]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/vmscan.c
vmscan: protect reading of reclaim_stat with lru_lock
[mirror_ubuntu-artful-kernel.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46
47 #include <linux/swapops.h>
48
49 #include "internal.h"
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/vmscan.h>
53
54 struct scan_control {
55 /* Incremented by the number of inactive pages that were scanned */
56 unsigned long nr_scanned;
57
58 /* Number of pages freed so far during a call to shrink_zones() */
59 unsigned long nr_reclaimed;
60
61 /* How many pages shrink_list() should reclaim */
62 unsigned long nr_to_reclaim;
63
64 unsigned long hibernation_mode;
65
66 /* This context's GFP mask */
67 gfp_t gfp_mask;
68
69 int may_writepage;
70
71 /* Can mapped pages be reclaimed? */
72 int may_unmap;
73
74 /* Can pages be swapped as part of reclaim? */
75 int may_swap;
76
77 int swappiness;
78
79 int order;
80
81 /*
82 * Intend to reclaim enough contenious memory rather than to reclaim
83 * enough amount memory. I.e, it's the mode for high order allocation.
84 */
85 bool lumpy_reclaim_mode;
86
87 /* Which cgroup do we reclaim from */
88 struct mem_cgroup *mem_cgroup;
89
90 /*
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 * are scanned.
93 */
94 nodemask_t *nodemask;
95 };
96
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
104 \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
107 } \
108 } while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
121 } \
122 } while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126
127 /*
128 * From 0 .. 100. Higher means more swappy.
129 */
130 int vm_swappiness = 60;
131 long vm_total_pages; /* The total number of pages which the VM controls */
132
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
135
136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
137 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
138 #else
139 #define scanning_global_lru(sc) (1)
140 #endif
141
142 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143 struct scan_control *sc)
144 {
145 if (!scanning_global_lru(sc))
146 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
147
148 return &zone->reclaim_stat;
149 }
150
151 static unsigned long zone_nr_lru_pages(struct zone *zone,
152 struct scan_control *sc, enum lru_list lru)
153 {
154 if (!scanning_global_lru(sc))
155 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
156
157 return zone_page_state(zone, NR_LRU_BASE + lru);
158 }
159
160
161 /*
162 * Add a shrinker callback to be called from the vm
163 */
164 void register_shrinker(struct shrinker *shrinker)
165 {
166 shrinker->nr = 0;
167 down_write(&shrinker_rwsem);
168 list_add_tail(&shrinker->list, &shrinker_list);
169 up_write(&shrinker_rwsem);
170 }
171 EXPORT_SYMBOL(register_shrinker);
172
173 /*
174 * Remove one
175 */
176 void unregister_shrinker(struct shrinker *shrinker)
177 {
178 down_write(&shrinker_rwsem);
179 list_del(&shrinker->list);
180 up_write(&shrinker_rwsem);
181 }
182 EXPORT_SYMBOL(unregister_shrinker);
183
184 #define SHRINK_BATCH 128
185 /*
186 * Call the shrink functions to age shrinkable caches
187 *
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object. With this in mind we age equal
190 * percentages of the lru and ageable caches. This should balance the seeks
191 * generated by these structures.
192 *
193 * If the vm encountered mapped pages on the LRU it increase the pressure on
194 * slab to avoid swapping.
195 *
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197 *
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt. It is used for balancing
200 * slab reclaim versus page reclaim.
201 *
202 * Returns the number of slab objects which we shrunk.
203 */
204 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205 unsigned long lru_pages)
206 {
207 struct shrinker *shrinker;
208 unsigned long ret = 0;
209
210 if (scanned == 0)
211 scanned = SWAP_CLUSTER_MAX;
212
213 if (!down_read_trylock(&shrinker_rwsem))
214 return 1; /* Assume we'll be able to shrink next time */
215
216 list_for_each_entry(shrinker, &shrinker_list, list) {
217 unsigned long long delta;
218 unsigned long total_scan;
219 unsigned long max_pass;
220
221 max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
222 delta = (4 * scanned) / shrinker->seeks;
223 delta *= max_pass;
224 do_div(delta, lru_pages + 1);
225 shrinker->nr += delta;
226 if (shrinker->nr < 0) {
227 printk(KERN_ERR "shrink_slab: %pF negative objects to "
228 "delete nr=%ld\n",
229 shrinker->shrink, shrinker->nr);
230 shrinker->nr = max_pass;
231 }
232
233 /*
234 * Avoid risking looping forever due to too large nr value:
235 * never try to free more than twice the estimate number of
236 * freeable entries.
237 */
238 if (shrinker->nr > max_pass * 2)
239 shrinker->nr = max_pass * 2;
240
241 total_scan = shrinker->nr;
242 shrinker->nr = 0;
243
244 while (total_scan >= SHRINK_BATCH) {
245 long this_scan = SHRINK_BATCH;
246 int shrink_ret;
247 int nr_before;
248
249 nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
250 shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
251 gfp_mask);
252 if (shrink_ret == -1)
253 break;
254 if (shrink_ret < nr_before)
255 ret += nr_before - shrink_ret;
256 count_vm_events(SLABS_SCANNED, this_scan);
257 total_scan -= this_scan;
258
259 cond_resched();
260 }
261
262 shrinker->nr += total_scan;
263 }
264 up_read(&shrinker_rwsem);
265 return ret;
266 }
267
268 static inline int is_page_cache_freeable(struct page *page)
269 {
270 /*
271 * A freeable page cache page is referenced only by the caller
272 * that isolated the page, the page cache radix tree and
273 * optional buffer heads at page->private.
274 */
275 return page_count(page) - page_has_private(page) == 2;
276 }
277
278 static int may_write_to_queue(struct backing_dev_info *bdi)
279 {
280 if (current->flags & PF_SWAPWRITE)
281 return 1;
282 if (!bdi_write_congested(bdi))
283 return 1;
284 if (bdi == current->backing_dev_info)
285 return 1;
286 return 0;
287 }
288
289 /*
290 * We detected a synchronous write error writing a page out. Probably
291 * -ENOSPC. We need to propagate that into the address_space for a subsequent
292 * fsync(), msync() or close().
293 *
294 * The tricky part is that after writepage we cannot touch the mapping: nothing
295 * prevents it from being freed up. But we have a ref on the page and once
296 * that page is locked, the mapping is pinned.
297 *
298 * We're allowed to run sleeping lock_page() here because we know the caller has
299 * __GFP_FS.
300 */
301 static void handle_write_error(struct address_space *mapping,
302 struct page *page, int error)
303 {
304 lock_page_nosync(page);
305 if (page_mapping(page) == mapping)
306 mapping_set_error(mapping, error);
307 unlock_page(page);
308 }
309
310 /* Request for sync pageout. */
311 enum pageout_io {
312 PAGEOUT_IO_ASYNC,
313 PAGEOUT_IO_SYNC,
314 };
315
316 /* possible outcome of pageout() */
317 typedef enum {
318 /* failed to write page out, page is locked */
319 PAGE_KEEP,
320 /* move page to the active list, page is locked */
321 PAGE_ACTIVATE,
322 /* page has been sent to the disk successfully, page is unlocked */
323 PAGE_SUCCESS,
324 /* page is clean and locked */
325 PAGE_CLEAN,
326 } pageout_t;
327
328 /*
329 * pageout is called by shrink_page_list() for each dirty page.
330 * Calls ->writepage().
331 */
332 static pageout_t pageout(struct page *page, struct address_space *mapping,
333 enum pageout_io sync_writeback)
334 {
335 /*
336 * If the page is dirty, only perform writeback if that write
337 * will be non-blocking. To prevent this allocation from being
338 * stalled by pagecache activity. But note that there may be
339 * stalls if we need to run get_block(). We could test
340 * PagePrivate for that.
341 *
342 * If this process is currently in __generic_file_aio_write() against
343 * this page's queue, we can perform writeback even if that
344 * will block.
345 *
346 * If the page is swapcache, write it back even if that would
347 * block, for some throttling. This happens by accident, because
348 * swap_backing_dev_info is bust: it doesn't reflect the
349 * congestion state of the swapdevs. Easy to fix, if needed.
350 */
351 if (!is_page_cache_freeable(page))
352 return PAGE_KEEP;
353 if (!mapping) {
354 /*
355 * Some data journaling orphaned pages can have
356 * page->mapping == NULL while being dirty with clean buffers.
357 */
358 if (page_has_private(page)) {
359 if (try_to_free_buffers(page)) {
360 ClearPageDirty(page);
361 printk("%s: orphaned page\n", __func__);
362 return PAGE_CLEAN;
363 }
364 }
365 return PAGE_KEEP;
366 }
367 if (mapping->a_ops->writepage == NULL)
368 return PAGE_ACTIVATE;
369 if (!may_write_to_queue(mapping->backing_dev_info))
370 return PAGE_KEEP;
371
372 if (clear_page_dirty_for_io(page)) {
373 int res;
374 struct writeback_control wbc = {
375 .sync_mode = WB_SYNC_NONE,
376 .nr_to_write = SWAP_CLUSTER_MAX,
377 .range_start = 0,
378 .range_end = LLONG_MAX,
379 .nonblocking = 1,
380 .for_reclaim = 1,
381 };
382
383 SetPageReclaim(page);
384 res = mapping->a_ops->writepage(page, &wbc);
385 if (res < 0)
386 handle_write_error(mapping, page, res);
387 if (res == AOP_WRITEPAGE_ACTIVATE) {
388 ClearPageReclaim(page);
389 return PAGE_ACTIVATE;
390 }
391
392 /*
393 * Wait on writeback if requested to. This happens when
394 * direct reclaiming a large contiguous area and the
395 * first attempt to free a range of pages fails.
396 */
397 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
398 wait_on_page_writeback(page);
399
400 if (!PageWriteback(page)) {
401 /* synchronous write or broken a_ops? */
402 ClearPageReclaim(page);
403 }
404 trace_mm_vmscan_writepage(page,
405 trace_reclaim_flags(page, sync_writeback));
406 inc_zone_page_state(page, NR_VMSCAN_WRITE);
407 return PAGE_SUCCESS;
408 }
409
410 return PAGE_CLEAN;
411 }
412
413 /*
414 * Same as remove_mapping, but if the page is removed from the mapping, it
415 * gets returned with a refcount of 0.
416 */
417 static int __remove_mapping(struct address_space *mapping, struct page *page)
418 {
419 BUG_ON(!PageLocked(page));
420 BUG_ON(mapping != page_mapping(page));
421
422 spin_lock_irq(&mapping->tree_lock);
423 /*
424 * The non racy check for a busy page.
425 *
426 * Must be careful with the order of the tests. When someone has
427 * a ref to the page, it may be possible that they dirty it then
428 * drop the reference. So if PageDirty is tested before page_count
429 * here, then the following race may occur:
430 *
431 * get_user_pages(&page);
432 * [user mapping goes away]
433 * write_to(page);
434 * !PageDirty(page) [good]
435 * SetPageDirty(page);
436 * put_page(page);
437 * !page_count(page) [good, discard it]
438 *
439 * [oops, our write_to data is lost]
440 *
441 * Reversing the order of the tests ensures such a situation cannot
442 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
443 * load is not satisfied before that of page->_count.
