]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/vmscan.c
Merge branch 'sched/new-API-sched_setscheduler' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-artful-kernel.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41
42 #include <asm/tlbflush.h>
43 #include <asm/div64.h>
44
45 #include <linux/swapops.h>
46
47 #include "internal.h"
48
49 struct scan_control {
50 /* Incremented by the number of inactive pages that were scanned */
51 unsigned long nr_scanned;
52
53 /* This context's GFP mask */
54 gfp_t gfp_mask;
55
56 int may_writepage;
57
58 /* Can pages be swapped as part of reclaim? */
59 int may_swap;
60
61 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
62 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
63 * In this context, it doesn't matter that we scan the
64 * whole list at once. */
65 int swap_cluster_max;
66
67 int swappiness;
68
69 int all_unreclaimable;
70
71 int order;
72
73 /* Which cgroup do we reclaim from */
74 struct mem_cgroup *mem_cgroup;
75
76 /* Pluggable isolate pages callback */
77 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
78 unsigned long *scanned, int order, int mode,
79 struct zone *z, struct mem_cgroup *mem_cont,
80 int active);
81 };
82
83 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
84
85 #ifdef ARCH_HAS_PREFETCH
86 #define prefetch_prev_lru_page(_page, _base, _field) \
87 do { \
88 if ((_page)->lru.prev != _base) { \
89 struct page *prev; \
90 \
91 prev = lru_to_page(&(_page->lru)); \
92 prefetch(&prev->_field); \
93 } \
94 } while (0)
95 #else
96 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
97 #endif
98
99 #ifdef ARCH_HAS_PREFETCHW
100 #define prefetchw_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
104 \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetchw(&prev->_field); \
107 } \
108 } while (0)
109 #else
110 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112
113 /*
114 * From 0 .. 100. Higher means more swappy.
115 */
116 int vm_swappiness = 60;
117 long vm_total_pages; /* The total number of pages which the VM controls */
118
119 static LIST_HEAD(shrinker_list);
120 static DECLARE_RWSEM(shrinker_rwsem);
121
122 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
123 #define scan_global_lru(sc) (!(sc)->mem_cgroup)
124 #else
125 #define scan_global_lru(sc) (1)
126 #endif
127
128 /*
129 * Add a shrinker callback to be called from the vm
130 */
131 void register_shrinker(struct shrinker *shrinker)
132 {
133 shrinker->nr = 0;
134 down_write(&shrinker_rwsem);
135 list_add_tail(&shrinker->list, &shrinker_list);
136 up_write(&shrinker_rwsem);
137 }
138 EXPORT_SYMBOL(register_shrinker);
139
140 /*
141 * Remove one
142 */
143 void unregister_shrinker(struct shrinker *shrinker)
144 {
145 down_write(&shrinker_rwsem);
146 list_del(&shrinker->list);
147 up_write(&shrinker_rwsem);
148 }
149 EXPORT_SYMBOL(unregister_shrinker);
150
151 #define SHRINK_BATCH 128
152 /*
153 * Call the shrink functions to age shrinkable caches
154 *
155 * Here we assume it costs one seek to replace a lru page and that it also
156 * takes a seek to recreate a cache object. With this in mind we age equal
157 * percentages of the lru and ageable caches. This should balance the seeks
158 * generated by these structures.
159 *
160 * If the vm encountered mapped pages on the LRU it increase the pressure on
161 * slab to avoid swapping.
162 *
163 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
164 *
165 * `lru_pages' represents the number of on-LRU pages in all the zones which
166 * are eligible for the caller's allocation attempt. It is used for balancing
167 * slab reclaim versus page reclaim.
168 *
169 * Returns the number of slab objects which we shrunk.
170 */
171 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
172 unsigned long lru_pages)
173 {
174 struct shrinker *shrinker;
175 unsigned long ret = 0;
176
177 if (scanned == 0)
178 scanned = SWAP_CLUSTER_MAX;
179
180 if (!down_read_trylock(&shrinker_rwsem))
181 return 1; /* Assume we'll be able to shrink next time */
182
183 list_for_each_entry(shrinker, &shrinker_list, list) {
184 unsigned long long delta;
185 unsigned long total_scan;
186 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
187
188 delta = (4 * scanned) / shrinker->seeks;
189 delta *= max_pass;
190 do_div(delta, lru_pages + 1);
191 shrinker->nr += delta;
192 if (shrinker->nr < 0) {
193 printk(KERN_ERR "%s: nr=%ld\n",
194 __func__, shrinker->nr);
195 shrinker->nr = max_pass;
196 }
197
198 /*
199 * Avoid risking looping forever due to too large nr value:
200 * never try to free more than twice the estimate number of
201 * freeable entries.
202 */
203 if (shrinker->nr > max_pass * 2)
204 shrinker->nr = max_pass * 2;
205
206 total_scan = shrinker->nr;
207 shrinker->nr = 0;
208
209 while (total_scan >= SHRINK_BATCH) {
210 long this_scan = SHRINK_BATCH;
211 int shrink_ret;
212 int nr_before;
213
214 nr_before = (*shrinker->shrink)(0, gfp_mask);
215 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
216 if (shrink_ret == -1)
217 break;
218 if (shrink_ret < nr_before)
219 ret += nr_before - shrink_ret;
220 count_vm_events(SLABS_SCANNED, this_scan);
221 total_scan -= this_scan;
222
223 cond_resched();
224 }
225
226 shrinker->nr += total_scan;
227 }
228 up_read(&shrinker_rwsem);
229 return ret;
230 }
231
232 /* Called without lock on whether page is mapped, so answer is unstable */
233 static inline int page_mapping_inuse(struct page *page)
234 {
235 struct address_space *mapping;
236
237 /* Page is in somebody's page tables. */
238 if (page_mapped(page))
239 return 1;
240
241 /* Be more reluctant to reclaim swapcache than pagecache */
242 if (PageSwapCache(page))
243 return 1;
244
245 mapping = page_mapping(page);
246 if (!mapping)
247 return 0;
248
249 /* File is mmap'd by somebody? */
250 return mapping_mapped(mapping);
251 }
252
253 static inline int is_page_cache_freeable(struct page *page)
254 {
255 return page_count(page) - !!PagePrivate(page) == 2;
256 }
257
258 static int may_write_to_queue(struct backing_dev_info *bdi)
259 {
260 if (current->flags & PF_SWAPWRITE)
261 return 1;
262 if (!bdi_write_congested(bdi))
263 return 1;
264 if (bdi == current->backing_dev_info)
265 return 1;
266 return 0;
267 }
268
269 /*
270 * We detected a synchronous write error writing a page out. Probably
271 * -ENOSPC. We need to propagate that into the address_space for a subsequent
272 * fsync(), msync() or close().
273 *
274 * The tricky part is that after writepage we cannot touch the mapping: nothing
275 * prevents it from being freed up. But we have a ref on the page and once
276 * that page is locked, the mapping is pinned.
277 *
278 * We're allowed to run sleeping lock_page() here because we know the caller has
279 * __GFP_FS.
280 */
281 static void handle_write_error(struct address_space *mapping,
282 struct page *page, int error)
283 {
284 lock_page(page);
285 if (page_mapping(page) == mapping)
286 mapping_set_error(mapping, error);
287 unlock_page(page);
288 }
289
290 /* Request for sync pageout. */
291 enum pageout_io {
292 PAGEOUT_IO_ASYNC,
293 PAGEOUT_IO_SYNC,
294 };
295
296 /* possible outcome of pageout() */
297 typedef enum {
298 /* failed to write page out, page is locked */
299 PAGE_KEEP,
300 /* move page to the active list, page is locked */
301 PAGE_ACTIVATE,
302 /* page has been sent to the disk successfully, page is unlocked */
303 PAGE_SUCCESS,
304 /* page is clean and locked */
305 PAGE_CLEAN,
306 } pageout_t;
307
308 /*
309 * pageout is called by shrink_page_list() for each dirty page.
310 * Calls ->writepage().
311 */
312 static pageout_t pageout(struct page *page, struct address_space *mapping,
313 enum pageout_io sync_writeback)
314 {
315 /*
316 * If the page is dirty, only perform writeback if that write
317 * will be non-blocking. To prevent this allocation from being
318 * stalled by pagecache activity. But note that there may be
319 * stalls if we need to run get_block(). We could test
320 * PagePrivate for that.
