]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/vmscan.c
VFS: Provide empty name qstr
[mirror_ubuntu-artful-kernel.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/mm.h>
17 #include <linux/sched/mm.h>
18 #include <linux/module.h>
19 #include <linux/gfp.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/highmem.h>
25 #include <linux/vmpressure.h>
26 #include <linux/vmstat.h>
27 #include <linux/file.h>
28 #include <linux/writeback.h>
29 #include <linux/blkdev.h>
30 #include <linux/buffer_head.h> /* for try_to_release_page(),
31 buffer_heads_over_limit */
32 #include <linux/mm_inline.h>
33 #include <linux/backing-dev.h>
34 #include <linux/rmap.h>
35 #include <linux/topology.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/compaction.h>
39 #include <linux/notifier.h>
40 #include <linux/rwsem.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/freezer.h>
44 #include <linux/memcontrol.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51
52 #include <asm/tlbflush.h>
53 #include <asm/div64.h>
54
55 #include <linux/swapops.h>
56 #include <linux/balloon_compaction.h>
57
58 #include "internal.h"
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/vmscan.h>
62
63 struct scan_control {
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
66
67 /* This context's GFP mask */
68 gfp_t gfp_mask;
69
70 /* Allocation order */
71 int order;
72
73 /*
74 * Nodemask of nodes allowed by the caller. If NULL, all nodes
75 * are scanned.
76 */
77 nodemask_t *nodemask;
78
79 /*
80 * The memory cgroup that hit its limit and as a result is the
81 * primary target of this reclaim invocation.
82 */
83 struct mem_cgroup *target_mem_cgroup;
84
85 /* Scan (total_size >> priority) pages at once */
86 int priority;
87
88 /* The highest zone to isolate pages for reclaim from */
89 enum zone_type reclaim_idx;
90
91 /* Writepage batching in laptop mode; RECLAIM_WRITE */
92 unsigned int may_writepage:1;
93
94 /* Can mapped pages be reclaimed? */
95 unsigned int may_unmap:1;
96
97 /* Can pages be swapped as part of reclaim? */
98 unsigned int may_swap:1;
99
100 /*
101 * Cgroups are not reclaimed below their configured memory.low,
102 * unless we threaten to OOM. If any cgroups are skipped due to
103 * memory.low and nothing was reclaimed, go back for memory.low.
104 */
105 unsigned int memcg_low_reclaim:1;
106 unsigned int memcg_low_skipped:1;
107
108 unsigned int hibernation_mode:1;
109
110 /* One of the zones is ready for compaction */
111 unsigned int compaction_ready:1;
112
113 /* Incremented by the number of inactive pages that were scanned */
114 unsigned long nr_scanned;
115
116 /* Number of pages freed so far during a call to shrink_zones() */
117 unsigned long nr_reclaimed;
118 };
119
120 #ifdef ARCH_HAS_PREFETCH
121 #define prefetch_prev_lru_page(_page, _base, _field) \
122 do { \
123 if ((_page)->lru.prev != _base) { \
124 struct page *prev; \
125 \
126 prev = lru_to_page(&(_page->lru)); \
127 prefetch(&prev->_field); \
128 } \
129 } while (0)
130 #else
131 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132 #endif
133
134 #ifdef ARCH_HAS_PREFETCHW
135 #define prefetchw_prev_lru_page(_page, _base, _field) \
136 do { \
137 if ((_page)->lru.prev != _base) { \
138 struct page *prev; \
139 \
140 prev = lru_to_page(&(_page->lru)); \
141 prefetchw(&prev->_field); \
142 } \
143 } while (0)
144 #else
145 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
146 #endif
147
148 /*
149 * From 0 .. 100. Higher means more swappy.
150 */
151 int vm_swappiness = 60;
152 /*
153 * The total number of pages which are beyond the high watermark within all
154 * zones.
155 */
156 unsigned long vm_total_pages;
157
158 static LIST_HEAD(shrinker_list);
159 static DECLARE_RWSEM(shrinker_rwsem);
160
161 #ifdef CONFIG_MEMCG
162 static bool global_reclaim(struct scan_control *sc)
163 {
164 return !sc->target_mem_cgroup;
165 }
166
167 /**
168 * sane_reclaim - is the usual dirty throttling mechanism operational?
169 * @sc: scan_control in question
170 *
171 * The normal page dirty throttling mechanism in balance_dirty_pages() is
172 * completely broken with the legacy memcg and direct stalling in
173 * shrink_page_list() is used for throttling instead, which lacks all the
174 * niceties such as fairness, adaptive pausing, bandwidth proportional
175 * allocation and configurability.
176 *
177 * This function tests whether the vmscan currently in progress can assume
178 * that the normal dirty throttling mechanism is operational.
179 */
180 static bool sane_reclaim(struct scan_control *sc)
181 {
182 struct mem_cgroup *memcg = sc->target_mem_cgroup;
183
184 if (!memcg)
185 return true;
186 #ifdef CONFIG_CGROUP_WRITEBACK
187 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
188 return true;
189 #endif
190 return false;
191 }
192 #else
193 static bool global_reclaim(struct scan_control *sc)
194 {
195 return true;
196 }
197
198 static bool sane_reclaim(struct scan_control *sc)
199 {
200 return true;
201 }
202 #endif
203
204 /*
205 * This misses isolated pages which are not accounted for to save counters.
206 * As the data only determines if reclaim or compaction continues, it is
207 * not expected that isolated pages will be a dominating factor.
208 */
209 unsigned long zone_reclaimable_pages(struct zone *zone)
210 {
211 unsigned long nr;
212
213 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
214 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
215 if (get_nr_swap_pages() > 0)
216 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
217 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
218
219 return nr;
220 }
221
222 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
223 {
224 unsigned long nr;
225
226 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
227 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
228 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
229
230 if (get_nr_swap_pages() > 0)
231 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
232 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
233 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
234
235 return nr;
236 }
237
238 /**
239 * lruvec_lru_size - Returns the number of pages on the given LRU list.
240 * @lruvec: lru vector
241 * @lru: lru to use
242 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
243 */
244 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
245 {
246 unsigned long lru_size;
247 int zid;
248
249 if (!mem_cgroup_disabled())
250 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
251 else
252 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
253
254 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
255 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
256 unsigned long size;
257
258 if (!managed_zone(zone))
259 continue;
260
261 if (!mem_cgroup_disabled())
262 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
263 else
264 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
265 NR_ZONE_LRU_BASE + lru);
266 lru_size -= min(size, lru_size);
267 }
268
269 return lru_size;
270
271 }
272
273 /*
274 * Add a shrinker callback to be called from the vm.
275 */
276 int register_shrinker(struct shrinker *shrinker)
277 {
278 size_t size = sizeof(*shrinker->nr_deferred);
279
280 if (shrinker->flags & SHRINKER_NUMA_AWARE)
281 size *= nr_node_ids;
282
283 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
284 if (!shrinker->nr_deferred)
285 return -ENOMEM;
286
287 down_write(&shrinker_rwsem);
288 list_add_tail(&shrinker->list, &shrinker_list);
289 up_write(&shrinker_rwsem);
290 return 0;
291 }
292 EXPORT_SYMBOL(register_shrinker);
293
294 /*
295 * Remove one
296 */
297 void unregister_shrinker(struct shrinker *shrinker)
298 {
299 down_write(&shrinker_rwsem);
300 list_del(&shrinker->list);
301 up_write(&shrinker_rwsem);
302 kfree(shrinker->nr_deferred);
303 }
304 EXPORT_SYMBOL(unregister_shrinker);
305
306 #define SHRINK_BATCH 128
307
308 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
309 struct shrinker *shrinker,
310 unsigned long nr_scanned,
311 unsigned long nr_eligible)
312 {
313 unsigned long freed = 0;
314 unsigned long long delta;
315 long total_scan;
316 long freeable;
317 long nr;
318 long new_nr;
319 int nid = shrinkctl->nid;
320 long batch_size = shrinker->batch ? shrinker->batch
321 : SHRINK_BATCH;
322 long scanned = 0, next_deferred;
323
324 freeable = shrinker->count_objects(shrinker, shrinkctl);
325 if (freeable == 0)
326 return 0;
327
328 /*
329 * copy the current shrinker scan count into a local variable
330 * and zero it so that other concurrent shrinker invocations
331 * don't also do this scanning work.
332 */
333 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
334
335 total_scan = nr;
336 delta = (4 * nr_scanned) / shrinker->seeks;
337 delta *= freeable;
338 do_div(delta, nr_eligible + 1);
339 total_scan += delta;
340 if (total_scan < 0) {
341 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
342 shrinker->scan_objects, total_scan);
343 total_scan = freeable;
344 next_deferred = nr;
345 } else
346 next_deferred = total_scan;
347
348 /*
349 * We need to avoid excessive windup on filesystem shrinkers
350 * due to large numbers of GFP_NOFS allocations causing the
351 * shrinkers to return -1 all the time. This results in a large
352 * nr being built up so when a shrink that can do some work
353 * comes along it empties the entire cache due to nr >>>
354 * freeable. This is bad for sustaining a working set in
355 * memory.
356 *
357 * Hence only allow the shrinker to scan the entire cache when
358 * a large delta change is calculated directly.
359 */
360 if (delta < freeable / 4)
361 total_scan = min(total_scan, freeable / 2);
362
363 /*
364 * Avoid risking looping forever due to too large nr value:
365 * never try to free more than twice the estimate number of
366 * freeable entries.
367 */
368 if (total_scan > freeable * 2)
369 total_scan = freeable * 2;
370
371 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
372 nr_scanned, nr_eligible,
373 freeable, delta, total_scan);
374
375 /*
376 * Normally, we should not scan less than batch_size objects in one
377 * pass to avoid too frequent shrinker calls, but if the slab has less
378 * than batch_size objects in total and we are really tight on memory,
379 * we will try to reclaim all available objects, otherwise we can end
380 * up failing allocations although there are plenty of reclaimable
381 * objects spread over several slabs with usage less than the
382 * batch_size.
383 *
384 * We detect the "tight on memory" situations by looking at the total
385 * number of objects we want to scan (total_scan). If it is greater
386 * than the total number of objects on slab (freeable), we must be
387 * scanning at high prio and therefore should try to reclaim as much as
388 * possible.
389 */
390 while (total_scan >= batch_size ||
391 total_scan >= freeable) {
392 unsigned long ret;
393 unsigned long nr_to_scan = min(batch_size, total_scan);
394
395 shrinkctl->nr_to_scan = nr_to_scan;
396 ret = shrinker->scan_objects(shrinker, shrinkctl);
397 if (ret == SHRINK_STOP)
398 break;
399 freed += ret;
400
401 count_vm_events(SLABS_SCANNED, nr_to_scan);
402 total_scan -= nr_to_scan;
403 scanned += nr_to_scan;
404
405 cond_resched();
406 }
407
408 if (next_deferred >= scanned)
409 next_deferred -= scanned;
410 else
411 next_deferred = 0;
412 /*
413 * move the unused scan count back into the shrinker in a
414 * manner that handles concurrent updates. If we exhausted the
415 * scan, there is no need to do an update.
416 */
417 if (next_deferred > 0)
418 new_nr = atomic_long_add_return(next_deferred,
419 &shrinker->nr_deferred[nid]);
420 else
421 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
422
423 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
424 return freed;
425 }
426
427 /**
428 * shrink_slab - shrink slab caches
429 * @gfp_mask: allocation context
430 * @nid: node whose slab caches to target
431 * @memcg: memory cgroup whose slab caches to target
432 * @nr_scanned: pressure numerator
433 * @nr_eligible: pressure denominator
434 *
435 * Call the shrink functions to age shrinkable caches.
436 *
437 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
438 * unaware shrinkers will receive a node id of 0 instead.
439 *
440 * @memcg specifies the memory cgroup to target. If it is not NULL,
441 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
442 * objects from the memory cgroup specified. Otherwise, only unaware
443 * shrinkers are called.
444 *
445 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
446 * the available objects should be scanned. Page reclaim for example
447 * passes the number of pages scanned and the number of pages on the
448 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
449 * when it encountered mapped pages. The ratio is further biased by
450 * the ->seeks setting of the shrink function, which indicates the
451 * cost to recreate an object relative to that of an LRU page.
452 *
453 * Returns the number of reclaimed slab objects.
454 */
455 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
456 struct mem_cgroup *memcg,
457 unsigned long nr_scanned,
458 unsigned long nr_eligible)
459 {
460 struct shrinker *shrinker;
461 unsigned long freed = 0;
462
463 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
464 return 0;
465
466 if (nr_scanned == 0)
467 nr_scanned = SWAP_CLUSTER_MAX;
468
469 if (!down_read_trylock(&shrinker_rwsem)) {
470 /*
471 * If we would return 0, our callers would understand that we
472 * have nothing else to shrink and give up trying. By returning
473 * 1 we keep it going and assume we'll be able to shrink next
474 * time.
475 */
476 freed = 1;
477 goto out;
478 }
479
480 list_for_each_entry(shrinker, &shrinker_list, list) {
481 struct shrink_control sc = {
482 .gfp_mask = gfp_mask,
483 .nid = nid,
484 .memcg = memcg,
485 };
486
487 /*
488 * If kernel memory accounting is disabled, we ignore
489 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
490 * passing NULL for memcg.
491 */
492 if (memcg_kmem_enabled() &&
493 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
494 continue;
495
496 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
497 sc.nid = 0;
498
499 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
500 }
501
502 up_read(&shrinker_rwsem);
503 out:
504 cond_resched();
505 return freed;
506 }
507
508 void drop_slab_node(int nid)
509 {
510 unsigned long freed;
511
512 do {
513 struct mem_cgroup *memcg = NULL;
514
515 freed = 0;
516 do {
517 freed += shrink_slab(GFP_KERNEL, nid, memcg,
518 1000, 1000);
519 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
520 } while (freed > 10);
521 }
522
523 void drop_slab(void)
524 {
525 int nid;
526
527 for_each_online_node(nid)
528 drop_slab_node(nid);
529 }
530
531 static inline int is_page_cache_freeable(struct page *page)
532 {
533 /*
534 * A freeable page cache page is referenced only by the caller
535 * that isolated the page, the page cache radix tree and
536 * optional buffer heads at page->private.
537 */
538 return page_count(page) - page_has_private(page) == 2;
539 }
540
541 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
542 {
543 if (current->flags & PF_SWAPWRITE)
544 return 1;
545 if (!inode_write_congested(inode))
546 return 1;
547 if (inode_to_bdi(inode) == current->backing_dev_info)
548 return 1;
549 return 0;
550 }
551
552 /*
553 * We detected a synchronous write error writing a page out. Probably
554 * -ENOSPC. We need to propagate that into the address_space for a subsequent
555 * fsync(), msync() or close().
556 *
557 * The tricky part is that after writepage we cannot touch the mapping: nothing
558 * prevents it from being freed up. But we have a ref on the page and once
559 * that page is locked, the mapping is pinned.
560 *
561 * We're allowed to run sleeping lock_page() here because we know the caller has
562 * __GFP_FS.