444 *
445 * Note that if SetPageDirty is always performed via set_page_dirty,
446 * and thus under tree_lock, then this ordering is not required.
447 */
448 if (!page_freeze_refs(page, 2))
449 goto cannot_free;
450 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
451 if (unlikely(PageDirty(page))) {
452 page_unfreeze_refs(page, 2);
453 goto cannot_free;
454 }
455
456 if (PageSwapCache(page)) {
457 swp_entry_t swap = { .val = page_private(page) };
458 __delete_from_swap_cache(page);
459 spin_unlock_irq(&mapping->tree_lock);
460 swapcache_free(swap, page);
461 } else {
462 __remove_from_page_cache(page);
463 spin_unlock_irq(&mapping->tree_lock);
464 mem_cgroup_uncharge_cache_page(page);
465 }
466
467 return 1;
468
469 cannot_free:
470 spin_unlock_irq(&mapping->tree_lock);
471 return 0;
472 }
473
474 /*
475 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
476 * someone else has a ref on the page, abort and return 0. If it was
477 * successfully detached, return 1. Assumes the caller has a single ref on
478 * this page.
479 */
480 int remove_mapping(struct address_space *mapping, struct page *page)
481 {
482 if (__remove_mapping(mapping, page)) {
483 /*
484 * Unfreezing the refcount with 1 rather than 2 effectively
485 * drops the pagecache ref for us without requiring another
486 * atomic operation.
487 */
488 page_unfreeze_refs(page, 1);
489 return 1;
490 }
491 return 0;
492 }
493
494 /**
495 * putback_lru_page - put previously isolated page onto appropriate LRU list
496 * @page: page to be put back to appropriate lru list
497 *
498 * Add previously isolated @page to appropriate LRU list.
499 * Page may still be unevictable for other reasons.
500 *
501 * lru_lock must not be held, interrupts must be enabled.
502 */
503 void putback_lru_page(struct page *page)
504 {
505 int lru;
506 int active = !!TestClearPageActive(page);
507 int was_unevictable = PageUnevictable(page);
508
509 VM_BUG_ON(PageLRU(page));
510
511 redo:
512 ClearPageUnevictable(page);
513
514 if (page_evictable(page, NULL)) {
515 /*
516 * For evictable pages, we can use the cache.
517 * In event of a race, worst case is we end up with an
518 * unevictable page on [in]active list.
519 * We know how to handle that.
520 */
521 lru = active + page_lru_base_type(page);
522 lru_cache_add_lru(page, lru);
523 } else {
524 /*
525 * Put unevictable pages directly on zone's unevictable
526 * list.
527 */
528 lru = LRU_UNEVICTABLE;
529 add_page_to_unevictable_list(page);
530 /*
531 * When racing with an mlock clearing (page is
532 * unlocked), make sure that if the other thread does
533 * not observe our setting of PG_lru and fails
534 * isolation, we see PG_mlocked cleared below and move
535 * the page back to the evictable list.
536 *
537 * The other side is TestClearPageMlocked().
538 */
539 smp_mb();
540 }
541
542 /*
543 * page's status can change while we move it among lru. If an evictable
544 * page is on unevictable list, it never be freed. To avoid that,
545 * check after we added it to the list, again.
546 */
547 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
548 if (!isolate_lru_page(page)) {
549 put_page(page);
550 goto redo;
551 }
552 /* This means someone else dropped this page from LRU
553 * So, it will be freed or putback to LRU again. There is
554 * nothing to do here.
555 */
556 }
557
558 if (was_unevictable && lru != LRU_UNEVICTABLE)
559 count_vm_event(UNEVICTABLE_PGRESCUED);
560 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
561 count_vm_event(UNEVICTABLE_PGCULLED);
562
563 put_page(page); /* drop ref from isolate */
564 }
565
566 enum page_references {
567 PAGEREF_RECLAIM,
568 PAGEREF_RECLAIM_CLEAN,
569 PAGEREF_KEEP,
570 PAGEREF_ACTIVATE,
571 };
572
573 static enum page_references page_check_references(struct page *page,
574 struct scan_control *sc)
575 {
576 int referenced_ptes, referenced_page;
577 unsigned long vm_flags;
578
579 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
580 referenced_page = TestClearPageReferenced(page);
581
582 /* Lumpy reclaim - ignore references */
583 if (sc->lumpy_reclaim_mode)
584 return PAGEREF_RECLAIM;
585
586 /*
587 * Mlock lost the isolation race with us. Let try_to_unmap()
588 * move the page to the unevictable list.
589 */
590 if (vm_flags & VM_LOCKED)
591 return PAGEREF_RECLAIM;
592
593 if (referenced_ptes) {
594 if (PageAnon(page))
595 return PAGEREF_ACTIVATE;
596 /*
597 * All mapped pages start out with page table
598 * references from the instantiating fault, so we need
599 * to look twice if a mapped file page is used more
600 * than once.
601 *
602 * Mark it and spare it for another trip around the
603 * inactive list. Another page table reference will
604 * lead to its activation.
605 *
606 * Note: the mark is set for activated pages as well
607 * so that recently deactivated but used pages are
608 * quickly recovered.
609 */
610 SetPageReferenced(page);
611
612 if (referenced_page)
613 return PAGEREF_ACTIVATE;
614
615 return PAGEREF_KEEP;
616 }
617
618 /* Reclaim if clean, defer dirty pages to writeback */
619 if (referenced_page)
620 return PAGEREF_RECLAIM_CLEAN;
621
622 return PAGEREF_RECLAIM;
623 }
624
625 static noinline_for_stack void free_page_list(struct list_head *free_pages)
626 {
627 struct pagevec freed_pvec;
628 struct page *page, *tmp;
629
630 pagevec_init(&freed_pvec, 1);
631
632 list_for_each_entry_safe(page, tmp, free_pages, lru) {
633 list_del(&page->lru);
634 if (!pagevec_add(&freed_pvec, page)) {
635 __pagevec_free(&freed_pvec);
636 pagevec_reinit(&freed_pvec);
637 }
638 }
639
640 pagevec_free(&freed_pvec);
641 }
642
643 /*
644 * shrink_page_list() returns the number of reclaimed pages
645 */
646 static unsigned long shrink_page_list(struct list_head *page_list,
647 struct scan_control *sc,
648 enum pageout_io sync_writeback)
649 {
650 LIST_HEAD(ret_pages);
651 LIST_HEAD(free_pages);
652 int pgactivate = 0;
653 unsigned long nr_reclaimed = 0;
654
655 cond_resched();
656
657 while (!list_empty(page_list)) {
658 enum page_references references;
659 struct address_space *mapping;
660 struct page *page;
661 int may_enter_fs;
662
663 cond_resched();
664
665 page = lru_to_page(page_list);
666 list_del(&page->lru);
667
668 if (!trylock_page(page))
669 goto keep;
670
671 VM_BUG_ON(PageActive(page));
672
673 sc->nr_scanned++;
674
675 if (unlikely(!page_evictable(page, NULL)))
676 goto cull_mlocked;
677
678 if (!sc->may_unmap && page_mapped(page))
679 goto keep_locked;
680
681 /* Double the slab pressure for mapped and swapcache pages */
682 if (page_mapped(page) || PageSwapCache(page))
683 sc->nr_scanned++;
684
685 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
686 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
687
688 if (PageWriteback(page)) {
689 /*
690 * Synchronous reclaim is performed in two passes,
691 * first an asynchronous pass over the list to
692 * start parallel writeback, and a second synchronous
693 * pass to wait for the IO to complete. Wait here
694 * for any page for which writeback has already
695 * started.
696 */
697 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
698 wait_on_page_writeback(page);
699 else
700 goto keep_locked;
701 }
702
703 references = page_check_references(page, sc);
704 switch (references) {
705 case PAGEREF_ACTIVATE:
706 goto activate_locked;
707 case PAGEREF_KEEP:
708 goto keep_locked;
709 case PAGEREF_RECLAIM:
710 case PAGEREF_RECLAIM_CLEAN:
711 ; /* try to reclaim the page below */
712 }
713
714 /*
715 * Anonymous process memory has backing store?
716 * Try to allocate it some swap space here.
717 */
718 if (PageAnon(page) && !PageSwapCache(page)) {
719 if (!(sc->gfp_mask & __GFP_IO))
720 goto keep_locked;
721 if (!add_to_swap(page))
722 goto activate_locked;
723 may_enter_fs = 1;
724 }
725
726 mapping = page_mapping(page);
727
728 /*
729 * The page is mapped into the page tables of one or more
730 * processes. Try to unmap it here.
731 */
732 if (page_mapped(page) && mapping) {
733 switch (try_to_unmap(page, TTU_UNMAP)) {
734 case SWAP_FAIL:
735 goto activate_locked;
736 case SWAP_AGAIN:
737 goto keep_locked;
738 case SWAP_MLOCK:
739 goto cull_mlocked;
740 case SWAP_SUCCESS:
741 ; /* try to free the page below */
742 }
743 }
744
745 if (PageDirty(page)) {
746 if (references == PAGEREF_RECLAIM_CLEAN)
747 goto keep_locked;
748 if (!may_enter_fs)
749 goto keep_locked;
750 if (!sc->may_writepage)
751 goto keep_locked;
752
753 /* Page is dirty, try to write it out here */
754 switch (pageout(page, mapping, sync_writeback)) {
755 case PAGE_KEEP:
756 goto keep_locked;
757 case PAGE_ACTIVATE:
758 goto activate_locked;
759 case PAGE_SUCCESS:
760 if (PageWriteback(page) || PageDirty(page))
761 goto keep;
762 /*
763 * A synchronous write - probably a ramdisk. Go
764 * ahead and try to reclaim the page.
765 */
766 if (!trylock_page(page))
767 goto keep;
768 if (PageDirty(page) || PageWriteback(page))
769 goto keep_locked;
770 mapping = page_mapping(page);
771 case PAGE_CLEAN:
772 ; /* try to free the page below */
773 }
774 }
775
776 /*
777 * If the page has buffers, try to free the buffer mappings
778 * associated with this page. If we succeed we try to free
779 * the page as well.
780 *
781 * We do this even if the page is PageDirty().
782 * try_to_release_page() does not perform I/O, but it is
783 * possible for a page to have PageDirty set, but it is actually
784 * clean (all its buffers are clean). This happens if the
785 * buffers were written out directly, with submit_bh(). ext3
786 * will do this, as well as the blockdev mapping.
787 * try_to_release_page() will discover that cleanness and will
788 * drop the buffers and mark the page clean - it can be freed.