321 *
322 * If this process is currently in generic_file_write() against
323 * this page's queue, we can perform writeback even if that
324 * will block.
325 *
326 * If the page is swapcache, write it back even if that would
327 * block, for some throttling. This happens by accident, because
328 * swap_backing_dev_info is bust: it doesn't reflect the
329 * congestion state of the swapdevs. Easy to fix, if needed.
330 * See swapfile.c:page_queue_congested().
331 */
332 if (!is_page_cache_freeable(page))
333 return PAGE_KEEP;
334 if (!mapping) {
335 /*
336 * Some data journaling orphaned pages can have
337 * page->mapping == NULL while being dirty with clean buffers.
338 */
339 if (PagePrivate(page)) {
340 if (try_to_free_buffers(page)) {
341 ClearPageDirty(page);
342 printk("%s: orphaned page\n", __func__);
343 return PAGE_CLEAN;
344 }
345 }
346 return PAGE_KEEP;
347 }
348 if (mapping->a_ops->writepage == NULL)
349 return PAGE_ACTIVATE;
350 if (!may_write_to_queue(mapping->backing_dev_info))
351 return PAGE_KEEP;
352
353 if (clear_page_dirty_for_io(page)) {
354 int res;
355 struct writeback_control wbc = {
356 .sync_mode = WB_SYNC_NONE,
357 .nr_to_write = SWAP_CLUSTER_MAX,
358 .range_start = 0,
359 .range_end = LLONG_MAX,
360 .nonblocking = 1,
361 .for_reclaim = 1,
362 };
363
364 SetPageReclaim(page);
365 res = mapping->a_ops->writepage(page, &wbc);
366 if (res < 0)
367 handle_write_error(mapping, page, res);
368 if (res == AOP_WRITEPAGE_ACTIVATE) {
369 ClearPageReclaim(page);
370 return PAGE_ACTIVATE;
371 }
372
373 /*
374 * Wait on writeback if requested to. This happens when
375 * direct reclaiming a large contiguous area and the
376 * first attempt to free a range of pages fails.
377 */
378 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
379 wait_on_page_writeback(page);
380
381 if (!PageWriteback(page)) {
382 /* synchronous write or broken a_ops? */
383 ClearPageReclaim(page);
384 }
385 inc_zone_page_state(page, NR_VMSCAN_WRITE);
386 return PAGE_SUCCESS;
387 }
388
389 return PAGE_CLEAN;
390 }
391
392 /*
393 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
394 * someone else has a ref on the page, abort and return 0. If it was
395 * successfully detached, return 1. Assumes the caller has a single ref on
396 * this page.
397 */
398 int remove_mapping(struct address_space *mapping, struct page *page)
399 {
400 BUG_ON(!PageLocked(page));
401 BUG_ON(mapping != page_mapping(page));
402
403 write_lock_irq(&mapping->tree_lock);
404 /*
405 * The non racy check for a busy page.
406 *
407 * Must be careful with the order of the tests. When someone has
408 * a ref to the page, it may be possible that they dirty it then
409 * drop the reference. So if PageDirty is tested before page_count
410 * here, then the following race may occur:
411 *
412 * get_user_pages(&page);
413 * [user mapping goes away]
414 * write_to(page);
415 * !PageDirty(page) [good]
416 * SetPageDirty(page);
417 * put_page(page);
418 * !page_count(page) [good, discard it]
419 *
420 * [oops, our write_to data is lost]
421 *
422 * Reversing the order of the tests ensures such a situation cannot
423 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
424 * load is not satisfied before that of page->_count.
425 *
426 * Note that if SetPageDirty is always performed via set_page_dirty,
427 * and thus under tree_lock, then this ordering is not required.
428 */
429 if (unlikely(page_count(page) != 2))
430 goto cannot_free;
431 smp_rmb();
432 if (unlikely(PageDirty(page)))
433 goto cannot_free;
434
435 if (PageSwapCache(page)) {
436 swp_entry_t swap = { .val = page_private(page) };
437 __delete_from_swap_cache(page);
438 write_unlock_irq(&mapping->tree_lock);
439 swap_free(swap);
440 __put_page(page); /* The pagecache ref */
441 return 1;
442 }
443
444 __remove_from_page_cache(page);
445 write_unlock_irq(&mapping->tree_lock);
446 __put_page(page);
447 return 1;
448
449 cannot_free:
450 write_unlock_irq(&mapping->tree_lock);
451 return 0;
452 }
453
454 /*
455 * shrink_page_list() returns the number of reclaimed pages
456 */
457 static unsigned long shrink_page_list(struct list_head *page_list,
458 struct scan_control *sc,
459 enum pageout_io sync_writeback)
460 {
461 LIST_HEAD(ret_pages);
462 struct pagevec freed_pvec;
463 int pgactivate = 0;
464 unsigned long nr_reclaimed = 0;
465
466 cond_resched();
467
468 pagevec_init(&freed_pvec, 1);
469 while (!list_empty(page_list)) {
470 struct address_space *mapping;
471 struct page *page;
472 int may_enter_fs;
473 int referenced;
474
475 cond_resched();
476
477 page = lru_to_page(page_list);
478 list_del(&page->lru);
479
480 if (TestSetPageLocked(page))
481 goto keep;
482
483 VM_BUG_ON(PageActive(page));
484
485 sc->nr_scanned++;
486
487 if (!sc->may_swap && page_mapped(page))
488 goto keep_locked;
489
490 /* Double the slab pressure for mapped and swapcache pages */
491 if (page_mapped(page) || PageSwapCache(page))
492 sc->nr_scanned++;
493
494 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
495 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
496
497 if (PageWriteback(page)) {
498 /*
499 * Synchronous reclaim is performed in two passes,
500 * first an asynchronous pass over the list to
501 * start parallel writeback, and a second synchronous
502 * pass to wait for the IO to complete. Wait here
503 * for any page for which writeback has already
504 * started.
505 */
506 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
507 wait_on_page_writeback(page);
508 else
509 goto keep_locked;
510 }
511
512 referenced = page_referenced(page, 1, sc->mem_cgroup);
513 /* In active use or really unfreeable? Activate it. */
514 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
515 referenced && page_mapping_inuse(page))
516 goto activate_locked;
517
518 #ifdef CONFIG_SWAP
519 /*
520 * Anonymous process memory has backing store?
521 * Try to allocate it some swap space here.
522 */
523 if (PageAnon(page) && !PageSwapCache(page))
524 if (!add_to_swap(page, GFP_ATOMIC))
525 goto activate_locked;
526 #endif /* CONFIG_SWAP */
527
528 mapping = page_mapping(page);
529
530 /*
531 * The page is mapped into the page tables of one or more
532 * processes. Try to unmap it here.
533 */
534 if (page_mapped(page) && mapping) {
535 switch (try_to_unmap(page, 0)) {
536 case SWAP_FAIL:
537 goto activate_locked;
538 case SWAP_AGAIN:
539 goto keep_locked;
540 case SWAP_SUCCESS:
541 ; /* try to free the page below */
542 }
543 }
544
545 if (PageDirty(page)) {
546 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
547 goto keep_locked;
548 if (!may_enter_fs)
549 goto keep_locked;
550 if (!sc->may_writepage)
551 goto keep_locked;
552
553 /* Page is dirty, try to write it out here */
554 switch (pageout(page, mapping, sync_writeback)) {
555 case PAGE_KEEP:
556 goto keep_locked;
557 case PAGE_ACTIVATE:
558 goto activate_locked;
559 case PAGE_SUCCESS:
560 if (PageWriteback(page) || PageDirty(page))
561 goto keep;
562 /*
563 * A synchronous write - probably a ramdisk. Go
564 * ahead and try to reclaim the page.
565 */
566 if (TestSetPageLocked(page))
567 goto keep;
568 if (PageDirty(page) || PageWriteback(page))
569 goto keep_locked;
570 mapping = page_mapping(page);
571 case PAGE_CLEAN:
572 ; /* try to free the page below */
573 }
574 }
575
576 /*
577 * If the page has buffers, try to free the buffer mappings
578 * associated with this page. If we succeed we try to free
579 * the page as well.
580 *
581 * We do this even if the page is PageDirty().