563 */
564 static void handle_write_error(struct address_space *mapping,
565 struct page *page, int error)
566 {
567 lock_page(page);
568 if (page_mapping(page) == mapping)
569 mapping_set_error(mapping, error);
570 unlock_page(page);
571 }
572
573 /* possible outcome of pageout() */
574 typedef enum {
575 /* failed to write page out, page is locked */
576 PAGE_KEEP,
577 /* move page to the active list, page is locked */
578 PAGE_ACTIVATE,
579 /* page has been sent to the disk successfully, page is unlocked */
580 PAGE_SUCCESS,
581 /* page is clean and locked */
582 PAGE_CLEAN,
583 } pageout_t;
584
585 /*
586 * pageout is called by shrink_page_list() for each dirty page.
587 * Calls ->writepage().
588 */
589 static pageout_t pageout(struct page *page, struct address_space *mapping,
590 struct scan_control *sc)
591 {
592 /*
593 * If the page is dirty, only perform writeback if that write
594 * will be non-blocking. To prevent this allocation from being
595 * stalled by pagecache activity. But note that there may be
596 * stalls if we need to run get_block(). We could test
597 * PagePrivate for that.
598 *
599 * If this process is currently in __generic_file_write_iter() against
600 * this page's queue, we can perform writeback even if that
601 * will block.
602 *
603 * If the page is swapcache, write it back even if that would
604 * block, for some throttling. This happens by accident, because
605 * swap_backing_dev_info is bust: it doesn't reflect the
606 * congestion state of the swapdevs. Easy to fix, if needed.
607 */
608 if (!is_page_cache_freeable(page))
609 return PAGE_KEEP;
610 if (!mapping) {
611 /*
612 * Some data journaling orphaned pages can have
613 * page->mapping == NULL while being dirty with clean buffers.
614 */
615 if (page_has_private(page)) {
616 if (try_to_free_buffers(page)) {
617 ClearPageDirty(page);
618 pr_info("%s: orphaned page\n", __func__);
619 return PAGE_CLEAN;
620 }
621 }
622 return PAGE_KEEP;
623 }
624 if (mapping->a_ops->writepage == NULL)
625 return PAGE_ACTIVATE;
626 if (!may_write_to_inode(mapping->host, sc))
627 return PAGE_KEEP;
628
629 if (clear_page_dirty_for_io(page)) {
630 int res;
631 struct writeback_control wbc = {
632 .sync_mode = WB_SYNC_NONE,
633 .nr_to_write = SWAP_CLUSTER_MAX,
634 .range_start = 0,
635 .range_end = LLONG_MAX,
636 .for_reclaim = 1,
637 };
638
639 SetPageReclaim(page);
640 res = mapping->a_ops->writepage(page, &wbc);
641 if (res < 0)
642 handle_write_error(mapping, page, res);
643 if (res == AOP_WRITEPAGE_ACTIVATE) {
644 ClearPageReclaim(page);
645 return PAGE_ACTIVATE;
646 }
647
648 if (!PageWriteback(page)) {
649 /* synchronous write or broken a_ops? */
650 ClearPageReclaim(page);
651 }
652 trace_mm_vmscan_writepage(page);
653 inc_node_page_state(page, NR_VMSCAN_WRITE);
654 return PAGE_SUCCESS;
655 }
656
657 return PAGE_CLEAN;
658 }
659
660 /*
661 * Same as remove_mapping, but if the page is removed from the mapping, it
662 * gets returned with a refcount of 0.
663 */
664 static int __remove_mapping(struct address_space *mapping, struct page *page,
665 bool reclaimed)
666 {
667 unsigned long flags;
668
669 BUG_ON(!PageLocked(page));
670 BUG_ON(mapping != page_mapping(page));
671
672 spin_lock_irqsave(&mapping->tree_lock, flags);
673 /*
674 * The non racy check for a busy page.
675 *
676 * Must be careful with the order of the tests. When someone has
677 * a ref to the page, it may be possible that they dirty it then
678 * drop the reference. So if PageDirty is tested before page_count
679 * here, then the following race may occur:
680 *
681 * get_user_pages(&page);
682 * [user mapping goes away]
683 * write_to(page);
684 * !PageDirty(page) [good]
685 * SetPageDirty(page);
686 * put_page(page);
687 * !page_count(page) [good, discard it]
688 *
689 * [oops, our write_to data is lost]
690 *
691 * Reversing the order of the tests ensures such a situation cannot
692 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
693 * load is not satisfied before that of page->_refcount.
694 *
695 * Note that if SetPageDirty is always performed via set_page_dirty,
696 * and thus under tree_lock, then this ordering is not required.
697 */
698 if (!page_ref_freeze(page, 2))
699 goto cannot_free;
700 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
701 if (unlikely(PageDirty(page))) {
702 page_ref_unfreeze(page, 2);
703 goto cannot_free;
704 }
705
706 if (PageSwapCache(page)) {
707 swp_entry_t swap = { .val = page_private(page) };
708 mem_cgroup_swapout(page, swap);
709 __delete_from_swap_cache(page);
710 spin_unlock_irqrestore(&mapping->tree_lock, flags);
711 swapcache_free(swap);
712 } else {
713 void (*freepage)(struct page *);
714 void *shadow = NULL;
715
716 freepage = mapping->a_ops->freepage;
717 /*
718 * Remember a shadow entry for reclaimed file cache in
719 * order to detect refaults, thus thrashing, later on.
720 *
721 * But don't store shadows in an address space that is
722 * already exiting. This is not just an optizimation,
723 * inode reclaim needs to empty out the radix tree or
724 * the nodes are lost. Don't plant shadows behind its
725 * back.
726 *
727 * We also don't store shadows for DAX mappings because the
728 * only page cache pages found in these are zero pages
729 * covering holes, and because we don't want to mix DAX
730 * exceptional entries and shadow exceptional entries in the
731 * same page_tree.
732 */
733 if (reclaimed && page_is_file_cache(page) &&
734 !mapping_exiting(mapping) && !dax_mapping(mapping))
735 shadow = workingset_eviction(mapping, page);
736 __delete_from_page_cache(page, shadow);
737 spin_unlock_irqrestore(&mapping->tree_lock, flags);
738
739 if (freepage != NULL)
740 freepage(page);
741 }
742
743 return 1;
744
745 cannot_free:
746 spin_unlock_irqrestore(&mapping->tree_lock, flags);
747 return 0;
748 }
749
750 /*
751 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
752 * someone else has a ref on the page, abort and return 0. If it was
753 * successfully detached, return 1. Assumes the caller has a single ref on
754 * this page.
755 */
756 int remove_mapping(struct address_space *mapping, struct page *page)
757 {
758 if (__remove_mapping(mapping, page, false)) {
759 /*
760 * Unfreezing the refcount with 1 rather than 2 effectively
761 * drops the pagecache ref for us without requiring another
762 * atomic operation.
763 */
764 page_ref_unfreeze(page, 1);
765 return 1;
766 }
767 return 0;
768 }
769
770 /**
771 * putback_lru_page - put previously isolated page onto appropriate LRU list
772 * @page: page to be put back to appropriate lru list
773 *
774 * Add previously isolated @page to appropriate LRU list.
775 * Page may still be unevictable for other reasons.
776 *
777 * lru_lock must not be held, interrupts must be enabled.
778 */
779 void putback_lru_page(struct page *page)
780 {
781 bool is_unevictable;
782 int was_unevictable = PageUnevictable(page);
783
784 VM_BUG_ON_PAGE(PageLRU(page), page);
785
786 redo:
787 ClearPageUnevictable(page);
788
789 if (page_evictable(page)) {
790 /*
791 * For evictable pages, we can use the cache.
792 * In event of a race, worst case is we end up with an
793 * unevictable page on [in]active list.
794 * We know how to handle that.
795 */
796 is_unevictable = false;
797 lru_cache_add(page);
798 } else {
799 /*
800 * Put unevictable pages directly on zone's unevictable
801 * list.
802 */
803 is_unevictable = true;
804 add_page_to_unevictable_list(page);
805 /*
806 * When racing with an mlock or AS_UNEVICTABLE clearing
807 * (page is unlocked) make sure that if the other thread
808 * does not observe our setting of PG_lru and fails
809 * isolation/check_move_unevictable_pages,
810 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
811 * the page back to the evictable list.
812 *
813 * The other side is TestClearPageMlocked() or shmem_lock().
814 */
815 smp_mb();
816 }
817
818 /*
819 * page's status can change while we move it among lru. If an evictable
820 * page is on unevictable list, it never be freed. To avoid that,
821 * check after we added it to the list, again.
822 */
823 if (is_unevictable && page_evictable(page)) {
824 if (!isolate_lru_page(page)) {
825 put_page(page);
826 goto redo;
827 }
828 /* This means someone else dropped this page from LRU
829 * So, it will be freed or putback to LRU again. There is
830 * nothing to do here.
831 */
832 }
833
834 if (was_unevictable && !is_unevictable)
835 count_vm_event(UNEVICTABLE_PGRESCUED);
836 else if (!was_unevictable && is_unevictable)
837 count_vm_event(UNEVICTABLE_PGCULLED);
838
839 put_page(page); /* drop ref from isolate */
840 }
841
842 enum page_references {
843 PAGEREF_RECLAIM,
844 PAGEREF_RECLAIM_CLEAN,
845 PAGEREF_KEEP,
846 PAGEREF_ACTIVATE,
847 };
848
849 static enum page_references page_check_references(struct page *page,
850 struct scan_control *sc)
851 {
852 int referenced_ptes, referenced_page;
853 unsigned long vm_flags;
854
855 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
856 &vm_flags);
857 referenced_page = TestClearPageReferenced(page);
858
859 /*
860 * Mlock lost the isolation race with us. Let try_to_unmap()
861 * move the page to the unevictable list.
862 */
863 if (vm_flags & VM_LOCKED)
864 return PAGEREF_RECLAIM;
865
866 if (referenced_ptes) {
867 if (PageSwapBacked(page))
868 return PAGEREF_ACTIVATE;
869 /*
870 * All mapped pages start out with page table
871 * references from the instantiating fault, so we need
872 * to look twice if a mapped file page is used more
873 * than once.
874 *
875 * Mark it and spare it for another trip around the
876 * inactive list. Another page table reference will
877 * lead to its activation.
878 *
879 * Note: the mark is set for activated pages as well
880 * so that recently deactivated but used pages are
881 * quickly recovered.
882 */
883 SetPageReferenced(page);
884
885 if (referenced_page || referenced_ptes > 1)
886 return PAGEREF_ACTIVATE;
887
888 /*
889 * Activate file-backed executable pages after first usage.
890 */
891 if (vm_flags & VM_EXEC)
892 return PAGEREF_ACTIVATE;
893
894 return PAGEREF_KEEP;
895 }
896
897 /* Reclaim if clean, defer dirty pages to writeback */
898 if (referenced_page && !PageSwapBacked(page))
899 return PAGEREF_RECLAIM_CLEAN;
900
901 return PAGEREF_RECLAIM;
902 }
903
904 /* Check if a page is dirty or under writeback */
905 static void page_check_dirty_writeback(struct page *page,
906 bool *dirty, bool *writeback)
907 {
908 struct address_space *mapping;
909
910 /*
911 * Anonymous pages are not handled by flushers and must be written
912 * from reclaim context. Do not stall reclaim based on them
913 */
914 if (!page_is_file_cache(page) ||
915 (PageAnon(page) && !PageSwapBacked(page))) {
916 *dirty = false;
917 *writeback = false;
918 return;
919 }
920
921 /* By default assume that the page flags are accurate */
922 *dirty = PageDirty(page);
923 *writeback = PageWriteback(page);
924
925 /* Verify dirty/writeback state if the filesystem supports it */
926 if (!page_has_private(page))
927 return;
928
929 mapping = page_mapping(page);
930 if (mapping && mapping->a_ops->is_dirty_writeback)
931 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
932 }
933
934 struct reclaim_stat {
935 unsigned nr_dirty;
936 unsigned nr_unqueued_dirty;
937 unsigned nr_congested;
938 unsigned nr_writeback;
939 unsigned nr_immediate;
940 unsigned nr_activate;
941 unsigned nr_ref_keep;
942 unsigned nr_unmap_fail;
943 };
944
945 /*
946 * shrink_page_list() returns the number of reclaimed pages
947 */
948 static unsigned long shrink_page_list(struct list_head *page_list,
949 struct pglist_data *pgdat,
950 struct scan_control *sc,
951 enum ttu_flags ttu_flags,
952 struct reclaim_stat *stat,
953 bool force_reclaim)
954 {
955 LIST_HEAD(ret_pages);
956 LIST_HEAD(free_pages);
957 int pgactivate = 0;
958 unsigned nr_unqueued_dirty = 0;
959 unsigned nr_dirty = 0;
960 unsigned nr_congested = 0;
961 unsigned nr_reclaimed = 0;
962 unsigned nr_writeback = 0;
963 unsigned nr_immediate = 0;
964 unsigned nr_ref_keep = 0;
965 unsigned nr_unmap_fail = 0;
966
967 cond_resched();
968
969 while (!list_empty(page_list)) {
970 struct address_space *mapping;
971 struct page *page;
972 int may_enter_fs;
973 enum page_references references = PAGEREF_RECLAIM_CLEAN;
974 bool dirty, writeback;
975
976 cond_resched();
977
978 page = lru_to_page(page_list);
979 list_del(&page->lru);
980
981 if (!trylock_page(page))
982 goto keep;
983
984 VM_BUG_ON_PAGE(PageActive(page), page);
985
986 sc->nr_scanned++;
987
988 if (unlikely(!page_evictable(page)))
989 goto activate_locked;
990
991 if (!sc->may_unmap && page_mapped(page))
992 goto keep_locked;
993
994 /* Double the slab pressure for mapped and swapcache pages */
995 if ((page_mapped(page) || PageSwapCache(page)) &&
996 !(PageAnon(page) && !PageSwapBacked(page)))
997 sc->nr_scanned++;
998
999 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1000 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1001
1002 /*
1003 * The number of dirty pages determines if a zone is marked
1004 * reclaim_congested which affects wait_iff_congested. kswapd
1005 * will stall and start writing pages if the tail of the LRU
1006 * is all dirty unqueued pages.
1007 */
1008 page_check_dirty_writeback(page, &dirty, &writeback);
1009 if (dirty || writeback)
1010 nr_dirty++;
1011
1012 if (dirty && !writeback)
1013 nr_unqueued_dirty++;
1014
1015 /*
1016 * Treat this page as congested if the underlying BDI is or if
1017 * pages are cycling through the LRU so quickly that the
1018 * pages marked for immediate reclaim are making it to the
1019 * end of the LRU a second time.
1020 */
1021 mapping = page_mapping(page);
1022 if (((dirty || writeback) && mapping &&
1023 inode_write_congested(mapping->host)) ||
1024 (writeback && PageReclaim(page)))
1025 nr_congested++;
1026
1027 /*
1028 * If a page at the tail of the LRU is under writeback, there
1029 * are three cases to consider.
1030 *
1031 * 1) If reclaim is encountering an excessive number of pages
1032 * under writeback and this page is both under writeback and
1033 * PageReclaim then it indicates that pages are being queued
1034 * for IO but are being recycled through the LRU before the
1035 * IO can complete. Waiting on the page itself risks an
1036 * indefinite stall if it is impossible to writeback the
1037 * page due to IO error or disconnected storage so instead
1038 * note that the LRU is being scanned too quickly and the
1039 * caller can stall after page list has been processed.
