machine exceeds the maximum
1996 * allowed level, force direct reclaim to scan the highmem zone as
1997 * highmem pages could be pinning lowmem pages storing buffer_heads
1998 */
1999 if (buffer_heads_over_limit)
2000 sc->gfp_mask |= __GFP_HIGHMEM;
2001
2002 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2003 gfp_zone(sc->gfp_mask), sc->nodemask) {
2004 if (!populated_zone(zone))
2005 continue;
2006 /*
2007 * Take care memory controller reclaiming has small influence
2008 * to global LRU.
2009 */
2010 if (global_reclaim(sc)) {
2011 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2012 continue;
2013 if (zone->all_unreclaimable &&
2014 sc->priority != DEF_PRIORITY)
2015 continue; /* Let kswapd poll it */
2016 if (COMPACTION_BUILD) {
2017 /*
2018 * If we already have plenty of memory free for
2019 * compaction in this zone, don't free any more.
2020 * Even though compaction is invoked for any
2021 * non-zero order, only frequent costly order
2022 * reclamation is disruptive enough to become a
2023 * noticeable problem, like transparent huge
2024 * page allocations.
2025 */
2026 if (compaction_ready(zone, sc)) {
2027 aborted_reclaim = true;
2028 continue;
2029 }
2030 }
2031 /*
2032 * This steals pages from memory cgroups over softlimit
2033 * and returns the number of reclaimed pages and
2034 * scanned pages. This works for global memory pressure
2035 * and balancing, not for a memcg's limit.
2036 */
2037 nr_soft_scanned = 0;
2038 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2039 sc->order, sc->gfp_mask,
2040 &nr_soft_scanned);
2041 sc->nr_reclaimed += nr_soft_reclaimed;
2042 sc->nr_scanned += nr_soft_scanned;
2043 /* need some check for avoid more shrink_zone() */
2044 }
2045
2046 shrink_zone(zone, sc);
2047 }
2048
2049 return aborted_reclaim;
2050 }
2051
2052 static bool zone_reclaimable(struct zone *zone)
2053 {
2054 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2055 }
2056
2057 /* All zones in zonelist are unreclaimable? */
2058 static bool all_unreclaimable(struct zonelist *zonelist,
2059 struct scan_control *sc)
2060 {
2061 struct zoneref *z;
2062 struct zone *zone;
2063
2064 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2065 gfp_zone(sc->gfp_mask), sc->nodemask) {
2066 if (!populated_zone(zone))
2067 continue;
2068 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2069 continue;
2070 if (!zone->all_unreclaimable)
2071 return false;
2072 }
2073
2074 return true;
2075 }
2076
2077 /*
2078 * This is the main entry point to direct page reclaim.
2079 *
2080 * If a full scan of the inactive list fails to free enough memory then we
2081 * are "out of memory" and something needs to be killed.
2082 *
2083 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2084 * high - the zone may be full of dirty or under-writeback pages, which this
2085 * caller can't do much about. We kick the writeback threads and take explicit
2086 * naps in the hope that some of these pages can be written. But if the
2087 * allocating task holds filesystem locks which prevent writeout this might not
2088 * work, and the allocation attempt will fail.
2089 *
2090 * returns: 0, if no pages reclaimed
2091 * else, the number of pages reclaimed
2092 */
2093 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2094 struct scan_control *sc,
2095 struct shrink_control *shrink)
2096 {
2097 unsigned long total_scanned = 0;
2098 struct reclaim_state *reclaim_state = current->reclaim_state;
2099 struct zoneref *z;
2100 struct zone *zone;
2101 unsigned long writeback_threshold;
2102 bool aborted_reclaim;
2103
2104 delayacct_freepages_start();
2105
2106 if (global_reclaim(sc))
2107 count_vm_event(ALLOCSTALL);
2108
2109 do {
2110 sc->nr_scanned = 0;
2111 aborted_reclaim = shrink_zones(zonelist, sc);
2112
2113 /*
2114 * Don't shrink slabs when reclaiming memory from
2115 * over limit cgroups
2116 */
2117 if (global_reclaim(sc)) {
2118 unsigned long lru_pages = 0;
2119 for_each_zone_zonelist(zone, z, zonelist,
2120 gfp_zone(sc->gfp_mask)) {
2121 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2122 continue;
2123
2124 lru_pages += zone_reclaimable_pages(zone);
2125 }
2126
2127 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2128 if (reclaim_state) {
2129 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2130 reclaim_state->reclaimed_slab = 0;
2131 }
2132 }
2133 total_scanned += sc->nr_scanned;
2134 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2135 goto out;
2136
2137 /*
2138 * Try to write back as many pages as we just scanned. This
2139 * tends to cause slow streaming writers to write data to the
2140 * disk smoothly, at the dirtying rate, which is nice. But
2141 * that's undesirable in laptop mode, where we *want* lumpy
2142 * writeout. So in laptop mode, write out the whole world.
2143 */
2144 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2145 if (total_scanned > writeback_threshold) {
2146 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2147 WB_REASON_TRY_TO_FREE_PAGES);
2148 sc->may_writepage = 1;
2149 }
2150
2151 /* Take a nap, wait for some writeback to complete */
2152 if (!sc->hibernation_mode && sc->nr_scanned &&
2153 sc->priority < DEF_PRIORITY - 2) {
2154 struct zone *preferred_zone;
2155
2156 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2157 &cpuset_current_mems_allowed,
2158 &preferred_zone);
2159 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2160 }
2161 } while (--sc->priority >= 0);
2162
2163 out:
2164 delayacct_freepages_end();
2165
2166 if (sc->nr_reclaimed)
2167 return sc->nr_reclaimed;
2168
2169 /*
2170 * As hibernation is going on, kswapd is freezed so that it can't mark
2171 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2172 * check.