582 * try_to_release_page() does not perform I/O, but it is
583 * possible for a page to have PageDirty set, but it is actually
584 * clean (all its buffers are clean). This happens if the
585 * buffers were written out directly, with submit_bh(). ext3
586 * will do this, as well as the blockdev mapping.
587 * try_to_release_page() will discover that cleanness and will
588 * drop the buffers and mark the page clean - it can be freed.
589 *
590 * Rarely, pages can have buffers and no ->mapping. These are
591 * the pages which were not successfully invalidated in
592 * truncate_complete_page(). We try to drop those buffers here
593 * and if that worked, and the page is no longer mapped into
594 * process address space (page_count == 1) it can be freed.
595 * Otherwise, leave the page on the LRU so it is swappable.
596 */
597 if (PagePrivate(page)) {
598 if (!try_to_release_page(page, sc->gfp_mask))
599 goto activate_locked;
600 if (!mapping && page_count(page) == 1)
601 goto free_it;
602 }
603
604 if (!mapping || !remove_mapping(mapping, page))
605 goto keep_locked;
606
607 free_it:
608 unlock_page(page);
609 nr_reclaimed++;
610 if (!pagevec_add(&freed_pvec, page))
611 __pagevec_release_nonlru(&freed_pvec);
612 continue;
613
614 activate_locked:
615 SetPageActive(page);
616 pgactivate++;
617 keep_locked:
618 unlock_page(page);
619 keep:
620 list_add(&page->lru, &ret_pages);
621 VM_BUG_ON(PageLRU(page));
622 }
623 list_splice(&ret_pages, page_list);
624 if (pagevec_count(&freed_pvec))
625 __pagevec_release_nonlru(&freed_pvec);
626 count_vm_events(PGACTIVATE, pgactivate);
627 return nr_reclaimed;
628 }
629
630 /* LRU Isolation modes. */
631 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
632 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
633 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
634
635 /*
636 * Attempt to remove the specified page from its LRU. Only take this page
637 * if it is of the appropriate PageActive status. Pages which are being
638 * freed elsewhere are also ignored.
639 *
640 * page: page to consider
641 * mode: one of the LRU isolation modes defined above
642 *
643 * returns 0 on success, -ve errno on failure.
644 */
645 int __isolate_lru_page(struct page *page, int mode)
646 {
647 int ret = -EINVAL;
648
649 /* Only take pages on the LRU. */
650 if (!PageLRU(page))
651 return ret;
652
653 /*
654 * When checking the active state, we need to be sure we are
655 * dealing with comparible boolean values. Take the logical not
656 * of each.
657 */
658 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
659 return ret;
660
661 ret = -EBUSY;
662 if (likely(get_page_unless_zero(page))) {
663 /*
664 * Be careful not to clear PageLRU until after we're
665 * sure the page is not being freed elsewhere -- the
666 * page release code relies on it.
667 */
668 ClearPageLRU(page);
669 ret = 0;
670 }
671
672 return ret;
673 }
674
675 /*
676 * zone->lru_lock is heavily contended. Some of the functions that
677 * shrink the lists perform better by taking out a batch of pages
678 * and working on them outside the LRU lock.
679 *
680 * For pagecache intensive workloads, this function is the hottest
681 * spot in the kernel (apart from copy_*_user functions).
682 *
683 * Appropriate locks must be held before calling this function.
684 *
685 * @nr_to_scan: The number of pages to look through on the list.
686 * @src: The LRU list to pull pages off.
687 * @dst: The temp list to put pages on to.
688 * @scanned: The number of pages that were scanned.
689 * @order: The caller's attempted allocation order
690 * @mode: One of the LRU isolation modes
691 *
692 * returns how many pages were moved onto *@dst.
693 */
694 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
695 struct list_head *src, struct list_head *dst,
696 unsigned long *scanned, int order, int mode)
697 {
698 unsigned long nr_taken = 0;
699 unsigned long scan;
700
701 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
702 struct page *page;
703 unsigned long pfn;
704 unsigned long end_pfn;
705 unsigned long page_pfn;
706 int zone_id;
707
708 page = lru_to_page(src);
709 prefetchw_prev_lru_page(page, src, flags);
710
711 VM_BUG_ON(!PageLRU(page));
712
713 switch (__isolate_lru_page(page, mode)) {
714 case 0:
715 list_move(&page->lru, dst);
716 nr_taken++;
717 break;
718
719 case -EBUSY:
720 /* else it is being freed elsewhere */
721 list_move(&page->lru, src);
722 continue;
723
724 default:
725 BUG();
726 }
727
728 if (!order)
729 continue;
730
731 /*
732 * Attempt to take all pages in the order aligned region
733 * surrounding the tag page. Only take those pages of
734 * the same active state as that tag page. We may safely
735 * round the target page pfn down to the requested order
736 * as the mem_map is guarenteed valid out to MAX_ORDER,
737 * where that page is in a different zone we will detect
738 * it from its zone id and abort this block scan.
739 */
740 zone_id = page_zone_id(page);
741 page_pfn = page_to_pfn(page);
742 pfn = page_pfn & ~((1 << order) - 1);
743 end_pfn = pfn + (1 << order);
744 for (; pfn < end_pfn; pfn++) {
745 struct page *cursor_page;
746
747 /* The target page is in the block, ignore it. */
748 if (unlikely(pfn == page_pfn))
749 continue;
750
751 /* Avoid holes within the zone. */
752 if (unlikely(!pfn_valid_within(pfn)))
753 break;
754
755 cursor_page = pfn_to_page(pfn);
756 /* Check that we have not crossed a zone boundary. */
757 if (unlikely(page_zone_id(cursor_page) != zone_id))
758 continue;
759 switch (__isolate_lru_page(cursor_page, mode)) {
760 case 0:
761 list_move(&cursor_page->lru, dst);
762 nr_taken++;
763 scan++;
764 break;
765
766 case -EBUSY:
767 /* else it is being freed elsewhere */
768 list_move(&cursor_page->lru, src);
769 default:
770 break;
771 }
772 }
773 }
774
775 *scanned = scan;
776 return nr_taken;
777 }
778
779 static unsigned long isolate_pages_global(unsigned long nr,
780 struct list_head *dst,
781 unsigned long *scanned, int order,
782 int mode, struct zone *z,
783 struct mem_cgroup *mem_cont,
784 int active)
785 {
786 if (active)
787 return isolate_lru_pages(nr, &z->active_list, dst,
788 scanned, order, mode);
789 else
790 return isolate_lru_pages(nr, &z->inactive_list, dst,
791 scanned, order, mode);
792 }
793
794 /*
795 * clear_active_flags() is a helper for shrink_active_list(), clearing
796 * any active bits from the pages in the list.
797 */
798 static unsigned long clear_active_flags(struct list_head *page_list)
799 {
800 int nr_active = 0;
801 struct page *page;
802
803 list_for_each_entry(page, page_list, lru)
804 if (PageActive(page)) {
805 ClearPageActive(page);
806 nr_active++;
807 }
808
809 return nr_active;
810 }
811
812 /*
813 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
814 * of reclaimed pages
815 */
816 static unsigned long shrink_inactive_list(unsigned long max_scan,
817 struct zone *zone, struct scan_control *sc)
818 {
819 LIST_HEAD(page_list);
820 struct pagevec pvec;
821 unsigned long nr_scanned = 0;
822 unsigned long nr_reclaimed = 0;
823
824 pagevec_init(&pvec, 1);
825
826 lru_add_drain();
827 spin_lock_irq(&zone->lru_lock);
828 do {
829 struct page *page;
830 unsigned long nr_taken;
831 unsigned long nr_scan;
832 unsigned long nr_freed;
833 unsigned long nr_active;
834
835 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
836 &page_list, &nr_scan, sc->order,
837 (sc->order > PAGE_ALLOC_COSTLY_ORDER)?