789 *
790 * Rarely, pages can have buffers and no ->mapping. These are
791 * the pages which were not successfully invalidated in
792 * truncate_complete_page(). We try to drop those buffers here
793 * and if that worked, and the page is no longer mapped into
794 * process address space (page_count == 1) it can be freed.
795 * Otherwise, leave the page on the LRU so it is swappable.
796 */
797 if (page_has_private(page)) {
798 if (!try_to_release_page(page, sc->gfp_mask))
799 goto activate_locked;
800 if (!mapping && page_count(page) == 1) {
801 unlock_page(page);
802 if (put_page_testzero(page))
803 goto free_it;
804 else {
805 /*
806 * rare race with speculative reference.
807 * the speculative reference will free
808 * this page shortly, so we may
809 * increment nr_reclaimed here (and
810 * leave it off the LRU).
811 */
812 nr_reclaimed++;
813 continue;
814 }
815 }
816 }
817
818 if (!mapping || !__remove_mapping(mapping, page))
819 goto keep_locked;
820
821 /*
822 * At this point, we have no other references and there is
823 * no way to pick any more up (removed from LRU, removed
824 * from pagecache). Can use non-atomic bitops now (and
825 * we obviously don't have to worry about waking up a process
826 * waiting on the page lock, because there are no references.
827 */
828 __clear_page_locked(page);
829 free_it:
830 nr_reclaimed++;
831
832 /*
833 * Is there need to periodically free_page_list? It would
834 * appear not as the counts should be low
835 */
836 list_add(&page->lru, &free_pages);
837 continue;
838
839 cull_mlocked:
840 if (PageSwapCache(page))
841 try_to_free_swap(page);
842 unlock_page(page);
843 putback_lru_page(page);
844 continue;
845
846 activate_locked:
847 /* Not a candidate for swapping, so reclaim swap space. */
848 if (PageSwapCache(page) && vm_swap_full())
849 try_to_free_swap(page);
850 VM_BUG_ON(PageActive(page));
851 SetPageActive(page);
852 pgactivate++;
853 keep_locked:
854 unlock_page(page);
855 keep:
856 list_add(&page->lru, &ret_pages);
857 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
858 }
859
860 free_page_list(&free_pages);
861
862 list_splice(&ret_pages, page_list);
863 count_vm_events(PGACTIVATE, pgactivate);
864 return nr_reclaimed;
865 }
866
867 /*
868 * Attempt to remove the specified page from its LRU. Only take this page
869 * if it is of the appropriate PageActive status. Pages which are being
870 * freed elsewhere are also ignored.
871 *
872 * page: page to consider
873 * mode: one of the LRU isolation modes defined above
874 *
875 * returns 0 on success, -ve errno on failure.
876 */
877 int __isolate_lru_page(struct page *page, int mode, int file)
878 {
879 int ret = -EINVAL;
880
881 /* Only take pages on the LRU. */
882 if (!PageLRU(page))
883 return ret;
884
885 /*
886 * When checking the active state, we need to be sure we are
887 * dealing with comparible boolean values. Take the logical not
888 * of each.
889 */
890 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
891 return ret;
892
893 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
894 return ret;
895
896 /*
897 * When this function is being called for lumpy reclaim, we
898 * initially look into all LRU pages, active, inactive and
899 * unevictable; only give shrink_page_list evictable pages.
900 */
901 if (PageUnevictable(page))
902 return ret;
903
904 ret = -EBUSY;
905
906 if (likely(get_page_unless_zero(page))) {
907 /*
908 * Be careful not to clear PageLRU until after we're
909 * sure the page is not being freed elsewhere -- the
910 * page release code relies on it.
911 */
912 ClearPageLRU(page);
913 ret = 0;
914 }
915
916 return ret;
917 }
918
919 /*
920 * zone->lru_lock is heavily contended. Some of the functions that
921 * shrink the lists perform better by taking out a batch of pages
922 * and working on them outside the LRU lock.
923 *
924 * For pagecache intensive workloads, this function is the hottest
925 * spot in the kernel (apart from copy_*_user functions).
926 *
927 * Appropriate locks must be held before calling this function.
928 *
929 * @nr_to_scan: The number of pages to look through on the list.
930 * @src: The LRU list to pull pages off.
931 * @dst: The temp list to put pages on to.
932 * @scanned: The number of pages that were scanned.
933 * @order: The caller's attempted allocation order
934 * @mode: One of the LRU isolation modes
935 * @file: True [1] if isolating file [!anon] pages
936 *
937 * returns how many pages were moved onto *@dst.
938 */
939 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
940 struct list_head *src, struct list_head *dst,
941 unsigned long *scanned, int order, int mode, int file)
942 {
943 unsigned long nr_taken = 0;
944 unsigned long nr_lumpy_taken = 0;
945 unsigned long nr_lumpy_dirty = 0;
946 unsigned long nr_lumpy_failed = 0;
947 unsigned long scan;
948
949 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
950 struct page *page;
951 unsigned long pfn;
952 unsigned long end_pfn;
953 unsigned long page_pfn;
954 int zone_id;
955
956 page = lru_to_page(src);
957 prefetchw_prev_lru_page(page, src, flags);
958
959 VM_BUG_ON(!PageLRU(page));
960
961 switch (__isolate_lru_page(page, mode, file)) {
962 case 0:
963 list_move(&page->lru, dst);
964 mem_cgroup_del_lru(page);
965 nr_taken++;
966 break;
967
968 case -EBUSY:
969 /* else it is being freed elsewhere */
970 list_move(&page->lru, src);
971 mem_cgroup_rotate_lru_list(page, page_lru(page));
972 continue;
973
974 default:
975 BUG();
976 }
977
978 if (!order)
979 continue;
980
981 /*
982 * Attempt to take all pages in the order aligned region
983 * surrounding the tag page. Only take those pages of
984 * the same active state as that tag page. We may safely
985 * round the target page pfn down to the requested order
986 * as the mem_map is guarenteed valid out to MAX_ORDER,
987 * where that page is in a different zone we will detect
988 * it from its zone id and abort this block scan.
989 */
990 zone_id = page_zone_id(page);
991 page_pfn = page_to_pfn(page);
992 pfn = page_pfn & ~((1 << order) - 1);
993 end_pfn = pfn + (1 << order);
994 for (; pfn < end_pfn; pfn++) {
995 struct page *cursor_page;
996
997 /* The target page is in the block, ignore it. */
998 if (unlikely(pfn == page_pfn))
999 continue;
1000
1001 /* Avoid holes within the zone. */
1002 if (unlikely(!pfn_valid_within(pfn)))
1003 break;
1004
1005 cursor_page = pfn_to_page(pfn);
1006
1007 /* Check that we have not crossed a zone boundary. */
1008 if (unlikely(page_zone_id(cursor_page) != zone_id))
1009 continue;
1010
1011 /*
1012 * If we don't have enough swap space, reclaiming of
1013 * anon page which don't already have a swap slot is
1014 * pointless.
1015 */
1016 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1017 !PageSwapCache(cursor_page))
1018 continue;
1019
1020 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1021 list_move(&cursor_page->lru, dst);
1022 mem_cgroup_del_lru(cursor_page);
1023 nr_taken++;
1024 nr_lumpy_taken++;
1025 if (PageDirty(cursor_page))
1026 nr_lumpy_dirty++;
1027 scan++;
1028 } else {
1029 if (mode == ISOLATE_BOTH &&
1030 page_count(cursor_page))
1031 nr_lumpy_failed++;
1032 }
1033 }
1034 }
1035
1036 *scanned = scan;
1037
1038 trace_mm_vmscan_lru_isolate(order,
1039 nr_to_scan, scan,
1040 nr_taken,
1041 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1042 mode);
1043 return nr_taken;
1044 }
1045
1046 static unsigned long isolate_pages_global(unsigned long nr,
1047 struct list_head *dst,
1048 unsigned long *scanned, int order,
1049 int mode, struct zone *z,
1050 int active, int file)
1051 {
1052 int lru = LRU_BASE;
1053 if (active)
1054 lru += LRU_ACTIVE;
1055 if (file)
1056 lru += LRU_FILE;
1057 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1058 mode, file);
1059 }
1060
1061 /*
1062 * clear_active_flags() is a helper for shrink_active_list(), clearing
1063 * any active bits from the pages in the list.
1064 */
1065 static unsigned long clear_active_flags(struct list_head *page_list,
1066 unsigned int *count)
1067 {
1068 int nr_active = 0;
1069 int lru;
1070 struct page *page;
1071
1072 list_for_each_entry(page, page_list, lru) {
1073 lru = page_lru_base_type(page);
1074 if (PageActive(page)) {
1075 lru += LRU_ACTIVE;
1076 ClearPageActive(page);
1077 nr_active++;
1078 }
1079 if (count)
1080 count[lru]++;
1081 }
1082
1083 return nr_active;
1084 }
1085
1086 /**
1087 * isolate_lru_page - tries to isolate a page from its LRU list
1088 * @page: page to isolate from its LRU list
1089 *
1090 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1091 * vmstat statistic corresponding to whatever LRU list the page was on.
1092 *
1093 * Returns 0 if the page was removed from an LRU list.
1094 * Returns -EBUSY if the page was not on an LRU list.
1095 *
1096 * The returned page will have PageLRU() cleared. If it was found on
1097 * the active list, it will have PageActive set. If it was found on
1098 * the unevictable list, it will have the PageUnevictable bit set. That flag
1099 * may need to be cleared by the caller before letting the page go.
1100 *
1101 * The vmstat statistic corresponding to the list on which the page was
1102 * found will be decremented.
1103 *
1104 * Restrictions:
1105 * (1) Must be called with an elevated refcount on the page. This is a
1106 * fundamentnal difference from isolate_lru_pages (which is called
1107 * without a stable reference).
1108 * (2) the lru_lock must not be held.
1109 * (3) interrupts must be enabled.
1110 */
1111 int isolate_lru_page(struct page *page)
1112 {
1113 int ret = -EBUSY;
1114
1115 if (PageLRU(page)) {
1116 struct zone *zone = page_zone(page);
1117
1118 spin_lock_irq(&zone->lru_lock);
1119 if (PageLRU(page) && get_page_unless_zero(page)) {
1120 int lru = page_lru(page);
1121 ret = 0;
1122 ClearPageLRU(page);
1123
1124 del_page_from_lru_list(zone, page, lru);
1125 }
1126 spin_unlock_irq(&zone->lru_lock);
1127 }
1128 return ret;
1129 }
1130
1131 /*
1132 * Are there way too many processes in the direct reclaim path already?
1133 */
1134 static int too_many_isolated(struct zone *zone, int file,
1135 struct scan_control *sc)
1136 {
1137 unsigned long inactive, isolated;
1138
1139 if (current_is_kswapd())
1140 return 0;
1141
1142 if (!scanning_global_lru(sc))
1143 return 0;
1144
1145 if (file) {
1146 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1147 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1148 } else {
1149 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1150 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1151 }
1152
1153 return isolated > inactive;
1154 }
1155
1156 /*
1157 * TODO: Try merging with migrations version of putback_lru_pages
1158 */
1159 static noinline_for_stack void
1160 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1161 unsigned long nr_anon, unsigned long nr_file,
1162 struct list_head *page_list)
1163 {
1164 struct page *page;
1165 struct pagevec pvec;
1166 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1167
1168 pagevec_init(&pvec, 1);
1169
1170 /*
1171 * Put back any unfreeable pages.