2173 */
2174 if (oom_killer_disabled)
2175 return 0;
2176
2177 /* Aborted reclaim to try compaction? don't OOM, then */
2178 if (aborted_reclaim)
2179 return 1;
2180
2181 /* top priority shrink_zones still had more to do? don't OOM, then */
2182 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2183 return 1;
2184
2185 return 0;
2186 }
2187
2188 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2189 gfp_t gfp_mask, nodemask_t *nodemask)
2190 {
2191 unsigned long nr_reclaimed;
2192 struct scan_control sc = {
2193 .gfp_mask = gfp_mask,
2194 .may_writepage = !laptop_mode,
2195 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2196 .may_unmap = 1,
2197 .may_swap = 1,
2198 .order = order,
2199 .priority = DEF_PRIORITY,
2200 .target_mem_cgroup = NULL,
2201 .nodemask = nodemask,
2202 };
2203 struct shrink_control shrink = {
2204 .gfp_mask = sc.gfp_mask,
2205 };
2206
2207 trace_mm_vmscan_direct_reclaim_begin(order,
2208 sc.may_writepage,
2209 gfp_mask);
2210
2211 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2212
2213 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2214
2215 return nr_reclaimed;
2216 }
2217
2218 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2219
2220 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2221 gfp_t gfp_mask, bool noswap,
2222 struct zone *zone,
2223 unsigned long *nr_scanned)
2224 {
2225 struct scan_control sc = {
2226 .nr_scanned = 0,
2227 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2228 .may_writepage = !laptop_mode,
2229 .may_unmap = 1,
2230 .may_swap = !noswap,
2231 .order = 0,
2232 .priority = 0,
2233 .target_mem_cgroup = memcg,
2234 };
2235 struct mem_cgroup_zone mz = {
2236 .mem_cgroup = memcg,
2237 .zone = zone,
2238 };
2239
2240 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2241 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2242
2243 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2244 sc.may_writepage,
2245 sc.gfp_mask);
2246
2247 /*
2248 * NOTE: Although we can get the priority field, using it
2249 * here is not a good idea, since it limits the pages we can scan.
2250 * if we don't reclaim here, the shrink_zone from balance_pgdat
2251 * will pick up pages from other mem cgroup's as well. We hack
2252 * the priority and make it zero.
2253 */
2254 shrink_mem_cgroup_zone(&mz, &sc);
2255
2256 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2257
2258 *nr_scanned = sc.nr_scanned;
2259 return sc.nr_reclaimed;
2260 }
2261
2262 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2263 gfp_t gfp_mask,
2264 bool noswap)
2265 {
2266 struct zonelist *zonelist;
2267 unsigned long nr_reclaimed;
2268 int nid;
2269 struct scan_control sc = {
2270 .may_writepage = !laptop_mode,
2271 .may_unmap = 1,
2272 .may_swap = !noswap,
2273 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2274 .order = 0,
2275 .priority = DEF_PRIORITY,
2276 .target_mem_cgroup = memcg,
2277 .nodemask = NULL, /* we don't care the placement */
2278 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2279 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2280 };
2281 struct shrink_control shrink = {
2282 .gfp_mask = sc.gfp_mask,
2283 };
2284
2285 /*
2286 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2287 * take care of from where we get pages. So the node where we start the
2288 * scan does not need to be the current node.
2289 */
2290 nid = mem_cgroup_select_victim_node(memcg);
2291
2292 zonelist = NODE_DATA(nid)->node_zonelists;
2293
2294 trace_mm_vmscan_memcg_reclaim_begin(0,
2295 sc.may_writepage,
2296 sc.gfp_mask);
2297
2298 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2299
2300 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2301
2302 return nr_reclaimed;
2303 }
2304 #endif
2305
2306 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2307 {
2308 struct mem_cgroup *memcg;
2309
2310 if (!total_swap_pages)
2311 return;
2312
2313 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2314 do {
2315 struct mem_cgroup_zone mz = {
2316 .mem_cgroup = memcg,
2317 .zone = zone,
2318 };
2319
2320 if (inactive_anon_is_low(&mz))
2321 shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2322 sc, LRU_ACTIVE_ANON);
2323
2324 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2325 } while (memcg);
2326 }
2327
2328 /*
2329 * pgdat_balanced is used when checking if a node is balanced for high-order
2330 * allocations. Only zones that meet watermarks and are in a zone allowed
2331 * by the callers classzone_idx are added to balanced_pages. The total of
2332 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2333 * for the node to be considered balanced. Forcing all zones to be balanced
2334 * for high orders can cause excessive reclaim when there are imbalanced zones.
2335 * The choice of 25% is due to
2336 * o a 16M DMA zone that is balanced will not balance a zone on any
2337 * reasonable sized machine
2338 * o On all other machines, the top zone must be at least a reasonable
2339 * percentage of the middle zones. For example, on 32-bit x86, highmem
2340 * would need to be at least 256M for it to be balance a whole node.
2341 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2342 * to balance a node on its own. These seemed like reasonable ratios.
