]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/vmscan.c
UBUNTU: Start new release
[mirror_ubuntu-artful-kernel.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52
53 #include <linux/swapops.h>
54 #include <linux/balloon_compaction.h>
55
56 #include "internal.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/vmscan.h>
60
61 struct scan_control {
62 /* How many pages shrink_list() should reclaim */
63 unsigned long nr_to_reclaim;
64
65 /* This context's GFP mask */
66 gfp_t gfp_mask;
67
68 /* Allocation order */
69 int order;
70
71 /*
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
74 */
75 nodemask_t *nodemask;
76
77 /*
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
80 */
81 struct mem_cgroup *target_mem_cgroup;
82
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
86 unsigned int may_writepage:1;
87
88 /* Can mapped pages be reclaimed? */
89 unsigned int may_unmap:1;
90
91 /* Can pages be swapped as part of reclaim? */
92 unsigned int may_swap:1;
93
94 /* Can cgroups be reclaimed below their normal consumption range? */
95 unsigned int may_thrash:1;
96
97 unsigned int hibernation_mode:1;
98
99 /* One of the zones is ready for compaction */
100 unsigned int compaction_ready:1;
101
102 /* Incremented by the number of inactive pages that were scanned */
103 unsigned long nr_scanned;
104
105 /* Number of pages freed so far during a call to shrink_zones() */
106 unsigned long nr_reclaimed;
107 };
108
109 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
110
111 #ifdef ARCH_HAS_PREFETCH
112 #define prefetch_prev_lru_page(_page, _base, _field) \
113 do { \
114 if ((_page)->lru.prev != _base) { \
115 struct page *prev; \
116 \
117 prev = lru_to_page(&(_page->lru)); \
118 prefetch(&prev->_field); \
119 } \
120 } while (0)
121 #else
122 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
123 #endif
124
125 #ifdef ARCH_HAS_PREFETCHW
126 #define prefetchw_prev_lru_page(_page, _base, _field) \
127 do { \
128 if ((_page)->lru.prev != _base) { \
129 struct page *prev; \
130 \
131 prev = lru_to_page(&(_page->lru)); \
132 prefetchw(&prev->_field); \
133 } \
134 } while (0)
135 #else
136 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
137 #endif
138
139 /*
140 * From 0 .. 100. Higher means more swappy.
141 */
142 int vm_swappiness = 60;
143 /*
144 * The total number of pages which are beyond the high watermark within all
145 * zones.
146 */
147 unsigned long vm_total_pages;
148
149 static LIST_HEAD(shrinker_list);
150 static DECLARE_RWSEM(shrinker_rwsem);
151
152 #ifdef CONFIG_MEMCG
153 static bool global_reclaim(struct scan_control *sc)
154 {
155 return !sc->target_mem_cgroup;
156 }
157
158 /**
159 * sane_reclaim - is the usual dirty throttling mechanism operational?
160 * @sc: scan_control in question
161 *
162 * The normal page dirty throttling mechanism in balance_dirty_pages() is
163 * completely broken with the legacy memcg and direct stalling in
164 * shrink_page_list() is used for throttling instead, which lacks all the
165 * niceties such as fairness, adaptive pausing, bandwidth proportional
166 * allocation and configurability.
167 *
168 * This function tests whether the vmscan currently in progress can assume
169 * that the normal dirty throttling mechanism is operational.
170 */
171 static bool sane_reclaim(struct scan_control *sc)
172 {
173 struct mem_cgroup *memcg = sc->target_mem_cgroup;
174
175 if (!memcg)
176 return true;
177 #ifdef CONFIG_CGROUP_WRITEBACK
178 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
179 return true;
180 #endif
181 return false;
182 }
183 #else
184 static bool global_reclaim(struct scan_control *sc)
185 {
186 return true;
187 }
188
189 static bool sane_reclaim(struct scan_control *sc)
190 {
191 return true;
192 }
193 #endif
194
195 unsigned long zone_reclaimable_pages(struct zone *zone)
196 {
197 unsigned long nr;
198
199 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
200 zone_page_state(zone, NR_INACTIVE_FILE);
201
202 if (get_nr_swap_pages() > 0)
203 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
204 zone_page_state(zone, NR_INACTIVE_ANON);
205
206 return nr;
207 }
208
209 bool zone_reclaimable(struct zone *zone)
210 {
211 return zone_page_state(zone, NR_PAGES_SCANNED) <
212 zone_reclaimable_pages(zone) * 6;
213 }
214
215 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
216 {
217 if (!mem_cgroup_disabled())
218 return mem_cgroup_get_lru_size(lruvec, lru);
219
220 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
221 }
222
223 /*
224 * Add a shrinker callback to be called from the vm.
225 */
226 int register_shrinker(struct shrinker *shrinker)
227 {
228 size_t size = sizeof(*shrinker->nr_deferred);
229
230 /*
231 * If we only have one possible node in the system anyway, save
232 * ourselves the trouble and disable NUMA aware behavior. This way we
233 * will save memory and some small loop time later.
234 */
235 if (nr_node_ids == 1)
236 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
237
238 if (shrinker->flags & SHRINKER_NUMA_AWARE)
239 size *= nr_node_ids;
240
241 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
242 if (!shrinker->nr_deferred)
243 return -ENOMEM;
244
245 down_write(&shrinker_rwsem);
246 list_add_tail(&shrinker->list, &shrinker_list);
247 up_write(&shrinker_rwsem);
248 return 0;
249 }
250 EXPORT_SYMBOL(register_shrinker);
251
252 /*
253 * Remove one
254 */
255 void unregister_shrinker(struct shrinker *shrinker)
256 {
257 down_write(&shrinker_rwsem);
258 list_del(&shrinker->list);
259 up_write(&shrinker_rwsem);
260 kfree(shrinker->nr_deferred);
261 }
262 EXPORT_SYMBOL(unregister_shrinker);
263
264 #define SHRINK_BATCH 128
265
266 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
267 struct shrinker *shrinker,
268 unsigned long nr_scanned,
269 unsigned long nr_eligible)
270 {
271 unsigned long freed = 0;
272 unsigned long long delta;
273 long total_scan;
274 long freeable;
275 long nr;
276 long new_nr;
277 int nid = shrinkctl->nid;
278 long batch_size = shrinker->batch ? shrinker->batch
279 : SHRINK_BATCH;
280 long scanned = 0, next_deferred;
281
282 freeable = shrinker->count_objects(shrinker, shrinkctl);
283 if (freeable == 0)
284 return 0;
285
286 /*
287 * copy the current shrinker scan count into a local variable
288 * and zero it so that other concurrent shrinker invocations
289 * don't also do this scanning work.
290 */
291 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
292
293 total_scan = nr;
294 delta = (4 * nr_scanned) / shrinker->seeks;
295 delta *= freeable;
296 do_div(delta, nr_eligible + 1);
297 total_scan += delta;
298 if (total_scan < 0) {
299 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
300 shrinker->scan_objects, total_scan);
301 total_scan = freeable;
302 next_deferred = nr;
303 } else
304 next_deferred = total_scan;
305
306 /*
307 * We need to avoid excessive windup on filesystem shrinkers
308 * due to large numbers of GFP_NOFS allocations causing the
309 * shrinkers to return -1 all the time. This results in a large
310 * nr being built up so when a shrink that can do some work
311 * comes along it empties the entire cache due to nr >>>
312 * freeable. This is bad for sustaining a working set in
313 * memory.
314 *
315 * Hence only allow the shrinker to scan the entire cache when
316 * a large delta change is calculated directly.
317 */
318 if (delta < freeable / 4)
319 total_scan = min(total_scan, freeable / 2);
320
321 /*
322 * Avoid risking looping forever due to too large nr value:
323 * never try to free more than twice the estimate number of
324 * freeable entries.
325 */
326 if (total_scan > freeable * 2)
327 total_scan = freeable * 2;
328
329 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
330 nr_scanned, nr_eligible,
331 freeable, delta, total_scan);
332
333 /*
334 * Normally, we should not scan less than batch_size objects in one
335 * pass to avoid too frequent shrinker calls, but if the slab has less
336 * than batch_size objects in total and we are really tight on memory,
337 * we will try to reclaim all available objects, otherwise we can end
338 * up failing allocations although there are plenty of reclaimable
339 * objects spread over several slabs with usage less than the
340 * batch_size.
341 *
342 * We detect the "tight on memory" situations by looking at the total
343 * number of objects we want to scan (total_scan). If it is greater
344 * than the total number of objects on slab (freeable), we must be
345 * scanning at high prio and therefore should try to reclaim as much as
346 * possible.
347 */
348 while (total_scan >= batch_size ||
349 total_scan >= freeable) {
350 unsigned long ret;
351 unsigned long nr_to_scan = min(batch_size, total_scan);
352
353 shrinkctl->nr_to_scan = nr_to_scan;
354 ret = shrinker->scan_objects(shrinker, shrinkctl);
355 if (ret == SHRINK_STOP)
356 break;
357 freed += ret;
358
359 count_vm_events(SLABS_SCANNED, nr_to_scan);
360 total_scan -= nr_to_scan;
361 scanned += nr_to_scan;
362
363 cond_resched();
364 }
365
366 if (next_deferred >= scanned)
367 next_deferred -= scanned;
368 else
369 next_deferred = 0;
370 /*
371 * move the unused scan count back into the shrinker in a
372 * manner that handles concurrent updates. If we exhausted the
373 * scan, there is no need to do an update.
374 */
375 if (next_deferred > 0)
376 new_nr = atomic_long_add_return(next_deferred,
377 &shrinker->nr_deferred[nid]);
378 else
379 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
380
381 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
382 return freed;
383 }
384
385 /**
386 * shrink_slab - shrink slab caches
387 * @gfp_mask: allocation context
388 * @nid: node whose slab caches to target
389 * @memcg: memory cgroup whose slab caches to target
390 * @nr_scanned: pressure numerator
391 * @nr_eligible: pressure denominator
392 *
393 * Call the shrink functions to age shrinkable caches.
394 *
395 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
396 * unaware shrinkers will receive a node id of 0 instead.
397 *
398 * @memcg specifies the memory cgroup to target. If it is not NULL,
399 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
400 * objects from the memory cgroup specified. Otherwise all shrinkers
401 * are called, and memcg aware shrinkers are supposed to scan the
402 * global list then.
403 *
404 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
405 * the available objects should be scanned. Page reclaim for example
406 * passes the number of pages scanned and the number of pages on the
407 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
408 * when it encountered mapped pages. The ratio is further biased by
409 * the ->seeks setting of the shrink function, which indicates the
410 * cost to recreate an object relative to that of an LRU page.
411 *
412 * Returns the number of reclaimed slab objects.
413 */
414 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
415 struct mem_cgroup *memcg,
416 unsigned long nr_scanned,
417 unsigned long nr_eligible)
418 {
419 struct shrinker *shrinker;
420 unsigned long freed = 0;
421
422 if (memcg && !memcg_kmem_is_active(memcg))
423 return 0;
424
425 if (nr_scanned == 0)
426 nr_scanned = SWAP_CLUSTER_MAX;
427
428 if (!down_read_trylock(&shrinker_rwsem)) {
429 /*
430 * If we would return 0, our callers would understand that we
431 * have nothing else to shrink and give up trying. By returning
432 * 1 we keep it going and assume we'll be able to shrink next
433 * time.
434 */
435 freed = 1;
436 goto out;
437 }
438
439 list_for_each_entry(shrinker, &shrinker_list, list) {
440 struct shrink_control sc = {
441 .gfp_mask = gfp_mask,
442 .nid = nid,
443 .memcg = memcg,
444 };
445
446 if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
447 continue;
448
449 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
450 sc.nid = 0;
451
452 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
453 }
454
455 up_read(&shrinker_rwsem);
456 out:
457 cond_resched();
458 return freed;
459 }
460
461 void drop_slab_node(int nid)
462 {
463 unsigned long freed;
464
465 do {
466 struct mem_cgroup *memcg = NULL;
467
468 freed = 0;
469 do {
470 freed += shrink_slab(GFP_KERNEL, nid, memcg,
471 1000, 1000);
472 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
473 } while (freed > 10);
474 }
475
476 void drop_slab(void)
477 {
478 int nid;
479
480 for_each_online_node(nid)
481 drop_slab_node(nid);
482 }
483
484 static inline int is_page_cache_freeable(struct page *page)
485 {
486 /*
487 * A freeable page cache page is referenced only by the caller
488 * that isolated the page, the page cache radix tree and
489 * optional buffer heads at page->private.
490 */
491 return page_count(page) - page_has_private(page) == 2;
492 }
493
494 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
495 {
496 if (current->flags & PF_SWAPWRITE)
497 return 1;
498 if (!inode_write_congested(inode))
499 return 1;
500 if (inode_to_bdi(inode) == current->backing_dev_info)
501 return 1;
502 return 0;
503 }
504
505 /*
506 * We detected a synchronous write error writing a page out. Probably
507 * -ENOSPC. We need to propagate that into the address_space for a subsequent
508 * fsync(), msync() or close().
509 *
510 * The tricky part is that after writepage we cannot touch the mapping: nothing
511 * prevents it from being freed up. But we have a ref on the page and once
512 * that page is locked, the mapping is pinned.
513 *
514 * We're allowed to run sleeping lock_page() here because we know the caller has
515 * __GFP_FS.
516 */
517 static void handle_write_error(struct address_space *mapping,
518 struct page *page, int error)
519 {
520 lock_page(page);
521 if (page_mapping(page) == mapping)
522 mapping_set_error(mapping, error);
523 unlock_page(page);
524 }
525
526 /* possible outcome of pageout() */
527 typedef enum {
528 /* failed to write page out, page is locked */
529 PAGE_KEEP,
530 /* move page to the active list, page is locked */
531 PAGE_ACTIVATE,
532 /* page has been sent to the disk successfully, page is unlocked */
533 PAGE_SUCCESS,
534 /* page is clean and locked */
535 PAGE_CLEAN,
536 } pageout_t;
537
538 /*
539 * pageout is called by shrink_page_list() for each dirty page.
540 * Calls ->writepage().
541 */
542 static pageout_t pageout(struct page *page, struct address_space *mapping,
543 struct scan_control *sc)
544 {
545 /*
546 * If the page is dirty, only perform writeback if that write
547 * will be non-blocking. To prevent this allocation from being
548 * stalled by pagecache activity. But note that there may be
549 * stalls if we need to run get_block(). We could test
550 * PagePrivate for that.
551 *
552 * If this process is currently in __generic_file_write_iter() against
553 * this page's queue, we can perform writeback even if that
554 * will block.
555 *
556 * If the page is swapcache, write it back even if that would
557 * block, for some throttling. This happens by accident, because
558 * swap_backing_dev_info is bust: it doesn't reflect the
559 * congestion state of the swapdevs. Easy to fix, if needed.
560 */
561 if (!is_page_cache_freeable(page))
562 return PAGE_KEEP;
563 if (!mapping) {
564 /*
565 * Some data journaling orphaned pages can have
566 * page->mapping == NULL while being dirty with clean buffers.