1040 *
1041 * 2) Global or new memcg reclaim encounters a page that is
1042 * not marked for immediate reclaim, or the caller does not
1043 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1044 * not to fs). In this case mark the page for immediate
1045 * reclaim and continue scanning.
1046 *
1047 * Require may_enter_fs because we would wait on fs, which
1048 * may not have submitted IO yet. And the loop driver might
1049 * enter reclaim, and deadlock if it waits on a page for
1050 * which it is needed to do the write (loop masks off
1051 * __GFP_IO|__GFP_FS for this reason); but more thought
1052 * would probably show more reasons.
1053 *
1054 * 3) Legacy memcg encounters a page that is already marked
1055 * PageReclaim. memcg does not have any dirty pages
1056 * throttling so we could easily OOM just because too many
1057 * pages are in writeback and there is nothing else to
1058 * reclaim. Wait for the writeback to complete.
1059 *
1060 * In cases 1) and 2) we activate the pages to get them out of
1061 * the way while we continue scanning for clean pages on the
1062 * inactive list and refilling from the active list. The
1063 * observation here is that waiting for disk writes is more
1064 * expensive than potentially causing reloads down the line.
1065 * Since they're marked for immediate reclaim, they won't put
1066 * memory pressure on the cache working set any longer than it
1067 * takes to write them to disk.
1068 */
1069 if (PageWriteback(page)) {
1070 /* Case 1 above */
1071 if (current_is_kswapd() &&
1072 PageReclaim(page) &&
1073 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1074 nr_immediate++;
1075 goto activate_locked;
1076
1077 /* Case 2 above */
1078 } else if (sane_reclaim(sc) ||
1079 !PageReclaim(page) || !may_enter_fs) {
1080 /*
1081 * This is slightly racy - end_page_writeback()
1082 * might have just cleared PageReclaim, then
1083 * setting PageReclaim here end up interpreted
1084 * as PageReadahead - but that does not matter
1085 * enough to care. What we do want is for this
1086 * page to have PageReclaim set next time memcg
1087 * reclaim reaches the tests above, so it will
1088 * then wait_on_page_writeback() to avoid OOM;
1089 * and it's also appropriate in global reclaim.
1090 */
1091 SetPageReclaim(page);
1092 nr_writeback++;
1093 goto activate_locked;
1094
1095 /* Case 3 above */
1096 } else {
1097 unlock_page(page);
1098 wait_on_page_writeback(page);
1099 /* then go back and try same page again */
1100 list_add_tail(&page->lru, page_list);
1101 continue;
1102 }
1103 }
1104
1105 if (!force_reclaim)
1106 references = page_check_references(page, sc);
1107
1108 switch (references) {
1109 case PAGEREF_ACTIVATE:
1110 goto activate_locked;
1111 case PAGEREF_KEEP:
1112 nr_ref_keep++;
1113 goto keep_locked;
1114 case PAGEREF_RECLAIM:
1115 case PAGEREF_RECLAIM_CLEAN:
1116 ; /* try to reclaim the page below */
1117 }
1118
1119 /*
1120 * Anonymous process memory has backing store?
1121 * Try to allocate it some swap space here.
1122 * Lazyfree page could be freed directly
1123 */
1124 if (PageAnon(page) && PageSwapBacked(page) &&
1125 !PageSwapCache(page)) {
1126 if (!(sc->gfp_mask & __GFP_IO))
1127 goto keep_locked;
1128 if (!add_to_swap(page, page_list))
1129 goto activate_locked;
1130 may_enter_fs = 1;
1131
1132 /* Adding to swap updated mapping */
1133 mapping = page_mapping(page);
1134 } else if (unlikely(PageTransHuge(page))) {
1135 /* Split file THP */
1136 if (split_huge_page_to_list(page, page_list))
1137 goto keep_locked;
1138 }
1139
1140 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1141
1142 /*
1143 * The page is mapped into the page tables of one or more
1144 * processes. Try to unmap it here.
1145 */
1146 if (page_mapped(page)) {
1147 if (!try_to_unmap(page, ttu_flags | TTU_BATCH_FLUSH)) {
1148 nr_unmap_fail++;
1149 goto activate_locked;
1150 }
1151 }
1152
1153 if (PageDirty(page)) {
1154 /*
1155 * Only kswapd can writeback filesystem pages
1156 * to avoid risk of stack overflow. But avoid
1157 * injecting inefficient single-page IO into
1158 * flusher writeback as much as possible: only
1159 * write pages when we've encountered many
1160 * dirty pages, and when we've already scanned
1161 * the rest of the LRU for clean pages and see
1162 * the same dirty pages again (PageReclaim).
1163 */
1164 if (page_is_file_cache(page) &&
1165 (!current_is_kswapd() || !PageReclaim(page) ||
1166 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1167 /*
1168 * Immediately reclaim when written back.
1169 * Similar in principal to deactivate_page()
1170 * except we already have the page isolated
1171 * and know it's dirty
1172 */
1173 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1174 SetPageReclaim(page);
1175
1176 goto activate_locked;
1177 }
1178
1179 if (references == PAGEREF_RECLAIM_CLEAN)
1180 goto keep_locked;
1181 if (!may_enter_fs)
1182 goto keep_locked;
1183 if (!sc->may_writepage)
1184 goto keep_locked;
1185
1186 /*
1187 * Page is dirty. Flush the TLB if a writable entry
1188 * potentially exists to avoid CPU writes after IO
1189 * starts and then write it out here.
1190 */
1191 try_to_unmap_flush_dirty();
1192 switch (pageout(page, mapping, sc)) {
1193 case PAGE_KEEP:
1194 goto keep_locked;
1195 case PAGE_ACTIVATE:
1196 goto activate_locked;
1197 case PAGE_SUCCESS:
1198 if (PageWriteback(page))
1199 goto keep;
1200 if (PageDirty(page))
1201 goto keep;
1202
1203 /*
1204 * A synchronous write - probably a ramdisk. Go
1205 * ahead and try to reclaim the page.
1206 */
1207 if (!trylock_page(page))
1208 goto keep;
1209 if (PageDirty(page) || PageWriteback(page))
1210 goto keep_locked;
1211 mapping = page_mapping(page);
1212 case PAGE_CLEAN:
1213 ; /* try to free the page below */
1214 }
1215 }
1216
1217 /*
1218 * If the page has buffers, try to free the buffer mappings
1219 * associated with this page. If we succeed we try to free
1220 * the page as well.
1221 *
1222 * We do this even if the page is PageDirty().
1223 * try_to_release_page() does not perform I/O, but it is
1224 * possible for a page to have PageDirty set, but it is actually
1225 * clean (all its buffers are clean). This happens if the
1226 * buffers were written out directly, with submit_bh(). ext3
1227 * will do this, as well as the blockdev mapping.
1228 * try_to_release_page() will discover that cleanness and will
1229 * drop the buffers and mark the page clean - it can be freed.
1230 *
1231 * Rarely, pages can have buffers and no ->mapping. These are
1232 * the pages which were not successfully invalidated in
1233 * truncate_complete_page(). We try to drop those buffers here
1234 * and if that worked, and the page is no longer mapped into
1235 * process address space (page_count == 1) it can be freed.
1236 * Otherwise, leave the page on the LRU so it is swappable.
1237 */
1238 if (page_has_private(page)) {
1239 if (!try_to_release_page(page, sc->gfp_mask))
1240 goto activate_locked;
1241 if (!mapping && page_count(page) == 1) {
1242 unlock_page(page);
1243 if (put_page_testzero(page))
1244 goto free_it;
1245 else {
1246 /*
1247 * rare race with speculative reference.
1248 * the speculative reference will free
1249 * this page shortly, so we may
1250 * increment nr_reclaimed here (and
1251 * leave it off the LRU).
1252 */
1253 nr_reclaimed++;
1254 continue;
1255 }
1256 }
1257 }
1258
1259 if (PageAnon(page) && !PageSwapBacked(page)) {
1260 /* follow __remove_mapping for reference */
1261 if (!page_ref_freeze(page, 1))
1262 goto keep_locked;
1263 if (PageDirty(page)) {
1264 page_ref_unfreeze(page, 1);
1265 goto keep_locked;
1266 }
1267
1268 count_vm_event(PGLAZYFREED);
1269 } else if (!mapping || !__remove_mapping(mapping, page, true))
1270 goto keep_locked;
1271 /*
1272 * At this point, we have no other references and there is
1273 * no way to pick any more up (removed from LRU, removed
1274 * from pagecache). Can use non-atomic bitops now (and
1275 * we obviously don't have to worry about waking up a process
1276 * waiting on the page lock, because there are no references.
1277 */
1278 __ClearPageLocked(page);
1279 free_it:
1280 nr_reclaimed++;
1281
1282 /*
1283 * Is there need to periodically free_page_list? It would
1284 * appear not as the counts should be low
1285 */
1286 list_add(&page->lru, &free_pages);
1287 continue;
1288
1289 activate_locked:
1290 /* Not a candidate for swapping, so reclaim swap space. */
1291 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1292 PageMlocked(page)))
1293 try_to_free_swap(page);
1294 VM_BUG_ON_PAGE(PageActive(page), page);
1295 if (!PageMlocked(page)) {
1296 SetPageActive(page);
1297 pgactivate++;
1298 }
1299 keep_locked:
1300 unlock_page(page);
1301 keep:
1302 list_add(&page->lru, &ret_pages);
1303 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1304 }
1305
1306 mem_cgroup_uncharge_list(&free_pages);
1307 try_to_unmap_flush();
1308 free_hot_cold_page_list(&free_pages, true);
1309
1310 list_splice(&ret_pages, page_list);
1311 count_vm_events(PGACTIVATE, pgactivate);
1312
1313 if (stat) {
1314 stat->nr_dirty = nr_dirty;
1315 stat->nr_congested = nr_congested;
1316 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1317 stat->nr_writeback = nr_writeback;
1318 stat->nr_immediate = nr_immediate;
1319 stat->nr_activate = pgactivate;
1320 stat->nr_ref_keep = nr_ref_keep;
1321 stat->nr_unmap_fail = nr_unmap_fail;
1322 }
1323 return nr_reclaimed;
1324 }
1325
1326 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1327 struct list_head *page_list)
1328 {
1329 struct scan_control sc = {
1330 .gfp_mask = GFP_KERNEL,
1331 .priority = DEF_PRIORITY,
1332 .may_unmap = 1,
1333 };
1334 unsigned long ret;
1335 struct page *page, *next;
1336 LIST_HEAD(clean_pages);
1337
1338 list_for_each_entry_safe(page, next, page_list, lru) {
1339 if (page_is_file_cache(page) && !PageDirty(page) &&
1340 !__PageMovable(page)) {
1341 ClearPageActive(page);
1342 list_move(&page->lru, &clean_pages);
1343 }
1344 }
1345
1346 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1347 TTU_IGNORE_ACCESS, NULL, true);
1348 list_splice(&clean_pages, page_list);
1349 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1350 return ret;
1351 }
1352
1353 /*
1354 * Attempt to remove the specified page from its LRU. Only take this page
1355 * if it is of the appropriate PageActive status. Pages which are being
1356 * freed elsewhere are also ignored.
1357 *
1358 * page: page to consider
1359 * mode: one of the LRU isolation modes defined above
1360 *
1361 * returns 0 on success, -ve errno on failure.
1362 */
1363 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1364 {
1365 int ret = -EINVAL;
1366
1367 /* Only take pages on the LRU. */
1368 if (!PageLRU(page))
1369 return ret;
1370
1371 /* Compaction should not handle unevictable pages but CMA can do so */
1372 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1373 return ret;
1374
1375 ret = -EBUSY;
1376
1377 /*
1378 * To minimise LRU disruption, the caller can indicate that it only
1379 * wants to isolate pages it will be able to operate on without
1380 * blocking - clean pages for the most part.
1381 *
1382 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1383 * that it is possible to migrate without blocking
1384 */
1385 if (mode & ISOLATE_ASYNC_MIGRATE) {
1386 /* All the caller can do on PageWriteback is block */
1387 if (PageWriteback(page))
1388 return ret;
1389
1390 if (PageDirty(page)) {
1391 struct address_space *mapping;
1392
1393 /*
1394 * Only pages without mappings or that have a
1395 * ->migratepage callback are possible to migrate
1396 * without blocking
1397 */
1398 mapping = page_mapping(page);
1399 if (mapping && !mapping->a_ops->migratepage)
1400 return ret;
1401 }
1402 }
1403
1404 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1405 return ret;
1406
1407 if (likely(get_page_unless_zero(page))) {
1408 /*
1409 * Be careful not to clear PageLRU until after we're
1410 * sure the page is not being freed elsewhere -- the
1411 * page release code relies on it.
1412 */
1413 ClearPageLRU(page);
1414 ret = 0;
1415 }
1416
1417 return ret;
1418 }
1419
1420
1421 /*
1422 * Update LRU sizes after isolating pages. The LRU size updates must
1423 * be complete before mem_cgroup_update_lru_size due to a santity check.
1424 */
1425 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1426 enum lru_list lru, unsigned long *nr_zone_taken)
1427 {
1428 int zid;
1429
1430 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1431 if (!nr_zone_taken[zid])
1432 continue;
1433
1434 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1435 #ifdef CONFIG_MEMCG
1436 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1437 #endif
1438 }
1439
1440 }
1441
1442 /*
1443 * zone_lru_lock is heavily contended. Some of the functions that
1444 * shrink the lists perform better by taking out a batch of pages
1445 * and working on them outside the LRU lock.
1446 *
1447 * For pagecache intensive workloads, this function is the hottest
1448 * spot in the kernel (apart from copy_*_user functions).
1449 *
1450 * Appropriate locks must be held before calling this function.
1451 *
1452 * @nr_to_scan: The number of eligible pages to look through on the list.
1453 * @lruvec: The LRU vector to pull pages from.
1454 * @dst: The temp list to put pages on to.
1455 * @nr_scanned: The number of pages that were scanned.
1456 * @sc: The scan_control struct for this reclaim session
1457 * @mode: One of the LRU isolation modes
1458 * @lru: LRU list id for isolating
1459 *
1460 * returns how many pages were moved onto *@dst.
1461 */
1462 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1463 struct lruvec *lruvec, struct list_head *dst,
1464 unsigned long *nr_scanned, struct scan_control *sc,
1465 isolate_mode_t mode, enum lru_list lru)
1466 {
1467 struct list_head *src = &lruvec->lists[lru];
1468 unsigned long nr_taken = 0;
1469 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1470 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1471 unsigned long skipped = 0;
1472 unsigned long scan, total_scan, nr_pages;
1473 LIST_HEAD(pages_skipped);
1474
1475 scan = 0;
1476 for (total_scan = 0;
1477 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1478 total_scan++) {
1479 struct page *page;
1480
1481 page = lru_to_page(src);
1482 prefetchw_prev_lru_page(page, src, flags);
1483
1484 VM_BUG_ON_PAGE(!PageLRU(page), page);
1485
1486 if (page_zonenum(page) > sc->reclaim_idx) {
1487 list_move(&page->lru, &pages_skipped);
1488 nr_skipped[page_zonenum(page)]++;
1489 continue;
1490 }
1491
1492 /*
1493 * Do not count skipped pages because that makes the function
1494 * return with no isolated pages if the LRU mostly contains
1495 * ineligible pages. This causes the VM to not reclaim any
1496 * pages, triggering a premature OOM.