2343 */
2344 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2345 int classzone_idx)
2346 {
2347 unsigned long present_pages = 0;
2348 int i;
2349
2350 for (i = 0; i <= classzone_idx; i++)
2351 present_pages += pgdat->node_zones[i].present_pages;
2352
2353 /* A special case here: if zone has no page, we think it's balanced */
2354 return balanced_pages >= (present_pages >> 2);
2355 }
2356
2357 /* is kswapd sleeping prematurely? */
2358 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2359 int classzone_idx)
2360 {
2361 int i;
2362 unsigned long balanced = 0;
2363 bool all_zones_ok = true;
2364
2365 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2366 if (remaining)
2367 return true;
2368
2369 /* Check the watermark levels */
2370 for (i = 0; i <= classzone_idx; i++) {
2371 struct zone *zone = pgdat->node_zones + i;
2372
2373 if (!populated_zone(zone))
2374 continue;
2375
2376 /*
2377 * balance_pgdat() skips over all_unreclaimable after
2378 * DEF_PRIORITY. Effectively, it considers them balanced so
2379 * they must be considered balanced here as well if kswapd
2380 * is to sleep
2381 */
2382 if (zone->all_unreclaimable) {
2383 balanced += zone->present_pages;
2384 continue;
2385 }
2386
2387 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2388 i, 0))
2389 all_zones_ok = false;
2390 else
2391 balanced += zone->present_pages;
2392 }
2393
2394 /*
2395 * For high-order requests, the balanced zones must contain at least
2396 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2397 * must be balanced
2398 */
2399 if (order)
2400 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2401 else
2402 return !all_zones_ok;
2403 }
2404
2405 /*
2406 * For kswapd, balance_pgdat() will work across all this node's zones until
2407 * they are all at high_wmark_pages(zone).
2408 *
2409 * Returns the final order kswapd was reclaiming at
2410 *
2411 * There is special handling here for zones which are full of pinned pages.
2412 * This can happen if the pages are all mlocked, or if they are all used by
2413 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2414 * What we do is to detect the case where all pages in the zone have been
2415 * scanned twice and there has been zero successful reclaim. Mark the zone as
2416 * dead and from now on, only perform a short scan. Basically we're polling
2417 * the zone for when the problem goes away.
2418 *
2419 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2420 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2421 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2422 * lower zones regardless of the number of free pages in the lower zones. This
2423 * interoperates with the page allocator fallback scheme to ensure that aging
2424 * of pages is balanced across the zones.
2425 */
2426 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2427 int *classzone_idx)
2428 {
2429 int all_zones_ok;
2430 unsigned long balanced;
2431 int i;
2432 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2433 unsigned long total_scanned;
2434 struct reclaim_state *reclaim_state = current->reclaim_state;
2435 unsigned long nr_soft_reclaimed;
2436 unsigned long nr_soft_scanned;
2437 struct scan_control sc = {
2438 .gfp_mask = GFP_KERNEL,
2439 .may_unmap = 1,
2440 .may_swap = 1,
2441 /*
2442 * kswapd doesn't want to be bailed out while reclaim. because
2443 * we want to put equal scanning pressure on each zone.
2444 */
2445 .nr_to_reclaim = ULONG_MAX,
2446 .order = order,
2447 .target_mem_cgroup = NULL,
2448 };
2449 struct shrink_control shrink = {
2450 .gfp_mask = sc.gfp_mask,
2451 };
2452 loop_again:
2453 total_scanned = 0;
2454 sc.priority = DEF_PRIORITY;
2455 sc.nr_reclaimed = 0;
2456 sc.may_writepage = !laptop_mode;
2457 count_vm_event(PAGEOUTRUN);
2458
2459 do {
2460 unsigned long lru_pages = 0;
2461 int has_under_min_watermark_zone = 0;
2462
2463 all_zones_ok = 1;
2464 balanced = 0;
2465
2466 /*
2467 * Scan in the highmem->dma direction for the highest
2468 * zone which needs scanning
2469 */
2470 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2471 struct zone *zone = pgdat->node_zones + i;
2472
2473 if (!populated_zone(zone))
2474 continue;
2475
2476 if (zone->all_unreclaimable &&
2477 sc.priority != DEF_PRIORITY)
2478 continue;
2479
2480 /*
2481 * Do some background aging of the anon list, to give
2482 * pages a chance to be referenced before reclaiming.
2483 */
2484 age_active_anon(zone, &sc);
2485
2486 /*
2487 * If the number of buffer_heads in the machine
2488 * exceeds the maximum allowed level and this node
2489 * has a highmem zone, force kswapd to reclaim from
2490 * it to relieve lowmem pressure.
2491 */
2492 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2493 end_zone = i;
2494 break;
2495 }
2496
2497 if (!zone_watermark_ok_safe(zone, order,
2498 high_wmark_pages(zone), 0, 0)) {
2499 end_zone = i;
2500 break;
2501 } else {
2502 /* If balanced, clear the congested flag */
2503 zone_clear_flag(zone, ZONE_CONGESTED);
2504 }
2505 }
2506 if (i < 0)
2507 goto out;
2508
2509 for (i = 0; i <= end_zone; i++) {
2510 struct zone *zone = pgdat->node_zones + i;
2511
2512 lru_pages += zone_reclaimable_pages(zone);
2513 }
2514
2515 /*
2516 * Now scan the zone in the dma->highmem direction, stopping
2517 * at the last zone which needs scanning.
2518 *
2519 * We do this because the page allocator works in the opposite
2520 * direction. This prevents the page allocator from allocating
2521 * pages behind kswapd's direction of progress, which would
2522 * cause too much scanning of the lower zones.