567 */
568 if (page_has_private(page)) {
569 if (try_to_free_buffers(page)) {
570 ClearPageDirty(page);
571 pr_info("%s: orphaned page\n", __func__);
572 return PAGE_CLEAN;
573 }
574 }
575 return PAGE_KEEP;
576 }
577 if (mapping->a_ops->writepage == NULL)
578 return PAGE_ACTIVATE;
579 if (!may_write_to_inode(mapping->host, sc))
580 return PAGE_KEEP;
581
582 if (clear_page_dirty_for_io(page)) {
583 int res;
584 struct writeback_control wbc = {
585 .sync_mode = WB_SYNC_NONE,
586 .nr_to_write = SWAP_CLUSTER_MAX,
587 .range_start = 0,
588 .range_end = LLONG_MAX,
589 .for_reclaim = 1,
590 };
591
592 SetPageReclaim(page);
593 res = mapping->a_ops->writepage(page, &wbc);
594 if (res < 0)
595 handle_write_error(mapping, page, res);
596 if (res == AOP_WRITEPAGE_ACTIVATE) {
597 ClearPageReclaim(page);
598 return PAGE_ACTIVATE;
599 }
600
601 if (!PageWriteback(page)) {
602 /* synchronous write or broken a_ops? */
603 ClearPageReclaim(page);
604 }
605 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
606 inc_zone_page_state(page, NR_VMSCAN_WRITE);
607 return PAGE_SUCCESS;
608 }
609
610 return PAGE_CLEAN;
611 }
612
613 /*
614 * Same as remove_mapping, but if the page is removed from the mapping, it
615 * gets returned with a refcount of 0.
616 */
617 static int __remove_mapping(struct address_space *mapping, struct page *page,
618 bool reclaimed)
619 {
620 unsigned long flags;
621 struct mem_cgroup *memcg;
622
623 BUG_ON(!PageLocked(page));
624 BUG_ON(mapping != page_mapping(page));
625
626 memcg = mem_cgroup_begin_page_stat(page);
627 spin_lock_irqsave(&mapping->tree_lock, flags);
628 /*
629 * The non racy check for a busy page.
630 *
631 * Must be careful with the order of the tests. When someone has
632 * a ref to the page, it may be possible that they dirty it then
633 * drop the reference. So if PageDirty is tested before page_count
634 * here, then the following race may occur:
635 *
636 * get_user_pages(&page);
637 * [user mapping goes away]
638 * write_to(page);
639 * !PageDirty(page) [good]
640 * SetPageDirty(page);
641 * put_page(page);
642 * !page_count(page) [good, discard it]
643 *
644 * [oops, our write_to data is lost]
645 *
646 * Reversing the order of the tests ensures such a situation cannot
647 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
648 * load is not satisfied before that of page->_count.
649 *
650 * Note that if SetPageDirty is always performed via set_page_dirty,
651 * and thus under tree_lock, then this ordering is not required.
652 */
653 if (!page_freeze_refs(page, 2))
654 goto cannot_free;
655 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
656 if (unlikely(PageDirty(page))) {
657 page_unfreeze_refs(page, 2);
658 goto cannot_free;
659 }
660
661 if (PageSwapCache(page)) {
662 swp_entry_t swap = { .val = page_private(page) };
663 mem_cgroup_swapout(page, swap);
664 __delete_from_swap_cache(page);
665 spin_unlock_irqrestore(&mapping->tree_lock, flags);
666 mem_cgroup_end_page_stat(memcg);
667 swapcache_free(swap);
668 } else {
669 void (*freepage)(struct page *);
670 void *shadow = NULL;
671
672 freepage = mapping->a_ops->freepage;
673 /*
674 * Remember a shadow entry for reclaimed file cache in
675 * order to detect refaults, thus thrashing, later on.
676 *
677 * But don't store shadows in an address space that is
678 * already exiting. This is not just an optizimation,
679 * inode reclaim needs to empty out the radix tree or
680 * the nodes are lost. Don't plant shadows behind its
681 * back.
682 */
683 if (reclaimed && page_is_file_cache(page) &&
684 !mapping_exiting(mapping))
685 shadow = workingset_eviction(mapping, page);
686 __delete_from_page_cache(page, shadow, memcg);
687 spin_unlock_irqrestore(&mapping->tree_lock, flags);
688 mem_cgroup_end_page_stat(memcg);
689
690 if (freepage != NULL)
691 freepage(page);
692 }
693
694 return 1;
695
696 cannot_free:
697 spin_unlock_irqrestore(&mapping->tree_lock, flags);
698 mem_cgroup_end_page_stat(memcg);
699 return 0;
700 }
701
702 /*
703 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
704 * someone else has a ref on the page, abort and return 0. If it was
705 * successfully detached, return 1. Assumes the caller has a single ref on
706 * this page.
707 */
708 int remove_mapping(struct address_space *mapping, struct page *page)
709 {
710 if (__remove_mapping(mapping, page, false)) {
711 /*
712 * Unfreezing the refcount with 1 rather than 2 effectively
713 * drops the pagecache ref for us without requiring another
714 * atomic operation.
715 */
716 page_unfreeze_refs(page, 1);
717 return 1;
718 }
719 return 0;
720 }
721
722 /**
723 * putback_lru_page - put previously isolated page onto appropriate LRU list
724 * @page: page to be put back to appropriate lru list
725 *
726 * Add previously isolated @page to appropriate LRU list.
727 * Page may still be unevictable for other reasons.
728 *
729 * lru_lock must not be held, interrupts must be enabled.
730 */
731 void putback_lru_page(struct page *page)
732 {
733 bool is_unevictable;
734 int was_unevictable = PageUnevictable(page);
735
736 VM_BUG_ON_PAGE(PageLRU(page), page);
737
738 redo:
739 ClearPageUnevictable(page);
740
741 if (page_evictable(page)) {
742 /*
743 * For evictable pages, we can use the cache.
744 * In event of a race, worst case is we end up with an
745 * unevictable page on [in]active list.
746 * We know how to handle that.
747 */
748 is_unevictable = false;
749 lru_cache_add(page);
750 } else {
751 /*
752 * Put unevictable pages directly on zone's unevictable
753 * list.
754 */
755 is_unevictable = true;
756 add_page_to_unevictable_list(page);
757 /*
758 * When racing with an mlock or AS_UNEVICTABLE clearing
759 * (page is unlocked) make sure that if the other thread
760 * does not observe our setting of PG_lru and fails
761 * isolation/check_move_unevictable_pages,
762 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
763 * the page back to the evictable list.
764 *
765 * The other side is TestClearPageMlocked() or shmem_lock().
766 */
767 smp_mb();
768 }
769
770 /*
771 * page's status can change while we move it among lru. If an evictable
772 * page is on unevictable list, it never be freed. To avoid that,
773 * check after we added it to the list, again.
774 */
775 if (is_unevictable && page_evictable(page)) {
776 if (!isolate_lru_page(page)) {
777 put_page(page);
778 goto redo;
779 }
780 /* This means someone else dropped this page from LRU
781 * So, it will be freed or putback to LRU again. There is
782 * nothing to do here.
783 */
784 }
785
786 if (was_unevictable && !is_unevictable)
787 count_vm_event(UNEVICTABLE_PGRESCUED);
788 else if (!was_unevictable && is_unevictable)
789 count_vm_event(UNEVICTABLE_PGCULLED);
790
791 put_page(page); /* drop ref from isolate */
792 }
793
794 enum page_references {
795 PAGEREF_RECLAIM,
796 PAGEREF_RECLAIM_CLEAN,
797 PAGEREF_KEEP,
798 PAGEREF_ACTIVATE,
799 };
800
801 static enum page_references page_check_references(struct page *page,
802 struct scan_control *sc)
803 {
804 int referenced_ptes, referenced_page;
805 unsigned long vm_flags;
806
807 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
808 &vm_flags);
809 referenced_page = TestClearPageReferenced(page);
810
811 /*
812 * Mlock lost the isolation race with us. Let try_to_unmap()
813 * move the page to the unevictable list.
814 */
815 if (vm_flags & VM_LOCKED)
816 return PAGEREF_RECLAIM;
817
818 if (referenced_ptes) {
819 if (PageSwapBacked(page))
820 return PAGEREF_ACTIVATE;
821 /*
822 * All mapped pages start out with page table
823 * references from the instantiating fault, so we need
824 * to look twice if a mapped file page is used more
825 * than once.
826 *
827 * Mark it and spare it for another trip around the
828 * inactive list. Another page table reference will
829 * lead to its activation.
830 *
831 * Note: the mark is set for activated pages as well
832 * so that recently deactivated but used pages are
833 * quickly recovered.
834 */
835 SetPageReferenced(page);
836
837 if (referenced_page || referenced_ptes > 1)
838 return PAGEREF_ACTIVATE;
839
840 /*
841 * Activate file-backed executable pages after first usage.
842 */
843 if (vm_flags & VM_EXEC)
844 return PAGEREF_ACTIVATE;
845
846 return PAGEREF_KEEP;
847 }
848
849 /* Reclaim if clean, defer dirty pages to writeback */
850 if (referenced_page && !PageSwapBacked(page))
851 return PAGEREF_RECLAIM_CLEAN;
852
853 return PAGEREF_RECLAIM;
854 }
855
856 /* Check if a page is dirty or under writeback */
857 static void page_check_dirty_writeback(struct page *page,
858 bool *dirty, bool *writeback)
859 {
860 struct address_space *mapping;
861
862 /*
863 * Anonymous pages are not handled by flushers and must be written
864 * from reclaim context. Do not stall reclaim based on them
865 */
866 if (!page_is_file_cache(page)) {
867 *dirty = false;
868 *writeback = false;
869 return;
870 }
871
872 /* By default assume that the page flags are accurate */
873 *dirty = PageDirty(page);
874 *writeback = PageWriteback(page);
875
876 /* Verify dirty/writeback state if the filesystem supports it */
877 if (!page_has_private(page))
878 return;
879
880 mapping = page_mapping(page);
881 if (mapping && mapping->a_ops->is_dirty_writeback)
882 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
883 }
884
885 /*
886 * shrink_page_list() returns the number of reclaimed pages
887 */
888 static unsigned long shrink_page_list(struct list_head *page_list,
889 struct zone *zone,
890 struct scan_control *sc,
891 enum ttu_flags ttu_flags,
892 unsigned long *ret_nr_dirty,
893 unsigned long *ret_nr_unqueued_dirty,
894 unsigned long *ret_nr_congested,
895 unsigned long *ret_nr_writeback,
896 unsigned long *ret_nr_immediate,
897 bool force_reclaim)
898 {
899 LIST_HEAD(ret_pages);
900 LIST_HEAD(free_pages);
901 int pgactivate = 0;
902 unsigned long nr_unqueued_dirty = 0;
903 unsigned long nr_dirty = 0;
904 unsigned long nr_congested = 0;
905 unsigned long nr_reclaimed = 0;
906 unsigned long nr_writeback = 0;
907 unsigned long nr_immediate = 0;
908
909 cond_resched();
910
911 while (!list_empty(page_list)) {
912 struct address_space *mapping;
913 struct page *page;
914 int may_enter_fs;
915 enum page_references references = PAGEREF_RECLAIM_CLEAN;
916 bool dirty, writeback;
917
918 cond_resched();
919
920 page = lru_to_page(page_list);
921 list_del(&page->lru);
922
923 if (!trylock_page(page))
924 goto keep;
925
926 VM_BUG_ON_PAGE(PageActive(page), page);
927 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
928
929 sc->nr_scanned++;
930
931 if (unlikely(!page_evictable(page)))
932 goto cull_mlocked;
933
934 if (!sc->may_unmap && page_mapped(page))
935 goto keep_locked;
936
937 /* Double the slab pressure for mapped and swapcache pages */
938 if (page_mapped(page) || PageSwapCache(page))
939 sc->nr_scanned++;
940
941 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
942 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
943
944 /*
945 * The number of dirty pages determines if a zone is marked
946 * reclaim_congested which affects wait_iff_congested. kswapd
947 * will stall and start writing pages if the tail of the LRU
948 * is all dirty unqueued pages.
949 */
950 page_check_dirty_writeback(page, &dirty, &writeback);
951 if (dirty || writeback)
952 nr_dirty++;
953
954 if (dirty && !writeback)
955 nr_unqueued_dirty++;
956
957 /*
958 * Treat this page as congested if the underlying BDI is or if
959 * pages are cycling through the LRU so quickly that the
960 * pages marked for immediate reclaim are making it to the
961 * end of the LRU a second time.
962 */
963 mapping = page_mapping(page);
964 if (((dirty || writeback) && mapping &&
965 inode_write_congested(mapping->host)) ||
966 (writeback && PageReclaim(page)))
967 nr_congested++;
968
969 /*
970 * If a page at the tail of the LRU is under writeback, there
971 * are three cases to consider.
972 *
973 * 1) If reclaim is encountering an excessive number of pages
974 * under writeback and this page is both under writeback and
975 * PageReclaim then it indicates that pages are being queued
976 * for IO but are being recycled through the LRU before the
977 * IO can complete. Waiting on the page itself risks an
978 * indefinite stall if it is impossible to writeback the
979 * page due to IO error or disconnected storage so instead
980 * note that the LRU is being scanned too quickly and the
981 * caller can stall after page list has been processed.
982 *
983 * 2) Global or new memcg reclaim encounters a page that is
984 * not marked for immediate reclaim, or the caller does not
985 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
986 * not to fs). In this case mark the page for immediate
987 * reclaim and continue scanning.
988 *
989 * Require may_enter_fs because we would wait on fs, which
990 * may not have submitted IO yet. And the loop driver might
991 * enter reclaim, and deadlock if it waits on a page for
992 * which it is needed to do the write (loop masks off
993 * __GFP_IO|__GFP_FS for this reason); but more thought
994 * would probably show more reasons.
995 *
996 * 3) Legacy memcg encounters a page that is already marked
997 * PageReclaim. memcg does not have any dirty pages
998 * throttling so we could easily OOM just because too many
999 * pages are in writeback and there is nothing else to
1000 * reclaim. Wait for the writeback to complete.
1001 */
1002 if (PageWriteback(page)) {
1003 /* Case 1 above */
1004 if (current_is_kswapd() &&
1005 PageReclaim(page) &&
1006 test_bit(ZONE_WRITEBACK, &zone->flags)) {
1007 nr_immediate++;
1008 goto keep_locked;
1009
1010 /* Case 2 above */
1011 } else if (sane_reclaim(sc) ||
1012 !PageReclaim(page) || !may_enter_fs) {
1013 /*
1014 * This is slightly racy - end_page_writeback()
1015 * might have just cleared PageReclaim, then
1016 * setting PageReclaim here end up interpreted
1017 * as PageReadahead - but that does not matter
1018 * enough to care. What we do want is for this
1019 * page to have PageReclaim set next time memcg
1020 * reclaim reaches the tests above, so it will
1021 * then wait_on_page_writeback() to avoid OOM;
1022 * and it's also appropriate in global reclaim.