1497 */
1498 scan++;
1499 switch (__isolate_lru_page(page, mode)) {
1500 case 0:
1501 nr_pages = hpage_nr_pages(page);
1502 nr_taken += nr_pages;
1503 nr_zone_taken[page_zonenum(page)] += nr_pages;
1504 list_move(&page->lru, dst);
1505 break;
1506
1507 case -EBUSY:
1508 /* else it is being freed elsewhere */
1509 list_move(&page->lru, src);
1510 continue;
1511
1512 default:
1513 BUG();
1514 }
1515 }
1516
1517 /*
1518 * Splice any skipped pages to the start of the LRU list. Note that
1519 * this disrupts the LRU order when reclaiming for lower zones but
1520 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1521 * scanning would soon rescan the same pages to skip and put the
1522 * system at risk of premature OOM.
1523 */
1524 if (!list_empty(&pages_skipped)) {
1525 int zid;
1526
1527 list_splice(&pages_skipped, src);
1528 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1529 if (!nr_skipped[zid])
1530 continue;
1531
1532 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1533 skipped += nr_skipped[zid];
1534 }
1535 }
1536 *nr_scanned = total_scan;
1537 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1538 total_scan, skipped, nr_taken, mode, lru);
1539 update_lru_sizes(lruvec, lru, nr_zone_taken);
1540 return nr_taken;
1541 }
1542
1543 /**
1544 * isolate_lru_page - tries to isolate a page from its LRU list
1545 * @page: page to isolate from its LRU list
1546 *
1547 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1548 * vmstat statistic corresponding to whatever LRU list the page was on.
1549 *
1550 * Returns 0 if the page was removed from an LRU list.
1551 * Returns -EBUSY if the page was not on an LRU list.
1552 *
1553 * The returned page will have PageLRU() cleared. If it was found on
1554 * the active list, it will have PageActive set. If it was found on
1555 * the unevictable list, it will have the PageUnevictable bit set. That flag
1556 * may need to be cleared by the caller before letting the page go.
1557 *
1558 * The vmstat statistic corresponding to the list on which the page was
1559 * found will be decremented.
1560 *
1561 * Restrictions:
1562 * (1) Must be called with an elevated refcount on the page. This is a
1563 * fundamentnal difference from isolate_lru_pages (which is called
1564 * without a stable reference).
1565 * (2) the lru_lock must not be held.
1566 * (3) interrupts must be enabled.
1567 */
1568 int isolate_lru_page(struct page *page)
1569 {
1570 int ret = -EBUSY;
1571
1572 VM_BUG_ON_PAGE(!page_count(page), page);
1573 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1574
1575 if (PageLRU(page)) {
1576 struct zone *zone = page_zone(page);
1577 struct lruvec *lruvec;
1578
1579 spin_lock_irq(zone_lru_lock(zone));
1580 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1581 if (PageLRU(page)) {
1582 int lru = page_lru(page);
1583 get_page(page);
1584 ClearPageLRU(page);
1585 del_page_from_lru_list(page, lruvec, lru);
1586 ret = 0;
1587 }
1588 spin_unlock_irq(zone_lru_lock(zone));
1589 }
1590 return ret;
1591 }
1592
1593 /*
1594 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1595 * then get resheduled. When there are massive number of tasks doing page
1596 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1597 * the LRU list will go small and be scanned faster than necessary, leading to
1598 * unnecessary swapping, thrashing and OOM.
1599 */
1600 static int too_many_isolated(struct pglist_data *pgdat, int file,
1601 struct scan_control *sc)
1602 {
1603 unsigned long inactive, isolated;
1604
1605 if (current_is_kswapd())
1606 return 0;
1607
1608 if (!sane_reclaim(sc))
1609 return 0;
1610
1611 if (file) {
1612 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1613 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1614 } else {
1615 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1616 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1617 }
1618
1619 /*
1620 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1621 * won't get blocked by normal direct-reclaimers, forming a circular
1622 * deadlock.
1623 */
1624 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1625 inactive >>= 3;
1626
1627 return isolated > inactive;
1628 }
1629
1630 static noinline_for_stack void
1631 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1632 {
1633 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1634 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1635 LIST_HEAD(pages_to_free);
1636
1637 /*
1638 * Put back any unfreeable pages.
1639 */
1640 while (!list_empty(page_list)) {
1641 struct page *page = lru_to_page(page_list);
1642 int lru;
1643
1644 VM_BUG_ON_PAGE(PageLRU(page), page);
1645 list_del(&page->lru);
1646 if (unlikely(!page_evictable(page))) {
1647 spin_unlock_irq(&pgdat->lru_lock);
1648 putback_lru_page(page);
1649 spin_lock_irq(&pgdat->lru_lock);
1650 continue;
1651 }
1652
1653 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1654
1655 SetPageLRU(page);
1656 lru = page_lru(page);
1657 add_page_to_lru_list(page, lruvec, lru);
1658
1659 if (is_active_lru(lru)) {
1660 int file = is_file_lru(lru);
1661 int numpages = hpage_nr_pages(page);
1662 reclaim_stat->recent_rotated[file] += numpages;
1663 }
1664 if (put_page_testzero(page)) {
1665 __ClearPageLRU(page);
1666 __ClearPageActive(page);
1667 del_page_from_lru_list(page, lruvec, lru);
1668
1669 if (unlikely(PageCompound(page))) {
1670 spin_unlock_irq(&pgdat->lru_lock);
1671 mem_cgroup_uncharge(page);
1672 (*get_compound_page_dtor(page))(page);
1673 spin_lock_irq(&pgdat->lru_lock);
1674 } else
1675 list_add(&page->lru, &pages_to_free);
1676 }
1677 }
1678
1679 /*
1680 * To save our caller's stack, now use input list for pages to free.
1681 */
1682 list_splice(&pages_to_free, page_list);
1683 }
1684
1685 /*
1686 * If a kernel thread (such as nfsd for loop-back mounts) services
1687 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1688 * In that case we should only throttle if the backing device it is
1689 * writing to is congested. In other cases it is safe to throttle.
1690 */
1691 static int current_may_throttle(void)
1692 {
1693 return !(current->flags & PF_LESS_THROTTLE) ||
1694 current->backing_dev_info == NULL ||
1695 bdi_write_congested(current->backing_dev_info);
1696 }
1697
1698 /*
1699 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1700 * of reclaimed pages
1701 */
1702 static noinline_for_stack unsigned long
1703 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1704 struct scan_control *sc, enum lru_list lru)
1705 {
1706 LIST_HEAD(page_list);
1707 unsigned long nr_scanned;
1708 unsigned long nr_reclaimed = 0;
1709 unsigned long nr_taken;
1710 struct reclaim_stat stat = {};
1711 isolate_mode_t isolate_mode = 0;
1712 int file = is_file_lru(lru);
1713 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1714 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1715
1716 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1717 congestion_wait(BLK_RW_ASYNC, HZ/10);
1718
1719 /* We are about to die and free our memory. Return now. */
1720 if (fatal_signal_pending(current))
1721 return SWAP_CLUSTER_MAX;
1722 }
1723
1724 lru_add_drain();
1725
1726 if (!sc->may_unmap)
1727 isolate_mode |= ISOLATE_UNMAPPED;
1728
1729 spin_lock_irq(&pgdat->lru_lock);
1730
1731 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1732 &nr_scanned, sc, isolate_mode, lru);
1733
1734 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1735 reclaim_stat->recent_scanned[file] += nr_taken;
1736
1737 if (global_reclaim(sc)) {
1738 if (current_is_kswapd())
1739 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1740 else
1741 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1742 }
1743 spin_unlock_irq(&pgdat->lru_lock);
1744
1745 if (nr_taken == 0)
1746 return 0;
1747
1748 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1749 &stat, false);
1750
1751 spin_lock_irq(&pgdat->lru_lock);
1752
1753 if (global_reclaim(sc)) {
1754 if (current_is_kswapd())
1755 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1756 else
1757 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1758 }
1759
1760 putback_inactive_pages(lruvec, &page_list);
1761
1762 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1763
1764 spin_unlock_irq(&pgdat->lru_lock);
1765
1766 mem_cgroup_uncharge_list(&page_list);
1767 free_hot_cold_page_list(&page_list, true);
1768
1769 /*
1770 * If reclaim is isolating dirty pages under writeback, it implies
1771 * that the long-lived page allocation rate is exceeding the page
1772 * laundering rate. Either the global limits are not being effective
1773 * at throttling processes due to the page distribution throughout
1774 * zones or there is heavy usage of a slow backing device. The
1775 * only option is to throttle from reclaim context which is not ideal
1776 * as there is no guarantee the dirtying process is throttled in the
1777 * same way balance_dirty_pages() manages.
1778 *
1779 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1780 * of pages under pages flagged for immediate reclaim and stall if any
1781 * are encountered in the nr_immediate check below.
1782 */
1783 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1784 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1785
1786 /*
1787 * Legacy memcg will stall in page writeback so avoid forcibly
1788 * stalling here.
1789 */
1790 if (sane_reclaim(sc)) {
1791 /*
1792 * Tag a zone as congested if all the dirty pages scanned were
1793 * backed by a congested BDI and wait_iff_congested will stall.
1794 */
1795 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1796 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1797
1798 /*
1799 * If dirty pages are scanned that are not queued for IO, it
1800 * implies that flushers are not doing their job. This can
1801 * happen when memory pressure pushes dirty pages to the end of
1802 * the LRU before the dirty limits are breached and the dirty
1803 * data has expired. It can also happen when the proportion of
1804 * dirty pages grows not through writes but through memory
1805 * pressure reclaiming all the clean cache. And in some cases,
1806 * the flushers simply cannot keep up with the allocation
1807 * rate. Nudge the flusher threads in case they are asleep, but
1808 * also allow kswapd to start writing pages during reclaim.
1809 */
1810 if (stat.nr_unqueued_dirty == nr_taken) {
1811 wakeup_flusher_threads(0, WB_REASON_VMSCAN);
1812 set_bit(PGDAT_DIRTY, &pgdat->flags);
1813 }
1814
1815 /*
1816 * If kswapd scans pages marked marked for immediate
1817 * reclaim and under writeback (nr_immediate), it implies
1818 * that pages are cycling through the LRU faster than
1819 * they are written so also forcibly stall.
1820 */
1821 if (stat.nr_immediate && current_may_throttle())
1822 congestion_wait(BLK_RW_ASYNC, HZ/10);
1823 }
1824
1825 /*
1826 * Stall direct reclaim for IO completions if underlying BDIs or zone
1827 * is congested. Allow kswapd to continue until it starts encountering
1828 * unqueued dirty pages or cycling through the LRU too quickly.
1829 */
1830 if (!sc->hibernation_mode && !current_is_kswapd() &&
1831 current_may_throttle())
1832 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1833
1834 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1835 nr_scanned, nr_reclaimed,
1836 stat.nr_dirty, stat.nr_writeback,
1837 stat.nr_congested, stat.nr_immediate,
1838 stat.nr_activate, stat.nr_ref_keep,
1839 stat.nr_unmap_fail,
1840 sc->priority, file);
1841 return nr_reclaimed;
1842 }
1843
1844 /*
1845 * This moves pages from the active list to the inactive list.
1846 *
1847 * We move them the other way if the page is referenced by one or more
1848 * processes, from rmap.
1849 *
1850 * If the pages are mostly unmapped, the processing is fast and it is
1851 * appropriate to hold zone_lru_lock across the whole operation. But if
1852 * the pages are mapped, the processing is slow (page_referenced()) so we
1853 * should drop zone_lru_lock around each page. It's impossible to balance
1854 * this, so instead we remove the pages from the LRU while processing them.
1855 * It is safe to rely on PG_active against the non-LRU pages in here because
1856 * nobody will play with that bit on a non-LRU page.
1857 *
1858 * The downside is that we have to touch page->_refcount against each page.
1859 * But we had to alter page->flags anyway.
1860 *
1861 * Returns the number of pages moved to the given lru.
1862 */
1863
1864 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1865 struct list_head *list,
1866 struct list_head *pages_to_free,
1867 enum lru_list lru)
1868 {
1869 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1870 struct page *page;
1871 int nr_pages;
1872 int nr_moved = 0;
1873
1874 while (!list_empty(list)) {
1875 page = lru_to_page(list);
1876 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1877
1878 VM_BUG_ON_PAGE(PageLRU(page), page);
1879 SetPageLRU(page);
1880
1881 nr_pages = hpage_nr_pages(page);
1882 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1883 list_move(&page->lru, &lruvec->lists[lru]);
1884
1885 if (put_page_testzero(page)) {
1886 __ClearPageLRU(page);
1887 __ClearPageActive(page);
1888 del_page_from_lru_list(page, lruvec, lru);
1889
1890 if (unlikely(PageCompound(page))) {
1891 spin_unlock_irq(&pgdat->lru_lock);
1892 mem_cgroup_uncharge(page);
1893 (*get_compound_page_dtor(page))(page);
1894 spin_lock_irq(&pgdat->lru_lock);
1895 } else
1896 list_add(&page->lru, pages_to_free);
1897 } else {
1898 nr_moved += nr_pages;
1899 }
1900 }
1901
1902 if (!is_active_lru(lru))
1903 __count_vm_events(PGDEACTIVATE, nr_moved);
1904
1905 return nr_moved;
1906 }
1907
1908 static void shrink_active_list(unsigned long nr_to_scan,
1909 struct lruvec *lruvec,
1910 struct scan_control *sc,
1911 enum lru_list lru)
1912 {
1913 unsigned long nr_taken;
1914 unsigned long nr_scanned;
1915 unsigned long vm_flags;
1916 LIST_HEAD(l_hold); /* The pages which were snipped off */
1917 LIST_HEAD(l_active);
1918 LIST_HEAD(l_inactive);
1919 struct page *page;
1920 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1921 unsigned nr_deactivate, nr_activate;
1922 unsigned nr_rotated = 0;
1923 isolate_mode_t isolate_mode = 0;
1924 int file = is_file_lru(lru);
1925 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1926
1927 lru_add_drain();
1928
1929 if (!sc->may_unmap)
1930 isolate_mode |= ISOLATE_UNMAPPED;
1931
1932 spin_lock_irq(&pgdat->lru_lock);
1933
1934 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1935 &nr_scanned, sc, isolate_mode, lru);
1936
1937 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1938 reclaim_stat->recent_scanned[file] += nr_taken;
1939
1940 __count_vm_events(PGREFILL, nr_scanned);
1941
1942 spin_unlock_irq(&pgdat->lru_lock);
1943
1944 while (!list_empty(&l_hold)) {
1945 cond_resched();
1946 page = lru_to_page(&l_hold);
1947 list_del(&page->lru);
1948
1949 if (unlikely(!page_evictable(page))) {
1950 putback_lru_page(page);
1951 continue;
1952 }
1953
1954 if (unlikely(buffer_heads_over_limit)) {
1955 if (page_has_private(page) && trylock_page(page)) {
1956 if (page_has_private(page))
1957 try_to_release_page(page, 0);
1958 unlock_page(page);
1959 }
1960 }
1961
1962 if (page_referenced(page, 0, sc->target_mem_cgroup,
1963 &vm_flags)) {
1964 nr_rotated += hpage_nr_pages(page);
1965 /*
1966 * Identify referenced, file-backed active pages and
1967 * give them one more trip around the active list. So
1968 * that executable code get better chances to stay in
1969 * memory under moderate memory pressure. Anon pages
1970 * are not likely to be evicted by use-once streaming
1971 * IO, plus JVM can create lots of anon VM_EXEC pages,
1972 * so we ignore them here.