2523 */
2524 for (i = 0; i <= end_zone; i++) {
2525 struct zone *zone = pgdat->node_zones + i;
2526 int nr_slab, testorder;
2527 unsigned long balance_gap;
2528
2529 if (!populated_zone(zone))
2530 continue;
2531
2532 if (zone->all_unreclaimable &&
2533 sc.priority != DEF_PRIORITY)
2534 continue;
2535
2536 sc.nr_scanned = 0;
2537
2538 nr_soft_scanned = 0;
2539 /*
2540 * Call soft limit reclaim before calling shrink_zone.
2541 */
2542 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2543 order, sc.gfp_mask,
2544 &nr_soft_scanned);
2545 sc.nr_reclaimed += nr_soft_reclaimed;
2546 total_scanned += nr_soft_scanned;
2547
2548 /*
2549 * We put equal pressure on every zone, unless
2550 * one zone has way too many pages free
2551 * already. The "too many pages" is defined
2552 * as the high wmark plus a "gap" where the
2553 * gap is either the low watermark or 1%
2554 * of the zone, whichever is smaller.
2555 */
2556 balance_gap = min(low_wmark_pages(zone),
2557 (zone->present_pages +
2558 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2559 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2560 /*
2561 * Kswapd reclaims only single pages with compaction
2562 * enabled. Trying too hard to reclaim until contiguous
2563 * free pages have become available can hurt performance
2564 * by evicting too much useful data from memory.
2565 * Do not reclaim more than needed for compaction.
2566 */
2567 testorder = order;
2568 if (COMPACTION_BUILD && order &&
2569 compaction_suitable(zone, order) !=
2570 COMPACT_SKIPPED)
2571 testorder = 0;
2572
2573 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2574 !zone_watermark_ok_safe(zone, testorder,
2575 high_wmark_pages(zone) + balance_gap,
2576 end_zone, 0)) {
2577 shrink_zone(zone, &sc);
2578
2579 reclaim_state->reclaimed_slab = 0;
2580 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2581 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2582 total_scanned += sc.nr_scanned;
2583
2584 if (nr_slab == 0 && !zone_reclaimable(zone))
2585 zone->all_unreclaimable = 1;
2586 }
2587
2588 /*
2589 * If we've done a decent amount of scanning and
2590 * the reclaim ratio is low, start doing writepage
2591 * even in laptop mode
2592 */
2593 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2594 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2595 sc.may_writepage = 1;
2596
2597 if (zone->all_unreclaimable) {
2598 if (end_zone && end_zone == i)
2599 end_zone--;
2600 continue;
2601 }
2602
2603 if (!zone_watermark_ok_safe(zone, testorder,
2604 high_wmark_pages(zone), end_zone, 0)) {
2605 all_zones_ok = 0;
2606 /*
2607 * We are still under min water mark. This
2608 * means that we have a GFP_ATOMIC allocation
2609 * failure risk. Hurry up!
2610 */
2611 if (!zone_watermark_ok_safe(zone, order,
2612 min_wmark_pages(zone), end_zone, 0))
2613 has_under_min_watermark_zone = 1;
2614 } else {
2615 /*
2616 * If a zone reaches its high watermark,
2617 * consider it to be no longer congested. It's
2618 * possible there are dirty pages backed by
2619 * congested BDIs but as pressure is relieved,
2620 * spectulatively avoid congestion waits
2621 */
2622 zone_clear_flag(zone, ZONE_CONGESTED);
2623 if (i <= *classzone_idx)
2624 balanced += zone->present_pages;
2625 }
2626
2627 }
2628 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2629 break; /* kswapd: all done */
2630 /*
2631 * OK, kswapd is getting into trouble. Take a nap, then take
2632 * another pass across the zones.
2633 */
2634 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2635 if (has_under_min_watermark_zone)
2636 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2637 else
2638 congestion_wait(BLK_RW_ASYNC, HZ/10);
2639 }
2640
2641 /*
2642 * We do this so kswapd doesn't build up large priorities for
2643 * example when it is freeing in parallel with allocators. It
2644 * matches the direct reclaim path behaviour in terms of impact
2645 * on zone->*_priority.
2646 */
2647 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2648 break;
2649 } while (--sc.priority >= 0);
2650 out:
2651
2652 /*
2653 * order-0: All zones must meet high watermark for a balanced node
2654 * high-order: Balanced zones must make up at least 25% of the node
2655 * for the node to be balanced
2656 */
2657 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2658 cond_resched();
2659
2660 try_to_freeze();
2661
2662 /*
2663 * Fragmentation may mean that the system cannot be
2664 * rebalanced for high-order allocations in all zones.
2665 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2666 * it means the zones have been fully scanned and are still
2667 * not balanced. For high-order allocations, there is
2668 * little point trying all over again as kswapd may
2669 * infinite loop.
2670 *
2671 * Instead, recheck all watermarks at order-0 as they
2672 * are the most important. If watermarks are ok, kswapd will go
2673 * back to sleep. High-order users can still perform direct
2674 * reclaim if they wish.
2675 */
2676 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2677 order = sc.order = 0;
2678
2679 goto loop_again;
2680 }
2681
2682 /*
2683 * If kswapd was reclaiming at a higher order, it has the option of
2684 * sleeping without all zones being balanced. Before it does, it must
2685 * ensure that the watermarks for order-0 on *all* zones are met and
2686 * that the congestion flags are cleared. The congestion flag must
2687 * be cleared as kswapd is the only mechanism that clears the flag
2688 * and it is potentially going to sleep here.