838 ISOLATE_BOTH : ISOLATE_INACTIVE,
839 zone, sc->mem_cgroup, 0);
840 nr_active = clear_active_flags(&page_list);
841 __count_vm_events(PGDEACTIVATE, nr_active);
842
843 __mod_zone_page_state(zone, NR_ACTIVE, -nr_active);
844 __mod_zone_page_state(zone, NR_INACTIVE,
845 -(nr_taken - nr_active));
846 if (scan_global_lru(sc))
847 zone->pages_scanned += nr_scan;
848 spin_unlock_irq(&zone->lru_lock);
849
850 nr_scanned += nr_scan;
851 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
852
853 /*
854 * If we are direct reclaiming for contiguous pages and we do
855 * not reclaim everything in the list, try again and wait
856 * for IO to complete. This will stall high-order allocations
857 * but that should be acceptable to the caller
858 */
859 if (nr_freed < nr_taken && !current_is_kswapd() &&
860 sc->order > PAGE_ALLOC_COSTLY_ORDER) {
861 congestion_wait(WRITE, HZ/10);
862
863 /*
864 * The attempt at page out may have made some
865 * of the pages active, mark them inactive again.
866 */
867 nr_active = clear_active_flags(&page_list);
868 count_vm_events(PGDEACTIVATE, nr_active);
869
870 nr_freed += shrink_page_list(&page_list, sc,
871 PAGEOUT_IO_SYNC);
872 }
873
874 nr_reclaimed += nr_freed;
875 local_irq_disable();
876 if (current_is_kswapd()) {
877 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
878 __count_vm_events(KSWAPD_STEAL, nr_freed);
879 } else if (scan_global_lru(sc))
880 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
881
882 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
883
884 if (nr_taken == 0)
885 goto done;
886
887 spin_lock(&zone->lru_lock);
888 /*
889 * Put back any unfreeable pages.
890 */
891 while (!list_empty(&page_list)) {
892 page = lru_to_page(&page_list);
893 VM_BUG_ON(PageLRU(page));
894 SetPageLRU(page);
895 list_del(&page->lru);
896 if (PageActive(page))
897 add_page_to_active_list(zone, page);
898 else
899 add_page_to_inactive_list(zone, page);
900 if (!pagevec_add(&pvec, page)) {
901 spin_unlock_irq(&zone->lru_lock);
902 __pagevec_release(&pvec);
903 spin_lock_irq(&zone->lru_lock);
904 }
905 }
906 } while (nr_scanned < max_scan);
907 spin_unlock(&zone->lru_lock);
908 done:
909 local_irq_enable();
910 pagevec_release(&pvec);
911 return nr_reclaimed;
912 }
913
914 /*
915 * We are about to scan this zone at a certain priority level. If that priority
916 * level is smaller (ie: more urgent) than the previous priority, then note
917 * that priority level within the zone. This is done so that when the next
918 * process comes in to scan this zone, it will immediately start out at this
919 * priority level rather than having to build up its own scanning priority.
920 * Here, this priority affects only the reclaim-mapped threshold.
921 */
922 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
923 {
924 if (priority < zone->prev_priority)
925 zone->prev_priority = priority;
926 }
927
928 static inline int zone_is_near_oom(struct zone *zone)
929 {
930 return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE)
931 + zone_page_state(zone, NR_INACTIVE))*3;
932 }
933
934 /*
935 * Determine we should try to reclaim mapped pages.
936 * This is called only when sc->mem_cgroup is NULL.
937 */
938 static int calc_reclaim_mapped(struct scan_control *sc, struct zone *zone,
939 int priority)
940 {
941 long mapped_ratio;
942 long distress;
943 long swap_tendency;
944 long imbalance;
945 int reclaim_mapped = 0;
946 int prev_priority;
947
948 if (scan_global_lru(sc) && zone_is_near_oom(zone))
949 return 1;
950 /*
951 * `distress' is a measure of how much trouble we're having
952 * reclaiming pages. 0 -> no problems. 100 -> great trouble.
953 */
954 if (scan_global_lru(sc))
955 prev_priority = zone->prev_priority;
956 else
957 prev_priority = mem_cgroup_get_reclaim_priority(sc->mem_cgroup);
958
959 distress = 100 >> min(prev_priority, priority);
960
961 /*
962 * The point of this algorithm is to decide when to start
963 * reclaiming mapped memory instead of just pagecache. Work out
964 * how much memory
965 * is mapped.
966 */
967 if (scan_global_lru(sc))
968 mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
969 global_page_state(NR_ANON_PAGES)) * 100) /
970 vm_total_pages;
971 else
972 mapped_ratio = mem_cgroup_calc_mapped_ratio(sc->mem_cgroup);
973
974 /*
975 * Now decide how much we really want to unmap some pages. The
976 * mapped ratio is downgraded - just because there's a lot of
977 * mapped memory doesn't necessarily mean that page reclaim
978 * isn't succeeding.
979 *
980 * The distress ratio is important - we don't want to start
981 * going oom.
982 *
983 * A 100% value of vm_swappiness overrides this algorithm
984 * altogether.
985 */
986 swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
987
988 /*
989 * If there's huge imbalance between active and inactive
990 * (think active 100 times larger than inactive) we should
991 * become more permissive, or the system will take too much
992 * cpu before it start swapping during memory pressure.
993 * Distress is about avoiding early-oom, this is about
994 * making swappiness graceful despite setting it to low
995 * values.
996 *
997 * Avoid div by zero with nr_inactive+1, and max resulting
998 * value is vm_total_pages.
999 */
1000 if (scan_global_lru(sc)) {
1001 imbalance = zone_page_state(zone, NR_ACTIVE);
1002 imbalance /= zone_page_state(zone, NR_INACTIVE) + 1;
1003 } else
1004 imbalance = mem_cgroup_reclaim_imbalance(sc->mem_cgroup);
1005
1006 /*
1007 * Reduce the effect of imbalance if swappiness is low,
1008 * this means for a swappiness very low, the imbalance
1009 * must be much higher than 100 for this logic to make
1010 * the difference.
1011 *
1012 * Max temporary value is vm_total_pages*100.
1013 */
1014 imbalance *= (vm_swappiness + 1);
1015 imbalance /= 100;
1016
1017 /*
1018 * If not much of the ram is mapped, makes the imbalance
1019 * less relevant, it's high priority we refill the inactive
1020 * list with mapped pages only in presence of high ratio of
1021 * mapped pages.
1022 *
1023 * Max temporary value is vm_total_pages*100.
1024 */
1025 imbalance *= mapped_ratio;
1026 imbalance /= 100;
1027
1028 /* apply imbalance feedback to swap_tendency */
1029 swap_tendency += imbalance;
1030
1031 /*
1032 * Now use this metric to decide whether to start moving mapped
1033 * memory onto the inactive list.
1034 */
1035 if (swap_tendency >= 100)
1036 reclaim_mapped = 1;
1037
1038 return reclaim_mapped;
1039 }
1040
1041 /*
1042 * This moves pages from the active list to the inactive list.
1043 *
1044 * We move them the other way if the page is referenced by one or more
1045 * processes, from rmap.
1046 *
1047 * If the pages are mostly unmapped, the processing is fast and it is
1048 * appropriate to hold zone->lru_lock across the whole operation. But if
1049 * the pages are mapped, the processing is slow (page_referenced()) so we
1050 * should drop zone->lru_lock around each page. It's impossible to balance
1051 * this, so instead we remove the pages from the LRU while processing them.
1052 * It is safe to rely on PG_active against the non-LRU pages in here because
1053 * nobody will play with that bit on a non-LRU page.
1054 *
1055 * The downside is that we have to touch page->_count against each page.
1056 * But we had to alter page->flags anyway.
1057 */
1058
1059
1060 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1061 struct scan_control *sc, int priority)
1062 {
1063 unsigned long pgmoved;
1064 int pgdeactivate = 0;
1065 unsigned long pgscanned;
1066 LIST_HEAD(l_hold); /* The pages which were snipped off */
1067 LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */
1068 LIST_HEAD(l_active); /* Pages to go onto the active_list */
1069 struct page *page;
1070 struct pagevec pvec;
1071 int reclaim_mapped = 0;
1072
1073 if (sc->may_swap)
1074 reclaim_mapped = calc_reclaim_mapped(sc, zone, priority);
1075
1076 lru_add_drain();
1077 spin_lock_irq(&zone->lru_lock);
1078 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1079 ISOLATE_ACTIVE, zone,
1080 sc->mem_cgroup, 1);
1081 /*
1082 * zone->pages_scanned is used for detect zone's oom
1083 * mem_cgroup remembers nr_scan by itself.