1023 */
1024 SetPageReclaim(page);
1025 nr_writeback++;
1026 goto keep_locked;
1027
1028 /* Case 3 above */
1029 } else {
1030 unlock_page(page);
1031 wait_on_page_writeback(page);
1032 /* then go back and try same page again */
1033 list_add_tail(&page->lru, page_list);
1034 continue;
1035 }
1036 }
1037
1038 if (!force_reclaim)
1039 references = page_check_references(page, sc);
1040
1041 switch (references) {
1042 case PAGEREF_ACTIVATE:
1043 goto activate_locked;
1044 case PAGEREF_KEEP:
1045 goto keep_locked;
1046 case PAGEREF_RECLAIM:
1047 case PAGEREF_RECLAIM_CLEAN:
1048 ; /* try to reclaim the page below */
1049 }
1050
1051 /*
1052 * Anonymous process memory has backing store?
1053 * Try to allocate it some swap space here.
1054 */
1055 if (PageAnon(page) && !PageSwapCache(page)) {
1056 if (!(sc->gfp_mask & __GFP_IO))
1057 goto keep_locked;
1058 if (!add_to_swap(page, page_list))
1059 goto activate_locked;
1060 may_enter_fs = 1;
1061
1062 /* Adding to swap updated mapping */
1063 mapping = page_mapping(page);
1064 }
1065
1066 /*
1067 * The page is mapped into the page tables of one or more
1068 * processes. Try to unmap it here.
1069 */
1070 if (page_mapped(page) && mapping) {
1071 switch (try_to_unmap(page,
1072 ttu_flags|TTU_BATCH_FLUSH)) {
1073 case SWAP_FAIL:
1074 goto activate_locked;
1075 case SWAP_AGAIN:
1076 goto keep_locked;
1077 case SWAP_MLOCK:
1078 goto cull_mlocked;
1079 case SWAP_SUCCESS:
1080 ; /* try to free the page below */
1081 }
1082 }
1083
1084 if (PageDirty(page)) {
1085 /*
1086 * Only kswapd can writeback filesystem pages to
1087 * avoid risk of stack overflow but only writeback
1088 * if many dirty pages have been encountered.
1089 */
1090 if (page_is_file_cache(page) &&
1091 (!current_is_kswapd() ||
1092 !test_bit(ZONE_DIRTY, &zone->flags))) {
1093 /*
1094 * Immediately reclaim when written back.
1095 * Similar in principal to deactivate_page()
1096 * except we already have the page isolated
1097 * and know it's dirty
1098 */
1099 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1100 SetPageReclaim(page);
1101
1102 goto keep_locked;
1103 }
1104
1105 if (references == PAGEREF_RECLAIM_CLEAN)
1106 goto keep_locked;
1107 if (!may_enter_fs)
1108 goto keep_locked;
1109 if (!sc->may_writepage)
1110 goto keep_locked;
1111
1112 /*
1113 * Page is dirty. Flush the TLB if a writable entry
1114 * potentially exists to avoid CPU writes after IO
1115 * starts and then write it out here.
1116 */
1117 try_to_unmap_flush_dirty();
1118 switch (pageout(page, mapping, sc)) {
1119 case PAGE_KEEP:
1120 goto keep_locked;
1121 case PAGE_ACTIVATE:
1122 goto activate_locked;
1123 case PAGE_SUCCESS:
1124 if (PageWriteback(page))
1125 goto keep;
1126 if (PageDirty(page))
1127 goto keep;
1128
1129 /*
1130 * A synchronous write - probably a ramdisk. Go
1131 * ahead and try to reclaim the page.
1132 */
1133 if (!trylock_page(page))
1134 goto keep;
1135 if (PageDirty(page) || PageWriteback(page))
1136 goto keep_locked;
1137 mapping = page_mapping(page);
1138 case PAGE_CLEAN:
1139 ; /* try to free the page below */
1140 }
1141 }
1142
1143 /*
1144 * If the page has buffers, try to free the buffer mappings
1145 * associated with this page. If we succeed we try to free
1146 * the page as well.
1147 *
1148 * We do this even if the page is PageDirty().
1149 * try_to_release_page() does not perform I/O, but it is
1150 * possible for a page to have PageDirty set, but it is actually
1151 * clean (all its buffers are clean). This happens if the
1152 * buffers were written out directly, with submit_bh(). ext3
1153 * will do this, as well as the blockdev mapping.
1154 * try_to_release_page() will discover that cleanness and will
1155 * drop the buffers and mark the page clean - it can be freed.
1156 *
1157 * Rarely, pages can have buffers and no ->mapping. These are
1158 * the pages which were not successfully invalidated in
1159 * truncate_complete_page(). We try to drop those buffers here
1160 * and if that worked, and the page is no longer mapped into
1161 * process address space (page_count == 1) it can be freed.
1162 * Otherwise, leave the page on the LRU so it is swappable.
1163 */
1164 if (page_has_private(page)) {
1165 if (!try_to_release_page(page, sc->gfp_mask))
1166 goto activate_locked;
1167 if (!mapping && page_count(page) == 1) {
1168 unlock_page(page);
1169 if (put_page_testzero(page))
1170 goto free_it;
1171 else {
1172 /*
1173 * rare race with speculative reference.
1174 * the speculative reference will free
1175 * this page shortly, so we may
1176 * increment nr_reclaimed here (and
1177 * leave it off the LRU).
1178 */
1179 nr_reclaimed++;
1180 continue;
1181 }
1182 }
1183 }
1184
1185 if (!mapping || !__remove_mapping(mapping, page, true))
1186 goto keep_locked;
1187
1188 /*
1189 * At this point, we have no other references and there is
1190 * no way to pick any more up (removed from LRU, removed
1191 * from pagecache). Can use non-atomic bitops now (and
1192 * we obviously don't have to worry about waking up a process
1193 * waiting on the page lock, because there are no references.
1194 */
1195 __clear_page_locked(page);
1196 free_it:
1197 nr_reclaimed++;
1198
1199 /*
1200 * Is there need to periodically free_page_list? It would
1201 * appear not as the counts should be low
1202 */
1203 list_add(&page->lru, &free_pages);
1204 continue;
1205
1206 cull_mlocked:
1207 if (PageSwapCache(page))
1208 try_to_free_swap(page);
1209 unlock_page(page);
1210 list_add(&page->lru, &ret_pages);
1211 continue;
1212
1213 activate_locked:
1214 /* Not a candidate for swapping, so reclaim swap space. */
1215 if (PageSwapCache(page) && vm_swap_full())
1216 try_to_free_swap(page);
1217 VM_BUG_ON_PAGE(PageActive(page), page);
1218 SetPageActive(page);
1219 pgactivate++;
1220 keep_locked:
1221 unlock_page(page);
1222 keep:
1223 list_add(&page->lru, &ret_pages);
1224 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1225 }
1226
1227 mem_cgroup_uncharge_list(&free_pages);
1228 try_to_unmap_flush();
1229 free_hot_cold_page_list(&free_pages, true);
1230
1231 list_splice(&ret_pages, page_list);
1232 count_vm_events(PGACTIVATE, pgactivate);
1233
1234 *ret_nr_dirty += nr_dirty;
1235 *ret_nr_congested += nr_congested;
1236 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1237 *ret_nr_writeback += nr_writeback;
1238 *ret_nr_immediate += nr_immediate;
1239 return nr_reclaimed;
1240 }
1241
1242 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1243 struct list_head *page_list)
1244 {
1245 struct scan_control sc = {
1246 .gfp_mask = GFP_KERNEL,
1247 .priority = DEF_PRIORITY,
1248 .may_unmap = 1,
1249 };
1250 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1251 struct page *page, *next;
1252 LIST_HEAD(clean_pages);
1253
1254 list_for_each_entry_safe(page, next, page_list, lru) {
1255 if (page_is_file_cache(page) && !PageDirty(page) &&
1256 !isolated_balloon_page(page)) {
1257 ClearPageActive(page);
1258 list_move(&page->lru, &clean_pages);
1259 }
1260 }
1261
1262 ret = shrink_page_list(&clean_pages, zone, &sc,
1263 TTU_UNMAP|TTU_IGNORE_ACCESS,
1264 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1265 list_splice(&clean_pages, page_list);
1266 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1267 return ret;
1268 }
1269
1270 /*
1271 * Attempt to remove the specified page from its LRU. Only take this page
1272 * if it is of the appropriate PageActive status. Pages which are being
1273 * freed elsewhere are also ignored.
1274 *
1275 * page: page to consider
1276 * mode: one of the LRU isolation modes defined above
1277 *
1278 * returns 0 on success, -ve errno on failure.
1279 */
1280 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1281 {
1282 int ret = -EINVAL;
1283
1284 /* Only take pages on the LRU. */
1285 if (!PageLRU(page))
1286 return ret;
1287
1288 /* Compaction should not handle unevictable pages but CMA can do so */
1289 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1290 return ret;
1291
1292 ret = -EBUSY;
1293
1294 /*
1295 * To minimise LRU disruption, the caller can indicate that it only
1296 * wants to isolate pages it will be able to operate on without
1297 * blocking - clean pages for the most part.
1298 *
1299 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1300 * is used by reclaim when it is cannot write to backing storage
1301 *
1302 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1303 * that it is possible to migrate without blocking
1304 */
1305 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1306 /* All the caller can do on PageWriteback is block */
1307 if (PageWriteback(page))
1308 return ret;
1309
1310 if (PageDirty(page)) {
1311 struct address_space *mapping;
1312
1313 /* ISOLATE_CLEAN means only clean pages */
1314 if (mode & ISOLATE_CLEAN)
1315 return ret;
1316
1317 /*
1318 * Only pages without mappings or that have a
1319 * ->migratepage callback are possible to migrate
1320 * without blocking
1321 */
1322 mapping = page_mapping(page);
1323 if (mapping && !mapping->a_ops->migratepage)
1324 return ret;
1325 }
1326 }
1327
1328 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1329 return ret;
1330
1331 if (likely(get_page_unless_zero(page))) {
1332 /*
1333 * Be careful not to clear PageLRU until after we're
1334 * sure the page is not being freed elsewhere -- the
1335 * page release code relies on it.
1336 */
1337 ClearPageLRU(page);
1338 ret = 0;
1339 }
1340
1341 return ret;
1342 }
1343
1344 /*
1345 * zone->lru_lock is heavily contended. Some of the functions that
1346 * shrink the lists perform better by taking out a batch of pages
1347 * and working on them outside the LRU lock.
1348 *
1349 * For pagecache intensive workloads, this function is the hottest
1350 * spot in the kernel (apart from copy_*_user functions).
1351 *
1352 * Appropriate locks must be held before calling this function.
1353 *
1354 * @nr_to_scan: The number of pages to look through on the list.
1355 * @lruvec: The LRU vector to pull pages from.
1356 * @dst: The temp list to put pages on to.
1357 * @nr_scanned: The number of pages that were scanned.
1358 * @sc: The scan_control struct for this reclaim session
1359 * @mode: One of the LRU isolation modes
1360 * @lru: LRU list id for isolating
1361 *
1362 * returns how many pages were moved onto *@dst.
1363 */
1364 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1365 struct lruvec *lruvec, struct list_head *dst,
1366 unsigned long *nr_scanned, struct scan_control *sc,
1367 isolate_mode_t mode, enum lru_list lru)
1368 {
1369 struct list_head *src = &lruvec->lists[lru];
1370 unsigned long nr_taken = 0;
1371 unsigned long scan;
1372
1373 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1374 !list_empty(src); scan++) {
1375 struct page *page;
1376 int nr_pages;
1377
1378 page = lru_to_page(src);
1379 prefetchw_prev_lru_page(page, src, flags);
1380
1381 VM_BUG_ON_PAGE(!PageLRU(page), page);
1382
1383 switch (__isolate_lru_page(page, mode)) {
1384 case 0:
1385 nr_pages = hpage_nr_pages(page);
1386 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1387 list_move(&page->lru, dst);
1388 nr_taken += nr_pages;
1389 break;
1390
1391 case -EBUSY:
1392 /* else it is being freed elsewhere */
1393 list_move(&page->lru, src);
1394 continue;
1395
1396 default:
1397 BUG();
1398 }
1399 }
1400
1401 *nr_scanned = scan;
1402 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1403 nr_taken, mode, is_file_lru(lru));
1404 return nr_taken;
1405 }
1406
1407 /**
1408 * isolate_lru_page - tries to isolate a page from its LRU list
1409 * @page: page to isolate from its LRU list
1410 *
1411 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1412 * vmstat statistic corresponding to whatever LRU list the page was on.
1413 *
1414 * Returns 0 if the page was removed from an LRU list.
1415 * Returns -EBUSY if the page was not on an LRU list.
1416 *
1417 * The returned page will have PageLRU() cleared. If it was found on
1418 * the active list, it will have PageActive set. If it was found on
1419 * the unevictable list, it will have the PageUnevictable bit set. That flag
1420 * may need to be cleared by the caller before letting the page go.
1421 *
1422 * The vmstat statistic corresponding to the list on which the page was
1423 * found will be decremented.
1424 *
1425 * Restrictions:
1426 * (1) Must be called with an elevated refcount on the page. This is a
1427 * fundamentnal difference from isolate_lru_pages (which is called
1428 * without a stable reference).
1429 * (2) the lru_lock must not be held.
1430 * (3) interrupts must be enabled.
1431 */
1432 int isolate_lru_page(struct page *page)
1433 {
1434 int ret = -EBUSY;
1435
1436 VM_BUG_ON_PAGE(!page_count(page), page);
1437
1438 if (PageLRU(page)) {
1439 struct zone *zone = page_zone(page);
1440 struct lruvec *lruvec;
1441
1442 spin_lock_irq(&zone->lru_lock);
1443 lruvec = mem_cgroup_page_lruvec(page, zone);
1444 if (PageLRU(page)) {
1445 int lru = page_lru(page);
1446 get_page(page);
1447 ClearPageLRU(page);
1448 del_page_from_lru_list(page, lruvec, lru);
1449 ret = 0;
1450 }
1451 spin_unlock_irq(&zone->lru_lock);
1452 }
1453 return ret;
1454 }
1455
1456 /*
1457 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1458 * then get resheduled. When there are massive number of tasks doing page
1459 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1460 * the LRU list will go small and be scanned faster than necessary, leading to
1461 * unnecessary swapping, thrashing and OOM.
1462 */
1463 static int too_many_isolated(struct zone *zone, int file,
1464 struct scan_control *sc)
1465 {
1466 unsigned long inactive, isolated;
1467
1468 if (current_is_kswapd())
1469 return 0;
1470
1471 if (!sane_reclaim(sc))
1472 return 0;
1473
1474 if (file) {
1475 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1476 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1477 } else {
1478 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1479 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1480 }
1481
1482 /*
1483 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1484 * won't get blocked by normal direct-reclaimers, forming a circular
1485 * deadlock.
1486 */
1487 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1488 inactive >>= 3;
1489
1490 return isolated > inactive;
1491 }
1492
1493 static noinline_for_stack void
1494 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1495 {
1496 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1497 struct zone *zone = lruvec_zone(lruvec);
1498 LIST_HEAD(pages_to_free);
1499
1500 /*
1501 * Put back any unfreeable pages.