1973 */
1974 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1975 list_add(&page->lru, &l_active);
1976 continue;
1977 }
1978 }
1979
1980 ClearPageActive(page); /* we are de-activating */
1981 list_add(&page->lru, &l_inactive);
1982 }
1983
1984 /*
1985 * Move pages back to the lru list.
1986 */
1987 spin_lock_irq(&pgdat->lru_lock);
1988 /*
1989 * Count referenced pages from currently used mappings as rotated,
1990 * even though only some of them are actually re-activated. This
1991 * helps balance scan pressure between file and anonymous pages in
1992 * get_scan_count.
1993 */
1994 reclaim_stat->recent_rotated[file] += nr_rotated;
1995
1996 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1997 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1998 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1999 spin_unlock_irq(&pgdat->lru_lock);
2000
2001 mem_cgroup_uncharge_list(&l_hold);
2002 free_hot_cold_page_list(&l_hold, true);
2003 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2004 nr_deactivate, nr_rotated, sc->priority, file);
2005 }
2006
2007 /*
2008 * The inactive anon list should be small enough that the VM never has
2009 * to do too much work.
2010 *
2011 * The inactive file list should be small enough to leave most memory
2012 * to the established workingset on the scan-resistant active list,
2013 * but large enough to avoid thrashing the aggregate readahead window.
2014 *
2015 * Both inactive lists should also be large enough that each inactive
2016 * page has a chance to be referenced again before it is reclaimed.
2017 *
2018 * If that fails and refaulting is observed, the inactive list grows.
2019 *
2020 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2021 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2022 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2023 *
2024 * total target max
2025 * memory ratio inactive
2026 * -------------------------------------
2027 * 10MB 1 5MB
2028 * 100MB 1 50MB
2029 * 1GB 3 250MB
2030 * 10GB 10 0.9GB
2031 * 100GB 31 3GB
2032 * 1TB 101 10GB
2033 * 10TB 320 32GB
2034 */
2035 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2036 struct mem_cgroup *memcg,
2037 struct scan_control *sc, bool actual_reclaim)
2038 {
2039 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2040 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2041 enum lru_list inactive_lru = file * LRU_FILE;
2042 unsigned long inactive, active;
2043 unsigned long inactive_ratio;
2044 unsigned long refaults;
2045 unsigned long gb;
2046
2047 /*
2048 * If we don't have swap space, anonymous page deactivation
2049 * is pointless.
2050 */
2051 if (!file && !total_swap_pages)
2052 return false;
2053
2054 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2055 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2056
2057 if (memcg)
2058 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2059 else
2060 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2061
2062 /*
2063 * When refaults are being observed, it means a new workingset
2064 * is being established. Disable active list protection to get
2065 * rid of the stale workingset quickly.
2066 */
2067 if (file && actual_reclaim && lruvec->refaults != refaults) {
2068 inactive_ratio = 0;
2069 } else {
2070 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2071 if (gb)
2072 inactive_ratio = int_sqrt(10 * gb);
2073 else
2074 inactive_ratio = 1;
2075 }
2076
2077 if (actual_reclaim)
2078 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2079 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2080 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2081 inactive_ratio, file);
2082
2083 return inactive * inactive_ratio < active;
2084 }
2085
2086 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2087 struct lruvec *lruvec, struct mem_cgroup *memcg,
2088 struct scan_control *sc)
2089 {
2090 if (is_active_lru(lru)) {
2091 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2092 memcg, sc, true))
2093 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2094 return 0;
2095 }
2096
2097 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2098 }
2099
2100 enum scan_balance {
2101 SCAN_EQUAL,
2102 SCAN_FRACT,
2103 SCAN_ANON,
2104 SCAN_FILE,
2105 };
2106
2107 /*
2108 * Determine how aggressively the anon and file LRU lists should be
2109 * scanned. The relative value of each set of LRU lists is determined
2110 * by looking at the fraction of the pages scanned we did rotate back
2111 * onto the active list instead of evict.
2112 *
2113 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2114 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2115 */
2116 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2117 struct scan_control *sc, unsigned long *nr,
2118 unsigned long *lru_pages)
2119 {
2120 int swappiness = mem_cgroup_swappiness(memcg);
2121 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2122 u64 fraction[2];
2123 u64 denominator = 0; /* gcc */
2124 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2125 unsigned long anon_prio, file_prio;
2126 enum scan_balance scan_balance;
2127 unsigned long anon, file;
2128 unsigned long ap, fp;
2129 enum lru_list lru;
2130
2131 /* If we have no swap space, do not bother scanning anon pages. */
2132 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2133 scan_balance = SCAN_FILE;
2134 goto out;
2135 }
2136
2137 /*
2138 * Global reclaim will swap to prevent OOM even with no
2139 * swappiness, but memcg users want to use this knob to
2140 * disable swapping for individual groups completely when
2141 * using the memory controller's swap limit feature would be
2142 * too expensive.
2143 */
2144 if (!global_reclaim(sc) && !swappiness) {
2145 scan_balance = SCAN_FILE;
2146 goto out;
2147 }
2148
2149 /*
2150 * Do not apply any pressure balancing cleverness when the
2151 * system is close to OOM, scan both anon and file equally
2152 * (unless the swappiness setting disagrees with swapping).
2153 */
2154 if (!sc->priority && swappiness) {
2155 scan_balance = SCAN_EQUAL;
2156 goto out;
2157 }
2158
2159 /*
2160 * Prevent the reclaimer from falling into the cache trap: as
2161 * cache pages start out inactive, every cache fault will tip
2162 * the scan balance towards the file LRU. And as the file LRU
2163 * shrinks, so does the window for rotation from references.
2164 * This means we have a runaway feedback loop where a tiny
2165 * thrashing file LRU becomes infinitely more attractive than
2166 * anon pages. Try to detect this based on file LRU size.
2167 */
2168 if (global_reclaim(sc)) {
2169 unsigned long pgdatfile;
2170 unsigned long pgdatfree;
2171 int z;
2172 unsigned long total_high_wmark = 0;
2173
2174 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2175 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2176 node_page_state(pgdat, NR_INACTIVE_FILE);
2177
2178 for (z = 0; z < MAX_NR_ZONES; z++) {
2179 struct zone *zone = &pgdat->node_zones[z];
2180 if (!managed_zone(zone))
2181 continue;
2182
2183 total_high_wmark += high_wmark_pages(zone);
2184 }
2185
2186 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2187 scan_balance = SCAN_ANON;
2188 goto out;
2189 }
2190 }
2191
2192 /*
2193 * If there is enough inactive page cache, i.e. if the size of the
2194 * inactive list is greater than that of the active list *and* the
2195 * inactive list actually has some pages to scan on this priority, we
2196 * do not reclaim anything from the anonymous working set right now.
2197 * Without the second condition we could end up never scanning an
2198 * lruvec even if it has plenty of old anonymous pages unless the
2199 * system is under heavy pressure.
2200 */
2201 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2202 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2203 scan_balance = SCAN_FILE;
2204 goto out;
2205 }
2206
2207 scan_balance = SCAN_FRACT;
2208
2209 /*
2210 * With swappiness at 100, anonymous and file have the same priority.
2211 * This scanning priority is essentially the inverse of IO cost.
2212 */
2213 anon_prio = swappiness;
2214 file_prio = 200 - anon_prio;
2215
2216 /*
2217 * OK, so we have swap space and a fair amount of page cache
2218 * pages. We use the recently rotated / recently scanned
2219 * ratios to determine how valuable each cache is.
2220 *
2221 * Because workloads change over time (and to avoid overflow)
2222 * we keep these statistics as a floating average, which ends
2223 * up weighing recent references more than old ones.
2224 *
2225 * anon in [0], file in [1]
2226 */
2227
2228 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2229 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2230 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2231 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2232
2233 spin_lock_irq(&pgdat->lru_lock);
2234 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2235 reclaim_stat->recent_scanned[0] /= 2;
2236 reclaim_stat->recent_rotated[0] /= 2;
2237 }
2238
2239 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2240 reclaim_stat->recent_scanned[1] /= 2;
2241 reclaim_stat->recent_rotated[1] /= 2;
2242 }
2243
2244 /*
2245 * The amount of pressure on anon vs file pages is inversely
2246 * proportional to the fraction of recently scanned pages on
2247 * each list that were recently referenced and in active use.
2248 */
2249 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2250 ap /= reclaim_stat->recent_rotated[0] + 1;
2251
2252 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2253 fp /= reclaim_stat->recent_rotated[1] + 1;
2254 spin_unlock_irq(&pgdat->lru_lock);
2255
2256 fraction[0] = ap;
2257 fraction[1] = fp;
2258 denominator = ap + fp + 1;
2259 out:
2260 *lru_pages = 0;
2261 for_each_evictable_lru(lru) {
2262 int file = is_file_lru(lru);
2263 unsigned long size;
2264 unsigned long scan;
2265
2266 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2267 scan = size >> sc->priority;
2268 /*
2269 * If the cgroup's already been deleted, make sure to
2270 * scrape out the remaining cache.
2271 */
2272 if (!scan && !mem_cgroup_online(memcg))
2273 scan = min(size, SWAP_CLUSTER_MAX);
2274
2275 switch (scan_balance) {
2276 case SCAN_EQUAL:
2277 /* Scan lists relative to size */
2278 break;
2279 case SCAN_FRACT:
2280 /*
2281 * Scan types proportional to swappiness and
2282 * their relative recent reclaim efficiency.
2283 */
2284 scan = div64_u64(scan * fraction[file],
2285 denominator);
2286 break;
2287 case SCAN_FILE:
2288 case SCAN_ANON:
2289 /* Scan one type exclusively */
2290 if ((scan_balance == SCAN_FILE) != file) {
2291 size = 0;
2292 scan = 0;
2293 }
2294 break;
2295 default:
2296 /* Look ma, no brain */
2297 BUG();
2298 }
2299
2300 *lru_pages += size;
2301 nr[lru] = scan;
2302 }
2303 }
2304
2305 /*
2306 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2307 */
2308 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2309 struct scan_control *sc, unsigned long *lru_pages)
2310 {
2311 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2312 unsigned long nr[NR_LRU_LISTS];
2313 unsigned long targets[NR_LRU_LISTS];
2314 unsigned long nr_to_scan;
2315 enum lru_list lru;
2316 unsigned long nr_reclaimed = 0;
2317 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2318 struct blk_plug plug;
2319 bool scan_adjusted;
2320
2321 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2322
2323 /* Record the original scan target for proportional adjustments later */
2324 memcpy(targets, nr, sizeof(nr));
2325
2326 /*
2327 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2328 * event that can occur when there is little memory pressure e.g.
2329 * multiple streaming readers/writers. Hence, we do not abort scanning
2330 * when the requested number of pages are reclaimed when scanning at
2331 * DEF_PRIORITY on the assumption that the fact we are direct
2332 * reclaiming implies that kswapd is not keeping up and it is best to
2333 * do a batch of work at once. For memcg reclaim one check is made to
2334 * abort proportional reclaim if either the file or anon lru has already
2335 * dropped to zero at the first pass.
2336 */
2337 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2338 sc->priority == DEF_PRIORITY);
2339
2340 blk_start_plug(&plug);
2341 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2342 nr[LRU_INACTIVE_FILE]) {
2343 unsigned long nr_anon, nr_file, percentage;
2344 unsigned long nr_scanned;
2345
2346 for_each_evictable_lru(lru) {
2347 if (nr[lru]) {
2348 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2349 nr[lru] -= nr_to_scan;
2350
2351 nr_reclaimed += shrink_list(lru, nr_to_scan,
2352 lruvec, memcg, sc);
2353 }
2354 }
2355
2356 cond_resched();
2357
2358 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2359 continue;
2360
2361 /*
2362 * For kswapd and memcg, reclaim at least the number of pages
2363 * requested. Ensure that the anon and file LRUs are scanned
2364 * proportionally what was requested by get_scan_count(). We
2365 * stop reclaiming one LRU and reduce the amount scanning
2366 * proportional to the original scan target.
2367 */
2368 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2369 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2370
2371 /*
2372 * It's just vindictive to attack the larger once the smaller
2373 * has gone to zero. And given the way we stop scanning the
2374 * smaller below, this makes sure that we only make one nudge
2375 * towards proportionality once we've got nr_to_reclaim.
2376 */
2377 if (!nr_file || !nr_anon)
2378 break;
2379
2380 if (nr_file > nr_anon) {
2381 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2382 targets[LRU_ACTIVE_ANON] + 1;
2383 lru = LRU_BASE;
2384 percentage = nr_anon * 100 / scan_target;
2385 } else {
2386 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2387 targets[LRU_ACTIVE_FILE] + 1;
2388 lru = LRU_FILE;
2389 percentage = nr_file * 100 / scan_target;
2390 }
2391
2392 /* Stop scanning the smaller of the LRU */
2393 nr[lru] = 0;
2394 nr[lru + LRU_ACTIVE] = 0;
2395
2396 /*
2397 * Recalculate the other LRU scan count based on its original
2398 * scan target and the percentage scanning already complete
2399 */
2400 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2401 nr_scanned = targets[lru] - nr[lru];
2402 nr[lru] = targets[lru] * (100 - percentage) / 100;
2403 nr[lru] -= min(nr[lru], nr_scanned);
2404
2405 lru += LRU_ACTIVE;
2406 nr_scanned = targets[lru] - nr[lru];
2407 nr[lru] = targets[lru] * (100 - percentage) / 100;
2408 nr[lru] -= min(nr[lru], nr_scanned);
2409
2410 scan_adjusted = true;
2411 }
2412 blk_finish_plug(&plug);
2413 sc->nr_reclaimed += nr_reclaimed;
2414
2415 /*
2416 * Even if we did not try to evict anon pages at all, we want to
2417 * rebalance the anon lru active/inactive ratio.
2418 */
2419 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2420 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2421 sc, LRU_ACTIVE_ANON);
2422 }
2423
2424 /* Use reclaim/compaction for costly allocs or under memory pressure */
2425 static bool in_reclaim_compaction(struct scan_control *sc)
2426 {
2427 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2428 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2429 sc->priority < DEF_PRIORITY - 2))
2430 return true;
2431
2432 return false;
2433 }
2434
2435 /*
2436 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2437 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2438 * true if more pages should be reclaimed such that when the page allocator
2439 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2440 * It will give up earlier than that if there is difficulty reclaiming pages.
