]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/vmscan.c
Merge tag 'pinctrl-v5.10-3' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[mirror_ubuntu-hirsute-kernel.git] / mm / vmscan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60
61 #include "internal.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65
66 struct scan_control {
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
69
70 /*
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 * are scanned.
73 */
74 nodemask_t *nodemask;
75
76 /*
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
79 */
80 struct mem_cgroup *target_mem_cgroup;
81
82 /*
83 * Scan pressure balancing between anon and file LRUs
84 */
85 unsigned long anon_cost;
86 unsigned long file_cost;
87
88 /* Can active pages be deactivated as part of reclaim? */
89 #define DEACTIVATE_ANON 1
90 #define DEACTIVATE_FILE 2
91 unsigned int may_deactivate:2;
92 unsigned int force_deactivate:1;
93 unsigned int skipped_deactivate:1;
94
95 /* Writepage batching in laptop mode; RECLAIM_WRITE */
96 unsigned int may_writepage:1;
97
98 /* Can mapped pages be reclaimed? */
99 unsigned int may_unmap:1;
100
101 /* Can pages be swapped as part of reclaim? */
102 unsigned int may_swap:1;
103
104 /*
105 * Cgroups are not reclaimed below their configured memory.low,
106 * unless we threaten to OOM. If any cgroups are skipped due to
107 * memory.low and nothing was reclaimed, go back for memory.low.
108 */
109 unsigned int memcg_low_reclaim:1;
110 unsigned int memcg_low_skipped:1;
111
112 unsigned int hibernation_mode:1;
113
114 /* One of the zones is ready for compaction */
115 unsigned int compaction_ready:1;
116
117 /* There is easily reclaimable cold cache in the current node */
118 unsigned int cache_trim_mode:1;
119
120 /* The file pages on the current node are dangerously low */
121 unsigned int file_is_tiny:1;
122
123 /* Allocation order */
124 s8 order;
125
126 /* Scan (total_size >> priority) pages at once */
127 s8 priority;
128
129 /* The highest zone to isolate pages for reclaim from */
130 s8 reclaim_idx;
131
132 /* This context's GFP mask */
133 gfp_t gfp_mask;
134
135 /* Incremented by the number of inactive pages that were scanned */
136 unsigned long nr_scanned;
137
138 /* Number of pages freed so far during a call to shrink_zones() */
139 unsigned long nr_reclaimed;
140
141 struct {
142 unsigned int dirty;
143 unsigned int unqueued_dirty;
144 unsigned int congested;
145 unsigned int writeback;
146 unsigned int immediate;
147 unsigned int file_taken;
148 unsigned int taken;
149 } nr;
150
151 /* for recording the reclaimed slab by now */
152 struct reclaim_state reclaim_state;
153 };
154
155 #ifdef ARCH_HAS_PREFETCHW
156 #define prefetchw_prev_lru_page(_page, _base, _field) \
157 do { \
158 if ((_page)->lru.prev != _base) { \
159 struct page *prev; \
160 \
161 prev = lru_to_page(&(_page->lru)); \
162 prefetchw(&prev->_field); \
163 } \
164 } while (0)
165 #else
166 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
167 #endif
168
169 /*
170 * From 0 .. 200. Higher means more swappy.
171 */
172 int vm_swappiness = 60;
173
174 static void set_task_reclaim_state(struct task_struct *task,
175 struct reclaim_state *rs)
176 {
177 /* Check for an overwrite */
178 WARN_ON_ONCE(rs && task->reclaim_state);
179
180 /* Check for the nulling of an already-nulled member */
181 WARN_ON_ONCE(!rs && !task->reclaim_state);
182
183 task->reclaim_state = rs;
184 }
185
186 static LIST_HEAD(shrinker_list);
187 static DECLARE_RWSEM(shrinker_rwsem);
188
189 #ifdef CONFIG_MEMCG
190 /*
191 * We allow subsystems to populate their shrinker-related
192 * LRU lists before register_shrinker_prepared() is called
193 * for the shrinker, since we don't want to impose
194 * restrictions on their internal registration order.
195 * In this case shrink_slab_memcg() may find corresponding
196 * bit is set in the shrinkers map.
197 *
198 * This value is used by the function to detect registering
199 * shrinkers and to skip do_shrink_slab() calls for them.
200 */
201 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
202
203 static DEFINE_IDR(shrinker_idr);
204 static int shrinker_nr_max;
205
206 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
207 {
208 int id, ret = -ENOMEM;
209
210 down_write(&shrinker_rwsem);
211 /* This may call shrinker, so it must use down_read_trylock() */
212 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
213 if (id < 0)
214 goto unlock;
215
216 if (id >= shrinker_nr_max) {
217 if (memcg_expand_shrinker_maps(id)) {
218 idr_remove(&shrinker_idr, id);
219 goto unlock;
220 }
221
222 shrinker_nr_max = id + 1;
223 }
224 shrinker->id = id;
225 ret = 0;
226 unlock:
227 up_write(&shrinker_rwsem);
228 return ret;
229 }
230
231 static void unregister_memcg_shrinker(struct shrinker *shrinker)
232 {
233 int id = shrinker->id;
234
235 BUG_ON(id < 0);
236
237 down_write(&shrinker_rwsem);
238 idr_remove(&shrinker_idr, id);
239 up_write(&shrinker_rwsem);
240 }
241
242 static bool cgroup_reclaim(struct scan_control *sc)
243 {
244 return sc->target_mem_cgroup;
245 }
246
247 /**
248 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
249 * @sc: scan_control in question
250 *
251 * The normal page dirty throttling mechanism in balance_dirty_pages() is
252 * completely broken with the legacy memcg and direct stalling in
253 * shrink_page_list() is used for throttling instead, which lacks all the
254 * niceties such as fairness, adaptive pausing, bandwidth proportional
255 * allocation and configurability.
256 *
257 * This function tests whether the vmscan currently in progress can assume
258 * that the normal dirty throttling mechanism is operational.
259 */
260 static bool writeback_throttling_sane(struct scan_control *sc)
261 {
262 if (!cgroup_reclaim(sc))
263 return true;
264 #ifdef CONFIG_CGROUP_WRITEBACK
265 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
266 return true;
267 #endif
268 return false;
269 }
270 #else
271 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
272 {
273 return 0;
274 }
275
276 static void unregister_memcg_shrinker(struct shrinker *shrinker)
277 {
278 }
279
280 static bool cgroup_reclaim(struct scan_control *sc)
281 {
282 return false;
283 }
284
285 static bool writeback_throttling_sane(struct scan_control *sc)
286 {
287 return true;
288 }
289 #endif
290
291 /*
292 * This misses isolated pages which are not accounted for to save counters.
293 * As the data only determines if reclaim or compaction continues, it is
294 * not expected that isolated pages will be a dominating factor.
295 */
296 unsigned long zone_reclaimable_pages(struct zone *zone)
297 {
298 unsigned long nr;
299
300 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
301 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
302 if (get_nr_swap_pages() > 0)
303 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
304 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
305
306 return nr;
307 }
308
309 /**
310 * lruvec_lru_size - Returns the number of pages on the given LRU list.
311 * @lruvec: lru vector
312 * @lru: lru to use
313 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
314 */
315 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
316 {
317 unsigned long size = 0;
318 int zid;
319
320 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
321 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
322
323 if (!managed_zone(zone))
324 continue;
325
326 if (!mem_cgroup_disabled())
327 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
328 else
329 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
330 }
331 return size;
332 }
333
334 /*
335 * Add a shrinker callback to be called from the vm.
336 */
337 int prealloc_shrinker(struct shrinker *shrinker)
338 {
339 unsigned int size = sizeof(*shrinker->nr_deferred);
340
341 if (shrinker->flags & SHRINKER_NUMA_AWARE)
342 size *= nr_node_ids;
343
344 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
345 if (!shrinker->nr_deferred)
346 return -ENOMEM;
347
348 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
349 if (prealloc_memcg_shrinker(shrinker))
350 goto free_deferred;
351 }
352
353 return 0;
354
355 free_deferred:
356 kfree(shrinker->nr_deferred);
357 shrinker->nr_deferred = NULL;
358 return -ENOMEM;
359 }
360
361 void free_prealloced_shrinker(struct shrinker *shrinker)
362 {
363 if (!shrinker->nr_deferred)
364 return;
365
366 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
367 unregister_memcg_shrinker(shrinker);
368
369 kfree(shrinker->nr_deferred);
370 shrinker->nr_deferred = NULL;
371 }
372
373 void register_shrinker_prepared(struct shrinker *shrinker)
374 {
375 down_write(&shrinker_rwsem);
376 list_add_tail(&shrinker->list, &shrinker_list);
377 #ifdef CONFIG_MEMCG
378 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
379 idr_replace(&shrinker_idr, shrinker, shrinker->id);
380 #endif
381 up_write(&shrinker_rwsem);
382 }
383
384 int register_shrinker(struct shrinker *shrinker)
385 {
386 int err = prealloc_shrinker(shrinker);
387
388 if (err)
389 return err;
390 register_shrinker_prepared(shrinker);
391 return 0;
392 }
393 EXPORT_SYMBOL(register_shrinker);
394
395 /*
396 * Remove one
397 */
398 void unregister_shrinker(struct shrinker *shrinker)
399 {
400 if (!shrinker->nr_deferred)
401 return;
402 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
403 unregister_memcg_shrinker(shrinker);
404 down_write(&shrinker_rwsem);
405 list_del(&shrinker->list);
406 up_write(&shrinker_rwsem);
407 kfree(shrinker->nr_deferred);
408 shrinker->nr_deferred = NULL;
409 }
410 EXPORT_SYMBOL(unregister_shrinker);
411
412 #define SHRINK_BATCH 128
413
414 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
415 struct shrinker *shrinker, int priority)
416 {
417 unsigned long freed = 0;
418 unsigned long long delta;
419 long total_scan;
420 long freeable;
421 long nr;
422 long new_nr;
423 int nid = shrinkctl->nid;
424 long batch_size = shrinker->batch ? shrinker->batch
425 : SHRINK_BATCH;
426 long scanned = 0, next_deferred;
427
428 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
429 nid = 0;
430
431 freeable = shrinker->count_objects(shrinker, shrinkctl);
432 if (freeable == 0 || freeable == SHRINK_EMPTY)
433 return freeable;
434
435 /*
436 * copy the current shrinker scan count into a local variable
437 * and zero it so that other concurrent shrinker invocations
438 * don't also do this scanning work.
439 */
440 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
441
442 total_scan = nr;
443 if (shrinker->seeks) {
444 delta = freeable >> priority;
445 delta *= 4;
446 do_div(delta, shrinker->seeks);
447 } else {
448 /*
449 * These objects don't require any IO to create. Trim
450 * them aggressively under memory pressure to keep
451 * them from causing refetches in the IO caches.
452 */
453 delta = freeable / 2;
454 }
455
456 total_scan += delta;
457 if (total_scan < 0) {
458 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
459 shrinker->scan_objects, total_scan);
460 total_scan = freeable;
461 next_deferred = nr;
462 } else
463 next_deferred = total_scan;
464
465 /*
466 * We need to avoid excessive windup on filesystem shrinkers
467 * due to large numbers of GFP_NOFS allocations causing the
468 * shrinkers to return -1 all the time. This results in a large
469 * nr being built up so when a shrink that can do some work
470 * comes along it empties the entire cache due to nr >>>
471 * freeable. This is bad for sustaining a working set in
472 * memory.
473 *
474 * Hence only allow the shrinker to scan the entire cache when
475 * a large delta change is calculated directly.
476 */
477 if (delta < freeable / 4)
478 total_scan = min(total_scan, freeable / 2);
479
480 /*
481 * Avoid risking looping forever due to too large nr value:
482 * never try to free more than twice the estimate number of
483 * freeable entries.
484 */
485 if (total_scan > freeable * 2)
486 total_scan = freeable * 2;
487
488 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
489 freeable, delta, total_scan, priority);
490
491 /*
492 * Normally, we should not scan less than batch_size objects in one
493 * pass to avoid too frequent shrinker calls, but if the slab has less
494 * than batch_size objects in total and we are really tight on memory,
495 * we will try to reclaim all available objects, otherwise we can end
496 * up failing allocations although there are plenty of reclaimable
497 * objects spread over several slabs with usage less than the
498 * batch_size.
499 *
500 * We detect the "tight on memory" situations by looking at the total
501 * number of objects we want to scan (total_scan). If it is greater
502 * than the total number of objects on slab (freeable), we must be
503 * scanning at high prio and therefore should try to reclaim as much as
504 * possible.
505 */
506 while (total_scan >= batch_size ||
507 total_scan >= freeable) {
508 unsigned long ret;
509 unsigned long nr_to_scan = min(batch_size, total_scan);
510
511 shrinkctl->nr_to_scan = nr_to_scan;
512 shrinkctl->nr_scanned = nr_to_scan;
513 ret = shrinker->scan_objects(shrinker, shrinkctl);
514 if (ret == SHRINK_STOP)
515 break;
516 freed += ret;
517
518 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
519 total_scan -= shrinkctl->nr_scanned;
520 scanned += shrinkctl->nr_scanned;
521
522 cond_resched();
523 }
524
525 if (next_deferred >= scanned)
526 next_deferred -= scanned;
527 else
528 next_deferred = 0;
529 /*
530 * move the unused scan count back into the shrinker in a
531 * manner that handles concurrent updates. If we exhausted the
532 * scan, there is no need to do an update.
533 */
534 if (next_deferred > 0)
535 new_nr = atomic_long_add_return(next_deferred,
536 &shrinker->nr_deferred[nid]);
537 else
538 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
539
540 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
541 return freed;
542 }
543
544 #ifdef CONFIG_MEMCG
545 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
546 struct mem_cgroup *memcg, int priority)
547 {
548 struct memcg_shrinker_map *map;
549 unsigned long ret, freed = 0;
550 int i;
551
552 if (!mem_cgroup_online(memcg))
553 return 0;
554
555 if (!down_read_trylock(&shrinker_rwsem))
556 return 0;
557
558 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
559 true);
560 if (unlikely(!map))
561 goto unlock;
562
563 for_each_set_bit(i, map->map, shrinker_nr_max) {
564 struct shrink_control sc = {
565 .gfp_mask = gfp_mask,
566 .nid = nid,
567 .memcg = memcg,
568 };
569 struct shrinker *shrinker;
570
571 shrinker = idr_find(&shrinker_idr, i);
572 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
573 if (!shrinker)
574 clear_bit(i, map->map);
575 continue;
576 }
577
578 /* Call non-slab shrinkers even though kmem is disabled */
579 if (!memcg_kmem_enabled() &&
580 !(shrinker->flags & SHRINKER_NONSLAB))
581 continue;
582
583 ret = do_shrink_slab(&sc, shrinker, priority);
584 if (ret == SHRINK_EMPTY) {
585 clear_bit(i, map->map);
586 /*
587 * After the shrinker reported that it had no objects to
588 * free, but before we cleared the corresponding bit in
589 * the memcg shrinker map, a new object might have been
590 * added. To make sure, we have the bit set in this
591 * case, we invoke the shrinker one more time and reset
592 * the bit if it reports that it is not empty anymore.
593 * The memory barrier here pairs with the barrier in
594 * memcg_set_shrinker_bit():
595 *
596 * list_lru_add() shrink_slab_memcg()
597 * list_add_tail() clear_bit()
598 * <MB> <MB>
599 * set_bit() do_shrink_slab()
600 */
601 smp_mb__after_atomic();
602 ret = do_shrink_slab(&sc, shrinker, priority);
603 if (ret == SHRINK_EMPTY)
604 ret = 0;
605 else
606 memcg_set_shrinker_bit(memcg, nid, i);
607 }
608 freed += ret;
609
610 if (rwsem_is_contended(&shrinker_rwsem)) {
611 freed = freed ? : 1;
612 break;
613 }
614 }
615 unlock:
616 up_read(&shrinker_rwsem);
617 return freed;
618 }
619 #else /* CONFIG_MEMCG */
620 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
621 struct mem_cgroup *memcg, int priority)
622 {
623 return 0;
624 }
625 #endif /* CONFIG_MEMCG */
626
627 /**
628 * shrink_slab - shrink slab caches
629 * @gfp_mask: allocation context
630 * @nid: node whose slab caches to target
631 * @memcg: memory cgroup whose slab caches to target
632 * @priority: the reclaim priority
633 *
634 * Call the shrink functions to age shrinkable caches.
635 *
636 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
637 * unaware shrinkers will receive a node id of 0 instead.
638 *
639 * @memcg specifies the memory cgroup to target. Unaware shrinkers
640 * are called only if it is the root cgroup.