1084 */
1085 if (scan_global_lru(sc))
1086 zone->pages_scanned += pgscanned;
1087
1088 __mod_zone_page_state(zone, NR_ACTIVE, -pgmoved);
1089 spin_unlock_irq(&zone->lru_lock);
1090
1091 while (!list_empty(&l_hold)) {
1092 cond_resched();
1093 page = lru_to_page(&l_hold);
1094 list_del(&page->lru);
1095 if (page_mapped(page)) {
1096 if (!reclaim_mapped ||
1097 (total_swap_pages == 0 && PageAnon(page)) ||
1098 page_referenced(page, 0, sc->mem_cgroup)) {
1099 list_add(&page->lru, &l_active);
1100 continue;
1101 }
1102 }
1103 list_add(&page->lru, &l_inactive);
1104 }
1105
1106 pagevec_init(&pvec, 1);
1107 pgmoved = 0;
1108 spin_lock_irq(&zone->lru_lock);
1109 while (!list_empty(&l_inactive)) {
1110 page = lru_to_page(&l_inactive);
1111 prefetchw_prev_lru_page(page, &l_inactive, flags);
1112 VM_BUG_ON(PageLRU(page));
1113 SetPageLRU(page);
1114 VM_BUG_ON(!PageActive(page));
1115 ClearPageActive(page);
1116
1117 list_move(&page->lru, &zone->inactive_list);
1118 mem_cgroup_move_lists(page, false);
1119 pgmoved++;
1120 if (!pagevec_add(&pvec, page)) {
1121 __mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
1122 spin_unlock_irq(&zone->lru_lock);
1123 pgdeactivate += pgmoved;
1124 pgmoved = 0;
1125 if (buffer_heads_over_limit)
1126 pagevec_strip(&pvec);
1127 __pagevec_release(&pvec);
1128 spin_lock_irq(&zone->lru_lock);
1129 }
1130 }
1131 __mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
1132 pgdeactivate += pgmoved;
1133 if (buffer_heads_over_limit) {
1134 spin_unlock_irq(&zone->lru_lock);
1135 pagevec_strip(&pvec);
1136 spin_lock_irq(&zone->lru_lock);
1137 }
1138
1139 pgmoved = 0;
1140 while (!list_empty(&l_active)) {
1141 page = lru_to_page(&l_active);
1142 prefetchw_prev_lru_page(page, &l_active, flags);
1143 VM_BUG_ON(PageLRU(page));
1144 SetPageLRU(page);
1145 VM_BUG_ON(!PageActive(page));
1146
1147 list_move(&page->lru, &zone->active_list);
1148 mem_cgroup_move_lists(page, true);
1149 pgmoved++;
1150 if (!pagevec_add(&pvec, page)) {
1151 __mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
1152 pgmoved = 0;
1153 spin_unlock_irq(&zone->lru_lock);
1154 __pagevec_release(&pvec);
1155 spin_lock_irq(&zone->lru_lock);
1156 }
1157 }
1158 __mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
1159
1160 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1161 __count_vm_events(PGDEACTIVATE, pgdeactivate);
1162 spin_unlock_irq(&zone->lru_lock);
1163
1164 pagevec_release(&pvec);
1165 }
1166
1167 /*
1168 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1169 */
1170 static unsigned long shrink_zone(int priority, struct zone *zone,
1171 struct scan_control *sc)
1172 {
1173 unsigned long nr_active;
1174 unsigned long nr_inactive;
1175 unsigned long nr_to_scan;
1176 unsigned long nr_reclaimed = 0;
1177
1178 if (scan_global_lru(sc)) {
1179 /*
1180 * Add one to nr_to_scan just to make sure that the kernel
1181 * will slowly sift through the active list.
1182 */
1183 zone->nr_scan_active +=
1184 (zone_page_state(zone, NR_ACTIVE) >> priority) + 1;
1185 nr_active = zone->nr_scan_active;
1186 zone->nr_scan_inactive +=
1187 (zone_page_state(zone, NR_INACTIVE) >> priority) + 1;
1188 nr_inactive = zone->nr_scan_inactive;
1189 if (nr_inactive >= sc->swap_cluster_max)
1190 zone->nr_scan_inactive = 0;
1191 else
1192 nr_inactive = 0;
1193
1194 if (nr_active >= sc->swap_cluster_max)
1195 zone->nr_scan_active = 0;
1196 else
1197 nr_active = 0;
1198 } else {
1199 /*
1200 * This reclaim occurs not because zone memory shortage but
1201 * because memory controller hits its limit.
1202 * Then, don't modify zone reclaim related data.
1203 */
1204 nr_active = mem_cgroup_calc_reclaim_active(sc->mem_cgroup,
1205 zone, priority);
1206
1207 nr_inactive = mem_cgroup_calc_reclaim_inactive(sc->mem_cgroup,
1208 zone, priority);
1209 }
1210
1211
1212 while (nr_active || nr_inactive) {
1213 if (nr_active) {
1214 nr_to_scan = min(nr_active,
1215 (unsigned long)sc->swap_cluster_max);
1216 nr_active -= nr_to_scan;
1217 shrink_active_list(nr_to_scan, zone, sc, priority);
1218 }
1219
1220 if (nr_inactive) {
1221 nr_to_scan = min(nr_inactive,
1222 (unsigned long)sc->swap_cluster_max);
1223 nr_inactive -= nr_to_scan;
1224 nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
1225 sc);
1226 }
1227 }
1228
1229 throttle_vm_writeout(sc->gfp_mask);
1230 return nr_reclaimed;
1231 }
1232
1233 /*
1234 * This is the direct reclaim path, for page-allocating processes. We only
1235 * try to reclaim pages from zones which will satisfy the caller's allocation
1236 * request.
1237 *
1238 * We reclaim from a zone even if that zone is over pages_high. Because:
1239 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1240 * allocation or
1241 * b) The zones may be over pages_high but they must go *over* pages_high to
1242 * satisfy the `incremental min' zone defense algorithm.
1243 *
1244 * Returns the number of reclaimed pages.
1245 *
1246 * If a zone is deemed to be full of pinned pages then just give it a light
1247 * scan then give up on it.
1248 */
1249 static unsigned long shrink_zones(int priority, struct zonelist *zonelist,
1250 struct scan_control *sc)
1251 {
1252 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1253 unsigned long nr_reclaimed = 0;
1254 struct zoneref *z;
1255 struct zone *zone;
1256
1257 sc->all_unreclaimable = 1;
1258 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1259 if (!populated_zone(zone))
1260 continue;
1261 /*
1262 * Take care memory controller reclaiming has small influence
1263 * to global LRU.
1264 */
1265 if (scan_global_lru(sc)) {
1266 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1267 continue;
1268 note_zone_scanning_priority(zone, priority);
1269
1270 if (zone_is_all_unreclaimable(zone) &&
1271 priority != DEF_PRIORITY)
1272 continue; /* Let kswapd poll it */
1273 sc->all_unreclaimable = 0;
1274 } else {
1275 /*
1276 * Ignore cpuset limitation here. We just want to reduce
1277 * # of used pages by us regardless of memory shortage.
1278 */
1279 sc->all_unreclaimable = 0;
1280 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1281 priority);
1282 }
1283
1284 nr_reclaimed += shrink_zone(priority, zone, sc);
1285 }
1286
1287 return nr_reclaimed;
1288 }
1289
1290 /*
1291 * This is the main entry point to direct page reclaim.
1292 *
1293 * If a full scan of the inactive list fails to free enough memory then we
1294 * are "out of memory" and something needs to be killed.
1295 *
1296 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1297 * high - the zone may be full of dirty or under-writeback pages, which this
1298 * caller can't do much about. We kick pdflush and take explicit naps in the
1299 * hope that some of these pages can be written. But if the allocating task
1300 * holds filesystem locks which prevent writeout this might not work, and the
1301 * allocation attempt will fail.
1302 *
1303 * returns: 0, if no pages reclaimed
1304 * else, the number of pages reclaimed
1305 */
1306 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1307 struct scan_control *sc)
1308 {
1309 int priority;
1310 unsigned long ret = 0;
1311 unsigned long total_scanned = 0;
1312 unsigned long nr_reclaimed = 0;
1313 struct reclaim_state *reclaim_state = current->reclaim_state;
1314 unsigned long lru_pages = 0;
1315 struct zoneref *z;
1316 struct zone *zone;
1317 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1318
1319 if (scan_global_lru(sc))
1320 count_vm_event(ALLOCSTALL);
1321 /*
1322 * mem_cgroup will not do shrink_slab.