1502 */
1503 while (!list_empty(page_list)) {
1504 struct page *page = lru_to_page(page_list);
1505 int lru;
1506
1507 VM_BUG_ON_PAGE(PageLRU(page), page);
1508 list_del(&page->lru);
1509 if (unlikely(!page_evictable(page))) {
1510 spin_unlock_irq(&zone->lru_lock);
1511 putback_lru_page(page);
1512 spin_lock_irq(&zone->lru_lock);
1513 continue;
1514 }
1515
1516 lruvec = mem_cgroup_page_lruvec(page, zone);
1517
1518 SetPageLRU(page);
1519 lru = page_lru(page);
1520 add_page_to_lru_list(page, lruvec, lru);
1521
1522 if (is_active_lru(lru)) {
1523 int file = is_file_lru(lru);
1524 int numpages = hpage_nr_pages(page);
1525 reclaim_stat->recent_rotated[file] += numpages;
1526 }
1527 if (put_page_testzero(page)) {
1528 __ClearPageLRU(page);
1529 __ClearPageActive(page);
1530 del_page_from_lru_list(page, lruvec, lru);
1531
1532 if (unlikely(PageCompound(page))) {
1533 spin_unlock_irq(&zone->lru_lock);
1534 mem_cgroup_uncharge(page);
1535 (*get_compound_page_dtor(page))(page);
1536 spin_lock_irq(&zone->lru_lock);
1537 } else
1538 list_add(&page->lru, &pages_to_free);
1539 }
1540 }
1541
1542 /*
1543 * To save our caller's stack, now use input list for pages to free.
1544 */
1545 list_splice(&pages_to_free, page_list);
1546 }
1547
1548 /*
1549 * If a kernel thread (such as nfsd for loop-back mounts) services
1550 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1551 * In that case we should only throttle if the backing device it is
1552 * writing to is congested. In other cases it is safe to throttle.
1553 */
1554 static int current_may_throttle(void)
1555 {
1556 return !(current->flags & PF_LESS_THROTTLE) ||
1557 current->backing_dev_info == NULL ||
1558 bdi_write_congested(current->backing_dev_info);
1559 }
1560
1561 /*
1562 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1563 * of reclaimed pages
1564 */
1565 static noinline_for_stack unsigned long
1566 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1567 struct scan_control *sc, enum lru_list lru)
1568 {
1569 LIST_HEAD(page_list);
1570 unsigned long nr_scanned;
1571 unsigned long nr_reclaimed = 0;
1572 unsigned long nr_taken;
1573 unsigned long nr_dirty = 0;
1574 unsigned long nr_congested = 0;
1575 unsigned long nr_unqueued_dirty = 0;
1576 unsigned long nr_writeback = 0;
1577 unsigned long nr_immediate = 0;
1578 isolate_mode_t isolate_mode = 0;
1579 int file = is_file_lru(lru);
1580 struct zone *zone = lruvec_zone(lruvec);
1581 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1582
1583 while (unlikely(too_many_isolated(zone, file, sc))) {
1584 congestion_wait(BLK_RW_ASYNC, HZ/10);
1585
1586 /* We are about to die and free our memory. Return now. */
1587 if (fatal_signal_pending(current))
1588 return SWAP_CLUSTER_MAX;
1589 }
1590
1591 lru_add_drain();
1592
1593 if (!sc->may_unmap)
1594 isolate_mode |= ISOLATE_UNMAPPED;
1595 if (!sc->may_writepage)
1596 isolate_mode |= ISOLATE_CLEAN;
1597
1598 spin_lock_irq(&zone->lru_lock);
1599
1600 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1601 &nr_scanned, sc, isolate_mode, lru);
1602
1603 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1604 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1605
1606 if (global_reclaim(sc)) {
1607 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1608 if (current_is_kswapd())
1609 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1610 else
1611 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1612 }
1613 spin_unlock_irq(&zone->lru_lock);
1614
1615 if (nr_taken == 0)
1616 return 0;
1617
1618 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1619 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1620 &nr_writeback, &nr_immediate,
1621 false);
1622
1623 spin_lock_irq(&zone->lru_lock);
1624
1625 reclaim_stat->recent_scanned[file] += nr_taken;
1626
1627 if (global_reclaim(sc)) {
1628 if (current_is_kswapd())
1629 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1630 nr_reclaimed);
1631 else
1632 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1633 nr_reclaimed);
1634 }
1635
1636 putback_inactive_pages(lruvec, &page_list);
1637
1638 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1639
1640 spin_unlock_irq(&zone->lru_lock);
1641
1642 mem_cgroup_uncharge_list(&page_list);
1643 free_hot_cold_page_list(&page_list, true);
1644
1645 /*
1646 * If reclaim is isolating dirty pages under writeback, it implies
1647 * that the long-lived page allocation rate is exceeding the page
1648 * laundering rate. Either the global limits are not being effective
1649 * at throttling processes due to the page distribution throughout
1650 * zones or there is heavy usage of a slow backing device. The
1651 * only option is to throttle from reclaim context which is not ideal
1652 * as there is no guarantee the dirtying process is throttled in the
1653 * same way balance_dirty_pages() manages.
1654 *
1655 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1656 * of pages under pages flagged for immediate reclaim and stall if any
1657 * are encountered in the nr_immediate check below.
1658 */
1659 if (nr_writeback && nr_writeback == nr_taken)
1660 set_bit(ZONE_WRITEBACK, &zone->flags);
1661
1662 /*
1663 * Legacy memcg will stall in page writeback so avoid forcibly
1664 * stalling here.
1665 */
1666 if (sane_reclaim(sc)) {
1667 /*
1668 * Tag a zone as congested if all the dirty pages scanned were
1669 * backed by a congested BDI and wait_iff_congested will stall.
1670 */
1671 if (nr_dirty && nr_dirty == nr_congested)
1672 set_bit(ZONE_CONGESTED, &zone->flags);
1673
1674 /*
1675 * If dirty pages are scanned that are not queued for IO, it
1676 * implies that flushers are not keeping up. In this case, flag
1677 * the zone ZONE_DIRTY and kswapd will start writing pages from
1678 * reclaim context.
1679 */
1680 if (nr_unqueued_dirty == nr_taken)
1681 set_bit(ZONE_DIRTY, &zone->flags);
1682
1683 /*
1684 * If kswapd scans pages marked marked for immediate
1685 * reclaim and under writeback (nr_immediate), it implies
1686 * that pages are cycling through the LRU faster than
1687 * they are written so also forcibly stall.
1688 */
1689 if (nr_immediate && current_may_throttle())
1690 congestion_wait(BLK_RW_ASYNC, HZ/10);
1691 }
1692
1693 /*
1694 * Stall direct reclaim for IO completions if underlying BDIs or zone
1695 * is congested. Allow kswapd to continue until it starts encountering
1696 * unqueued dirty pages or cycling through the LRU too quickly.
1697 */
1698 if (!sc->hibernation_mode && !current_is_kswapd() &&
1699 current_may_throttle())
1700 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1701
1702 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1703 zone_idx(zone),
1704 nr_scanned, nr_reclaimed,
1705 sc->priority,
1706 trace_shrink_flags(file));
1707 return nr_reclaimed;
1708 }
1709
1710 /*
1711 * This moves pages from the active list to the inactive list.
1712 *
1713 * We move them the other way if the page is referenced by one or more
1714 * processes, from rmap.
1715 *
1716 * If the pages are mostly unmapped, the processing is fast and it is
1717 * appropriate to hold zone->lru_lock across the whole operation. But if
1718 * the pages are mapped, the processing is slow (page_referenced()) so we
1719 * should drop zone->lru_lock around each page. It's impossible to balance
1720 * this, so instead we remove the pages from the LRU while processing them.
1721 * It is safe to rely on PG_active against the non-LRU pages in here because
1722 * nobody will play with that bit on a non-LRU page.
1723 *
1724 * The downside is that we have to touch page->_count against each page.
1725 * But we had to alter page->flags anyway.
1726 */
1727
1728 static void move_active_pages_to_lru(struct lruvec *lruvec,
1729 struct list_head *list,
1730 struct list_head *pages_to_free,
1731 enum lru_list lru)
1732 {
1733 struct zone *zone = lruvec_zone(lruvec);
1734 unsigned long pgmoved = 0;
1735 struct page *page;
1736 int nr_pages;
1737
1738 while (!list_empty(list)) {
1739 page = lru_to_page(list);
1740 lruvec = mem_cgroup_page_lruvec(page, zone);
1741
1742 VM_BUG_ON_PAGE(PageLRU(page), page);
1743 SetPageLRU(page);
1744
1745 nr_pages = hpage_nr_pages(page);
1746 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1747 list_move(&page->lru, &lruvec->lists[lru]);
1748 pgmoved += nr_pages;
1749
1750 if (put_page_testzero(page)) {
1751 __ClearPageLRU(page);
1752 __ClearPageActive(page);
1753 del_page_from_lru_list(page, lruvec, lru);
1754
1755 if (unlikely(PageCompound(page))) {
1756 spin_unlock_irq(&zone->lru_lock);
1757 mem_cgroup_uncharge(page);
1758 (*get_compound_page_dtor(page))(page);
1759 spin_lock_irq(&zone->lru_lock);
1760 } else
1761 list_add(&page->lru, pages_to_free);
1762 }
1763 }
1764 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1765 if (!is_active_lru(lru))
1766 __count_vm_events(PGDEACTIVATE, pgmoved);
1767 }
1768
1769 static void shrink_active_list(unsigned long nr_to_scan,
1770 struct lruvec *lruvec,
1771 struct scan_control *sc,
1772 enum lru_list lru)
1773 {
1774 unsigned long nr_taken;
1775 unsigned long nr_scanned;
1776 unsigned long vm_flags;
1777 LIST_HEAD(l_hold); /* The pages which were snipped off */
1778 LIST_HEAD(l_active);
1779 LIST_HEAD(l_inactive);
1780 struct page *page;
1781 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1782 unsigned long nr_rotated = 0;
1783 isolate_mode_t isolate_mode = 0;
1784 int file = is_file_lru(lru);
1785 struct zone *zone = lruvec_zone(lruvec);
1786
1787 lru_add_drain();
1788
1789 if (!sc->may_unmap)
1790 isolate_mode |= ISOLATE_UNMAPPED;
1791 if (!sc->may_writepage)
1792 isolate_mode |= ISOLATE_CLEAN;
1793
1794 spin_lock_irq(&zone->lru_lock);
1795
1796 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1797 &nr_scanned, sc, isolate_mode, lru);
1798 if (global_reclaim(sc))
1799 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1800
1801 reclaim_stat->recent_scanned[file] += nr_taken;
1802
1803 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1804 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1805 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1806 spin_unlock_irq(&zone->lru_lock);
1807
1808 while (!list_empty(&l_hold)) {
1809 cond_resched();
1810 page = lru_to_page(&l_hold);
1811 list_del(&page->lru);
1812
1813 if (unlikely(!page_evictable(page))) {
1814 putback_lru_page(page);
1815 continue;
1816 }
1817
1818 if (unlikely(buffer_heads_over_limit)) {
1819 if (page_has_private(page) && trylock_page(page)) {
1820 if (page_has_private(page))
1821 try_to_release_page(page, 0);
1822 unlock_page(page);
1823 }
1824 }
1825
1826 if (page_referenced(page, 0, sc->target_mem_cgroup,
1827 &vm_flags)) {
1828 nr_rotated += hpage_nr_pages(page);
1829 /*
1830 * Identify referenced, file-backed active pages and
1831 * give them one more trip around the active list. So
1832 * that executable code get better chances to stay in
1833 * memory under moderate memory pressure. Anon pages
1834 * are not likely to be evicted by use-once streaming
1835 * IO, plus JVM can create lots of anon VM_EXEC pages,
1836 * so we ignore them here.
1837 */
1838 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1839 list_add(&page->lru, &l_active);
1840 continue;
1841 }
1842 }
1843
1844 ClearPageActive(page); /* we are de-activating */
1845 list_add(&page->lru, &l_inactive);
1846 }
1847
1848 /*
1849 * Move pages back to the lru list.
1850 */
1851 spin_lock_irq(&zone->lru_lock);
1852 /*
1853 * Count referenced pages from currently used mappings as rotated,
1854 * even though only some of them are actually re-activated. This
1855 * helps balance scan pressure between file and anonymous pages in
1856 * get_scan_count.
1857 */
1858 reclaim_stat->recent_rotated[file] += nr_rotated;
1859
1860 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1861 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1862 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1863 spin_unlock_irq(&zone->lru_lock);
1864
1865 mem_cgroup_uncharge_list(&l_hold);
1866 free_hot_cold_page_list(&l_hold, true);
1867 }
1868
1869 #ifdef CONFIG_SWAP
1870 static bool inactive_anon_is_low_global(struct zone *zone)
1871 {
1872 unsigned long active, inactive;
1873
1874 active = zone_page_state(zone, NR_ACTIVE_ANON);
1875 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1876
1877 return inactive * zone->inactive_ratio < active;
1878 }
1879
1880 /**
1881 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1882 * @lruvec: LRU vector to check
1883 *
1884 * Returns true if the zone does not have enough inactive anon pages,
1885 * meaning some active anon pages need to be deactivated.
1886 */
1887 static bool inactive_anon_is_low(struct lruvec *lruvec)
1888 {
1889 /*
1890 * If we don't have swap space, anonymous page deactivation
1891 * is pointless.
1892 */
1893 if (!total_swap_pages)
1894 return false;
1895
1896 if (!mem_cgroup_disabled())
1897 return mem_cgroup_inactive_anon_is_low(lruvec);
1898
1899 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1900 }
1901 #else
1902 static inline bool inactive_anon_is_low(struct lruvec *lruvec)
1903 {
1904 return false;
1905 }
1906 #endif
1907
1908 /**
1909 * inactive_file_is_low - check if file pages need to be deactivated
1910 * @lruvec: LRU vector to check
1911 *
1912 * When the system is doing streaming IO, memory pressure here
1913 * ensures that active file pages get deactivated, until more
1914 * than half of the file pages are on the inactive list.
1915 *
1916 * Once we get to that situation, protect the system's working
1917 * set from being evicted by disabling active file page aging.
1918 *
1919 * This uses a different ratio than the anonymous pages, because
1920 * the page cache uses a use-once replacement algorithm.
1921 */
1922 static bool inactive_file_is_low(struct lruvec *lruvec)
1923 {
1924 unsigned long inactive;
1925 unsigned long active;
1926
1927 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1928 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1929
1930 return active > inactive;
1931 }
1932
1933 static bool inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1934 {
1935 if (is_file_lru(lru))
1936 return inactive_file_is_low(lruvec);
1937 else
1938 return inactive_anon_is_low(lruvec);
1939 }
1940
1941 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1942 struct lruvec *lruvec, struct scan_control *sc)
1943 {
1944 if (is_active_lru(lru)) {
1945 if (inactive_list_is_low(lruvec, lru))
1946 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1947 return 0;
1948 }
1949
1950 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1951 }
1952
1953 enum scan_balance {
1954 SCAN_EQUAL,
1955 SCAN_FRACT,
1956 SCAN_ANON,
1957 SCAN_FILE,
1958 };
1959
1960 /*
1961 * Determine how aggressively the anon and file LRU lists should be
1962 * scanned. The relative value of each set of LRU lists is determined
1963 * by looking at the fraction of the pages scanned we did rotate back
1964 * onto the active list instead of evict.