1172 */
1173 spin_lock(&zone->lru_lock);
1174 while (!list_empty(page_list)) {
1175 int lru;
1176 page = lru_to_page(page_list);
1177 VM_BUG_ON(PageLRU(page));
1178 list_del(&page->lru);
1179 if (unlikely(!page_evictable(page, NULL))) {
1180 spin_unlock_irq(&zone->lru_lock);
1181 putback_lru_page(page);
1182 spin_lock_irq(&zone->lru_lock);
1183 continue;
1184 }
1185 SetPageLRU(page);
1186 lru = page_lru(page);
1187 add_page_to_lru_list(zone, page, lru);
1188 if (is_active_lru(lru)) {
1189 int file = is_file_lru(lru);
1190 reclaim_stat->recent_rotated[file]++;
1191 }
1192 if (!pagevec_add(&pvec, page)) {
1193 spin_unlock_irq(&zone->lru_lock);
1194 __pagevec_release(&pvec);
1195 spin_lock_irq(&zone->lru_lock);
1196 }
1197 }
1198 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1199 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1200
1201 spin_unlock_irq(&zone->lru_lock);
1202 pagevec_release(&pvec);
1203 }
1204
1205 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1206 struct scan_control *sc,
1207 unsigned long *nr_anon,
1208 unsigned long *nr_file,
1209 struct list_head *isolated_list)
1210 {
1211 unsigned long nr_active;
1212 unsigned int count[NR_LRU_LISTS] = { 0, };
1213 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1214
1215 nr_active = clear_active_flags(isolated_list, count);
1216 __count_vm_events(PGDEACTIVATE, nr_active);
1217
1218 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1219 -count[LRU_ACTIVE_FILE]);
1220 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1221 -count[LRU_INACTIVE_FILE]);
1222 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1223 -count[LRU_ACTIVE_ANON]);
1224 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1225 -count[LRU_INACTIVE_ANON]);
1226
1227 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1228 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1229 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1230 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1231
1232 reclaim_stat->recent_scanned[0] += *nr_anon;
1233 reclaim_stat->recent_scanned[1] += *nr_file;
1234 }
1235
1236 /*
1237 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1238 * of reclaimed pages
1239 */
1240 static noinline_for_stack unsigned long
1241 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1242 struct scan_control *sc, int priority, int file)
1243 {
1244 LIST_HEAD(page_list);
1245 unsigned long nr_scanned;
1246 unsigned long nr_reclaimed = 0;
1247 unsigned long nr_taken;
1248 unsigned long nr_active;
1249 unsigned long nr_anon;
1250 unsigned long nr_file;
1251
1252 while (unlikely(too_many_isolated(zone, file, sc))) {
1253 congestion_wait(BLK_RW_ASYNC, HZ/10);
1254
1255 /* We are about to die and free our memory. Return now. */
1256 if (fatal_signal_pending(current))
1257 return SWAP_CLUSTER_MAX;
1258 }
1259
1260
1261 lru_add_drain();
1262 spin_lock_irq(&zone->lru_lock);
1263
1264 if (scanning_global_lru(sc)) {
1265 nr_taken = isolate_pages_global(nr_to_scan,
1266 &page_list, &nr_scanned, sc->order,
1267 sc->lumpy_reclaim_mode ?
1268 ISOLATE_BOTH : ISOLATE_INACTIVE,
1269 zone, 0, file);
1270 zone->pages_scanned += nr_scanned;
1271 if (current_is_kswapd())
1272 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1273 nr_scanned);
1274 else
1275 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1276 nr_scanned);
1277 } else {
1278 nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1279 &page_list, &nr_scanned, sc->order,
1280 sc->lumpy_reclaim_mode ?
1281 ISOLATE_BOTH : ISOLATE_INACTIVE,
1282 zone, sc->mem_cgroup,
1283 0, file);
1284 /*
1285 * mem_cgroup_isolate_pages() keeps track of
1286 * scanned pages on its own.
1287 */
1288 }
1289
1290 if (nr_taken == 0) {
1291 spin_unlock_irq(&zone->lru_lock);
1292 return 0;
1293 }
1294
1295 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1296
1297 spin_unlock_irq(&zone->lru_lock);
1298
1299 nr_reclaimed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1300
1301 /*
1302 * If we are direct reclaiming for contiguous pages and we do
1303 * not reclaim everything in the list, try again and wait
1304 * for IO to complete. This will stall high-order allocations
1305 * but that should be acceptable to the caller
1306 */
1307 if (nr_reclaimed < nr_taken && !current_is_kswapd() &&
1308 sc->lumpy_reclaim_mode) {
1309 congestion_wait(BLK_RW_ASYNC, HZ/10);
1310
1311 /*
1312 * The attempt at page out may have made some
1313 * of the pages active, mark them inactive again.
1314 */
1315 nr_active = clear_active_flags(&page_list, NULL);
1316 count_vm_events(PGDEACTIVATE, nr_active);
1317
1318 nr_reclaimed += shrink_page_list(&page_list, sc, PAGEOUT_IO_SYNC);
1319 }
1320
1321 local_irq_disable();
1322 if (current_is_kswapd())
1323 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1324 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1325
1326 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1327 return nr_reclaimed;
1328 }
1329
1330 /*
1331 * This moves pages from the active list to the inactive list.
1332 *
1333 * We move them the other way if the page is referenced by one or more
1334 * processes, from rmap.
1335 *
1336 * If the pages are mostly unmapped, the processing is fast and it is
1337 * appropriate to hold zone->lru_lock across the whole operation. But if
1338 * the pages are mapped, the processing is slow (page_referenced()) so we
1339 * should drop zone->lru_lock around each page. It's impossible to balance
1340 * this, so instead we remove the pages from the LRU while processing them.
1341 * It is safe to rely on PG_active against the non-LRU pages in here because
1342 * nobody will play with that bit on a non-LRU page.
1343 *
1344 * The downside is that we have to touch page->_count against each page.
1345 * But we had to alter page->flags anyway.
1346 */
1347
1348 static void move_active_pages_to_lru(struct zone *zone,
1349 struct list_head *list,
1350 enum lru_list lru)
1351 {
1352 unsigned long pgmoved = 0;
1353 struct pagevec pvec;
1354 struct page *page;
1355
1356 pagevec_init(&pvec, 1);
1357
1358 while (!list_empty(list)) {
1359 page = lru_to_page(list);
1360
1361 VM_BUG_ON(PageLRU(page));
1362 SetPageLRU(page);
1363
1364 list_move(&page->lru, &zone->lru[lru].list);
1365 mem_cgroup_add_lru_list(page, lru);
1366 pgmoved++;
1367
1368 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1369 spin_unlock_irq(&zone->lru_lock);
1370 if (buffer_heads_over_limit)
1371 pagevec_strip(&pvec);
1372 __pagevec_release(&pvec);
1373 spin_lock_irq(&zone->lru_lock);
1374 }
1375 }
1376 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1377 if (!is_active_lru(lru))
1378 __count_vm_events(PGDEACTIVATE, pgmoved);
1379 }
1380
1381 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1382 struct scan_control *sc, int priority, int file)
1383 {
1384 unsigned long nr_taken;
1385 unsigned long pgscanned;
1386 unsigned long vm_flags;
1387 LIST_HEAD(l_hold); /* The pages which were snipped off */
1388 LIST_HEAD(l_active);
1389 LIST_HEAD(l_inactive);
1390 struct page *page;
1391 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1392 unsigned long nr_rotated = 0;
1393
1394 lru_add_drain();
1395 spin_lock_irq(&zone->lru_lock);
1396 if (scanning_global_lru(sc)) {
1397 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1398 &pgscanned, sc->order,
1399 ISOLATE_ACTIVE, zone,
1400 1, file);
1401 zone->pages_scanned += pgscanned;
1402 } else {
1403 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1404 &pgscanned, sc->order,
1405 ISOLATE_ACTIVE, zone,
1406 sc->mem_cgroup, 1, file);
1407 /*
1408 * mem_cgroup_isolate_pages() keeps track of
1409 * scanned pages on its own.
1410 */
1411 }
1412
1413 reclaim_stat->recent_scanned[file] += nr_taken;
1414
1415 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1416 if (file)
1417 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1418 else
1419 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1420 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1421 spin_unlock_irq(&zone->lru_lock);
1422
1423 while (!list_empty(&l_hold)) {
1424 cond_resched();
1425 page = lru_to_page(&l_hold);
1426 list_del(&page->lru);
1427
1428 if (unlikely(!page_evictable(page, NULL))) {
1429 putback_lru_page(page);
1430 continue;
1431 }
1432
1433 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1434 nr_rotated++;
1435 /*
1436 * Identify referenced, file-backed active pages and
1437 * give them one more trip around the active list. So
1438 * that executable code get better chances to stay in
1439 * memory under moderate memory pressure. Anon pages
1440 * are not likely to be evicted by use-once streaming
1441 * IO, plus JVM can create lots of anon VM_EXEC pages,
1442 * so we ignore them here.
1443 */
1444 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1445 list_add(&page->lru, &l_active);
1446 continue;
1447 }
1448 }
1449
1450 ClearPageActive(page); /* we are de-activating */
1451 list_add(&page->lru, &l_inactive);
1452 }
1453
1454 /*
1455 * Move pages back to the lru list.
1456 */
1457 spin_lock_irq(&zone->lru_lock);
1458 /*
1459 * Count referenced pages from currently used mappings as rotated,
1460 * even though only some of them are actually re-activated. This
1461 * helps balance scan pressure between file and anonymous pages in
1462 * get_scan_ratio.
1463 */
1464 reclaim_stat->recent_rotated[file] += nr_rotated;
1465
1466 move_active_pages_to_lru(zone, &l_active,
1467 LRU_ACTIVE + file * LRU_FILE);
1468 move_active_pages_to_lru(zone, &l_inactive,
1469 LRU_BASE + file * LRU_FILE);
1470 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1471 spin_unlock_irq(&zone->lru_lock);
1472 }
1473
1474 static int inactive_anon_is_low_global(struct zone *zone)
1475 {
1476 unsigned long active, inactive;
1477
1478 active = zone_page_state(zone, NR_ACTIVE_ANON);
1479 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1480
1481 if (inactive * zone->inactive_ratio < active)
1482 return 1;
1483
1484 return 0;
1485 }
1486
1487 /**
1488 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1489 * @zone: zone to check
1490 * @sc: scan control of this context
1491 *
1492 * Returns true if the zone does not have enough inactive anon pages,
1493 * meaning some active anon pages need to be deactivated.