641 *
642 * @priority is sc->priority, we take the number of objects and >> by priority
643 * in order to get the scan target.
644 *
645 * Returns the number of reclaimed slab objects.
646 */
647 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
648 struct mem_cgroup *memcg,
649 int priority)
650 {
651 unsigned long ret, freed = 0;
652 struct shrinker *shrinker;
653
654 /*
655 * The root memcg might be allocated even though memcg is disabled
656 * via "cgroup_disable=memory" boot parameter. This could make
657 * mem_cgroup_is_root() return false, then just run memcg slab
658 * shrink, but skip global shrink. This may result in premature
659 * oom.
660 */
661 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
662 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
663
664 if (!down_read_trylock(&shrinker_rwsem))
665 goto out;
666
667 list_for_each_entry(shrinker, &shrinker_list, list) {
668 struct shrink_control sc = {
669 .gfp_mask = gfp_mask,
670 .nid = nid,
671 .memcg = memcg,
672 };
673
674 ret = do_shrink_slab(&sc, shrinker, priority);
675 if (ret == SHRINK_EMPTY)
676 ret = 0;
677 freed += ret;
678 /*
679 * Bail out if someone want to register a new shrinker to
680 * prevent the registration from being stalled for long periods
681 * by parallel ongoing shrinking.
682 */
683 if (rwsem_is_contended(&shrinker_rwsem)) {
684 freed = freed ? : 1;
685 break;
686 }
687 }
688
689 up_read(&shrinker_rwsem);
690 out:
691 cond_resched();
692 return freed;
693 }
694
695 void drop_slab_node(int nid)
696 {
697 unsigned long freed;
698
699 do {
700 struct mem_cgroup *memcg = NULL;
701
702 if (fatal_signal_pending(current))
703 return;
704
705 freed = 0;
706 memcg = mem_cgroup_iter(NULL, NULL, NULL);
707 do {
708 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
709 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
710 } while (freed > 10);
711 }
712
713 void drop_slab(void)
714 {
715 int nid;
716
717 for_each_online_node(nid)
718 drop_slab_node(nid);
719 }
720
721 static inline int is_page_cache_freeable(struct page *page)
722 {
723 /*
724 * A freeable page cache page is referenced only by the caller
725 * that isolated the page, the page cache and optional buffer
726 * heads at page->private.
727 */
728 int page_cache_pins = thp_nr_pages(page);
729 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
730 }
731
732 static int may_write_to_inode(struct inode *inode)
733 {
734 if (current->flags & PF_SWAPWRITE)
735 return 1;
736 if (!inode_write_congested(inode))
737 return 1;
738 if (inode_to_bdi(inode) == current->backing_dev_info)
739 return 1;
740 return 0;
741 }
742
743 /*
744 * We detected a synchronous write error writing a page out. Probably
745 * -ENOSPC. We need to propagate that into the address_space for a subsequent
746 * fsync(), msync() or close().
747 *
748 * The tricky part is that after writepage we cannot touch the mapping: nothing
749 * prevents it from being freed up. But we have a ref on the page and once
750 * that page is locked, the mapping is pinned.
751 *
752 * We're allowed to run sleeping lock_page() here because we know the caller has
753 * __GFP_FS.
754 */
755 static void handle_write_error(struct address_space *mapping,
756 struct page *page, int error)
757 {
758 lock_page(page);
759 if (page_mapping(page) == mapping)
760 mapping_set_error(mapping, error);
761 unlock_page(page);
762 }
763
764 /* possible outcome of pageout() */
765 typedef enum {
766 /* failed to write page out, page is locked */
767 PAGE_KEEP,
768 /* move page to the active list, page is locked */
769 PAGE_ACTIVATE,
770 /* page has been sent to the disk successfully, page is unlocked */
771 PAGE_SUCCESS,
772 /* page is clean and locked */
773 PAGE_CLEAN,
774 } pageout_t;
775
776 /*
777 * pageout is called by shrink_page_list() for each dirty page.
778 * Calls ->writepage().
779 */
780 static pageout_t pageout(struct page *page, struct address_space *mapping)
781 {
782 /*
783 * If the page is dirty, only perform writeback if that write
784 * will be non-blocking. To prevent this allocation from being
785 * stalled by pagecache activity. But note that there may be
786 * stalls if we need to run get_block(). We could test
787 * PagePrivate for that.
788 *
789 * If this process is currently in __generic_file_write_iter() against
790 * this page's queue, we can perform writeback even if that
791 * will block.
792 *
793 * If the page is swapcache, write it back even if that would
794 * block, for some throttling. This happens by accident, because
795 * swap_backing_dev_info is bust: it doesn't reflect the
796 * congestion state of the swapdevs. Easy to fix, if needed.
797 */
798 if (!is_page_cache_freeable(page))
799 return PAGE_KEEP;
800 if (!mapping) {
801 /*
802 * Some data journaling orphaned pages can have
803 * page->mapping == NULL while being dirty with clean buffers.
804 */
805 if (page_has_private(page)) {
806 if (try_to_free_buffers(page)) {
807 ClearPageDirty(page);
808 pr_info("%s: orphaned page\n", __func__);
809 return PAGE_CLEAN;
810 }
811 }
812 return PAGE_KEEP;
813 }
814 if (mapping->a_ops->writepage == NULL)
815 return PAGE_ACTIVATE;
816 if (!may_write_to_inode(mapping->host))
817 return PAGE_KEEP;
818
819 if (clear_page_dirty_for_io(page)) {
820 int res;
821 struct writeback_control wbc = {
822 .sync_mode = WB_SYNC_NONE,
823 .nr_to_write = SWAP_CLUSTER_MAX,
824 .range_start = 0,
825 .range_end = LLONG_MAX,
826 .for_reclaim = 1,
827 };
828
829 SetPageReclaim(page);
830 res = mapping->a_ops->writepage(page, &wbc);
831 if (res < 0)
832 handle_write_error(mapping, page, res);
833 if (res == AOP_WRITEPAGE_ACTIVATE) {
834 ClearPageReclaim(page);
835 return PAGE_ACTIVATE;
836 }
837
838 if (!PageWriteback(page)) {
839 /* synchronous write or broken a_ops? */
840 ClearPageReclaim(page);
841 }
842 trace_mm_vmscan_writepage(page);
843 inc_node_page_state(page, NR_VMSCAN_WRITE);
844 return PAGE_SUCCESS;
845 }
846
847 return PAGE_CLEAN;
848 }
849
850 /*
851 * Same as remove_mapping, but if the page is removed from the mapping, it
852 * gets returned with a refcount of 0.
853 */
854 static int __remove_mapping(struct address_space *mapping, struct page *page,
855 bool reclaimed, struct mem_cgroup *target_memcg)
856 {
857 unsigned long flags;
858 int refcount;
859 void *shadow = NULL;
860
861 BUG_ON(!PageLocked(page));
862 BUG_ON(mapping != page_mapping(page));
863
864 xa_lock_irqsave(&mapping->i_pages, flags);
865 /*
866 * The non racy check for a busy page.
867 *
868 * Must be careful with the order of the tests. When someone has
869 * a ref to the page, it may be possible that they dirty it then
870 * drop the reference. So if PageDirty is tested before page_count
871 * here, then the following race may occur:
872 *
873 * get_user_pages(&page);
874 * [user mapping goes away]
875 * write_to(page);
876 * !PageDirty(page) [good]
877 * SetPageDirty(page);
878 * put_page(page);
879 * !page_count(page) [good, discard it]
880 *
881 * [oops, our write_to data is lost]
882 *
883 * Reversing the order of the tests ensures such a situation cannot
884 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
885 * load is not satisfied before that of page->_refcount.
886 *
887 * Note that if SetPageDirty is always performed via set_page_dirty,
888 * and thus under the i_pages lock, then this ordering is not required.
889 */
890 refcount = 1 + compound_nr(page);
891 if (!page_ref_freeze(page, refcount))
892 goto cannot_free;
893 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
894 if (unlikely(PageDirty(page))) {
895 page_ref_unfreeze(page, refcount);
896 goto cannot_free;
897 }
898
899 if (PageSwapCache(page)) {
900 swp_entry_t swap = { .val = page_private(page) };
901 mem_cgroup_swapout(page, swap);
902 if (reclaimed && !mapping_exiting(mapping))
903 shadow = workingset_eviction(page, target_memcg);
904 __delete_from_swap_cache(page, swap, shadow);
905 xa_unlock_irqrestore(&mapping->i_pages, flags);
906 put_swap_page(page, swap);
907 } else {
908 void (*freepage)(struct page *);
909
910 freepage = mapping->a_ops->freepage;
911 /*
912 * Remember a shadow entry for reclaimed file cache in
913 * order to detect refaults, thus thrashing, later on.
914 *
915 * But don't store shadows in an address space that is
916 * already exiting. This is not just an optimization,
917 * inode reclaim needs to empty out the radix tree or
918 * the nodes are lost. Don't plant shadows behind its
919 * back.
920 *
921 * We also don't store shadows for DAX mappings because the
922 * only page cache pages found in these are zero pages
923 * covering holes, and because we don't want to mix DAX
924 * exceptional entries and shadow exceptional entries in the
925 * same address_space.
926 */
927 if (reclaimed && page_is_file_lru(page) &&
928 !mapping_exiting(mapping) && !dax_mapping(mapping))
929 shadow = workingset_eviction(page, target_memcg);
930 __delete_from_page_cache(page, shadow);
931 xa_unlock_irqrestore(&mapping->i_pages, flags);
932
933 if (freepage != NULL)
934 freepage(page);
935 }
936
937 return 1;
938
939 cannot_free:
940 xa_unlock_irqrestore(&mapping->i_pages, flags);
941 return 0;
942 }
943
944 /*
945 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
946 * someone else has a ref on the page, abort and return 0. If it was
947 * successfully detached, return 1. Assumes the caller has a single ref on
948 * this page.
949 */
950 int remove_mapping(struct address_space *mapping, struct page *page)
951 {
952 if (__remove_mapping(mapping, page, false, NULL)) {
953 /*
954 * Unfreezing the refcount with 1 rather than 2 effectively
955 * drops the pagecache ref for us without requiring another
956 * atomic operation.
957 */
958 page_ref_unfreeze(page, 1);
959 return 1;
960 }
961 return 0;
962 }
963
964 /**
965 * putback_lru_page - put previously isolated page onto appropriate LRU list
966 * @page: page to be put back to appropriate lru list
967 *
968 * Add previously isolated @page to appropriate LRU list.
969 * Page may still be unevictable for other reasons.
970 *
971 * lru_lock must not be held, interrupts must be enabled.
972 */
973 void putback_lru_page(struct page *page)
974 {
975 lru_cache_add(page);
976 put_page(page); /* drop ref from isolate */
977 }
978
979 enum page_references {
980 PAGEREF_RECLAIM,
981 PAGEREF_RECLAIM_CLEAN,
982 PAGEREF_KEEP,
983 PAGEREF_ACTIVATE,
984 };
985
986 static enum page_references page_check_references(struct page *page,
987 struct scan_control *sc)
988 {
989 int referenced_ptes, referenced_page;
990 unsigned long vm_flags;
991
992 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
993 &vm_flags);
994 referenced_page = TestClearPageReferenced(page);
995
996 /*
997 * Mlock lost the isolation race with us. Let try_to_unmap()
998 * move the page to the unevictable list.
999 */
1000 if (vm_flags & VM_LOCKED)
1001 return PAGEREF_RECLAIM;
1002
1003 if (referenced_ptes) {
1004 /*
1005 * All mapped pages start out with page table
1006 * references from the instantiating fault, so we need
1007 * to look twice if a mapped file page is used more
1008 * than once.
1009 *
1010 * Mark it and spare it for another trip around the
1011 * inactive list. Another page table reference will
1012 * lead to its activation.
1013 *
1014 * Note: the mark is set for activated pages as well
1015 * so that recently deactivated but used pages are
1016 * quickly recovered.
1017 */
1018 SetPageReferenced(page);
1019
1020 if (referenced_page || referenced_ptes > 1)
1021 return PAGEREF_ACTIVATE;
1022
1023 /*
1024 * Activate file-backed executable pages after first usage.
1025 */
1026 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1027 return PAGEREF_ACTIVATE;
1028
1029 return PAGEREF_KEEP;
1030 }
1031
1032 /* Reclaim if clean, defer dirty pages to writeback */
1033 if (referenced_page && !PageSwapBacked(page))
1034 return PAGEREF_RECLAIM_CLEAN;
1035
1036 return PAGEREF_RECLAIM;
1037 }
1038
1039 /* Check if a page is dirty or under writeback */
1040 static void page_check_dirty_writeback(struct page *page,
1041 bool *dirty, bool *writeback)
1042 {
1043 struct address_space *mapping;
1044
1045 /*
1046 * Anonymous pages are not handled by flushers and must be written
1047 * from reclaim context. Do not stall reclaim based on them
1048 */
1049 if (!page_is_file_lru(page) ||
1050 (PageAnon(page) && !PageSwapBacked(page))) {
1051 *dirty = false;
1052 *writeback = false;
1053 return;
1054 }
1055
1056 /* By default assume that the page flags are accurate */
1057 *dirty = PageDirty(page);
1058 *writeback = PageWriteback(page);
1059
1060 /* Verify dirty/writeback state if the filesystem supports it */
1061 if (!page_has_private(page))
1062 return;
1063
1064 mapping = page_mapping(page);
1065 if (mapping && mapping->a_ops->is_dirty_writeback)
1066 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1067 }
1068
1069 /*
1070 * shrink_page_list() returns the number of reclaimed pages
1071 */
1072 static unsigned int shrink_page_list(struct list_head *page_list,
1073 struct pglist_data *pgdat,
1074 struct scan_control *sc,
1075 enum ttu_flags ttu_flags,
1076 struct reclaim_stat *stat,
1077 bool ignore_references)
1078 {
1079 LIST_HEAD(ret_pages);
1080 LIST_HEAD(free_pages);
1081 unsigned int nr_reclaimed = 0;
1082 unsigned int pgactivate = 0;
1083
1084 memset(stat, 0, sizeof(*stat));
1085 cond_resched();
1086
1087 while (!list_empty(page_list)) {
1088 struct address_space *mapping;
1089 struct page *page;
1090 enum page_references references = PAGEREF_RECLAIM;
1091 bool dirty, writeback, may_enter_fs;
1092 unsigned int nr_pages;
1093
1094 cond_resched();
1095
1096 page = lru_to_page(page_list);
1097 list_del(&page->lru);
1098
1099 if (!trylock_page(page))
1100 goto keep;
1101
1102 VM_BUG_ON_PAGE(PageActive(page), page);
1103
1104 nr_pages = compound_nr(page);
1105
1106 /* Account the number of base pages even though THP */
1107 sc->nr_scanned += nr_pages;
1108
1109 if (unlikely(!page_evictable(page)))
1110 goto activate_locked;
1111
1112 if (!sc->may_unmap && page_mapped(page))
1113 goto keep_locked;
1114
1115 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1116 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1117
1118 /*
1119 * The number of dirty pages determines if a node is marked
1120 * reclaim_congested which affects wait_iff_congested. kswapd
1121 * will stall and start writing pages if the tail of the LRU
1122 * is all dirty unqueued pages.
1123 */
1124 page_check_dirty_writeback(page, &dirty, &writeback);
1125 if (dirty || writeback)
1126 stat->nr_dirty++;
1127
1128 if (dirty && !writeback)
1129 stat->nr_unqueued_dirty++;
1130
1131 /*
1132 * Treat this page as congested if the underlying BDI is or if
1133 * pages are cycling through the LRU so quickly that the
1134 * pages marked for immediate reclaim are making it to the
1135 * end of the LRU a second time.
1136 */
1137 mapping = page_mapping(page);
1138 if (((dirty || writeback) && mapping &&
1139 inode_write_congested(mapping->host)) ||
1140 (writeback && PageReclaim(page)))
1141 stat->nr_congested++;
1142
1143 /*
1144 * If a page at the tail of the LRU is under writeback, there
1145 * are three cases to consider.
1146 *
1147 * 1) If reclaim is encountering an excessive number of pages
1148 * under writeback and this page is both under writeback and
1149 * PageReclaim then it indicates that pages are being queued
1150 * for IO but are being recycled through the LRU before the
1151 * IO can complete. Waiting on the page itself risks an
1152 * indefinite stall if it is impossible to writeback the
1153 * page due to IO error or disconnected storage so instead
1154 * note that the LRU is being scanned too quickly and the
1155 * caller can stall after page list has been processed.