1965 *
1966 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1967 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1968 */
1969 static void get_scan_count(struct lruvec *lruvec, int swappiness,
1970 struct scan_control *sc, unsigned long *nr,
1971 unsigned long *lru_pages)
1972 {
1973 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1974 u64 fraction[2];
1975 u64 denominator = 0; /* gcc */
1976 struct zone *zone = lruvec_zone(lruvec);
1977 unsigned long anon_prio, file_prio;
1978 enum scan_balance scan_balance;
1979 unsigned long anon, file;
1980 bool force_scan = false;
1981 unsigned long ap, fp;
1982 enum lru_list lru;
1983 bool some_scanned;
1984 int pass;
1985
1986 /*
1987 * If the zone or memcg is small, nr[l] can be 0. This
1988 * results in no scanning on this priority and a potential
1989 * priority drop. Global direct reclaim can go to the next
1990 * zone and tends to have no problems. Global kswapd is for
1991 * zone balancing and it needs to scan a minimum amount. When
1992 * reclaiming for a memcg, a priority drop can cause high
1993 * latencies, so it's better to scan a minimum amount there as
1994 * well.
1995 */
1996 if (current_is_kswapd()) {
1997 if (!zone_reclaimable(zone))
1998 force_scan = true;
1999 if (!mem_cgroup_lruvec_online(lruvec))
2000 force_scan = true;
2001 }
2002 if (!global_reclaim(sc))
2003 force_scan = true;
2004
2005 /* If we have no swap space, do not bother scanning anon pages. */
2006 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
2007 scan_balance = SCAN_FILE;
2008 goto out;
2009 }
2010
2011 /*
2012 * Global reclaim will swap to prevent OOM even with no
2013 * swappiness, but memcg users want to use this knob to
2014 * disable swapping for individual groups completely when
2015 * using the memory controller's swap limit feature would be
2016 * too expensive.
2017 */
2018 if (!global_reclaim(sc) && !swappiness) {
2019 scan_balance = SCAN_FILE;
2020 goto out;
2021 }
2022
2023 /*
2024 * Do not apply any pressure balancing cleverness when the
2025 * system is close to OOM, scan both anon and file equally
2026 * (unless the swappiness setting disagrees with swapping).
2027 */
2028 if (!sc->priority && swappiness) {
2029 scan_balance = SCAN_EQUAL;
2030 goto out;
2031 }
2032
2033 /*
2034 * Prevent the reclaimer from falling into the cache trap: as
2035 * cache pages start out inactive, every cache fault will tip
2036 * the scan balance towards the file LRU. And as the file LRU
2037 * shrinks, so does the window for rotation from references.
2038 * This means we have a runaway feedback loop where a tiny
2039 * thrashing file LRU becomes infinitely more attractive than
2040 * anon pages. Try to detect this based on file LRU size.
2041 */
2042 if (global_reclaim(sc)) {
2043 unsigned long zonefile;
2044 unsigned long zonefree;
2045
2046 zonefree = zone_page_state(zone, NR_FREE_PAGES);
2047 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2048 zone_page_state(zone, NR_INACTIVE_FILE);
2049
2050 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2051 scan_balance = SCAN_ANON;
2052 goto out;
2053 }
2054 }
2055
2056 /*
2057 * There is enough inactive page cache, do not reclaim
2058 * anything from the anonymous working set right now.
2059 */
2060 if (!inactive_file_is_low(lruvec)) {
2061 scan_balance = SCAN_FILE;
2062 goto out;
2063 }
2064
2065 scan_balance = SCAN_FRACT;
2066
2067 /*
2068 * With swappiness at 100, anonymous and file have the same priority.
2069 * This scanning priority is essentially the inverse of IO cost.
2070 */
2071 anon_prio = swappiness;
2072 file_prio = 200 - anon_prio;
2073
2074 /*
2075 * OK, so we have swap space and a fair amount of page cache
2076 * pages. We use the recently rotated / recently scanned
2077 * ratios to determine how valuable each cache is.
2078 *
2079 * Because workloads change over time (and to avoid overflow)
2080 * we keep these statistics as a floating average, which ends
2081 * up weighing recent references more than old ones.
2082 *
2083 * anon in [0], file in [1]
2084 */
2085
2086 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2087 get_lru_size(lruvec, LRU_INACTIVE_ANON);
2088 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2089 get_lru_size(lruvec, LRU_INACTIVE_FILE);
2090
2091 spin_lock_irq(&zone->lru_lock);
2092 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2093 reclaim_stat->recent_scanned[0] /= 2;
2094 reclaim_stat->recent_rotated[0] /= 2;
2095 }
2096
2097 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2098 reclaim_stat->recent_scanned[1] /= 2;
2099 reclaim_stat->recent_rotated[1] /= 2;
2100 }
2101
2102 /*
2103 * The amount of pressure on anon vs file pages is inversely
2104 * proportional to the fraction of recently scanned pages on
2105 * each list that were recently referenced and in active use.
2106 */
2107 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2108 ap /= reclaim_stat->recent_rotated[0] + 1;
2109
2110 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2111 fp /= reclaim_stat->recent_rotated[1] + 1;
2112 spin_unlock_irq(&zone->lru_lock);
2113
2114 fraction[0] = ap;
2115 fraction[1] = fp;
2116 denominator = ap + fp + 1;
2117 out:
2118 some_scanned = false;
2119 /* Only use force_scan on second pass. */
2120 for (pass = 0; !some_scanned && pass < 2; pass++) {
2121 *lru_pages = 0;
2122 for_each_evictable_lru(lru) {
2123 int file = is_file_lru(lru);
2124 unsigned long size;
2125 unsigned long scan;
2126
2127 size = get_lru_size(lruvec, lru);
2128 scan = size >> sc->priority;
2129
2130 if (!scan && pass && force_scan)
2131 scan = min(size, SWAP_CLUSTER_MAX);
2132
2133 switch (scan_balance) {
2134 case SCAN_EQUAL:
2135 /* Scan lists relative to size */
2136 break;
2137 case SCAN_FRACT:
2138 /*
2139 * Scan types proportional to swappiness and
2140 * their relative recent reclaim efficiency.
2141 */
2142 scan = div64_u64(scan * fraction[file],
2143 denominator);
2144 break;
2145 case SCAN_FILE:
2146 case SCAN_ANON:
2147 /* Scan one type exclusively */
2148 if ((scan_balance == SCAN_FILE) != file) {
2149 size = 0;
2150 scan = 0;
2151 }
2152 break;
2153 default:
2154 /* Look ma, no brain */
2155 BUG();
2156 }
2157
2158 *lru_pages += size;
2159 nr[lru] = scan;
2160
2161 /*
2162 * Skip the second pass and don't force_scan,
2163 * if we found something to scan.
2164 */
2165 some_scanned |= !!scan;
2166 }
2167 }
2168 }
2169
2170 /*
2171 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2172 */
2173 static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2174 struct scan_control *sc, unsigned long *lru_pages)
2175 {
2176 unsigned long nr[NR_LRU_LISTS];
2177 unsigned long targets[NR_LRU_LISTS];
2178 unsigned long nr_to_scan;
2179 enum lru_list lru;
2180 unsigned long nr_reclaimed = 0;
2181 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2182 struct blk_plug plug;
2183 bool scan_adjusted;
2184
2185 get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
2186
2187 /* Record the original scan target for proportional adjustments later */
2188 memcpy(targets, nr, sizeof(nr));
2189
2190 /*
2191 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2192 * event that can occur when there is little memory pressure e.g.
2193 * multiple streaming readers/writers. Hence, we do not abort scanning
2194 * when the requested number of pages are reclaimed when scanning at
2195 * DEF_PRIORITY on the assumption that the fact we are direct
2196 * reclaiming implies that kswapd is not keeping up and it is best to
2197 * do a batch of work at once. For memcg reclaim one check is made to
2198 * abort proportional reclaim if either the file or anon lru has already
2199 * dropped to zero at the first pass.
2200 */
2201 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2202 sc->priority == DEF_PRIORITY);
2203
2204 blk_start_plug(&plug);
2205 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2206 nr[LRU_INACTIVE_FILE]) {
2207 unsigned long nr_anon, nr_file, percentage;
2208 unsigned long nr_scanned;
2209
2210 for_each_evictable_lru(lru) {
2211 if (nr[lru]) {
2212 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2213 nr[lru] -= nr_to_scan;
2214
2215 nr_reclaimed += shrink_list(lru, nr_to_scan,
2216 lruvec, sc);
2217 }
2218 }
2219
2220 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2221 continue;
2222
2223 /*
2224 * For kswapd and memcg, reclaim at least the number of pages
2225 * requested. Ensure that the anon and file LRUs are scanned
2226 * proportionally what was requested by get_scan_count(). We
2227 * stop reclaiming one LRU and reduce the amount scanning
2228 * proportional to the original scan target.
2229 */
2230 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2231 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2232
2233 /*
2234 * It's just vindictive to attack the larger once the smaller
2235 * has gone to zero. And given the way we stop scanning the
2236 * smaller below, this makes sure that we only make one nudge
2237 * towards proportionality once we've got nr_to_reclaim.
2238 */
2239 if (!nr_file || !nr_anon)
2240 break;
2241
2242 if (nr_file > nr_anon) {
2243 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2244 targets[LRU_ACTIVE_ANON] + 1;
2245 lru = LRU_BASE;
2246 percentage = nr_anon * 100 / scan_target;
2247 } else {
2248 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2249 targets[LRU_ACTIVE_FILE] + 1;
2250 lru = LRU_FILE;
2251 percentage = nr_file * 100 / scan_target;
2252 }
2253
2254 /* Stop scanning the smaller of the LRU */
2255 nr[lru] = 0;
2256 nr[lru + LRU_ACTIVE] = 0;
2257
2258 /*
2259 * Recalculate the other LRU scan count based on its original
2260 * scan target and the percentage scanning already complete
2261 */
2262 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2263 nr_scanned = targets[lru] - nr[lru];
2264 nr[lru] = targets[lru] * (100 - percentage) / 100;
2265 nr[lru] -= min(nr[lru], nr_scanned);
2266
2267 lru += LRU_ACTIVE;
2268 nr_scanned = targets[lru] - nr[lru];
2269 nr[lru] = targets[lru] * (100 - percentage) / 100;
2270 nr[lru] -= min(nr[lru], nr_scanned);
2271
2272 scan_adjusted = true;
2273 }
2274 blk_finish_plug(&plug);
2275 sc->nr_reclaimed += nr_reclaimed;
2276
2277 /*
2278 * Even if we did not try to evict anon pages at all, we want to
2279 * rebalance the anon lru active/inactive ratio.
2280 */
2281 if (inactive_anon_is_low(lruvec))
2282 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2283 sc, LRU_ACTIVE_ANON);
2284
2285 throttle_vm_writeout(sc->gfp_mask);
2286 }
2287
2288 /* Use reclaim/compaction for costly allocs or under memory pressure */
2289 static bool in_reclaim_compaction(struct scan_control *sc)
2290 {
2291 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2292 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2293 sc->priority < DEF_PRIORITY - 2))
2294 return true;
2295
2296 return false;
2297 }
2298
2299 /*
2300 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2301 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2302 * true if more pages should be reclaimed such that when the page allocator
2303 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2304 * It will give up earlier than that if there is difficulty reclaiming pages.
2305 */
2306 static inline bool should_continue_reclaim(struct zone *zone,
2307 unsigned long nr_reclaimed,
2308 unsigned long nr_scanned,
2309 struct scan_control *sc)
2310 {
2311 unsigned long pages_for_compaction;
2312 unsigned long inactive_lru_pages;
2313
2314 /* If not in reclaim/compaction mode, stop */
2315 if (!in_reclaim_compaction(sc))
2316 return false;
2317
2318 /* Consider stopping depending on scan and reclaim activity */
2319 if (sc->gfp_mask & __GFP_REPEAT) {
2320 /*
2321 * For __GFP_REPEAT allocations, stop reclaiming if the
2322 * full LRU list has been scanned and we are still failing
2323 * to reclaim pages. This full LRU scan is potentially
2324 * expensive but a __GFP_REPEAT caller really wants to succeed
2325 */
2326 if (!nr_reclaimed && !nr_scanned)
2327 return false;
2328 } else {
2329 /*
2330 * For non-__GFP_REPEAT allocations which can presumably
2331 * fail without consequence, stop if we failed to reclaim
2332 * any pages from the last SWAP_CLUSTER_MAX number of
2333 * pages that were scanned. This will return to the
2334 * caller faster at the risk reclaim/compaction and
2335 * the resulting allocation attempt fails
2336 */
2337 if (!nr_reclaimed)
2338 return false;
2339 }
2340
2341 /*
2342 * If we have not reclaimed enough pages for compaction and the
2343 * inactive lists are large enough, continue reclaiming
2344 */
2345 pages_for_compaction = (2UL << sc->order);
2346 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2347 if (get_nr_swap_pages() > 0)
2348 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2349 if (sc->nr_reclaimed < pages_for_compaction &&
2350 inactive_lru_pages > pages_for_compaction)
2351 return true;
2352
2353 /* If compaction would go ahead or the allocation would succeed, stop */
2354 switch (compaction_suitable(zone, sc->order, 0, 0)) {
2355 case COMPACT_PARTIAL:
2356 case COMPACT_CONTINUE:
2357 return false;
2358 default:
2359 return true;
2360 }
2361 }
2362
2363 static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2364 bool is_classzone)
2365 {
2366 struct reclaim_state *reclaim_state = current->reclaim_state;
2367 unsigned long nr_reclaimed, nr_scanned;
2368 bool reclaimable = false;
2369
2370 do {
2371 struct mem_cgroup *root = sc->target_mem_cgroup;
2372 struct mem_cgroup_reclaim_cookie reclaim = {
2373 .zone = zone,
2374 .priority = sc->priority,
2375 };
2376 unsigned long zone_lru_pages = 0;
2377 struct mem_cgroup *memcg;
2378
2379 nr_reclaimed = sc->nr_reclaimed;
2380 nr_scanned = sc->nr_scanned;
2381
2382 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2383 do {
2384 unsigned long lru_pages;
2385 unsigned long scanned;
2386 struct lruvec *lruvec;
2387 int swappiness;
2388
2389 if (mem_cgroup_low(root, memcg)) {
2390 if (!sc->may_thrash)
2391 continue;
2392 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2393 }
2394
2395 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2396 swappiness = mem_cgroup_swappiness(memcg);
2397 scanned = sc->nr_scanned;
2398
2399 shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
2400 zone_lru_pages += lru_pages;
2401
2402 if (memcg && is_classzone)
2403 shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2404 memcg, sc->nr_scanned - scanned,
2405 lru_pages);
2406
2407 /*
2408 * Direct reclaim and kswapd have to scan all memory
2409 * cgroups to fulfill the overall scan target for the
2410 * zone.