2689 */
2690 if (order) {
2691 int zones_need_compaction = 1;
2692
2693 for (i = 0; i <= end_zone; i++) {
2694 struct zone *zone = pgdat->node_zones + i;
2695
2696 if (!populated_zone(zone))
2697 continue;
2698
2699 if (zone->all_unreclaimable &&
2700 sc.priority != DEF_PRIORITY)
2701 continue;
2702
2703 /* Would compaction fail due to lack of free memory? */
2704 if (COMPACTION_BUILD &&
2705 compaction_suitable(zone, order) == COMPACT_SKIPPED)
2706 goto loop_again;
2707
2708 /* Confirm the zone is balanced for order-0 */
2709 if (!zone_watermark_ok(zone, 0,
2710 high_wmark_pages(zone), 0, 0)) {
2711 order = sc.order = 0;
2712 goto loop_again;
2713 }
2714
2715 /* Check if the memory needs to be defragmented. */
2716 if (zone_watermark_ok(zone, order,
2717 low_wmark_pages(zone), *classzone_idx, 0))
2718 zones_need_compaction = 0;
2719
2720 /* If balanced, clear the congested flag */
2721 zone_clear_flag(zone, ZONE_CONGESTED);
2722 }
2723
2724 if (zones_need_compaction)
2725 compact_pgdat(pgdat, order);
2726 }
2727
2728 /*
2729 * Return the order we were reclaiming at so sleeping_prematurely()
2730 * makes a decision on the order we were last reclaiming at. However,
2731 * if another caller entered the allocator slow path while kswapd
2732 * was awake, order will remain at the higher level
2733 */
2734 *classzone_idx = end_zone;
2735 return order;
2736 }
2737
2738 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2739 {
2740 long remaining = 0;
2741 DEFINE_WAIT(wait);
2742
2743 if (freezing(current) || kthread_should_stop())
2744 return;
2745
2746 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2747
2748 /* Try to sleep for a short interval */
2749 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2750 remaining = schedule_timeout(HZ/10);
2751 finish_wait(&pgdat->kswapd_wait, &wait);
2752 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2753 }
2754
2755 /*
2756 * After a short sleep, check if it was a premature sleep. If not, then
2757 * go fully to sleep until explicitly woken up.
2758 */
2759 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2760 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2761
2762 /*
2763 * vmstat counters are not perfectly accurate and the estimated
2764 * value for counters such as NR_FREE_PAGES can deviate from the
2765 * true value by nr_online_cpus * threshold. To avoid the zone
2766 * watermarks being breached while under pressure, we reduce the
2767 * per-cpu vmstat threshold while kswapd is awake and restore
2768 * them before going back to sleep.
2769 */
2770 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2771 schedule();
2772 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2773 } else {
2774 if (remaining)
2775 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2776 else
2777 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2778 }
2779 finish_wait(&pgdat->kswapd_wait, &wait);
2780 }
2781
2782 /*
2783 * The background pageout daemon, started as a kernel thread
2784 * from the init process.
2785 *
2786 * This basically trickles out pages so that we have _some_
2787 * free memory available even if there is no other activity
2788 * that frees anything up. This is needed for things like routing
2789 * etc, where we otherwise might have all activity going on in
2790 * asynchronous contexts that cannot page things out.
2791 *
2792 * If there are applications that are active memory-allocators
2793 * (most normal use), this basically shouldn't matter.
2794 */
2795 static int kswapd(void *p)
2796 {
2797 unsigned long order, new_order;
2798 unsigned balanced_order;
2799 int classzone_idx, new_classzone_idx;
2800 int balanced_classzone_idx;
2801 pg_data_t *pgdat = (pg_data_t*)p;
2802 struct task_struct *tsk = current;
2803
2804 struct reclaim_state reclaim_state = {
2805 .reclaimed_slab = 0,
2806 };
2807 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2808
2809 lockdep_set_current_reclaim_state(GFP_KERNEL);
2810
2811 if (!cpumask_empty(cpumask))
2812 set_cpus_allowed_ptr(tsk, cpumask);
2813 current->reclaim_state = &reclaim_state;
2814
2815 /*
2816 * Tell the memory management that we're a "memory allocator",
2817 * and that if we need more memory we should get access to it
2818 * regardless (see "__alloc_pages()"). "kswapd" should
2819 * never get caught in the normal page freeing logic.
2820 *
2821 * (Kswapd normally doesn't need memory anyway, but sometimes
2822 * you need a small amount of memory in order to be able to
2823 * page out something else, and this flag essentially protects
2824 * us from recursively trying to free more memory as we're
2825 * trying to free the first piece of memory in the first place).
2826 */
2827 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2828 set_freezable();
2829
2830 order = new_order = 0;
2831 balanced_order = 0;
2832 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2833 balanced_classzone_idx = classzone_idx;
2834 for ( ; ; ) {
2835 int ret;
2836
2837 /*
2838 * If the last balance_pgdat was unsuccessful it's unlikely a
2839 * new request of a similar or harder type will succeed soon
2840 * so consider going to sleep on the basis we reclaimed at
2841 */
2842 if (balanced_classzone_idx >= new_classzone_idx &&
2843 balanced_order == new_order) {
2844 new_order = pgdat->kswapd_max_order;
2845 new_classzone_idx = pgdat->classzone_idx;
2846 pgdat->kswapd_max_order = 0;
2847 pgdat->classzone_idx = pgdat->nr_zones - 1;
2848 }
2849
2850 if (order < new_order || classzone_idx > new_classzone_idx) {
2851 /*
2852 * Don't sleep if someone wants a larger 'order'
2853 * allocation or has tigher zone constraints
2854 */
2855 order = new_order;
2856 classzone_idx = new_classzone_idx;
2857 } else {
2858 kswapd_try_to_sleep(pgdat, balanced_order,
2859 balanced_classzone_idx);
2860 order = pgdat->kswapd_max_order;
2861 classzone_idx = pgdat->classzone_idx;
2862 new_order = order;
2863 new_classzone_idx = classzone_idx;
2864 pgdat->kswapd_max_order = 0;
2865 pgdat->classzone_idx = pgdat->nr_zones - 1;
2866 }
2867
2868 ret = try_to_freeze();
2869 if (kthread_should_stop())
2870 break;
2871
2872 /*
2873 * We can speed up thawing tasks if we don't call balance_pgdat
2874 * after returning from the refrigerator
2875 */
2876 if (!ret) {
2877 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2878 balanced_classzone_idx = classzone_idx;
2879 balanced_order = balance_pgdat(pgdat, order,
2880 &balanced_classzone_idx);
2881 }
2882 }
2883 return 0;
2884 }
2885
2886 /*
2887 * A zone is low on free memory, so wake its kswapd task to service it.