2441 */
2442 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2443 unsigned long nr_reclaimed,
2444 unsigned long nr_scanned,
2445 struct scan_control *sc)
2446 {
2447 unsigned long pages_for_compaction;
2448 unsigned long inactive_lru_pages;
2449 int z;
2450
2451 /* If not in reclaim/compaction mode, stop */
2452 if (!in_reclaim_compaction(sc))
2453 return false;
2454
2455 /* Consider stopping depending on scan and reclaim activity */
2456 if (sc->gfp_mask & __GFP_REPEAT) {
2457 /*
2458 * For __GFP_REPEAT allocations, stop reclaiming if the
2459 * full LRU list has been scanned and we are still failing
2460 * to reclaim pages. This full LRU scan is potentially
2461 * expensive but a __GFP_REPEAT caller really wants to succeed
2462 */
2463 if (!nr_reclaimed && !nr_scanned)
2464 return false;
2465 } else {
2466 /*
2467 * For non-__GFP_REPEAT allocations which can presumably
2468 * fail without consequence, stop if we failed to reclaim
2469 * any pages from the last SWAP_CLUSTER_MAX number of
2470 * pages that were scanned. This will return to the
2471 * caller faster at the risk reclaim/compaction and
2472 * the resulting allocation attempt fails
2473 */
2474 if (!nr_reclaimed)
2475 return false;
2476 }
2477
2478 /*
2479 * If we have not reclaimed enough pages for compaction and the
2480 * inactive lists are large enough, continue reclaiming
2481 */
2482 pages_for_compaction = compact_gap(sc->order);
2483 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2484 if (get_nr_swap_pages() > 0)
2485 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2486 if (sc->nr_reclaimed < pages_for_compaction &&
2487 inactive_lru_pages > pages_for_compaction)
2488 return true;
2489
2490 /* If compaction would go ahead or the allocation would succeed, stop */
2491 for (z = 0; z <= sc->reclaim_idx; z++) {
2492 struct zone *zone = &pgdat->node_zones[z];
2493 if (!managed_zone(zone))
2494 continue;
2495
2496 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2497 case COMPACT_SUCCESS:
2498 case COMPACT_CONTINUE:
2499 return false;
2500 default:
2501 /* check next zone */
2502 ;
2503 }
2504 }
2505 return true;
2506 }
2507
2508 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2509 {
2510 struct reclaim_state *reclaim_state = current->reclaim_state;
2511 unsigned long nr_reclaimed, nr_scanned;
2512 bool reclaimable = false;
2513
2514 do {
2515 struct mem_cgroup *root = sc->target_mem_cgroup;
2516 struct mem_cgroup_reclaim_cookie reclaim = {
2517 .pgdat = pgdat,
2518 .priority = sc->priority,
2519 };
2520 unsigned long node_lru_pages = 0;
2521 struct mem_cgroup *memcg;
2522
2523 nr_reclaimed = sc->nr_reclaimed;
2524 nr_scanned = sc->nr_scanned;
2525
2526 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2527 do {
2528 unsigned long lru_pages;
2529 unsigned long reclaimed;
2530 unsigned long scanned;
2531
2532 if (mem_cgroup_low(root, memcg)) {
2533 if (!sc->memcg_low_reclaim) {
2534 sc->memcg_low_skipped = 1;
2535 continue;
2536 }
2537 mem_cgroup_event(memcg, MEMCG_LOW);
2538 }
2539
2540 reclaimed = sc->nr_reclaimed;
2541 scanned = sc->nr_scanned;
2542
2543 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2544 node_lru_pages += lru_pages;
2545
2546 if (memcg)
2547 shrink_slab(sc->gfp_mask, pgdat->node_id,
2548 memcg, sc->nr_scanned - scanned,
2549 lru_pages);
2550
2551 /* Record the group's reclaim efficiency */
2552 vmpressure(sc->gfp_mask, memcg, false,
2553 sc->nr_scanned - scanned,
2554 sc->nr_reclaimed - reclaimed);
2555
2556 /*
2557 * Direct reclaim and kswapd have to scan all memory
2558 * cgroups to fulfill the overall scan target for the
2559 * node.
2560 *
2561 * Limit reclaim, on the other hand, only cares about
2562 * nr_to_reclaim pages to be reclaimed and it will
2563 * retry with decreasing priority if one round over the
2564 * whole hierarchy is not sufficient.
2565 */
2566 if (!global_reclaim(sc) &&
2567 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2568 mem_cgroup_iter_break(root, memcg);
2569 break;
2570 }
2571 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2572
2573 /*
2574 * Shrink the slab caches in the same proportion that
2575 * the eligible LRU pages were scanned.
2576 */
2577 if (global_reclaim(sc))
2578 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2579 sc->nr_scanned - nr_scanned,
2580 node_lru_pages);
2581
2582 if (reclaim_state) {
2583 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2584 reclaim_state->reclaimed_slab = 0;
2585 }
2586
2587 /* Record the subtree's reclaim efficiency */
2588 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2589 sc->nr_scanned - nr_scanned,
2590 sc->nr_reclaimed - nr_reclaimed);
2591
2592 if (sc->nr_reclaimed - nr_reclaimed)
2593 reclaimable = true;
2594
2595 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2596 sc->nr_scanned - nr_scanned, sc));
2597
2598 /*
2599 * Kswapd gives up on balancing particular nodes after too
2600 * many failures to reclaim anything from them and goes to
2601 * sleep. On reclaim progress, reset the failure counter. A
2602 * successful direct reclaim run will revive a dormant kswapd.
2603 */
2604 if (reclaimable)
2605 pgdat->kswapd_failures = 0;
2606
2607 return reclaimable;
2608 }
2609
2610 /*
2611 * Returns true if compaction should go ahead for a costly-order request, or
2612 * the allocation would already succeed without compaction. Return false if we
2613 * should reclaim first.
2614 */
2615 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2616 {
2617 unsigned long watermark;
2618 enum compact_result suitable;
2619
2620 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2621 if (suitable == COMPACT_SUCCESS)
2622 /* Allocation should succeed already. Don't reclaim. */
2623 return true;
2624 if (suitable == COMPACT_SKIPPED)
2625 /* Compaction cannot yet proceed. Do reclaim. */
2626 return false;
2627
2628 /*
2629 * Compaction is already possible, but it takes time to run and there
2630 * are potentially other callers using the pages just freed. So proceed
2631 * with reclaim to make a buffer of free pages available to give
2632 * compaction a reasonable chance of completing and allocating the page.
2633 * Note that we won't actually reclaim the whole buffer in one attempt
2634 * as the target watermark in should_continue_reclaim() is lower. But if
2635 * we are already above the high+gap watermark, don't reclaim at all.
2636 */
2637 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2638
2639 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2640 }
2641
2642 /*
2643 * This is the direct reclaim path, for page-allocating processes. We only
2644 * try to reclaim pages from zones which will satisfy the caller's allocation
2645 * request.
2646 *
2647 * If a zone is deemed to be full of pinned pages then just give it a light
2648 * scan then give up on it.
2649 */
2650 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2651 {
2652 struct zoneref *z;
2653 struct zone *zone;
2654 unsigned long nr_soft_reclaimed;
2655 unsigned long nr_soft_scanned;
2656 gfp_t orig_mask;
2657 pg_data_t *last_pgdat = NULL;
2658
2659 /*
2660 * If the number of buffer_heads in the machine exceeds the maximum
2661 * allowed level, force direct reclaim to scan the highmem zone as
2662 * highmem pages could be pinning lowmem pages storing buffer_heads
2663 */
2664 orig_mask = sc->gfp_mask;
2665 if (buffer_heads_over_limit) {
2666 sc->gfp_mask |= __GFP_HIGHMEM;
2667 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2668 }
2669
2670 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2671 sc->reclaim_idx, sc->nodemask) {
2672 /*
2673 * Take care memory controller reclaiming has small influence
2674 * to global LRU.
2675 */
2676 if (global_reclaim(sc)) {
2677 if (!cpuset_zone_allowed(zone,
2678 GFP_KERNEL | __GFP_HARDWALL))
2679 continue;
2680
2681 /*
2682 * If we already have plenty of memory free for
2683 * compaction in this zone, don't free any more.
2684 * Even though compaction is invoked for any
2685 * non-zero order, only frequent costly order
2686 * reclamation is disruptive enough to become a
2687 * noticeable problem, like transparent huge
2688 * page allocations.
2689 */
2690 if (IS_ENABLED(CONFIG_COMPACTION) &&
2691 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2692 compaction_ready(zone, sc)) {
2693 sc->compaction_ready = true;
2694 continue;
2695 }
2696
2697 /*
2698 * Shrink each node in the zonelist once. If the
2699 * zonelist is ordered by zone (not the default) then a
2700 * node may be shrunk multiple times but in that case
2701 * the user prefers lower zones being preserved.
2702 */
2703 if (zone->zone_pgdat == last_pgdat)
2704 continue;
2705
2706 /*
2707 * This steals pages from memory cgroups over softlimit
2708 * and returns the number of reclaimed pages and
2709 * scanned pages. This works for global memory pressure
2710 * and balancing, not for a memcg's limit.
2711 */
2712 nr_soft_scanned = 0;
2713 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2714 sc->order, sc->gfp_mask,
2715 &nr_soft_scanned);
2716 sc->nr_reclaimed += nr_soft_reclaimed;
2717 sc->nr_scanned += nr_soft_scanned;
2718 /* need some check for avoid more shrink_zone() */
2719 }
2720
2721 /* See comment about same check for global reclaim above */
2722 if (zone->zone_pgdat == last_pgdat)
2723 continue;
2724 last_pgdat = zone->zone_pgdat;
2725 shrink_node(zone->zone_pgdat, sc);
2726 }
2727
2728 /*
2729 * Restore to original mask to avoid the impact on the caller if we
2730 * promoted it to __GFP_HIGHMEM.
2731 */
2732 sc->gfp_mask = orig_mask;
2733 }
2734
2735 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2736 {
2737 struct mem_cgroup *memcg;
2738
2739 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2740 do {
2741 unsigned long refaults;
2742 struct lruvec *lruvec;
2743
2744 if (memcg)
2745 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2746 else
2747 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2748
2749 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2750 lruvec->refaults = refaults;
2751 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2752 }
2753
2754 /*
2755 * This is the main entry point to direct page reclaim.
2756 *
2757 * If a full scan of the inactive list fails to free enough memory then we
2758 * are "out of memory" and something needs to be killed.
2759 *
2760 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2761 * high - the zone may be full of dirty or under-writeback pages, which this
2762 * caller can't do much about. We kick the writeback threads and take explicit
2763 * naps in the hope that some of these pages can be written. But if the
2764 * allocating task holds filesystem locks which prevent writeout this might not
2765 * work, and the allocation attempt will fail.
2766 *
2767 * returns: 0, if no pages reclaimed
2768 * else, the number of pages reclaimed
2769 */
2770 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2771 struct scan_control *sc)
2772 {
2773 int initial_priority = sc->priority;
2774 pg_data_t *last_pgdat;
2775 struct zoneref *z;
2776 struct zone *zone;
2777 retry:
2778 delayacct_freepages_start();
2779
2780 if (global_reclaim(sc))
2781 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2782
2783 do {
2784 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2785 sc->priority);
2786 sc->nr_scanned = 0;
2787 shrink_zones(zonelist, sc);
2788
2789 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2790 break;
2791
2792 if (sc->compaction_ready)
2793 break;
2794
2795 /*
2796 * If we're getting trouble reclaiming, start doing
2797 * writepage even in laptop mode.
2798 */
2799 if (sc->priority < DEF_PRIORITY - 2)
2800 sc->may_writepage = 1;
2801 } while (--sc->priority >= 0);
2802
2803 last_pgdat = NULL;
2804 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2805 sc->nodemask) {
2806 if (zone->zone_pgdat == last_pgdat)
2807 continue;
2808 last_pgdat = zone->zone_pgdat;
2809 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2810 }
2811
2812 delayacct_freepages_end();
2813
2814 if (sc->nr_reclaimed)
2815 return sc->nr_reclaimed;
2816
2817 /* Aborted reclaim to try compaction? don't OOM, then */
2818 if (sc->compaction_ready)
2819 return 1;
2820
2821 /* Untapped cgroup reserves? Don't OOM, retry. */
2822 if (sc->memcg_low_skipped) {
2823 sc->priority = initial_priority;
2824 sc->memcg_low_reclaim = 1;
2825 sc->memcg_low_skipped = 0;
2826 goto retry;
2827 }
2828
2829 return 0;
2830 }
2831
2832 static bool allow_direct_reclaim(pg_data_t *pgdat)
2833 {
2834 struct zone *zone;
2835 unsigned long pfmemalloc_reserve = 0;
2836 unsigned long free_pages = 0;
2837 int i;
2838 bool wmark_ok;
2839
2840 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2841 return true;
2842
2843 for (i = 0; i <= ZONE_NORMAL; i++) {
2844 zone = &pgdat->node_zones[i];
2845 if (!managed_zone(zone))
2846 continue;
2847
2848 if (!zone_reclaimable_pages(zone))
2849 continue;
2850
2851 pfmemalloc_reserve += min_wmark_pages(zone);
2852 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2853 }
2854
2855 /* If there are no reserves (unexpected config) then do not throttle */
2856 if (!pfmemalloc_reserve)
2857 return true;
2858
2859 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2860
2861 /* kswapd must be awake if processes are being throttled */
2862 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2863 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2864 (enum zone_type)ZONE_NORMAL);
2865 wake_up_interruptible(&pgdat->kswapd_wait);
2866 }
2867
2868 return wmark_ok;
2869 }
2870
2871 /*
2872 * Throttle direct reclaimers if backing storage is backed by the network
2873 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2874 * depleted. kswapd will continue to make progress and wake the processes
2875 * when the low watermark is reached.
2876 *
2877 * Returns true if a fatal signal was delivered during throttling. If this
2878 * happens, the page allocator should not consider triggering the OOM killer.
2879 */
2880 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2881 nodemask_t *nodemask)
2882 {
2883 struct zoneref *z;
2884 struct zone *zone;
2885 pg_data_t *pgdat = NULL;
2886
2887 /*
2888 * Kernel threads should not be throttled as they may be indirectly
2889 * responsible for cleaning pages necessary for reclaim to make forward
2890 * progress. kjournald for example may enter direct reclaim while
2891 * committing a transaction where throttling it could forcing other
2892 * processes to block on log_wait_commit().
2893 */
2894 if (current->flags & PF_KTHREAD)
2895 goto out;
2896
2897 /*
2898 * If a fatal signal is pending, this process should not throttle.
2899 * It should return quickly so it can exit and free its memory
2900 */
2901 if (fatal_signal_pending(current))
2902 goto out;
2903
2904 /*
2905 * Check if the pfmemalloc reserves are ok by finding the first node
2906 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2907 * GFP_KERNEL will be required for allocating network buffers when
2908 * swapping over the network so ZONE_HIGHMEM is unusable.
2909 *
2910 * Throttling is based on the first usable node and throttled processes
2911 * wait on a queue until kswapd makes progress and wakes them. There
2912 * is an affinity then between processes waking up and where reclaim
2913 * progress has been made assuming the process wakes on the same node.