1494 */
1495 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1496 {
1497 int low;
1498
1499 if (scanning_global_lru(sc))
1500 low = inactive_anon_is_low_global(zone);
1501 else
1502 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1503 return low;
1504 }
1505
1506 static int inactive_file_is_low_global(struct zone *zone)
1507 {
1508 unsigned long active, inactive;
1509
1510 active = zone_page_state(zone, NR_ACTIVE_FILE);
1511 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1512
1513 return (active > inactive);
1514 }
1515
1516 /**
1517 * inactive_file_is_low - check if file pages need to be deactivated
1518 * @zone: zone to check
1519 * @sc: scan control of this context
1520 *
1521 * When the system is doing streaming IO, memory pressure here
1522 * ensures that active file pages get deactivated, until more
1523 * than half of the file pages are on the inactive list.
1524 *
1525 * Once we get to that situation, protect the system's working
1526 * set from being evicted by disabling active file page aging.
1527 *
1528 * This uses a different ratio than the anonymous pages, because
1529 * the page cache uses a use-once replacement algorithm.
1530 */
1531 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1532 {
1533 int low;
1534
1535 if (scanning_global_lru(sc))
1536 low = inactive_file_is_low_global(zone);
1537 else
1538 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1539 return low;
1540 }
1541
1542 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1543 int file)
1544 {
1545 if (file)
1546 return inactive_file_is_low(zone, sc);
1547 else
1548 return inactive_anon_is_low(zone, sc);
1549 }
1550
1551 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1552 struct zone *zone, struct scan_control *sc, int priority)
1553 {
1554 int file = is_file_lru(lru);
1555
1556 if (is_active_lru(lru)) {
1557 if (inactive_list_is_low(zone, sc, file))
1558 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1559 return 0;
1560 }
1561
1562 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1563 }
1564
1565 /*
1566 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1567 * until we collected @swap_cluster_max pages to scan.
1568 */
1569 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1570 unsigned long *nr_saved_scan)
1571 {
1572 unsigned long nr;
1573
1574 *nr_saved_scan += nr_to_scan;
1575 nr = *nr_saved_scan;
1576
1577 if (nr >= SWAP_CLUSTER_MAX)
1578 *nr_saved_scan = 0;
1579 else
1580 nr = 0;
1581
1582 return nr;
1583 }
1584
1585 /*
1586 * Determine how aggressively the anon and file LRU lists should be
1587 * scanned. The relative value of each set of LRU lists is determined
1588 * by looking at the fraction of the pages scanned we did rotate back
1589 * onto the active list instead of evict.
1590 *
1591 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1592 */
1593 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1594 unsigned long *nr, int priority)
1595 {
1596 unsigned long anon, file, free;
1597 unsigned long anon_prio, file_prio;
1598 unsigned long ap, fp;
1599 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1600 u64 fraction[2], denominator;
1601 enum lru_list l;
1602 int noswap = 0;
1603
1604 /* If we have no swap space, do not bother scanning anon pages. */
1605 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1606 noswap = 1;
1607 fraction[0] = 0;
1608 fraction[1] = 1;
1609 denominator = 1;
1610 goto out;
1611 }
1612
1613 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1614 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1615 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1616 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1617
1618 if (scanning_global_lru(sc)) {
1619 free = zone_page_state(zone, NR_FREE_PAGES);
1620 /* If we have very few page cache pages,
1621 force-scan anon pages. */
1622 if (unlikely(file + free <= high_wmark_pages(zone))) {
1623 fraction[0] = 1;
1624 fraction[1] = 0;
1625 denominator = 1;
1626 goto out;
1627 }
1628 }
1629
1630 /*
1631 * With swappiness at 100, anonymous and file have the same priority.
1632 * This scanning priority is essentially the inverse of IO cost.
1633 */
1634 anon_prio = sc->swappiness;
1635 file_prio = 200 - sc->swappiness;
1636
1637 /*
1638 * OK, so we have swap space and a fair amount of page cache
1639 * pages. We use the recently rotated / recently scanned
1640 * ratios to determine how valuable each cache is.
1641 *
1642 * Because workloads change over time (and to avoid overflow)
1643 * we keep these statistics as a floating average, which ends
1644 * up weighing recent references more than old ones.
1645 *
1646 * anon in [0], file in [1]
1647 */
1648 spin_lock_irq(&zone->lru_lock);
1649 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1650 reclaim_stat->recent_scanned[0] /= 2;
1651 reclaim_stat->recent_rotated[0] /= 2;
1652 }
1653
1654 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1655 reclaim_stat->recent_scanned[1] /= 2;
1656 reclaim_stat->recent_rotated[1] /= 2;
1657 }
1658
1659 /*
1660 * The amount of pressure on anon vs file pages is inversely
1661 * proportional to the fraction of recently scanned pages on
1662 * each list that were recently referenced and in active use.
1663 */
1664 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1665 ap /= reclaim_stat->recent_rotated[0] + 1;
1666
1667 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1668 fp /= reclaim_stat->recent_rotated[1] + 1;
1669 spin_unlock_irq(&zone->lru_lock);
1670
1671 fraction[0] = ap;
1672 fraction[1] = fp;
1673 denominator = ap + fp + 1;
1674 out:
1675 for_each_evictable_lru(l) {
1676 int file = is_file_lru(l);
1677 unsigned long scan;
1678
1679 scan = zone_nr_lru_pages(zone, sc, l);
1680 if (priority || noswap) {
1681 scan >>= priority;
1682 scan = div64_u64(scan * fraction[file], denominator);
1683 }
1684 nr[l] = nr_scan_try_batch(scan,
1685 &reclaim_stat->nr_saved_scan[l]);
1686 }
1687 }
1688
1689 static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc)
1690 {
1691 /*
1692 * If we need a large contiguous chunk of memory, or have
1693 * trouble getting a small set of contiguous pages, we
1694 * will reclaim both active and inactive pages.
1695 */
1696 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1697 sc->lumpy_reclaim_mode = 1;
1698 else if (sc->order && priority < DEF_PRIORITY - 2)
1699 sc->lumpy_reclaim_mode = 1;
1700 else
1701 sc->lumpy_reclaim_mode = 0;
1702 }
1703
1704 /*
1705 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1706 */
1707 static void shrink_zone(int priority, struct zone *zone,
1708 struct scan_control *sc)
1709 {
1710 unsigned long nr[NR_LRU_LISTS];
1711 unsigned long nr_to_scan;
1712 enum lru_list l;
1713 unsigned long nr_reclaimed = sc->nr_reclaimed;
1714 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1715
1716 get_scan_count(zone, sc, nr, priority);
1717
1718 set_lumpy_reclaim_mode(priority, sc);
1719
1720 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1721 nr[LRU_INACTIVE_FILE]) {
1722 for_each_evictable_lru(l) {
1723 if (nr[l]) {
1724 nr_to_scan = min_t(unsigned long,
1725 nr[l], SWAP_CLUSTER_MAX);
1726 nr[l] -= nr_to_scan;
1727
1728 nr_reclaimed += shrink_list(l, nr_to_scan,
1729 zone, sc, priority);
1730 }
1731 }
1732 /*
1733 * On large memory systems, scan >> priority can become
1734 * really large. This is fine for the starting priority;
1735 * we want to put equal scanning pressure on each zone.
1736 * However, if the VM has a harder time of freeing pages,
1737 * with multiple processes reclaiming pages, the total
1738 * freeing target can get unreasonably large.
1739 */
1740 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1741 break;
1742 }
1743
1744 sc->nr_reclaimed = nr_reclaimed;
1745
1746 /*
1747 * Even if we did not try to evict anon pages at all, we want to
1748 * rebalance the anon lru active/inactive ratio.
1749 */
1750 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1751 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1752
1753 throttle_vm_writeout(sc->gfp_mask);
1754 }
1755
1756 /*
1757 * This is the direct reclaim path, for page-allocating processes. We only
1758 * try to reclaim pages from zones which will satisfy the caller's allocation
1759 * request.
1760 *
1761 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1762 * Because:
1763 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1764 * allocation or
1765 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1766 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1767 * zone defense algorithm.
1768 *
1769 * If a zone is deemed to be full of pinned pages then just give it a light
1770 * scan then give up on it.
1771 */
1772 static bool shrink_zones(int priority, struct zonelist *zonelist,
1773 struct scan_control *sc)
1774 {
1775 struct zoneref *z;
1776 struct zone *zone;
1777 bool all_unreclaimable = true;
1778
1779 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1780 gfp_zone(sc->gfp_mask), sc->nodemask) {
1781 if (!populated_zone(zone))
1782 continue;
1783 /*
1784 * Take care memory controller reclaiming has small influence
1785 * to global LRU.
1786 */
1787 if (scanning_global_lru(sc)) {
1788 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1789 continue;
1790 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1791 continue; /* Let kswapd poll it */
1792 }
1793
1794 shrink_zone(priority, zone, sc);
1795 all_unreclaimable = false;
1796 }
1797 return all_unreclaimable;
1798 }
1799
1800 /*
1801 * This is the main entry point to direct page reclaim.
1802 *
1803 * If a full scan of the inactive list fails to free enough memory then we
1804 * are "out of memory" and something needs to be killed.
1805 *
1806 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1807 * high - the zone may be full of dirty or under-writeback pages, which this
1808 * caller can't do much about. We kick the writeback threads and take explicit
1809 * naps in the hope that some of these pages can be written. But if the
1810 * allocating task holds filesystem locks which prevent writeout this might not
1811 * work, and the allocation attempt will fail.
1812 *
1813 * returns: 0, if no pages reclaimed
1814 * else, the number of pages reclaimed
1815 */
1816 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1817 struct scan_control *sc)
1818 {
1819 int priority;
1820 bool all_unreclaimable;
1821 unsigned long total_scanned = 0;
1822 struct reclaim_state *reclaim_state = current->reclaim_state;
1823 struct zoneref *z;
1824 struct zone *zone;
1825 unsigned long writeback_threshold;
1826
1827 get_mems_allowed();
1828 delayacct_freepages_start();
1829
1830 if (scanning_global_lru(sc))
1831 count_vm_event(ALLOCSTALL);
1832
1833 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1834 sc->nr_scanned = 0;
1835 if (!priority)
1836 disable_swap_token();
1837 all_unreclaimable = shrink_zones(priority, zonelist, sc);
1838 /*
1839 * Don't shrink slabs when reclaiming memory from
1840 * over limit cgroups
1841 */
1842 if (scanning_global_lru(sc)) {
1843 unsigned long lru_pages = 0;
1844 for_each_zone_zonelist(zone, z, zonelist,
1845 gfp_zone(sc->gfp_mask)) {
1846 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1847 continue;
1848
1849 lru_pages += zone_reclaimable_pages(zone);
1850 }
1851
1852 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1853 if (reclaim_state) {
1854 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1855 reclaim_state->reclaimed_slab = 0;
1856 }
1857 }
1858 total_scanned += sc->nr_scanned;
1859 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1860 goto out;
1861
1862 /*
1863 * Try to write back as many pages as we just scanned. This
1864 * tends to cause slow streaming writers to write data to the
1865 * disk smoothly, at the dirtying rate, which is nice. But
1866 * that's undesirable in laptop mode, where we *want* lumpy
1867 * writeout. So in laptop mode, write out the whole world.