2888 */
2889 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2890 {
2891 pg_data_t *pgdat;
2892
2893 if (!populated_zone(zone))
2894 return;
2895
2896 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2897 return;
2898 pgdat = zone->zone_pgdat;
2899 if (pgdat->kswapd_max_order < order) {
2900 pgdat->kswapd_max_order = order;
2901 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2902 }
2903 if (!waitqueue_active(&pgdat->kswapd_wait))
2904 return;
2905 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2906 return;
2907
2908 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2909 wake_up_interruptible(&pgdat->kswapd_wait);
2910 }
2911
2912 /*
2913 * The reclaimable count would be mostly accurate.
2914 * The less reclaimable pages may be
2915 * - mlocked pages, which will be moved to unevictable list when encountered
2916 * - mapped pages, which may require several travels to be reclaimed
2917 * - dirty pages, which is not "instantly" reclaimable
2918 */
2919 unsigned long global_reclaimable_pages(void)
2920 {
2921 int nr;
2922
2923 nr = global_page_state(NR_ACTIVE_FILE) +
2924 global_page_state(NR_INACTIVE_FILE);
2925
2926 if (nr_swap_pages > 0)
2927 nr += global_page_state(NR_ACTIVE_ANON) +
2928 global_page_state(NR_INACTIVE_ANON);
2929
2930 return nr;
2931 }
2932
2933 unsigned long zone_reclaimable_pages(struct zone *zone)
2934 {
2935 int nr;
2936
2937 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2938 zone_page_state(zone, NR_INACTIVE_FILE);
2939
2940 if (nr_swap_pages > 0)
2941 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2942 zone_page_state(zone, NR_INACTIVE_ANON);
2943
2944 return nr;
2945 }
2946
2947 #ifdef CONFIG_HIBERNATION
2948 /*
2949 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2950 * freed pages.
2951 *
2952 * Rather than trying to age LRUs the aim is to preserve the overall
2953 * LRU order by reclaiming preferentially
2954 * inactive > active > active referenced > active mapped
2955 */
2956 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2957 {
2958 struct reclaim_state reclaim_state;
2959 struct scan_control sc = {
2960 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2961 .may_swap = 1,
2962 .may_unmap = 1,
2963 .may_writepage = 1,
2964 .nr_to_reclaim = nr_to_reclaim,
2965 .hibernation_mode = 1,
2966 .order = 0,
2967 .priority = DEF_PRIORITY,
2968 };
2969 struct shrink_control shrink = {
2970 .gfp_mask = sc.gfp_mask,
2971 };
2972 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2973 struct task_struct *p = current;
2974 unsigned long nr_reclaimed;
2975
2976 p->flags |= PF_MEMALLOC;
2977 lockdep_set_current_reclaim_state(sc.gfp_mask);
2978 reclaim_state.reclaimed_slab = 0;
2979 p->reclaim_state = &reclaim_state;
2980
2981 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2982
2983 p->reclaim_state = NULL;
2984 lockdep_clear_current_reclaim_state();
2985 p->flags &= ~PF_MEMALLOC;
2986
2987 return nr_reclaimed;
2988 }
2989 #endif /* CONFIG_HIBERNATION */
2990
2991 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2992 not required for correctness. So if the last cpu in a node goes
2993 away, we get changed to run anywhere: as the first one comes back,
2994 restore their cpu bindings. */
2995 static int __devinit cpu_callback(struct notifier_block *nfb,
2996 unsigned long action, void *hcpu)
2997 {
2998 int nid;
2999
3000 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3001 for_each_node_state(nid, N_HIGH_MEMORY) {
3002 pg_data_t *pgdat = NODE_DATA(nid);
3003 const struct cpumask *mask;
3004
3005 mask = cpumask_of_node(pgdat->node_id);
3006
3007 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3008 /* One of our CPUs online: restore mask */
3009 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3010 }
3011 }
3012 return NOTIFY_OK;
3013 }
3014
3015 /*
3016 * This kswapd start function will be called by init and node-hot-add.
3017 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3018 */
3019 int kswapd_run(int nid)
3020 {
3021 pg_data_t *pgdat = NODE_DATA(nid);
3022 int ret = 0;
3023
3024 if (pgdat->kswapd)
3025 return 0;
3026
3027 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3028 if (IS_ERR(pgdat->kswapd)) {
3029 /* failure at boot is fatal */
3030 BUG_ON(system_state == SYSTEM_BOOTING);
3031 printk("Failed to start kswapd on node %d\n",nid);
3032 ret = -1;
3033 }
3034 return ret;
3035 }
3036
3037 /*
3038 * Called by memory hotplug when all memory in a node is offlined.