2411 *
2412 * Limit reclaim, on the other hand, only cares about
2413 * nr_to_reclaim pages to be reclaimed and it will
2414 * retry with decreasing priority if one round over the
2415 * whole hierarchy is not sufficient.
2416 */
2417 if (!global_reclaim(sc) &&
2418 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2419 mem_cgroup_iter_break(root, memcg);
2420 break;
2421 }
2422 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2423
2424 /*
2425 * Shrink the slab caches in the same proportion that
2426 * the eligible LRU pages were scanned.
2427 */
2428 if (global_reclaim(sc) && is_classzone)
2429 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2430 sc->nr_scanned - nr_scanned,
2431 zone_lru_pages);
2432
2433 if (reclaim_state) {
2434 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2435 reclaim_state->reclaimed_slab = 0;
2436 }
2437
2438 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2439 sc->nr_scanned - nr_scanned,
2440 sc->nr_reclaimed - nr_reclaimed);
2441
2442 if (sc->nr_reclaimed - nr_reclaimed)
2443 reclaimable = true;
2444
2445 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2446 sc->nr_scanned - nr_scanned, sc));
2447
2448 return reclaimable;
2449 }
2450
2451 /*
2452 * Returns true if compaction should go ahead for a high-order request, or
2453 * the high-order allocation would succeed without compaction.
2454 */
2455 static inline bool compaction_ready(struct zone *zone, int order)
2456 {
2457 unsigned long balance_gap, watermark;
2458 bool watermark_ok;
2459
2460 /*
2461 * Compaction takes time to run and there are potentially other
2462 * callers using the pages just freed. Continue reclaiming until
2463 * there is a buffer of free pages available to give compaction
2464 * a reasonable chance of completing and allocating the page
2465 */
2466 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2467 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2468 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2469 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0);
2470
2471 /*
2472 * If compaction is deferred, reclaim up to a point where
2473 * compaction will have a chance of success when re-enabled
2474 */
2475 if (compaction_deferred(zone, order))
2476 return watermark_ok;
2477
2478 /*
2479 * If compaction is not ready to start and allocation is not likely
2480 * to succeed without it, then keep reclaiming.
2481 */
2482 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2483 return false;
2484
2485 return watermark_ok;
2486 }
2487
2488 /*
2489 * This is the direct reclaim path, for page-allocating processes. We only
2490 * try to reclaim pages from zones which will satisfy the caller's allocation
2491 * request.
2492 *
2493 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2494 * Because:
2495 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2496 * allocation or
2497 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2498 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2499 * zone defense algorithm.
2500 *
2501 * If a zone is deemed to be full of pinned pages then just give it a light
2502 * scan then give up on it.
2503 */
2504 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2505 {
2506 struct zoneref *z;
2507 struct zone *zone;
2508 unsigned long nr_soft_reclaimed;
2509 unsigned long nr_soft_scanned;
2510 gfp_t orig_mask;
2511 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2512
2513 /*
2514 * If the number of buffer_heads in the machine exceeds the maximum
2515 * allowed level, force direct reclaim to scan the highmem zone as
2516 * highmem pages could be pinning lowmem pages storing buffer_heads
2517 */
2518 orig_mask = sc->gfp_mask;
2519 if (buffer_heads_over_limit)
2520 sc->gfp_mask |= __GFP_HIGHMEM;
2521
2522 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2523 gfp_zone(sc->gfp_mask), sc->nodemask) {
2524 enum zone_type classzone_idx;
2525
2526 if (!populated_zone(zone))
2527 continue;
2528
2529 classzone_idx = gfp_zone(sc->gfp_mask);
2530 while (!populated_zone(zone->zone_pgdat->node_zones +
2531 classzone_idx))
2532 classzone_idx--;
2533
2534 /*
2535 * Take care memory controller reclaiming has small influence
2536 * to global LRU.
2537 */
2538 if (global_reclaim(sc)) {
2539 if (!cpuset_zone_allowed(zone,
2540 GFP_KERNEL | __GFP_HARDWALL))
2541 continue;
2542
2543 if (sc->priority != DEF_PRIORITY &&
2544 !zone_reclaimable(zone))
2545 continue; /* Let kswapd poll it */
2546
2547 /*
2548 * If we already have plenty of memory free for
2549 * compaction in this zone, don't free any more.
2550 * Even though compaction is invoked for any
2551 * non-zero order, only frequent costly order
2552 * reclamation is disruptive enough to become a
2553 * noticeable problem, like transparent huge
2554 * page allocations.
2555 */
2556 if (IS_ENABLED(CONFIG_COMPACTION) &&
2557 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2558 zonelist_zone_idx(z) <= requested_highidx &&
2559 compaction_ready(zone, sc->order)) {
2560 sc->compaction_ready = true;
2561 continue;
2562 }
2563
2564 /*
2565 * This steals pages from memory cgroups over softlimit
2566 * and returns the number of reclaimed pages and
2567 * scanned pages. This works for global memory pressure
2568 * and balancing, not for a memcg's limit.
2569 */
2570 nr_soft_scanned = 0;
2571 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2572 sc->order, sc->gfp_mask,
2573 &nr_soft_scanned);
2574 sc->nr_reclaimed += nr_soft_reclaimed;
2575 sc->nr_scanned += nr_soft_scanned;
2576 /* need some check for avoid more shrink_zone() */
2577 }
2578
2579 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
2580 }
2581
2582 /*
2583 * Restore to original mask to avoid the impact on the caller if we
2584 * promoted it to __GFP_HIGHMEM.
2585 */
2586 sc->gfp_mask = orig_mask;
2587 }
2588
2589 /*
2590 * This is the main entry point to direct page reclaim.
2591 *
2592 * If a full scan of the inactive list fails to free enough memory then we
2593 * are "out of memory" and something needs to be killed.
2594 *
2595 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2596 * high - the zone may be full of dirty or under-writeback pages, which this
2597 * caller can't do much about. We kick the writeback threads and take explicit
2598 * naps in the hope that some of these pages can be written. But if the
2599 * allocating task holds filesystem locks which prevent writeout this might not
2600 * work, and the allocation attempt will fail.
2601 *
2602 * returns: 0, if no pages reclaimed
2603 * else, the number of pages reclaimed
2604 */
2605 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2606 struct scan_control *sc)
2607 {
2608 int initial_priority = sc->priority;
2609 unsigned long total_scanned = 0;
2610 unsigned long writeback_threshold;
2611 retry:
2612 delayacct_freepages_start();
2613
2614 if (global_reclaim(sc))
2615 count_vm_event(ALLOCSTALL);
2616
2617 do {
2618 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2619 sc->priority);
2620 sc->nr_scanned = 0;
2621 shrink_zones(zonelist, sc);
2622
2623 total_scanned += sc->nr_scanned;
2624 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2625 break;
2626
2627 if (sc->compaction_ready)
2628 break;
2629
2630 /*
2631 * If we're getting trouble reclaiming, start doing
2632 * writepage even in laptop mode.
2633 */
2634 if (sc->priority < DEF_PRIORITY - 2)
2635 sc->may_writepage = 1;
2636
2637 /*
2638 * Try to write back as many pages as we just scanned. This
2639 * tends to cause slow streaming writers to write data to the
2640 * disk smoothly, at the dirtying rate, which is nice. But
2641 * that's undesirable in laptop mode, where we *want* lumpy
2642 * writeout. So in laptop mode, write out the whole world.
2643 */
2644 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2645 if (total_scanned > writeback_threshold) {
2646 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2647 WB_REASON_TRY_TO_FREE_PAGES);
2648 sc->may_writepage = 1;
2649 }
2650 } while (--sc->priority >= 0);
2651
2652 delayacct_freepages_end();
2653
2654 if (sc->nr_reclaimed)
2655 return sc->nr_reclaimed;
2656
2657 /* Aborted reclaim to try compaction? don't OOM, then */
2658 if (sc->compaction_ready)
2659 return 1;
2660
2661 /* Untapped cgroup reserves? Don't OOM, retry. */
2662 if (!sc->may_thrash) {
2663 sc->priority = initial_priority;
2664 sc->may_thrash = 1;
2665 goto retry;
2666 }
2667
2668 return 0;
2669 }
2670
2671 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2672 {
2673 struct zone *zone;
2674 unsigned long pfmemalloc_reserve = 0;
2675 unsigned long free_pages = 0;
2676 int i;
2677 bool wmark_ok;
2678
2679 for (i = 0; i <= ZONE_NORMAL; i++) {
2680 zone = &pgdat->node_zones[i];
2681 if (!populated_zone(zone) ||
2682 zone_reclaimable_pages(zone) == 0)
2683 continue;
2684
2685 pfmemalloc_reserve += min_wmark_pages(zone);
2686 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2687 }
2688
2689 /* If there are no reserves (unexpected config) then do not throttle */
2690 if (!pfmemalloc_reserve)
2691 return true;
2692
2693 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2694
2695 /* kswapd must be awake if processes are being throttled */
2696 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2697 pgdat->classzone_idx = min(pgdat->classzone_idx,
2698 (enum zone_type)ZONE_NORMAL);
2699 wake_up_interruptible(&pgdat->kswapd_wait);
2700 }
2701
2702 return wmark_ok;
2703 }
2704
2705 /*
2706 * Throttle direct reclaimers if backing storage is backed by the network
2707 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2708 * depleted. kswapd will continue to make progress and wake the processes
2709 * when the low watermark is reached.
2710 *
2711 * Returns true if a fatal signal was delivered during throttling. If this
2712 * happens, the page allocator should not consider triggering the OOM killer.
2713 */
2714 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2715 nodemask_t *nodemask)
2716 {
2717 struct zoneref *z;
2718 struct zone *zone;
2719 pg_data_t *pgdat = NULL;
2720
2721 /*
2722 * Kernel threads should not be throttled as they may be indirectly
2723 * responsible for cleaning pages necessary for reclaim to make forward
2724 * progress. kjournald for example may enter direct reclaim while
2725 * committing a transaction where throttling it could forcing other
2726 * processes to block on log_wait_commit().
2727 */
2728 if (current->flags & PF_KTHREAD)
2729 goto out;
2730
2731 /*
2732 * If a fatal signal is pending, this process should not throttle.
2733 * It should return quickly so it can exit and free its memory
2734 */
2735 if (fatal_signal_pending(current))
2736 goto out;
2737
2738 /*
2739 * Check if the pfmemalloc reserves are ok by finding the first node
2740 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2741 * GFP_KERNEL will be required for allocating network buffers when
2742 * swapping over the network so ZONE_HIGHMEM is unusable.
2743 *
2744 * Throttling is based on the first usable node and throttled processes
2745 * wait on a queue until kswapd makes progress and wakes them. There
2746 * is an affinity then between processes waking up and where reclaim
2747 * progress has been made assuming the process wakes on the same node.
2748 * More importantly, processes running on remote nodes will not compete
2749 * for remote pfmemalloc reserves and processes on different nodes
2750 * should make reasonable progress.
2751 */
2752 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2753 gfp_zone(gfp_mask), nodemask) {
2754 if (zone_idx(zone) > ZONE_NORMAL)
2755 continue;
2756
2757 /* Throttle based on the first usable node */
2758 pgdat = zone->zone_pgdat;
2759 if (pfmemalloc_watermark_ok(pgdat))
2760 goto out;
2761 break;
2762 }
2763
2764 /* If no zone was usable by the allocation flags then do not throttle */
2765 if (!pgdat)
2766 goto out;
2767
2768 /* Account for the throttling */
2769 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2770
2771 /*
2772 * If the caller cannot enter the filesystem, it's possible that it
2773 * is due to the caller holding an FS lock or performing a journal
2774 * transaction in the case of a filesystem like ext[3|4]. In this case,
2775 * it is not safe to block on pfmemalloc_wait as kswapd could be
2776 * blocked waiting on the same lock. Instead, throttle for up to a
2777 * second before continuing.
2778 */
2779 if (!(gfp_mask & __GFP_FS)) {
2780 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2781 pfmemalloc_watermark_ok(pgdat), HZ);
2782
2783 goto check_pending;
2784 }
2785
2786 /* Throttle until kswapd wakes the process */
2787 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2788 pfmemalloc_watermark_ok(pgdat));
2789
2790 check_pending:
2791 if (fatal_signal_pending(current))
2792 return true;
2793
2794 out:
2795 return false;
2796 }
2797
2798 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2799 gfp_t gfp_mask, nodemask_t *nodemask)
2800 {
2801 unsigned long nr_reclaimed;
2802 struct scan_control sc = {
2803 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2804 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2805 .order = order,
2806 .nodemask = nodemask,
2807 .priority = DEF_PRIORITY,
2808 .may_writepage = !laptop_mode,
2809 .may_unmap = 1,
2810 .may_swap = 1,
2811 };
2812
2813 /*
2814 * Do not enter reclaim if fatal signal was delivered while throttled.
2815 * 1 is returned so that the page allocator does not OOM kill at this
2816 * point.
2817 */
2818 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2819 return 1;
2820
2821 trace_mm_vmscan_direct_reclaim_begin(order,
2822 sc.may_writepage,
2823 gfp_mask);
2824
2825 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2826
2827 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2828
2829 return nr_reclaimed;
2830 }
2831
2832 #ifdef CONFIG_MEMCG
2833
2834 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2835 gfp_t gfp_mask, bool noswap,
2836 struct zone *zone,
2837 unsigned long *nr_scanned)
2838 {
2839 struct scan_control sc = {
2840 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2841 .target_mem_cgroup = memcg,
2842 .may_writepage = !laptop_mode,
2843 .may_unmap = 1,
2844 .may_swap = !noswap,
2845 };
2846 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2847 int swappiness = mem_cgroup_swappiness(memcg);
2848 unsigned long lru_pages;
2849
2850 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2851 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2852
2853 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2854 sc.may_writepage,
2855 sc.gfp_mask);
2856
2857 /*
2858 * NOTE: Although we can get the priority field, using it
2859 * here is not a good idea, since it limits the pages we can scan.
2860 * if we don't reclaim here, the shrink_zone from balance_pgdat
2861 * will pick up pages from other mem cgroup's as well. We hack
2862 * the priority and make it zero.
2863 */
2864 shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
2865
2866 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2867
2868 *nr_scanned = sc.nr_scanned;
2869 return sc.nr_reclaimed;
2870 }
2871
2872 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2873 unsigned long nr_pages,
2874 gfp_t gfp_mask,
2875 bool may_swap)
2876 {
2877 struct zonelist *zonelist;
2878 unsigned long nr_reclaimed;
2879 int nid;
2880 struct scan_control sc = {
2881 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2882 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2883 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2884 .target_mem_cgroup = memcg,
2885 .priority = DEF_PRIORITY,
2886 .may_writepage = !laptop_mode,
2887 .may_unmap = 1,
2888 .may_swap = may_swap,
2889 };
2890
2891 /*
2892 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2893 * take care of from where we get pages. So the node where we start the
2894 * scan does not need to be the current node.