1868 */
1869 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
1870 if (total_scanned > writeback_threshold) {
1871 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1872 sc->may_writepage = 1;
1873 }
1874
1875 /* Take a nap, wait for some writeback to complete */
1876 if (!sc->hibernation_mode && sc->nr_scanned &&
1877 priority < DEF_PRIORITY - 2)
1878 congestion_wait(BLK_RW_ASYNC, HZ/10);
1879 }
1880
1881 out:
1882 /*
1883 * Now that we've scanned all the zones at this priority level, note
1884 * that level within the zone so that the next thread which performs
1885 * scanning of this zone will immediately start out at this priority
1886 * level. This affects only the decision whether or not to bring
1887 * mapped pages onto the inactive list.
1888 */
1889 if (priority < 0)
1890 priority = 0;
1891
1892 delayacct_freepages_end();
1893 put_mems_allowed();
1894
1895 if (sc->nr_reclaimed)
1896 return sc->nr_reclaimed;
1897
1898 /* top priority shrink_zones still had more to do? don't OOM, then */
1899 if (scanning_global_lru(sc) && !all_unreclaimable)
1900 return 1;
1901
1902 return 0;
1903 }
1904
1905 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1906 gfp_t gfp_mask, nodemask_t *nodemask)
1907 {
1908 unsigned long nr_reclaimed;
1909 struct scan_control sc = {
1910 .gfp_mask = gfp_mask,
1911 .may_writepage = !laptop_mode,
1912 .nr_to_reclaim = SWAP_CLUSTER_MAX,
1913 .may_unmap = 1,
1914 .may_swap = 1,
1915 .swappiness = vm_swappiness,
1916 .order = order,
1917 .mem_cgroup = NULL,
1918 .nodemask = nodemask,
1919 };
1920
1921 trace_mm_vmscan_direct_reclaim_begin(order,
1922 sc.may_writepage,
1923 gfp_mask);
1924
1925 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
1926
1927 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1928
1929 return nr_reclaimed;
1930 }
1931
1932 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1933
1934 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
1935 gfp_t gfp_mask, bool noswap,
1936 unsigned int swappiness,
1937 struct zone *zone, int nid)
1938 {
1939 struct scan_control sc = {
1940 .may_writepage = !laptop_mode,
1941 .may_unmap = 1,
1942 .may_swap = !noswap,
1943 .swappiness = swappiness,
1944 .order = 0,
1945 .mem_cgroup = mem,
1946 };
1947 nodemask_t nm = nodemask_of_node(nid);
1948
1949 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1950 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1951 sc.nodemask = &nm;
1952 sc.nr_reclaimed = 0;
1953 sc.nr_scanned = 0;
1954 /*
1955 * NOTE: Although we can get the priority field, using it
1956 * here is not a good idea, since it limits the pages we can scan.
1957 * if we don't reclaim here, the shrink_zone from balance_pgdat
1958 * will pick up pages from other mem cgroup's as well. We hack
1959 * the priority and make it zero.
1960 */
1961 shrink_zone(0, zone, &sc);
1962 return sc.nr_reclaimed;
1963 }
1964
1965 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1966 gfp_t gfp_mask,
1967 bool noswap,
1968 unsigned int swappiness)
1969 {
1970 struct zonelist *zonelist;
1971 struct scan_control sc = {
1972 .may_writepage = !laptop_mode,
1973 .may_unmap = 1,
1974 .may_swap = !noswap,
1975 .nr_to_reclaim = SWAP_CLUSTER_MAX,
1976 .swappiness = swappiness,
1977 .order = 0,
1978 .mem_cgroup = mem_cont,
1979 .nodemask = NULL, /* we don't care the placement */
1980 };
1981
1982 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1983 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1984 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1985 return do_try_to_free_pages(zonelist, &sc);
1986 }
1987 #endif
1988
1989 /* is kswapd sleeping prematurely? */
1990 static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
1991 {
1992 int i;
1993
1994 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
1995 if (remaining)
1996 return 1;
1997
1998 /* If after HZ/10, a zone is below the high mark, it's premature */
1999 for (i = 0; i < pgdat->nr_zones; i++) {
2000 struct zone *zone = pgdat->node_zones + i;
2001
2002 if (!populated_zone(zone))
2003 continue;
2004
2005 if (zone->all_unreclaimable)
2006 continue;
2007
2008 if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
2009 0, 0))
2010 return 1;
2011 }
2012
2013 return 0;
2014 }
2015
2016 /*
2017 * For kswapd, balance_pgdat() will work across all this node's zones until
2018 * they are all at high_wmark_pages(zone).
2019 *
2020 * Returns the number of pages which were actually freed.
2021 *
2022 * There is special handling here for zones which are full of pinned pages.
2023 * This can happen if the pages are all mlocked, or if they are all used by
2024 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2025 * What we do is to detect the case where all pages in the zone have been
2026 * scanned twice and there has been zero successful reclaim. Mark the zone as
2027 * dead and from now on, only perform a short scan. Basically we're polling
2028 * the zone for when the problem goes away.
2029 *
2030 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2031 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2032 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2033 * lower zones regardless of the number of free pages in the lower zones. This
2034 * interoperates with the page allocator fallback scheme to ensure that aging
2035 * of pages is balanced across the zones.
2036 */
2037 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
2038 {
2039 int all_zones_ok;
2040 int priority;
2041 int i;
2042 unsigned long total_scanned;
2043 struct reclaim_state *reclaim_state = current->reclaim_state;
2044 struct scan_control sc = {
2045 .gfp_mask = GFP_KERNEL,
2046 .may_unmap = 1,
2047 .may_swap = 1,
2048 /*
2049 * kswapd doesn't want to be bailed out while reclaim. because
2050 * we want to put equal scanning pressure on each zone.
2051 */
2052 .nr_to_reclaim = ULONG_MAX,
2053 .swappiness = vm_swappiness,
2054 .order = order,
2055 .mem_cgroup = NULL,
2056 };
2057 loop_again:
2058 total_scanned = 0;
2059 sc.nr_reclaimed = 0;
2060 sc.may_writepage = !laptop_mode;
2061 count_vm_event(PAGEOUTRUN);
2062
2063 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2064 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2065 unsigned long lru_pages = 0;
2066 int has_under_min_watermark_zone = 0;
2067
2068 /* The swap token gets in the way of swapout... */
2069 if (!priority)
2070 disable_swap_token();
2071
2072 all_zones_ok = 1;
2073
2074 /*
2075 * Scan in the highmem->dma direction for the highest
2076 * zone which needs scanning
2077 */
2078 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2079 struct zone *zone = pgdat->node_zones + i;
2080
2081 if (!populated_zone(zone))
2082 continue;
2083
2084 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2085 continue;
2086
2087 /*
2088 * Do some background aging of the anon list, to give
2089 * pages a chance to be referenced before reclaiming.
2090 */
2091 if (inactive_anon_is_low(zone, &sc))
2092 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2093 &sc, priority, 0);
2094
2095 if (!zone_watermark_ok(zone, order,
2096 high_wmark_pages(zone), 0, 0)) {
2097 end_zone = i;
2098 break;
2099 }
2100 }
2101 if (i < 0)
2102 goto out;
2103
2104 for (i = 0; i <= end_zone; i++) {
2105 struct zone *zone = pgdat->node_zones + i;
2106
2107 lru_pages += zone_reclaimable_pages(zone);
2108 }
2109
2110 /*
2111 * Now scan the zone in the dma->highmem direction, stopping
2112 * at the last zone which needs scanning.
2113 *
2114 * We do this because the page allocator works in the opposite
2115 * direction. This prevents the page allocator from allocating
2116 * pages behind kswapd's direction of progress, which would
2117 * cause too much scanning of the lower zones.
2118 */
2119 for (i = 0; i <= end_zone; i++) {
2120 struct zone *zone = pgdat->node_zones + i;
2121 int nr_slab;
2122 int nid, zid;
2123
2124 if (!populated_zone(zone))
2125 continue;
2126
2127 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2128 continue;
2129
2130 sc.nr_scanned = 0;
2131
2132 nid = pgdat->node_id;
2133 zid = zone_idx(zone);
2134 /*
2135 * Call soft limit reclaim before calling shrink_zone.
2136 * For now we ignore the return value
2137 */
2138 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
2139 nid, zid);
2140 /*
2141 * We put equal pressure on every zone, unless one
2142 * zone has way too many pages free already.
2143 */
2144 if (!zone_watermark_ok(zone, order,
2145 8*high_wmark_pages(zone), end_zone, 0))
2146 shrink_zone(priority, zone, &sc);
2147 reclaim_state->reclaimed_slab = 0;
2148 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2149 lru_pages);
2150 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2151 total_scanned += sc.nr_scanned;
2152 if (zone->all_unreclaimable)
2153 continue;
2154 if (nr_slab == 0 &&
2155 zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6))
2156 zone->all_unreclaimable = 1;
2157 /*
2158 * If we've done a decent amount of scanning and
2159 * the reclaim ratio is low, start doing writepage
2160 * even in laptop mode
2161 */
2162 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2163 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2164 sc.may_writepage = 1;
2165
2166 if (!zone_watermark_ok(zone, order,
2167 high_wmark_pages(zone), end_zone, 0)) {
2168 all_zones_ok = 0;
2169 /*
2170 * We are still under min water mark. This
2171 * means that we have a GFP_ATOMIC allocation
2172 * failure risk. Hurry up!
2173 */
2174 if (!zone_watermark_ok(zone, order,
2175 min_wmark_pages(zone), end_zone, 0))
2176 has_under_min_watermark_zone = 1;
2177 }
2178
2179 }
2180 if (all_zones_ok)
2181 break; /* kswapd: all done */
2182 /*
2183 * OK, kswapd is getting into trouble. Take a nap, then take
2184 * another pass across the zones.
2185 */
2186 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2187 if (has_under_min_watermark_zone)
2188 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2189 else
2190 congestion_wait(BLK_RW_ASYNC, HZ/10);
2191 }
2192
2193 /*
2194 * We do this so kswapd doesn't build up large priorities for
2195 * example when it is freeing in parallel with allocators. It
2196 * matches the direct reclaim path behaviour in terms of impact
2197 * on zone->*_priority.
2198 */
2199 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2200 break;
2201 }
2202 out:
2203 if (!all_zones_ok) {
2204 cond_resched();
2205
2206 try_to_freeze();
2207
2208 /*
2209 * Fragmentation may mean that the system cannot be
2210 * rebalanced for high-order allocations in all zones.
2211 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2212 * it means the zones have been fully scanned and are still
2213 * not balanced. For high-order allocations, there is
2214 * little point trying all over again as kswapd may
2215 * infinite loop.