1156 *
1157 * 2) Global or new memcg reclaim encounters a page that is
1158 * not marked for immediate reclaim, or the caller does not
1159 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1160 * not to fs). In this case mark the page for immediate
1161 * reclaim and continue scanning.
1162 *
1163 * Require may_enter_fs because we would wait on fs, which
1164 * may not have submitted IO yet. And the loop driver might
1165 * enter reclaim, and deadlock if it waits on a page for
1166 * which it is needed to do the write (loop masks off
1167 * __GFP_IO|__GFP_FS for this reason); but more thought
1168 * would probably show more reasons.
1169 *
1170 * 3) Legacy memcg encounters a page that is already marked
1171 * PageReclaim. memcg does not have any dirty pages
1172 * throttling so we could easily OOM just because too many
1173 * pages are in writeback and there is nothing else to
1174 * reclaim. Wait for the writeback to complete.
1175 *
1176 * In cases 1) and 2) we activate the pages to get them out of
1177 * the way while we continue scanning for clean pages on the
1178 * inactive list and refilling from the active list. The
1179 * observation here is that waiting for disk writes is more
1180 * expensive than potentially causing reloads down the line.
1181 * Since they're marked for immediate reclaim, they won't put
1182 * memory pressure on the cache working set any longer than it
1183 * takes to write them to disk.
1184 */
1185 if (PageWriteback(page)) {
1186 /* Case 1 above */
1187 if (current_is_kswapd() &&
1188 PageReclaim(page) &&
1189 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1190 stat->nr_immediate++;
1191 goto activate_locked;
1192
1193 /* Case 2 above */
1194 } else if (writeback_throttling_sane(sc) ||
1195 !PageReclaim(page) || !may_enter_fs) {
1196 /*
1197 * This is slightly racy - end_page_writeback()
1198 * might have just cleared PageReclaim, then
1199 * setting PageReclaim here end up interpreted
1200 * as PageReadahead - but that does not matter
1201 * enough to care. What we do want is for this
1202 * page to have PageReclaim set next time memcg
1203 * reclaim reaches the tests above, so it will
1204 * then wait_on_page_writeback() to avoid OOM;
1205 * and it's also appropriate in global reclaim.
1206 */
1207 SetPageReclaim(page);
1208 stat->nr_writeback++;
1209 goto activate_locked;
1210
1211 /* Case 3 above */
1212 } else {
1213 unlock_page(page);
1214 wait_on_page_writeback(page);
1215 /* then go back and try same page again */
1216 list_add_tail(&page->lru, page_list);
1217 continue;
1218 }
1219 }
1220
1221 if (!ignore_references)
1222 references = page_check_references(page, sc);
1223
1224 switch (references) {
1225 case PAGEREF_ACTIVATE:
1226 goto activate_locked;
1227 case PAGEREF_KEEP:
1228 stat->nr_ref_keep += nr_pages;
1229 goto keep_locked;
1230 case PAGEREF_RECLAIM:
1231 case PAGEREF_RECLAIM_CLEAN:
1232 ; /* try to reclaim the page below */
1233 }
1234
1235 /*
1236 * Anonymous process memory has backing store?
1237 * Try to allocate it some swap space here.
1238 * Lazyfree page could be freed directly
1239 */
1240 if (PageAnon(page) && PageSwapBacked(page)) {
1241 if (!PageSwapCache(page)) {
1242 if (!(sc->gfp_mask & __GFP_IO))
1243 goto keep_locked;
1244 if (PageTransHuge(page)) {
1245 /* cannot split THP, skip it */
1246 if (!can_split_huge_page(page, NULL))
1247 goto activate_locked;
1248 /*
1249 * Split pages without a PMD map right
1250 * away. Chances are some or all of the
1251 * tail pages can be freed without IO.
1252 */
1253 if (!compound_mapcount(page) &&
1254 split_huge_page_to_list(page,
1255 page_list))
1256 goto activate_locked;
1257 }
1258 if (!add_to_swap(page)) {
1259 if (!PageTransHuge(page))
1260 goto activate_locked_split;
1261 /* Fallback to swap normal pages */
1262 if (split_huge_page_to_list(page,
1263 page_list))
1264 goto activate_locked;
1265 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1266 count_vm_event(THP_SWPOUT_FALLBACK);
1267 #endif
1268 if (!add_to_swap(page))
1269 goto activate_locked_split;
1270 }
1271
1272 may_enter_fs = true;
1273
1274 /* Adding to swap updated mapping */
1275 mapping = page_mapping(page);
1276 }
1277 } else if (unlikely(PageTransHuge(page))) {
1278 /* Split file THP */
1279 if (split_huge_page_to_list(page, page_list))
1280 goto keep_locked;
1281 }
1282
1283 /*
1284 * THP may get split above, need minus tail pages and update
1285 * nr_pages to avoid accounting tail pages twice.
1286 *
1287 * The tail pages that are added into swap cache successfully
1288 * reach here.
1289 */
1290 if ((nr_pages > 1) && !PageTransHuge(page)) {
1291 sc->nr_scanned -= (nr_pages - 1);
1292 nr_pages = 1;
1293 }
1294
1295 /*
1296 * The page is mapped into the page tables of one or more
1297 * processes. Try to unmap it here.
1298 */
1299 if (page_mapped(page)) {
1300 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1301 bool was_swapbacked = PageSwapBacked(page);
1302
1303 if (unlikely(PageTransHuge(page)))
1304 flags |= TTU_SPLIT_HUGE_PMD;
1305
1306 if (!try_to_unmap(page, flags)) {
1307 stat->nr_unmap_fail += nr_pages;
1308 if (!was_swapbacked && PageSwapBacked(page))
1309 stat->nr_lazyfree_fail += nr_pages;
1310 goto activate_locked;
1311 }
1312 }
1313
1314 if (PageDirty(page)) {
1315 /*
1316 * Only kswapd can writeback filesystem pages
1317 * to avoid risk of stack overflow. But avoid
1318 * injecting inefficient single-page IO into
1319 * flusher writeback as much as possible: only
1320 * write pages when we've encountered many
1321 * dirty pages, and when we've already scanned
1322 * the rest of the LRU for clean pages and see
1323 * the same dirty pages again (PageReclaim).
1324 */
1325 if (page_is_file_lru(page) &&
1326 (!current_is_kswapd() || !PageReclaim(page) ||
1327 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1328 /*
1329 * Immediately reclaim when written back.
1330 * Similar in principal to deactivate_page()
1331 * except we already have the page isolated
1332 * and know it's dirty
1333 */
1334 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1335 SetPageReclaim(page);
1336
1337 goto activate_locked;
1338 }
1339
1340 if (references == PAGEREF_RECLAIM_CLEAN)
1341 goto keep_locked;
1342 if (!may_enter_fs)
1343 goto keep_locked;
1344 if (!sc->may_writepage)
1345 goto keep_locked;
1346
1347 /*
1348 * Page is dirty. Flush the TLB if a writable entry
1349 * potentially exists to avoid CPU writes after IO
1350 * starts and then write it out here.
1351 */
1352 try_to_unmap_flush_dirty();
1353 switch (pageout(page, mapping)) {
1354 case PAGE_KEEP:
1355 goto keep_locked;
1356 case PAGE_ACTIVATE:
1357 goto activate_locked;
1358 case PAGE_SUCCESS:
1359 stat->nr_pageout += thp_nr_pages(page);
1360
1361 if (PageWriteback(page))
1362 goto keep;
1363 if (PageDirty(page))
1364 goto keep;
1365
1366 /*
1367 * A synchronous write - probably a ramdisk. Go
1368 * ahead and try to reclaim the page.
1369 */
1370 if (!trylock_page(page))
1371 goto keep;
1372 if (PageDirty(page) || PageWriteback(page))
1373 goto keep_locked;
1374 mapping = page_mapping(page);
1375 case PAGE_CLEAN:
1376 ; /* try to free the page below */
1377 }
1378 }
1379
1380 /*
1381 * If the page has buffers, try to free the buffer mappings
1382 * associated with this page. If we succeed we try to free
1383 * the page as well.
1384 *
1385 * We do this even if the page is PageDirty().
1386 * try_to_release_page() does not perform I/O, but it is
1387 * possible for a page to have PageDirty set, but it is actually
1388 * clean (all its buffers are clean). This happens if the
1389 * buffers were written out directly, with submit_bh(). ext3
1390 * will do this, as well as the blockdev mapping.
1391 * try_to_release_page() will discover that cleanness and will
1392 * drop the buffers and mark the page clean - it can be freed.
1393 *
1394 * Rarely, pages can have buffers and no ->mapping. These are
1395 * the pages which were not successfully invalidated in
1396 * truncate_complete_page(). We try to drop those buffers here
1397 * and if that worked, and the page is no longer mapped into
1398 * process address space (page_count == 1) it can be freed.
1399 * Otherwise, leave the page on the LRU so it is swappable.
1400 */
1401 if (page_has_private(page)) {
1402 if (!try_to_release_page(page, sc->gfp_mask))
1403 goto activate_locked;
1404 if (!mapping && page_count(page) == 1) {
1405 unlock_page(page);
1406 if (put_page_testzero(page))
1407 goto free_it;
1408 else {
1409 /*
1410 * rare race with speculative reference.
1411 * the speculative reference will free
1412 * this page shortly, so we may
1413 * increment nr_reclaimed here (and
1414 * leave it off the LRU).
1415 */
1416 nr_reclaimed++;
1417 continue;
1418 }
1419 }
1420 }
1421
1422 if (PageAnon(page) && !PageSwapBacked(page)) {
1423 /* follow __remove_mapping for reference */
1424 if (!page_ref_freeze(page, 1))
1425 goto keep_locked;
1426 if (PageDirty(page)) {
1427 page_ref_unfreeze(page, 1);
1428 goto keep_locked;
1429 }
1430
1431 count_vm_event(PGLAZYFREED);
1432 count_memcg_page_event(page, PGLAZYFREED);
1433 } else if (!mapping || !__remove_mapping(mapping, page, true,
1434 sc->target_mem_cgroup))
1435 goto keep_locked;
1436
1437 unlock_page(page);
1438 free_it:
1439 /*
1440 * THP may get swapped out in a whole, need account
1441 * all base pages.
1442 */
1443 nr_reclaimed += nr_pages;
1444
1445 /*
1446 * Is there need to periodically free_page_list? It would
1447 * appear not as the counts should be low
1448 */
1449 if (unlikely(PageTransHuge(page)))
1450 destroy_compound_page(page);
1451 else
1452 list_add(&page->lru, &free_pages);
1453 continue;
1454
1455 activate_locked_split:
1456 /*
1457 * The tail pages that are failed to add into swap cache
1458 * reach here. Fixup nr_scanned and nr_pages.
1459 */
1460 if (nr_pages > 1) {
1461 sc->nr_scanned -= (nr_pages - 1);
1462 nr_pages = 1;
1463 }
1464 activate_locked:
1465 /* Not a candidate for swapping, so reclaim swap space. */
1466 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1467 PageMlocked(page)))
1468 try_to_free_swap(page);
1469 VM_BUG_ON_PAGE(PageActive(page), page);
1470 if (!PageMlocked(page)) {
1471 int type = page_is_file_lru(page);
1472 SetPageActive(page);
1473 stat->nr_activate[type] += nr_pages;
1474 count_memcg_page_event(page, PGACTIVATE);
1475 }
1476 keep_locked:
1477 unlock_page(page);
1478 keep:
1479 list_add(&page->lru, &ret_pages);
1480 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1481 }
1482
1483 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1484
1485 mem_cgroup_uncharge_list(&free_pages);
1486 try_to_unmap_flush();
1487 free_unref_page_list(&free_pages);
1488
1489 list_splice(&ret_pages, page_list);
1490 count_vm_events(PGACTIVATE, pgactivate);
1491
1492 return nr_reclaimed;
1493 }
1494
1495 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1496 struct list_head *page_list)
1497 {
1498 struct scan_control sc = {
1499 .gfp_mask = GFP_KERNEL,
1500 .priority = DEF_PRIORITY,
1501 .may_unmap = 1,
1502 };
1503 struct reclaim_stat stat;
1504 unsigned int nr_reclaimed;
1505 struct page *page, *next;
1506 LIST_HEAD(clean_pages);
1507
1508 list_for_each_entry_safe(page, next, page_list, lru) {
1509 if (page_is_file_lru(page) && !PageDirty(page) &&
1510 !__PageMovable(page) && !PageUnevictable(page)) {
1511 ClearPageActive(page);
1512 list_move(&page->lru, &clean_pages);
1513 }
1514 }
1515
1516 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1517 TTU_IGNORE_ACCESS, &stat, true);
1518 list_splice(&clean_pages, page_list);
1519 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1520 -(long)nr_reclaimed);
1521 /*
1522 * Since lazyfree pages are isolated from file LRU from the beginning,
1523 * they will rotate back to anonymous LRU in the end if it failed to
1524 * discard so isolated count will be mismatched.
1525 * Compensate the isolated count for both LRU lists.
1526 */
1527 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1528 stat.nr_lazyfree_fail);
1529 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1530 -(long)stat.nr_lazyfree_fail);
1531 return nr_reclaimed;
1532 }
1533
1534 /*
1535 * Attempt to remove the specified page from its LRU. Only take this page
1536 * if it is of the appropriate PageActive status. Pages which are being
1537 * freed elsewhere are also ignored.
1538 *
1539 * page: page to consider
1540 * mode: one of the LRU isolation modes defined above
1541 *
1542 * returns 0 on success, -ve errno on failure.
1543 */
1544 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1545 {
1546 int ret = -EINVAL;
1547
1548 /* Only take pages on the LRU. */
1549 if (!PageLRU(page))
1550 return ret;
1551
1552 /* Compaction should not handle unevictable pages but CMA can do so */
1553 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1554 return ret;
1555
1556 ret = -EBUSY;
1557
1558 /*
1559 * To minimise LRU disruption, the caller can indicate that it only
1560 * wants to isolate pages it will be able to operate on without
1561 * blocking - clean pages for the most part.
1562 *
1563 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1564 * that it is possible to migrate without blocking
1565 */
1566 if (mode & ISOLATE_ASYNC_MIGRATE) {
1567 /* All the caller can do on PageWriteback is block */
1568 if (PageWriteback(page))
1569 return ret;
1570
1571 if (PageDirty(page)) {
1572 struct address_space *mapping;
1573 bool migrate_dirty;
1574
1575 /*
1576 * Only pages without mappings or that have a
1577 * ->migratepage callback are possible to migrate
1578 * without blocking. However, we can be racing with
1579 * truncation so it's necessary to lock the page
1580 * to stabilise the mapping as truncation holds
1581 * the page lock until after the page is removed
1582 * from the page cache.
1583 */
1584 if (!trylock_page(page))
1585 return ret;
1586
1587 mapping = page_mapping(page);
1588 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1589 unlock_page(page);
1590 if (!migrate_dirty)
1591 return ret;
1592 }
1593 }
1594
1595 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1596 return ret;
1597
1598 if (likely(get_page_unless_zero(page))) {
1599 /*
1600 * Be careful not to clear PageLRU until after we're
1601 * sure the page is not being freed elsewhere -- the
1602 * page release code relies on it.
1603 */
1604 ClearPageLRU(page);
1605 ret = 0;
1606 }
1607
1608 return ret;
1609 }
1610
1611
1612 /*
1613 * Update LRU sizes after isolating pages. The LRU size updates must
1614 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1615 */
1616 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1617 enum lru_list lru, unsigned long *nr_zone_taken)
1618 {
1619 int zid;
1620
1621 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1622 if (!nr_zone_taken[zid])
1623 continue;
1624
1625 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1626 }
1627
1628 }
1629
1630 /**
1631 * pgdat->lru_lock is heavily contended. Some of the functions that
1632 * shrink the lists perform better by taking out a batch of pages
1633 * and working on them outside the LRU lock.
1634 *
1635 * For pagecache intensive workloads, this function is the hottest
1636 * spot in the kernel (apart from copy_*_user functions).
1637 *
1638 * Appropriate locks must be held before calling this function.
1639 *
1640 * @nr_to_scan: The number of eligible pages to look through on the list.
1641 * @lruvec: The LRU vector to pull pages from.
1642 * @dst: The temp list to put pages on to.
1643 * @nr_scanned: The number of pages that were scanned.
1644 * @sc: The scan_control struct for this reclaim session
1645 * @lru: LRU list id for isolating
1646 *
1647 * returns how many pages were moved onto *@dst.