3039 */
3040 void kswapd_stop(int nid)
3041 {
3042 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3043
3044 if (kswapd)
3045 kthread_stop(kswapd);
3046 }
3047
3048 static int __init kswapd_init(void)
3049 {
3050 int nid;
3051
3052 swap_setup();
3053 for_each_node_state(nid, N_HIGH_MEMORY)
3054 kswapd_run(nid);
3055 hotcpu_notifier(cpu_callback, 0);
3056 return 0;
3057 }
3058
3059 module_init(kswapd_init)
3060
3061 #ifdef CONFIG_NUMA
3062 /*
3063 * Zone reclaim mode
3064 *
3065 * If non-zero call zone_reclaim when the number of free pages falls below
3066 * the watermarks.
3067 */
3068 int zone_reclaim_mode __read_mostly;
3069
3070 #define RECLAIM_OFF 0
3071 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3072 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3073 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3074
3075 /*
3076 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3077 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3078 * a zone.
3079 */
3080 #define ZONE_RECLAIM_PRIORITY 4
3081
3082 /*
3083 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3084 * occur.
3085 */
3086 int sysctl_min_unmapped_ratio = 1;
3087
3088 /*
3089 * If the number of slab pages in a zone grows beyond this percentage then
3090 * slab reclaim needs to occur.
3091 */
3092 int sysctl_min_slab_ratio = 5;
3093
3094 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3095 {
3096 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3097 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3098 zone_page_state(zone, NR_ACTIVE_FILE);
3099
3100 /*
3101 * It's possible for there to be more file mapped pages than
3102 * accounted for by the pages on the file LRU lists because
3103 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3104 */
3105 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3106 }
3107
3108 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3109 static long zone_pagecache_reclaimable(struct zone *zone)
3110 {
3111 long nr_pagecache_reclaimable;
3112 long delta = 0;
3113
3114 /*
3115 * If RECLAIM_SWAP is set, then all file pages are considered
3116 * potentially reclaimable. Otherwise, we have to worry about
3117 * pages like swapcache and zone_unmapped_file_pages() provides
3118 * a better estimate
3119 */
3120 if (zone_reclaim_mode & RECLAIM_SWAP)
3121 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3122 else
3123 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3124
3125 /* If we can't clean pages, remove dirty pages from consideration */
3126 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3127 delta += zone_page_state(zone, NR_FILE_DIRTY);
3128
3129 /* Watch for any possible underflows due to delta */
3130 if (unlikely(delta > nr_pagecache_reclaimable))
3131 delta = nr_pagecache_reclaimable;
3132
3133 return nr_pagecache_reclaimable - delta;
3134 }
3135
3136 /*
3137 * Try to free up some pages from this zone through reclaim.
3138 */
3139 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3140 {
3141 /* Minimum pages needed in order to stay on node */
3142 const unsigned long nr_pages = 1 << order;
3143 struct task_struct *p = current;
3144 struct reclaim_state reclaim_state;
3145 struct scan_control sc = {
3146 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3147 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3148 .may_swap = 1,
3149 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3150 SWAP_CLUSTER_MAX),
3151 .gfp_mask = gfp_mask,
3152 .order = order,
3153 .priority = ZONE_RECLAIM_PRIORITY,
3154 };
3155 struct shrink_control shrink = {
3156 .gfp_mask = sc.gfp_mask,
3157 };
3158 unsigned long nr_slab_pages0, nr_slab_pages1;
3159
3160 cond_resched();
3161 /*
3162 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3163 * and we also need to be able to write out pages for RECLAIM_WRITE
3164 * and RECLAIM_SWAP.
3165 */
3166 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3167 lockdep_set_current_reclaim_state(gfp_mask);
3168 reclaim_state.reclaimed_slab = 0;
3169 p->reclaim_state = &reclaim_state;
3170
3171 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3172 /*
3173 * Free memory by calling shrink zone with increasing
3174 * priorities until we have enough memory freed.
3175 */
3176 do {
3177 shrink_zone(zone, &sc);
3178 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3179 }
3180
3181 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3182 if (nr_slab_pages0 > zone->min_slab_pages) {
3183 /*
3184 * shrink_slab() does not currently allow us to determine how
3185 * many pages were freed in this zone. So we take the current
3186 * number of slab pages and shake the slab until it is reduced
3187 * by the same nr_pages that we used for reclaiming unmapped
3188 * pages.
3189 *
3190 * Note that shrink_slab will free memory on all zones and may
3191 * take a long time.
3192 */
3193 for (;;) {
3194 unsigned long lru_pages = zone_reclaimable_pages(zone);
3195
3196 /* No reclaimable slab or very low memory pressure */
3197 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3198 break;
3199
3200 /* Freed enough memory */
3201 nr_slab_pages1 = zone_page_state(zone,
3202 NR_SLAB_RECLAIMABLE);
3203 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3204 break;
3205 }
3206
3207 /*
3208 * Update nr_reclaimed by the number of slab pages we
3209 * reclaimed from this zone.
3210 */
3211 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3212 if (nr_slab_pages1 < nr_slab_pages0)
3213 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3214 }
3215
3216 p->reclaim_state = NULL;
3217 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3218 lockdep_clear_current_reclaim_state();
3219 return sc.nr_reclaimed >= nr_pages;
3220 }
3221
3222 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3223 {
3224 int node_id;
3225 int ret;
3226
3227 /*
3228 * Zone reclaim reclaims unmapped file backed pages and
3229 * slab pages if we are over the defined limits.