2895 */
2896 nid = mem_cgroup_select_victim_node(memcg);
2897
2898 zonelist = NODE_DATA(nid)->node_zonelists;
2899
2900 trace_mm_vmscan_memcg_reclaim_begin(0,
2901 sc.may_writepage,
2902 sc.gfp_mask);
2903
2904 current->flags |= PF_MEMALLOC;
2905 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2906 current->flags &= ~PF_MEMALLOC;
2907
2908 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2909
2910 return nr_reclaimed;
2911 }
2912 #endif
2913
2914 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2915 {
2916 struct mem_cgroup *memcg;
2917
2918 if (!total_swap_pages)
2919 return;
2920
2921 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2922 do {
2923 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2924
2925 if (inactive_anon_is_low(lruvec))
2926 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2927 sc, LRU_ACTIVE_ANON);
2928
2929 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2930 } while (memcg);
2931 }
2932
2933 static bool zone_balanced(struct zone *zone, int order,
2934 unsigned long balance_gap, int classzone_idx)
2935 {
2936 /*
2937 * if zone is so small that watermarks are the same, don't bother trying
2938 * to balance; kswapd would just spin continuously trying to balance it.
2939 */
2940 if (low_wmark_pages(zone) == high_wmark_pages(zone))
2941 return true;
2942
2943 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2944 balance_gap, classzone_idx))
2945 return false;
2946
2947 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2948 order, 0, classzone_idx) == COMPACT_SKIPPED)
2949 return false;
2950
2951 return true;
2952 }
2953
2954 /*
2955 * pgdat_balanced() is used when checking if a node is balanced.
2956 *
2957 * For order-0, all zones must be balanced!
2958 *
2959 * For high-order allocations only zones that meet watermarks and are in a
2960 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2961 * total of balanced pages must be at least 25% of the zones allowed by
2962 * classzone_idx for the node to be considered balanced. Forcing all zones to
2963 * be balanced for high orders can cause excessive reclaim when there are
2964 * imbalanced zones.
2965 * The choice of 25% is due to
2966 * o a 16M DMA zone that is balanced will not balance a zone on any
2967 * reasonable sized machine
2968 * o On all other machines, the top zone must be at least a reasonable
2969 * percentage of the middle zones. For example, on 32-bit x86, highmem
2970 * would need to be at least 256M for it to be balance a whole node.
2971 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2972 * to balance a node on its own. These seemed like reasonable ratios.
2973 */
2974 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2975 {
2976 unsigned long managed_pages = 0;
2977 unsigned long balanced_pages = 0;
2978 int i;
2979
2980 /* Check the watermark levels */
2981 for (i = 0; i <= classzone_idx; i++) {
2982 struct zone *zone = pgdat->node_zones + i;
2983
2984 if (!populated_zone(zone))
2985 continue;
2986
2987 managed_pages += zone->managed_pages;
2988
2989 /*
2990 * A special case here:
2991 *
2992 * balance_pgdat() skips over all_unreclaimable after
2993 * DEF_PRIORITY. Effectively, it considers them balanced so
2994 * they must be considered balanced here as well!
2995 */
2996 if (!zone_reclaimable(zone)) {
2997 balanced_pages += zone->managed_pages;
2998 continue;
2999 }
3000
3001 if (zone_balanced(zone, order, 0, i))
3002 balanced_pages += zone->managed_pages;
3003 else if (!order)
3004 return false;
3005 }
3006
3007 if (order)
3008 return balanced_pages >= (managed_pages >> 2);
3009 else
3010 return true;
3011 }
3012
3013 /*
3014 * Prepare kswapd for sleeping. This verifies that there are no processes
3015 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3016 *
3017 * Returns true if kswapd is ready to sleep
3018 */
3019 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3020 int classzone_idx)
3021 {
3022 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3023 if (remaining)
3024 return false;
3025
3026 /*
3027 * The throttled processes are normally woken up in balance_pgdat() as
3028 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3029 * race between when kswapd checks the watermarks and a process gets
3030 * throttled. There is also a potential race if processes get
3031 * throttled, kswapd wakes, a large process exits thereby balancing the
3032 * zones, which causes kswapd to exit balance_pgdat() before reaching
3033 * the wake up checks. If kswapd is going to sleep, no process should
3034 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3035 * the wake up is premature, processes will wake kswapd and get
3036 * throttled again. The difference from wake ups in balance_pgdat() is
3037 * that here we are under prepare_to_wait().
3038 */
3039 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3040 wake_up_all(&pgdat->pfmemalloc_wait);
3041
3042 return pgdat_balanced(pgdat, order, classzone_idx);
3043 }
3044
3045 /*
3046 * kswapd shrinks the zone by the number of pages required to reach
3047 * the high watermark.
3048 *
3049 * Returns true if kswapd scanned at least the requested number of pages to
3050 * reclaim or if the lack of progress was due to pages under writeback.
3051 * This is used to determine if the scanning priority needs to be raised.
3052 */
3053 static bool kswapd_shrink_zone(struct zone *zone,
3054 int classzone_idx,
3055 struct scan_control *sc,
3056 unsigned long *nr_attempted)
3057 {
3058 int testorder = sc->order;
3059 unsigned long balance_gap;
3060 bool lowmem_pressure;
3061
3062 /* Reclaim above the high watermark. */
3063 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3064
3065 /*
3066 * Kswapd reclaims only single pages with compaction enabled. Trying
3067 * too hard to reclaim until contiguous free pages have become
3068 * available can hurt performance by evicting too much useful data
3069 * from memory. Do not reclaim more than needed for compaction.
3070 */
3071 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3072 compaction_suitable(zone, sc->order, 0, classzone_idx)
3073 != COMPACT_SKIPPED)
3074 testorder = 0;
3075
3076 /*
3077 * We put equal pressure on every zone, unless one zone has way too
3078 * many pages free already. The "too many pages" is defined as the
3079 * high wmark plus a "gap" where the gap is either the low
3080 * watermark or 1% of the zone, whichever is smaller.
3081 */
3082 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3083 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3084
3085 /*
3086 * If there is no low memory pressure or the zone is balanced then no
3087 * reclaim is necessary
3088 */
3089 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3090 if (!lowmem_pressure && zone_balanced(zone, testorder,
3091 balance_gap, classzone_idx))
3092 return true;
3093
3094 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3095
3096 /* Account for the number of pages attempted to reclaim */
3097 *nr_attempted += sc->nr_to_reclaim;
3098
3099 clear_bit(ZONE_WRITEBACK, &zone->flags);
3100
3101 /*
3102 * If a zone reaches its high watermark, consider it to be no longer
3103 * congested. It's possible there are dirty pages backed by congested
3104 * BDIs but as pressure is relieved, speculatively avoid congestion
3105 * waits.
3106 */
3107 if (zone_reclaimable(zone) &&
3108 zone_balanced(zone, testorder, 0, classzone_idx)) {
3109 clear_bit(ZONE_CONGESTED, &zone->flags);
3110 clear_bit(ZONE_DIRTY, &zone->flags);
3111 }
3112
3113 return sc->nr_scanned >= sc->nr_to_reclaim;
3114 }
3115
3116 /*
3117 * For kswapd, balance_pgdat() will work across all this node's zones until
3118 * they are all at high_wmark_pages(zone).
3119 *
3120 * Returns the final order kswapd was reclaiming at
3121 *
3122 * There is special handling here for zones which are full of pinned pages.
3123 * This can happen if the pages are all mlocked, or if they are all used by
3124 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3125 * What we do is to detect the case where all pages in the zone have been
3126 * scanned twice and there has been zero successful reclaim. Mark the zone as
3127 * dead and from now on, only perform a short scan. Basically we're polling
3128 * the zone for when the problem goes away.
3129 *
3130 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3131 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3132 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3133 * lower zones regardless of the number of free pages in the lower zones. This
3134 * interoperates with the page allocator fallback scheme to ensure that aging
3135 * of pages is balanced across the zones.
3136 */
3137 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3138 int *classzone_idx)
3139 {
3140 int i;
3141 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
3142 unsigned long nr_soft_reclaimed;
3143 unsigned long nr_soft_scanned;
3144 struct scan_control sc = {
3145 .gfp_mask = GFP_KERNEL,
3146 .order = order,
3147 .priority = DEF_PRIORITY,
3148 .may_writepage = !laptop_mode,
3149 .may_unmap = 1,
3150 .may_swap = 1,
3151 };
3152 count_vm_event(PAGEOUTRUN);
3153
3154 do {
3155 unsigned long nr_attempted = 0;
3156 bool raise_priority = true;
3157 bool pgdat_needs_compaction = (order > 0);
3158
3159 sc.nr_reclaimed = 0;
3160
3161 /*
3162 * Scan in the highmem->dma direction for the highest
3163 * zone which needs scanning
3164 */
3165 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3166 struct zone *zone = pgdat->node_zones + i;
3167
3168 if (!populated_zone(zone))
3169 continue;
3170
3171 if (sc.priority != DEF_PRIORITY &&
3172 !zone_reclaimable(zone))
3173 continue;
3174
3175 /*
3176 * Do some background aging of the anon list, to give
3177 * pages a chance to be referenced before reclaiming.
3178 */
3179 age_active_anon(zone, &sc);
3180
3181 /*
3182 * If the number of buffer_heads in the machine
3183 * exceeds the maximum allowed level and this node
3184 * has a highmem zone, force kswapd to reclaim from
3185 * it to relieve lowmem pressure.
3186 */
3187 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3188 end_zone = i;
3189 break;
3190 }
3191
3192 if (!zone_balanced(zone, order, 0, 0)) {
3193 end_zone = i;
3194 break;
3195 } else {
3196 /*
3197 * If balanced, clear the dirty and congested
3198 * flags
3199 */
3200 clear_bit(ZONE_CONGESTED, &zone->flags);
3201 clear_bit(ZONE_DIRTY, &zone->flags);
3202 }
3203 }
3204
3205 if (i < 0)
3206 goto out;
3207
3208 for (i = 0; i <= end_zone; i++) {
3209 struct zone *zone = pgdat->node_zones + i;
3210
3211 if (!populated_zone(zone))
3212 continue;
3213
3214 /*
3215 * If any zone is currently balanced then kswapd will
3216 * not call compaction as it is expected that the
3217 * necessary pages are already available.
3218 */
3219 if (pgdat_needs_compaction &&
3220 zone_watermark_ok(zone, order,
3221 low_wmark_pages(zone),
3222 *classzone_idx, 0))
3223 pgdat_needs_compaction = false;
3224 }
3225
3226 /*
3227 * If we're getting trouble reclaiming, start doing writepage
3228 * even in laptop mode.
3229 */
3230 if (sc.priority < DEF_PRIORITY - 2)
3231 sc.may_writepage = 1;
3232
3233 /*
3234 * Now scan the zone in the dma->highmem direction, stopping
3235 * at the last zone which needs scanning.
3236 *
3237 * We do this because the page allocator works in the opposite
3238 * direction. This prevents the page allocator from allocating
3239 * pages behind kswapd's direction of progress, which would
3240 * cause too much scanning of the lower zones.
3241 */
3242 for (i = 0; i <= end_zone; i++) {
3243 struct zone *zone = pgdat->node_zones + i;
3244
3245 if (!populated_zone(zone))
3246 continue;
3247
3248 if (sc.priority != DEF_PRIORITY &&
3249 !zone_reclaimable(zone))
3250 continue;
3251
3252 sc.nr_scanned = 0;
3253
3254 nr_soft_scanned = 0;
3255 /*
3256 * Call soft limit reclaim before calling shrink_zone.
3257 */
3258 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3259 order, sc.gfp_mask,
3260 &nr_soft_scanned);
3261 sc.nr_reclaimed += nr_soft_reclaimed;
3262
3263 /*
3264 * There should be no need to raise the scanning
3265 * priority if enough pages are already being scanned
3266 * that that high watermark would be met at 100%
3267 * efficiency.
3268 */
3269 if (kswapd_shrink_zone(zone, end_zone,
3270 &sc, &nr_attempted))
3271 raise_priority = false;
3272 }
3273
3274 /*
3275 * If the low watermark is met there is no need for processes
3276 * to be throttled on pfmemalloc_wait as they should not be
3277 * able to safely make forward progress. Wake them
3278 */
3279 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3280 pfmemalloc_watermark_ok(pgdat))
3281 wake_up_all(&pgdat->pfmemalloc_wait);
3282
3283 /*
3284 * Fragmentation may mean that the system cannot be rebalanced
3285 * for high-order allocations in all zones. If twice the
3286 * allocation size has been reclaimed and the zones are still
3287 * not balanced then recheck the watermarks at order-0 to
3288 * prevent kswapd reclaiming excessively. Assume that a
3289 * process requested a high-order can direct reclaim/compact.
3290 */
3291 if (order && sc.nr_reclaimed >= 2UL << order)
3292 order = sc.order = 0;
3293
3294 /* Check if kswapd should be suspending */
3295 if (try_to_freeze() || kthread_should_stop())
3296 break;
3297
3298 /*
3299 * Compact if necessary and kswapd is reclaiming at least the
3300 * high watermark number of pages as requsted
3301 */
3302 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3303 compact_pgdat(pgdat, order);
3304
3305 /*
3306 * Raise priority if scanning rate is too low or there was no
3307 * progress in reclaiming pages
3308 */
3309 if (raise_priority || !sc.nr_reclaimed)
3310 sc.priority--;
3311 } while (sc.priority >= 1 &&
3312 !pgdat_balanced(pgdat, order, *classzone_idx));
3313
3314 out:
3315 /*
3316 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3317 * makes a decision on the order we were last reclaiming at. However,
3318 * if another caller entered the allocator slow path while kswapd
3319 * was awake, order will remain at the higher level
3320 */
3321 *classzone_idx = end_zone;
3322 return order;
3323 }
3324
3325 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3326 {
3327 long remaining = 0;
3328 DEFINE_WAIT(wait);
3329
3330 if (freezing(current) || kthread_should_stop())
3331 return;
3332
3333 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3334
3335 /* Try to sleep for a short interval */
3336 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3337 remaining = schedule_timeout(HZ/10);
3338 finish_wait(&pgdat->kswapd_wait, &wait);
3339 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3340 }
3341
3342 /*
3343 * After a short sleep, check if it was a premature sleep. If not, then
3344 * go fully to sleep until explicitly woken up.
3345 */
3346 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3347 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3348
3349 /*
3350 * vmstat counters are not perfectly accurate and the estimated
3351 * value for counters such as NR_FREE_PAGES can deviate from the
3352 * true value by nr_online_cpus * threshold. To avoid the zone
3353 * watermarks being breached while under pressure, we reduce the
3354 * per-cpu vmstat threshold while kswapd is awake and restore
3355 * them before going back to sleep.
3356 */
3357 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3358
3359 /*
3360 * Compaction records what page blocks it recently failed to
3361 * isolate pages from and skips them in the future scanning.
3362 * When kswapd is going to sleep, it is reasonable to assume
3363 * that pages and compaction may succeed so reset the cache.