1648 */
1649 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1650 struct lruvec *lruvec, struct list_head *dst,
1651 unsigned long *nr_scanned, struct scan_control *sc,
1652 enum lru_list lru)
1653 {
1654 struct list_head *src = &lruvec->lists[lru];
1655 unsigned long nr_taken = 0;
1656 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1657 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1658 unsigned long skipped = 0;
1659 unsigned long scan, total_scan, nr_pages;
1660 LIST_HEAD(pages_skipped);
1661 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1662
1663 total_scan = 0;
1664 scan = 0;
1665 while (scan < nr_to_scan && !list_empty(src)) {
1666 struct page *page;
1667
1668 page = lru_to_page(src);
1669 prefetchw_prev_lru_page(page, src, flags);
1670
1671 VM_BUG_ON_PAGE(!PageLRU(page), page);
1672
1673 nr_pages = compound_nr(page);
1674 total_scan += nr_pages;
1675
1676 if (page_zonenum(page) > sc->reclaim_idx) {
1677 list_move(&page->lru, &pages_skipped);
1678 nr_skipped[page_zonenum(page)] += nr_pages;
1679 continue;
1680 }
1681
1682 /*
1683 * Do not count skipped pages because that makes the function
1684 * return with no isolated pages if the LRU mostly contains
1685 * ineligible pages. This causes the VM to not reclaim any
1686 * pages, triggering a premature OOM.
1687 *
1688 * Account all tail pages of THP. This would not cause
1689 * premature OOM since __isolate_lru_page() returns -EBUSY
1690 * only when the page is being freed somewhere else.
1691 */
1692 scan += nr_pages;
1693 switch (__isolate_lru_page(page, mode)) {
1694 case 0:
1695 nr_taken += nr_pages;
1696 nr_zone_taken[page_zonenum(page)] += nr_pages;
1697 list_move(&page->lru, dst);
1698 break;
1699
1700 case -EBUSY:
1701 /* else it is being freed elsewhere */
1702 list_move(&page->lru, src);
1703 continue;
1704
1705 default:
1706 BUG();
1707 }
1708 }
1709
1710 /*
1711 * Splice any skipped pages to the start of the LRU list. Note that
1712 * this disrupts the LRU order when reclaiming for lower zones but
1713 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1714 * scanning would soon rescan the same pages to skip and put the
1715 * system at risk of premature OOM.
1716 */
1717 if (!list_empty(&pages_skipped)) {
1718 int zid;
1719
1720 list_splice(&pages_skipped, src);
1721 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1722 if (!nr_skipped[zid])
1723 continue;
1724
1725 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1726 skipped += nr_skipped[zid];
1727 }
1728 }
1729 *nr_scanned = total_scan;
1730 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1731 total_scan, skipped, nr_taken, mode, lru);
1732 update_lru_sizes(lruvec, lru, nr_zone_taken);
1733 return nr_taken;
1734 }
1735
1736 /**
1737 * isolate_lru_page - tries to isolate a page from its LRU list
1738 * @page: page to isolate from its LRU list
1739 *
1740 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1741 * vmstat statistic corresponding to whatever LRU list the page was on.
1742 *
1743 * Returns 0 if the page was removed from an LRU list.
1744 * Returns -EBUSY if the page was not on an LRU list.
1745 *
1746 * The returned page will have PageLRU() cleared. If it was found on
1747 * the active list, it will have PageActive set. If it was found on
1748 * the unevictable list, it will have the PageUnevictable bit set. That flag
1749 * may need to be cleared by the caller before letting the page go.
1750 *
1751 * The vmstat statistic corresponding to the list on which the page was
1752 * found will be decremented.
1753 *
1754 * Restrictions:
1755 *
1756 * (1) Must be called with an elevated refcount on the page. This is a
1757 * fundamental difference from isolate_lru_pages (which is called
1758 * without a stable reference).
1759 * (2) the lru_lock must not be held.
1760 * (3) interrupts must be enabled.
1761 */
1762 int isolate_lru_page(struct page *page)
1763 {
1764 int ret = -EBUSY;
1765
1766 VM_BUG_ON_PAGE(!page_count(page), page);
1767 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1768
1769 if (PageLRU(page)) {
1770 pg_data_t *pgdat = page_pgdat(page);
1771 struct lruvec *lruvec;
1772
1773 spin_lock_irq(&pgdat->lru_lock);
1774 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1775 if (PageLRU(page)) {
1776 int lru = page_lru(page);
1777 get_page(page);
1778 ClearPageLRU(page);
1779 del_page_from_lru_list(page, lruvec, lru);
1780 ret = 0;
1781 }
1782 spin_unlock_irq(&pgdat->lru_lock);
1783 }
1784 return ret;
1785 }
1786
1787 /*
1788 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1789 * then get rescheduled. When there are massive number of tasks doing page
1790 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1791 * the LRU list will go small and be scanned faster than necessary, leading to
1792 * unnecessary swapping, thrashing and OOM.
1793 */
1794 static int too_many_isolated(struct pglist_data *pgdat, int file,
1795 struct scan_control *sc)
1796 {
1797 unsigned long inactive, isolated;
1798
1799 if (current_is_kswapd())
1800 return 0;
1801
1802 if (!writeback_throttling_sane(sc))
1803 return 0;
1804
1805 if (file) {
1806 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1807 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1808 } else {
1809 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1810 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1811 }
1812
1813 /*
1814 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1815 * won't get blocked by normal direct-reclaimers, forming a circular
1816 * deadlock.
1817 */
1818 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1819 inactive >>= 3;
1820
1821 return isolated > inactive;
1822 }
1823
1824 /*
1825 * This moves pages from @list to corresponding LRU list.
1826 *
1827 * We move them the other way if the page is referenced by one or more
1828 * processes, from rmap.
1829 *
1830 * If the pages are mostly unmapped, the processing is fast and it is
1831 * appropriate to hold zone_lru_lock across the whole operation. But if
1832 * the pages are mapped, the processing is slow (page_referenced()) so we
1833 * should drop zone_lru_lock around each page. It's impossible to balance
1834 * this, so instead we remove the pages from the LRU while processing them.
1835 * It is safe to rely on PG_active against the non-LRU pages in here because
1836 * nobody will play with that bit on a non-LRU page.
1837 *
1838 * The downside is that we have to touch page->_refcount against each page.
1839 * But we had to alter page->flags anyway.
1840 *
1841 * Returns the number of pages moved to the given lruvec.
1842 */
1843
1844 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1845 struct list_head *list)
1846 {
1847 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1848 int nr_pages, nr_moved = 0;
1849 LIST_HEAD(pages_to_free);
1850 struct page *page;
1851 enum lru_list lru;
1852
1853 while (!list_empty(list)) {
1854 page = lru_to_page(list);
1855 VM_BUG_ON_PAGE(PageLRU(page), page);
1856 if (unlikely(!page_evictable(page))) {
1857 list_del(&page->lru);
1858 spin_unlock_irq(&pgdat->lru_lock);
1859 putback_lru_page(page);
1860 spin_lock_irq(&pgdat->lru_lock);
1861 continue;
1862 }
1863 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1864
1865 SetPageLRU(page);
1866 lru = page_lru(page);
1867
1868 nr_pages = thp_nr_pages(page);
1869 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1870 list_move(&page->lru, &lruvec->lists[lru]);
1871
1872 if (put_page_testzero(page)) {
1873 __ClearPageLRU(page);
1874 __ClearPageActive(page);
1875 del_page_from_lru_list(page, lruvec, lru);
1876
1877 if (unlikely(PageCompound(page))) {
1878 spin_unlock_irq(&pgdat->lru_lock);
1879 destroy_compound_page(page);
1880 spin_lock_irq(&pgdat->lru_lock);
1881 } else
1882 list_add(&page->lru, &pages_to_free);
1883 } else {
1884 nr_moved += nr_pages;
1885 if (PageActive(page))
1886 workingset_age_nonresident(lruvec, nr_pages);
1887 }
1888 }
1889
1890 /*
1891 * To save our caller's stack, now use input list for pages to free.
1892 */
1893 list_splice(&pages_to_free, list);
1894
1895 return nr_moved;
1896 }
1897
1898 /*
1899 * If a kernel thread (such as nfsd for loop-back mounts) services
1900 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
1901 * In that case we should only throttle if the backing device it is
1902 * writing to is congested. In other cases it is safe to throttle.
1903 */
1904 static int current_may_throttle(void)
1905 {
1906 return !(current->flags & PF_LOCAL_THROTTLE) ||
1907 current->backing_dev_info == NULL ||
1908 bdi_write_congested(current->backing_dev_info);
1909 }
1910
1911 /*
1912 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1913 * of reclaimed pages
1914 */
1915 static noinline_for_stack unsigned long
1916 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1917 struct scan_control *sc, enum lru_list lru)
1918 {
1919 LIST_HEAD(page_list);
1920 unsigned long nr_scanned;
1921 unsigned int nr_reclaimed = 0;
1922 unsigned long nr_taken;
1923 struct reclaim_stat stat;
1924 bool file = is_file_lru(lru);
1925 enum vm_event_item item;
1926 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1927 bool stalled = false;
1928
1929 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1930 if (stalled)
1931 return 0;
1932
1933 /* wait a bit for the reclaimer. */
1934 msleep(100);
1935 stalled = true;
1936
1937 /* We are about to die and free our memory. Return now. */
1938 if (fatal_signal_pending(current))
1939 return SWAP_CLUSTER_MAX;
1940 }
1941
1942 lru_add_drain();
1943
1944 spin_lock_irq(&pgdat->lru_lock);
1945
1946 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1947 &nr_scanned, sc, lru);
1948
1949 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1950 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1951 if (!cgroup_reclaim(sc))
1952 __count_vm_events(item, nr_scanned);
1953 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1954 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
1955
1956 spin_unlock_irq(&pgdat->lru_lock);
1957
1958 if (nr_taken == 0)
1959 return 0;
1960
1961 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1962 &stat, false);
1963
1964 spin_lock_irq(&pgdat->lru_lock);
1965
1966 move_pages_to_lru(lruvec, &page_list);
1967
1968 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1969 lru_note_cost(lruvec, file, stat.nr_pageout);
1970 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1971 if (!cgroup_reclaim(sc))
1972 __count_vm_events(item, nr_reclaimed);
1973 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1974 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1975
1976 spin_unlock_irq(&pgdat->lru_lock);
1977
1978 mem_cgroup_uncharge_list(&page_list);
1979 free_unref_page_list(&page_list);
1980
1981 /*
1982 * If dirty pages are scanned that are not queued for IO, it
1983 * implies that flushers are not doing their job. This can
1984 * happen when memory pressure pushes dirty pages to the end of
1985 * the LRU before the dirty limits are breached and the dirty
1986 * data has expired. It can also happen when the proportion of
1987 * dirty pages grows not through writes but through memory
1988 * pressure reclaiming all the clean cache. And in some cases,
1989 * the flushers simply cannot keep up with the allocation
1990 * rate. Nudge the flusher threads in case they are asleep.
1991 */
1992 if (stat.nr_unqueued_dirty == nr_taken)
1993 wakeup_flusher_threads(WB_REASON_VMSCAN);
1994
1995 sc->nr.dirty += stat.nr_dirty;
1996 sc->nr.congested += stat.nr_congested;
1997 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1998 sc->nr.writeback += stat.nr_writeback;
1999 sc->nr.immediate += stat.nr_immediate;
2000 sc->nr.taken += nr_taken;
2001 if (file)
2002 sc->nr.file_taken += nr_taken;
2003
2004 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2005 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2006 return nr_reclaimed;
2007 }
2008
2009 static void shrink_active_list(unsigned long nr_to_scan,
2010 struct lruvec *lruvec,
2011 struct scan_control *sc,
2012 enum lru_list lru)
2013 {
2014 unsigned long nr_taken;
2015 unsigned long nr_scanned;
2016 unsigned long vm_flags;
2017 LIST_HEAD(l_hold); /* The pages which were snipped off */
2018 LIST_HEAD(l_active);
2019 LIST_HEAD(l_inactive);
2020 struct page *page;
2021 unsigned nr_deactivate, nr_activate;
2022 unsigned nr_rotated = 0;
2023 int file = is_file_lru(lru);
2024 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2025
2026 lru_add_drain();
2027
2028 spin_lock_irq(&pgdat->lru_lock);
2029
2030 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2031 &nr_scanned, sc, lru);
2032
2033 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2034
2035 if (!cgroup_reclaim(sc))
2036 __count_vm_events(PGREFILL, nr_scanned);
2037 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2038
2039 spin_unlock_irq(&pgdat->lru_lock);
2040
2041 while (!list_empty(&l_hold)) {
2042 cond_resched();
2043 page = lru_to_page(&l_hold);
2044 list_del(&page->lru);
2045
2046 if (unlikely(!page_evictable(page))) {
2047 putback_lru_page(page);
2048 continue;
2049 }
2050
2051 if (unlikely(buffer_heads_over_limit)) {
2052 if (page_has_private(page) && trylock_page(page)) {
2053 if (page_has_private(page))
2054 try_to_release_page(page, 0);
2055 unlock_page(page);
2056 }
2057 }
2058
2059 if (page_referenced(page, 0, sc->target_mem_cgroup,
2060 &vm_flags)) {
2061 /*
2062 * Identify referenced, file-backed active pages and
2063 * give them one more trip around the active list. So
2064 * that executable code get better chances to stay in
2065 * memory under moderate memory pressure. Anon pages
2066 * are not likely to be evicted by use-once streaming
2067 * IO, plus JVM can create lots of anon VM_EXEC pages,
2068 * so we ignore them here.
2069 */
2070 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2071 nr_rotated += thp_nr_pages(page);
2072 list_add(&page->lru, &l_active);
2073 continue;
2074 }
2075 }
2076
2077 ClearPageActive(page); /* we are de-activating */
2078 SetPageWorkingset(page);
2079 list_add(&page->lru, &l_inactive);
2080 }
2081
2082 /*
2083 * Move pages back to the lru list.
2084 */
2085 spin_lock_irq(&pgdat->lru_lock);
2086
2087 nr_activate = move_pages_to_lru(lruvec, &l_active);
2088 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2089 /* Keep all free pages in l_active list */
2090 list_splice(&l_inactive, &l_active);
2091
2092 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2093 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2094
2095 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2096 spin_unlock_irq(&pgdat->lru_lock);
2097
2098 mem_cgroup_uncharge_list(&l_active);
2099 free_unref_page_list(&l_active);
2100 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2101 nr_deactivate, nr_rotated, sc->priority, file);
2102 }
2103
2104 unsigned long reclaim_pages(struct list_head *page_list)
2105 {
2106 int nid = NUMA_NO_NODE;
2107 unsigned int nr_reclaimed = 0;
2108 LIST_HEAD(node_page_list);
2109 struct reclaim_stat dummy_stat;
2110 struct page *page;
2111 struct scan_control sc = {
2112 .gfp_mask = GFP_KERNEL,
2113 .priority = DEF_PRIORITY,
2114 .may_writepage = 1,
2115 .may_unmap = 1,
2116 .may_swap = 1,
2117 };
2118
2119 while (!list_empty(page_list)) {
2120 page = lru_to_page(page_list);
2121 if (nid == NUMA_NO_NODE) {
2122 nid = page_to_nid(page);
2123 INIT_LIST_HEAD(&node_page_list);
2124 }
2125
2126 if (nid == page_to_nid(page)) {
2127 ClearPageActive(page);
2128 list_move(&page->lru, &node_page_list);
2129 continue;
2130 }
2131
2132 nr_reclaimed += shrink_page_list(&node_page_list,
2133 NODE_DATA(nid),
2134 &sc, 0,
2135 &dummy_stat, false);
2136 while (!list_empty(&node_page_list)) {
2137 page = lru_to_page(&node_page_list);
2138 list_del(&page->lru);
2139 putback_lru_page(page);
2140 }
2141
2142 nid = NUMA_NO_NODE;
2143 }
2144
2145 if (!list_empty(&node_page_list)) {
2146 nr_reclaimed += shrink_page_list(&node_page_list,
2147 NODE_DATA(nid),
2148 &sc, 0,
2149 &dummy_stat, false);
2150 while (!list_empty(&node_page_list)) {
2151 page = lru_to_page(&node_page_list);
2152 list_del(&page->lru);
2153 putback_lru_page(page);
2154 }
2155 }
2156
2157 return nr_reclaimed;
2158 }
2159
2160 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2161 struct lruvec *lruvec, struct scan_control *sc)
2162 {
2163 if (is_active_lru(lru)) {
2164 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2165 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2166 else
2167 sc->skipped_deactivate = 1;
2168 return 0;
2169 }
2170
2171 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2172 }
2173
2174 /*
2175 * The inactive anon list should be small enough that the VM never has
2176 * to do too much work.