1323 */
1324 if (scan_global_lru(sc)) {
1325 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1326
1327 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1328 continue;
1329
1330 lru_pages += zone_page_state(zone, NR_ACTIVE)
1331 + zone_page_state(zone, NR_INACTIVE);
1332 }
1333 }
1334
1335 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1336 sc->nr_scanned = 0;
1337 if (!priority)
1338 disable_swap_token();
1339 nr_reclaimed += shrink_zones(priority, zonelist, sc);
1340 /*
1341 * Don't shrink slabs when reclaiming memory from
1342 * over limit cgroups
1343 */
1344 if (scan_global_lru(sc)) {
1345 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1346 if (reclaim_state) {
1347 nr_reclaimed += reclaim_state->reclaimed_slab;
1348 reclaim_state->reclaimed_slab = 0;
1349 }
1350 }
1351 total_scanned += sc->nr_scanned;
1352 if (nr_reclaimed >= sc->swap_cluster_max) {
1353 ret = nr_reclaimed;
1354 goto out;
1355 }
1356
1357 /*
1358 * Try to write back as many pages as we just scanned. This
1359 * tends to cause slow streaming writers to write data to the
1360 * disk smoothly, at the dirtying rate, which is nice. But
1361 * that's undesirable in laptop mode, where we *want* lumpy
1362 * writeout. So in laptop mode, write out the whole world.
1363 */
1364 if (total_scanned > sc->swap_cluster_max +
1365 sc->swap_cluster_max / 2) {
1366 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1367 sc->may_writepage = 1;
1368 }
1369
1370 /* Take a nap, wait for some writeback to complete */
1371 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1372 congestion_wait(WRITE, HZ/10);
1373 }
1374 /* top priority shrink_caches still had more to do? don't OOM, then */
1375 if (!sc->all_unreclaimable && scan_global_lru(sc))
1376 ret = nr_reclaimed;
1377 out:
1378 /*
1379 * Now that we've scanned all the zones at this priority level, note
1380 * that level within the zone so that the next thread which performs
1381 * scanning of this zone will immediately start out at this priority
1382 * level. This affects only the decision whether or not to bring
1383 * mapped pages onto the inactive list.
1384 */
1385 if (priority < 0)
1386 priority = 0;
1387
1388 if (scan_global_lru(sc)) {
1389 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1390
1391 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1392 continue;
1393
1394 zone->prev_priority = priority;
1395 }
1396 } else
1397 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1398
1399 return ret;
1400 }
1401
1402 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1403 gfp_t gfp_mask)
1404 {
1405 struct scan_control sc = {
1406 .gfp_mask = gfp_mask,
1407 .may_writepage = !laptop_mode,
1408 .swap_cluster_max = SWAP_CLUSTER_MAX,
1409 .may_swap = 1,
1410 .swappiness = vm_swappiness,
1411 .order = order,
1412 .mem_cgroup = NULL,
1413 .isolate_pages = isolate_pages_global,
1414 };
1415
1416 return do_try_to_free_pages(zonelist, &sc);
1417 }
1418
1419 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1420
1421 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1422 gfp_t gfp_mask)
1423 {
1424 struct scan_control sc = {
1425 .may_writepage = !laptop_mode,
1426 .may_swap = 1,
1427 .swap_cluster_max = SWAP_CLUSTER_MAX,
1428 .swappiness = vm_swappiness,
1429 .order = 0,
1430 .mem_cgroup = mem_cont,
1431 .isolate_pages = mem_cgroup_isolate_pages,
1432 };
1433 struct zonelist *zonelist;
1434
1435 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1436 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1437 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1438 return do_try_to_free_pages(zonelist, &sc);
1439 }
1440 #endif
1441
1442 /*
1443 * For kswapd, balance_pgdat() will work across all this node's zones until
1444 * they are all at pages_high.
1445 *
1446 * Returns the number of pages which were actually freed.
1447 *
1448 * There is special handling here for zones which are full of pinned pages.
1449 * This can happen if the pages are all mlocked, or if they are all used by
1450 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1451 * What we do is to detect the case where all pages in the zone have been
1452 * scanned twice and there has been zero successful reclaim. Mark the zone as
1453 * dead and from now on, only perform a short scan. Basically we're polling
1454 * the zone for when the problem goes away.
1455 *
1456 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1457 * zones which have free_pages > pages_high, but once a zone is found to have
1458 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1459 * of the number of free pages in the lower zones. This interoperates with
1460 * the page allocator fallback scheme to ensure that aging of pages is balanced
1461 * across the zones.
1462 */
1463 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1464 {
1465 int all_zones_ok;
1466 int priority;
1467 int i;
1468 unsigned long total_scanned;
1469 unsigned long nr_reclaimed;
1470 struct reclaim_state *reclaim_state = current->reclaim_state;
1471 struct scan_control sc = {
1472 .gfp_mask = GFP_KERNEL,
1473 .may_swap = 1,
1474 .swap_cluster_max = SWAP_CLUSTER_MAX,
1475 .swappiness = vm_swappiness,
1476 .order = order,
1477 .mem_cgroup = NULL,
1478 .isolate_pages = isolate_pages_global,
1479 };
1480 /*
1481 * temp_priority is used to remember the scanning priority at which
1482 * this zone was successfully refilled to free_pages == pages_high.
1483 */
1484 int temp_priority[MAX_NR_ZONES];
1485
1486 loop_again:
1487 total_scanned = 0;
1488 nr_reclaimed = 0;
1489 sc.may_writepage = !laptop_mode;
1490 count_vm_event(PAGEOUTRUN);
1491
1492 for (i = 0; i < pgdat->nr_zones; i++)
1493 temp_priority[i] = DEF_PRIORITY;
1494
1495 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1496 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1497 unsigned long lru_pages = 0;
1498
1499 /* The swap token gets in the way of swapout... */
1500 if (!priority)
1501 disable_swap_token();
1502
1503 all_zones_ok = 1;
1504
1505 /*
1506 * Scan in the highmem->dma direction for the highest
1507 * zone which needs scanning
1508 */
1509 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1510 struct zone *zone = pgdat->node_zones + i;
1511
1512 if (!populated_zone(zone))
1513 continue;
1514
1515 if (zone_is_all_unreclaimable(zone) &&
1516 priority != DEF_PRIORITY)
1517 continue;
1518
1519 if (!zone_watermark_ok(zone, order, zone->pages_high,
1520 0, 0)) {
1521 end_zone = i;
1522 break;
1523 }
1524 }
1525 if (i < 0)
1526 goto out;
1527
1528 for (i = 0; i <= end_zone; i++) {
1529 struct zone *zone = pgdat->node_zones + i;
1530
1531 lru_pages += zone_page_state(zone, NR_ACTIVE)
1532 + zone_page_state(zone, NR_INACTIVE);
1533 }
1534
1535 /*
1536 * Now scan the zone in the dma->highmem direction, stopping
1537 * at the last zone which needs scanning.
1538 *
1539 * We do this because the page allocator works in the opposite
1540 * direction. This prevents the page allocator from allocating
1541 * pages behind kswapd's direction of progress, which would
1542 * cause too much scanning of the lower zones.
1543 */
1544 for (i = 0; i <= end_zone; i++) {
1545 struct zone *zone = pgdat->node_zones + i;
1546 int nr_slab;
1547
1548 if (!populated_zone(zone))
1549 continue;
1550
1551 if (zone_is_all_unreclaimable(zone) &&
1552 priority != DEF_PRIORITY)
1553 continue;
1554
1555 if (!zone_watermark_ok(zone, order, zone->pages_high,
1556 end_zone, 0))
1557 all_zones_ok = 0;
1558 temp_priority[i] = priority;
1559 sc.nr_scanned = 0;
1560 note_zone_scanning_priority(zone, priority);
1561 /*
1562 * We put equal pressure on every zone, unless one
1563 * zone has way too many pages free already.