2216 *
2217 * Instead, recheck all watermarks at order-0 as they
2218 * are the most important. If watermarks are ok, kswapd will go
2219 * back to sleep. High-order users can still perform direct
2220 * reclaim if they wish.
2221 */
2222 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2223 order = sc.order = 0;
2224
2225 goto loop_again;
2226 }
2227
2228 return sc.nr_reclaimed;
2229 }
2230
2231 /*
2232 * The background pageout daemon, started as a kernel thread
2233 * from the init process.
2234 *
2235 * This basically trickles out pages so that we have _some_
2236 * free memory available even if there is no other activity
2237 * that frees anything up. This is needed for things like routing
2238 * etc, where we otherwise might have all activity going on in
2239 * asynchronous contexts that cannot page things out.
2240 *
2241 * If there are applications that are active memory-allocators
2242 * (most normal use), this basically shouldn't matter.
2243 */
2244 static int kswapd(void *p)
2245 {
2246 unsigned long order;
2247 pg_data_t *pgdat = (pg_data_t*)p;
2248 struct task_struct *tsk = current;
2249 DEFINE_WAIT(wait);
2250 struct reclaim_state reclaim_state = {
2251 .reclaimed_slab = 0,
2252 };
2253 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2254
2255 lockdep_set_current_reclaim_state(GFP_KERNEL);
2256
2257 if (!cpumask_empty(cpumask))
2258 set_cpus_allowed_ptr(tsk, cpumask);
2259 current->reclaim_state = &reclaim_state;
2260
2261 /*
2262 * Tell the memory management that we're a "memory allocator",
2263 * and that if we need more memory we should get access to it
2264 * regardless (see "__alloc_pages()"). "kswapd" should
2265 * never get caught in the normal page freeing logic.
2266 *
2267 * (Kswapd normally doesn't need memory anyway, but sometimes
2268 * you need a small amount of memory in order to be able to
2269 * page out something else, and this flag essentially protects
2270 * us from recursively trying to free more memory as we're
2271 * trying to free the first piece of memory in the first place).
2272 */
2273 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2274 set_freezable();
2275
2276 order = 0;
2277 for ( ; ; ) {
2278 unsigned long new_order;
2279 int ret;
2280
2281 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2282 new_order = pgdat->kswapd_max_order;
2283 pgdat->kswapd_max_order = 0;
2284 if (order < new_order) {
2285 /*
2286 * Don't sleep if someone wants a larger 'order'
2287 * allocation
2288 */
2289 order = new_order;
2290 } else {
2291 if (!freezing(current) && !kthread_should_stop()) {
2292 long remaining = 0;
2293
2294 /* Try to sleep for a short interval */
2295 if (!sleeping_prematurely(pgdat, order, remaining)) {
2296 remaining = schedule_timeout(HZ/10);
2297 finish_wait(&pgdat->kswapd_wait, &wait);
2298 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2299 }
2300
2301 /*
2302 * After a short sleep, check if it was a
2303 * premature sleep. If not, then go fully
2304 * to sleep until explicitly woken up
2305 */
2306 if (!sleeping_prematurely(pgdat, order, remaining)) {
2307 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2308 schedule();
2309 } else {
2310 if (remaining)
2311 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2312 else
2313 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2314 }
2315 }
2316
2317 order = pgdat->kswapd_max_order;
2318 }
2319 finish_wait(&pgdat->kswapd_wait, &wait);
2320
2321 ret = try_to_freeze();
2322 if (kthread_should_stop())
2323 break;
2324
2325 /*
2326 * We can speed up thawing tasks if we don't call balance_pgdat
2327 * after returning from the refrigerator
2328 */
2329 if (!ret) {
2330 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2331 balance_pgdat(pgdat, order);
2332 }
2333 }
2334 return 0;
2335 }
2336
2337 /*
2338 * A zone is low on free memory, so wake its kswapd task to service it.
2339 */
2340 void wakeup_kswapd(struct zone *zone, int order)
2341 {
2342 pg_data_t *pgdat;
2343
2344 if (!populated_zone(zone))
2345 return;
2346
2347 pgdat = zone->zone_pgdat;
2348 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2349 return;
2350 if (pgdat->kswapd_max_order < order)
2351 pgdat->kswapd_max_order = order;
2352 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2353 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2354 return;
2355 if (!waitqueue_active(&pgdat->kswapd_wait))
2356 return;
2357 wake_up_interruptible(&pgdat->kswapd_wait);
2358 }
2359
2360 /*
2361 * The reclaimable count would be mostly accurate.
2362 * The less reclaimable pages may be
2363 * - mlocked pages, which will be moved to unevictable list when encountered
2364 * - mapped pages, which may require several travels to be reclaimed
2365 * - dirty pages, which is not "instantly" reclaimable
2366 */
2367 unsigned long global_reclaimable_pages(void)
2368 {
2369 int nr;
2370
2371 nr = global_page_state(NR_ACTIVE_FILE) +
2372 global_page_state(NR_INACTIVE_FILE);
2373
2374 if (nr_swap_pages > 0)
2375 nr += global_page_state(NR_ACTIVE_ANON) +
2376 global_page_state(NR_INACTIVE_ANON);
2377
2378 return nr;
2379 }
2380
2381 unsigned long zone_reclaimable_pages(struct zone *zone)
2382 {
2383 int nr;
2384
2385 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2386 zone_page_state(zone, NR_INACTIVE_FILE);
2387
2388 if (nr_swap_pages > 0)
2389 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2390 zone_page_state(zone, NR_INACTIVE_ANON);
2391
2392 return nr;
2393 }
2394
2395 #ifdef CONFIG_HIBERNATION
2396 /*
2397 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2398 * freed pages.
2399 *
2400 * Rather than trying to age LRUs the aim is to preserve the overall
2401 * LRU order by reclaiming preferentially
2402 * inactive > active > active referenced > active mapped
2403 */
2404 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2405 {
2406 struct reclaim_state reclaim_state;
2407 struct scan_control sc = {
2408 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2409 .may_swap = 1,
2410 .may_unmap = 1,
2411 .may_writepage = 1,
2412 .nr_to_reclaim = nr_to_reclaim,
2413 .hibernation_mode = 1,
2414 .swappiness = vm_swappiness,
2415 .order = 0,
2416 };
2417 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2418 struct task_struct *p = current;
2419 unsigned long nr_reclaimed;
2420
2421 p->flags |= PF_MEMALLOC;
2422 lockdep_set_current_reclaim_state(sc.gfp_mask);
2423 reclaim_state.reclaimed_slab = 0;
2424 p->reclaim_state = &reclaim_state;
2425
2426 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2427
2428 p->reclaim_state = NULL;
2429 lockdep_clear_current_reclaim_state();
2430 p->flags &= ~PF_MEMALLOC;
2431
2432 return nr_reclaimed;
2433 }
2434 #endif /* CONFIG_HIBERNATION */
2435
2436 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2437 not required for correctness. So if the last cpu in a node goes
2438 away, we get changed to run anywhere: as the first one comes back,
2439 restore their cpu bindings. */
2440 static int __devinit cpu_callback(struct notifier_block *nfb,
2441 unsigned long action, void *hcpu)
2442 {
2443 int nid;
2444
2445 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2446 for_each_node_state(nid, N_HIGH_MEMORY) {
2447 pg_data_t *pgdat = NODE_DATA(nid);
2448 const struct cpumask *mask;
2449
2450 mask = cpumask_of_node(pgdat->node_id);
2451
2452 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2453 /* One of our CPUs online: restore mask */
2454 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2455 }
2456 }
2457 return NOTIFY_OK;
2458 }
2459
2460 /*
2461 * This kswapd start function will be called by init and node-hot-add.
2462 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2463 */
2464 int kswapd_run(int nid)
2465 {
2466 pg_data_t *pgdat = NODE_DATA(nid);
2467 int ret = 0;
2468
2469 if (pgdat->kswapd)
2470 return 0;
2471
2472 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2473 if (IS_ERR(pgdat->kswapd)) {
2474 /* failure at boot is fatal */
2475 BUG_ON(system_state == SYSTEM_BOOTING);
2476 printk("Failed to start kswapd on node %d\n",nid);
2477 ret = -1;
2478 }
2479 return ret;
2480 }
2481
2482 /*
2483 * Called by memory hotplug when all memory in a node is offlined.
2484 */
2485 void kswapd_stop(int nid)
2486 {
2487 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2488
2489 if (kswapd)
2490 kthread_stop(kswapd);
2491 }
2492
2493 static int __init kswapd_init(void)
2494 {
2495 int nid;
2496
2497 swap_setup();
2498 for_each_node_state(nid, N_HIGH_MEMORY)
2499 kswapd_run(nid);
2500 hotcpu_notifier(cpu_callback, 0);
2501 return 0;
2502 }
2503
2504 module_init(kswapd_init)
2505
2506 #ifdef CONFIG_NUMA
2507 /*
2508 * Zone reclaim mode
2509 *
2510 * If non-zero call zone_reclaim when the number of free pages falls below
2511 * the watermarks.
2512 */
2513 int zone_reclaim_mode __read_mostly;
2514
2515 #define RECLAIM_OFF 0
2516 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2517 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2518 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2519
2520 /*
2521 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2522 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2523 * a zone.
2524 */
2525 #define ZONE_RECLAIM_PRIORITY 4
2526
2527 /*
2528 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2529 * occur.
2530 */
2531 int sysctl_min_unmapped_ratio = 1;
2532
2533 /*
2534 * If the number of slab pages in a zone grows beyond this percentage then
2535 * slab reclaim needs to occur.
2536 */
2537 int sysctl_min_slab_ratio = 5;
2538
2539 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2540 {
2541 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2542 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2543 zone_page_state(zone, NR_ACTIVE_FILE);
2544
2545 /*
2546 * It's possible for there to be more file mapped pages than
2547 * accounted for by the pages on the file LRU lists because
2548 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2549 */
2550 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2551 }
2552
2553 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2554 static long zone_pagecache_reclaimable(struct zone *zone)
2555 {
2556 long nr_pagecache_reclaimable;
2557 long delta = 0;
2558
2559 /*
2560 * If RECLAIM_SWAP is set, then all file pages are considered
2561 * potentially reclaimable. Otherwise, we have to worry about
2562 * pages like swapcache and zone_unmapped_file_pages() provides
2563 * a better estimate
2564 */
2565 if (zone_reclaim_mode & RECLAIM_SWAP)
2566 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2567 else
2568 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2569
2570 /* If we can't clean pages, remove dirty pages from consideration */
2571 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2572 delta += zone_page_state(zone, NR_FILE_DIRTY);
2573
2574 /* Watch for any possible underflows due to delta */
2575 if (unlikely(delta > nr_pagecache_reclaimable))
2576 delta = nr_pagecache_reclaimable;
2577
2578 return nr_pagecache_reclaimable - delta;
2579 }
2580
2581 /*
2582 * Try to free up some pages from this zone through reclaim.