2177 *
2178 * The inactive file list should be small enough to leave most memory
2179 * to the established workingset on the scan-resistant active list,
2180 * but large enough to avoid thrashing the aggregate readahead window.
2181 *
2182 * Both inactive lists should also be large enough that each inactive
2183 * page has a chance to be referenced again before it is reclaimed.
2184 *
2185 * If that fails and refaulting is observed, the inactive list grows.
2186 *
2187 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2188 * on this LRU, maintained by the pageout code. An inactive_ratio
2189 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2190 *
2191 * total target max
2192 * memory ratio inactive
2193 * -------------------------------------
2194 * 10MB 1 5MB
2195 * 100MB 1 50MB
2196 * 1GB 3 250MB
2197 * 10GB 10 0.9GB
2198 * 100GB 31 3GB
2199 * 1TB 101 10GB
2200 * 10TB 320 32GB
2201 */
2202 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2203 {
2204 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2205 unsigned long inactive, active;
2206 unsigned long inactive_ratio;
2207 unsigned long gb;
2208
2209 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2210 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2211
2212 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2213 if (gb)
2214 inactive_ratio = int_sqrt(10 * gb);
2215 else
2216 inactive_ratio = 1;
2217
2218 return inactive * inactive_ratio < active;
2219 }
2220
2221 enum scan_balance {
2222 SCAN_EQUAL,
2223 SCAN_FRACT,
2224 SCAN_ANON,
2225 SCAN_FILE,
2226 };
2227
2228 /*
2229 * Determine how aggressively the anon and file LRU lists should be
2230 * scanned. The relative value of each set of LRU lists is determined
2231 * by looking at the fraction of the pages scanned we did rotate back
2232 * onto the active list instead of evict.
2233 *
2234 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2235 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2236 */
2237 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2238 unsigned long *nr)
2239 {
2240 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2241 unsigned long anon_cost, file_cost, total_cost;
2242 int swappiness = mem_cgroup_swappiness(memcg);
2243 u64 fraction[ANON_AND_FILE];
2244 u64 denominator = 0; /* gcc */
2245 enum scan_balance scan_balance;
2246 unsigned long ap, fp;
2247 enum lru_list lru;
2248
2249 /* If we have no swap space, do not bother scanning anon pages. */
2250 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2251 scan_balance = SCAN_FILE;
2252 goto out;
2253 }
2254
2255 /*
2256 * Global reclaim will swap to prevent OOM even with no
2257 * swappiness, but memcg users want to use this knob to
2258 * disable swapping for individual groups completely when
2259 * using the memory controller's swap limit feature would be
2260 * too expensive.
2261 */
2262 if (cgroup_reclaim(sc) && !swappiness) {
2263 scan_balance = SCAN_FILE;
2264 goto out;
2265 }
2266
2267 /*
2268 * Do not apply any pressure balancing cleverness when the
2269 * system is close to OOM, scan both anon and file equally
2270 * (unless the swappiness setting disagrees with swapping).
2271 */
2272 if (!sc->priority && swappiness) {
2273 scan_balance = SCAN_EQUAL;
2274 goto out;
2275 }
2276
2277 /*
2278 * If the system is almost out of file pages, force-scan anon.
2279 */
2280 if (sc->file_is_tiny) {
2281 scan_balance = SCAN_ANON;
2282 goto out;
2283 }
2284
2285 /*
2286 * If there is enough inactive page cache, we do not reclaim
2287 * anything from the anonymous working right now.
2288 */
2289 if (sc->cache_trim_mode) {
2290 scan_balance = SCAN_FILE;
2291 goto out;
2292 }
2293
2294 scan_balance = SCAN_FRACT;
2295 /*
2296 * Calculate the pressure balance between anon and file pages.
2297 *
2298 * The amount of pressure we put on each LRU is inversely
2299 * proportional to the cost of reclaiming each list, as
2300 * determined by the share of pages that are refaulting, times
2301 * the relative IO cost of bringing back a swapped out
2302 * anonymous page vs reloading a filesystem page (swappiness).
2303 *
2304 * Although we limit that influence to ensure no list gets
2305 * left behind completely: at least a third of the pressure is
2306 * applied, before swappiness.
2307 *
2308 * With swappiness at 100, anon and file have equal IO cost.
2309 */
2310 total_cost = sc->anon_cost + sc->file_cost;
2311 anon_cost = total_cost + sc->anon_cost;
2312 file_cost = total_cost + sc->file_cost;
2313 total_cost = anon_cost + file_cost;
2314
2315 ap = swappiness * (total_cost + 1);
2316 ap /= anon_cost + 1;
2317
2318 fp = (200 - swappiness) * (total_cost + 1);
2319 fp /= file_cost + 1;
2320
2321 fraction[0] = ap;
2322 fraction[1] = fp;
2323 denominator = ap + fp;
2324 out:
2325 for_each_evictable_lru(lru) {
2326 int file = is_file_lru(lru);
2327 unsigned long lruvec_size;
2328 unsigned long scan;
2329 unsigned long protection;
2330
2331 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2332 protection = mem_cgroup_protection(sc->target_mem_cgroup,
2333 memcg,
2334 sc->memcg_low_reclaim);
2335
2336 if (protection) {
2337 /*
2338 * Scale a cgroup's reclaim pressure by proportioning
2339 * its current usage to its memory.low or memory.min
2340 * setting.
2341 *
2342 * This is important, as otherwise scanning aggression
2343 * becomes extremely binary -- from nothing as we
2344 * approach the memory protection threshold, to totally
2345 * nominal as we exceed it. This results in requiring
2346 * setting extremely liberal protection thresholds. It
2347 * also means we simply get no protection at all if we
2348 * set it too low, which is not ideal.
2349 *
2350 * If there is any protection in place, we reduce scan
2351 * pressure by how much of the total memory used is
2352 * within protection thresholds.
2353 *
2354 * There is one special case: in the first reclaim pass,
2355 * we skip over all groups that are within their low
2356 * protection. If that fails to reclaim enough pages to
2357 * satisfy the reclaim goal, we come back and override
2358 * the best-effort low protection. However, we still
2359 * ideally want to honor how well-behaved groups are in
2360 * that case instead of simply punishing them all
2361 * equally. As such, we reclaim them based on how much
2362 * memory they are using, reducing the scan pressure
2363 * again by how much of the total memory used is under
2364 * hard protection.
2365 */
2366 unsigned long cgroup_size = mem_cgroup_size(memcg);
2367
2368 /* Avoid TOCTOU with earlier protection check */
2369 cgroup_size = max(cgroup_size, protection);
2370
2371 scan = lruvec_size - lruvec_size * protection /
2372 cgroup_size;
2373
2374 /*
2375 * Minimally target SWAP_CLUSTER_MAX pages to keep
2376 * reclaim moving forwards, avoiding decrementing
2377 * sc->priority further than desirable.
2378 */
2379 scan = max(scan, SWAP_CLUSTER_MAX);
2380 } else {
2381 scan = lruvec_size;
2382 }
2383
2384 scan >>= sc->priority;
2385
2386 /*
2387 * If the cgroup's already been deleted, make sure to
2388 * scrape out the remaining cache.
2389 */
2390 if (!scan && !mem_cgroup_online(memcg))
2391 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2392
2393 switch (scan_balance) {
2394 case SCAN_EQUAL:
2395 /* Scan lists relative to size */
2396 break;
2397 case SCAN_FRACT:
2398 /*
2399 * Scan types proportional to swappiness and
2400 * their relative recent reclaim efficiency.
2401 * Make sure we don't miss the last page on
2402 * the offlined memory cgroups because of a
2403 * round-off error.
2404 */
2405 scan = mem_cgroup_online(memcg) ?
2406 div64_u64(scan * fraction[file], denominator) :
2407 DIV64_U64_ROUND_UP(scan * fraction[file],
2408 denominator);
2409 break;
2410 case SCAN_FILE:
2411 case SCAN_ANON:
2412 /* Scan one type exclusively */
2413 if ((scan_balance == SCAN_FILE) != file)
2414 scan = 0;
2415 break;
2416 default:
2417 /* Look ma, no brain */
2418 BUG();
2419 }
2420
2421 nr[lru] = scan;
2422 }
2423 }
2424
2425 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2426 {
2427 unsigned long nr[NR_LRU_LISTS];
2428 unsigned long targets[NR_LRU_LISTS];
2429 unsigned long nr_to_scan;
2430 enum lru_list lru;
2431 unsigned long nr_reclaimed = 0;
2432 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2433 struct blk_plug plug;
2434 bool scan_adjusted;
2435
2436 get_scan_count(lruvec, sc, nr);
2437
2438 /* Record the original scan target for proportional adjustments later */
2439 memcpy(targets, nr, sizeof(nr));
2440
2441 /*
2442 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2443 * event that can occur when there is little memory pressure e.g.
2444 * multiple streaming readers/writers. Hence, we do not abort scanning
2445 * when the requested number of pages are reclaimed when scanning at
2446 * DEF_PRIORITY on the assumption that the fact we are direct
2447 * reclaiming implies that kswapd is not keeping up and it is best to
2448 * do a batch of work at once. For memcg reclaim one check is made to
2449 * abort proportional reclaim if either the file or anon lru has already
2450 * dropped to zero at the first pass.
2451 */
2452 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2453 sc->priority == DEF_PRIORITY);
2454
2455 blk_start_plug(&plug);
2456 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2457 nr[LRU_INACTIVE_FILE]) {
2458 unsigned long nr_anon, nr_file, percentage;
2459 unsigned long nr_scanned;
2460
2461 for_each_evictable_lru(lru) {
2462 if (nr[lru]) {
2463 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2464 nr[lru] -= nr_to_scan;
2465
2466 nr_reclaimed += shrink_list(lru, nr_to_scan,
2467 lruvec, sc);
2468 }
2469 }
2470
2471 cond_resched();
2472
2473 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2474 continue;
2475
2476 /*
2477 * For kswapd and memcg, reclaim at least the number of pages
2478 * requested. Ensure that the anon and file LRUs are scanned
2479 * proportionally what was requested by get_scan_count(). We
2480 * stop reclaiming one LRU and reduce the amount scanning
2481 * proportional to the original scan target.
2482 */
2483 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2484 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2485
2486 /*
2487 * It's just vindictive to attack the larger once the smaller
2488 * has gone to zero. And given the way we stop scanning the
2489 * smaller below, this makes sure that we only make one nudge
2490 * towards proportionality once we've got nr_to_reclaim.
2491 */
2492 if (!nr_file || !nr_anon)
2493 break;
2494
2495 if (nr_file > nr_anon) {
2496 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2497 targets[LRU_ACTIVE_ANON] + 1;
2498 lru = LRU_BASE;
2499 percentage = nr_anon * 100 / scan_target;
2500 } else {
2501 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2502 targets[LRU_ACTIVE_FILE] + 1;
2503 lru = LRU_FILE;
2504 percentage = nr_file * 100 / scan_target;
2505 }
2506
2507 /* Stop scanning the smaller of the LRU */
2508 nr[lru] = 0;
2509 nr[lru + LRU_ACTIVE] = 0;
2510
2511 /*
2512 * Recalculate the other LRU scan count based on its original
2513 * scan target and the percentage scanning already complete
2514 */
2515 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2516 nr_scanned = targets[lru] - nr[lru];
2517 nr[lru] = targets[lru] * (100 - percentage) / 100;
2518 nr[lru] -= min(nr[lru], nr_scanned);
2519
2520 lru += LRU_ACTIVE;
2521 nr_scanned = targets[lru] - nr[lru];
2522 nr[lru] = targets[lru] * (100 - percentage) / 100;
2523 nr[lru] -= min(nr[lru], nr_scanned);
2524
2525 scan_adjusted = true;
2526 }
2527 blk_finish_plug(&plug);
2528 sc->nr_reclaimed += nr_reclaimed;
2529
2530 /*
2531 * Even if we did not try to evict anon pages at all, we want to
2532 * rebalance the anon lru active/inactive ratio.
2533 */
2534 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2535 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2536 sc, LRU_ACTIVE_ANON);
2537 }
2538
2539 /* Use reclaim/compaction for costly allocs or under memory pressure */
2540 static bool in_reclaim_compaction(struct scan_control *sc)
2541 {
2542 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2543 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2544 sc->priority < DEF_PRIORITY - 2))
2545 return true;
2546
2547 return false;
2548 }
2549
2550 /*
2551 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2552 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2553 * true if more pages should be reclaimed such that when the page allocator
2554 * calls try_to_compact_pages() that it will have enough free pages to succeed.
2555 * It will give up earlier than that if there is difficulty reclaiming pages.
2556 */
2557 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2558 unsigned long nr_reclaimed,
2559 struct scan_control *sc)
2560 {
2561 unsigned long pages_for_compaction;
2562 unsigned long inactive_lru_pages;
2563 int z;
2564
2565 /* If not in reclaim/compaction mode, stop */
2566 if (!in_reclaim_compaction(sc))
2567 return false;
2568
2569 /*
2570 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2571 * number of pages that were scanned. This will return to the caller
2572 * with the risk reclaim/compaction and the resulting allocation attempt
2573 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2574 * allocations through requiring that the full LRU list has been scanned
2575 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2576 * scan, but that approximation was wrong, and there were corner cases
2577 * where always a non-zero amount of pages were scanned.
2578 */
2579 if (!nr_reclaimed)
2580 return false;
2581
2582 /* If compaction would go ahead or the allocation would succeed, stop */
2583 for (z = 0; z <= sc->reclaim_idx; z++) {
2584 struct zone *zone = &pgdat->node_zones[z];
2585 if (!managed_zone(zone))
2586 continue;
2587
2588 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2589 case COMPACT_SUCCESS:
2590 case COMPACT_CONTINUE:
2591 return false;
2592 default:
2593 /* check next zone */
2594 ;
2595 }
2596 }
2597
2598 /*
2599 * If we have not reclaimed enough pages for compaction and the
2600 * inactive lists are large enough, continue reclaiming
2601 */
2602 pages_for_compaction = compact_gap(sc->order);
2603 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2604 if (get_nr_swap_pages() > 0)
2605 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2606
2607 return inactive_lru_pages > pages_for_compaction;
2608 }
2609
2610 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2611 {
2612 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2613 struct mem_cgroup *memcg;
2614
2615 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2616 do {
2617 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2618 unsigned long reclaimed;
2619 unsigned long scanned;
2620
2621 /*
2622 * This loop can become CPU-bound when target memcgs
2623 * aren't eligible for reclaim - either because they
2624 * don't have any reclaimable pages, or because their
2625 * memory is explicitly protected. Avoid soft lockups.
2626 */
2627 cond_resched();
2628
2629 mem_cgroup_calculate_protection(target_memcg, memcg);
2630
2631 if (mem_cgroup_below_min(memcg)) {
2632 /*
2633 * Hard protection.
2634 * If there is no reclaimable memory, OOM.
2635 */
2636 continue;
2637 } else if (mem_cgroup_below_low(memcg)) {
2638 /*
2639 * Soft protection.
2640 * Respect the protection only as long as
2641 * there is an unprotected supply
2642 * of reclaimable memory from other cgroups.
2643 */
2644 if (!sc->memcg_low_reclaim) {
2645 sc->memcg_low_skipped = 1;
2646 continue;
2647 }
2648 memcg_memory_event(memcg, MEMCG_LOW);
2649 }
2650
2651 reclaimed = sc->nr_reclaimed;
2652 scanned = sc->nr_scanned;
2653
2654 shrink_lruvec(lruvec, sc);
2655
2656 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2657 sc->priority);
2658
2659 /* Record the group's reclaim efficiency */
2660 vmpressure(sc->gfp_mask, memcg, false,
2661 sc->nr_scanned - scanned,
2662 sc->nr_reclaimed - reclaimed);
2663
2664 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2665 }
2666
2667 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2668 {
2669 struct reclaim_state *reclaim_state = current->reclaim_state;
2670 unsigned long nr_reclaimed, nr_scanned;
2671 struct lruvec *target_lruvec;
2672 bool reclaimable = false;
2673 unsigned long file;
2674
2675 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2676
2677 again:
2678 memset(&sc->nr, 0, sizeof(sc->nr));
2679
2680 nr_reclaimed = sc->nr_reclaimed;
2681 nr_scanned = sc->nr_scanned;
2682
2683 /*
2684 * Determine the scan balance between anon and file LRUs.
2685 */
2686 spin_lock_irq(&pgdat->lru_lock);
2687 sc->anon_cost = target_lruvec->anon_cost;
2688 sc->file_cost = target_lruvec->file_cost;
2689 spin_unlock_irq(&pgdat->lru_lock);
2690
2691 /*
2692 * Target desirable inactive:active list ratios for the anon
2693 * and file LRU lists.