2914 * More importantly, processes running on remote nodes will not compete
2915 * for remote pfmemalloc reserves and processes on different nodes
2916 * should make reasonable progress.
2917 */
2918 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2919 gfp_zone(gfp_mask), nodemask) {
2920 if (zone_idx(zone) > ZONE_NORMAL)
2921 continue;
2922
2923 /* Throttle based on the first usable node */
2924 pgdat = zone->zone_pgdat;
2925 if (allow_direct_reclaim(pgdat))
2926 goto out;
2927 break;
2928 }
2929
2930 /* If no zone was usable by the allocation flags then do not throttle */
2931 if (!pgdat)
2932 goto out;
2933
2934 /* Account for the throttling */
2935 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2936
2937 /*
2938 * If the caller cannot enter the filesystem, it's possible that it
2939 * is due to the caller holding an FS lock or performing a journal
2940 * transaction in the case of a filesystem like ext[3|4]. In this case,
2941 * it is not safe to block on pfmemalloc_wait as kswapd could be
2942 * blocked waiting on the same lock. Instead, throttle for up to a
2943 * second before continuing.
2944 */
2945 if (!(gfp_mask & __GFP_FS)) {
2946 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2947 allow_direct_reclaim(pgdat), HZ);
2948
2949 goto check_pending;
2950 }
2951
2952 /* Throttle until kswapd wakes the process */
2953 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2954 allow_direct_reclaim(pgdat));
2955
2956 check_pending:
2957 if (fatal_signal_pending(current))
2958 return true;
2959
2960 out:
2961 return false;
2962 }
2963
2964 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2965 gfp_t gfp_mask, nodemask_t *nodemask)
2966 {
2967 unsigned long nr_reclaimed;
2968 struct scan_control sc = {
2969 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2970 .gfp_mask = (gfp_mask = current_gfp_context(gfp_mask)),
2971 .reclaim_idx = gfp_zone(gfp_mask),
2972 .order = order,
2973 .nodemask = nodemask,
2974 .priority = DEF_PRIORITY,
2975 .may_writepage = !laptop_mode,
2976 .may_unmap = 1,
2977 .may_swap = 1,
2978 };
2979
2980 /*
2981 * Do not enter reclaim if fatal signal was delivered while throttled.
2982 * 1 is returned so that the page allocator does not OOM kill at this
2983 * point.
2984 */
2985 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2986 return 1;
2987
2988 trace_mm_vmscan_direct_reclaim_begin(order,
2989 sc.may_writepage,
2990 gfp_mask,
2991 sc.reclaim_idx);
2992
2993 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2994
2995 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2996
2997 return nr_reclaimed;
2998 }
2999
3000 #ifdef CONFIG_MEMCG
3001
3002 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3003 gfp_t gfp_mask, bool noswap,
3004 pg_data_t *pgdat,
3005 unsigned long *nr_scanned)
3006 {
3007 struct scan_control sc = {
3008 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3009 .target_mem_cgroup = memcg,
3010 .may_writepage = !laptop_mode,
3011 .may_unmap = 1,
3012 .reclaim_idx = MAX_NR_ZONES - 1,
3013 .may_swap = !noswap,
3014 };
3015 unsigned long lru_pages;
3016
3017 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3018 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3019
3020 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3021 sc.may_writepage,
3022 sc.gfp_mask,
3023 sc.reclaim_idx);
3024
3025 /*
3026 * NOTE: Although we can get the priority field, using it
3027 * here is not a good idea, since it limits the pages we can scan.
3028 * if we don't reclaim here, the shrink_node from balance_pgdat
3029 * will pick up pages from other mem cgroup's as well. We hack
3030 * the priority and make it zero.
3031 */
3032 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3033
3034 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3035
3036 *nr_scanned = sc.nr_scanned;
3037 return sc.nr_reclaimed;
3038 }
3039
3040 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3041 unsigned long nr_pages,
3042 gfp_t gfp_mask,
3043 bool may_swap)
3044 {
3045 struct zonelist *zonelist;
3046 unsigned long nr_reclaimed;
3047 int nid;
3048 unsigned int noreclaim_flag;
3049 struct scan_control sc = {
3050 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3051 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3052 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3053 .reclaim_idx = MAX_NR_ZONES - 1,
3054 .target_mem_cgroup = memcg,
3055 .priority = DEF_PRIORITY,
3056 .may_writepage = !laptop_mode,
3057 .may_unmap = 1,
3058 .may_swap = may_swap,
3059 };
3060
3061 /*
3062 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3063 * take care of from where we get pages. So the node where we start the
3064 * scan does not need to be the current node.
3065 */
3066 nid = mem_cgroup_select_victim_node(memcg);
3067
3068 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3069
3070 trace_mm_vmscan_memcg_reclaim_begin(0,
3071 sc.may_writepage,
3072 sc.gfp_mask,
3073 sc.reclaim_idx);
3074
3075 noreclaim_flag = memalloc_noreclaim_save();
3076 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3077 memalloc_noreclaim_restore(noreclaim_flag);
3078
3079 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3080
3081 return nr_reclaimed;
3082 }
3083 #endif
3084
3085 static void age_active_anon(struct pglist_data *pgdat,
3086 struct scan_control *sc)
3087 {
3088 struct mem_cgroup *memcg;
3089
3090 if (!total_swap_pages)
3091 return;
3092
3093 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3094 do {
3095 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3096
3097 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3098 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3099 sc, LRU_ACTIVE_ANON);
3100
3101 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3102 } while (memcg);
3103 }
3104
3105 /*
3106 * Returns true if there is an eligible zone balanced for the request order
3107 * and classzone_idx
3108 */
3109 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3110 {
3111 int i;
3112 unsigned long mark = -1;
3113 struct zone *zone;
3114
3115 for (i = 0; i <= classzone_idx; i++) {
3116 zone = pgdat->node_zones + i;
3117
3118 if (!managed_zone(zone))
3119 continue;
3120
3121 mark = high_wmark_pages(zone);
3122 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3123 return true;
3124 }
3125
3126 /*
3127 * If a node has no populated zone within classzone_idx, it does not
3128 * need balancing by definition. This can happen if a zone-restricted
3129 * allocation tries to wake a remote kswapd.
3130 */
3131 if (mark == -1)
3132 return true;
3133
3134 return false;
3135 }
3136
3137 /* Clear pgdat state for congested, dirty or under writeback. */
3138 static void clear_pgdat_congested(pg_data_t *pgdat)
3139 {
3140 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3141 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3142 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3143 }
3144
3145 /*
3146 * Prepare kswapd for sleeping. This verifies that there are no processes
3147 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3148 *
3149 * Returns true if kswapd is ready to sleep
3150 */
3151 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3152 {
3153 /*
3154 * The throttled processes are normally woken up in balance_pgdat() as
3155 * soon as allow_direct_reclaim() is true. But there is a potential
3156 * race between when kswapd checks the watermarks and a process gets
3157 * throttled. There is also a potential race if processes get
3158 * throttled, kswapd wakes, a large process exits thereby balancing the
3159 * zones, which causes kswapd to exit balance_pgdat() before reaching
3160 * the wake up checks. If kswapd is going to sleep, no process should
3161 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3162 * the wake up is premature, processes will wake kswapd and get
3163 * throttled again. The difference from wake ups in balance_pgdat() is
3164 * that here we are under prepare_to_wait().
3165 */
3166 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3167 wake_up_all(&pgdat->pfmemalloc_wait);
3168
3169 /* Hopeless node, leave it to direct reclaim */
3170 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3171 return true;
3172
3173 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3174 clear_pgdat_congested(pgdat);
3175 return true;
3176 }
3177
3178 return false;
3179 }
3180
3181 /*
3182 * kswapd shrinks a node of pages that are at or below the highest usable
3183 * zone that is currently unbalanced.
3184 *
3185 * Returns true if kswapd scanned at least the requested number of pages to
3186 * reclaim or if the lack of progress was due to pages under writeback.
3187 * This is used to determine if the scanning priority needs to be raised.
3188 */
3189 static bool kswapd_shrink_node(pg_data_t *pgdat,
3190 struct scan_control *sc)
3191 {
3192 struct zone *zone;
3193 int z;
3194
3195 /* Reclaim a number of pages proportional to the number of zones */
3196 sc->nr_to_reclaim = 0;
3197 for (z = 0; z <= sc->reclaim_idx; z++) {
3198 zone = pgdat->node_zones + z;
3199 if (!managed_zone(zone))
3200 continue;
3201
3202 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3203 }
3204
3205 /*
3206 * Historically care was taken to put equal pressure on all zones but
3207 * now pressure is applied based on node LRU order.
3208 */
3209 shrink_node(pgdat, sc);
3210
3211 /*
3212 * Fragmentation may mean that the system cannot be rebalanced for
3213 * high-order allocations. If twice the allocation size has been
3214 * reclaimed then recheck watermarks only at order-0 to prevent
3215 * excessive reclaim. Assume that a process requested a high-order
3216 * can direct reclaim/compact.
3217 */
3218 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3219 sc->order = 0;
3220
3221 return sc->nr_scanned >= sc->nr_to_reclaim;
3222 }
3223
3224 /*
3225 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3226 * that are eligible for use by the caller until at least one zone is
3227 * balanced.
3228 *
3229 * Returns the order kswapd finished reclaiming at.
3230 *
3231 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3232 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3233 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3234 * or lower is eligible for reclaim until at least one usable zone is
3235 * balanced.
3236 */
3237 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3238 {
3239 int i;
3240 unsigned long nr_soft_reclaimed;
3241 unsigned long nr_soft_scanned;
3242 struct zone *zone;
3243 struct scan_control sc = {
3244 .gfp_mask = GFP_KERNEL,
3245 .order = order,
3246 .priority = DEF_PRIORITY,
3247 .may_writepage = !laptop_mode,
3248 .may_unmap = 1,
3249 .may_swap = 1,
3250 };
3251 count_vm_event(PAGEOUTRUN);
3252
3253 do {
3254 unsigned long nr_reclaimed = sc.nr_reclaimed;
3255 bool raise_priority = true;
3256
3257 sc.reclaim_idx = classzone_idx;
3258
3259 /*
3260 * If the number of buffer_heads exceeds the maximum allowed
3261 * then consider reclaiming from all zones. This has a dual
3262 * purpose -- on 64-bit systems it is expected that
3263 * buffer_heads are stripped during active rotation. On 32-bit
3264 * systems, highmem pages can pin lowmem memory and shrinking
3265 * buffers can relieve lowmem pressure. Reclaim may still not
3266 * go ahead if all eligible zones for the original allocation
3267 * request are balanced to avoid excessive reclaim from kswapd.
3268 */
3269 if (buffer_heads_over_limit) {
3270 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3271 zone = pgdat->node_zones + i;
3272 if (!managed_zone(zone))
3273 continue;
3274
3275 sc.reclaim_idx = i;
3276 break;
3277 }
3278 }
3279
3280 /*
3281 * Only reclaim if there are no eligible zones. Note that
3282 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3283 * have adjusted it.
3284 */
3285 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3286 goto out;
3287
3288 /*
3289 * Do some background aging of the anon list, to give
3290 * pages a chance to be referenced before reclaiming. All
3291 * pages are rotated regardless of classzone as this is
3292 * about consistent aging.
3293 */
3294 age_active_anon(pgdat, &sc);
3295
3296 /*
3297 * If we're getting trouble reclaiming, start doing writepage
3298 * even in laptop mode.
3299 */
3300 if (sc.priority < DEF_PRIORITY - 2)
3301 sc.may_writepage = 1;
3302
3303 /* Call soft limit reclaim before calling shrink_node. */
3304 sc.nr_scanned = 0;
3305 nr_soft_scanned = 0;
3306 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3307 sc.gfp_mask, &nr_soft_scanned);
3308 sc.nr_reclaimed += nr_soft_reclaimed;
3309
3310 /*
3311 * There should be no need to raise the scanning priority if
3312 * enough pages are already being scanned that that high
3313 * watermark would be met at 100% efficiency.
3314 */
3315 if (kswapd_shrink_node(pgdat, &sc))
3316 raise_priority = false;
3317
3318 /*
3319 * If the low watermark is met there is no need for processes
3320 * to be throttled on pfmemalloc_wait as they should not be
3321 * able to safely make forward progress. Wake them
3322 */
3323 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3324 allow_direct_reclaim(pgdat))
3325 wake_up_all(&pgdat->pfmemalloc_wait);
3326
3327 /* Check if kswapd should be suspending */
3328 if (try_to_freeze() || kthread_should_stop())
3329 break;
3330
3331 /*
3332 * Raise priority if scanning rate is too low or there was no
3333 * progress in reclaiming pages
3334 */
3335 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3336 if (raise_priority || !nr_reclaimed)
3337 sc.priority--;
3338 } while (sc.priority >= 1);
3339
3340 if (!sc.nr_reclaimed)
3341 pgdat->kswapd_failures++;
3342
3343 out:
3344 snapshot_refaults(NULL, pgdat);
3345 /*
3346 * Return the order kswapd stopped reclaiming at as
3347 * prepare_kswapd_sleep() takes it into account. If another caller
3348 * entered the allocator slow path while kswapd was awake, order will
3349 * remain at the higher level.
3350 */
3351 return sc.order;
3352 }
3353
3354 /*
3355 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3356 * allocation request woke kswapd for. When kswapd has not woken recently,
3357 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3358 * given classzone and returns it or the highest classzone index kswapd
3359 * was recently woke for.
3360 */
3361 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3362 enum zone_type classzone_idx)
3363 {
3364 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3365 return classzone_idx;
3366
3367 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3368 }
3369
3370 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3371 unsigned int classzone_idx)
3372 {
3373 long remaining = 0;
3374 DEFINE_WAIT(wait);
3375
3376 if (freezing(current) || kthread_should_stop())
3377 return;
3378
3379 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3380
3381 /*
3382 * Try to sleep for a short interval. Note that kcompactd will only be
3383 * woken if it is possible to sleep for a short interval. This is
3384 * deliberate on the assumption that if reclaim cannot keep an
3385 * eligible zone balanced that it's also unlikely that compaction will
3386 * succeed.
3387 */
3388 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3389 /*
3390 * Compaction records what page blocks it recently failed to
3391 * isolate pages from and skips them in the future scanning.
3392 * When kswapd is going to sleep, it is reasonable to assume
3393 * that pages and compaction may succeed so reset the cache.
3394 */
3395 reset_isolation_suitable(pgdat);
3396
3397 /*
3398 * We have freed the memory, now we should compact it to make
3399 * allocation of the requested order possible.
3400 */
3401 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3402
3403 remaining = schedule_timeout(HZ/10);
3404
3405 /*
3406 * If woken prematurely then reset kswapd_classzone_idx and
3407 * order. The values will either be from a wakeup request or
3408 * the previous request that slept prematurely.
3409 */
3410 if (remaining) {
3411 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3412 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3413 }
3414
3415 finish_wait(&pgdat->kswapd_wait, &wait);
3416 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3417 }
3418
3419 /*
3420 * After a short sleep, check if it was a premature sleep. If not, then
3421 * go fully to sleep until explicitly woken up.