3364 */
3365 reset_isolation_suitable(pgdat);
3366
3367 if (!kthread_should_stop())
3368 schedule();
3369
3370 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3371 } else {
3372 if (remaining)
3373 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3374 else
3375 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3376 }
3377 finish_wait(&pgdat->kswapd_wait, &wait);
3378 }
3379
3380 /*
3381 * The background pageout daemon, started as a kernel thread
3382 * from the init process.
3383 *
3384 * This basically trickles out pages so that we have _some_
3385 * free memory available even if there is no other activity
3386 * that frees anything up. This is needed for things like routing
3387 * etc, where we otherwise might have all activity going on in
3388 * asynchronous contexts that cannot page things out.
3389 *
3390 * If there are applications that are active memory-allocators
3391 * (most normal use), this basically shouldn't matter.
3392 */
3393 static int kswapd(void *p)
3394 {
3395 unsigned long order, new_order;
3396 unsigned balanced_order;
3397 int classzone_idx, new_classzone_idx;
3398 int balanced_classzone_idx;
3399 pg_data_t *pgdat = (pg_data_t*)p;
3400 struct task_struct *tsk = current;
3401
3402 struct reclaim_state reclaim_state = {
3403 .reclaimed_slab = 0,
3404 };
3405 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3406
3407 lockdep_set_current_reclaim_state(GFP_KERNEL);
3408
3409 if (!cpumask_empty(cpumask))
3410 set_cpus_allowed_ptr(tsk, cpumask);
3411 current->reclaim_state = &reclaim_state;
3412
3413 /*
3414 * Tell the memory management that we're a "memory allocator",
3415 * and that if we need more memory we should get access to it
3416 * regardless (see "__alloc_pages()"). "kswapd" should
3417 * never get caught in the normal page freeing logic.
3418 *
3419 * (Kswapd normally doesn't need memory anyway, but sometimes
3420 * you need a small amount of memory in order to be able to
3421 * page out something else, and this flag essentially protects
3422 * us from recursively trying to free more memory as we're
3423 * trying to free the first piece of memory in the first place).
3424 */
3425 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3426 set_freezable();
3427
3428 order = new_order = 0;
3429 balanced_order = 0;
3430 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3431 balanced_classzone_idx = classzone_idx;
3432 for ( ; ; ) {
3433 bool ret;
3434
3435 /*
3436 * If the last balance_pgdat was unsuccessful it's unlikely a
3437 * new request of a similar or harder type will succeed soon
3438 * so consider going to sleep on the basis we reclaimed at
3439 */
3440 if (balanced_classzone_idx >= new_classzone_idx &&
3441 balanced_order == new_order) {
3442 new_order = pgdat->kswapd_max_order;
3443 new_classzone_idx = pgdat->classzone_idx;
3444 pgdat->kswapd_max_order = 0;
3445 pgdat->classzone_idx = pgdat->nr_zones - 1;
3446 }
3447
3448 if (order < new_order || classzone_idx > new_classzone_idx) {
3449 /*
3450 * Don't sleep if someone wants a larger 'order'
3451 * allocation or has tigher zone constraints
3452 */
3453 order = new_order;
3454 classzone_idx = new_classzone_idx;
3455 } else {
3456 kswapd_try_to_sleep(pgdat, balanced_order,
3457 balanced_classzone_idx);
3458 order = pgdat->kswapd_max_order;
3459 classzone_idx = pgdat->classzone_idx;
3460 new_order = order;
3461 new_classzone_idx = classzone_idx;
3462 pgdat->kswapd_max_order = 0;
3463 pgdat->classzone_idx = pgdat->nr_zones - 1;
3464 }
3465
3466 ret = try_to_freeze();
3467 if (kthread_should_stop())
3468 break;
3469
3470 /*
3471 * We can speed up thawing tasks if we don't call balance_pgdat
3472 * after returning from the refrigerator
3473 */
3474 if (!ret) {
3475 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3476 balanced_classzone_idx = classzone_idx;
3477 balanced_order = balance_pgdat(pgdat, order,
3478 &balanced_classzone_idx);
3479 }
3480 }
3481
3482 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3483 current->reclaim_state = NULL;
3484 lockdep_clear_current_reclaim_state();
3485
3486 return 0;
3487 }
3488
3489 /*
3490 * A zone is low on free memory, so wake its kswapd task to service it.
3491 */
3492 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3493 {
3494 pg_data_t *pgdat;
3495
3496 if (!populated_zone(zone))
3497 return;
3498
3499 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3500 return;
3501 pgdat = zone->zone_pgdat;
3502 if (pgdat->kswapd_max_order < order) {
3503 pgdat->kswapd_max_order = order;
3504 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3505 }
3506 if (!waitqueue_active(&pgdat->kswapd_wait))
3507 return;
3508 if (zone_balanced(zone, order, 0, 0))
3509 return;
3510
3511 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3512 wake_up_interruptible(&pgdat->kswapd_wait);
3513 }
3514
3515 #ifdef CONFIG_HIBERNATION
3516 /*
3517 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3518 * freed pages.
3519 *
3520 * Rather than trying to age LRUs the aim is to preserve the overall
3521 * LRU order by reclaiming preferentially
3522 * inactive > active > active referenced > active mapped
3523 */
3524 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3525 {
3526 struct reclaim_state reclaim_state;
3527 struct scan_control sc = {
3528 .nr_to_reclaim = nr_to_reclaim,
3529 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3530 .priority = DEF_PRIORITY,
3531 .may_writepage = 1,
3532 .may_unmap = 1,
3533 .may_swap = 1,
3534 .hibernation_mode = 1,
3535 };
3536 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3537 struct task_struct *p = current;
3538 unsigned long nr_reclaimed;
3539
3540 p->flags |= PF_MEMALLOC;
3541 lockdep_set_current_reclaim_state(sc.gfp_mask);
3542 reclaim_state.reclaimed_slab = 0;
3543 p->reclaim_state = &reclaim_state;
3544
3545 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3546
3547 p->reclaim_state = NULL;
3548 lockdep_clear_current_reclaim_state();
3549 p->flags &= ~PF_MEMALLOC;
3550
3551 return nr_reclaimed;
3552 }
3553 #endif /* CONFIG_HIBERNATION */
3554
3555 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3556 not required for correctness. So if the last cpu in a node goes
3557 away, we get changed to run anywhere: as the first one comes back,
3558 restore their cpu bindings. */
3559 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3560 void *hcpu)
3561 {
3562 int nid;
3563
3564 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3565 for_each_node_state(nid, N_MEMORY) {
3566 pg_data_t *pgdat = NODE_DATA(nid);
3567 const struct cpumask *mask;
3568
3569 mask = cpumask_of_node(pgdat->node_id);
3570
3571 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3572 /* One of our CPUs online: restore mask */
3573 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3574 }
3575 }
3576 return NOTIFY_OK;
3577 }
3578
3579 /*
3580 * This kswapd start function will be called by init and node-hot-add.
3581 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3582 */
3583 int kswapd_run(int nid)
3584 {
3585 pg_data_t *pgdat = NODE_DATA(nid);
3586 int ret = 0;
3587
3588 if (pgdat->kswapd)
3589 return 0;
3590
3591 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3592 if (IS_ERR(pgdat->kswapd)) {
3593 /* failure at boot is fatal */
3594 BUG_ON(system_state == SYSTEM_BOOTING);
3595 pr_err("Failed to start kswapd on node %d\n", nid);
3596 ret = PTR_ERR(pgdat->kswapd);
3597 pgdat->kswapd = NULL;
3598 }
3599 return ret;
3600 }
3601
3602 /*
3603 * Called by memory hotplug when all memory in a node is offlined. Caller must
3604 * hold mem_hotplug_begin/end().
3605 */
3606 void kswapd_stop(int nid)
3607 {
3608 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3609
3610 if (kswapd) {
3611 kthread_stop(kswapd);
3612 NODE_DATA(nid)->kswapd = NULL;
3613 }
3614 }
3615
3616 static int __init kswapd_init(void)
3617 {
3618 int nid;
3619
3620 swap_setup();
3621 for_each_node_state(nid, N_MEMORY)
3622 kswapd_run(nid);
3623 hotcpu_notifier(cpu_callback, 0);
3624 return 0;
3625 }
3626
3627 module_init(kswapd_init)
3628
3629 #ifdef CONFIG_NUMA
3630 /*
3631 * Zone reclaim mode
3632 *
3633 * If non-zero call zone_reclaim when the number of free pages falls below
3634 * the watermarks.
3635 */
3636 int zone_reclaim_mode __read_mostly;
3637
3638 #define RECLAIM_OFF 0
3639 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3640 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3641 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3642
3643 /*
3644 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3645 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3646 * a zone.
3647 */
3648 #define ZONE_RECLAIM_PRIORITY 4
3649
3650 /*
3651 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3652 * occur.
3653 */
3654 int sysctl_min_unmapped_ratio = 1;
3655
3656 /*
3657 * If the number of slab pages in a zone grows beyond this percentage then
3658 * slab reclaim needs to occur.
3659 */
3660 int sysctl_min_slab_ratio = 5;
3661
3662 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3663 {
3664 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3665 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3666 zone_page_state(zone, NR_ACTIVE_FILE);
3667
3668 /*
3669 * It's possible for there to be more file mapped pages than
3670 * accounted for by the pages on the file LRU lists because
3671 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3672 */
3673 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3674 }
3675
3676 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3677 static unsigned long zone_pagecache_reclaimable(struct zone *zone)
3678 {
3679 unsigned long nr_pagecache_reclaimable;
3680 unsigned long delta = 0;
3681
3682 /*
3683 * If RECLAIM_UNMAP is set, then all file pages are considered
3684 * potentially reclaimable. Otherwise, we have to worry about
3685 * pages like swapcache and zone_unmapped_file_pages() provides
3686 * a better estimate
3687 */
3688 if (zone_reclaim_mode & RECLAIM_UNMAP)
3689 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3690 else
3691 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3692
3693 /* If we can't clean pages, remove dirty pages from consideration */
3694 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3695 delta += zone_page_state(zone, NR_FILE_DIRTY);
3696
3697 /* Watch for any possible underflows due to delta */
3698 if (unlikely(delta > nr_pagecache_reclaimable))
3699 delta = nr_pagecache_reclaimable;
3700
3701 return nr_pagecache_reclaimable - delta;
3702 }
3703
3704 /*
3705 * Try to free up some pages from this zone through reclaim.
3706 */
3707 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3708 {
3709 /* Minimum pages needed in order to stay on node */
3710 const unsigned long nr_pages = 1 << order;
3711 struct task_struct *p = current;
3712 struct reclaim_state reclaim_state;
3713 struct scan_control sc = {
3714 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3715 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3716 .order = order,
3717 .priority = ZONE_RECLAIM_PRIORITY,
3718 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3719 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
3720 .may_swap = 1,
3721 };
3722
3723 cond_resched();
3724 /*
3725 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3726 * and we also need to be able to write out pages for RECLAIM_WRITE
3727 * and RECLAIM_UNMAP.
3728 */
3729 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3730 lockdep_set_current_reclaim_state(gfp_mask);
3731 reclaim_state.reclaimed_slab = 0;
3732 p->reclaim_state = &reclaim_state;
3733
3734 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3735 /*
3736 * Free memory by calling shrink zone with increasing
3737 * priorities until we have enough memory freed.
3738 */
3739 do {
3740 shrink_zone(zone, &sc, true);
3741 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3742 }
3743
3744 p->reclaim_state = NULL;
3745 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3746 lockdep_clear_current_reclaim_state();
3747 return sc.nr_reclaimed >= nr_pages;
3748 }
3749
3750 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3751 {
3752 int node_id;
3753 int ret;
3754
3755 /*
3756 * Zone reclaim reclaims unmapped file backed pages and
3757 * slab pages if we are over the defined limits.
3758 *
3759 * A small portion of unmapped file backed pages is needed for
3760 * file I/O otherwise pages read by file I/O will be immediately
3761 * thrown out if the zone is overallocated. So we do not reclaim
3762 * if less than a specified percentage of the zone is used by
3763 * unmapped file backed pages.
3764 */
3765 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3766 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3767 return ZONE_RECLAIM_FULL;
3768
3769 if (!zone_reclaimable(zone))
3770 return ZONE_RECLAIM_FULL;
3771
3772 /*
3773 * Do not scan if the allocation should not be delayed.
3774 */
3775 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3776 return ZONE_RECLAIM_NOSCAN;
3777
3778 /*
3779 * Only run zone reclaim on the local zone or on zones that do not
3780 * have associated processors. This will favor the local processor
3781 * over remote processors and spread off node memory allocations
3782 * as wide as possible.
3783 */
3784 node_id = zone_to_nid(zone);
3785 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3786 return ZONE_RECLAIM_NOSCAN;
3787
3788 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3789 return ZONE_RECLAIM_NOSCAN;
3790
3791 ret = __zone_reclaim(zone, gfp_mask, order);
3792 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3793
3794 if (!ret)
3795 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3796
3797 return ret;
3798 }
3799 #endif
3800
3801 /*
3802 * page_evictable - test whether a page is evictable
3803 * @page: the page to test
3804 *
3805 * Test whether page is evictable--i.e., should be placed on active/inactive
3806 * lists vs unevictable list.
3807 *
3808 * Reasons page might not be evictable:
3809 * (1) page's mapping marked unevictable
3810 * (2) page is part of an mlocked VMA
3811 *
3812 */
3813 int page_evictable(struct page *page)
3814 {
3815 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3816 }
3817
3818 #ifdef CONFIG_SHMEM
3819 /**
3820 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3821 * @pages: array of pages to check
3822 * @nr_pages: number of pages to check
3823 *
3824 * Checks pages for evictability and moves them to the appropriate lru list.
3825 *
3826 * This function is only used for SysV IPC SHM_UNLOCK.
3827 */
3828 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3829 {
3830 struct lruvec *lruvec;
3831 struct zone *zone = NULL;
3832 int pgscanned = 0;
3833 int pgrescued = 0;
3834 int i;
3835
3836 for (i = 0; i < nr_pages; i++) {
3837 struct page *page = pages[i];
3838 struct zone *pagezone;
3839
3840 pgscanned++;
3841 pagezone = page_zone(page);
3842 if (pagezone != zone) {
3843 if (zone)
3844 spin_unlock_irq(&zone->lru_lock);
3845 zone = pagezone;
3846 spin_lock_irq(&zone->lru_lock);
3847 }
3848 lruvec = mem_cgroup_page_lruvec(page, zone);
3849
3850 if (!PageLRU(page) || !PageUnevictable(page))
3851 continue;
3852
3853 if (page_evictable(page)) {
3854 enum lru_list lru = page_lru_base_type(page);
3855
3856 VM_BUG_ON_PAGE(PageActive(page), page);
3857 ClearPageUnevictable(page);
3858 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3859 add_page_to_lru_list(page, lruvec, lru);
3860 pgrescued++;
3861 }
3862 }
3863
3864 if (zone) {
3865 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3866 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3867 spin_unlock_irq(&zone->lru_lock);
3868 }
3869 }
3870 #endif /* CONFIG_SHMEM */