1564 */
1565 if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1566 end_zone, 0))
1567 nr_reclaimed += shrink_zone(priority, zone, &sc);
1568 reclaim_state->reclaimed_slab = 0;
1569 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1570 lru_pages);
1571 nr_reclaimed += reclaim_state->reclaimed_slab;
1572 total_scanned += sc.nr_scanned;
1573 if (zone_is_all_unreclaimable(zone))
1574 continue;
1575 if (nr_slab == 0 && zone->pages_scanned >=
1576 (zone_page_state(zone, NR_ACTIVE)
1577 + zone_page_state(zone, NR_INACTIVE)) * 6)
1578 zone_set_flag(zone,
1579 ZONE_ALL_UNRECLAIMABLE);
1580 /*
1581 * If we've done a decent amount of scanning and
1582 * the reclaim ratio is low, start doing writepage
1583 * even in laptop mode
1584 */
1585 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1586 total_scanned > nr_reclaimed + nr_reclaimed / 2)
1587 sc.may_writepage = 1;
1588 }
1589 if (all_zones_ok)
1590 break; /* kswapd: all done */
1591 /*
1592 * OK, kswapd is getting into trouble. Take a nap, then take
1593 * another pass across the zones.
1594 */
1595 if (total_scanned && priority < DEF_PRIORITY - 2)
1596 congestion_wait(WRITE, HZ/10);
1597
1598 /*
1599 * We do this so kswapd doesn't build up large priorities for
1600 * example when it is freeing in parallel with allocators. It
1601 * matches the direct reclaim path behaviour in terms of impact
1602 * on zone->*_priority.
1603 */
1604 if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1605 break;
1606 }
1607 out:
1608 /*
1609 * Note within each zone the priority level at which this zone was
1610 * brought into a happy state. So that the next thread which scans this
1611 * zone will start out at that priority level.
1612 */
1613 for (i = 0; i < pgdat->nr_zones; i++) {
1614 struct zone *zone = pgdat->node_zones + i;
1615
1616 zone->prev_priority = temp_priority[i];
1617 }
1618 if (!all_zones_ok) {
1619 cond_resched();
1620
1621 try_to_freeze();
1622
1623 goto loop_again;
1624 }
1625
1626 return nr_reclaimed;
1627 }
1628
1629 /*
1630 * The background pageout daemon, started as a kernel thread
1631 * from the init process.
1632 *
1633 * This basically trickles out pages so that we have _some_
1634 * free memory available even if there is no other activity
1635 * that frees anything up. This is needed for things like routing
1636 * etc, where we otherwise might have all activity going on in
1637 * asynchronous contexts that cannot page things out.
1638 *
1639 * If there are applications that are active memory-allocators
1640 * (most normal use), this basically shouldn't matter.
1641 */
1642 static int kswapd(void *p)
1643 {
1644 unsigned long order;
1645 pg_data_t *pgdat = (pg_data_t*)p;
1646 struct task_struct *tsk = current;
1647 DEFINE_WAIT(wait);
1648 struct reclaim_state reclaim_state = {
1649 .reclaimed_slab = 0,
1650 };
1651 node_to_cpumask_ptr(cpumask, pgdat->node_id);
1652
1653 if (!cpus_empty(*cpumask))
1654 set_cpus_allowed_ptr(tsk, cpumask);
1655 current->reclaim_state = &reclaim_state;
1656
1657 /*
1658 * Tell the memory management that we're a "memory allocator",
1659 * and that if we need more memory we should get access to it
1660 * regardless (see "__alloc_pages()"). "kswapd" should
1661 * never get caught in the normal page freeing logic.
1662 *
1663 * (Kswapd normally doesn't need memory anyway, but sometimes
1664 * you need a small amount of memory in order to be able to
1665 * page out something else, and this flag essentially protects
1666 * us from recursively trying to free more memory as we're
1667 * trying to free the first piece of memory in the first place).
1668 */
1669 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1670 set_freezable();
1671
1672 order = 0;
1673 for ( ; ; ) {
1674 unsigned long new_order;
1675
1676 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1677 new_order = pgdat->kswapd_max_order;
1678 pgdat->kswapd_max_order = 0;
1679 if (order < new_order) {
1680 /*
1681 * Don't sleep if someone wants a larger 'order'
1682 * allocation
1683 */
1684 order = new_order;
1685 } else {
1686 if (!freezing(current))
1687 schedule();
1688
1689 order = pgdat->kswapd_max_order;
1690 }
1691 finish_wait(&pgdat->kswapd_wait, &wait);
1692
1693 if (!try_to_freeze()) {
1694 /* We can speed up thawing tasks if we don't call
1695 * balance_pgdat after returning from the refrigerator
1696 */
1697 balance_pgdat(pgdat, order);
1698 }
1699 }
1700 return 0;
1701 }
1702
1703 /*
1704 * A zone is low on free memory, so wake its kswapd task to service it.
1705 */
1706 void wakeup_kswapd(struct zone *zone, int order)
1707 {
1708 pg_data_t *pgdat;
1709
1710 if (!populated_zone(zone))
1711 return;
1712
1713 pgdat = zone->zone_pgdat;
1714 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1715 return;
1716 if (pgdat->kswapd_max_order < order)
1717 pgdat->kswapd_max_order = order;
1718 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1719 return;
1720 if (!waitqueue_active(&pgdat->kswapd_wait))
1721 return;
1722 wake_up_interruptible(&pgdat->kswapd_wait);
1723 }
1724
1725 #ifdef CONFIG_PM
1726 /*
1727 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1728 * from LRU lists system-wide, for given pass and priority, and returns the
1729 * number of reclaimed pages
1730 *
1731 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1732 */
1733 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1734 int pass, struct scan_control *sc)
1735 {
1736 struct zone *zone;
1737 unsigned long nr_to_scan, ret = 0;
1738
1739 for_each_zone(zone) {
1740
1741 if (!populated_zone(zone))
1742 continue;
1743
1744 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
1745 continue;
1746
1747 /* For pass = 0 we don't shrink the active list */
1748 if (pass > 0) {
1749 zone->nr_scan_active +=
1750 (zone_page_state(zone, NR_ACTIVE) >> prio) + 1;
1751 if (zone->nr_scan_active >= nr_pages || pass > 3) {
1752 zone->nr_scan_active = 0;
1753 nr_to_scan = min(nr_pages,
1754 zone_page_state(zone, NR_ACTIVE));
1755 shrink_active_list(nr_to_scan, zone, sc, prio);
1756 }
1757 }
1758
1759 zone->nr_scan_inactive +=
1760 (zone_page_state(zone, NR_INACTIVE) >> prio) + 1;
1761 if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1762 zone->nr_scan_inactive = 0;
1763 nr_to_scan = min(nr_pages,
1764 zone_page_state(zone, NR_INACTIVE));
1765 ret += shrink_inactive_list(nr_to_scan, zone, sc);
1766 if (ret >= nr_pages)
1767 return ret;
1768 }
1769 }
1770
1771 return ret;
1772 }
1773
1774 static unsigned long count_lru_pages(void)
1775 {
1776 return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE);
1777 }
1778
1779 /*
1780 * Try to free `nr_pages' of memory, system-wide, and return the number of
1781 * freed pages.