2583 */
2584 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2585 {
2586 /* Minimum pages needed in order to stay on node */
2587 const unsigned long nr_pages = 1 << order;
2588 struct task_struct *p = current;
2589 struct reclaim_state reclaim_state;
2590 int priority;
2591 struct scan_control sc = {
2592 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2593 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2594 .may_swap = 1,
2595 .nr_to_reclaim = max_t(unsigned long, nr_pages,
2596 SWAP_CLUSTER_MAX),
2597 .gfp_mask = gfp_mask,
2598 .swappiness = vm_swappiness,
2599 .order = order,
2600 };
2601 unsigned long nr_slab_pages0, nr_slab_pages1;
2602
2603 cond_resched();
2604 /*
2605 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2606 * and we also need to be able to write out pages for RECLAIM_WRITE
2607 * and RECLAIM_SWAP.
2608 */
2609 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2610 lockdep_set_current_reclaim_state(gfp_mask);
2611 reclaim_state.reclaimed_slab = 0;
2612 p->reclaim_state = &reclaim_state;
2613
2614 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2615 /*
2616 * Free memory by calling shrink zone with increasing
2617 * priorities until we have enough memory freed.
2618 */
2619 priority = ZONE_RECLAIM_PRIORITY;
2620 do {
2621 shrink_zone(priority, zone, &sc);
2622 priority--;
2623 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2624 }
2625
2626 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2627 if (nr_slab_pages0 > zone->min_slab_pages) {
2628 /*
2629 * shrink_slab() does not currently allow us to determine how
2630 * many pages were freed in this zone. So we take the current
2631 * number of slab pages and shake the slab until it is reduced
2632 * by the same nr_pages that we used for reclaiming unmapped
2633 * pages.
2634 *
2635 * Note that shrink_slab will free memory on all zones and may
2636 * take a long time.
2637 */
2638 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2639 (zone_page_state(zone, NR_SLAB_RECLAIMABLE) + nr_pages >
2640 nr_slab_pages0))
2641 ;
2642
2643 /*
2644 * Update nr_reclaimed by the number of slab pages we
2645 * reclaimed from this zone.
2646 */
2647 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2648 if (nr_slab_pages1 < nr_slab_pages0)
2649 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2650 }
2651
2652 p->reclaim_state = NULL;
2653 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2654 lockdep_clear_current_reclaim_state();
2655 return sc.nr_reclaimed >= nr_pages;
2656 }
2657
2658 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2659 {
2660 int node_id;
2661 int ret;
2662
2663 /*
2664 * Zone reclaim reclaims unmapped file backed pages and
2665 * slab pages if we are over the defined limits.
2666 *
2667 * A small portion of unmapped file backed pages is needed for
2668 * file I/O otherwise pages read by file I/O will be immediately
2669 * thrown out if the zone is overallocated. So we do not reclaim
2670 * if less than a specified percentage of the zone is used by
2671 * unmapped file backed pages.
2672 */
2673 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2674 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2675 return ZONE_RECLAIM_FULL;
2676
2677 if (zone->all_unreclaimable)
2678 return ZONE_RECLAIM_FULL;
2679
2680 /*
2681 * Do not scan if the allocation should not be delayed.
2682 */
2683 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2684 return ZONE_RECLAIM_NOSCAN;
2685
2686 /*
2687 * Only run zone reclaim on the local zone or on zones that do not
2688 * have associated processors. This will favor the local processor
2689 * over remote processors and spread off node memory allocations
2690 * as wide as possible.
2691 */
2692 node_id = zone_to_nid(zone);
2693 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2694 return ZONE_RECLAIM_NOSCAN;
2695
2696 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2697 return ZONE_RECLAIM_NOSCAN;
2698
2699 ret = __zone_reclaim(zone, gfp_mask, order);
2700 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2701
2702 if (!ret)
2703 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2704
2705 return ret;
2706 }
2707 #endif
2708
2709 /*
2710 * page_evictable - test whether a page is evictable
2711 * @page: the page to test
2712 * @vma: the VMA in which the page is or will be mapped, may be NULL
2713 *
2714 * Test whether page is evictable--i.e., should be placed on active/inactive
2715 * lists vs unevictable list. The vma argument is !NULL when called from the
2716 * fault path to determine how to instantate a new page.
2717 *
2718 * Reasons page might not be evictable:
2719 * (1) page's mapping marked unevictable
2720 * (2) page is part of an mlocked VMA
2721 *
2722 */
2723 int page_evictable(struct page *page, struct vm_area_struct *vma)
2724 {
2725
2726 if (mapping_unevictable(page_mapping(page)))
2727 return 0;
2728
2729 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2730 return 0;
2731
2732 return 1;
2733 }
2734
2735 /**
2736 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2737 * @page: page to check evictability and move to appropriate lru list
2738 * @zone: zone page is in
2739 *
2740 * Checks a page for evictability and moves the page to the appropriate
2741 * zone lru list.
2742 *
2743 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2744 * have PageUnevictable set.
2745 */
2746 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2747 {
2748 VM_BUG_ON(PageActive(page));
2749
2750 retry:
2751 ClearPageUnevictable(page);
2752 if (page_evictable(page, NULL)) {
2753 enum lru_list l = page_lru_base_type(page);
2754
2755 __dec_zone_state(zone, NR_UNEVICTABLE);
2756 list_move(&page->lru, &zone->lru[l].list);
2757 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2758 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2759 __count_vm_event(UNEVICTABLE_PGRESCUED);
2760 } else {
2761 /*
2762 * rotate unevictable list
2763 */
2764 SetPageUnevictable(page);
2765 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2766 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2767 if (page_evictable(page, NULL))
2768 goto retry;
2769 }
2770 }
2771
2772 /**
2773 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2774 * @mapping: struct address_space to scan for evictable pages
2775 *
2776 * Scan all pages in mapping. Check unevictable pages for
2777 * evictability and move them to the appropriate zone lru list.
2778 */
2779 void scan_mapping_unevictable_pages(struct address_space *mapping)
2780 {
2781 pgoff_t next = 0;
2782 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2783 PAGE_CACHE_SHIFT;
2784 struct zone *zone;
2785 struct pagevec pvec;
2786
2787 if (mapping->nrpages == 0)
2788 return;
2789
2790 pagevec_init(&pvec, 0);
2791 while (next < end &&
2792 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2793 int i;
2794 int pg_scanned = 0;
2795
2796 zone = NULL;
2797
2798 for (i = 0; i < pagevec_count(&pvec); i++) {
2799 struct page *page = pvec.pages[i];
2800 pgoff_t page_index = page->index;
2801 struct zone *pagezone = page_zone(page);
2802
2803 pg_scanned++;
2804 if (page_index > next)
2805 next = page_index;
2806 next++;
2807
2808 if (pagezone != zone) {
2809 if (zone)
2810 spin_unlock_irq(&zone->lru_lock);
2811 zone = pagezone;
2812 spin_lock_irq(&zone->lru_lock);
2813 }
2814
2815 if (PageLRU(page) && PageUnevictable(page))
2816 check_move_unevictable_page(page, zone);
2817 }
2818 if (zone)
2819 spin_unlock_irq(&zone->lru_lock);
2820 pagevec_release(&pvec);
2821
2822 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2823 }
2824
2825 }
2826
2827 /**
2828 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2829 * @zone - zone of which to scan the unevictable list
2830 *
2831 * Scan @zone's unevictable LRU lists to check for pages that have become
2832 * evictable. Move those that have to @zone's inactive list where they
2833 * become candidates for reclaim, unless shrink_inactive_zone() decides
2834 * to reactivate them. Pages that are still unevictable are rotated
2835 * back onto @zone's unevictable list.
2836 */
2837 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2838 static void scan_zone_unevictable_pages(struct zone *zone)
2839 {
2840 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2841 unsigned long scan;
2842 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2843
2844 while (nr_to_scan > 0) {
2845 unsigned long batch_size = min(nr_to_scan,
2846 SCAN_UNEVICTABLE_BATCH_SIZE);
2847
2848 spin_lock_irq(&zone->lru_lock);
2849 for (scan = 0; scan < batch_size; scan++) {
2850 struct page *page = lru_to_page(l_unevictable);
2851
2852 if (!trylock_page(page))
2853 continue;
2854
2855 prefetchw_prev_lru_page(page, l_unevictable, flags);
2856
2857 if (likely(PageLRU(page) && PageUnevictable(page)))
2858 check_move_unevictable_page(page, zone);
2859
2860 unlock_page(page);
2861 }
2862 spin_unlock_irq(&zone->lru_lock);
2863
2864 nr_to_scan -= batch_size;
2865 }
2866 }
2867
2868
2869 /**
2870 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2871 *
2872 * A really big hammer: scan all zones' unevictable LRU lists to check for
2873 * pages that have become evictable. Move those back to the zones'
2874 * inactive list where they become candidates for reclaim.
2875 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2876 * and we add swap to the system. As such, it runs in the context of a task
2877 * that has possibly/probably made some previously unevictable pages
2878 * evictable.
2879 */
2880 static void scan_all_zones_unevictable_pages(void)
2881 {
2882 struct zone *zone;
2883
2884 for_each_zone(zone) {
2885 scan_zone_unevictable_pages(zone);
2886 }
2887 }
2888
2889 /*
2890 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2891 * all nodes' unevictable lists for evictable pages
2892 */
2893 unsigned long scan_unevictable_pages;
2894
2895 int scan_unevictable_handler(struct ctl_table *table, int write,
2896 void __user *buffer,
2897 size_t *length, loff_t *ppos)
2898 {
2899 proc_doulongvec_minmax(table, write, buffer, length, ppos);
2900
2901 if (write && *(unsigned long *)table->data)
2902 scan_all_zones_unevictable_pages();
2903
2904 scan_unevictable_pages = 0;
2905 return 0;
2906 }
2907
2908 /*
2909 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2910 * a specified node's per zone unevictable lists for evictable pages.
2911 */
2912
2913 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2914 struct sysdev_attribute *attr,
2915 char *buf)
2916 {
2917 return sprintf(buf, "0\n"); /* always zero; should fit... */
2918 }
2919
2920 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2921 struct sysdev_attribute *attr,
2922 const char *buf, size_t count)
2923 {
2924 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2925 struct zone *zone;
2926 unsigned long res;
2927 unsigned long req = strict_strtoul(buf, 10, &res);
2928
2929 if (!req)
2930 return 1; /* zero is no-op */
2931
2932 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2933 if (!populated_zone(zone))
2934 continue;
2935 scan_zone_unevictable_pages(zone);
2936 }
2937 return 1;
2938 }
2939
2940
2941 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2942 read_scan_unevictable_node,
2943 write_scan_unevictable_node);
2944
2945 int scan_unevictable_register_node(struct node *node)
2946 {
2947 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2948 }
2949
2950 void scan_unevictable_unregister_node(struct node *node)
2951 {
2952 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2953 }
2954