3422 */
3423 if (!remaining &&
3424 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3425 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3426
3427 /*
3428 * vmstat counters are not perfectly accurate and the estimated
3429 * value for counters such as NR_FREE_PAGES can deviate from the
3430 * true value by nr_online_cpus * threshold. To avoid the zone
3431 * watermarks being breached while under pressure, we reduce the
3432 * per-cpu vmstat threshold while kswapd is awake and restore
3433 * them before going back to sleep.
3434 */
3435 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3436
3437 if (!kthread_should_stop())
3438 schedule();
3439
3440 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3441 } else {
3442 if (remaining)
3443 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3444 else
3445 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3446 }
3447 finish_wait(&pgdat->kswapd_wait, &wait);
3448 }
3449
3450 /*
3451 * The background pageout daemon, started as a kernel thread
3452 * from the init process.
3453 *
3454 * This basically trickles out pages so that we have _some_
3455 * free memory available even if there is no other activity
3456 * that frees anything up. This is needed for things like routing
3457 * etc, where we otherwise might have all activity going on in
3458 * asynchronous contexts that cannot page things out.
3459 *
3460 * If there are applications that are active memory-allocators
3461 * (most normal use), this basically shouldn't matter.
3462 */
3463 static int kswapd(void *p)
3464 {
3465 unsigned int alloc_order, reclaim_order;
3466 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3467 pg_data_t *pgdat = (pg_data_t*)p;
3468 struct task_struct *tsk = current;
3469
3470 struct reclaim_state reclaim_state = {
3471 .reclaimed_slab = 0,
3472 };
3473 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3474
3475 lockdep_set_current_reclaim_state(GFP_KERNEL);
3476
3477 if (!cpumask_empty(cpumask))
3478 set_cpus_allowed_ptr(tsk, cpumask);
3479 current->reclaim_state = &reclaim_state;
3480
3481 /*
3482 * Tell the memory management that we're a "memory allocator",
3483 * and that if we need more memory we should get access to it
3484 * regardless (see "__alloc_pages()"). "kswapd" should
3485 * never get caught in the normal page freeing logic.
3486 *
3487 * (Kswapd normally doesn't need memory anyway, but sometimes
3488 * you need a small amount of memory in order to be able to
3489 * page out something else, and this flag essentially protects
3490 * us from recursively trying to free more memory as we're
3491 * trying to free the first piece of memory in the first place).
3492 */
3493 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3494 set_freezable();
3495
3496 pgdat->kswapd_order = 0;
3497 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3498 for ( ; ; ) {
3499 bool ret;
3500
3501 alloc_order = reclaim_order = pgdat->kswapd_order;
3502 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3503
3504 kswapd_try_sleep:
3505 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3506 classzone_idx);
3507
3508 /* Read the new order and classzone_idx */
3509 alloc_order = reclaim_order = pgdat->kswapd_order;
3510 classzone_idx = kswapd_classzone_idx(pgdat, 0);
3511 pgdat->kswapd_order = 0;
3512 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3513
3514 ret = try_to_freeze();
3515 if (kthread_should_stop())
3516 break;
3517
3518 /*
3519 * We can speed up thawing tasks if we don't call balance_pgdat
3520 * after returning from the refrigerator
3521 */
3522 if (ret)
3523 continue;
3524
3525 /*
3526 * Reclaim begins at the requested order but if a high-order
3527 * reclaim fails then kswapd falls back to reclaiming for
3528 * order-0. If that happens, kswapd will consider sleeping
3529 * for the order it finished reclaiming at (reclaim_order)
3530 * but kcompactd is woken to compact for the original
3531 * request (alloc_order).
3532 */
3533 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3534 alloc_order);
3535 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3536 if (reclaim_order < alloc_order)
3537 goto kswapd_try_sleep;
3538 }
3539
3540 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3541 current->reclaim_state = NULL;
3542 lockdep_clear_current_reclaim_state();
3543
3544 return 0;
3545 }
3546
3547 /*
3548 * A zone is low on free memory, so wake its kswapd task to service it.
3549 */
3550 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3551 {
3552 pg_data_t *pgdat;
3553
3554 if (!managed_zone(zone))
3555 return;
3556
3557 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3558 return;
3559 pgdat = zone->zone_pgdat;
3560 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3561 classzone_idx);
3562 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3563 if (!waitqueue_active(&pgdat->kswapd_wait))
3564 return;
3565
3566 /* Hopeless node, leave it to direct reclaim */
3567 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3568 return;
3569
3570 if (pgdat_balanced(pgdat, order, classzone_idx))
3571 return;
3572
3573 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3574 wake_up_interruptible(&pgdat->kswapd_wait);
3575 }
3576
3577 #ifdef CONFIG_HIBERNATION
3578 /*
3579 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3580 * freed pages.
3581 *
3582 * Rather than trying to age LRUs the aim is to preserve the overall
3583 * LRU order by reclaiming preferentially
3584 * inactive > active > active referenced > active mapped
3585 */
3586 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3587 {
3588 struct reclaim_state reclaim_state;
3589 struct scan_control sc = {
3590 .nr_to_reclaim = nr_to_reclaim,
3591 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3592 .reclaim_idx = MAX_NR_ZONES - 1,
3593 .priority = DEF_PRIORITY,
3594 .may_writepage = 1,
3595 .may_unmap = 1,
3596 .may_swap = 1,
3597 .hibernation_mode = 1,
3598 };
3599 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3600 struct task_struct *p = current;
3601 unsigned long nr_reclaimed;
3602 unsigned int noreclaim_flag;
3603
3604 noreclaim_flag = memalloc_noreclaim_save();
3605 lockdep_set_current_reclaim_state(sc.gfp_mask);
3606 reclaim_state.reclaimed_slab = 0;
3607 p->reclaim_state = &reclaim_state;
3608
3609 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3610
3611 p->reclaim_state = NULL;
3612 lockdep_clear_current_reclaim_state();
3613 memalloc_noreclaim_restore(noreclaim_flag);
3614
3615 return nr_reclaimed;
3616 }
3617 #endif /* CONFIG_HIBERNATION */
3618
3619 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3620 not required for correctness. So if the last cpu in a node goes
3621 away, we get changed to run anywhere: as the first one comes back,
3622 restore their cpu bindings. */
3623 static int kswapd_cpu_online(unsigned int cpu)
3624 {
3625 int nid;
3626
3627 for_each_node_state(nid, N_MEMORY) {
3628 pg_data_t *pgdat = NODE_DATA(nid);
3629 const struct cpumask *mask;
3630
3631 mask = cpumask_of_node(pgdat->node_id);
3632
3633 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3634 /* One of our CPUs online: restore mask */
3635 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3636 }
3637 return 0;
3638 }
3639
3640 /*
3641 * This kswapd start function will be called by init and node-hot-add.
3642 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3643 */
3644 int kswapd_run(int nid)
3645 {
3646 pg_data_t *pgdat = NODE_DATA(nid);
3647 int ret = 0;
3648
3649 if (pgdat->kswapd)
3650 return 0;
3651
3652 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3653 if (IS_ERR(pgdat->kswapd)) {
3654 /* failure at boot is fatal */
3655 BUG_ON(system_state == SYSTEM_BOOTING);
3656 pr_err("Failed to start kswapd on node %d\n", nid);
3657 ret = PTR_ERR(pgdat->kswapd);
3658 pgdat->kswapd = NULL;
3659 }
3660 return ret;
3661 }
3662
3663 /*
3664 * Called by memory hotplug when all memory in a node is offlined. Caller must
3665 * hold mem_hotplug_begin/end().
3666 */
3667 void kswapd_stop(int nid)
3668 {
3669 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3670
3671 if (kswapd) {
3672 kthread_stop(kswapd);
3673 NODE_DATA(nid)->kswapd = NULL;
3674 }
3675 }
3676
3677 static int __init kswapd_init(void)
3678 {
3679 int nid, ret;
3680
3681 swap_setup();
3682 for_each_node_state(nid, N_MEMORY)
3683 kswapd_run(nid);
3684 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3685 "mm/vmscan:online", kswapd_cpu_online,
3686 NULL);
3687 WARN_ON(ret < 0);
3688 return 0;
3689 }
3690
3691 module_init(kswapd_init)
3692
3693 #ifdef CONFIG_NUMA
3694 /*
3695 * Node reclaim mode
3696 *
3697 * If non-zero call node_reclaim when the number of free pages falls below
3698 * the watermarks.
3699 */
3700 int node_reclaim_mode __read_mostly;
3701
3702 #define RECLAIM_OFF 0
3703 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3704 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3705 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3706
3707 /*
3708 * Priority for NODE_RECLAIM. This determines the fraction of pages
3709 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3710 * a zone.
3711 */
3712 #define NODE_RECLAIM_PRIORITY 4
3713
3714 /*
3715 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3716 * occur.
3717 */
3718 int sysctl_min_unmapped_ratio = 1;
3719
3720 /*
3721 * If the number of slab pages in a zone grows beyond this percentage then
3722 * slab reclaim needs to occur.
3723 */
3724 int sysctl_min_slab_ratio = 5;
3725
3726 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3727 {
3728 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3729 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3730 node_page_state(pgdat, NR_ACTIVE_FILE);
3731
3732 /*
3733 * It's possible for there to be more file mapped pages than
3734 * accounted for by the pages on the file LRU lists because
3735 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3736 */
3737 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3738 }
3739
3740 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3741 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3742 {
3743 unsigned long nr_pagecache_reclaimable;
3744 unsigned long delta = 0;
3745
3746 /*
3747 * If RECLAIM_UNMAP is set, then all file pages are considered
3748 * potentially reclaimable. Otherwise, we have to worry about
3749 * pages like swapcache and node_unmapped_file_pages() provides
3750 * a better estimate
3751 */
3752 if (node_reclaim_mode & RECLAIM_UNMAP)
3753 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3754 else
3755 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3756
3757 /* If we can't clean pages, remove dirty pages from consideration */
3758 if (!(node_reclaim_mode & RECLAIM_WRITE))
3759 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3760
3761 /* Watch for any possible underflows due to delta */
3762 if (unlikely(delta > nr_pagecache_reclaimable))
3763 delta = nr_pagecache_reclaimable;
3764
3765 return nr_pagecache_reclaimable - delta;
3766 }
3767
3768 /*
3769 * Try to free up some pages from this node through reclaim.
3770 */
3771 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3772 {
3773 /* Minimum pages needed in order to stay on node */
3774 const unsigned long nr_pages = 1 << order;
3775 struct task_struct *p = current;
3776 struct reclaim_state reclaim_state;
3777 int classzone_idx = gfp_zone(gfp_mask);
3778 unsigned int noreclaim_flag;
3779 struct scan_control sc = {
3780 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3781 .gfp_mask = (gfp_mask = current_gfp_context(gfp_mask)),
3782 .order = order,
3783 .priority = NODE_RECLAIM_PRIORITY,
3784 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3785 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3786 .may_swap = 1,
3787 .reclaim_idx = classzone_idx,
3788 };
3789
3790 cond_resched();
3791 /*
3792 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3793 * and we also need to be able to write out pages for RECLAIM_WRITE
3794 * and RECLAIM_UNMAP.
3795 */
3796 noreclaim_flag = memalloc_noreclaim_save();
3797 p->flags |= PF_SWAPWRITE;
3798 lockdep_set_current_reclaim_state(gfp_mask);
3799 reclaim_state.reclaimed_slab = 0;
3800 p->reclaim_state = &reclaim_state;
3801
3802 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3803 /*
3804 * Free memory by calling shrink zone with increasing
3805 * priorities until we have enough memory freed.
3806 */
3807 do {
3808 shrink_node(pgdat, &sc);
3809 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3810 }
3811
3812 p->reclaim_state = NULL;
3813 current->flags &= ~PF_SWAPWRITE;
3814 memalloc_noreclaim_restore(noreclaim_flag);
3815 lockdep_clear_current_reclaim_state();
3816 return sc.nr_reclaimed >= nr_pages;
3817 }
3818
3819 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3820 {
3821 int ret;
3822
3823 /*
3824 * Node reclaim reclaims unmapped file backed pages and
3825 * slab pages if we are over the defined limits.
3826 *
3827 * A small portion of unmapped file backed pages is needed for
3828 * file I/O otherwise pages read by file I/O will be immediately
3829 * thrown out if the node is overallocated. So we do not reclaim
3830 * if less than a specified percentage of the node is used by
3831 * unmapped file backed pages.
3832 */
3833 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3834 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3835 return NODE_RECLAIM_FULL;
3836
3837 /*
3838 * Do not scan if the allocation should not be delayed.
3839 */
3840 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3841 return NODE_RECLAIM_NOSCAN;
3842
3843 /*
3844 * Only run node reclaim on the local node or on nodes that do not
3845 * have associated processors. This will favor the local processor
3846 * over remote processors and spread off node memory allocations
3847 * as wide as possible.
3848 */
3849 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3850 return NODE_RECLAIM_NOSCAN;
3851
3852 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3853 return NODE_RECLAIM_NOSCAN;
3854
3855 ret = __node_reclaim(pgdat, gfp_mask, order);
3856 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3857
3858 if (!ret)
3859 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3860
3861 return ret;
3862 }
3863 #endif
3864
3865 /*
3866 * page_evictable - test whether a page is evictable
3867 * @page: the page to test
3868 *
3869 * Test whether page is evictable--i.e., should be placed on active/inactive
3870 * lists vs unevictable list.
3871 *
3872 * Reasons page might not be evictable:
3873 * (1) page's mapping marked unevictable
3874 * (2) page is part of an mlocked VMA
3875 *
3876 */
3877 int page_evictable(struct page *page)
3878 {
3879 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3880 }
3881
3882 #ifdef CONFIG_SHMEM
3883 /**
3884 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3885 * @pages: array of pages to check
3886 * @nr_pages: number of pages to check
3887 *
3888 * Checks pages for evictability and moves them to the appropriate lru list.
3889 *
3890 * This function is only used for SysV IPC SHM_UNLOCK.
3891 */
3892 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3893 {
3894 struct lruvec *lruvec;
3895 struct pglist_data *pgdat = NULL;
3896 int pgscanned = 0;
3897 int pgrescued = 0;
3898 int i;
3899
3900 for (i = 0; i < nr_pages; i++) {
3901 struct page *page = pages[i];
3902 struct pglist_data *pagepgdat = page_pgdat(page);
3903
3904 pgscanned++;
3905 if (pagepgdat != pgdat) {
3906 if (pgdat)
3907 spin_unlock_irq(&pgdat->lru_lock);
3908 pgdat = pagepgdat;
3909 spin_lock_irq(&pgdat->lru_lock);
3910 }
3911 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3912
3913 if (!PageLRU(page) || !PageUnevictable(page))
3914 continue;
3915
3916 if (page_evictable(page)) {
3917 enum lru_list lru = page_lru_base_type(page);
3918
3919 VM_BUG_ON_PAGE(PageActive(page), page);
3920 ClearPageUnevictable(page);
3921 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3922 add_page_to_lru_list(page, lruvec, lru);
3923 pgrescued++;
3924 }
3925 }
3926
3927 if (pgdat) {
3928 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3929 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3930 spin_unlock_irq(&pgdat->lru_lock);
3931 }
3932 }
3933 #endif /* CONFIG_SHMEM */