1782 *
1783 * Rather than trying to age LRUs the aim is to preserve the overall
1784 * LRU order by reclaiming preferentially
1785 * inactive > active > active referenced > active mapped
1786 */
1787 unsigned long shrink_all_memory(unsigned long nr_pages)
1788 {
1789 unsigned long lru_pages, nr_slab;
1790 unsigned long ret = 0;
1791 int pass;
1792 struct reclaim_state reclaim_state;
1793 struct scan_control sc = {
1794 .gfp_mask = GFP_KERNEL,
1795 .may_swap = 0,
1796 .swap_cluster_max = nr_pages,
1797 .may_writepage = 1,
1798 .swappiness = vm_swappiness,
1799 .isolate_pages = isolate_pages_global,
1800 };
1801
1802 current->reclaim_state = &reclaim_state;
1803
1804 lru_pages = count_lru_pages();
1805 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
1806 /* If slab caches are huge, it's better to hit them first */
1807 while (nr_slab >= lru_pages) {
1808 reclaim_state.reclaimed_slab = 0;
1809 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1810 if (!reclaim_state.reclaimed_slab)
1811 break;
1812
1813 ret += reclaim_state.reclaimed_slab;
1814 if (ret >= nr_pages)
1815 goto out;
1816
1817 nr_slab -= reclaim_state.reclaimed_slab;
1818 }
1819
1820 /*
1821 * We try to shrink LRUs in 5 passes:
1822 * 0 = Reclaim from inactive_list only
1823 * 1 = Reclaim from active list but don't reclaim mapped
1824 * 2 = 2nd pass of type 1
1825 * 3 = Reclaim mapped (normal reclaim)
1826 * 4 = 2nd pass of type 3
1827 */
1828 for (pass = 0; pass < 5; pass++) {
1829 int prio;
1830
1831 /* Force reclaiming mapped pages in the passes #3 and #4 */
1832 if (pass > 2) {
1833 sc.may_swap = 1;
1834 sc.swappiness = 100;
1835 }
1836
1837 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1838 unsigned long nr_to_scan = nr_pages - ret;
1839
1840 sc.nr_scanned = 0;
1841 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1842 if (ret >= nr_pages)
1843 goto out;
1844
1845 reclaim_state.reclaimed_slab = 0;
1846 shrink_slab(sc.nr_scanned, sc.gfp_mask,
1847 count_lru_pages());
1848 ret += reclaim_state.reclaimed_slab;
1849 if (ret >= nr_pages)
1850 goto out;
1851
1852 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1853 congestion_wait(WRITE, HZ / 10);
1854 }
1855 }
1856
1857 /*
1858 * If ret = 0, we could not shrink LRUs, but there may be something
1859 * in slab caches
1860 */
1861 if (!ret) {
1862 do {
1863 reclaim_state.reclaimed_slab = 0;
1864 shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages());
1865 ret += reclaim_state.reclaimed_slab;
1866 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1867 }
1868
1869 out:
1870 current->reclaim_state = NULL;
1871
1872 return ret;
1873 }
1874 #endif
1875
1876 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1877 not required for correctness. So if the last cpu in a node goes
1878 away, we get changed to run anywhere: as the first one comes back,
1879 restore their cpu bindings. */
1880 static int __devinit cpu_callback(struct notifier_block *nfb,
1881 unsigned long action, void *hcpu)
1882 {
1883 int nid;
1884
1885 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
1886 for_each_node_state(nid, N_HIGH_MEMORY) {
1887 pg_data_t *pgdat = NODE_DATA(nid);
1888 node_to_cpumask_ptr(mask, pgdat->node_id);
1889
1890 if (any_online_cpu(*mask) < nr_cpu_ids)
1891 /* One of our CPUs online: restore mask */
1892 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1893 }
1894 }
1895 return NOTIFY_OK;
1896 }
1897
1898 /*
1899 * This kswapd start function will be called by init and node-hot-add.
1900 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1901 */
1902 int kswapd_run(int nid)
1903 {
1904 pg_data_t *pgdat = NODE_DATA(nid);
1905 int ret = 0;
1906
1907 if (pgdat->kswapd)
1908 return 0;
1909
1910 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
1911 if (IS_ERR(pgdat->kswapd)) {
1912 /* failure at boot is fatal */
1913 BUG_ON(system_state == SYSTEM_BOOTING);
1914 printk("Failed to start kswapd on node %d\n",nid);
1915 ret = -1;
1916 }
1917 return ret;
1918 }
1919
1920 static int __init kswapd_init(void)
1921 {
1922 int nid;
1923
1924 swap_setup();
1925 for_each_node_state(nid, N_HIGH_MEMORY)
1926 kswapd_run(nid);
1927 hotcpu_notifier(cpu_callback, 0);
1928 return 0;
1929 }
1930
1931 module_init(kswapd_init)
1932
1933 #ifdef CONFIG_NUMA
1934 /*
1935 * Zone reclaim mode
1936 *
1937 * If non-zero call zone_reclaim when the number of free pages falls below
1938 * the watermarks.
1939 */
1940 int zone_reclaim_mode __read_mostly;
1941
1942 #define RECLAIM_OFF 0
1943 #define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */
1944 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
1945 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
1946
1947 /*
1948 * Priority for ZONE_RECLAIM. This determines the fraction of pages
1949 * of a node considered for each zone_reclaim. 4 scans 1/16th of
1950 * a zone.
1951 */
1952 #define ZONE_RECLAIM_PRIORITY 4
1953
1954 /*
1955 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1956 * occur.
1957 */
1958 int sysctl_min_unmapped_ratio = 1;
1959
1960 /*
1961 * If the number of slab pages in a zone grows beyond this percentage then
1962 * slab reclaim needs to occur.
1963 */
1964 int sysctl_min_slab_ratio = 5;
1965
1966 /*
1967 * Try to free up some pages from this zone through reclaim.
1968 */
1969 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1970 {
1971 /* Minimum pages needed in order to stay on node */
1972 const unsigned long nr_pages = 1 << order;
1973 struct task_struct *p = current;
1974 struct reclaim_state reclaim_state;
1975 int priority;
1976 unsigned long nr_reclaimed = 0;
1977 struct scan_control sc = {
1978 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1979 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1980 .swap_cluster_max = max_t(unsigned long, nr_pages,
1981 SWAP_CLUSTER_MAX),
1982 .gfp_mask = gfp_mask,
1983 .swappiness = vm_swappiness,
1984 .isolate_pages = isolate_pages_global,
1985 };
1986 unsigned long slab_reclaimable;
1987
1988 disable_swap_token();
1989 cond_resched();
1990 /*
1991 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1992 * and we also need to be able to write out pages for RECLAIM_WRITE
1993 * and RECLAIM_SWAP.
1994 */
1995 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1996 reclaim_state.reclaimed_slab = 0;
1997 p->reclaim_state = &reclaim_state;
1998
1999 if (zone_page_state(zone, NR_FILE_PAGES) -
2000 zone_page_state(zone, NR_FILE_MAPPED) >
2001 zone->min_unmapped_pages) {
2002 /*
2003 * Free memory by calling shrink zone with increasing
2004 * priorities until we have enough memory freed.
2005 */
2006 priority = ZONE_RECLAIM_PRIORITY;
2007 do {
2008 note_zone_scanning_priority(zone, priority);
2009 nr_reclaimed += shrink_zone(priority, zone, &sc);
2010 priority--;
2011 } while (priority >= 0 && nr_reclaimed < nr_pages);
2012 }
2013
2014 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2015 if (slab_reclaimable > zone->min_slab_pages) {
2016 /*
2017 * shrink_slab() does not currently allow us to determine how
2018 * many pages were freed in this zone. So we take the current
2019 * number of slab pages and shake the slab until it is reduced
2020 * by the same nr_pages that we used for reclaiming unmapped
2021 * pages.
2022 *
2023 * Note that shrink_slab will free memory on all zones and may
2024 * take a long time.
2025 */
2026 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2027 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2028 slab_reclaimable - nr_pages)
2029 ;
2030
2031 /*
2032 * Update nr_reclaimed by the number of slab pages we
2033 * reclaimed from this zone.
2034 */
2035 nr_reclaimed += slab_reclaimable -
2036 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2037 }
2038
2039 p->reclaim_state = NULL;
2040 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2041 return nr_reclaimed >= nr_pages;
2042 }
2043
2044 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2045 {
2046 int node_id;
2047 int ret;
2048
2049 /*
2050 * Zone reclaim reclaims unmapped file backed pages and
2051 * slab pages if we are over the defined limits.
2052 *
2053 * A small portion of unmapped file backed pages is needed for
2054 * file I/O otherwise pages read by file I/O will be immediately
2055 * thrown out if the zone is overallocated. So we do not reclaim
2056 * if less than a specified percentage of the zone is used by
2057 * unmapped file backed pages.
2058 */
2059 if (zone_page_state(zone, NR_FILE_PAGES) -
2060 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2061 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2062 <= zone->min_slab_pages)
2063 return 0;
2064
2065 if (zone_is_all_unreclaimable(zone))
2066 return 0;
2067
2068 /*
2069 * Do not scan if the allocation should not be delayed.
2070 */
2071 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2072 return 0;
2073
2074 /*
2075 * Only run zone reclaim on the local zone or on zones that do not
2076 * have associated processors. This will favor the local processor
2077 * over remote processors and spread off node memory allocations
2078 * as wide as possible.
2079 */
2080 node_id = zone_to_nid(zone);
2081 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2082 return 0;
2083
2084 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2085 return 0;
2086 ret = __zone_reclaim(zone, gfp_mask, order);
2087 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2088
2089 return ret;
2090 }
2091 #endif