2694 */
2695 if (!sc->force_deactivate) {
2696 unsigned long refaults;
2697
2698 refaults = lruvec_page_state(target_lruvec,
2699 WORKINGSET_ACTIVATE_ANON);
2700 if (refaults != target_lruvec->refaults[0] ||
2701 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2702 sc->may_deactivate |= DEACTIVATE_ANON;
2703 else
2704 sc->may_deactivate &= ~DEACTIVATE_ANON;
2705
2706 /*
2707 * When refaults are being observed, it means a new
2708 * workingset is being established. Deactivate to get
2709 * rid of any stale active pages quickly.
2710 */
2711 refaults = lruvec_page_state(target_lruvec,
2712 WORKINGSET_ACTIVATE_FILE);
2713 if (refaults != target_lruvec->refaults[1] ||
2714 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2715 sc->may_deactivate |= DEACTIVATE_FILE;
2716 else
2717 sc->may_deactivate &= ~DEACTIVATE_FILE;
2718 } else
2719 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2720
2721 /*
2722 * If we have plenty of inactive file pages that aren't
2723 * thrashing, try to reclaim those first before touching
2724 * anonymous pages.
2725 */
2726 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2727 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2728 sc->cache_trim_mode = 1;
2729 else
2730 sc->cache_trim_mode = 0;
2731
2732 /*
2733 * Prevent the reclaimer from falling into the cache trap: as
2734 * cache pages start out inactive, every cache fault will tip
2735 * the scan balance towards the file LRU. And as the file LRU
2736 * shrinks, so does the window for rotation from references.
2737 * This means we have a runaway feedback loop where a tiny
2738 * thrashing file LRU becomes infinitely more attractive than
2739 * anon pages. Try to detect this based on file LRU size.
2740 */
2741 if (!cgroup_reclaim(sc)) {
2742 unsigned long total_high_wmark = 0;
2743 unsigned long free, anon;
2744 int z;
2745
2746 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2747 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2748 node_page_state(pgdat, NR_INACTIVE_FILE);
2749
2750 for (z = 0; z < MAX_NR_ZONES; z++) {
2751 struct zone *zone = &pgdat->node_zones[z];
2752 if (!managed_zone(zone))
2753 continue;
2754
2755 total_high_wmark += high_wmark_pages(zone);
2756 }
2757
2758 /*
2759 * Consider anon: if that's low too, this isn't a
2760 * runaway file reclaim problem, but rather just
2761 * extreme pressure. Reclaim as per usual then.
2762 */
2763 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2764
2765 sc->file_is_tiny =
2766 file + free <= total_high_wmark &&
2767 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2768 anon >> sc->priority;
2769 }
2770
2771 shrink_node_memcgs(pgdat, sc);
2772
2773 if (reclaim_state) {
2774 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2775 reclaim_state->reclaimed_slab = 0;
2776 }
2777
2778 /* Record the subtree's reclaim efficiency */
2779 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2780 sc->nr_scanned - nr_scanned,
2781 sc->nr_reclaimed - nr_reclaimed);
2782
2783 if (sc->nr_reclaimed - nr_reclaimed)
2784 reclaimable = true;
2785
2786 if (current_is_kswapd()) {
2787 /*
2788 * If reclaim is isolating dirty pages under writeback,
2789 * it implies that the long-lived page allocation rate
2790 * is exceeding the page laundering rate. Either the
2791 * global limits are not being effective at throttling
2792 * processes due to the page distribution throughout
2793 * zones or there is heavy usage of a slow backing
2794 * device. The only option is to throttle from reclaim
2795 * context which is not ideal as there is no guarantee
2796 * the dirtying process is throttled in the same way
2797 * balance_dirty_pages() manages.
2798 *
2799 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2800 * count the number of pages under pages flagged for
2801 * immediate reclaim and stall if any are encountered
2802 * in the nr_immediate check below.
2803 */
2804 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2805 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2806
2807 /* Allow kswapd to start writing pages during reclaim.*/
2808 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2809 set_bit(PGDAT_DIRTY, &pgdat->flags);
2810
2811 /*
2812 * If kswapd scans pages marked for immediate
2813 * reclaim and under writeback (nr_immediate), it
2814 * implies that pages are cycling through the LRU
2815 * faster than they are written so also forcibly stall.
2816 */
2817 if (sc->nr.immediate)
2818 congestion_wait(BLK_RW_ASYNC, HZ/10);
2819 }
2820
2821 /*
2822 * Tag a node/memcg as congested if all the dirty pages
2823 * scanned were backed by a congested BDI and
2824 * wait_iff_congested will stall.
2825 *
2826 * Legacy memcg will stall in page writeback so avoid forcibly
2827 * stalling in wait_iff_congested().
2828 */
2829 if ((current_is_kswapd() ||
2830 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2831 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2832 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2833
2834 /*
2835 * Stall direct reclaim for IO completions if underlying BDIs
2836 * and node is congested. Allow kswapd to continue until it
2837 * starts encountering unqueued dirty pages or cycling through
2838 * the LRU too quickly.
2839 */
2840 if (!current_is_kswapd() && current_may_throttle() &&
2841 !sc->hibernation_mode &&
2842 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2843 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2844
2845 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2846 sc))
2847 goto again;
2848
2849 /*
2850 * Kswapd gives up on balancing particular nodes after too
2851 * many failures to reclaim anything from them and goes to
2852 * sleep. On reclaim progress, reset the failure counter. A
2853 * successful direct reclaim run will revive a dormant kswapd.
2854 */
2855 if (reclaimable)
2856 pgdat->kswapd_failures = 0;
2857 }
2858
2859 /*
2860 * Returns true if compaction should go ahead for a costly-order request, or
2861 * the allocation would already succeed without compaction. Return false if we
2862 * should reclaim first.
2863 */
2864 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2865 {
2866 unsigned long watermark;
2867 enum compact_result suitable;
2868
2869 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2870 if (suitable == COMPACT_SUCCESS)
2871 /* Allocation should succeed already. Don't reclaim. */
2872 return true;
2873 if (suitable == COMPACT_SKIPPED)
2874 /* Compaction cannot yet proceed. Do reclaim. */
2875 return false;
2876
2877 /*
2878 * Compaction is already possible, but it takes time to run and there
2879 * are potentially other callers using the pages just freed. So proceed
2880 * with reclaim to make a buffer of free pages available to give
2881 * compaction a reasonable chance of completing and allocating the page.
2882 * Note that we won't actually reclaim the whole buffer in one attempt
2883 * as the target watermark in should_continue_reclaim() is lower. But if
2884 * we are already above the high+gap watermark, don't reclaim at all.
2885 */
2886 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2887
2888 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2889 }
2890
2891 /*
2892 * This is the direct reclaim path, for page-allocating processes. We only
2893 * try to reclaim pages from zones which will satisfy the caller's allocation
2894 * request.
2895 *
2896 * If a zone is deemed to be full of pinned pages then just give it a light
2897 * scan then give up on it.
2898 */
2899 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2900 {
2901 struct zoneref *z;
2902 struct zone *zone;
2903 unsigned long nr_soft_reclaimed;
2904 unsigned long nr_soft_scanned;
2905 gfp_t orig_mask;
2906 pg_data_t *last_pgdat = NULL;
2907
2908 /*
2909 * If the number of buffer_heads in the machine exceeds the maximum
2910 * allowed level, force direct reclaim to scan the highmem zone as
2911 * highmem pages could be pinning lowmem pages storing buffer_heads
2912 */
2913 orig_mask = sc->gfp_mask;
2914 if (buffer_heads_over_limit) {
2915 sc->gfp_mask |= __GFP_HIGHMEM;
2916 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2917 }
2918
2919 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2920 sc->reclaim_idx, sc->nodemask) {
2921 /*
2922 * Take care memory controller reclaiming has small influence
2923 * to global LRU.
2924 */
2925 if (!cgroup_reclaim(sc)) {
2926 if (!cpuset_zone_allowed(zone,
2927 GFP_KERNEL | __GFP_HARDWALL))
2928 continue;
2929
2930 /*
2931 * If we already have plenty of memory free for
2932 * compaction in this zone, don't free any more.
2933 * Even though compaction is invoked for any
2934 * non-zero order, only frequent costly order
2935 * reclamation is disruptive enough to become a
2936 * noticeable problem, like transparent huge
2937 * page allocations.
2938 */
2939 if (IS_ENABLED(CONFIG_COMPACTION) &&
2940 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2941 compaction_ready(zone, sc)) {
2942 sc->compaction_ready = true;
2943 continue;
2944 }
2945
2946 /*
2947 * Shrink each node in the zonelist once. If the
2948 * zonelist is ordered by zone (not the default) then a
2949 * node may be shrunk multiple times but in that case
2950 * the user prefers lower zones being preserved.
2951 */
2952 if (zone->zone_pgdat == last_pgdat)
2953 continue;
2954
2955 /*
2956 * This steals pages from memory cgroups over softlimit
2957 * and returns the number of reclaimed pages and
2958 * scanned pages. This works for global memory pressure
2959 * and balancing, not for a memcg's limit.
2960 */
2961 nr_soft_scanned = 0;
2962 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2963 sc->order, sc->gfp_mask,
2964 &nr_soft_scanned);
2965 sc->nr_reclaimed += nr_soft_reclaimed;
2966 sc->nr_scanned += nr_soft_scanned;
2967 /* need some check for avoid more shrink_zone() */
2968 }
2969
2970 /* See comment about same check for global reclaim above */
2971 if (zone->zone_pgdat == last_pgdat)
2972 continue;
2973 last_pgdat = zone->zone_pgdat;
2974 shrink_node(zone->zone_pgdat, sc);
2975 }
2976
2977 /*
2978 * Restore to original mask to avoid the impact on the caller if we
2979 * promoted it to __GFP_HIGHMEM.
2980 */
2981 sc->gfp_mask = orig_mask;
2982 }
2983
2984 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2985 {
2986 struct lruvec *target_lruvec;
2987 unsigned long refaults;
2988
2989 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
2990 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
2991 target_lruvec->refaults[0] = refaults;
2992 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
2993 target_lruvec->refaults[1] = refaults;
2994 }
2995
2996 /*
2997 * This is the main entry point to direct page reclaim.
2998 *
2999 * If a full scan of the inactive list fails to free enough memory then we
3000 * are "out of memory" and something needs to be killed.
3001 *
3002 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3003 * high - the zone may be full of dirty or under-writeback pages, which this
3004 * caller can't do much about. We kick the writeback threads and take explicit
3005 * naps in the hope that some of these pages can be written. But if the
3006 * allocating task holds filesystem locks which prevent writeout this might not
3007 * work, and the allocation attempt will fail.
3008 *
3009 * returns: 0, if no pages reclaimed
3010 * else, the number of pages reclaimed
3011 */
3012 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3013 struct scan_control *sc)
3014 {
3015 int initial_priority = sc->priority;
3016 pg_data_t *last_pgdat;
3017 struct zoneref *z;
3018 struct zone *zone;
3019 retry:
3020 delayacct_freepages_start();
3021
3022 if (!cgroup_reclaim(sc))
3023 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3024
3025 do {
3026 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3027 sc->priority);
3028 sc->nr_scanned = 0;
3029 shrink_zones(zonelist, sc);
3030
3031 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3032 break;
3033
3034 if (sc->compaction_ready)
3035 break;
3036
3037 /*
3038 * If we're getting trouble reclaiming, start doing
3039 * writepage even in laptop mode.
3040 */
3041 if (sc->priority < DEF_PRIORITY - 2)
3042 sc->may_writepage = 1;
3043 } while (--sc->priority >= 0);
3044
3045 last_pgdat = NULL;
3046 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3047 sc->nodemask) {
3048 if (zone->zone_pgdat == last_pgdat)
3049 continue;
3050 last_pgdat = zone->zone_pgdat;
3051
3052 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3053
3054 if (cgroup_reclaim(sc)) {
3055 struct lruvec *lruvec;
3056
3057 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3058 zone->zone_pgdat);
3059 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3060 }
3061 }
3062
3063 delayacct_freepages_end();
3064
3065 if (sc->nr_reclaimed)
3066 return sc->nr_reclaimed;
3067
3068 /* Aborted reclaim to try compaction? don't OOM, then */
3069 if (sc->compaction_ready)
3070 return 1;
3071
3072 /*
3073 * We make inactive:active ratio decisions based on the node's
3074 * composition of memory, but a restrictive reclaim_idx or a
3075 * memory.low cgroup setting can exempt large amounts of
3076 * memory from reclaim. Neither of which are very common, so
3077 * instead of doing costly eligibility calculations of the
3078 * entire cgroup subtree up front, we assume the estimates are
3079 * good, and retry with forcible deactivation if that fails.
3080 */
3081 if (sc->skipped_deactivate) {
3082 sc->priority = initial_priority;
3083 sc->force_deactivate = 1;
3084 sc->skipped_deactivate = 0;
3085 goto retry;
3086 }
3087
3088 /* Untapped cgroup reserves? Don't OOM, retry. */
3089 if (sc->memcg_low_skipped) {
3090 sc->priority = initial_priority;
3091 sc->force_deactivate = 0;
3092 sc->memcg_low_reclaim = 1;
3093 sc->memcg_low_skipped = 0;
3094 goto retry;
3095 }
3096
3097 return 0;
3098 }
3099
3100 static bool allow_direct_reclaim(pg_data_t *pgdat)
3101 {
3102 struct zone *zone;
3103 unsigned long pfmemalloc_reserve = 0;
3104 unsigned long free_pages = 0;
3105 int i;
3106 bool wmark_ok;
3107
3108 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3109 return true;
3110
3111 for (i = 0; i <= ZONE_NORMAL; i++) {
3112 zone = &pgdat->node_zones[i];
3113 if (!managed_zone(zone))
3114 continue;
3115
3116 if (!zone_reclaimable_pages(zone))
3117 continue;
3118
3119 pfmemalloc_reserve += min_wmark_pages(zone);
3120 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3121 }
3122
3123 /* If there are no reserves (unexpected config) then do not throttle */
3124 if (!pfmemalloc_reserve)
3125 return true;
3126
3127 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3128
3129 /* kswapd must be awake if processes are being throttled */
3130 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3131 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3132 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3133
3134 wake_up_interruptible(&pgdat->kswapd_wait);
3135 }
3136
3137 return wmark_ok;
3138 }
3139
3140 /*
3141 * Throttle direct reclaimers if backing storage is backed by the network
3142 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3143 * depleted. kswapd will continue to make progress and wake the processes
3144 * when the low watermark is reached.
3145 *
3146 * Returns true if a fatal signal was delivered during throttling. If this
3147 * happens, the page allocator should not consider triggering the OOM killer.
3148 */
3149 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3150 nodemask_t *nodemask)
3151 {
3152 struct zoneref *z;
3153 struct zone *zone;
3154 pg_data_t *pgdat = NULL;
3155
3156 /*
3157 * Kernel threads should not be throttled as they may be indirectly
3158 * responsible for cleaning pages necessary for reclaim to make forward
3159 * progress. kjournald for example may enter direct reclaim while
3160 * committing a transaction where throttling it could forcing other
3161 * processes to block on log_wait_commit().
3162 */
3163 if (current->flags & PF_KTHREAD)
3164 goto out;
3165
3166 /*
3167 * If a fatal signal is pending, this process should not throttle.
3168 * It should return quickly so it can exit and free its memory
3169 */
3170 if (fatal_signal_pending(current))
3171 goto out;
3172
3173 /*
3174 * Check if the pfmemalloc reserves are ok by finding the first node
3175 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3176 * GFP_KERNEL will be required for allocating network buffers when
3177 * swapping over the network so ZONE_HIGHMEM is unusable.
3178 *
3179 * Throttling is based on the first usable node and throttled processes
3180 * wait on a queue until kswapd makes progress and wakes them. There
3181 * is an affinity then between processes waking up and where reclaim
3182 * progress has been made assuming the process wakes on the same node.
3183 * More importantly, processes running on remote nodes will not compete
3184 * for remote pfmemalloc reserves and processes on different nodes
3185 * should make reasonable progress.
3186 */
3187 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3188 gfp_zone(gfp_mask), nodemask) {
3189 if (zone_idx(zone) > ZONE_NORMAL)
3190 continue;
3191
3192 /* Throttle based on the first usable node */
3193 pgdat = zone->zone_pgdat;
3194 if (allow_direct_reclaim(pgdat))
3195 goto out;
3196 break;
3197 }
3198
3199 /* If no zone was usable by the allocation flags then do not throttle */
3200 if (!pgdat)
3201 goto out;
3202
3203 /* Account for the throttling */
3204 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3205
3206 /*
3207 * If the caller cannot enter the filesystem, it's possible that it
3208 * is due to the caller holding an FS lock or performing a journal
3209 * transaction in the case of a filesystem like ext[3|4]. In this case,
3210 * it is not safe to block on pfmemalloc_wait as kswapd could be
3211 * blocked waiting on the same lock. Instead, throttle for up to a
3212 * second before continuing.