3230 *
3231 * A small portion of unmapped file backed pages is needed for
3232 * file I/O otherwise pages read by file I/O will be immediately
3233 * thrown out if the zone is overallocated. So we do not reclaim
3234 * if less than a specified percentage of the zone is used by
3235 * unmapped file backed pages.
3236 */
3237 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3238 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3239 return ZONE_RECLAIM_FULL;
3240
3241 if (zone->all_unreclaimable)
3242 return ZONE_RECLAIM_FULL;
3243
3244 /*
3245 * Do not scan if the allocation should not be delayed.
3246 */
3247 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3248 return ZONE_RECLAIM_NOSCAN;
3249
3250 /*
3251 * Only run zone reclaim on the local zone or on zones that do not
3252 * have associated processors. This will favor the local processor
3253 * over remote processors and spread off node memory allocations
3254 * as wide as possible.
3255 */
3256 node_id = zone_to_nid(zone);
3257 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3258 return ZONE_RECLAIM_NOSCAN;
3259
3260 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3261 return ZONE_RECLAIM_NOSCAN;
3262
3263 ret = __zone_reclaim(zone, gfp_mask, order);
3264 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3265
3266 if (!ret)
3267 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3268
3269 return ret;
3270 }
3271 #endif
3272
3273 /*
3274 * page_evictable - test whether a page is evictable
3275 * @page: the page to test
3276 * @vma: the VMA in which the page is or will be mapped, may be NULL
3277 *
3278 * Test whether page is evictable--i.e., should be placed on active/inactive
3279 * lists vs unevictable list. The vma argument is !NULL when called from the
3280 * fault path to determine how to instantate a new page.
3281 *
3282 * Reasons page might not be evictable:
3283 * (1) page's mapping marked unevictable
3284 * (2) page is part of an mlocked VMA
3285 *
3286 */
3287 int page_evictable(struct page *page, struct vm_area_struct *vma)
3288 {
3289
3290 if (mapping_unevictable(page_mapping(page)))
3291 return 0;
3292
3293 if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
3294 return 0;
3295
3296 return 1;
3297 }
3298
3299 #ifdef CONFIG_SHMEM
3300 /**
3301 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3302 * @pages: array of pages to check
3303 * @nr_pages: number of pages to check
3304 *
3305 * Checks pages for evictability and moves them to the appropriate lru list.
3306 *
3307 * This function is only used for SysV IPC SHM_UNLOCK.
3308 */
3309 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3310 {
3311 struct lruvec *lruvec;
3312 struct zone *zone = NULL;
3313 int pgscanned = 0;
3314 int pgrescued = 0;
3315 int i;
3316
3317 for (i = 0; i < nr_pages; i++) {
3318 struct page *page = pages[i];
3319 struct zone *pagezone;
3320
3321 pgscanned++;
3322 pagezone = page_zone(page);
3323 if (pagezone != zone) {
3324 if (zone)
3325 spin_unlock_irq(&zone->lru_lock);
3326 zone = pagezone;
3327 spin_lock_irq(&zone->lru_lock);
3328 }
3329
3330 if (!PageLRU(page) || !PageUnevictable(page))
3331 continue;
3332
3333 if (page_evictable(page, NULL)) {
3334 enum lru_list lru = page_lru_base_type(page);
3335
3336 VM_BUG_ON(PageActive(page));
3337 ClearPageUnevictable(page);
3338 __dec_zone_state(zone, NR_UNEVICTABLE);
3339 lruvec = mem_cgroup_lru_move_lists(zone, page,
3340 LRU_UNEVICTABLE, lru);
3341 list_move(&page->lru, &lruvec->lists[lru]);
3342 __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3343 pgrescued++;
3344 }
3345 }
3346
3347 if (zone) {
3348 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3349 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3350 spin_unlock_irq(&zone->lru_lock);
3351 }
3352 }
3353 #endif /* CONFIG_SHMEM */
3354
3355 static void warn_scan_unevictable_pages(void)
3356 {
3357 printk_once(KERN_WARNING
3358 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3359 "disabled for lack of a legitimate use case. If you have "
3360 "one, please send an email to linux-mm@kvack.org.\n",
3361 current->comm);
3362 }
3363
3364 /*
3365 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3366 * all nodes' unevictable lists for evictable pages
3367 */
3368 unsigned long scan_unevictable_pages;
3369
3370 int scan_unevictable_handler(struct ctl_table *table, int write,
3371 void __user *buffer,
3372 size_t *length, loff_t *ppos)
3373 {
3374 warn_scan_unevictable_pages();
3375 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3376 scan_unevictable_pages = 0;
3377 return 0;
3378 }
3379
3380 #ifdef CONFIG_NUMA
3381 /*
3382 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3383 * a specified node's per zone unevictable lists for evictable pages.
3384 */
3385
3386 static ssize_t read_scan_unevictable_node(struct device *dev,
3387 struct device_attribute *attr,
3388 char *buf)
3389 {
3390 warn_scan_unevictable_pages();
3391 return sprintf(buf, "0\n"); /* always zero; should fit... */
3392 }
3393
3394 static ssize_t write_scan_unevictable_node(struct device *dev,
3395 struct device_attribute *attr,
3396 const char *buf, size_t count)
3397 {
3398 warn_scan_unevictable_pages();
3399 return 1;
3400 }
3401
3402
3403 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3404 read_scan_unevictable_node,
3405 write_scan_unevictable_node);
3406
3407 int scan_unevictable_register_node(struct node *node)
3408 {
3409 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3410 }
3411
3412 void scan_unevictable_unregister_node(struct node *node)
3413 {
3414 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3415 }
3416 #endif