3213 */
3214 if (!(gfp_mask & __GFP_FS)) {
3215 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3216 allow_direct_reclaim(pgdat), HZ);
3217
3218 goto check_pending;
3219 }
3220
3221 /* Throttle until kswapd wakes the process */
3222 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3223 allow_direct_reclaim(pgdat));
3224
3225 check_pending:
3226 if (fatal_signal_pending(current))
3227 return true;
3228
3229 out:
3230 return false;
3231 }
3232
3233 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3234 gfp_t gfp_mask, nodemask_t *nodemask)
3235 {
3236 unsigned long nr_reclaimed;
3237 struct scan_control sc = {
3238 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3239 .gfp_mask = current_gfp_context(gfp_mask),
3240 .reclaim_idx = gfp_zone(gfp_mask),
3241 .order = order,
3242 .nodemask = nodemask,
3243 .priority = DEF_PRIORITY,
3244 .may_writepage = !laptop_mode,
3245 .may_unmap = 1,
3246 .may_swap = 1,
3247 };
3248
3249 /*
3250 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3251 * Confirm they are large enough for max values.
3252 */
3253 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3254 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3255 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3256
3257 /*
3258 * Do not enter reclaim if fatal signal was delivered while throttled.
3259 * 1 is returned so that the page allocator does not OOM kill at this
3260 * point.
3261 */
3262 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3263 return 1;
3264
3265 set_task_reclaim_state(current, &sc.reclaim_state);
3266 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3267
3268 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3269
3270 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3271 set_task_reclaim_state(current, NULL);
3272
3273 return nr_reclaimed;
3274 }
3275
3276 #ifdef CONFIG_MEMCG
3277
3278 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3279 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3280 gfp_t gfp_mask, bool noswap,
3281 pg_data_t *pgdat,
3282 unsigned long *nr_scanned)
3283 {
3284 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3285 struct scan_control sc = {
3286 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3287 .target_mem_cgroup = memcg,
3288 .may_writepage = !laptop_mode,
3289 .may_unmap = 1,
3290 .reclaim_idx = MAX_NR_ZONES - 1,
3291 .may_swap = !noswap,
3292 };
3293
3294 WARN_ON_ONCE(!current->reclaim_state);
3295
3296 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3297 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3298
3299 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3300 sc.gfp_mask);
3301
3302 /*
3303 * NOTE: Although we can get the priority field, using it
3304 * here is not a good idea, since it limits the pages we can scan.
3305 * if we don't reclaim here, the shrink_node from balance_pgdat
3306 * will pick up pages from other mem cgroup's as well. We hack
3307 * the priority and make it zero.
3308 */
3309 shrink_lruvec(lruvec, &sc);
3310
3311 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3312
3313 *nr_scanned = sc.nr_scanned;
3314
3315 return sc.nr_reclaimed;
3316 }
3317
3318 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3319 unsigned long nr_pages,
3320 gfp_t gfp_mask,
3321 bool may_swap)
3322 {
3323 unsigned long nr_reclaimed;
3324 unsigned int noreclaim_flag;
3325 struct scan_control sc = {
3326 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3327 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3328 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3329 .reclaim_idx = MAX_NR_ZONES - 1,
3330 .target_mem_cgroup = memcg,
3331 .priority = DEF_PRIORITY,
3332 .may_writepage = !laptop_mode,
3333 .may_unmap = 1,
3334 .may_swap = may_swap,
3335 };
3336 /*
3337 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3338 * equal pressure on all the nodes. This is based on the assumption that
3339 * the reclaim does not bail out early.
3340 */
3341 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3342
3343 set_task_reclaim_state(current, &sc.reclaim_state);
3344 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3345 noreclaim_flag = memalloc_noreclaim_save();
3346
3347 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3348
3349 memalloc_noreclaim_restore(noreclaim_flag);
3350 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3351 set_task_reclaim_state(current, NULL);
3352
3353 return nr_reclaimed;
3354 }
3355 #endif
3356
3357 static void age_active_anon(struct pglist_data *pgdat,
3358 struct scan_control *sc)
3359 {
3360 struct mem_cgroup *memcg;
3361 struct lruvec *lruvec;
3362
3363 if (!total_swap_pages)
3364 return;
3365
3366 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3367 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3368 return;
3369
3370 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3371 do {
3372 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3373 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3374 sc, LRU_ACTIVE_ANON);
3375 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3376 } while (memcg);
3377 }
3378
3379 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3380 {
3381 int i;
3382 struct zone *zone;
3383
3384 /*
3385 * Check for watermark boosts top-down as the higher zones
3386 * are more likely to be boosted. Both watermarks and boosts
3387 * should not be checked at the same time as reclaim would
3388 * start prematurely when there is no boosting and a lower
3389 * zone is balanced.
3390 */
3391 for (i = highest_zoneidx; i >= 0; i--) {
3392 zone = pgdat->node_zones + i;
3393 if (!managed_zone(zone))
3394 continue;
3395
3396 if (zone->watermark_boost)
3397 return true;
3398 }
3399
3400 return false;
3401 }
3402
3403 /*
3404 * Returns true if there is an eligible zone balanced for the request order
3405 * and highest_zoneidx
3406 */
3407 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3408 {
3409 int i;
3410 unsigned long mark = -1;
3411 struct zone *zone;
3412
3413 /*
3414 * Check watermarks bottom-up as lower zones are more likely to
3415 * meet watermarks.
3416 */
3417 for (i = 0; i <= highest_zoneidx; i++) {
3418 zone = pgdat->node_zones + i;
3419
3420 if (!managed_zone(zone))
3421 continue;
3422
3423 mark = high_wmark_pages(zone);
3424 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3425 return true;
3426 }
3427
3428 /*
3429 * If a node has no populated zone within highest_zoneidx, it does not
3430 * need balancing by definition. This can happen if a zone-restricted
3431 * allocation tries to wake a remote kswapd.
3432 */
3433 if (mark == -1)
3434 return true;
3435
3436 return false;
3437 }
3438
3439 /* Clear pgdat state for congested, dirty or under writeback. */
3440 static void clear_pgdat_congested(pg_data_t *pgdat)
3441 {
3442 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3443
3444 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3445 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3446 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3447 }
3448
3449 /*
3450 * Prepare kswapd for sleeping. This verifies that there are no processes
3451 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3452 *
3453 * Returns true if kswapd is ready to sleep
3454 */
3455 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3456 int highest_zoneidx)
3457 {
3458 /*
3459 * The throttled processes are normally woken up in balance_pgdat() as
3460 * soon as allow_direct_reclaim() is true. But there is a potential
3461 * race between when kswapd checks the watermarks and a process gets
3462 * throttled. There is also a potential race if processes get
3463 * throttled, kswapd wakes, a large process exits thereby balancing the
3464 * zones, which causes kswapd to exit balance_pgdat() before reaching
3465 * the wake up checks. If kswapd is going to sleep, no process should
3466 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3467 * the wake up is premature, processes will wake kswapd and get
3468 * throttled again. The difference from wake ups in balance_pgdat() is
3469 * that here we are under prepare_to_wait().
3470 */
3471 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3472 wake_up_all(&pgdat->pfmemalloc_wait);
3473
3474 /* Hopeless node, leave it to direct reclaim */
3475 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3476 return true;
3477
3478 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3479 clear_pgdat_congested(pgdat);
3480 return true;
3481 }
3482
3483 return false;
3484 }
3485
3486 /*
3487 * kswapd shrinks a node of pages that are at or below the highest usable
3488 * zone that is currently unbalanced.
3489 *
3490 * Returns true if kswapd scanned at least the requested number of pages to
3491 * reclaim or if the lack of progress was due to pages under writeback.
3492 * This is used to determine if the scanning priority needs to be raised.
3493 */
3494 static bool kswapd_shrink_node(pg_data_t *pgdat,
3495 struct scan_control *sc)
3496 {
3497 struct zone *zone;
3498 int z;
3499
3500 /* Reclaim a number of pages proportional to the number of zones */
3501 sc->nr_to_reclaim = 0;
3502 for (z = 0; z <= sc->reclaim_idx; z++) {
3503 zone = pgdat->node_zones + z;
3504 if (!managed_zone(zone))
3505 continue;
3506
3507 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3508 }
3509
3510 /*
3511 * Historically care was taken to put equal pressure on all zones but
3512 * now pressure is applied based on node LRU order.
3513 */
3514 shrink_node(pgdat, sc);
3515
3516 /*
3517 * Fragmentation may mean that the system cannot be rebalanced for
3518 * high-order allocations. If twice the allocation size has been
3519 * reclaimed then recheck watermarks only at order-0 to prevent
3520 * excessive reclaim. Assume that a process requested a high-order
3521 * can direct reclaim/compact.
3522 */
3523 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3524 sc->order = 0;
3525
3526 return sc->nr_scanned >= sc->nr_to_reclaim;
3527 }
3528
3529 /*
3530 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3531 * that are eligible for use by the caller until at least one zone is
3532 * balanced.
3533 *
3534 * Returns the order kswapd finished reclaiming at.
3535 *
3536 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3537 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3538 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3539 * or lower is eligible for reclaim until at least one usable zone is
3540 * balanced.
3541 */
3542 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3543 {
3544 int i;
3545 unsigned long nr_soft_reclaimed;
3546 unsigned long nr_soft_scanned;
3547 unsigned long pflags;
3548 unsigned long nr_boost_reclaim;
3549 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3550 bool boosted;
3551 struct zone *zone;
3552 struct scan_control sc = {
3553 .gfp_mask = GFP_KERNEL,
3554 .order = order,
3555 .may_unmap = 1,
3556 };
3557
3558 set_task_reclaim_state(current, &sc.reclaim_state);
3559 psi_memstall_enter(&pflags);
3560 __fs_reclaim_acquire();
3561
3562 count_vm_event(PAGEOUTRUN);
3563
3564 /*
3565 * Account for the reclaim boost. Note that the zone boost is left in
3566 * place so that parallel allocations that are near the watermark will
3567 * stall or direct reclaim until kswapd is finished.
3568 */
3569 nr_boost_reclaim = 0;
3570 for (i = 0; i <= highest_zoneidx; i++) {
3571 zone = pgdat->node_zones + i;
3572 if (!managed_zone(zone))
3573 continue;
3574
3575 nr_boost_reclaim += zone->watermark_boost;
3576 zone_boosts[i] = zone->watermark_boost;
3577 }
3578 boosted = nr_boost_reclaim;
3579
3580 restart:
3581 sc.priority = DEF_PRIORITY;
3582 do {
3583 unsigned long nr_reclaimed = sc.nr_reclaimed;
3584 bool raise_priority = true;
3585 bool balanced;
3586 bool ret;
3587
3588 sc.reclaim_idx = highest_zoneidx;
3589
3590 /*
3591 * If the number of buffer_heads exceeds the maximum allowed
3592 * then consider reclaiming from all zones. This has a dual
3593 * purpose -- on 64-bit systems it is expected that
3594 * buffer_heads are stripped during active rotation. On 32-bit
3595 * systems, highmem pages can pin lowmem memory and shrinking
3596 * buffers can relieve lowmem pressure. Reclaim may still not
3597 * go ahead if all eligible zones for the original allocation
3598 * request are balanced to avoid excessive reclaim from kswapd.
3599 */
3600 if (buffer_heads_over_limit) {
3601 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3602 zone = pgdat->node_zones + i;
3603 if (!managed_zone(zone))
3604 continue;
3605
3606 sc.reclaim_idx = i;
3607 break;
3608 }
3609 }
3610
3611 /*
3612 * If the pgdat is imbalanced then ignore boosting and preserve
3613 * the watermarks for a later time and restart. Note that the
3614 * zone watermarks will be still reset at the end of balancing
3615 * on the grounds that the normal reclaim should be enough to
3616 * re-evaluate if boosting is required when kswapd next wakes.
3617 */
3618 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3619 if (!balanced && nr_boost_reclaim) {
3620 nr_boost_reclaim = 0;
3621 goto restart;
3622 }
3623
3624 /*
3625 * If boosting is not active then only reclaim if there are no
3626 * eligible zones. Note that sc.reclaim_idx is not used as
3627 * buffer_heads_over_limit may have adjusted it.
3628 */
3629 if (!nr_boost_reclaim && balanced)
3630 goto out;
3631
3632 /* Limit the priority of boosting to avoid reclaim writeback */
3633 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3634 raise_priority = false;
3635
3636 /*
3637 * Do not writeback or swap pages for boosted reclaim. The
3638 * intent is to relieve pressure not issue sub-optimal IO
3639 * from reclaim context. If no pages are reclaimed, the
3640 * reclaim will be aborted.
3641 */
3642 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3643 sc.may_swap = !nr_boost_reclaim;
3644
3645 /*
3646 * Do some background aging of the anon list, to give
3647 * pages a chance to be referenced before reclaiming. All
3648 * pages are rotated regardless of classzone as this is
3649 * about consistent aging.
3650 */
3651 age_active_anon(pgdat, &sc);
3652
3653 /*
3654 * If we're getting trouble reclaiming, start doing writepage
3655 * even in laptop mode.
3656 */
3657 if (sc.priority < DEF_PRIORITY - 2)
3658 sc.may_writepage = 1;
3659
3660 /* Call soft limit reclaim before calling shrink_node. */
3661 sc.nr_scanned = 0;
3662 nr_soft_scanned = 0;
3663 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3664 sc.gfp_mask, &nr_soft_scanned);
3665 sc.nr_reclaimed += nr_soft_reclaimed;
3666
3667 /*
3668 * There should be no need to raise the scanning priority if
3669 * enough pages are already being scanned that that high
3670 * watermark would be met at 100% efficiency.
3671 */
3672 if (kswapd_shrink_node(pgdat, &sc))
3673 raise_priority = false;
3674
3675 /*
3676 * If the low watermark is met there is no need for processes
3677 * to be throttled on pfmemalloc_wait as they should not be
3678 * able to safely make forward progress. Wake them
3679 */
3680 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3681 allow_direct_reclaim(pgdat))
3682 wake_up_all(&pgdat->pfmemalloc_wait);
3683
3684 /* Check if kswapd should be suspending */
3685 __fs_reclaim_release();
3686 ret = try_to_freeze();
3687 __fs_reclaim_acquire();
3688 if (ret || kthread_should_stop())
3689 break;
3690
3691 /*
3692 * Raise priority if scanning rate is too low or there was no
3693 * progress in reclaiming pages
3694 */
3695 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3696 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3697
3698 /*
3699 * If reclaim made no progress for a boost, stop reclaim as
3700 * IO cannot be queued and it could be an infinite loop in
3701 * extreme circumstances.
3702 */
3703 if (nr_boost_reclaim && !nr_reclaimed)
3704 break;
3705
3706 if (raise_priority || !nr_reclaimed)
3707 sc.priority--;
3708 } while (sc.priority >= 1);
3709
3710 if (!sc.nr_reclaimed)
3711 pgdat->kswapd_failures++;
3712
3713 out:
3714 /* If reclaim was boosted, account for the reclaim done in this pass */
3715 if (boosted) {
3716 unsigned long flags;
3717
3718 for (i = 0; i <= highest_zoneidx; i++) {
3719 if (!zone_boosts[i])
3720 continue;
3721
3722 /* Increments are under the zone lock */
3723 zone = pgdat->node_zones + i;
3724 spin_lock_irqsave(&zone->lock, flags);
3725 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3726 spin_unlock_irqrestore(&zone->lock, flags);
3727 }
3728
3729 /*
3730 * As there is now likely space, wakeup kcompact to defragment
3731 * pageblocks.
3732 */
3733 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3734 }
3735
3736 snapshot_refaults(NULL, pgdat);
3737 __fs_reclaim_release();
3738 psi_memstall_leave(&pflags);
3739 set_task_reclaim_state(current, NULL);
3740
3741 /*
3742 * Return the order kswapd stopped reclaiming at as
3743 * prepare_kswapd_sleep() takes it into account. If another caller
3744 * entered the allocator slow path while kswapd was awake, order will
3745 * remain at the higher level.
3746 */
3747 return sc.order;
3748 }
3749
3750 /*
3751 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3752 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3753 * not a valid index then either kswapd runs for first time or kswapd couldn't
3754 * sleep after previous reclaim attempt (node is still unbalanced). In that
3755 * case return the zone index of the previous kswapd reclaim cycle.
3756 */
3757 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3758 enum zone_type prev_highest_zoneidx)
3759 {
3760 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3761
3762 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
3763 }
3764
3765 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3766 unsigned int highest_zoneidx)
3767 {
3768 long remaining = 0;
3769 DEFINE_WAIT(wait);
3770
3771 if (freezing(current) || kthread_should_stop())
3772 return;
3773
3774 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3775
3776 /*
3777 * Try to sleep for a short interval. Note that kcompactd will only be
3778 * woken if it is possible to sleep for a short interval. This is
3779 * deliberate on the assumption that if reclaim cannot keep an
3780 * eligible zone balanced that it's also unlikely that compaction will
3781 * succeed.
3782 */
3783 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3784 /*
3785 * Compaction records what page blocks it recently failed to
3786 * isolate pages from and skips them in the future scanning.
3787 * When kswapd is going to sleep, it is reasonable to assume
3788 * that pages and compaction may succeed so reset the cache.
3789 */
3790 reset_isolation_suitable(pgdat);
3791
3792 /*
3793 * We have freed the memory, now we should compact it to make
3794 * allocation of the requested order possible.
3795 */
3796 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
3797
3798 remaining = schedule_timeout(HZ/10);
3799
3800 /*
3801 * If woken prematurely then reset kswapd_highest_zoneidx and
3802 * order. The values will either be from a wakeup request or
3803 * the previous request that slept prematurely.
3804 */
3805 if (remaining) {
3806 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3807 kswapd_highest_zoneidx(pgdat,
3808 highest_zoneidx));
3809
3810 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3811 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3812 }
3813
3814 finish_wait(&pgdat->kswapd_wait, &wait);
3815 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3816 }
3817
3818 /*
3819 * After a short sleep, check if it was a premature sleep. If not, then
3820 * go fully to sleep until explicitly woken up.
3821 */
3822 if (!remaining &&
3823 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3824 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3825
3826 /*
3827 * vmstat counters are not perfectly accurate and the estimated
3828 * value for counters such as NR_FREE_PAGES can deviate from the
3829 * true value by nr_online_cpus * threshold. To avoid the zone
3830 * watermarks being breached while under pressure, we reduce the
3831 * per-cpu vmstat threshold while kswapd is awake and restore
3832 * them before going back to sleep.
3833 */
3834 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3835
3836 if (!kthread_should_stop())
3837 schedule();
3838
3839 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3840 } else {
3841 if (remaining)
3842 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3843 else
3844 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3845 }
3846 finish_wait(&pgdat->kswapd_wait, &wait);
3847 }
3848
3849 /*
3850 * The background pageout daemon, started as a kernel thread
3851 * from the init process.
3852 *
3853 * This basically trickles out pages so that we have _some_
3854 * free memory available even if there is no other activity
3855 * that frees anything up. This is needed for things like routing
3856 * etc, where we otherwise might have all activity going on in
3857 * asynchronous contexts that cannot page things out.
3858 *
3859 * If there are applications that are active memory-allocators
3860 * (most normal use), this basically shouldn't matter.
3861 */
3862 static int kswapd(void *p)
3863 {
3864 unsigned int alloc_order, reclaim_order;
3865 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
3866 pg_data_t *pgdat = (pg_data_t*)p;
3867 struct task_struct *tsk = current;
3868 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3869
3870 if (!cpumask_empty(cpumask))
3871 set_cpus_allowed_ptr(tsk, cpumask);
3872
3873 /*
3874 * Tell the memory management that we're a "memory allocator",
3875 * and that if we need more memory we should get access to it
3876 * regardless (see "__alloc_pages()"). "kswapd" should
3877 * never get caught in the normal page freeing logic.
3878 *
3879 * (Kswapd normally doesn't need memory anyway, but sometimes
3880 * you need a small amount of memory in order to be able to
3881 * page out something else, and this flag essentially protects
3882 * us from recursively trying to free more memory as we're
3883 * trying to free the first piece of memory in the first place).
3884 */
3885 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3886 set_freezable();
3887
3888 WRITE_ONCE(pgdat->kswapd_order, 0);
3889 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3890 for ( ; ; ) {
3891 bool ret;
3892
3893 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3894 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3895 highest_zoneidx);
3896
3897 kswapd_try_sleep:
3898 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3899 highest_zoneidx);
3900
3901 /* Read the new order and highest_zoneidx */
3902 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3903 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3904 highest_zoneidx);
3905 WRITE_ONCE(pgdat->kswapd_order, 0);
3906 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3907
3908 ret = try_to_freeze();
3909 if (kthread_should_stop())
3910 break;
3911
3912 /*
3913 * We can speed up thawing tasks if we don't call balance_pgdat
3914 * after returning from the refrigerator
3915 */
3916 if (ret)
3917 continue;
3918
3919 /*
3920 * Reclaim begins at the requested order but if a high-order
3921 * reclaim fails then kswapd falls back to reclaiming for
3922 * order-0. If that happens, kswapd will consider sleeping
3923 * for the order it finished reclaiming at (reclaim_order)
3924 * but kcompactd is woken to compact for the original
3925 * request (alloc_order).
3926 */
3927 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
3928 alloc_order);
3929 reclaim_order = balance_pgdat(pgdat, alloc_order,
3930 highest_zoneidx);
3931 if (reclaim_order < alloc_order)
3932 goto kswapd_try_sleep;
3933 }
3934
3935 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3936
3937 return 0;
3938 }
3939
3940 /*
3941 * A zone is low on free memory or too fragmented for high-order memory. If
3942 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3943 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3944 * has failed or is not needed, still wake up kcompactd if only compaction is
3945 * needed.
3946 */
3947 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3948 enum zone_type highest_zoneidx)
3949 {
3950 pg_data_t *pgdat;
3951 enum zone_type curr_idx;
3952
3953 if (!managed_zone(zone))
3954 return;
3955
3956 if (!cpuset_zone_allowed(zone, gfp_flags))
3957 return;
3958
3959 pgdat = zone->zone_pgdat;
3960 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3961
3962 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
3963 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
3964
3965 if (READ_ONCE(pgdat->kswapd_order) < order)
3966 WRITE_ONCE(pgdat->kswapd_order, order);
3967
3968 if (!waitqueue_active(&pgdat->kswapd_wait))
3969 return;
3970
3971 /* Hopeless node, leave it to direct reclaim if possible */
3972 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3973 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
3974 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
3975 /*
3976 * There may be plenty of free memory available, but it's too
3977 * fragmented for high-order allocations. Wake up kcompactd
3978 * and rely on compaction_suitable() to determine if it's
3979 * needed. If it fails, it will defer subsequent attempts to
3980 * ratelimit its work.
3981 */
3982 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3983 wakeup_kcompactd(pgdat, order, highest_zoneidx);
3984 return;
3985 }
3986
3987 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
3988 gfp_flags);
3989 wake_up_interruptible(&pgdat->kswapd_wait);
3990 }
3991
3992 #ifdef CONFIG_HIBERNATION
3993 /*
3994 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3995 * freed pages.
3996 *
3997 * Rather than trying to age LRUs the aim is to preserve the overall
3998 * LRU order by reclaiming preferentially
3999 * inactive > active > active referenced > active mapped
4000 */
4001 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4002 {
4003 struct scan_control sc = {
4004 .nr_to_reclaim = nr_to_reclaim,
4005 .gfp_mask = GFP_HIGHUSER_MOVABLE,
4006 .reclaim_idx = MAX_NR_ZONES - 1,
4007 .priority = DEF_PRIORITY,
4008 .may_writepage = 1,
4009 .may_unmap = 1,
4010 .may_swap = 1,
4011 .hibernation_mode = 1,
4012 };
4013 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4014 unsigned long nr_reclaimed;
4015 unsigned int noreclaim_flag;
4016
4017 fs_reclaim_acquire(sc.gfp_mask);
4018 noreclaim_flag = memalloc_noreclaim_save();
4019 set_task_reclaim_state(current, &sc.reclaim_state);
4020
4021 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4022
4023 set_task_reclaim_state(current, NULL);
4024 memalloc_noreclaim_restore(noreclaim_flag);
4025 fs_reclaim_release(sc.gfp_mask);
4026
4027 return nr_reclaimed;
4028 }
4029 #endif /* CONFIG_HIBERNATION */
4030
4031 /*
4032 * This kswapd start function will be called by init and node-hot-add.
4033 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4034 */
4035 int kswapd_run(int nid)
4036 {
4037 pg_data_t *pgdat = NODE_DATA(nid);
4038 int ret = 0;
4039
4040 if (pgdat->kswapd)
4041 return 0;
4042
4043 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4044 if (IS_ERR(pgdat->kswapd)) {
4045 /* failure at boot is fatal */
4046 BUG_ON(system_state < SYSTEM_RUNNING);
4047 pr_err("Failed to start kswapd on node %d\n", nid);
4048 ret = PTR_ERR(pgdat->kswapd);
4049 pgdat->kswapd = NULL;
4050 }
4051 return ret;
4052 }
4053
4054 /*
4055 * Called by memory hotplug when all memory in a node is offlined. Caller must
4056 * hold mem_hotplug_begin/end().
4057 */
4058 void kswapd_stop(int nid)
4059 {
4060 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4061
4062 if (kswapd) {
4063 kthread_stop(kswapd);
4064 NODE_DATA(nid)->kswapd = NULL;
4065 }
4066 }
4067
4068 static int __init kswapd_init(void)
4069 {
4070 int nid;
4071
4072 swap_setup();
4073 for_each_node_state(nid, N_MEMORY)
4074 kswapd_run(nid);
4075 return 0;
4076 }
4077
4078 module_init(kswapd_init)
4079
4080 #ifdef CONFIG_NUMA
4081 /*
4082 * Node reclaim mode
4083 *
4084 * If non-zero call node_reclaim when the number of free pages falls below
4085 * the watermarks.
4086 */
4087 int node_reclaim_mode __read_mostly;
4088
4089 #define RECLAIM_WRITE (1<<0) /* Writeout pages during reclaim */
4090 #define RECLAIM_UNMAP (1<<1) /* Unmap pages during reclaim */
4091
4092 /*
4093 * Priority for NODE_RECLAIM. This determines the fraction of pages
4094 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4095 * a zone.
4096 */
4097 #define NODE_RECLAIM_PRIORITY 4
4098
4099 /*
4100 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4101 * occur.
4102 */
4103 int sysctl_min_unmapped_ratio = 1;
4104
4105 /*
4106 * If the number of slab pages in a zone grows beyond this percentage then
4107 * slab reclaim needs to occur.
4108 */
4109 int sysctl_min_slab_ratio = 5;
4110
4111 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4112 {
4113 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4114 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4115 node_page_state(pgdat, NR_ACTIVE_FILE);
4116
4117 /*
4118 * It's possible for there to be more file mapped pages than
4119 * accounted for by the pages on the file LRU lists because
4120 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4121 */
4122 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4123 }
4124
4125 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4126 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4127 {
4128 unsigned long nr_pagecache_reclaimable;
4129 unsigned long delta = 0;
4130
4131 /*
4132 * If RECLAIM_UNMAP is set, then all file pages are considered
4133 * potentially reclaimable. Otherwise, we have to worry about
4134 * pages like swapcache and node_unmapped_file_pages() provides
4135 * a better estimate
4136 */
4137 if (node_reclaim_mode & RECLAIM_UNMAP)
4138 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4139 else
4140 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4141
4142 /* If we can't clean pages, remove dirty pages from consideration */
4143 if (!(node_reclaim_mode & RECLAIM_WRITE))
4144 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4145
4146 /* Watch for any possible underflows due to delta */
4147 if (unlikely(delta > nr_pagecache_reclaimable))
4148 delta = nr_pagecache_reclaimable;
4149
4150 return nr_pagecache_reclaimable - delta;
4151 }
4152
4153 /*
4154 * Try to free up some pages from this node through reclaim.
4155 */
4156 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4157 {
4158 /* Minimum pages needed in order to stay on node */
4159 const unsigned long nr_pages = 1 << order;
4160 struct task_struct *p = current;
4161 unsigned int noreclaim_flag;
4162 struct scan_control sc = {
4163 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4164 .gfp_mask = current_gfp_context(gfp_mask),
4165 .order = order,
4166 .priority = NODE_RECLAIM_PRIORITY,
4167 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4168 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4169 .may_swap = 1,
4170 .reclaim_idx = gfp_zone(gfp_mask),
4171 };
4172
4173 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4174 sc.gfp_mask);
4175
4176 cond_resched();
4177 fs_reclaim_acquire(sc.gfp_mask);
4178 /*
4179 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4180 * and we also need to be able to write out pages for RECLAIM_WRITE
4181 * and RECLAIM_UNMAP.
4182 */
4183 noreclaim_flag = memalloc_noreclaim_save();
4184 p->flags |= PF_SWAPWRITE;
4185 set_task_reclaim_state(p, &sc.reclaim_state);
4186
4187 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4188 /*
4189 * Free memory by calling shrink node with increasing
4190 * priorities until we have enough memory freed.
4191 */
4192 do {
4193 shrink_node(pgdat, &sc);
4194 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4195 }
4196
4197 set_task_reclaim_state(p, NULL);
4198 current->flags &= ~PF_SWAPWRITE;
4199 memalloc_noreclaim_restore(noreclaim_flag);
4200 fs_reclaim_release(sc.gfp_mask);
4201
4202 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4203
4204 return sc.nr_reclaimed >= nr_pages;
4205 }
4206
4207 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4208 {
4209 int ret;
4210
4211 /*
4212 * Node reclaim reclaims unmapped file backed pages and
4213 * slab pages if we are over the defined limits.
4214 *
4215 * A small portion of unmapped file backed pages is needed for
4216 * file I/O otherwise pages read by file I/O will be immediately
4217 * thrown out if the node is overallocated. So we do not reclaim
4218 * if less than a specified percentage of the node is used by
4219 * unmapped file backed pages.
4220 */
4221 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4222 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4223 pgdat->min_slab_pages)
4224 return NODE_RECLAIM_FULL;
4225
4226 /*
4227 * Do not scan if the allocation should not be delayed.
4228 */
4229 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4230 return NODE_RECLAIM_NOSCAN;
4231
4232 /*
4233 * Only run node reclaim on the local node or on nodes that do not
4234 * have associated processors. This will favor the local processor
4235 * over remote processors and spread off node memory allocations
4236 * as wide as possible.
4237 */
4238 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4239 return NODE_RECLAIM_NOSCAN;
4240
4241 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4242 return NODE_RECLAIM_NOSCAN;
4243
4244 ret = __node_reclaim(pgdat, gfp_mask, order);
4245 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4246
4247 if (!ret)
4248 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4249
4250 return ret;
4251 }
4252 #endif
4253
4254 /**
4255 * check_move_unevictable_pages - check pages for evictability and move to
4256 * appropriate zone lru list
4257 * @pvec: pagevec with lru pages to check
4258 *
4259 * Checks pages for evictability, if an evictable page is in the unevictable
4260 * lru list, moves it to the appropriate evictable lru list. This function
4261 * should be only used for lru pages.
4262 */
4263 void check_move_unevictable_pages(struct pagevec *pvec)
4264 {
4265 struct lruvec *lruvec;
4266 struct pglist_data *pgdat = NULL;
4267 int pgscanned = 0;
4268 int pgrescued = 0;
4269 int i;
4270
4271 for (i = 0; i < pvec->nr; i++) {
4272 struct page *page = pvec->pages[i];
4273 struct pglist_data *pagepgdat = page_pgdat(page);
4274 int nr_pages;
4275
4276 if (PageTransTail(page))
4277 continue;
4278
4279 nr_pages = thp_nr_pages(page);
4280 pgscanned += nr_pages;
4281
4282 if (pagepgdat != pgdat) {
4283 if (pgdat)
4284 spin_unlock_irq(&pgdat->lru_lock);
4285 pgdat = pagepgdat;
4286 spin_lock_irq(&pgdat->lru_lock);
4287 }
4288 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4289
4290 if (!PageLRU(page) || !PageUnevictable(page))
4291 continue;
4292
4293 if (page_evictable(page)) {
4294 enum lru_list lru = page_lru_base_type(page);
4295
4296 VM_BUG_ON_PAGE(PageActive(page), page);
4297 ClearPageUnevictable(page);
4298 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4299 add_page_to_lru_list(page, lruvec, lru);
4300 pgrescued += nr_pages;
4301 }
4302 }
4303
4304 if (pgdat) {
4305 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4306 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4307 spin_unlock_irq(&pgdat->lru_lock);
4308 }
4309 }
4310 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);